� TITLE * MERGEFORMAT �GrIP�(

� SUBJECT * MERGEFORMAT �Software Development Toolkit�

Revision 1.00

�

Advanced Gravis Computer Technology Ltd.

#101 - 3750 North Fraser Way

Burnaby, British Columbia

CANADA V5J 5E9

�Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc340025185 � PAGEREF _Toc340025185 �
1
��

1.1 Hardware	� GOTOBUTTON _Toc340025186 � PAGEREF _Toc340025186 �
1
��

2. Type Definitions	� GOTOBUTTON _Toc340025187 � PAGEREF _Toc340025187 �
2
��

2.1 Slot	� GOTOBUTTON _Toc340025188 � PAGEREF _Toc340025188 �
2
��

2.2 Class	� GOTOBUTTON _Toc340025189 � PAGEREF _Toc340025189 �
2
��

2.3 Index	� GOTOBUTTON _Toc340025190 � PAGEREF _Toc340025190 �
2
��

2.4 Value	� GOTOBUTTON _Toc340025191 � PAGEREF _Toc340025191 �
2
��

2.5 Bitfield	� GOTOBUTTON _Toc340025192 � PAGEREF _Toc340025192 �
3
��

2.6 Bool	� GOTOBUTTON _Toc340025193 � PAGEREF _Toc340025193 �
3
��

3. Functions	� GOTOBUTTON _Toc340025194 � PAGEREF _Toc340025194 �
4
��

3.1 System API Calls	� GOTOBUTTON _Toc340025195 � PAGEREF _Toc340025195 �
4
��

3.1.1 Initialization	� GOTOBUTTON _Toc340025196 � PAGEREF _Toc340025196 �
4
��

3.1.2 Shutting Down	� GOTOBUTTON _Toc340025197 � PAGEREF _Toc340025197 �
4
��

3.1.3 Refresh	� GOTOBUTTON _Toc340025198 � PAGEREF _Toc340025198 �
5
��

3.2 Configuration API Calls	� GOTOBUTTON _Toc340025199 � PAGEREF _Toc340025199 �
5
��

3.2.1 Slot Information	� GOTOBUTTON _Toc340025200 � PAGEREF _Toc340025200 �
6
��

3.2.2 Class Information	� GOTOBUTTON _Toc340025201 � PAGEREF _Toc340025201 �
6
��

3.2.3 Number of Controls	� GOTOBUTTON _Toc340025202 � PAGEREF _Toc340025202 �
6
��

3.2.4 Maximum Value of a Control	� GOTOBUTTON _Toc340025203 � PAGEREF _Toc340025203 �
7
��

3.3 Data API Calls	� GOTOBUTTON _Toc340025204 � PAGEREF _Toc340025204 �
7
��

3.3.1 Set Value (Feedback)	� GOTOBUTTON _Toc340025205 � PAGEREF _Toc340025205 �
7
��

3.3.2 Get Value	� GOTOBUTTON _Toc340025206 � PAGEREF _Toc340025206 �
7
��

3.3.3 Get Packed Values	� GOTOBUTTON _Toc340025207 � PAGEREF _Toc340025207 �
8
��

3.4 OEM Information API Calls	� GOTOBUTTON _Toc340025208 � PAGEREF _Toc340025208 �
8
��

3.4.1 Vendor Name	� GOTOBUTTON _Toc340025209 � PAGEREF _Toc340025209 �
9
��

3.4.2 Product Name and Version	� GOTOBUTTON _Toc340025210 � PAGEREF _Toc340025210 �
9
��

3.4.3 Control Name	� GOTOBUTTON _Toc340025211 � PAGEREF _Toc340025211 �
9
��

3.4.4 Capabilities	� GOTOBUTTON _Toc340025212 � PAGEREF _Toc340025212 �
10
��

3.5 Library Management Calls	� GOTOBUTTON _Toc340025213 � PAGEREF _Toc340025213 �
10
��

3.5.1 Link	� GOTOBUTTON _Toc340025214 � PAGEREF _Toc340025214 �
10
��

3.5.2 Unlink	� GOTOBUTTON _Toc340025215 � PAGEREF _Toc340025215 �
11
��

�

�Introduction

This document describes the software programming interface to Gravis’ new line of digital joysticks and input devices. These digital joysticks will interface to a PC via a break-out box which enables bi-directional, digital communication through the PC game port using Gravis’ patent pending � TITLE * MERGEFORMAT �GrIP�(technology.

After presenting a brief description of the � TITLE * MERGEFORMAT �GrIP� hardware and associated terminology, this document describes the software programming API in detail. First, C-style type definitions are presented for the types that are used in the GrIP API calls. The next section details the actual programming interface.

Hardware

The term GrIP System is used to describe a collection of hardware devices which enable digital communication between controllers (ie: joysticks) and a PC via a standard game port. Thus a minimal GrIP System would consist of a computer, a GrIP break-out box and one controller; however, a more complete System may have numerous controllers of potentially different types attached to a single PC. This document will use the term “joystick” interchangeably with the term “controller”; however, it should be noted that the GrIP technology can be used for any kind of device, including joysticks as well as foot pedals, steering wheels, flight yokes and more.

To be able to address each control in a System individually, this API has adopted a hierarchical scheme for identifying controls. Each control is uniquely identified by:

the Slot (in the break-out box) into which its associated joystick is attached;

the Class of the control (eg: button or axis); and

the Index of the control within its control class on the joystick.

Note that slots and classes are numbered starting from 1, whereas indices are zero-based.

�

For example, consider addressing the controls on a GrIP version of the Gravis Firebird(joystick (as shown in the figure above). To identify the X-Axis from the figure, one would specify slot 1, class AXIS and index 0. Similarily, the throttle control would be identified with slot 1, class AXIS and index 2. To identify the first button (ie: the trigger button) on the Firebird, one would specify slot 1, class BUTTON and index 0. The final button would be identified with slot 1, class BUTTON and index 16.

Type Definitions

This section of the document describes the types of data that will be passed to and from the API calls that are described in the following section. Each type is presented as a C-style type definition and is followed by a brief discussion of the type’s role in the API.

Slot

typedef unsigned char GRIP_SLOT;

A slot is a number from 1 to the number of slots on the GrIP break-out box, which corresponds to a physical slot on the break-out box. A slot may be empty or it may have a single joystick plugged in to it; a slot can never have more than one joystick plugged in simultaneously.

Class

typedef unsigned char GRIP_CLASS;

A class is a number which identifies the type of control being addressed in an API call. This number can range from 1 to 31 for standard classes (such as “button” or “axis”), or from 32 to 47 for OEM-defined classes. Class number 0 and classes 48 and above are reserved for internal use by the break-out box and interface software.

Four of the standard classes are currently defined by this specification; these are GRIP_CLASS_BUTTON (class number 1), GRIP_CLASS_AXIS (class number 2), GRIP_CLASS_POV_HAT [Point Of View Hat] (class number 3) and GRIP_CLASS_VELOCITY [Velocity sensitive button] (class number 4).

Index

typedef unsigned char GRIP_INDEX;

An index specifies the index of a particular control within its control class on a specific joystick. This number can range from 0 to n-1, where n is number of controls of the specified class on the device.

As an example, consider again the Firebird joystick mentioned in section � REF _Ref339707572 \n �
1.1
�, which has 17 buttons and 3 axes. In this case, the value of a button index would range from 0 to 16, while the value of an axis index would range from 0 to 2.

Value

typedef unsigned short GRIP_VALUE;

A value is a 16-bit wide quantity which contains the value of a specific control. This value will range from 0 to m, where m is the maximum possible value for the control. The meaning and range of a value will depend on the particular control to which it refers. For example, a button will typically have a value which ranges from 0 to 1 and indicates whether the button is up or down. For an axis, the value will have a much larger range and will correspond to the physical position of the axis.

Bitfield

typedef unsigned long GRIP_BITFIELD;

A bitfield is a packed collection of 32 bits, where each bit is independent from the others and represents a single true or false condition. Bitfields are typically returned by functions which have the word Map in their names, as well as by the function GrGetPackedValues. Refer to the descriptions of the individual functions for more detail as to the particular meaning of the bits.

Bool

typedef unsigned short GRIP_BOOL;

A bool value is a quantity which represents the state of a condition. The bool can be either true or false. If the value is zero, then the condition is false; otherwise the condition is true.

Functions

The following subsections present the API calls that are available to GrIP aware applications. Each subsection deals with a single category of function calls. First, various API calls which provide miscellaneous system services are discussed with particular attention provided to the call GrRefresh, which must always be called for successful operation of the GrIP technology. The next subsection presents functions which are useful for determining the nature of the joysticks and controls of a specific GrIP System. Following this is a description of the three calls for sending and retrieving data to and from the attached controllers, after which several functions for determining OEM-specific information about the attached GrIP devices are presented. The final subsection describes how an application can dynamically link to the GrIP APIs by loading the GrIP runtime loadable library.

System API Calls

This subsection presents services for initializing and shutting down the GrIP libraries, as well as a call for refreshing the state of the GrIP System.

Initialization

GRIP_BOOL GrInitialize();

Other than calls to load the GrIP library or to connect to the GrIP TSR (see section � REF _Ref339707868 \n �
3.5
�), GrInitialize must be the first GrIP function that is called by the application. If GrInitialize is not called, other GrIP functions will behave in an undefined manner.

When called, GrInitialize will initialize the internal state of the GrIP libraries and will switch the GrIP break-out box from emulation mode to GrIP mode to enable full digital bi-directional communication with the attached peripherals.

Because GrInitialize must perform a GrIP mode-switch and because GrInitialize makes several calls to GrRefresh (described in section � REF _Ref339707791 \n �
3.1.3
�) internally, it may not return instantly. Therefore, it is best to call GrInitialize when real-time performance is not required, such as at application startup time. Because GrInitialize may take up to one half of a second to complete, it should not be called with interrupts disabled.

Note that GrInitialize makes use of the PC’s timer 2 during its operation. Because this timer is normally used for the PC speaker, it is important that the application not use the speaker during its call to GrInitialize. Similarily, the application must not assume that the state of the PC speaker will be preserved after this call has completed.

GrInitialize returns true if it succeeds, or false if it fails (ie: if the break-out box is not connected or if it cannot be switched to GrIP mode).

Shutting Down

void GrShutdown();

GrShutdown should be called as the final GrIP call before the application exits. GrIP functions which are called after a call to GrShutdown will behave in an undefined manner and return undefined results.

GrShutdown has no return value.

Refresh

GRIP_BITFIELD GrRefresh(GRIP_BITFIELD flags);

A call to GrRefresh will refresh the state of the GrIP System. It will read and latch new values from the attached controllers, and it will write data that is to be transmitted from the PC to the controllers. It is essential that GrRefresh be called frequently in order to guarantee correct operation of the GrIP System. For applications which execute a “main loop” at regular intervals (such as many games which synchronize with the video card’s vertical retrace), GrRefresh would ideally be called once per iteration through the loop.

GrRefresh can operate in several different modes depending on the performance constraints of the application. The flags field is used as an input to the function to indicate the mode of operation. Passing 0 as the flags value indicates that GrRefresh is to operate in its default mode (usually the best choice). However, if the default mode is inappropriate, then the following flags may be ORed together as appropriate and passed in the flags field.

#define GRIP_REFRESH_COMPLETE		0	/* Default setting */

#define GRIP_REFRESH_PARTIAL		2

#define GRIP_REFRESH_TRANSMIT		0	/* Default setting */

#define GRIP_REFRESH_NOTRANSMIT	4

The first two flags control the upper bound on the amount of time that is spent reading from the joysticks. In the typical case, both complete and partial refreshes will take the same amount of time. However, if the joysticks must send a large amount of information, a partial refresh will be faster because it does not guarantee that all joysticks are refreshed. In other words, a partial refresh will have added latency but will execute faster. It is usually best to perform a complete refresh, unless there is a compelling reason to do otherwise.

When data is waiting to be written to the break-out box (because of a call to SetValue), GrRefresh will perform a joystick-write cycle in addition to the usual read-cycle. In some cases, where the added time of a write-cycle is unacceptable, it may be desirable to defer the write until a later call to GrRefresh. In these cases, one would specify the GRIP_REFRESH_NOTRANSMIT in the flags field. Note that if there is no data waiting to be written, then the transmit/no-transmit flag is ignored.

Refresh returns a bitfield with implementation defined characteristics. This field should be ignored by application programs, as it is intended solely for use with diagnostic software.

Configuration API Calls

Configuration information is used by the application to determine information about the nature of the devices which are attached to the GrIP break-out box. This information includes details such as which slots are occupied, what types of controls are present on a given joystick, and how many controls of each type are on a given joystick.

All of the configuration calls read data that has been latched by previous calls to GrRefresh; therefore they return (almost) instantly and do not clear interrupts. Because they read latched values, however, the configuration calls all require that GrRefresh be called on a regular (and frequent) basis. In fact, when a change in the configuration occurs (ie: a user plugs in or removes a joystick from the break-out box), the configuration information for the changed slot may not become available until several GrRefresh calls later.

Note that the configuration will be correct immediately after a call to GrInitialize; this is because GrInitialize performs several refresh calls as part of its operation.

Slot Information

GRIP_BITFIELD GrGetSlotMap();

GrGetSlotMap returns a bitfield which indicates which slots have attached peripherals. If a slot is empty (ie: it has no joystick plugged into it), then the bit which corresponds to that slot is zero. If a slot is full (ie: a joystick is attached), then its corresponding bit is set to one. Bits are assigned such that the least significant bit corresponds with the lowest numbered slot; therefore, because slot 0 is reserved, bit 0 will be unused, bit 1 will correspond with slot 1, bit 2 with slot 2, etc.

For example, a call to GrGetSlotMap which returned the value 0x0A (which corresponds to binary 1010) would indicate that slots 1 and 3 have controllers attached and that the other slots are empty.

Class Information

GRIP_BITFIELD GrGetClassMap(GRIP_SLOT slot);

GRIP_BITFIELD GrGetOEMClassMap(GRIP_SLOT slot);

The two calls GrGetClassMap and GrGetOEMClassMap return bitfields which indicate which standard classes and which OEM-specific classes are available for a particular attached joystick. The slot parameter is used to specify the slot into which the joystick to be queried is plugged.

Each bit in the returned bitfield corresponds to a single class. The bits are assigned starting from the least significant to the most significant. For GrGetClassMap, bit 0 corresponds to class 0, which is reserved, so the first useful bit is bit 1, which corresponds to class 1 (GRIP_CLASS_BUTTON). For GrGetOEMClassMap, bit 0 corresponds to class 32, which is the first OEM class.

For example, to determine if the joystick plugged into slot 1 supports GRIP_CLASS_BUTTON (class 1), perform the following test:

if (GrGetClassMap(1) & (1uL << GRIP_CLASS_BUTTON))

device_supports_buttons();

Similarily, to test for support for point of view hats, perform the following test:

if (GrGetClassMap(1) & (1uL << GRIP_CLASS_POV_HAT))

device_supports_point_of_view();

Finally, to determine if the device supports a particular OEM-specific class, the following test should be performed:

#define CLASS_OEM_START		32u

#define CLASS_OEM_0		32u	/* For example */

#define CLASS_OEM_5		37u	/* For example */

if (GrGet
O
EM
ClassMap(1) &

(
1uL << (
CLASS_OEM_5 -
CLASS_OEM_START))

device_supports_specific_oem_class();

Number of Controls

GRIP_INDEX GrGetMaxIndex(GRIP_SLOT slot, GRIP_CLASS cls);

GrGetMaxIndex returns the index of the last control of the specified type for a particular joystick. It is used to determine the number of controls of type cls that are present on the joystick attached to slot slot. Note that because indices are zero-based, this call will return one less than the number of controls. Therefore, because this call cannot specify that no controls of the specified type are present, it is critical that an application which calls this function call GrGetClassMap first, to determine whether the requested class is present on the joystick.

The following code fragment presents an example of how to determine and display the number of buttons that are present for the joystick plugged into slot 2.

if (GrGetClassMap(2) & (1uL << GRIP_CLASS_BUTTON))

{

printf(“Slot 2 has %u buttons.”,

(GrGetMaxIndex(2, GRIP_CLASS_BUTTON) + 1u));

}

else

{

printf(“Slot 2 has no buttons.”);

}

Maximum Value of a Control

GRIP_VALUE GrGetMaxValue(GRIP_SLOT slot, GRIP_CLASS cls);

GrGetMaxValue returns the maximum value that can be returned by a particular control class. The minimum value for all controls is always zero.

Data API Calls

This subsection presents functions for reading the latched states of GrIP controls. As well, a function is presented which can send feedback information back to a joystick.

Set Value (Feedback)

void GrSetValue(GRIP_SLOT s, GRIP_CLASS c, GRIP_INDEX i, GRIP_VALUE v);

GrSetValue is used to send force feedback or other information to a specific control on an attached device. After a device has received a GrSetValue message, it should attempt to move the specified control so that its position corresponds to the value parameter passed to this function call. The value passed to this call should not exceed the maximum value for the control (determined with a call to GrGetMaxValue).

For example, to move a feedback-aware axis to its origin (typically, the lower left corner), one could use the following code. (This code assumes that slot and index have been set elsewhere in the program.)

GrSetValue(slot, GRIP_CLASS_AXIS, index, 0);

Similarily, to move the same axis to the position furthest from its origin, one could write:

GrSetValue(slot, GRIP_CLASS_AXIS, index,

GrGetMaxValue(slot, GRIP_CLASS_AXIS));

Note that the data is not actually sent to the device during the GrSetValue call. Instead, the data is added to a queue internal to the GrIP library and is sent over a period of calls to GrRefresh.

Get Value

GRIP_VALUE GrGetValue(GRIP_SLOT slot, GRIP_CLASS cls, GRIP_INDEX index);

GrGetValue is used to read the value of a particular control on an attached device. This function will return a value which ranges from 0 to GrGetMaxValue(slot, cls, index). The following code fragment shows how one might read the current position of the Y-Axis on the device in slot 3.

GRIP_VALUE pos;

pos = GrGetValue(3, GRIP_CLASS_AXIS, 1);

Like GrSetValue, GrGetValue does not actually read data from the device. Instead, it reads the data which has been most recently latched by a call to GrRefresh. This way, multiple calls can be made to GrGetValue() without experiencing the overhead of reading the entire device’s state every time.

Get Packed Values

GRIP_BITFIELD GrGetPackedValues(GRIP_SLOT slot, GRIP_CLASS cls,

 GRIP_INDEX start, GRIP_INDEX end);

The function GrGetPackedValues is used to read the state of multiple controls of the same class (typically GRIP_CLASS_BUTTON) in one function call. These controls, which must all be exactly one bit wide (ie: they must have a MaxValue of 1), are packed into a single bitfield. The state of the first control is placed into the least significant bit of the bitfield, with the next control in the next most significant bit, etc.

Note that the starting and ending indices are inclusive. Therefore, to read a single control at index i, one could perform a GrGetPackedValues call with start = end = i (although, in this case, a call to GrGetValue would be more efficient). Also, the ending index must not exceed the starting index by more than 31, because then the resulting packed value could not fit into a bitfield.

Calls to GrGetPackedValues for classes which have controls with MaxValues greater than 1 or for index ranges which are separated by more than 31 positions are undefined and may return meaningless results.

The following code fragment shows how one might read and display the states of the first ten buttons on an attached joystick. The code assumes that the joystick is plugged into slot 4 and that calls have already been made to determine that the joystick does have at least ten buttons and that the buttons are all single bit controls.

GRIP_INDEX i;

GRIP_BITFIELD bf;

bf = GrGetPackedValues(4, GRIP_CLASS_BUTTON, 0, 9);

for (i = 0; i < 10; i++)

{

if (bf & (1uL << i))

printf(“Button %d is pressed.\n”, (int)i);

else

printf(“Button %d is not pressed.\n”, (int)i);

}

Note that, like GrGetValue, GrGetPackedValues does not actually read data from the device. Instead, it reads the data which has been most recently latched by the GrRefresh function.

OEM Information API Calls

This subsection describes services which can be used to determine vendor and product information about attached GrIP controls.

Typically, these calls are used to determine meaningful (to the user) descriptive names of the attached devices and controls so that they can be displayed in menus or on a setup screen. As well, should an application wish to exploit a vendor- or product-specific capability, these OEM Information functions enable the application to specifically identify a device by checking the device’s vendor and product IDs.

Note that all of these calls perform both writes and reads to the attached joysticks; therefore they may also perform several GrRefresh calls as part of their operation. As a result, none of these functions should be called from time-critical sections of code.

Vendor Name

void GrGetVendorName(GRIP_SLOT slot, char* name);

GrGetVendorName retrieves the name of the manufacturer of the joystick in the specified slot. The name parameter must point to a buffer which is at least 16 characters long. This buffer will be filled with a zero-terminated vendor name. For example, a Gravis Firebird might return a vendor name of “Gravis”.

In the event that the joystick does not support the GrGetVendorName call, the name buffer will be set to an empty string (ie: name[0] = ‘\0’).

Product Name and Version

GRIP_VALUE GrGetProductName(GRIP_SLOT slot, char* name);

GrGetProductName retrieves the product name and version number for a specified peripheral. Like GrGetVendorName, GrGetProductName assumes that the name parameter is a pointer to a buffer which is at least 16 characters long. GrGetVendorName will populate this buffer with the vendor-chosen product name for the joystick. For example, a Gravis Firebird might return a product name of “Firebird”.

The value returned by GrGetProductName contains a major version number in its high byte and a minor version number in its low byte. If the version number is to be displayed to a user, it is recommended that the number be displayed as the major version followed by a decimal point followed by a two digit wide minor version. The following code provides an example of displaying the vendor and product information for a joystick attached to slot 4.

char vendor[16];

char product[16];

GRIP_VALUE version = GrGetProductName(4, product);

GrGetVendorName(4, vendor);

printf(“Slot 4 has a %s %s (version %d.%02d)\n”,

vendor, product, (int)(version >> 8),

(int)(version & 0xFFu));

In the event that the joystick does not support the GrGetProductName or GrGetProductVersion calls, the name buffer will be set to an empty string (ie: name[0] = ‘\0’) and a version of 0 will be returned.

Control Name

void GrGetControlName(GRIP_SLOT slot, GRIP_CLASS cls, GRIP_INDEX index,

 char* name);

GrGetControlName retrieves the name of a specific control for an attached joystick. The name parameter must point to a buffer which is at least 16 characters long. This buffer will be filled with a zero-terminated control name for the specified control. For example, for button 0 on a Gravis Firebird, GetControlName might set the name buffer to “Trigger”. Typically, a control name will not incorporate the name of the class in the string; for example, axis X on a GrIP GamePad would return the string “X” and not “Axis X”.

In the event that the joystick does not support the GrGetControlName call, the name buffer will be set to an empty string (ie: name[0] = ‘\0’).

Capabilities

GRIP_BITFIELD GrGetCaps(GRIP_SLOT slot, GRIP_CLASS cls, GRIP_INDEX i);

GrGetCaps retrieves a set of “capabilities” bits for a specific control on an attached device. The meaning of these bits are class-specific. For example, the capabilities bits for an axis on a joystick can be used to determine specifics about the nature of the axis. This information would include items such as whether or not the axis supports feedback, and the type of axis (ie: a linear axis such as the X axis on most joysticks versus a radial axis such as a joystick’s throttle).

Because the capabilities bits provide additional information which is not essential to the operation of the program, most applications will never have to call this function. As well, because this is a non-essential function, joysticks are not required to support this call for all controls; in the event that the call is unsupported, this function will return a capabilities bitfield of zero.

[This function is unsupported in the current version of the GrIP GLL, and will always return 0.]

Library Management Calls

This subsection describes how an application can dynamically link to the GrIP APIs by loading the GrIP binary loadable library.

Other than the functions described in this section, all the GrIP APIs are merely “thunks” which redirect application-level requests to a GrIP service provider, such as the GrIP loadable library. Therefore, for an application to be able to call any of these services, it must first connect to a service provider via the GrLink call. Failure to do this will result in unpredictable behavior (and most likely a system crash), as calls are vectored into the Void.

Note that none of the library management calls interact with the GrIP hardware. They are only for managing the GrIP library itself. Hardware initialization and shutdown must still be done with GrInitialize and GrShutdown. (Of course GrLink must be used to connect to the library before calling GrInitialize, and GrUnlink should not be called until the hardware has been properly shutdown using GrShutdown.)

Link

GRIP_BOOL GrLink(void* image, GRIP_VALUE size);

GrLink establishes a link between the calling application and a GrIP service provider (loadable library). Before calling this function, the application must have first located the library file and then loaded it entirely into a temporary memory image. The application passes a pointer to this memory, and an integer specifying the number of bytes loaded into memory as the arguments to the GrLink call.

The GrLink function will copy the resident portion of the library into a newly allocated region of memory and will apply all of the necessary runtime fixups so that further calls to GrIP can succeed. This function returns true to indicate success, and false in the event that an error occured (typically indicating “out of memory”).

Note that the memory pointed to by the image parameter is not used after the call to GrLink has completed, and so it can be allocated on the stack if desired. Note also that the flat model version of GrIP (ie: for 32-bit Watcom) uses DPMI calls to allocate the memory and selectors for the linked library, so these calls must be made while DPMI is available. (DPMI is always available with DOS4G/W, but may not be available with other DOS extenders.)

While attempting to locate the GrIP loadable library (“GRIP.GLL”), the following search order should be obeyed. First search the local directory. Next search directories specified by the “GRIP” environment variable. Next search directories specified by the “PATH” environment variable. Finally search the directory “C:\GRIP”. The following code example, adapted from the file DEMO.C included with the developer’s toolkit, shows how to locate and open the GrIP loadable library.

char lib[128]; // Full path for GrIP library

FILE* flib; // File handle for library

long size; // Size of library file (bytes)

void* image; // Memory image of library file

// Note that the filename for the library ("GRIP.GLL"), the

// environment variable name ("GRIP") and the default

// install directory ("C:\GRIP\") are defined in the module

// GrIP.C as GrLibName, GrLibEnv, and GrLibDir

// respectively.

_searchenv(GrLibName, GrLibEnv, lib);

if (lib[0] == 0)

 _searchenv(GrLibName, "PATH", lib);

if (lib[0] == 0)

 {

 strcpy(lib, GrLibDir);

 strcat(lib, GrLibName);

 }

// Open the loadable library file and determine its size

if ((flib = fopen(lib, "rb")) == 0)

 // ERROR!!!

fseek(flib, 0, SEEK_END);

size = ftell(flib);

// Allocate memory for the library and load the file

//

// (If the size is greater than 32k, then this is definitely

// not the correct file, so signal an error.)

if (size > 32*1024L)

 // ERROR!!!

image = (void*)malloc(size);

if (image == 0)

 // ERROR!!!

fseek(flib, 0, SEEK_SET);

fread(image, 1, size, flib);

fclose(flib);

// Link to the library (and free up the temporary memory)

if (!GrLink(image, size))

 // ERROR!!!

free(image);

Unlink

GRIP_BOOL GrUnlink();

GrUnlink reverses the effects of the GrLink function. This function unloads the loadable library and frees any resources that it was consuming. This function must be the last GrIP function that is called by an application. Calling GrIP functions after the library has been unloaded will most likely lead to a General Protection fault.

Note that, like GrLink, the flat model version of GrUnlink (ie: for 32-bit Watcom) uses DPMI calls to free the allocated memory and selectors for the linked library, so these calls must be made while a DPMI server is present. (DPMI is always available with DOS4G/W, but may not be available with other DOS extenders.)

GrUnlink returns true if it was successful, or false if the library could not be unloaded.

�

H.	Performance

This section presents information regarding the performance of the initial implementation of the GrIP API and hardware. For each category of information, the theoretical performance results are presented first, followed by the experimentally observed actual performance values.

Some performance information regarding the Gravis GrIP technology is considered “Gravis proprietary and confidential” and so has not been documented in the public version of this document. This information is available separately in the supplemental document numbered 3-97-02 “GrIP Performance Considerations”.

�	� TITLE * MERGEFORMAT �
GrIP
� � SUBJECT * MERGEFORMAT �
Software Development Toolkit
�	Page � PAGE �
6
�

