(4

)

PenPoint Architectural Reference
Volume 11

PenPoint

PenPoint”
Architectural Reference

VOLUME 11

GO CORPORATION

GO TECHNICAL LIBRARY

oooooooooooooooooo

PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications, including many coding samples. This is the first book you should
read as a beginning PenPoint applications developer.

"PenPoint Architectural Reference Volume I presents the concepts of the fun-
damental PenPoint classes. Read this book when you need to understand the
fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need
to understand the supplemental PenPoint subsystems, such as the text sub-
system, the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements,
and describes how PenPoint uses the elements. Read this book before
designing your application’s user interface.

PenPoint Development Tools describes the environment for developing, de-
bugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

PenPoint

PenPoint’
Architectural Reference

VOLUME 11

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company

Reading, Massachusetts ¢ Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam
Bonn & Sydney & Singapore ¢ Tokyo & Madrid & San Juan
Paris @ Seoul ¢ Milan e Mexico City & Taipei

Warranty Disclaimer
and Limitation of

Liability

U.$. Government
Restricted Rights

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright ©1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo,
ImagePoint, GOWrite, NoteTaker; TableServer, EDA, MiniNote, and MiniText.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
sérvices mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFTWARE OR ANYTHING ELSE.

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation’s total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure

by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commetcial Computer
Software—Restricted Rights) and DFAR 252.227-7013 (c) (1) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60860-X
123456789-AL-9695949392
First printing, June 1992

The PenPoint Architectural Reference provides detailed information on the various
subsystems of the PenPoint™ operating system. Volume I describes the functions
and messages that you use to manipulate classes and describes the fundamental
classes used by almost all PenPoint applications. Volume II describes the
supplemental classes and functions that provide many different capabilities to
PenPoint applications.

Intended Audience

The PenPoint Architectural Reference is written for people who are designing

and developing applications and services for the PenPoint operating system. We
assume that you are familiar with the C language, understand the basic concepts of
object-oriented programming, and have read the PenPoint Application Writing Guide.

What’s Here

The PenPoint Architectural Reference is divided into several parts, which are split
across two volumes. Volume I contains these parts:

¢ Part 1: Class Manager describes the PenPoint class manager, which supports
object-oriented programming in PenPoint.

& Part 2: PenPoint Application Framework describes the PenPoint Application
Framework, which provides you the tools you use to allow your application
to run under the notebook metaphor.

® Part 3: Windows and Graphics describes ImagePoint, the imaging system for
the PenPoint operating system, and how applications can control the screen
(or other output devices).

® Part 4: Ul Toolkir describes the PenPoint classes that implement many of the
common features required by the PenPoint user interface.

& DPart 5: Input and Handwriting Translation describes the PenPoint input
system and programmatic access to the handwriting translation subsystems.

Volume II contains these parts:

® Fart 6: Text Component describes the PenPoint facilities that allow any
application to provide text editing and formatting capabilities to its users.

® Part 7: File System describes the PenPoint file system.

& Part 8: System Services describes the function calls that applications can use
to access kernel functions, such as memory allocation, timer services, process
control, and so on.

vi PENPOINT ARCHITECTURAL REFERENCE

& Part 9: Utility Classes describes a wide variety of classes that save application
writers from implementing fundamental things such as list manipulation,
data transfer, and so on.

& Puart 10: Connectivity describes the classes that applications can use to access
remote devices.

® Part 11: Resources describes how to read, write, and create PenPoint resource

files.

& Part 12: Installation API describes PenPoint support for installing appli-
cations, services, fonts, dictionaries, handwriting prototypes, and so on.

& DPart 13: Writing PenPoint Services, describes how to write an installable
service.

You can quickly navigate between these sections using their margin tabs. Each
volume has its own index. The PenPoint Development Tools has a master index
for all the manuals in the Software Development Kit.

» Other Sources of Information

As mentioned above, the PenPoint Application Writing Guide provides a tutorial
on writing PenPoint applications. The tutorial is illustrated with several sample
applications.

The PenPoint Development Tools describes how to run PenPoint on a PC, how to
debug programs, and how to use a number of tools to enhance or debug your

applications. This volume also contains a master index to the five volumes
included in the PenPoint SDK. '

The PenPoint API Reference is a set of “datasheets” that were generated from the
PenPoint SDK header files. These datasheets contain information about all the
messages defined by the public PenPoint classes. If you own the PenPoint SDK,
you can also find the header files in the directory \PENPOINT\SDK\INC.

To learn how to use PenPoint, you should refer to the PenPoint user documen-
tation. The user documentation is included with the PenPoint SDK, and is usually
packaged with a PenPoint computer. The user documentation consists of these

books:
* Gerting Started with PenPoint, a primer on how to use PenPoint.

® Using PenPoint, a detailed book on how to use PenPoint to perform tasks and
procedures.

PREFACE vil
Type Styles in This Book

7 Type Styles in This Book

To emphasize or distinguish particular words or text, we use different fonts.

7 Computerese
We use fonts to distinguish two different forms of “computerese”

¢ C language keywords and preprocessor directives, such as switch,
case, #define, #ifdef, and so on.

¢ Functions, macros, class names, message names, constants, variables,
and structures defined by PenPoint, such as msgListAddItem, clsList,
stsBadParam, P_LIST_NEW, and so on.

Although all these PenPoint terms use the same font, you should note that
PenPoint has some fixed rules on the capitalization and spelling of messages,
functions, constants, and types. By the spelling and capitalization, you can
quickly identify the use of a PenPoint term.

¢ Classes begin with the letters “cls”; for example, clsList.
Messages begin with the letters “msg”; for example, msgNew.
Status values begin with the letters “sts”; for example, stsOK.

¢ Functions are mixed case with an initial upper case letter and trailing

parentheses; for example, OSMemAwailable().

¢ Constants are mixed case with an initial lower case letter; for example,

wsClipChildren.

Structures and types are all upper case (with underscores, when needed,
to increase comprehension); for example, U32 or LIST_NEW_ONLY.

P Code Listings
Code listings and user-PC dialogs appear in a fixed-width font.

//

// Allocate, initialize, and record instance data.

//

StsJmp (OSHeapBlockAlloc (osProcessHeapld, SizeOf (*pInst), &plInst), \
s, Error);

pInst->>placeHolder = -1L;

ObjectWrite (self, ctx, &plnst);

viii PENPOINT ARCHITECTURAL REFERENCE

Less significant parts of code listings are grayed out to de-emphasize them. You
needn’t pay so much attention to these lines, although they are part of the listing.

ObiCallJdmp (msgNewDefaults, cisApngr, &new, s, Error};

new.
new.
new.
new.
new.
new.
new,
new.

object.uid

object .key

cls.pMsg

cls.ancestor

cls.size
cls.newhArgsSize
appMgr.flags.stationery
appMor.flags.accessory

= clsTttApp;

G z

clsTttAppTable;

clsApp;

SizeOf (P_TTT APP INST);
SizeQf (APP_NEW) ;

true;

false;

stropy {(new.appMgr . company, "GO Corporation®};
appMgr.copyright = "\213 1992 GO Corporation, All Rights Reserved.™;
ObjCallJdmp (msgNew, clsAppMgr, é&new, s, Error);

new.

% Placeholders

Anything you do 7oz have to type in exactly as printed is generally formatted in
italics. This includes C variables, suggested filenames in dialogs, and pseudocode

in file listings.

%> Other Text

The documentation uses izalics for emphasis. When a Part uses a significant term,
it is usually emphasized the first time. If you aren’t familiar with the term, you can
look it up in the glossary in the PenPozntApplzczzzzon Writing Guide or the index of

the book.

DOS filenames such as \BOOT\PENPOINT\APP are in small capitals. PenPoint file
names can be upper and lower case, such as \My Disk\\Package Design Letter.

Book names such as PenPoint Application Writing Guide are in italics.

"PENPOINT ARCHITECTURAL REFERENCE / VOL 1}

» Part 6 / Text

62 / Introduction

63 / Text Subsystem Concepts
64 / Using Text Data Objects
65 / Using Text Views

66 / Using Text Insertion Pads
67 / Sample Code

68 / Advanced Information

» Part 7 / File System

69 / Introduction

70 / File System Principles and Organization
71 / Accessing the File System

72 |/ Using the File System

P Part 8 / System Services

73 [Introduction

74 | PenPoint Kernel Overview
75 / C Run-Time Library

76 / Math Run-Time Library

P Part 9 / Utility Classes

77 [Introduction

78 [The List Class

79 I Class Stream

80 / The Browser Class

81 / File Import and Export
82 / The Selection Manager
83 / Transfer Class

84 / Help

85 / The Busy Manager

86 / Search and Replace

87 / Undo

88 / Byte Buffer Objects

89 / String Objects

90 / Table Class

91 / The NotePaper Component

CONTENTS

11
23
33
35
37

39

43
49
57
69

93

95
97
109
115

119

123
127
133
137
147
155
165
179
193
195
199
207
211
213
229

» Part 10 / Connécﬁvily

92 / Introduction
93 / Concepts and Terminology
94 / Using Services
95 / Serial I/O
96 / Parallel I/O
97 / Data Modem Interface
98 / The Transport API
99 / In Box and Out Box
100 / The Address Book
101 / The Sendable Services

P Part 11 / Resources

102 / Introduction

103 / Concepts and Terminology

104 / Using clsResFile

105 / Defining Resources with the C Language
106 / Compiling Resources

107 / System Preferences

¥ Part 12 / Installation API

108 / Introduction

109 / Installation Concepts

110 / PenPoint File Organization

111 / Dynamic Link Libraries

112 / Installation Managers

113 / The Auxiliary Notebook Manager
114 / The System Class

¥ Part 13 / Writing PenPoint
Services

115 / Introduction

116 / Service Concepts

117 / Programming Services

118 / Distributing Your Service

119 / Test Service Examples

¥ Index

237

241
243
255
265

' 275

279
295
305
317
331

335

337
341
347
355
359
361

369

373
375
381
399
405
421
429

433

435
437
449
473
475

507

PENPOIN'I’ ARCHITECTURAL REFERENCE / VOL 11}

Text

7 Chapter 62 / Introduction

Overview

Features
Developer’s Quickstart
Organization of This Part

7 Chapter 63 / Text Subsystem

Concepts

The Text Subsystem Classes

Text Data Objects
Organization of Text Data Objects
Attributes

Paragraph Attributes
Text Views
Text Insertion Pads

Units of Measurement

7 Chapter 64 / Using Text
Data Objects

Text Data Functions
Deleting Many Characters
Inserting a Character

Text Data Messages
Creating a New Text Data Object
Getting and Setting Text Metrics

Reading Characters in Text Data Objects

Getting a Single Character
Getting a Range of Characters
Text Length
Altering Text Data Objects
Scanning Ranges of Characters
Getting and Setting Attributes
Text Actribute Arguments
Getting Attributes
Modifying Attributes
Embedding Objects
Observer Messages
msg TextReplaced Observer Message
msg TextAffected Observer Message

3

62.1 3
62.2 4
62.3 5
62.4 5
7

63.1 7
63.2 7
63.2.1 8
6322 8
63.3 9
63.4 9
63.5 9
63.6 10
11

64.1 11
64.1.1 11
64.1.2 12
64.2 12
64.3 13
64.4 14
64.5 14
6451 14
6452 14
64.6 14
64.7 15
64.8 15
64.9 16
649.1 16
649.2 18
6493 19
6410 20
64.11 21
64.11.1 21
64.11.2 21

77 Chapter 65 / Using Text Views

Text View Messages

Creating a Text View

Getting the Viewed Object’s UID
Embedding Objects in Views
Interacting with the Input Subsystem

Obtaining the Text Index from a Tap Position

Processing an Input Xlist or Gesture

Scrolling a Text View

Inserting a Text View in a Scrolling Window

Getting the Current Selection
Getting and Setting the Text Style
Checking Consistency of Text Views

¥ Chapter 66 / Using Text
Insertion Pads

Text Insertion Pad Messages

Creating Text Insertion Pads

Destroying Text Insertion Pads

- 7 Chapter 67 / Sample Code

7 Chapter 68 / Advanced
Information
Counting the Changes

Atoms
Predefined Atoms

7 List of Figures

62-1 Text Class Hierarchies
65-1 Text View X-Regions
65-2 Text View Y-Regions

¥ List of Tables

63-1 Text Character Encoding
64-1 Text Data Functions

64-2 clsText Messages

64-3 Character Attributes

64-4 Character Font Masks
64-5 DParagraph Attributes

64-6 clsText Observer Messages
65-1 clsTextView Messages
65-2 msgNewDefaults for clsTextView
66-1 clsTextIP Messages

68-2 Predefined Atoms

65.1
65.2
65.3
65.4

65.5
65.5.1
65.5.2

65.6
65.7
65.8
65.9
65.10

66.1
66.2
66.3

68.1

68.2
68.2.1

23
23
24
26
26

27
27

29
30
30
32
32

33

33
33
33

35

37

37

37
38

28
28

11
12
17
17
18
21
23
24
33
38

"'PENPOINT ARCHITECTURAL REFERENCE / voL Il

PART 6 / TEXT

Chapter 62 / Introduction

The Text subsystem presents text to the user for viewing and editing. It also
provides an API to clients to allow programmatic modification of the text and its
presentation attributes.

P Overview 62.1

clsText implements the data object subclass of the Text subsystem. clsTextView
implements the viewing subclass of the Text subsystem; it is the user’s view onto
the data managed by clsT'ext. TXTDATA.H defines the messages used for text data
objects; TXTVIEW.H defines the messages used for text view objects.

clsText is a descendent of clsObject. clsTextView is a subclass of clsView. Figure
62-1 shows the class hierarchy for clsText and clsTextView.

4 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Figure 62-1 B
Text Class Hierarchies

V Features | 62.2

The Text subsystem is implemented as a group of related classes. The Text
subsystem uses the PenPoint™ operating system class system. The classes allow:

¢ Your code to display both plain and fancy text to the user in one or more text
data objects. ‘

¢ The user to interact with the text to modify both the characters and their
appearance.

¢ The user to transfer all or part of the text from one text data object to
another (possibly non-text) object, and vice versa.

* Your code to file text data objects.

¢ Your code to observe and direct the user’s interactions with the text.

CHAPTER 62 / INTRODUCTION 5
Organization of This Part

¢ Embedded objects, which are used to implement insertion pads and
signature pads, and can include graphics, spread sheets and other applications
in documents.

There is a difference between displaying text through the graphics subsystem and
using the Text subsystem. You can use the graphics subsystem to display characters
on the screen, but users can’t dynamically manipulate the text. Furthermore, the
text subsystem includes paragraph and document attributes that define things
such as margins and tabs.

¥ Developer’s Quickstart 62.3

If you want to display text on the screen, you can use the windows and graphics This section presents a quick
subsystem to quickly display text in a window. If you want to make text available ~ eummary of the eseential

..] things that application writers
for editing and be able to file text as separate objects, you need to use the Text will heed to kiow about the Text

subsystem. subsystem.

The simplest way to access the Text subsystem is to create a text view object by
sending msgNewDefaults and msgNew to clsTextView (thus specifying no
object to view). Like all views, the text view will create an empty text data object
automatically. When you insert the text view into a window, the empty text view
appears on screen. The user can now make an insertion gesture to bring up an
insertion pad.

If you want to open a view to an existing text data object, you specify the object
when you send msgNew to clsTextView. You can create a text data object
separately and map it to a view later.

Most of the time the user will modify the text attributes through an option sheet
for the application that uses text. You can programmatically change attributes
(both default attributes and local attributes).

7 Organization of This Part 62.4

This part consists of six chapters. This, the first chapter, presents a brief overview
of the Text subsystem.

Chapter 63, Text Subsystem Concepts, describes the organization and structure of
the Text subsystem and presents the terminology used in the Text subsystem.

Chapter 64, Using Text Data Objects, describes how to access the text subsystem.
It describes the messages defined for text data objects and how you use the
messages.

Chapter 65, Using Text Views, describes how to access text views. It describes the
messages defined for text view objects and how you use the messages.

Chapter 66, Using Text Insertion Pads, describes the messages used to handle text
insertion pads.

6 / TEXT

6 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Chapter 67, Sample Code, lists the code that is used in the examples to demon-
strate features of the Text subsystem. These files are also available on disk in the
\PENPOINT\SDK\SAMPLE directory.

Chapter 68, Advanced Information, describes advanced features of the Text
subsystem. Although very powerful, these features are also rather complex.

Chapter 63 / Text Subsystem Conceplts

This section describes the concepts related to the Text subsystem.
Topics covered in this chapter:

¢ The Text subsystem classes and objects.

¢ The types of attributes that text objects can have.

¢ Units of measurement used by the Text subsystem.

The Text Subsystem Classes 63.1

Messages for the Text subsystem are described by two separate files. TXTDATA.H
provides an interface to clsText, which allows you to manipulate text data objects
(adding, modifying, formatting, and so on). TXTVIEW.H provides an interface to
clsTextView, a subclass of clsView, which allows you to display text data objects so
that users can modify them.

Text Data Objects 63.2

The fundamental component of the Text subsystem is the text data object. You
create a text data object by sending msgNewDefaults and msgNew to clsText.
There is no limit to the size of text data objects.

A text data object has default attributes for characters, paragraphs, and the entire
document. Additionally, a text data object supports local attributes for characters
and paragraphs. Default attributes apply to an entire object; local attributes
apply to contiguous ranges of characters or paragraphs. A text data object has a
single set of default attributes, but it can have any number of local attributes. You
can use the clsText messages to change both the default attributes and the local

- attributes.

In this description, a block is synonymous with a text data object. Your appli-
cation might choose to implement documents that have a larger scale than a
single text data object.

Text data objects are observable. Any object can add itself to a text data object’s
observer list, so that the object will receive notification of changes in the text data
object. The changes include text affected and text replaced messages.

8 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

P» Organization of Text Data Objects

A text data object is a stream of characters with no embedded formatting infor-
mation. The formatting information is managed internally by clsText, and is
available to advanced users.

The characters within a text data object are indexed with a value of type
TEXT_INDEX (which is a U32 value). The text index is zero based; the index 0
indicates the first character in the text data object.

You must always use TEXT_INDEX type variables when indexing text.

The character encodings are similar to those used by the IBM-PC Code Page 850.

However, the GO text data objects use some controls that replace codes used by
Code Page 850. These codes and their meanings are defined in the file
TENCODE.H; the codes are listed in Table 63-1.

63.2.1

Table 63-1

Text Character Enmd’ing

Symbol Represents

teEmbeddedObject An object is embedded at this location.
teSpace A space. '
teT'ab A tab.

teNewLine A new line.

teNewPage A new page.

teNewParagraph A new paragraph.

teUnrecognized A character that was not recognized by the handwriting recognition system.

¥» Attributes

As mentioned above, attributes exist for characters, paragraphs, and documents.
Default attributes are established when the text data object is created. You can
change the default attributes programmatically, or the user can use the option
sheet to change the attributes.

Your application can programmatically change local or default attributes (for
example, the type family or point size). However, most applications don’t
intervene in formatting, they allow the user to change attributes by way of the
option sheet.

%v¥ Character Attributes

Character attributes apply to any range of characters, regardless of paragraph
boundaries. The default character attributes apply to the entire text data object.

Characters have two types of attributes, display attributes and font attributes. The
display attributes include size, underlining, small caps, capital letters, and so on.
Font attributes include type face and weight.

63.2.2

63.2.2.1

CHAPTER 63 / TEXT SUBSYSTEM CONCEPTS
Text Insertion Pads

Defined but not used are:
¢ Display attributes (superscript and subscript).
¢ Font attribute (aspect).

When you create a new text data object, clsT'ext usually reads the current default
character attributes from the system resource file. However, an application can
override these defaults by redefining the resource in its own APPRES file. If you
define your own character attribute resource, the resource ID must be
textResDefaultCharAttrs. These values are defined in TXTDATA H.

Paragraph Aftributes 63.3

Paragraph attributes include: alignment, leading, space before and after, margins,
and tabs. Each tab has its own position; alignment and leader characters are in the
design but are not implemented.

Text Views 63.4

You usually use text data objects because you want users to create, and modify text
on screen. To display the text data objects, you use a text view, which is an
instance of clsTextView. clsTextView is a subclass of clsView, the view class.

While clsText provides facilities for storing the text’s characters and attributes,
clsTextView provides a user interface that allows the user to view and modify
those characters and attributes.

When you create a text view, it displays the initial portion of the data object (that
is, the characters beginning at index 0 and their associated attributes). The exact
formatting of the view depends both on the data object and on the view’s style.
You set the view’s style in the tv.style field of the TV_NEW structure (which you
send with the msgNew that creates the view). If there is more data than can be
completely displayed in the view, it is the client’s responsibility to place the text
view within a scrolling window (clsScrollWin) so that it will have scroll bars.

You can use the TextCreateTextScrollWin function to create a text view and a
scrolling window, and then insert the text view into a scrolling window.

Because views file their own data, the text view will send filing messages to its data
object when it receives msgSave.

Text Insertion Pads 63.

When you create a text view, clsTextView creates an insertion pad in the text view
by default. (You can turn off this behavior by clearing the tvFillWithIP flag in the
tv.flags field of TV_NEW.)

i

This insertion pad is an object of clsTextIP, the text insertion pad class. clsTextIP
inherits from clsIP. Most behavior of text insertion pads is identical to that of
other insertion pads. For a complete description of insertion pads, see Part 5:
Input and Handwriting Translation.

6 / TEXT

10 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Many text data attributes can be expressed as dimensions (such as character size,
margin position, tab position, and so on).

In general, péragraph units (including tabs) and font sizes are expressed in twips.

Twips are described in Part 3: Windows and Graphics.

Internally, some attributes are converted from Twips to units that have a lower
resolution (and are stored that way). If you change one of these attributes and
then get the attribute again, you might notice some round off.

63.6

Chapier 64 / Using Text Data Objects

This section describes the messages that create and modify text data objects.

Topics covered in this chapter include:

4

Creating and destroying text data objects.

* Getting characters from text data objects.

¢ Scanning for characters in text data objects.

¢ Modifying text data objects.

¢ Setting character, paragraph, and block attributes in text data objects.
¢ Embedding and extracting objects in text data objects.

¢ The observer messages for text data objects.

Text Data Functions

The following functions are defined in TXTDATA.H. These functions implement
common actions that you might perform on text data. The functions are listed in

Table 64-1.

Table 6447
i Data Funchions

Tex
Function . Deseription
TextDeleteMany Deletes one or more bytes from a text data object.
TextInsertOne Inserts a single byte in a text data object.

"% Deleting Many Characters

You use TextDeleteMany to delete a number of characters from a text data object.
The function prototype is:
STATUS EXPORTED TextDeleteMany (

const OBJECT dataObj,

const TEXT_ INDEX pos,

const TEXT_ INDEX length);
The function deletes length number of characters, starting at pos, in the text data
object dataODbyj. If there are any characters in dataObj beyond pos + length, they
are moved to pos.

This function uses an ObjectCall to msgTextModify to do its work.

£
F

wandh

12 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

% Inserting a Character 64.1.2

You use TextInsertOne() to insert a single character into a text data object. The
function prototype is:

STATUS EXPORTED TextInsertOne (

const OBJECT dataObj,
const TEXT INDEX pos,
const CHAR tolnsert);

The function inserts the character tolnsert at the location pos in the text data
object dataObj. Characters in the data object after pos have their indices
incremented by one.

If you insert a character between characters with different formatting (such as
between a plain text character and a bold text character), the character takes on
the attributes of the character to the right (that is, the character with the higher
TEXT_INDEX value).

This function uses an ObjectCall() to msgTextModify to do its work.

PV Text Data Messages 64.2
As described above, the messages for clsText are defined in TXTDATA.H. Most of

those messages are described here. In order to better organize the topics, some
messages defined by clsText are described later in Chapter 67, Advanced

Information.
Table 64-2
cisText Messages
Message Tokes Description
Cluss Messages
msgNewDefaults P_TD_NEW Initializes the msgNew arguments.
msgNew P_TD_NEW Creates a new text data object.
Object Messages
msglextGetMetrics P_TD_METRICS Passes back the textData’s metrics.
msgTextSetMetrics P_TD_METRICS Sets a textData’s metrics.
msglextChangeCount $32 Passes back (and optionally sets) the
textData’s changeCount.

msglextGet TEXT_INDEX Returns the character in a textData at the
specified position.

msgTextGetBuffer P_TEXT_BUFFER Passes back a contiguous range of characters
from a textData. '

msglextLength nothing Returns the number of characters stored in
the textData.

msglextModify P_TEXT_BUFFER Modifies the characters stored in the textData.

msgTextSpan P_TEXT_SPAN Determines the range corresponding to the

requested span.

continued

CHAPTER 64 / USING TEXT DATA OBJECTS 13
Creating a New Text Data Object

Table 64-2 {continued)

Message Takes Daseription
msgTextSpanType P_TEXT_SPAN Determines the span type of the specified range.
msglextEmbedObject P_TEXT_EMBED_OBJECT Embeds an object at a specified position.
cmsglextExtractObject OBJECT Extracts the specified embedded object.
msglextGetAttrs P_TEXT_GET_ATTRS Gets the attributes of the specified type.
msgTextlnitActrs P_TEXT_CHANGE_ATTRS Initializes the attributes and mask before a
msglextChangeAturs.
msgl'extChangeAttrs P_TEXT_CHANGE_ATTRS Changes the attributes of the specified range.
msglextClearAttrs ATOM Clears all attributes of the specified type to
the default values.
msgTextPrintAttrs P_TEXT_CHANGE_ATTRS Prints the values of an attribute set and a mask
(DEBUG DLLs only).
msglextRead P_TEXT_READ Inserts Ascii, RTF, etc. at the specified location.
msgTextWrite P_TEXT_WRITE Outputs the specified span as one of Ascii, RTF, etc.

msglextEnumEmbeddedObjects P_TEXT_ENUM_EMBEDDED Enumerates the textData’s embedded objects.

Observer Notitication Messages

msglextAffected P_TEXT_AFFECTED Notifies observers that a range of text has
been affected.

msglextReplaced P_TEXT_REPLACED Notifies observers that a range of text has been
replaced via msgl'extModify.

msglextCounterChanged P_TEXT_COUNTER_CHANGED Notifies observers that textData’s changeCount
has been modified.

; .
Creating a New Text Data Object 64.3

To create a new text data object, send msgNewDefaults and msgNew to clsText.
These messages take a TD_NEW structure that contains:

metrics A set of metrics for the text object. The metrics include a flags value
that specifies whether the text object is read only (tdmReadOnly) and
whether operations on text can be undone (tdmCanUndo).

expectedSize The expected number of characters held by the text object.

expectedTagCount The expected number of tags. This field is reserved for
future extensions; just use the default value.

The TD_NEW structure returns the UID of the newly created text object.

If you create a text data object this way, you are responsible for making it visible to
the user. You can do this either by creating a window and displaying the text by
hand or, preferably, creating a text view and specifying the text data object to the
view. Like all views, clsTextView can create a text data object automatically. For
more information see Chapter 65, Using Text Views.

6 / TEXT

14 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Getling and Sefting Text Metrics 64.4

You specify metrics for a text data object when you create it. You can later get and
set the text data object’s metrics with msgTextGetMetrics and
msgTextSetMetrics. Both messages take a pointer to a TD_METRICS structure,
which contains a flags field that indicates:

tdmReadOnly Whether the text object is read only.

tdmCanUndo Whether operations on text can be undone.

Reading Characters in Text Data Objects 64.5

You can get a character or characters from a text data object by sending

msgTextGet or msgTextGetBuffer to the text data object.

% Getting a Single Character 64.5.1

To get a character from the text data object, send msgT'extGet to the object,
specifying a text index. The message returns either the character at the specified
index or a status value. (Status values have the sign bit set.) If the sign bit is clear,
use a cast operator to convert the character from STATUS to CHAR. For example:

status = ObjectCall (textData, msgTextGet, (P_ARGS)10);

if (status < stsOK)

{

// Some kind of error

}

else
character = (CHAR)status;

If the text index is beyond the end of data, the message returns stsEndOfData.

’» Getting a Range of Characters 64.5.2

To get a series of characters from a text data object, send msgTextGetBuffer to the
object. The message takes a pointer to a TEXT_BUFFER structure that contains:
first The index of the starting character.
length The number of characters to read.
bufLen The length of the buffer that will receive the characters.
buf The pointer to the buffer that receives the characters.
When msgTextGetBuffer returns, it passes back the number of characters read in

the bufUsed field. If the starting position was beyond the end of the text data
object, it returns stsEndOfData; otherwise it returns stsOK.

P Text Length 64.6

You can request the length, in characters, of a particular text data object by
sending msgTextLength to the object. The message does not have any arguments,
and returns the length of the text data object.

CHAPTER 64 / USING TEXT DATA OBJECTS
Scanning Ranges of Characters

7 Altering Text Data Objects 64.7

You can alter the contents of a text data object by sending msgTextModify to the \
object. The message takes a TEXT_BUFFER structure that contains:

first The offset of the first character to replace.

length The number of characters to replace. If this value is 0,
msgTextModify inserts the characters in buf (rather than replacing any
characters).

bufLen The length of the replacement characters.

buf A pointer to the buffer containing the replacement characters. If this
pointer is null, msgTextModify deletes the characters identified by first
and length.

When msgT'extModify returns, the message passes back the number of characters

from buf that it used in bufUsed.

Scanning Ranges of Characters 64.8

The Text subsystem allows you to scan the characters in a text data object for
groups of characters. That is, you can search a text data object for characters that
belong to, or don’t belong to, a certain class of characters.

You indicate the type of data you are searching for by an identifier, called an atom.
PenPoint predefines a number of atoms in TXTDATA.H; the two atoms used most
commonly in text are atomChar and atomPara. For further information, see

Chapter 68.

To search for a range of characters, send msgTextSpan to the object. The message
takes a TEXT_SPAN structure that contains:

first The starting character index.

length The length of the initial span.

type An atom that identifies the group to be matched. Usually the type is
atomWord or atomPara.

direction A direction indicator. If the direction indicator is tdForward, the
search range includes the starting character (first+length-1) through to
the last character in the text data object. If the direction indicator is
tdBackward, the search range includes the first character in the text data
object (index 0) to the starting character (first). To search the entire
string, you can OR the values.

needPrefix A BOOLEAN value that specifies whether the message should
return the prefix of the span.

needSuffix A BOOLEAN value that specifies whether the message should
return the suffix of the span.

When the message returns, the TEXT_SPAN structure contains:

first The index of the matched character.

length The number of characters that were matched.

6 / TEXT

16 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

prefixLength A U16 that will receive the length of the prefix. This field is
updated only if needPrefix is true.

suffixLength A U16 that will receive the length of the suffix. This field is
updated only if needSuffix is true.

Getting and Setting Attributes 64.9

The messages that affect attributes (msgTextInitAttrs, msgTextGetAttrs,
msgTextChangeAttrs, and msgTextClearAttrs) require similar arguments.
We will describe the messages after describing the arguments that they use.

"% Text Attribute Arguments 64.9.1

All text attribute messages include a tag argument that specifies the type of
attribute that is to change (character or paragraph). The tag argument uses an
atom to specify the different types of attributes. The atoms that apply to text
attributes are atomChar, atomPara, atomParal'ab, and atomEmbedded.

Most attribute messages require a first argument that indicates the position, or
beginning of the position affected by the message. If first contains the symbol
textDefaultAttrs, the message pertains to current defaults for that text data object.

Most attribute messages also require arguments that specify new attributes and a
mask. The mask specifies the attributes to change.

The mask is most useful when changing attributes on a range of characters or
paragraphs. Any range of characters can contain many different formats. Without
the mask, it would be necessary to enumerate all of the existing formats within the
range, and carefully update each one with a separate call. With the mask, rather
than worry about what attributes are set already, you identify the range of
characters you want to modify and let clsT'ext do the work. Similarly, the mask
allows modification of a subset of the default attributes without having to first
fetch the current values.

%% Character Attributes 64.9,1.1

When changing character attributes, applications use the tag atomChar. The
mask for character attributes is defined in TA_CHAR_MASK and the attributes
are defined in TA_CHAR_ATTRS. The symbols for the attributes and their corre-
sponding mask bits are almost identical, the difference is that the mask defines
additional symbols for the font (SYSDC_FONT_SPEC) structure.

Table 64-3 describes the symbols for the character attributes defined in
TA_CHAR_ATTRS.

CHAPTER 64 / USING TEXT DATA OBJECTS 17
Getting and Setting Attributes

Table 64-3
Character Attributes
Attribute Usage
size Specifies the character size in Twips.
smallCaps If true, characters are displayed in small capital letters.
upperCase If true, characters are displayed in all uppercase.
strikeout If true, characters have a line through them.
underlines Specifies the underline style. The three possible styles are none (0), single underline (1),
or double underline (2).
font Specifies the font characteristics structure. The font characteristics are defined by

SYSDC_FONT_SPEC. These characteristics are described in Part 4: Windows and
Graphics and in SYSFONT.H.

As mentioned above, the symbols for the mask defined in TA_CHAR_MASK are
similar to the symbols in TA_CHAR_ATTR, with the exception of the font
attributes, which are defined by SYSDC_FONT_SPEC. Table 64-4 describes the
mask symbols defined by TA_CHAR_MASK for the font attributes.

Table 64-4
Character Font Masks
Mask Meaning
id Enables use of font.id in the TA_ CHAR_ATTRS structure.
group Enables use of font.group in the TA_CHAR_ATTRS structure.
weight Enables use of font.weight in the TA_CHAR_ATTRS structure.
aspect Enables use of font.aspect in the TA_CHAR_ATTRS structure.
italic : Enables use of font.italic in the TA_CHAR_ATTRS structure.
monospaced Enables use of font.monospaced in the TA_CHAR_ATTRS structure.
encoding Enables use of font.encoding in the TA_CHAR_ATTRS structure.
%7 Paragraph Attributes 64.9.1.2

When changing paragraph attributes, set tag to atomPara. The mask for para-

graph attributes is defined in TA_PARA_MASK and the attributes are defined in

TA_PARA_ATTRS. The symbols for the attributes and their corresponding mask
bits are identical. Table 64-5 describes the symbols for the paragraph attributes
and masks defined in TA_PARA_ATTRS and TA_PARA_MASK.

6 / TEXT

18 PENPOINT ARCHITECTURAL REFERENCE

Part 6 / Text

Table 64-5
Paragraph Attributes

Arribute Usage
alignment Specifies the alignment of the paragraph. The possible values are taParaLeft, taParaCenter,
or taParaRight to indicate left, center and right alignment respectively.
justify If true, text should be justified. If false, text is ragged right.
lineHeight Specifies the line height in Twips. This is usually the same as the character height.
The constant useMaxHeightOnLine indicates the the line height should be big enough
to accomodate the tallest character in the line.
If a line contains any character or embedded.object larger than the specified lineHeight,
the larger value is used. Thus lineHeight is a minimum, not 2 maximum.
interLineHeight Specifies additional space between lines in Twips.
beforeSpacing Specifies the amount of space before the paragraph in Twips. This space is considered
;o belong to the first line of the paragraph above the ink of the characters in the first
ine.
afterSpacing Specifies the amount of space after the paragraph in Twips. The before and after spacing
are additive. This space is considered to belong to the last line of the paragraph below
the ink of the characters in the last line.
firstLineOffset Specifies the horizontal offset for the first line in Twips. This is a signed value; a negative
value will result in a hanging indent.
leftMargin Specifies the position of the left margin, relative to the left edge of the view, in Twips.
rightMargin The position of the right margin, relative to the right edge, in Twips.
%7 Paragraph Tabs 64.9.1.3
The tab stops for a paragraph are set independently of the other paragraph
attributes. The tag for tab stops is atomParaT'abs; the mask is pNull, and the
value is specified by a TA_LMANY_TABS structure, which contains:
count The number of tab stops in the paragraph.
repeatAtEnd Whether the last explicit stop acts as a prototype for an
infinity of implicit stops.
tabs A fixed-length array of TA_TAB_STOP descriptors. Only the first count
number of descriptors are valid. Each TA_TAB_STOP descriptor contains:
x The position of the tab stop, relative to the left edge of the paragraph.
type The alignment for the tab. The only valid alignment is taT'abLeft.
lead The leader characters for the tab. The only valid leader character is
space (taleadSpace).
7» Getting Atiributes 64.9.2

To get the character or paragraph attributes, send msgTextGetAttrs to the text
object. msgTextGetAttrs can retrieve either local or default attributes. The
message takes a pointer to a TEXT_GET_ATTRS structure, which specifies:

tag An atom that indicates the type of attribute to get.

first A text index to a location in the text data object. If you specify
textDefaultAttrs rather than a text index, the message returns the default

CHAPTER 64 / USING TEXT DATA OBJECTS
Getting and Setting Attributes

attributes for the type of data specified in tag. If you specify a text index,
the attributes are initialized to the tag attributes at that location (which
allows you to copy attributes from one location in text to another).

length Reserved for future use. Must be zero.

pValues The address of the buffer to receive the attributes. Because pValues
is of type P_UNKNOWN, you must use a cast to render the attributes in
their correct type (P_TA_CHAR_ATTRS for character attributes,
P_TA_PARA_ATTRS for paragraph attributes, P_TA_MANY_TABS for tabs).

When the message returns, pValues contains the specified attributes.

P» Modifying Attributes 64.9.3

When you change attributes, you can change either local or default attribute

sets. The first step in changing attributes is to initialize an attributes structure by
sending msgTextInitAttrs to a text data object. After initializing the structure, you
can use it in the arguments to msgTextChangeAttrs.

To change all attributes to their defaults, you can send msgTextClearAttrs to the
text data object.

%# Initializing Attributes 64.9.3.1
To initialize an attributes structure and mask, send msgTextInitAttrs to the text
data object. The message takes a pointer to a TEXT_CHANGE_ATTRS structure.
The interesting fields in the structure are:
tag An atom that indicates the type of attribute to initialize.
pNewMask The address of the buffer that will receive the initialized mask.

When the message returns, all bits in the mask are disabled (that is, the structure
won't affect any attributes if used in msgTextChangeAttrs).

If you want to avoid the time required to send another message, you can skip
sending msgTextInitAttrs, but you must use memset to zero the mask. If you do
not zero the mask, unpredictable results can occur in msgTextChangeAttrs.

%7 Changing Attributes 64.9.3.2
When you have initialized the attributes structure, you can send
msgTextChangeAttrs to the text data object.

msgTextChangeAttrs message takes a pointer to the initialized
TEXT_CHANGE_ATTRS structure, which contains:

tag An atom that indicates the type of attribute to change.

first A text index for a location in the text data object that specifies the
beginning of the range to change. If you specify textDefaultAttrs for
first, the message changes the default attributes.

length A text index that indicates the range of text over which the attribues
should be changed. If first is textDefaultAttrs, length is ignored.

6 / TEXT

20 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

pNewMask The address of the mask. The mask’s initialized state is all

attributes disabled. Therefore, you must enable at least one bit in the
mask before you send the change message.

pNewValues The address of the attributes buffer.

If you are changing paragraph or tab attributes for a range of paragraphs, the first
and length values identify the affected paragraphs to begin with the paragraph
containing first through to the paragraph containing first + length — 1.

%7 Clearing Attributes , 64.9.3.3
To change all attributes of a specific type to their defaults, send
msgTextClearAttrs to a text data object. The only argument for the message is an
atom that indicates the type of attributes to clear.

"Embedding Objects 64.10

An embedded object is represented in a text data object by the character
teEmbeddedObject and associated attributes. However, you can’t embed an object
by simply inserting tetEmbeddedObject into the text data object. You must send
msgTextEmbedObject to the text data object. The message takes a pointer to a
TEXT_EMBED_OBJECT structure that contains:

first A text index that indig:ates where the object should be embedded.
toEmbed The UID of the object to embed.
clientFlags A set of client flags.

action A set of flags that specifies the type of embedding. The possible
values are: textEmbedInsert, textEmbedCopy, and textEmbedMove.
Most clients should only use textEmbedInsert, which specifies that a new
object is to be embedded.

Copy and move are used with the transfer protocol and can cause unpredictable
results if used incorrectly.

Again, to remove an embedded object, you can’t simply delete the embedded
object character. To extract an object, send msgTextExtractObject to the text data
object. The only argument required by the message is the UID of the object to
extract. clsT'ext observes embedded objects; if you free an embedded object,
clsText will clean up the embedded object character. To enumerate all the
embedded objects, use msgTextEnumEmbeddedObjects (see TXTDATA.H).

CHAPTER 64 / USING TEXT DATA OBJECTS 21
Observer Messages

P Observer Messages 64.11

An observer of a text data object will receive the following four messages. The
most important fact to observers is that the text has changed.

Table 64-6
clsText Observer Messages
Message Description
msgTextReplaced A client replaced text in the observed object, using msgTextModify. Descendants

must pass this message to superclass.

msglextAffected A client changed attributes for the observed object.

Clients should ignore the following tweo messages:

msglextMarkAllocated Informs that a msgTextMarkAlloc has happened.
msglextFreed Informs that a msgTextMarkFree has happened.

mngexiRepIaced Observer Message 64.11.1

msgTextReplaced indicates that text in the observed object has been replaced. The
message takes a TEXT_REPLACED structure that consists of two elements: a
TEXT_SPAN_AFFECTED structure (span) and a TEXT_INDEX that indicates the
number of bytes that replaced the span (bytesT'akenFromBuf).

The TEXT_SPAN_AFFECTED structure contains:

span.object The object that was altered.

span.changeCount The number of changes that the object has experienced
since the counter was last reset to zero, including this change.

span.first The first character that changed.
span.length The number of characters that changed.

msgTextAffected Observer Message 64.11.2

msgTextAffected indicates that attributes in the observed object have been
changed. The message takes a TEXT_AFFECTED structure that consists of two
elements: a TEXT_SPAN_AFFECTED structure (span) and a U16 value that indicates
whether the change affects the size of the characters in a view (remeasure).

The TEXT_SPAN_AFFECTED structure is described above in the msgTextModified
observer message. '

remeasure is important to views. If it is true, it means that the change affected the
size of the characters in the view and that the view must be remeasured before it
can be redrawn.

6 / TEXT

Chapter 65 / Using Text Views

This section describes the messages that display text data objects. When displayed
in a text view, users can use the pen to modify the text data. Topics covered include:

¢ Creating and destroying text views.

¢ Embedding objects in views.

¢ Interacting with the input subsystem.

¢ Scrolling a text view.

¢ Getting the current selection.

Text View Messages

clsTextView is a subclass of clsView, which inherits indirectly from clsEmbeddedWin.
Messages for clsTextView are defined in TXTVIEW.H. The text view object messages are:

&5.1

Table 65-1
clsTextView Messoges

R

Message Takes Description
Class Messages
msgNew P_TV_NEW Creates a new instance of clsTextView.
msgNewDefaults P_TV_NEW Initializes the NEW structure.
Superciuss Override Messoges
msgGWinXList P_XLIST Defined in GWIN.H.
msgGWinGesture P_GWIN_GESTURE Defined in GWIN.H.
| Protocol Massoges
msgXferGet lots of things Sent by a Receiver to get “one-shot” data transfer
information.
msgXferList OBJECT Ask Sender for its list of data transfer types.
msgXferStream Write STREAM Asks the Sender to write more data to the stream.
msgXferStreamConnect XFER_CONNECT Sent to the Sender to ask it to link the Sender’s and
Receiver’s pipe.
msgXferStreamFreed STREAM Sent to the Sender when the Receiver’s side of the
stream has been freed.
msgSelYield BOOLEAN theSelectionManager requires the release of selection.
msgSelDelete U32 The selection owner should delete the selection.
msglextViewAddIP P_TV_EMBED_METRICS Adds an insertion pad to the textView.

continued

24 PENPOINT ARCHITECTURAL REFERENCE

Part 6 / Text

Table 65-1 [continued)

Maessage

Yakes

Description

Object Messages

mngextViev;lEmbed
msglextViewGetEmbedMetrics
msglextViewResolveXY
TextCreateTextScrollWin

msgNewDefaults
msglextViewScroll
msglextViewGetStyle

msglextViewSetSelection

msglextViewSetStyle
msglextViewCheck

msglextViewRepair

P_TV_EMBED_METRICS
P_TV_EMBED_METRICS

P_TV_RESOLVE

P_TEXTIP_NEW
P_TV_SCROLL
P_TV_STYLE
P_TV_SELECT

P_TV_STYLE
P_UNKNOWN

pNull

Embeds an object in the textView. Makes associated
changes in text data.

Passes back the textView-specific metrics for an

embedded object.

Given an point in LWC space, passes back the
character at (or near) the point.

Utility function that creates a textView (with a data
object) placed inside a scroll window. (See swin.h.)

Initializes the NEW struct.
Repositions displayed text within the textView.
Passes back a textView’s style.

Selects one or more characters displayed by the
textView.

Sets a textView's style.

A textView performs a self-consistency check
(DEBUG DLLs only).

Forces a delayed paint operation to take place
immediately.

Creating a Text View

65.2

To create a new text view object, send msgNewDefaults and msgNew to
clsTextView. Both messages take a TV_NEW structure.

Because text views behave differently from many other views, msgNewDefaults in
clsTextView changes many of the default values returned from clsView (its
ancestor). Table 65-2 lists the defaults provided by clsTextView.

Table 65-2

m$§N®W®@§@%§§% for clsTextView

Llass

clsWin

" clsWin

clsWin
clsWin
clsWin
clsWin
clsWin
clsWin
clsWin
clsWin
clsWin

Fireld
flags.style

flags.style
flags.style
flags.style
flags.style
flags.style
flags.input
flags.input
flags.input
flags.input
flags.input

Mew Default

wsSendLayout = false
wsCaptureLayout = false
wsGrowBottom = true
wsSendFile = true
wsSendGeometry = true
wsCaptureGeometry = true
inputMoveDown = true
inputMoveDelta= true
inputHoldTimeout = true
inputOutProx = true

inputTip = true

continued

CHAPTER 65 / USING TEXT VIEWS
Creating a Text View

Table 65-2 {continued)

25

Class Fiald New Default
clsWin flags.input inputEnter = true
clsWin flags.input inputExit = true
clsgWin helpld taglextView
clsView createDataObject true

clsTextView style.flags tvsWordWrap
clsTextView flags tvFillWithIP

If view.CreateDataObject is true, clsTextView automatically creates a clsText data
object. To explicitly pass a data object, set view.dataObject to the desired data
object and set view.createDataObject to false.

The TV_NEW structure also contains:

flags A set of flags that specify properties of a new text view. The only flag
currently defined is fillWithIP, which specifies that the text view should
have a clsTextIP insertion pad added to the end of the text. fillWithIP is
the default; if you don’t want an insertion pad, you must turn off this
flag. Subclasses of clsTextView can change this behavior by intercepting
msgTextAddIP.

dc A text data object to view. In PenPoint 1.0, you must leave dc set to its

default.
style Styles for the view. Styles are defined in TV_STYLE and include:

style.flags Indicate the behavior of the text view. These flags are de-
scribed in the next paragraph. The flags are saved in the text view’s in-
stance data.

style.magnification A character size adjustment.

style.showSpecial Show special characters. The special characters that
are affected by this field are the tab, line break, paragraph break, and
page break characters. The possible values are 0 to show none and 3 to
show all.

style.printer Reserved for future expansion. Leave this value set to its
default (null).
The TV_STYLE flags are:

tvsEmbedOnlyComponents Don’t embed applications.
tvsEmbedOnlyIPs Only embed insertion pads.
tvsFormatForPrinter Format text for a printer.
tvsQuietWarning Don’t display warning notes.
tvsQuietError Don’t display error notes.

tvsQuiet Don’t display either warning notes or error notes.
tvsReadOnlyChars Characters are read only.
tvsReadOnlyAttrs Attributes are read only.

6 / TEXT

26 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

tvsReadOnly Both characters and attributes are read only.
tvsWordWrap Wrap lines at word breaks.

7 Getting the Viewed Object’s UID 65.3

To get the object being viewed, send the message msgViewGetDataObject to
the view. You can read about using msgViewGetDataObject in Parz 2: The
Application Framework. You can change the view’s object to a new object by
sending msgViewSetDataObject to the view object.

Embedding Objects in Views 65.4

There are two messages used to embed objects in a text view msgTextViewAddIP
and msgTextViewEmbed.

When the user makes a gesture to create an insertion pad, clsT'extView sends
msgTextViewAddIP to itself. This allows its subclasses (such as the Writing Paper
application) to intercept the message and thereby learn that the user requested an
insertion pad.

You use msgTextViewEmbed to actually embed objects, such as insertion pads.
The message adds the embedded object character and associated attribute to the
text data object and inserts the object into the tree of views.

Both messages take a TV_EMBED_METRICS structute that contains:

pos A text data object index, that specifies where the object should be
embedded. The special value infTEXT_INDEX means at the end of the

document.

~ flags A flags word that specifies how the view should present the object.
The flags indicate that the embedded object:

tvEmbedReplace Will replace some text.

tvEmbedFloat Is floating.

tvEmbedOneChar Will insert a single character.

tvEmbedAddMargin Has a margin to leave space for gestures.

tvEmbedPreload Is preloaded with some text.

tvEmbedPara Wil insert or replace a paragraph.

embedded The UID of the object to be embedded.

If you subclass clsTextView and override msgTextViewAddIP, you must remember
that tvEmbedPreload directs clsTextView to preload the insertion pad with the text
under a circle gesture. However, if you intercept a msgT'extViewAddIP that was caused

by aa circle-line gesture, you must ensure that tvEmbedPreload is clear. This ensures
that the insertion pad is not preloaded with the text under the gesture.

CHAPTER 65 / USING TEXT VIEWS 27
Interacting with the Input Subsystem

Also if you override the behavior of msgTextViewAddIP, you must free the object
specified in the embedded field before adding your own embedded object.

To determine the metrics of an embedded object, send msgTextViewGetEmbedMetrics
to the text view object. The message takes a TV_EMBED_METRICS structure. On input,
embedded must specify an embedded object; the message returns the index of the
object in text and the flags that pertain to the object.

Interacting with the Input Subsystem 65.5

The Text subsystem provides three messages that interact with the Input subsystem:
msgGWinGesture, msgTextViewResolveXY, and msgGWinRunXList.

" Obtaining the Text Index from a Tap Position 65.5.1

msglextViewResolveXY determines a character index (and a number of other
values) from the x and y coordinates for a pen event. The message takes a
TV_RESOLVE structure that specifies:

xy The x-y coordinates of the pen tap.

flags Flags that specify whether to select the next character beyond the tap
(tveSelLPO) and whether to select relative to the midpoint of a character
(tvrBalance).

pos An index location to receive the position of the character directly under
xy. If no character is selected by the pen tap, pos receives the value

max TEXT_INDEX.

lineStart An index location to receive the position of the first character on
the line that contains xy.

xRegion An S8 value to receive the x region of xy. See Figure 65-1.
yRegion An S8 value to receive the y region of xy. See Figure 65-2.

selects An index location to receive the position of the character closest to
xy, when the tap lies outside the text in the view. When the user taps
above or to the left of the text area, selects receives the first character in
the view; when the user taps below or to the left of the text area, selects
receives the last character in the view.

offset The offset to the previous or next character’s ink. When using

tvrBalance, offset helps to determine which half of a character was
tapped.

If the message returns stsOK, the location was resolved. If the message returns
stsNoMatch, no text was found in the view to resolve the x and y position.

6 / TEXT

28 PENPOINT ARCHITECT‘URAI. REFERENCE
Part 6 / Text

Figure 65-1 illustrates the xRegion of a block of text.
Figure 65-1
Text View X-Regions

Ry

User Taps
The View on “B’

hisd

lineStart

xRegion=-1 xRegion=0 xRegion=1

Figure 65-2 illustrates the yRegion of a block of text.

Figure 65-2
Text View Y-Regions

The View on “B”

yRegion=1

lineStart = Aigi—

yRegion=0

| yRegion=-1

Most views contain margins, where the user can tap without touching any text.
When msgTextViewResolveXY evaluates the position of a tap, it first resolves the
y (vertical) region. If the tap was above the text, yRegion contains a 1; if the tap
was in the text area, yRegion contains a 0; if the tap was below the text area,
yRegion contains a —1. If the tap was in the text area, the messages also evaluates
which line of text contains the tap and calculates the index for lineStart.

CHAPTER 65 / USING TEXT VIEWS 29
Scrolling a Text View

The message then uses that text line to evaluate the x (horizontal) region of the
tap. If the tap was to the left of the text line, xRegion contains a —1; if the tap was
within the text line, xRegion contains a 0; if the tap was to the right of the text
line, xRegion contains a 1.

"> Processing an Input Xlist or Gesture 65.5.2

To process an input xlist and act on the commands in the xlist, send msgGViewXList
to the text view. The only argument to the message is a pointer to an xlist. For further
information on xlists and the Input subsystem, see Part 5: Input and Handwriting
Translation.

To process just a gesture, send msgGWinGesture to the text view.

"Scrolling a Text View 65.6

If your text view window doesn’t display all the text in its text object, you might
want to scroll the text programmatically, either by one line, or to the top of the
page. To scroll text, send msgT'extViewScroll to the text view object. The message
takes a TV_SCROLL structure that specifies:

pos The text index of the location in text to display.

flags A set of flags that specifies where the text at pos should be positioned
in the view. The flags are:

tsAlignAtTop Position text at the top of the view.
tsAlignAtBottom Position text at the bottom of the view.
tsAlignAtCenter Position the text at the center of the view.

tsAlignEdge Force the text to the edge of the view. Currently this hap-
pens whether or not you specify this flag.

tsIfflnvisble Scroll only if the text is not currently visible.

textNoScrollNotify Do not notify the scroll bars to update after scroll-
ing. By default, clsTextView notifies the scroll bars that they should up-
date after msgTextViewScroll.

In the future, msgT extViewScroll might scroll so that it leaves some space between By using tsAlignEdge now, you
can be sure that its behavior will
be consistent in future versions

text to scroll to the edge specified by flags, OR tsAlignEdge with the position flag. ¢ ponroint.
For example:

flags = tsAlignAtTop | tsAlignEdge

pos and the edge of the view, thereby giving the user some context. If you want the

If you want the user to be able to scroll the text with the pen, you should insert
the text view in a scrolling window (see “Inserting a Text View in a Scrolling

Window” below).

6 / TEXT

30 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

7 Inserting a Text View in a Scrolling Window ::.»

To enable the user to scroll a text view, you must insert the text view in a scrolling.
window. Because this set of actions is performed so many times, clsTextView
defines a function, TextCreateTextScrollWin, which creates a text view and inserts
it in a scrolling window.

The prototype for the function is:

STATUS TextCreateTextScrollWin(
P TV NEW pNew,
P_OBJECT scrollWin);
The function takes a pointer to a new arguments structure (pNew) and a pointer
to an OBJECT (scrollWin). pNew must point to a TV_NEW structure or the new
arguments structure for a subclass of clsTextView. If pNew is null, the function
uses a TV_NEW structure by default.

The function uses the new argument structure to create a new text view and then
creates a scrolling window with the text view as its client window. The function
configures the scrolling window for text scrolling. The function determines
whether to format for printer or format for screen depending on the style flag in
the TV_NEW structure.

If the function completes successfully, it returns stsOK and passes back the UID
of the scrolling window in scrollWin.

The following code fragment illustrates the use of the function:

TV _NEW tvn;
STATUS status;
OBJECT sw; // scrolling window

// Initialize the text view new structure.
status = ObjectCall (msgNewDefaults, clsTextView, &tvn);

// Modify initialized structure
tvn.flags = FlagClr (tvFillWithIP, tvn.flags // Turn off insertion pad flag
tvn.showSpecial = 3; // Show all special characters

// Create the text view and scroll window.
status = TextCreateTextScrollWin(&tvn, &sw);
if (status stsOK)

Getting the Current Selection 65.8

Like other views, clsTextView interacts with the selection owner. Using the Xfer
mechanism, you can query the text view for the span of the text contained in the
current selection.

For more information on the selection mechanism and the Application
Framework, see Part 2: PenPoint Application Framework. For more information on

the Xfer mechanism, see Parr 9: Utility Classes.

CHAPTER 65 / USING TEXT VIEWS
Getting the Current Selection
The Xfer mechanism requires two steps: first your application must negotiate with
the selection owner for the protocols available for data transfer, then you must
send the message requesting the transfer using the best available protocol.

. Actually, we know that the text view supports the ASCII Metrics protocol (where
we pass a pointer to a metrics structure), so the negotiation is not necessary.

To get the current selection for a text view, you must:

¢ Make sure that your view owns the selection by sending msgSelOwner to
theSelectionManager.

¢ Declare an XFER_ASCII_METRICS structure and set the id field to
XferASClIMetrics.

¢ Send msgXferGet to the text view.

When msgXferGet completes sucessfully, the first field of the XFER_ASCII_METRICS
structure contains the text index of the first character in the selection; the length field
contains the length of the selection, in characters. The level field indicates the units
that make up the selection. The possible units and their values are:

31

Value Unir

0 ignore

1 characters
2 words

3 sentences
4 paragraphs

The following example illustrates how the Writing Paper application gets the
current selection.

XFER ASCII METRICS xaMetrics;

OBJECT view;
/*
* If the view is null, this app can’t be holding the selection.
*/
if (! view)
return(stsFailed);
/*
* Get the selection from theSelectionManager.
*/

StsJdmp (ObjCallWarn (msgSelOwner, theSelectionManager, &sel), s, \
ErrorExit);
if (sel == view) {

/*

* If this view is holding the selection, then get the selection
* metrics and return them to the client.

*/

xaMetrics.id = XferASCIIMetrics; ,

ObjCallRet (ObjCallWarn (msgXferGet, view, &xaMetrics), s);
*pSelMetrics = xaMetrics;

6 / TEXT

32 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Getting and Seiling the Text Style

You can control several aspects about the the way that text views display their
contents. You can control whether the view responds to editing gestures, how the
text is formatted on screen, and whether to display special characters.

To get the style for a text view, send msgTextViewGetStyle to the text view. To set
the style, send msgT'extViewSetStyle to the text view. Both messages take a
TV_STYLE structure that contains:
flags Flags that indicate the behavior of the text view. Flags include:
- tvsEmbedOnlyComponents Don’t embed applications.
tvsEmbedOnlyIPs Only embed insertion pads.
tvsFormatForPrinter Format text for a printer rather than the screen.
tvsReadOnlyChars Characters are read only.
tvsReadOnlyAttrs Attributes are read only. ,
tvsReadOnly Both characters and attributes are read only.
tvsWordWrap Wrap lines at word breaks.
magnification A magnification value for fonts. The magnification value

specifies the number of points to add to the fonts when they are
displayed on screen.

showSpecial A value that specifies whether the view shows special
characters, such as tab, paragraph, line break, and page break characters.
The special characters that are affected by this field are the line break and
paragraph break characters. The possible values are 0 to show none and 3
to show all.

printer In PenPoint 1.0 this should be null.

Checkihg Consistency of Text Views

When debugging a text view application, you can check the consistency of a text
view by sending msgTextViewCheck to the text view object. This message per-
forms work only when you use the DEBUG version of the TEXT.DLL file (in
\PENPOINT\BOOT\DLL). msgTextViewCheck takes a 32-bit value that specifies
the type of consistency checks to make.

If HighU16(pArgs) is 0, LowU16(pArgs) contains flags that indicate what type of
simple consistency checks should be made. Currently, the only check is made on
the line table when the LowU16(pArgs) is 0.

If HighU16(pArgs) is not 0, pArgs is a pointer to a structure whose first 32 bits

specify more complicated consistency checks.
If the internal check does not detect a problem, the message returns stsOK.

If you do not use the DEBUG version of the TEXT.DLL, msgTextViewCheck does
not perform a consistency check and always returns stsOK.

65.9

E,c'runm. nnm:ucz / vm.fn

PART 6 / TEXT

Chapter 66 / Using Text Insertion Pads

This section describes the messages associated with text insertion pads. The
text insertion pads incorporate many gestures that are useful for adding text to
a text view.

Topics covered in this chapter:

¢ Creating and destroying text insertion pads.

Text Insertion Pad Messages 66.1

clsT'extIP is a subclass of clsIP. Messages for clsT'extIP are defined in TXTVIEW.H.
Table 66-1 lists the text insertion pad messages.

Table 66-1
clsTextlP Messages
Maessage Tokes DescripHon
Class Messages
msgNewDefaults P_TEXTIP_NEW Initializes text insertion pad arguments.
msgNew P_TEXTIP_NEW Creates a new instance of clsTextIP.
DObiect Messoges
msglext]PGetMetrics P_TEXTIP_METRICS Passes back a textIP’s metrics.
msgTextIPSetMetrics P_TEXTIP_METRICS Sets a textIP’s metrics.

"Creating Text Insertion Pads 66.2

Usually clsTextView creates a text insertion pad by default (provided that
tvFillWithIP is not clear). To create a text insertion pad, send msgNewDefaults
and msgNew to clsTextIP. Both messages take a TEXTIP_NEW structure that
contains a flags field. The flags field is reserved for future expansion; leave it at its
default value.

After creating the insertion pad, you can insert it in a text view by sending
msgTextViewAddlIP to the text view, specifying the UID of the text insertion pad
in the TV_EMBED_METRICS structure.

Destroying Text Insertion Pads 66.3

To destroy a text insertion pad, send msgDestroy to the text insertion pad object.

PENPOINT ARCHITECTURAL REFERENCE / VOL |1

PART 6 / TEXT

Chapter 67 / Sample Code

The most trivial use of the Text subsystem is to simply create an object of
clsTextView and display it on theRootWindow. This can be achieved with the
following code fragment.

#include <txtview.h>
TV_NEW new;
STATUS s;

= ObjectCall (msgNewDefaults, clsTextView, &new);
new.win.bounds.size.h ced
new.win.bounds.size.w
new.win.bounds.origin.
new.win.bounds.origin.x =
= ObjectCall (msgNew, clsTextV1ew, &new) ;

.7

-

><’<]
]

if (s < stsOK) {...}

// insert the text view in the root window
new.win.parent = theRootWindow;
new.win.options = wsPosTop;

= ObjectCall (msgWinInsert, new.object.id, &new.win);

The resulting view is connected to an empty data object (automatically created by
the view because the view.dataObject field of the msgNew argument was not
filled in). Such a view is far from useless, because the user can now use pen
gestures to create an insertion pad inside the view and enter text through the
insertion pad.

The client can also pre-load the data object with text by making a call such as the
following before inserting the view into the window tree.

TEXT BUFFER tBuf;

tBuf.first = 0;
tBuf.length = 0;
tBuf.buf = "Hello World";
tBuf.buflLen = strlen(tBuf.buf);
= ObjectCall (msgTextModify, new.view.dataObject, &tBuf);

The view displays the text using the data object’s default character, paragraph, and
document attributes. The user can change these attributes by selecting the desired
characters within the view and making a check mark + to bring up the view’s
option sheet. Alternatively, client code can obtain these attributes by sending
msgTextGetAttrs to the text object, and then modify them with
msgTextChangeAttrs.

36 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

As an example, suppose that the client wanted to change the default font size to
20 points, and then to make the characters in “Hello” be in 12 points.

#include <txtdata.h>
#include <txtview.h>

#define MakeTwips (i) (1*20)

TEXT CHANGE_ATTRS tca;
TA_CHAR ATTRS charAttrs;
TA CHAR MASK charMask;

tca.tag = atomChar

tca.first = txtDefaultAttrs;

tca.pNewMask = &charMask;

tca.pNewValues = &charAttrs;

s = ObjectCall (msgTextInitAttrs, new.view.dataObject, &tca);

charAttrs.size = MakeTwips(20); // points
charMask.size = true;
s = ObjectCall (msgTextChangeAttrs, new.view.dataObject, &tca);

tca.tag = atomChar;

tca.first = 0;

tca.length = 5;

charMask.size = true;

charAttr.size = MakeTwips(12); // points "

s = ObjectCall (msgTextChangeAttrs,new.view.dataObject, &tca);

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

PART 6 / TEXT

Chapter 68 / Advanced Information

This chapter covers topics that might be useful for sophisticated applications, but
which most clients will not need.

Topics covered in this chapter include:
¢ Counting changes

¢ Atoms.

Counting the Changes 68.

The text class keeps a count of the number of times msgTextModify has changed
the text. You can get and set the change counter by sending msgTextChangeCount
to the text data object. The argument is an $32 value. If the value is maxS$32, the
message increments the counter and returns the new value. If the argument value is
greater than zero, the value becomes the new change count. If the value is minS32,

[
s

the message returns the currentcounter.

"Atoms 68.2

The Text subsystem provides a database of unique identifiers through a globally valid,
compact, unique identifier, called atoms.

The strings stored in the database have the following properties:
¢ They are terminated by a zero byte.
¢ They have at least one character, other than the terminator.

¢ They do not contain characters in the ASCII ranges 1 through 31 and
127 through 159. :

¢ Case is preserved when the strings are stored, but it is ignored when
searching for a string in the database.

The atom for a nil string is Nil(ATOM).

38 PENPOINT ARCHITECTURAL REFERENCE

Part 6 / Text

% Predefined Atoms

The following nine atoms are predefined:

MNewne

atomChar

atom Word

atom WSDelimit
atomLine
atomSentence
atomPara
atomParaTabs

atomDoc
atomEmbedded

68.2.1
?&&Eg 68-2
Predefined Atoms
Definbion
Any character

A word, delimited by a space or the characters: “!"&()*+.,:;<=>?@[\]"‘{l}~”
A span of characters delimited by white space.

A line, terminated by a paragraph, newline, or newpage mark.

A sentence, terminated by the characters: .?!

A paragraph, terminated by a paragraph mark.

The tab stops for a paragraph.

A document, which is the whole text data object.

An embedded object.

Part 7 /
File System

7 Chapter 69 / Introduction

Overview

Developer’s Quick Start
Writing Objects and Data
Reading Objects and Data
Opening and Closing Files
Comparison with Other File Systems
Organization of This Part

¥ Chapter 70 / File System

Principles and Organization

Volumes
Volume Concepts

Volume Types
Nodes
Directories and Directory Entries
Attributes
Files

Locators

¥ Chapter 71 / Accessing the
File System

File System Handles
Handles and Locators
Directory Handles
File Handles
File System Messages
clsFileSystem Messages
clsDirHandle Messages.
clsFileHandle Messages
Using Handles with Temporary Files
Accessing the File System with stdio

Translating Between Handles and FILE Pointers

Paths and stdio
Using stdio
Concurrency Considerations
Protecting Your File Data
File Location Considerations
Volume Protection Considerations
Subclassing File System Classes
The PENPOINT.DIR File

How the Notebook Uses the File System

69.1

69.2
69.2.1
69.2.2
69.2.3
69.3
69.4

70.1
70.1.1
70.1.2
70.2
70.3
70.4
70.5
70.6

71.1

71.1.1
71.1.2
71.1.3

71.2
71.2.1
71.2.2
71.2.3
71.3
71.4
71.4.1
7142
71.4.3
71.5
71.5.1
71.5.2
71.5.3

71.6
71.7
71.8

43

43

44
44
45
46

46
47

49

49
49
50
52
54
54
55
55

57

57
58
59
61

62
62
64
64
65
65
65
66
66
66
66
67
67

68
68

¥ Chapter 72 / Using the File
System

Creating Directories and Files
Creating Handles
Checking Valid File and Directory Names
Creating a Directory Handle
Creating a File Handle
Mapping a File to Memory

Closing Files
Deleting Files and Directories
Forcing Deletion of a File or Directory

Getting and Setting Attributes
Lists of Attributes
Zero Value Attributes
File System Attributes
Client-Defined Attributes
Getting Attribute Values
Setting Attribute Values
Getting the Length of Attribute Values
Node Attribute Flags
Creating and Using Directory Indexes
Copying and Moving Nodes
Traversing Nodes
The Traverse Call-Back Routine

The Traverse Quicksort Routine
Order of Traversal

Renaming Nodes

Determining the Existence of a Node
Reading and Writing Files

File Position and Size

Getting and Setting File Position
Getting and Setting File Size

Flushing Buffers

Getting the Path of a Handle

Changing the Target Directory
Comparing Handles

Getting and Setting Handle Mode Flags

Reading Directory Entries
Reading All Directory Entries
Sorting Directory Entries

Observing Changes

Making a Node Native

Getting Volume Information

Setting or Changing a Volume Name
Ejecting Floppies

Volume Specific Messages

72.1

72.1.1
72.1.2
72.1.3
72.1.4
72.1.5

72.2
72.3
724

72.5

72.5.1
72.5.2
72.5.3
72.5.4
72.5.5
72.5.6
72.5.7
72.5.8
72.5.9
72.6

72.7

72.7.1
72.7.2
72.7.3

72.8
72.9
72.10

72.11
72.11.1
72.11.2

72.12
72.13
72.14
72.15
72.16

72.17
72.17.1
72.17.2

72.18
72.19
72.20
72.21
72.22
72.23

69

69
69
70
71
71
73
74
75
75
76
76
77
77
77
78
79
79
79
80
80
81
82
82
82
83
83
83
84
84
85
85
85
86
86
87
87
88
88
89
89
90

91

91
91

7 List of Figures
70-1
70-2

71-1
71-2
72-1

Directory Structure on a Volume

Contents of a PENPOINT.DIR
Directory Entry

Using Directory Handles
File Handles and Byte Position
File Attribute Arguments

¥ List of Tables

69-1
71-1
71-2
71-3
72-1
72-2
72-3
72-4
72-5
72-6

Common File System Operations
clsFileSystem Messages

Directory Handle Instance Messages
File Handle Instance Messages
Directory Mode Flags

File Mode Flags

File System Attributes

Node Attribute Flags

FS_SEEK Flags

Volume Metrics Information

53

54
60
61
76

47
63
64
64
71
72
77
80
84
90

Chapter 69 / Introduction

The PenPoint™ file system enables you to control and access all aspects of files and
file organization. This part describes the file system and how you use it.

Overview

The organization of the file system is similar to most hierarchical file systems. The
file system has a hierarchical structure of directories and files (similar to those of

MS-DOS and UNIX). Each directory or file is called a node.

The file system is divided into volumes. Each volume represents an installable
portion of the file system. PenPoint has a boot volume, which is always present,
and supports the dynamic connection and disconnection of additional volumes.

Each volume has a root directory, which is the starting point for the hierarchical
organization on that volume. The file system maintains a list of all currently
known volumes, connected and disconnected.

You can use file system handle objects to access nodes. There are two types of file
system handles: directory handles and file handles. To create a directory or file
handle, you send msgNew to either clsDirHandle or clsFileHandle.

To perform file system operations, you send messages to file or directory handles.
Messages sent to file handles affect the file directly. Messages sent to directory
handles usually include other information indicating the specific node that the
message affects. Much confusion can result if you don’t remember that a handle is
not a node, but a means to access a node. You send messages to the handles; the
handles in turn indicate which node to modify.

The file system allows you to:
¢ Create, open, close, and delete files.
¢ Read and write file data.
Copy, rename, and move files and directories.

Seck to a new position within a file or find out the current byte position
within a file.

¢ Modify file and directory attributes.
¢ Create user-defined attributes for files and directories.

You can also access nodes with the stdio run-time package. The stdio run-time
package provides a conventional C-language interface to the file system. stdio is
faster than the object-based file system when performing many small reads or
writes to a file. On the other hand, stdio calls are no faster at operations such as
opening files, and stdio can’t provide all the features of the PenPoint file system.

44 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System -

You use the file system to create data files for your applications, to read and write data
in those files, and to manipulate file and directory organization. You can also use the
file system to get information about volumes and to get and set nodes’ attributes.
PenPoint itself uses the file system for storing objects and application data. The
organization of the Notebook, which is a specialized PenPoint application, is mapped
onto the file system. Each section in the Notebook is a directory in the file system.
Each page in a section is a directory within that directory: The In box and Out box
sections of the Notebook use the file system to store the contents of their queues.

Developer’s Quick Start 69.2

As an application writer, you’ll most commonly use the file system to:

¢ Save your instance data when you receive msgSave.
¢ Restore your instance data when you receive msgRestore.

¢ Open and close files that contain data from other operating systems.

¥ Writing Objects and Data 69.2.1

When the user closes your application (turns away from or deletes your
application), you'll receive msgSave. Upon receiving msgSave, you must:

¢ Tell your objects to save themselves by sending msgResPutObject to each
object. Part 11: Resources describes how to use msgResPutObject.

¢ Write your instance data to the resource file by sending msgStreamWrite to
the resource file handle passed to you in the pArgs for msgSave. You can use
msgStreamWrite more than once.

There are several approaches to writing your instance data. If you have fixed-
length data, it is a good idea to copy the data to a single struct and write that
struct to the file. However, if you have variable-length instance data, you’ll need

to use one msgStream Write message to write the length of the data and another to
write the data itself. That way you will know how many bytes to specify in
msgStreamRead when you read the data back in.

If you do write several small pieces of data, you might consider using stdio functions
rather than msgStreamWrite. “Accessing the Files System with stdio,” in Chapter 72,
Using the File System, describes some of the criteria for determining when this is
appropriate and how to access stdio using file handles.

The following example shows a typical message handler that responds to msgSave:

MSGPROC ...
case Msg(msgSave):
return MyAppWrite(self, (P_OBJ SAVE)pArgs, ctx, pInst);

METHOD MyAppWrite (

OBJECT class, .
P_OBJ_SAVE pObjsave,
CONTEXT . ctx,

P_MY INSTANCE DATA pInst)

CHAPTER 69 / INTRODUCTION
Developer’s Quick Start

STATUS S;
STREAM READ WRITE srw;
MY FILED DATA filedData;

ObjectCallAncestor (msgSave, class, (P_ARGS)pObjSave, ctx);

/* Copy instance data to structure */

filedData.foo pInst->foo;

filedData.bar plnst->bar;

/* Fill in the stream read write structure */
srw.numBytes = SizeOf (MY FILED DATA);

srw.pBuf = gfiledData;

/* call msgStreamWrite */

s = ObjectCall (msgStreamWrite, pObjSave->file, &srw);

return stsOK;

’» Reading Objects and Data 69.2.2

When the user opens or reopens your application, you'll receive msgRestore.
Upon receiving msgSave, you must:

Re-create your objects by sending msgResGetObject to the resource file
handle passed to you by msgRestore. Part 11: Resources describes how to use

msgResGetObject.

¢ Read your instance data by sending msgStreamRead to the resource file

handle.

Be sure to read the same number of bytes that you wrote when you received
msgSave.

The following example shows a typical message handler that responds to
msgRestore:

MSGPROC ...
case Msg(msgRestore):
return MyAppRead(self, (P_OBJ RESTORE)pArgs, ctx, pIlnst);

METHOD MyAppRead (

OBJECT class,
P_OBJ_RESTORE pObjRest,
CONTEXT ctx,

P_MY INSTANCE DATA pInst)

STATUS s;
STREAM READ WRITE sSrw;

OF GET get;

MY FILED DATA filedData;

ObjectCallAncestor (msgRestore, class, (P_ARGS)pObjRest, ctx);

/* Read in the filed instance data */

srw.pBuf = &filedData;

srw.numBytes SizeOf (MY FILED DATA);

s = ObjectCall (msgStreamRead, pObjRest->file, &srw);
pInst->foo = filedData.foo;

plnst->bar = filedData.bar;

return stsOK;

45

7 / FILE SYSTEM

46

PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

’%» Opening and Closing Files 69.2.3

The other common reason for using the file system is for reading or writing files
that belong to other operating systems. For example, you might want to read a
database file created on an MS-DOS machine so that you could import the data

to
To
1
2
3

4

your PenPoint application.
open a file:
Declare an FS_NEW structure.
Fill in the defaults by sending msgNewDefaults to clsFileHandle.

Modify the FS_NEW structure to specify the volume, directory, and file that
you want to open.

Send msgNew to clsFileHandle.

msgNew returns a file handle on the open file. You can read and write data by
sending msgStreamRead and msgStreamWrite to the file handle.

To

close the file, send msgFree to the file handle.

The following code excerpt shows how to open and close a file:

STATUS S;
FS_NEW fsNew;
FILE HANDLE myFileHandle;

s = ObjectCall (msgNewDefaults, clsFileHandle, &fsNew);
/*
The following filled in by msgNewDefaults

fsNew.object.key = objWKNKey;
fsNew.object.cap = objCapCall;
fsNew.object.uid = null;
fsNew.fs.locator.uid = theWorkingDir;
fsNew.fs.mode = fsFileNewDefaultMode;
fsNew.fs.exist = fsExistDefault;

*/

fsNew.fs.locator.pPath = "MyDir\\MyFile";

status = ObjectCall (msgNew, clsFileHandle, &fsNew);
myFileHandle = fsNew.object.uid;

/* time to free the handle */
s = ObjectCall (msgFree, myFileHandle, (P_ARGS) objWKNKey);

7 Comparison with Other File Systems 69.3

The PenPoint file system is similar to most other file systems in the following ways:

¢ It has a hierarchical directory structure.
* You locate nodes in the file system hierarchy by using paths.
¢ Files and directories have attributes, which you can get and set.

¢ You access files through handles.

CHAPTER 69 / INTRODUCTION a7
Organization of This Part

The PenPoint file system is different from other file systems in these ways:

¢ File system handles are instances of file system classes; you can subclass the

file system classes to add special capabilities.

¢ Clients can define their own file and directory attributes. Many file systems
have file and directory attributes, but very few allow clients to add their own

attributes.

¢ In some operating systems (including UNIX), nodes can be subordinate to
more than one directory; in PenPoint nodes can have only one parent.

¢ The PenPoint file system is designed to smoothly handle events when
volumes are disconnected and reconnected.

Table 69-1 describes how PenPoint implements many common file operations.

Table 69-1
Commeon File System Operations

Operation

Get a list of installed volumes
Get information on a volume
Get a node’s attributes
Change a node’s attributes
Open a file, create if necessary

Open a file, return error if it
doesn’t exist

Read from a file
Write to a file
Move file pointer within a file

Copy a file or directory

Move a file or directory

Rename a file or directory

Change a directory handle’s
target directory

Delete a file or directory
Close a file

File System Method

Send msgFSGetlnstalledVolumes to theFileSystem.

Send msgFSGetVolMetrics to a handle for a file or directory on that volume.
Send msgFSGetAttr to a file or directory handle.

Send msgFSSetAttr to a file or directory handle.

Send msgNew to clsFileHandle. (Create is the default.)

Send msgNew to clsFileHandle specifying fsNoExistGenError in exist.

Send msgStreamRead to a file handle.
Send msgStreamWrite to a file handle.
Send msgFSSeek to a file handle.

Send msgFSCopy to a directory handle, specifying the path to the file and the location
for the new file.

Send msgFSMove to a directory handle, specifying the path to the file and the location
for the new file.

Send msgFSSetAttr to a directory handle, specifying a path to a file or directory node
and a new name for that node.

Send msgFSSetTarget to a directory handle.

Send msgFSDelete to a directory handle, specifying a path to the node to delete.
Send msgFSFree to the directory handle.

7 Organization of This Part

&69.4

This part is organized into four chapters.

Chapter 69, Introduction, presents a brief overview of the file system.

Chapter 70, File System Principles and Organization, describes how the file
system is organized and presents the terminology used with the file system.

7 / FILE SYSTEM

48 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

Chapter 71, Accessing the File System, describes how you access the file system. It
describes how the notebook and other applications use the file system. This chapter
also describes how to subclass file system classes and presents considerations for dealing
with remote file systems.

Chapter 72, Using the File System, describes in detail how you use the file system
to perform most file system operations.

s

"Volumes 7

Chapter 70 / File System Principles and
Organization

This chapter discusses general concepts about the file system organization and
defines file system terms. Topics covered in this chapter include:

¢ Volumes supported by the PenPoint™ operating system, including local disk
volumes, remote volumes, memory-resident volumes, memory mapped files.

¢ Tile and directory nodes.

¢ Directories and directory entries.
File and directory attributes.

® Files.

¢ Locators.

&
i

Directories and files are grouped together in a volume. When a volume is removed, .
the files and directories on that volume are no longer accessible to the file system.

i,
St
3

il

Volume Concepts 70.1.1

The file system maintains a list of volume objects. You can get a copy of this list
by sending msgGetlnstalledVolumes to the well-known object theFileSystem.
When a new volume is connected to the PenPoint computer, the UID of the
volume’s root directory handle is added to the list of volumes.

You can make yourself an observer of the volume list by sending msgAddObserver
to theFileSystem. When a volume is added, removed, or changes state, you will
receive notification.

[
sk
ity
sl

¥ Volume Metrics ‘ 70.1.1.

Each volume has information associated with it. You can retrieve volume
information by sending msgFSGetVolMetrics to a volume object. Volume
information includes:

¢ The volume’s type.

¢ The volume’s name.

¢ The volume’s root directory.

¢ The volume’s serial number.

¢ The total number of bytes on the volume.

¢ The number of free bytes on the volume.

50 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

There are three types of volumes: local disk volumes, remote volumes, and
memory-resident volumes. These types are explained in detail below.

The possible characters in the volume name, depend on the volume type.

% Duplicate Volume Names 70.1.1.2

The file system allows duplicate volume names. When you write application
programs, be aware that duplicate volume names might exist. This is especially
critical when you use the list of volumes to find a particular volume. You can use
msgFSGetVolMetrics and examine the volType, serialNum, and creationDate
values to distinguish between volumes with the same name.

%7 Connecting and Disconnecting Volumes 70.1.1.3

PenPoint supports the dynamic connection and disconnection of volumes. For
example, when the user connects the PenPoint computer to a network, the net-
work volumes become available. The user installs and removes a volume as a single
unit; either the file system can access the entire volume or it cannot access it at all.

The user can physically disconnect a volume from the PenPoint computer. For
example, the user can disconnect the computer from a network, or remove a
floppy disk from its drive. Your application must be prepared to handle this
situation. '

If any task has active references to nodes on the disconnected volume, the volume
remains in the volume list, but is no longer marked connected. Any attempts by
your application to read or modify data on a disconnected volume pops up a
dialog box asking the user to connect the volume. (You can suppress this behavior
when you first access the file; see “Creating a File Handle” in Chapter 72.)

If the user connects the volume and taps the OK button on the dialog, the file
system operation completes and the volume can be used normally once again.
Optionally, the user can tap the Cancel button, which causes the file system to
send the status message stsFSVolDisconnected to your application.

If no tasks have active references to nodes on the disconnected volume, that
volume is removed from the volume list, effectively removing all traces of the
volume from the PenPoint computer.

Volume Types 70.1.2
As mentioned above, the file system defines three types of volumes:

Local disk volumes

¢ Remote volumes

¢ Memory-resident volumes.

Local disk volumes are volumes directly attached to the PenPoint computer.
Remote volumes are those that are connected through a network or channel
controller. Memory resident volumes reside in PenPoint computer RAM.

CHAPTER 70 / File System Principles and Organization

Volumes
%7 Local Disk Volumes 70.1.2.1
Local disk volumes exist on hard or floppy disk drives internal to or attached to the
PenPoint computer. The user can connect and disconnect external disks at any time.
PenPoint has no native disk format. Rather, the file system makes use of a volume’s
normal organization to store additional information. Currently PenPoint uses the
MS-DOS FAT disk format.
An MS-DOS volume name is a string containing between 1 and 11 characters.
The volume name cannot use the following characters:
I\;:i=<>1]

The name can use spaces, but not tabs.
Here are some examples of MS-DOS volume names:

A

¢ MYDISK

¢ RAM

¢ MY VOLUME

¢ BACKUP 3

¢ ACCNTSRCVL.
The MS-DOS disk format consists of files and directories. In MS-DOS, file names are
limited to 8 characters with a 3-character file extension, there are only a few file attri-
butes, and there is only one type of file (data). PenPoint uses MS-DOS format files and
directories whenever possible to store its own files and directories. However, when a file
or directory has one or more of these characteristics:

¢ A node name that uses any control characters, lowercase characters, or any of

these special characters: *2 /\1.,;:+=<>[]" (space).

¢ A name longer than eight characters, plus a three-character extension.

¢ A name that uses lower case characters.

¢ Has client-defined attributes.
PenPoint creates a special file, named PENPOINT.DIR, in that file or directory’s
parent directory, which contains the additional information. The PENPOINT.DIR
file is described in further detail in Chapter 71, Accessing the File System.
In the future, PenPoint may support disk formats other than the MS-DOS FAT
format. The file system architecture makes it easy for GO or third parties to
develop support for other disk formats.

%7 Remote Volumes 70.1.2.2

Remote volumes are available over a network or a communication channel. The
name for a remote volume is limited only by the network’s volume naming
conventions.

7 / FILE SYSTEM

52 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

A computer that responds to a remote file access protocol is called a remote file
server. A remote file server can be any sort of computer, ranging from a personal
computer to a dedicated file server with gigabytes of storage. The administrator of
the remote file server decides how much of the file system to make available to the
PenPoint computer and what sort of security to enforce.

As with local disk volumes, the file system provides features that might exceed the
remote file system’s capabilities. PenPoint supports these extended features in a
fashion similar to that for local disk volumes.

To access a remote volume, file system operations must use the remote file access
protocol that is appropriate to the server. For example, a TOPS remote volume
requires a TOPS remote file access protocol. Like file system support for local disk
volumes, the file system architecture makes it easy for GO or third parties to
develop support for other protocols.

Memory-Resident Volumes

Memory-resident volumes reside in the PenPoint computer’s RAM. The
memory-resident RAM volume is named RAM. This volume is only available
with the SDK version of PenPoint 1.0, and only when the ENVIRON.INI file
includes the Config=DebugRAM directive. There is only one RAM volume, and
PenPoint dynamically allocates RAM memory to the RAM volume as needed.

Nodes

Within each volume, the file system maintains a tree of file system nodes. There
are two types of nodes:

¢ Directory nodes
¢ File nodes.

Directories are catalogs of files and directories. Directories can contain both files
and other directories. As in MS-DOS, a volume is organized into a strictly
hierarchical structure of files and directories. Strictly hierarchical means that each
node appears in only one directory; there are no multiple references to nodes.

The top-most node in a volume’s directory structure is the root directory. All
other nodes in the volume are descendants of the root directory. Because a volume
is self-contained, the directories within a given volume contain nodes only in that
volume.

Figure 70-1 illustrates an example of the file system on a volume.

CHAPTER 70 / File System Principles and Organization

Directory Structure on a Volun

Nodes

Figure 70-1

1

&

53

—

Volume

file file /

The name of a node is a string containing 1 to 31 characters. Any character is
valid except backslash (\) and null (character code 0), and a node name is not
valid if it begins or ends with a space character. Here are some examples of valid
node names:

¢ Red

¢ GO Corporation

¢ AVery, Very, Lengthy Node Name
@ Patient X: Cardiac Status

¢ FILENAME.DOS.

Note that the characters can be uppercase or lowercase. The file system stores the
node names in upper and lower case, but ignores the case when it performs
comparisons.

Your application can use the FSNameValid function to determine if a
user-supplied file name is a valid node name.

All of the node names within a single directory are unique; the file system will
reject any request to create a duplicate node name. You can use the
fsExistGenUnique or fsNoExistCreateUnique flags, discussed in Chapter.72,

7 / FILE SYSTEM

54 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

Using the File System, to direct the file system to generate a unique node name
when it creates a new node.

Directories and Directory Entries 70.3

A directory is a container for file system nodes; it contains a directory entry for
each node directly subordinate to it. Each directory entry contains the file-system
and client-defined attributes for the node it describes.

Figure 70-2 shows the contents of one of the directory entries shown in Figure 70-1.

Figure 70-2
Contents of a PENPOINT.DIR Directory Entry

File Entry Detail (Not to Scale)

PENPOINT.DIR file

File Entry

File Entry

File Entry

Atiributes 70.4

Each node in the file system has a set of attributes. The file system stores a node’s
attributes in its parent directory (with the directory entry) or in the PENPOINT.DIR
file if the attributes are beyond the native file system’s capabilities. There are two kinds
of attributes:

¢ Client-defined attributes
¢ File-system attributes.

Nodes can have any number of client-defined attributes. Client-defined
attributes can contain any sort of data. Clients can explicitly create and destroy
client-defined attributes.

CHAPTER 70 / File System Principles and Organization
Locators

Every node has a fixed set of file system attributes. Clients can alter some of these
attributes, but cannot remove any of them. Among the file system attributes are:

¢ The node name.
¢ Flags (such as access flags).
* Modification date.

#® For files, the size of the file.

A fille is a repository for data. The maximum size of a PenPoint file is limited only
by the available disk or memory space.

-
5
&1

When an application opens a data file, it must read information from the file into
main memory. An alternative to traditional stdio-style file access is to memory
map the file.

PenPoint support memory mapped files, which allow you to address data in a file
as if it were in main memory. PenPoint makes use of several memory mapped files,
including:

Font files.
Handwriting prototypes.
¢ The dictionary, which is used to proof handwriting translations.
¢ The indexes for the Table Server (clsT'able).
Memory mapped files will work for all volume types.

Locators

To find a particular node, a client must be able to specify the location of the node
in the file system. The location is specified by a locator, which consists of:

4
&
h

[+

¢ A starting point.
A path to a node.
The starting point is a handle on either a directory or file node.

A path is a null-terminated string that defines a traversal of the file system
hierarchy. There are five types of paths:

If the path is null, the location is the starting point node.

¢ If the path begins with “.\” or contains a node name, the traversal begins at
the starting point directory node.

¢ If the path begins with “..\”, the traversal begins at the parent directory of the
starting point. If the path contains “..” the target of the path is the directory
that contains the starting point node.

7 / FILE SYSTEM

56 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

¢ If the path begins with a backslash (\), the traversal begins at the root
directory of the starting point’s volume.

¢ If the path begins with two backslashes (\\), what follows is a volume name.
The traversal begins at the root directory of that volume. If the volume name
is not recognized as an installed volume, the file system prompts the user to
attach the correct volume.

Locators in the file system messages take on two forms. Explicit locators use the
FS_LOCATOR structure, which contains both a starting point and a path. Implicit
locators use the file or directory handle to which the message was sent as the
starting point and require only a path argument.

Because PenPoint is a multi-tasking operating system, it is possible for another
task to change (move, rename, or delete) nodes in the file system tree. A path that
successfully located a node at one time might not locate the same node at a later
time. Remember that a path is not a direct handle on the node, but more like a
road map to it; the location of a node might change.

Another way to locate a directory is to use a directory index. A directory index is
a unique identifier for a directory. You create a directory index the same way you
create an attribute. Directory indexes work only for nodes in the \PENPOINT
directory tree.

Chapter 71 / Accessing the File System

This chapter discusses the mechanism by which you access the file system.
Topics covered in this chapter include:
¢ Directory and file handles.
Volume root directory handle.
¢ Working directory handle.
¢ File access control.
¢ Summary of file system messages.
¢ Temporary files.
¢ Using stdio function calls.
¢ Concurrency considerations.
Subclassing the file system classes.

& The PENPOINT.DIR file.

File System Handles 71.

The programmatic interface to the file system provides:

it

@ Access to information in files.
Inspection and modification of node attributes.
Alteration of the directory hierarchy.

This is all accomplished through file system handles. Handles provide a uniform
method of accessing file system nodes for every type of volume and shield your
application from the low-level file system implementation.

You access files and directories on a volume by sending messages to file system

handles.

There can only be one file system operation taking place at any one time on a
given volume. Each operation-on a volume is run to completion before another
operation is permitted to start. However, operations taking place on different
volumes can take place concurrently. For example, when copying a text file from
one volume to another, the file system can read text from one volume while it
writes text to another.

Handle objects guarantee consistent and atomic results if simultaneously used by
different tasks. If two tasks send messages to the same handle object at the same
time, or if two tasks use two handles to access the same file at the same time, the

58 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

PenPoint™ operating system will suspend one task until it finishes processing the
operation specified by the other task.

PenPoint defines two file system classes:
¢ cIsDirHandle (directory handles), descended from clsObject.
¢ clsFileHandle (file handles), descended from clsStream.

Although these classes descend from different classes, they are designed to handle a
common set of clsFileSystem messages. clsFileSystem messages perform functions
such as creating new handles and nodes, destroying handles, and manipulating
node attributes. Generally, do not send messages directly to an instance of
csFileSystem. Instead, you send messages to directory and file handles, both of
which are written to handle most clsFileSystem messages. A few messages are
specific to one of clsFileHandle or clsDirHandle.

To create a directory handle, you send msgNew to clsDirHandle; to create a file
handle, send msgNew to clsFileHandle. A directory handle has a target directory
node; a file handle points to a file node. In the arguments to msgNew, you specify
the location of the node. You can also include a request in the message to create
the node if it does not exist already. If the message succeeds, the file system returns

a handle.

A process can create any number of handle objects (up to the memory limit of the
PenPoint computer). PenPoint may also allocate disk or communication system
buffers as a side effect of handle creation. Therefore, you should free handle
objects when they are no longer needed.

If a task terminates while it has active handles, the file system frees the handles.

You can create subclasses of the file system handles to implement specialized file
access behavior. Creating descendant classes does not change the actual disk or
memory layout of files and directories; it only changes the manner in which
clients access them.

¥ Handles and Locators 71.1.1

When you use handles, it is important to remember that the handle is not the
node itself.

The idea of a completely object-oriented programming environment encounters
some obstacles when it is applied to a file system. In a completely object-oriented
file system, each node would be an object. To perform any operation in such a file
system, you would send a message directly to the node. This approach has these
disadvantages:

¢ Each time you send a message to an object, the file system has to locate that
object.

¢ As the number of files and directories grows, it becomes slow and unwieldy.

¢ Objects are usually short-lived. Files, being a means of permanent storage, are
much longer-lived than objects.

P> Directory Handles | 71.1.

CHAPTER 71 / ACCESSING THE FILE SYSTEM 59
File System Handles

Rather than make each node an object, PenPoint uses handles, which add a level
of indirection between the object-based messages and the file system.

A handle is all you need in operations that manipulate information within files
and handles. For example, you need a handle on a file for msgStreamWrite (which

alters data in the file) and msgFSSeek (which alters the current file position in the
handle).

A file handle has a one-to-one relationship with its file. On the other hand,
directory handles have a target directory, which you can change to point to other
directories (with msgFSSetTarget). Some operations (msgFSGetAttr and
msgFSGetPath) allow you to indicate a file in two ways: either by sending the
message to a directory handle and specifying a path or by sending the message
directly to a file handle.

There are file operations that do not manipulate information within files. These
operations, such as move or copy, do not need to open nodes. In these operations
you use locators to indicate the source and destination nodes.

A locator makes directory handles even more flexible. A locator consists of a file
handle or a directory handle and a path. A file handle indicates the node; a
directory handle is merged with the path to give the location of a node. Thus, you
can use a locator to indicate a specific directory or file, without having a handle on
it. Also you can use one directory handle with any number of paths (one at a time)
to indicate many nodes.

Under the system of handles and locators, you can still write an application that
has a handle for each node (provided the memory will allow it). In a limited way,
this might be a desirable thing to do; however, handles do consume memory. If
you are concerned about memory limitations (and most PenPoint programmers
should be concerned), this is a high amount of overhead.

At the other extreme, you can use current directory or volume root handle and use
paths to specify all of the nodes. This scheme has to be balanced against the
memory that you use storing all of the path name strings, and the overhead of
always checking to be sure that the path still indicates a valid node.

1>

Directory handles support operations that query and manipulate nodes in the file
system.

A directory handle is associated with a directory node. You can use a directory
handle to designate the location of a directory, to create, copy, move, and delete
nodes, and to access the contents of directories.

Each directory handle has a target directory. The target directory is set when you
create the directory handle; you can change it at any time thereafter. This allows
you to use one directory handle to roam through the file system tree, and is similar
to the working directory concept in MS-DOS or UNIX.

7 / FILE SYSTEM

60 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

You can also create a directory handle with the fsUnchangeable flag set, which
disallows changing the target directory. Figure 71-1 shows how directory handles
are used in the file system.

Figure 71-1
Using Directory Handles

When you rename or move a node, the file system modifies any other directory
handles that reference it, so that they follow the node to its new location.

You can make yourself an observer of directory handles. If you observe a directory
handle, you receive notifications of any changes to nodes in the directory (but not
to the directory node itsel f).

Note that unlike files, there is no access control for directories, other than making
a directory node hidden.

Applications can pass directory handles between processes. However, the file
system destroys directory handles when the process that owns them is destroyed.

PenPoint has several well-known directory handles. Some are defined by the file
system, others are defined by the application framework.

¢ The boot volume’s root directory handle.

The “selected” volume, PenPoint’s primary operating volume (this is usually,
but not always, the same as the boot volume).
Y

¢ The current working directory handle.

RS For the SDK version of PenPoint 1.0, the RAM volume’s root directory
handle.

%7 Volume Root Directory Handle 71.1.2.1

Each volume has a root directory. A root directory handle is an unchangeable
directory handle that points to a volume’s root directory. There are two ways to get
a volume’s root directory handle:

* Send msgFSGetlnstalledVolumes to theFileSystem to get a list of available
volumes, then send msgFSGetVolMetrics to each volume object in-the list,
until you find the needed volume.

»r

%s

CHAPTER 71 / ACCESSING THE FILE SYSTEM
File System Handles

Specify a locator that has a null UID and a path that contains only the
volume name.

A volume’s root directory handle is stored in the FS_VOL_METRICS structure.

The Working Directory Handle 71.1.2.2
theWorkingDir is a local, well-known directory handle object created by the file

system for each task at creation time. theWorkingDir is similar to the DOS or

UNIX concept of a default directory.

Both msgNewDefaults and the stdio run-time package uses theWorkingDir for
its default volume and directory.

"The RAM Volume Handle 71.1.2.3

With the SDK version of PenPoint 1.0, it is possible to configure the file system
so that there is a volume in RAM. When configured, the RAM volume has a root
directory and a handle on that directory.

File Handles 71.1.3

You use file handles to access data in a file node. Creating a file handle is
analogous to opening a file in MS-DOS or UNIX. Destroying a file handle is like
closing a file (however, destroying a handle should not be equated with deleting
the file to which the handle refers).

Each file handle has a current byte position, which represents the handle’s
current position in the file. The current byte position points to the next byte to be
read or written. It is updated by read, write, and seek messages.

When the current byte position is at the end of a file, it is set one byte beyond the last
byte in the file. Writing past end-of-file automatically enlarges the file and sets the cur-
rent byte position to the new end-of-file. Reading past the end-of-file returns less data
than was requested and sets the current byte position to the end-of-file.

Figure 71-2 illustrates the use of file handles.

Figure 71-2
File Handles and Byte Position

Handle Data

7 / FILE SYSTEM

62 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

Applications can pass file handles between processes. However, file handles are
destroyed when the process that owns them is destroyed. When a client renames or
moves a file node, all handles that referenced that node continue to reference the node.

%7 File Access Control 71.1.3.1
The file system supports limited access control for files. When you create a file
handle, you specify a set of access intentions (that is, what you plan to do with the
file) and a set of exclusivity requirements (the limits you want to place on other
applications that might attempt to access the same file). The access intentions are:

¢ Read-only access

¢ Read/write access.
Exclusivity requirements are:

Exclusive access

¢ Deny other writers

¢ Dublic access.

Exclusivity requirements apply when the file system is asked to create a file handle
on the same file. ‘

Note that access intentions and exclusivity requirements pertain to handles. Each
file has its own read-only attribute flag, which you set with msgFSSetAttr. When
a file is marked read-only, you must specify read-only access when you create a

handle for that file.

When you create a file handle, the file system compares your handle access intentions
and exclusivity requirements to the current state of the file (file’s attributes and any
existing handles on the file). If your request is compatible with the file’s state, the file
system allows you access to the file and returns you a file handle.

The access intentions, exclusivity requirements, and the file access flags are only
compared when you attempt to create a file handle. Once you have a file handle, a
change to the access intentions, exclusivity requirements, or file’s access flags will
have no effect on you or anyone else currently accessing the file.

File System Messages 71.2

This section summarizes the file system messages for each of the three classes
(cIsFileSystem, clsFileHandle, and clsDirHandle). theFileSystem, a global
well-known, is the only instance of clsFileSystem. Although neither clsFileHandle
nor clsDirHandle descend from clsFileSystem, they are designed to handle most

of the clsFileSystem messages. A few clsFileSystem messages apply only to
clsFileHandle or to clsDirHandle.

% clsFileSystem Messages 71.2.1

clsFileSystem defines the operations that are common to directory handles and file

handles.

CHAPTER 71 / ACCESSING THE FILE SYSTEM 63

File System Messages

Table 71-1 lists the clsFileSystem messages. The class messages are those that you
send to clsDirHandle and clsFileHandle to create new instances of these classes;

the instance messages are those that you send to clsDirHandle and clsFileHandle
to operate on individual instances of these classes.

Table 71-1
clsFileSystem Messages

Message Tokes Description
Class Messages

msgNew P_FS_NEW Creates a directory or file handle object on a new or
existing dir/file.

msgNewDefaults P_FS_NEW Initializes the FS_NEW structure to default values.

Instonce Messages

msgFSNull void Does nothing.

msgFSGetVolMetrics P_ES_GET_VOL_METRICS Returns metrics of the volume.

msgFSSetVolName P_STRING Changes the name of a volume.

msgFSNodeExists P_FS_NODE_EXISTS Tests the existence of a file or directory node.

msgFSGetHandleMode P_U16 Returns the “new” mode for the object’s fs handle.

msgFSSetHandleMode P_FS_SET _HANDLE_MODE Changes the “new” mode for the object’s fs handle.

msgFSSame OBJECT Tests if another directory or file handle references
the same node.

msgFSGetPath P_ES_GET_PATH Gets the path to (or name of) a directory or file
handle node.

msgFSGetAttr P_FS_GET_SET_ATTR Getsd an attribute or attributes of a file or directory
node.

msgFSSetAttr P_FS_GET_SET_ATTR Sets ctlhf: attribute or attributes of a file or directory
node.

msgFSMove P_FS_MOVE_COPY Moves a node (and any children) to a new destination.

msgFSCopy P_FS_MOVE_COPY Copies a node (and any children) to a new destination.

msgFSMoveNotify P_FS_MOVE_COPY_NOTIFY Same as msgFSMove with notification routine
extensions.

msgFSCopyNotify P_FS_MOVE_COPY_NOTIFY Same as msgFSCopy with notification routine
extensions.

msgFSDelete P_STRING Deletes a node (and all of its children).

msgFSFlush void Flushes any buffers and attributes associated with the
file or directory.

msgFSMakeNative P_FS_MAKE_NATIVE Removes anything not supported by the native file
system.

msgFSEjectMedia void Ejects media from an ejectable, removable volume.

msgFSForceDelete P_STRING Forcibly deletes a node (and all of its childen).

msgFSVolSpecific P_FS_VOL_SPECIFIC Sends a volume specific message via a dir or file handle.

Sent to Observers
msgFSChanged P_FS_CHANGE_INFO Notifies observers of directory changes.
msgFSVolChanged P_FS_VOL_CHANGE_INFO Notifies observer of volume changes.

Sent Only to theFileSystem

msgFSGetInstalledVolumes

P_LIST

Returns list of all installed volumes.

7 / FILE SYSTEM

64 PENPOINT ARCHITECTURAL REFERENCE

Part 7 / File System

cIsDirHandle Messages

71.2.2

Directory handle objects support certain operations unique to directories. For
example, to open or create a file, you first need a directory handle, to which you

send a message. You can always use the root directory handle for a volume, or your

own theWorkingDir handle.

In addition to the instance messages listed in Table 71-1 above, a directory handle
responds to the instance messages listed in Table 71-2.

Table 71-2

Directory Handle Instance Messages

Message

msgFSSetTarget

msgFSReadDir
msgFSReadDirReset
msgFSReadDirFull

msgESTraverse

Tokes

P_FS_LOCATOR

P_FS_READ_DIR

void
P_FS_READ_DIR_FULL
P_FS_TRAVERSE

Dascription
Changes the target directory to directory specified
by locator.

Reads the next entry (its attributes) from a directory.
Resets the ReadDir position to the beginning;
Reads all the entries in a directory into a local buffer.

Traverse through the nodes of a tree starting with the
target of this msg.

Most of these messages take a path argument. The file system uses the directory
handle’s target directory and the path to determine the location of the node to act
upon. You can reference the target directory alone by supplying an empty path.
Some messages do not take a path. These messages always operate on the target

directory node.

cIsFileHandle Messages

71.2.3

In addition to the instance messages listed in Table 71-1 above, a file handle
responds to the instance messages listed in Table 71-3.

Table 71-3
File Handle Instance Messages

Message
msgStreamRead

msgStream Write
msgStreamFlush
msgStreamSeek
msgFSSeek
msgFSGetSize
msgFSSetSize
msgFSMemoryMap

msgFSMemoryMapFree ,

msgFSMemoryMapSetSize
msgFSMemoryMapGetSize
FSNameValid()

Tokos
P_STREAM_READ_WRITE
P_STREAM_READ_WRITE
void

P_STREAM_SEEK
P_FS_SEEK
P_FS_FILE_SIZE
P_ES_SET_SIZE

PP_MEM

void

SIZEOF
P_SIZEOF
P_STRING

Description

Reads data from the file.

Writes data to the file.

Flushes any buffers associated with the file.
Seeks to new position within the file.
Seeks to new position within the file.

Gets the size of the file.

Sets the size of the file.

Associates the file with a directly accessible memory
pointer.

Frees the memory map pointer currently associated

with the file.
Sets the size of the file’s memory map.
Gets the size of the file’s memory map.

Function to check a file or directory name for

validity.

CHAPTER 71 / ACCESSING THE FILE SYSTEM
Accessing the File System with stdio

Using Handles with Temporary Files 71.3

Sometimes you only need a file for a short time during the life of a task. You
might need a file that behaves like an object, which you bring into existence, use
it, and when you don't need it, you free it. To create a temporary file, specify the
fTempFile flag in your call to msgNew.

When you specify fsTempFile for a non-existent file (and the exist flags specify
fsNoExistCreate), the file system creates the handle and the file at the same time.
When you free the handle, the file system deletes the file.

If you specify fsTempFile for a file that exists already (and the exist flags specify
fsExistGenUnique), the file system deletes the file when you free the handle.

If you don't know whether you will want to keep the file or not when you create
it, do not use sTempkFile. If you decide you want to delete the file, you can always
use msgFSSetHandleMode to make the handle an fsTempFile handle, or use
msgFSDelete to delete the file before you free the handle.

" Accessing the File System with stdio 71.4

Your applications will usually open and close files and do most directory manage-
ment with file system handles. However, to facilitate porting an existing code base,
PenPoint supports the use of stdio calls to perform file handle. stdio calls are not
class-based, and therefore can’t be subclassed.

Because stdio calls are buffered, consecutive, small reads and writes are much
faster than using msgStreamRead or msgStreamWrite. However, if the block of
information is equal to or larger than the stdio buffer size (usually 512 bytes), the
speed is roughly equal to that of the class-based operations. You can change the
buffer size with the setvbuf() system service.

You must include the PenPoint SDK header files STREAM.H to use the stdio
functions (this is in addition to the usual STDIO.H). You can't use stdio operations

to change theWorkingDir.

" Translating Between Handles and FILE Pointers 71.4.1

If you open a file by creating a handle, but want to use stdio calls to perform reads
and writes, you will need to translate the file handle into a file pointer. To do this,
use the StdioStreamBind() system service, supplying the handle. The routine
returns a file pointer.

This following code excerpt illustrates the conversion:

FS_NEW fsNew;

FILE *fp;

s = ObjectCall (msgNewDefaults, clsFileHandle, &fsNew);
s = ObjectCall (msgNew, clsFileHandle, &fsNew);

if (s < stsOK) ...

/* Build a FILE structure based on the handle. */

fp = StdioStreamBind (fsNew.object.uid);

7 / FILE SYSTEM

%V

66 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

You might also need to translate a file pointer into a handle. This operation is a
little easier, because the handle is stored in the uid field of the FILE struct. This
following code excerpt illustrates how to translate a file pointer into a file handle.
#include <stdio> '
#include <stream.h>

OBJECT newHandle;

FILE *fp;

fp = fopen("MyFile","r");

if (fp == NULL) ...

newHandle = StdioStreamToObject (fp);

Paths and stdio 71.4.2

When you use stdio functions that require a path to a file (such as fopen()), you
specify the path to the file as you would for any file system message. The stdio
functions use your task’s current directory handle, theWorkingDir, for the volume
and directory defaults.

Thus, if the path begins with a volume name, indicated by two backslashes (\\),
the function uses the path to locate the file. If the path begins with a backslash
(\); the function uses the root directory of the volume identified by
theWorkingDir. If the path doesn’t begin with a backslash, the function starts its
traversal at theWorkingDir.

Using stdio 71.4.3

You can close files using stdio. However, don’t open files by creating a handle,
then close them with stdio. Because stdio doesn’t know about the handle object,
this will result in unreclaimed resources.

If you open a file with stdio, close it with stdio. If you create a handle on a file,
destroy the handle.

Concurrency Considerations 71.5

PenPoint is a multitasking operating system. While your application is performing
some action, it might yield the processor to another task. The other task might
attempt to alter (or even delete) the file you are working on. This means that you
have to program more defensively than you would for an ordinary single-tasking
operating system. While you program, assume that another task might attempt to
access your files or change the file’s location.

" Protecting Your File Data 71.5.1

While you are not accessing a file, you can use msgSetAttr to make the file
read-only.

While you have a handle on a file, the file system will not allow anyone to delete
the file, unless they use msgFSForceDelete.

CHAPTER 71 / ACCESSING THE FILE SYSTEM 67
Subclassing File System Classes

When you create a file handle with msgNew, you can specify an exclusion mode
so that you can limit access to the file while your handle is attached to it.

¥ File Location Considerations 71.5.2

Be aware that another task might change your file’s location as well as its contents.

All tasks can change (move, rename, or delete) nodes in the file system tree. A

path that successfully located a node at one time might not locate the same node

later. Remember that a path is not a direct handle on the node, but more like a

road map to the node.

You can programmatically search for files with the message msgFSTraverse. Note Directory indexes work only for

nodes under the \PENPOINT

also that you can use directory indexes to find directories, no matter what their ,
directory tree.

path is.

A handle, on the other hand, will follow its node wherever the node is moved. If a
task has a handle on a node, the node can’t be deleted by any other task (unless it
uses msgFSForceDelete).

% Volume Protection Considerations 71.5.3

Remember also that other computers might have access to volumes you are using.
Another user can delete a target node by modifying a remote or local disk volume
outside of the PenPoint computer’s control.

When a handle’s target node is deleted or destroyed, the file system marks the

handle invalid. If you use an invalid handle, the file system returns
stsFSHandleInvalid.

The only things you can do with an invalid directory handle are to free it with
msgFree or change its target directory to a valid directory with msgFSSetTarget.

The only valid thing you can do with an invalid file handle is to free it with
msgFree.

Subclassing File System Classes 71.6

In coding your application, you might find that you perform a particular set of file

operations many times or you need to supplement the file system messages with
your own. At this point you might consider subclassing clsFileHandle.

A good example of a subclass of clsFileHandle is clsResFile, the resource file class.
clsResFile defines a number of new messages that, when sent by the user or the class
manager, handle all the details of tracking all resources in the resource file. clsResFile
maintains tables that index resources within the file. Another example is clsAppDir,
which support the application directories used by the PenPoint Application
Framework.

Most of the details about creating a subclass are described in the Part 1: The Class
Manager. In short, you must define the class and make it known to the class manager.

7 / FILE SYSTEM

68 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

"The PENPOINT.DIR File

As mentioned before, the PenPoint file system attempts to use a volume’s native
file system whenever possible. When a file or directory has additional information
that the native file system cannot contain, the PenPoint file system creates a
PENPOINT.DIR entry for that information. The file system still relies on. the native
file format to carry most of the information. PENPOINT.DIR contains only the
information that the native file system cannot support.

On the standard MS-DOS FAT file system, the following characteristics will cause
the file system to create a PENPOINT.DIR entry:

¢ A node name that uses any control characters, lowercase characters, or any of
these special characters: * 2 /\ | ., ;:+=<>[]" (space).

¢ A name longer than eight characters, plus a three-character extension.
¢ A name that uses lower case characters.

¢ A node that has client-defined attributes or other file attrbutes not supported
by the MS-DOS file system.

The structure of the PENPOINT.DIR file is quite simple. It consists of a series of
variable-length directory entries that contain:

¢ Entry information, including whether the file is in use, the total size of the
entry, the number of user-defined attributes, and offsets within the directory

entry.
¢ The node flags (both PenPoint-specific flags and those duplicated from the

native file system).
¢ The date the node was created.
¢ The PenPoint file name.
¢ The native file system file name.
¢ The user attributes (if any).

For further information on the PENPOINT.DIR file, see the file VOLGODIR.H.

How the Notebook Uses the File System

The organization of sections and pages in the Notebook is a direct map of the file
system. Each section in the Notebook is a directory in the file system; each page in
the Notebook is a directory within that directory. The names of the sections are
the actual names of the directories that contain the page nodes.

PENPOIN‘I‘ ARCHI’!‘ECTURAL REFERENCE L VQI. ll :

PAR’I‘ 7 / FILE SYS'I'EM

Chapter 72 / Using the File System

This chapter describes how to use the file system to perform most file system
operations. The section is organized in a rough “life cycle” order, that is, we
present the operations in an order that approximates how you will want to use the
file system to create, modify, and delete a file.

Most of the structures and typedefs described in this chapter are defined in FS.H.
Topics covered in this chapter include:

¢ Creating a handle and creating a new node.

¢ Creating a handle for an existing node.

¢ Deleting a node.

¢ Freeing a handle.

¢ Freeing a handle and deleting a node.

¢ Getting and setting file and directory attributes.

Creating Directories and Files o

Before you can create or access a node, you need to create a handle object that you
use to access the node. You create the handle by sending msgNewDefaults and
msgNew to clsDirHandle or clsFileHandle. In the call to msgNew, you direct the
file system to create the node (file or directory) if it doesn’t exist already. This is the
first step in a file’s life cycle.

Creating a file handle is equivalent to opening a file in other file systems. As with
most other file systems, you can specify certain open actions, such as what to do if
the file or directory does or does not exist.

Creating a directory handle has no equivalent operation in other file systems.

g

- Creating Handles 72.1.1

To create a handle, send msgNewDefaults and msgNew to clsDirHandle or
clsFileHandle. Both messages take a FS_NEW structure that contains:

objectkey A key value. If you specify this, you (and any other users of the
handle) must provide an equivalent key value in order to destroy the
handle. (Locks are further explained in Part 1: Class Manager). If you
don’t want to use the lock, specify objWKNKey.

fs.locator A LOCATOR structure that indicates a directory handle and a path

to the node. If you do not specify the directory handle, the default is
theWorkingDir; if you do not specify a path, the default is nil.

70 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

volType The type of volume. The file system uses this argument when
locator.path contains a full path. If this argument is anything other than
fsAnyVolType, it is used for “filtering” if a volume is not found. The
available volume types are:

fsAnyVolType Any volume type.

fsVolTypeMemory A RAM volume (available only on the SDK version
of PenPoint).

fsVolTypeDisk A local disk volume.
fsVolTypeRemote A remote (network) disk volume.

fs.dirIndex An optional directory index. The directory index is for directory
handles only. If you use a directory index, the locator must indicate the
volume to use.

fs.mode Flags that indicate handle characteristics. There are different
options for directory and file handles.

fs.exist What to do if the node does or doesn’t exist.

Use msgNewDefaults to initialize the fields to their default values, then modify
any of the fields.

Use the constants defined in FS_EXIST to specify the action to take if the node
does or does not exist.

Two of the existence flags fsExistGenUnique and fsNoExistCreateUnique work
slightly differently from each other. Ostensibly, fsExistGenUnique takes effect if
the requested node exists already; whereas fsNoExistCreateUnique takes effect
when the requested node does not exist.

At a more detailed level, fsExistGenUnique will only generate a new unique name
if that name exists already. For example, if a node named BLUE exists already, fsNew
will create a new node named BLUE 1. fsNoExistCreateUnique uses the input node
name to create a unique name, whether or not the file exists already. The Notebook
uses fsNoExistCreateUnique to create unique page numbers for pages.

Checking Valid File and Directory Names

If you get a file or directory name from the user, you probably will want to check
the validity of the name before creating a file or directory handle. You can use the
file system function FSNameValid() to test whether a name is valid. The prototype
for FSNameValid() is:

STATUS EXPORTED FSNameValid (

P_STRING pName
)i

The pName argument is a string pointer to the file or directory name to be

validated.

CHAPTER 72 / USING THE FILE SYSTEM
Creating Directories and Files

If the name is valid, the function returns stsOK; if the name is not valid, the
function returns stsFailed.

% Creating a Directory Handle 72.1.3

The next code fragment shows how to create a directory handle and a directory.
First the program declares an FS_NEW structure, and uses msgNewDefaults to set
the default values. The program then sets the values that it needs to specify and
sends msgNew to clsDirHandle.

FS_NEW £sNew;

status = ObjectCall (msgNewDefaults, clsDirHandle, &fsNew);
/* The following filled in by msgNewDefaults
fsNew.object.key = objWKNKey;
fsNew.object.cap = objCapCall;
fsNew.fs.mode = fsDirNewDefaultMode;
fsNew.fs.exist = fsExistDefault;
fsNew.fs.locator.uid = theWorkingDir;
*/
fsNew.fs.locator.pPath = "MyDir";
status = ObjectCall (msgNew, clsDirHandle, &fsNew);
if (status < stsOK) {
Debugf ("Error creating dir = $%$1x", status);

}
When the file system creates the directory handle, it sends back the UID for the

handle in object.uid of the FS_NEW structure. When you need to send other
messages to the handle (such as msgFSGetAttr or msgFree), you can use this UID.

Use the constants defined in the FS_DIR_NEW_MODE typedef to specify the mode
flags for directories. The mode flags indicate the directory characteristics. Table
72-1 describes the mode flags for directories.

7 / FILE SYSTEM

Table 72-1
Directory Mode Flags
Flag Meaning If Set B
fsTempDir The file system should delete the directory when the handle is destroyed.
fsUnchangeable Disallow changing the target directory.
fsUseDirIndex Find the directory using the directory index specified in the dirIndex field. Use the

locator’s UID and path to determine which volume to use.

fsSystemDir Directory handle is owned by the system (ring 0).

You can use the constant fsDirtNewDefaultMode, which is the same as specifying
a permanent and changeable directory (all flags clear).

To get or set the directory mode flags, use msgFSGetHandleMode and
msgFSSetHandleMode.

% Creating a File Handle 72.1.4

The next code fragment shows how to create a file handle and a new file. First the
program declares an FS_NEW structure and initializes it with msgNewDefaults.

72 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

The program then specifies the value that it needs to change and sends msgNew
to clsFileHandle.

STATUS s;
FS_NEW fsNew;
FILE HANDLE myFileHandle;

s = ObjectCall (msgNewDefaults, clsFileHandle, &fsNew);
/*
The following filled in by msgNewDefaults

fsNew.object.key = objWKNKey;
fsNew.object.cap = objCapCall;
fsNew.object.uid = null;
fsNew.fs.locator.uid = theWorkingDir;
fsNew.fs.mode = fsFileNewDefaultMode;
fsNew.fs.exist = fsExistDefault;

*/
fsNew.fs.locator.pPath = "MyDir\\MyFile";

status = ObjectCall (msgNew, clsFileHandle, &fsNew);
myFileHandle = fsNew.object.uid;

Again, when the file system creates the file handle, it sends back the UID for the
handle in object.uid of the FS_NEW structure. In this example, the program saves
the handle in the variable myFileHandle. Now when the program needs to send

other messages to the handle (such as msgStreamRead or msgFree), it can use
myFileHandle.

Use the constants defined in FS_FILE_NEW_MODE to specify the mode flags for
files. The mode flags indicate how the file system is to open the file. The mode
includes your access intentions, your exclusivity requirements, and whether
memory mapped regions should be in shared memory. Access intentions describe
how you intend to access the file (reading only, or writing and reading).
Exclusivity requirements describe what you will let other clients do to the file
while you have a handle on it (allow other readers and writers, allow readers only,
or deny access to all). If a memory mapped file region is shared, more than one
client can access the memory mapped file.

Table 72-2 describes the mode flags for files.

Table 72-2
File Mode Flags

Hag Meaning i Set

fsTempkFile Delete the file when the handle is destroyed.

fsReadOnly Open the file with read-only access.

fsSystemFile Directory handle is owned by the system (ring 0).

fsSharedMemoryMap Shared memory used for memory mapped files.

fsDisablePrompts Do not prompt the user if the volume containing the file is disconnected.

Always return stsFSVolDisconnected.

Enumerafor Feaning i Seb

fsNoExclusivity No exclusive access.

fsDenyWriters Deny access to readers.

fsExclusiveOnly Handle owner has exclusive access to the file.

CHAPTER 72 / USING THE FILE SYSTEM 73
Creating Directories and Files

You can use the constant fsFileNewDefaultMode to use the file open defaults.
The constant is the same as specifying fsNoExclusivity (the file is permanent with
read/write access).

To get or set the file mode flags, use msgFSGetHandleMode and
msgFSSetHandleMode.

¥» Mapping a File to Memory 72.1.5

Memory mapped files allow you to address information in a file as if its contents
were in main memory. In PenPoint 1.0, you map files to memory by establishing
a block of virtual memory to which the file system can swap the file contents.

The message msgFSMemoryMapSetSize specifies the amount of virtual memory
available to a memory mapped file. You cannot specify a size of zero, less than the
file size, or less than the size set by any other client. The memory map size can be
larger than its previous size. The memory map size must be set before memory

mapping the file.

The memory map size should be set to a reasonable expected maximum. If your
file is static, then set the memory map size to the file size. If your file will grow
then set the limit to its anticipated size. Setting a file’s memory map size to IMB
does not take IMB of RAM, but does require approximately 1KB of data
structures to support in the memory manager and uses IMB of the virtual
memory address space. The minimum memory required is 4KB per file, so
memory mapping very small files is not efficient.

If a file is memory mapped, then the memory map size can’t change (use
msgFSMemoryMapSetSize before msgFSMemoryMap) and the file size can’t
grow (via either msgStreamWrite or msgFSSetSize). All of these error cases return
stsFSNodeBusy. The single pointer returned by msgFSMemoryMap can be used
to address the entire memory map. A zero length file can be memory mapped.

% Sharing Memory Mapped Files 72.1.5.1
By default the memory mapped region is in local memory. If you want to share a
memory mapped file with other clients, you must specify fsSharedMemoryMap in
the mode argument of the FS_FILE_NEW_MODE structure when you create the file
handle.

Pl
%«?
it
&
It

% Memory Mapped File Life Cycle
This section presents the life cycle of 2 memory mapped file. Clients need to be
particularly aware of the second step.

1 Open the file.

Some memory map related options are specified in pNew->fs.mode when

a file handle is created. Setting fsReadOnly will result in a read only memory
map. Setting fsSharedMemoryMap will result in a memory map allocated
from shared memory. Setting fsSystemFile will result in a memory map
owned by the system (this flag is only accessible to supervisor code).

7 / FILE SYSTEM

74 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

2 Set the maximum size of the memory mapped file.

You specify the memory map size using msgFSMemoryMapSetSize. This
message takes a single argument, the memory map size. Decide on the
maximum size that your memory map will grow to and set that size. The
memory map size must be as large or larger than the actual file size. You may
want to set the memory map size based on the maximum of msgFSGetSize
and the desired memory map size. Setting unnecessarily large sizes will
quickly use up all of virtual memory space.

Also be aware that each 4KB of virtual memory map space still requires approx-
imately 16 bytes of real memory in the memory manager. If your memory map-
ped file is read-only or static (for example fonts or a dictionary) set the memory
map size to the file size. The message msgFSMemoryMapGetSize can be used

to query the current memory map size.

3 Memory map the file.
msgFSMemoryMap to the file handle will return a pointer to the memory
map. The pointer will always point to the base of the memory mapped
region. Sending msgFSMemoryMap to a memory mapped file handle will
return the same pointer, not another one. There is only one memory map per

file handle.

4 Flush the memory map (optional).
msgFSFlush to the file handle of the memory mapped file will cause all dirty
portions of the memory mapped file to be written to disk.

5 Free the memory map.

msgFSMemoryMapFree frees the memory map.
6 Set the file size (optional).

If you want your file to be the size of the memory mapped data structures
that you have mapped onto the file, then you need to explicitly set the file
size before freeing the file handle. If you do not, then the file will be a
multiple of the system page size, and the undefined bytes past the end of the
memory mapped file will become part of the file on disk. ‘

7 Close the file.

msgDestroy to the file handle will close the file handle. All dirty pages in the
memory map will be written to disk. The memory map will be freed if you
did not free it in step 5.

Closing Files 72.2

When you have finished with a file or directory, you should free the handle to
deallocate the memory required by the handle. This is equivalent to closing a file.

To free a handle, send the message msgDestroy to the handle that you want to
free. The only argument to msgDestroy is the key that was used to create the
handle, if any. The following fragment illustrates the use of msgDestroy:

CHAPTER 72 / USING THE FILE SYSTEM
Forcing Deletion of a File or Directory

myFileHandle = fsNew.object.uid;
status = ObjectCall (msgDestroy, myFileHandle, (P_ARGS) objWKNKey);

When the file system created the handle, it returned the UID in fsNew.object.uid.
Here the program calls msgDestroy to free that handle. The key value specified
here uses objWKNKey, the well-known key, which has a value of 0. Use
objWKNKey when you didn’t specify a key value in msgNew. For more
information about the keys, see the Part 1: The Class Manager.

Sending msgDestroy to a directory or file handle does not delete the node (unless
the file is marked temporary); it merely has the effect of closing the file and freeing
the resources used by the handle object. The handle is not the node.

o [] [] (]
Deleting Files and Directories 72.3

Delete a file or directory by sending msgFSDelete to a file or directory handle.
The only argument to the message is a path that specifies the node to delete. If the
path is empty, the file system deletes the file or directory handle’s target node.
Deleting a directory hierarchically deletes all of the nodes in that directory.

This example illustrates msgFSDelete:
status = ObjectCall (msgFSDelete, theWorkingDir, "MyDir\\MyFile")

If you use the temporary file flag with msgNew, the file system deletes the file or
directory when you free the file or directory handle.

You can’t delete a file that is marked read-only; you must change the file’s attribute
to read/write before you can delete it. If you attempt to delete a node that is the
target of another directory handle, the deletion will fail with stsFSNodeBusy.

Forcing Deletion of a File or Directory 72.4

To force the deletion of a node (file or directory) that is marked read-only, or that

is the target of another directory handle, send msgFSForceDelete to a directory
handle.

msgFSForceDelete is a powerful message. It will delete any file or directory
without question. Careless use of msgFSForceDelete could result in damage to your
installed software, including PenPoint.

msgFSForceDelete takes a pointer to a FS_FORCE_DELETE structure that contains
a pointer to a path that indicates the node to delete (pPath).

When the message completes successfully, it returns stsOK.

When a handle’s target node is deleted or destroyed, the file system marks the
handle invalid. If you use an invalid handle, the file system returns

stsFSHandleInvalid.

The only valid thing that you can do with an invalid file handle is to free it with
msgFree.

75

7 / FILE SYSTEM

76 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

The only valid things that you can do with an invalid directory handle are to free
it with msgFree or change its target directory with msgFSSetTarget.

7 Getting and Setting Attributes 72.5

You can use the msgFSGetAttr and msgFSSetAttr messages to manipulate file and
directory attributes.

When you send an attribute message to a file handle, the message affects that file
directly. When you send an attribute message to a directory handle, you can
specify a path to any node. There are three types of attribute values:

Fixed-size values (32 or 64 bits).
¢ Variable-sized values (up to a little less than 64K).

¢ Null-terminated strings (up to a little less than 64K characters).

% Lists of Attributes | 72.5.1

msgFSGetAttr and msgFSSetAttr both take a FS_GET_SET_ATTR structure that
contains pointers to three parallel arrays:

An array of 32-bit attribute labels (identifiers for particular attributes).

¢ An array of 32-bit (4-byte) or 64-bit (8-byte) attribute values or pointers to
variable-length or string attributes.

An optional array of attribute sizes (in bytes).

Figure 72-1

File Attribute Arguments

My Directo

pPath

pAttrLabels |
pAtirValues
pAttrSizes !

CHAPTER 72 / USING THE FILE SYSTEM 77
Getting and Setting Attributes

The arrays must contain the same number of elements.

If an attribute is fixed-length, its value is stored in the attribute array; however, if
the attribute is variable length, the attribute array contains a pointer to the
attribute’s buffer. Figure 72-1 shows the FS_GET_SET_ATTR structure for four
attributes. The first, third and fourth attributes are fixed-length values. The second
attribute is a string. The fourth value is a fixed-length 64-bit value, so its entry in
the pAttrValues array uses eight, rather than four, bytes.

*» Zero Value Attributes 72.5.2

When an attribute’s value is 0, the attribute is deleted from the node’s attribute
list. You can still get the attribute value, because the file system always passes back
the value 0 for an “undefined” attribute.

This saves memory in attribute lists and in the PENPOINT.DIR files, but at the
expense of some confusion. You cannot determine if an attribute with a zero value
is defined just by asking for its value. What you can do is request all attributes for
a file system node, and then examine the attribute label array for presence or
absence of the attribute that you want.

"% File System Attributes 72.5.3 .
The file system defines the following attributes:
Table 72-3
File System Atiributes
Attribute Meaning
fsAttrName Node name.
fsAttrFlags Node attribute flags. For more information, see the discussion below.
fsAttrDateCreated Node creation date/time
fsAttrDateModified Last modified date/time.
fsActrFileSize Number of bytes in the file.
fsAttrDirlndex A directory index value (directories only).
fsAttrFiléType A file type TAG, as defined in FILETYPE.H.

The PenPoint file system does not maintain an “archive” attribute that records
y

whether the file has been modified.

Yool
B
-3

’% Client-Defined Attributes

The set of attributes the file system defines is fixed, but you can create any
number of client-defined atcributes.

The file system header file (FS.H) defines three macros to create attribute labels.
The macros are:
FSMakeFixAttr(class, tagq)

FSMakeVarAttr (class, tagq)
FSMakeStrAttr(class, tag)

7 / FILE SYSTEM

78 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

where class is the class to which the attribute belongs (for example, file system
attributes are defined by clsFileSystem) and zag is a unique value for the attribute.

In many ways client-defined attributes are no different from file system attributes.
You can perform the same operations on client-defined attributes (get size, get
value, set value). However, when you send msgFSSetAttr and indicate a previously
undefined attribute, the file system creates a client-defined attribute.

When you specify the value 0 (or a null pointer) for a client-defined attribute,
the file system deletes the attribute. Note that you can still get the attribute value;
the file system will return 0 (which is both the value of the attribute and the
indication that the attribute does not exist).

’% Getting Attribute Values

To get attribute values, send the message msgFSGetAttr to a file or directory handle.
The message takes a pointer to a FS_GET_SET ATTR structure that contains:

pPath A pointer to a path. This path, combined with the handle to which

the message is sent, forms an implicit locator.
numAttrs The number of attributes you are requesting.
pAttrLabels A pointer to the array of attribute labels.

pAttrValues A pointer to the array of 32-bit values that either receive the
fixed length attributes or point to the buffers that receive the variable-
length attributes. You must specify the pointers in the array when you
call msgFSGetAttr, the message will not return the pointers for you.

pAtuSizes A pointer to the array that receives attribute sizes. If you don’t
want to receive attribute sizes, use Nil(P_FS_ATTR_SIZE) for this pointer.
When you call msgFSGetAttr, you can use this array to specify the
maximum sizes of the variable-length attribute buffers; on return, the
array contains the actual sizes returned.

If the attribute does not exist, the value for that ateribute is 0.

If you don’t want to allocate the variable-length attribute value and size buffers ahead of
time, you can direct msgFSGetAttr to allocate the buffers for you. To automatically
allocate the value buffer, specify fsAllocAttrValuesBuffer in pAttrValues; to allocate
the sizes buffer, specify fsAllocAttrSizesBuffer in pAttrSizes.

You can direct msgFSGetAttr to return all attributes by specifying the constant
fsAllocAttrLabelsBuffer in pAttrLabels. If you specify this value, specify maxU16

for numAttrs, and use fsAllocAttrValuesBuffer and fsAllocAttrSizesBuffer in
pAttrValues and pAttrSizes. The actual number of attributes is returned in numAttrs.

When you are done with the attributes, you must free the returned memory regions
with OSHeapBlockFree(); PenPoint cannot do it for you. OSHeapBlockFree() is
documented in the Part 8: System Services.

o
i
H

i
i

CHAPTER 72 / USING THE FILE SYSTEM
Getting and Setting Attributes

%> Setting Attribute Values 72.5.6

Setting attribute values is similar to getting attribute values. Send the message
msgESSetAttr to a file or directory handle. The message takes a pointer to a
FS_GET_SET_ATTR structure that contains:

pPath A pointer to a path, if sending the message to a directory handle.
numAttrs The number of attributes you are setting.
pAttrLabels A pointer to the array of attribute labels.

pAttrValues A pointer to the array of 32-bit values or pointers to
variable-length attributes.

pAttrSizes A pointer to the array that specifies the attribute sizes. This is
required for variable-length attributes; it is optional for fixed-length and
string attributes.

The list of attribute labels and the list of pointers must contain the same number
of elements.

% Getting the Length of Attribute Values 72.5.7

If you need to get a fixed-length attribute, you usually don’t have to worry about
allocating space for it, whether you allocate space at compilation or dynamically.
However, when you are dealing with variable-length attributes and need to be
cautious about memory consumption. You can use msgFSGetAttr to obtain only
the length of an attribute.

The message attributes are similar to those for msgFSGetAttr, but you specify null
in the arrays indicated by pAttrValues.

"> Node Attribute Flags 72.5.8

The node attribute flags define information that is common to all file system
nodes (such as read-only, hidden, and whether it is a directory or file node). To
get the node attribute ﬂags, you must create a FS_NODE_FLAGS_ATTR structure,
which contains a FS_NODE_FLAGS structure and a mask.

To get attribute flags, you use the FS_NODE_FLAGS structure to indicate the node
attribute flags that you want. The file system ignores the mask on input. When
msgFSGetAttr sends back the structure, the node flags contains OxFFFE.

To set attribute flags, you use both the FS_ZNODE_FLAGS structure and the mask.
The mask specifies which node attribute flags you want to change. The mask
enables you to alter selected node attribute flags without having to get all the node
attribute flags first.

79

7 / FILE SYSTEM

80 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

Table 72-4 summarizes the attribute flags defined by FS_NODE_FLAGS.

Table 72-4
Node Attribute Flags
Flag Meauning
fsNodeReadOnly The node is read-only (applies to files only).
fsNodeHidden The node is hidden.
fsNodeDir The node is a directory. Clients cannot change this attribute.
fsNodeGoFormat The node has additional GO information (such as a long name or client-
defined attributes). Clients cannot change this attribute.

fsNodePenPointHidden Node is hidden from user in disk browsers.

% Creating and Using Directory Indexes

%%2
S
W
£+

A directory index is a fast way of specifying a directory, that is independent of
paths. The Notebook uses directory indexes to implement GoI'o buttons and to
jump to section tabs.

To create a directory index, send msgFSSetAttr to a directory handle. Specify
fsAttrDirIndex as the label. The attribute is a variable-length attribute that contains a
64-bit unique identifier (UUID). You must create the UUID by calling the function
MakeDynUUID(). MakeDynUUID() is described in Parz 2: Application Framework.

You can use the directory index in a msgNew rather than a locator. When you
send msgNew to clsDirHandle, specify the mode flag fsUserDirlndex and put the
directory index in dirIndex. The locator.uid #zust specify the volume root.

Copying and Moving Nodes 72.6

You copy nodes by sending msgFSCopy to a file or directory handle; you move
nodes by sending msgFSMove to a file or directory handle. Both messages take a
FS_MOVE_COPY structure that contains:

pSourcePath A path to the source node.
destLocator A locator that indicates the destination for the new node.

mode A set of flags that specify the type of move or copy operation.
Currently there are three flags defined for mode:

msMoveCopylntoDest Used when copying or moving directories.
If you specify this flag, the directory node is moved or copied into the lo-
cation specified by the locator. If you do not specify this flag, the direc-
tory node becomes the location specified by the locator.
fsMoveCopyVerifyOnly Verifies that the move or copy would succeed
if performed, but does not do the actual move or copy.

exist What to do if the destination node exists already.

pNewDestName Passes back the name of the new node. If you specify
NULL for this address, the buffer is not written. This parameter is

necessary only if you specify fsExistGenUnique, so that you can receive
the new name.

CHAPTER 72 / USING THE FILE SYSTEM
Traversing Nodes

The following example copies the file MYDIRWMYFILE to MYDIR\MYCOPY on the
same volume. If the destination file already exists, the exist flag specifies that the
file system should overwrite it.

FS_MOVE_COPY dhCopy;

dhCopy .pSourcePath = "MyDir\\MyFile";
dhCopy.destLocator.uid = theWorkingDir;
dhCopy .destLocator.pPath = "MyDir\\MyCopy";
dhCopy.intoDest = FALSE;

dhCopy .pNewDestName = Nil (P_STRING);
dhCopy.exist = fsCopyExistOverwrite;

status = ObjectCall (msgFSCopy, theWorkingDir, &dhCopy);

If you move a node that has other handles it, those handles are updated to reflect
the new location of the node.

Traversing Nodes 72.7

At times, you might need to examine attributes for all nodes that are subordinate
to a particular node. For example, you might want to sum the sizes of all nodes

subordinate to a directory. To traverse the nodes of a tree, send msgFSTraverse to
a directory handle, specifying an attribute list (similar to msgFSGetAttr or
msgFSReadDir).

msgFSTraverse will traverse all directory entries subordinate to the directory that
received the message. For each directory entry that it encounters, the message
retrieves the specified attributes and can invoke a call-back routine, wherein you
can examine the attributes. A quicksort comparison routine allows you to sort the
directory entries for each directory before invoking the call-back routine.

msgFSTraverse takes a pointer to an FS_TRAVERSE structure that contains:

mode The call-back mode, defined in FS_TRAVERSE_MODE. The mode is
explained in “The Traverse Call-Back Routine,” below.

numAttrs The number of attributes you are requesting.

pAttrLabels An array of numAttrs attribute labels. The array must include
fsAttrFlags and fsAttrName at a minimum.

pCallBackRtn The name of a call-back routine. For more information on
the call-back routine, see “The Traverse Call-Back Routine,” below.

pClientData A pointer to an area of data that can be read and written by
the call-back routine.

pQuickSortRtn The name of an optional quicksort routine. If you don’t
want the directory sorted, specify Nil(P_UNKNOWN). For more
information on the quicksort routine, see “The Traverse Quicksort
Routine,” below.

When traversing a directory handle, msgFSTraverse modifies the target of the

handle as it visits each subdirectory. This causes a problem when you want to traverse
an entire volume, because root directory handles cannot be modified. This means that
msgFSTraverse will return stsFSUnchangeable if you send it to a root directory handle.

7 / FILE SYSTEM

82 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

To traverse a volume starting at the root directory node, you must create a
directory handle whose target node is a copy of the volume’s root directory. Send
msgFSTraverse to the new handle and it will traverse the entire volume. Be sure to
destroy the new handle when you no longer need it.

% The Traverse Call-Back Routine 72.7.1

Along with your arguments to msgFSTraverse, you name a call-back routine. The
call-back routine is a user-written routine that acts on attributes found by
msgFSTraverse.

When msgFSTraverse encounters a file node, enters a directory node, or exits a
directory node, it can invoke your call-back routine. The mode argument to
msgFSTraverse specifies when it should invoke the call-back routine.

The call-back routine receives these arguments, which are defined in
P_FS_TRAVERSE_CALL_BACK:

dir If the node is a directory, the directory handle to the node. If the node is
a file, the directory handle to the file’s parent directory. The call-back
routine can use this directory handle along with the file name attribute
(fsAttrName) to open a file.

level The current level in the directory hierarchy, relative to starting
directory for traversal.

pNextEntry A pointer to a FS_READ_DIR structure that contains the
requested attributes. See the discussion of msgFSReadDir for more
information on FS_READ_DIR.

pClientData A pointer to the client data.

You can use this area to send data to the call-back routine and to receive
information gathered by the call-back routine.

’» The Traverse Quicksort Routine ' 72.7.2

If you specify the name of a quicksort comparison routine, the message sorts each
directory according to the quicksort comparison routine before invoking the
callback routine. The comparison routine must compare two values, and return
-1, 0, or 1, depending on the result of the comparison.

% Order of Traversal 72.7.3

When searching the directories, the traversal starts with the directory that received
the message. The traversal examines each directory entry in order.

When it encounters an entry for another directory node, the traversal moves to
that directory. The traversal continues recursively until it finishes with the
directory entries in a node. It then returns to the previous directory in the traversal
and continues.

CHAPTER 72 / USING THE FILE SYSTEM
Reading and Writing Files

Renaming Nodes 72.8

You rename nodes by using msgFSSetAttr to change the node name.

7 Determining the Existence of a Node 72.9

To test whether a file or directory node exists, send msgFSNodeExists to a directory
or file handle. The message takes a pointer to an FS_NODE_EXISTS structure that
contains a path that specifies the node that might exist (pPath). The path can be
null, but that would imply that you are sending the message to a handle on a node
whose existence you aren’t sure. If you can send messages to the handle, the node
probably exists.

When the message completes, it returns stsOK if the file or directory exits, or
stsFSNodeNotFound if it doesn’t exist. The message sends back the
FS_NODE_EXISTS structure with a BOOLEAN value that contains true if the node
is a directory and false if the node is a file (isDir).

Reading and Writing Files 72.10
This section discusses how to read and write files using file handles.

When you have a file handle, you can use msgStreamRead and msgStreamWrite
to read and write data. For both messages take a STREAM_READ_WRITE structure
that contains:

numBytes Number of bytes to read or write. This number can be as large as
fsMaxReadWrite (defined in FS.H as 0x40000000).

pBuf A pointer to a buffer of data to read or write.

When msgStreamRead or msgStreamWrite complete successfully, they send back
the actual number of bytes read or written in count.

This example illustrates the use of msgStreamRead and msgStreamWrite.

STREAM READ WRITE srw;
char outbuf[80];
status = ObjectCall (msgNewDefaults, clsFileHandle, &fsNew);
fsNew.fs.locator.pPath = "MyDir\\RWFile";
if ((status = ObjectCall (msgNew, clsFileHandle, &fsNew)) < stsOK)
FSErr("****FileHandle msgNew 1. Object Open failed", status);
fh = fsNew.object.uid;
/* Everyone’s typical data... */
srw.pBuf =
"This is the text to write to the file.\r\n";
srw.numBytes = strlen(srw.pBuf);
if ((status = ObjectCall (msgStreamWrite, fh, &srw)) < stsOK)
FSErr("****FileHandle msgNew 1. Write failed", status);
srw.numBytes = 80;
srw.pBuf = (P_U8) outbuf;
if ((status = ObjectCall (msgStreamRead, fh, &srw)) < stsOK)
FSErr("****FjileHandle msgNew 1. Readfailed", status);

83

7 / FILE SYSTEM

84 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

"File Position and Size 72.11

As with other file systems, you can ask the file system for the current position
within a file or you can set it to a new location. You can also find or change the
size of a file.

% Getting and Setting File Position 72111

To get and set the current file position, use the message msgFSSeek. The message
takes a pointer to a FS_SEEK structure that contains:

mode The starting position for the seek. You can start a seek at the
beginning of a file, the end of a file, or at the current byte position. The
starting position symbols are defined in FS_SEEK_MODE (shown in Table
72-5, below).

offset The offset in bytes. This offset is a signed value. Positive offsets move

the current byte position closer to the end of file; negative offsets move it
closer to the beginning of the file.

Table 72-5
FS_SEEK Flags
Flag Meaming if Set
fsSeekBeginning Seek is relative to the beginning of the file.
fsSeekEnd - Seek is relative to the end of the file.
fsSeekCurrent ' Seek is relative to the current position of the file.
fsSeekDefaultMode The default mode is fsSeekBeginning.

msgFSSeek sends back the current byte position, the old position, and indicates
whether you are at the end-of-file marker.

To find out the current byte position, specify 0 as the offset value, relative to the
current position. The following example shows a msgFSSeek call that sends back
the current position.

FS_SEEK fhSeek;

fhSeek.offset = 0;

fhSeek.mode = fsSeekCurrent;

status = ObjectCall (msgFSSeek, fh, &fhSeek);

Debugf ("Seek: 0ld Position: %$1d, New Position: %1d %s",
fhSeek.oldPos, fsSeek.curPos, fsSeek.eof ? "(EOF)" : "");

The following example shows a call to msgFSSeek that sets the current byte
position 80 bytes after the beginning of the file.

FS_SEEK fhSeek;

fhSeek.offset = 80;

fhSeek.mode = fsSeekBeginning;

status = ObjectCall (msgFSSeek, fh, &fhSeek);

Debugf ("Seek: 0ld Position: %1d, New Position: %1d %s",
fhSeek.oldPos, fsSeek.curPos, fsSeek.eof ? "(EOF)" : "");

You can' set the current byte position before the beginning of the file or beyond
the end-of-file. If you seek from the current position and specify a byte offset that

CHAPTER 72 / USING THE FILE SYSTEM
Getting the Path of a Handle

is before the beginning of the file, the new position is the beginning of the file; if
the offset is after the end, the new position will be end-of-file. However, if you
specify seek relative to the beginning of the file and pass a negative byte offset, or
you specify seek relative to the end-of-file end and pass a positive byte offset,
msgFSSeek returns stsBadParam.

’» Getting and Setting File Size 72.11.2

Use msgFSGetSize to get the file size and msgFSSetSize to set it. msgFSGetSize
takes a pointer to a FS_FILE_SIZE value; when the message completes successfully,
it stores the size in that location. msgFSSetSize takes a pointer to a FS_SET_SIZE
structure that contains the new size of the file (newSize); when the message
completes successfully, it sends back the previous size of the file (oldSize).

This example shows calls to msgFSGetSize and msgFSSetSize.

#define MIN_SIZE 2048
FS_FILE SIZE gsi
FS_SET SIZE ss;
status = ObjectCall (msgFSGetSize, fh, &gs);
if (gs < MIN SIZE)
{ ss.newSize = MIN SIZE;
status = ObjectCall (msgFSSetSize, fh, &ss);
}

If you set the file size to 0, you can delete information in the file without deleting

the file itself.

'Flushing Buffers 72.12

You flush buffered data and node attributes with msgFSFlush. You send
msgFSFlush to the handle of the file you want to flush. This message does not
take any arguments.

You might want to use msgFSFlush to be sure that buffered data is written to a
file system buffer before another process writes to the same file system buffer. This
example shows a call to msgFSFlush:

status = ObjectCall (msgFSFlush, fh, (P_ARGS) null);

Sending msgFSFlush to the root directory of a volume flushes data and attributes
for every file on the volume that has buffered information.

Getiting the Path of a Handle 7243

If you need to know the path currently used by a file or directory handle, use
msgFSGetPath. The message takes a pointer to a FS_GET_PATH structure that
contains:

mode What the returned path is relative to. The possible values are:

fsGetPathAbsolute Relative to the volume (the returned path begins
with two backslashes (\\)).

7 / FILE SYSTEM

86 " PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

fsGetPathRoot Relative to the root directory (the returned path begins
with a backslash (V).

fsGetPathRelative Relative to a specified directory (see dir, below).
fsGetPathName The node name only.

dir Ifyou specified fsGetPathRelative for mode, you must specify a
directory handle.

bufLength The length of your return buffer.
" pPathBuf A pointer to the buffer that receives the path.

This example shows an example of msgFSGetPath:

FS_GET PATH fsGetPath;
char pPath[fsMaxPathLength];

fsGetPath.mode = fsGetPathRoot;

fsGetPath.dir = objNull;

fsGetPath.pPathBuf = pPath;

fsGetPath.bufLength = fsMaxPathLength;

status = ObjectCall (msgFSGetPath, dh, &fsGetPath);

7 Changing the Target Directory 72.14

You can change the target directory for a directory handle by sending the message
msgFSSetTarget to any directory handle. This message takes a pointer to a
FS_LOCATOR structure that specifies:

uid A directory handle.
pPath The path to the new target directory.
This example illustrates a call to msgFSSetTarget.

FS_LOCATOR loc;

loc.uid = theWorkingDir;
loc.pPath = "MyDir\\SubDir";

status = ObjectCall (msgFSSetTarget, dh, &loc);

You can also use msgFSSetTarget to change the target of the well-known handle,
theWorkingDir.

Remember that the unchangeable attribute might prevent you from changing the
target on other well-known or global handles. If you attempt to change a target to
a file node, rather than a directory node, msgFSSetTarget returns stsFSNotDir.

P Comparing Handles 72.15

Use msgFSSame to find out whether two handles reference the same node. You
call msgFSSame by sending it to a handle; the only message argument is another
handle. If the two handles reference the same node, msgFSSame returns stsOK; if
different, it returns stsFSDifferent.

CHAPTER 72 / USING THE FILE SYSTEM
Reading Directory Entries

This example illustrates the use of msgFSSame.

FS_LOCATOR loc;
DIR HANDLE dhl;

loc.uid = theWorkingDir;
loc.pPath = "MyDir\\MyFile 1";
status = ObjectCall (msgFSSetTarget, dhl, &loc);

status = ObjectCall (msgFSSame, theWorkingDir, dhl);

7 Getting and Setting Handle Mode Flags

When you create a directory or file handle, you specify mode flags that indicate
options for the different handles. If, at a later time, you want to get or re-set the
options for a handle, you can use msgFSGetHandleMode and
msgFSSetHandleMode.

msgFSGetHandleMode takes a pointer to a U16 value that will receive the mode
flags. When you send the message to a file handle, it interprets the pointer as a

pointer to a FS_FILE_NEW_MODE value; when you send the message to a directory

handle, it interprets the pointer as a pointer to a FS_DIR_NEW_MODE value.

The mode flags for directory handles are described in Table 72-1; the mode flags
for file handles are described in Table 72-2.

msgFSSetHandleMode takes a pointer to a FS_SET_HANDLE_MODE structure,
which contains:

mode A FS_FILE_NEW_MODE or FS_DIR_NEW_MODE value. The type of
value depends on whether you send the message to a file or directory
handle (both types are actually U16s).

mask A mask value.

The mask specifies which mode flags you want to change. The mask enables you
to alter selected mode flags without having to get all the mode flags first.

msgFSSetHandleMode can change only a few of the handle mode fields
(fsTempDir or fsTempFile and fsSharedMemoryMap, for example). Very few, if
any, network file systems allow you to change the read-write access or exclusivity
of a file once you have opened it.

P Reading Directory Entries

Use msgFSReadDir to sequentially read selected attributes from all entries in a
directory. Each time you send msgFSReadDir, the file system sends back the
specified attributes, then updates the directory’s current directory position. The
current directory position is initially set to the beginning of the directory entries,
and is advanced each time you send msgFSReadDir.

The arguments to msgFSReadDir are similar to msgFSGetAttr. You define three
parallel arrays that contain attribute labels, locations or pointers, and sizes.

72,16

~
Y
i
~

87

7 / FILE SYSTEM

88 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

msgFSReadDir takes a pointer to a FS_READ_DIR structure that contains:

numAttrs The number of attributes that you want.
pAttrLabels An array of attribute labels, numAttrs long.

pAttrValues An array of P_UNKNOWN, used to store both 32-bit values and
pointers to buffers that receive variable-length attributes. You must
specify the pointer values when you send msgFSReadDir.

pAttrSizes An array of FS_ATTR_SIZE, used to store the length of the
variable-length attributes. If you don’t want the message to return the
sizes, specify Nil(P_FS_ATTR_SIZE) for the pointer.

After you read the last entry, any subsequent msgFSReadDir messages return
stsEndOfData. You can move the current directory pointer back to the beginning
of the directory with msgFSReadDirReset.

When you change a target node (with msgFSSetTarget), the current directory
position is set to 0.

’» Reading All Directory Entries 72.17.1

You use msgFSReadDirFull to get a copy all directory entries. You tell PenPoint
which directory you want and the attributes you are interested in. PenPoint
allocates a heap block, creates a linked list of blocks containing the attributes you

requested, and sends back a pointer to the first block (in pNext) and the number
of blocks in the list (numEntries).

Each block contains a pointer to next block (NULL for the last block) and a series

of pointers to the requested attribute values. The values are part of the returned
heap block.

When you are done with the attributes, you must free the memory block with
OSHeapBlockFree(); PenPoint cannot do it for you. OSHeapBlockFree() is
documented in the Part 8: System Services.

The current directory position used by msgFSReadDir is not affected by
msgFSReadDirFull.

%> Sorting Directory Entries 72.17.2

One reason to use msgFSReadDirFull is to sort a series of directory entries on a
particular attribute. To sort the returned directory entries, use the PenPoint
quicksort routine.

quicksort sorts a linked list of variable length blocks (which is the format of
attributes returned by msgFSReadDirFull). quicksort takes a pointer to the list
and a user-supplied routine for comparing two blocks. It rearranges the sequence
by readdressing the links. quicksort is described in detail in the API Reference
Manual, Part Eight: System Services.

CHAPTER 72 / USING THE FILE SYSTEM
Making a Node Native

This example uses quicksort to sort directory entries. It was drawn from the
PenPoint application framework.

/***
AppDirCompSeq

Comparison routine for sorting directory entries by sequence

number.
***/
int cdecl AppDirCompSeq (

P_FS_READ DIR p,

P_FS_READ DIR q)

U32 a;
U32 b;

a = ((P_APP_DIR NEXT) (p->attrValue.pValues))->attrs.sequence;
b = ((P_APP_DIR NEXT) (g->attrValue.pValues))->attrs.sequence;
if (a < b) return -1;

else if (a > b) return 1;

else return 0; '

/* Read entire directory. */
readDirFull.numAttrs = appDirNumReadDirFullAttrs;
readDirFull.attrLabel.plabels = appDirAttrLabels;

ObjCallRet (msgFSReadDirFull, dir, &readDirFull, status);
pReadDir = pArgs->handle = readDirFull.pDirBuf;

/* Sort directory snapshot by sequence. */
pReadDir = quicksort (pReadDir, AppDirCompSeq);

/* Deallocate attributes’ segment. */
status = OSHeapBlockFree (pReadDir) ;

Observing Changes 72.18

The file system allows you to make yourself an observer of theFileSystem or a
directory. When a volume is added or removed from theFileSystem or when nodes
are added or removed from a directory, observers receive msgFSChanged. The
message carries an FS_CHANGE_INFO structure that contains:

observed The UID of the observed object that changed.

reason The message that caused the change.

Making a Node Native 72.19

At some point you might need ensure that a node will be fully compatible in a
non-PenPoint environment. This means removing all PenPoint-specific infor-
mation from a file, such as the long file names, PenPoint-specific attributes, and
client-specified attributes. To remove the PenPoint-related information, use

msgFSMakeNative.

7 / FILE SYSTEM

90 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

msgFSMakeNative takes a pointer to an FS_MAKE_NATIVE structure that contains:
pPath A path to the node.

newName A pointer to the buffer that will hold the new node name.
This example shows a call to msgFSMakeNative.

FS_MAKE NATIVE make native;

char nameArray[13];

make native.pPath = "File with a long name";

make native.newName = nameArray;

status = ObjectCall (msgFSMakeNative, theWorkingDir, &make native);

‘Getting Volume Information 72.20

You can get information about a specific volume by sending msgFSGetVolMetrics
to a volume object. To get a list of volume objects send msgFSGetlnstalled Volumes
to theFileSystem.

The message takes a pointer to an FS_GET_VOL_METRICS structure that contains:
updatelnfo A BOOLEAN value that indicates that all volume information
should be refreshed before it is returned.

pVolMetrics An FS_VOL_METRICS structure that defines the variables that
contain the returned information. Table 72-6 lists the members in
FS_VOL_METRICS and their meanings.

Table 72-6
Volume Metrics Information
Hetric Meaning
type Indicates the volume type. The type constants are defined in FS_VOL_TYPE.
flags Indicates a number of volume attributes. The flags are defined in FS_VOL_FLAGS and are:
fsVolReadOnly The volume is read-only.
fsVolConnected The volume is currently connected (must set update=true to keep this current).
fsVolRemovableMedia The volume is located on removable media.
fsVolEjectableMedia The volume media can be ejected.
fsVolDirsIndexable The volume supports directory indexes. Some volumes cannot support directory indexes.
fsVolFormattable The volume can be formatted.
fsVolDuplicatable The volume can be duplicated by a track-by-track physical duplicator. A common way

to duplicate entire volumes is to physically copy each track to the identical track on a
volume of the exact same type, without interpreting the data or attempting to un-
fragment the files. Some volumes cannot be duplicated this way (such as hard disks).

rootDir A handle on the volume’s root directory.
volObj The volume object UID.
serialNum The volume’s serial number.
optimalSize The optimal block size for I/O.
totalBytes Total number of bytes on the volume.
freeBytes The number of free bytes on the volume (must set update=true to keep this current).
commSpeed The communication speed (for remote volumes).
iconResld The resource ID for the volume’s icon.

pName A buffer to receive the volume name.

CHAPTER 72 / USING THE FILE SYSTEM
Volume Specific Messages

The following example illustrates a call to msgFSGetVolMetrics that gets volume
information for the current directory.

FS_GET_VOL METRICS volMetrics;

volMetrics.updateInfo = TRUE; // This ensures an update to all fields.
status = ObjectCall (msgFSGetVolMetrics, theWorkingDir, &volMetrics);

Sefting or Changing a Volume Name 72.21

To set or change the name of a volume, send msgFSSetVolName to a file or
directory handle on the volume that you want to rename. The message takes a
single argument, a pointer to a string that contains the new volume name.

Currently the volume name must conform to MS-DOS volume naming
conventions (up to 11 characters; cannot contain / \ ; : = <> [or]). If the volume
name does not conform, the message returns stsBadParam.

Ejecting Floppies 72.22

For floppy disk drives that supporf programmatic control of disk ejection, there is
normally no eject button on the drive. Usually the user ejects such a floppy disk
volume by making an E, e, or X gesture on the disk icon in the disk browser.

If you need to eject the floppy disk volume under programmatic control, send
msgFSEjectMedia to a directory handle or file handle. The file system ejects the
volume associated with that handle. The message takes no arguments.

"Volume Specific Messages 72.23

You can send messages that are specific to a particular device with
msgFSVolSpecific. You can send this message to either a directory or file handle.
Among the reasons for using this message are:

¢ Getting or setting the Macintosh icon on a TOPS file that resides on a
Macintosh.

Getting a volume-specific error code.
¢ Low-level device access to device drivers.
The message takes a pointer to a VOL_SPECIFIC structure that contains:

pPath A path to a node. This is only meaningful when you send the
message to a directory handle; it must be null if you send the message

to a file handle.
msg A message. You must define the messages yourself.

pArgs A pointer to the arguments for the message.

o1

7 / FILE SYSTEM

: P‘EN?'PO'IN'I‘ ARCHITECTURAL REFERENCE / VOL |1

’ Part 8 /
System Services

7 Chapter 73 / Introduction

Organization of This Part

Other Sources of Information

7 Chapter 74 / PenPoint Kernel

Overview

The Machine Interface Layer

The Kernel Layer

Task Management
Processes
Subtasks
Software Task Scheduler
Priority Level

Intertask Communication
Messages and Queues
Semaphores

Memory Management
Heaps
80386 Protected Mode
Rings
Privilege Levels

Date and Time Services
Timer Routines
Alarm Services
Current Time

Other Routines

Object-Oriented Timer Interface

Sound Routine

PenPoint Kernel Summary

73.1
73.2

74.1
74.2
74.3
74.3.1
74.3.2
74.3.3
74.3.4

744

74.4.1
74.4.2

74.5

74.5.1
74.5.2
74.5.3
74.5.4
74.6

74.6.1
74.6.2
74.6.3
74.6.4
74.6.5

74.7
74.8

95

95
95

97

98
98
98
98
98
929
99

100
100
101

101
101
102
103
103
103
103
103
104
104
104

105
105

4 Cliapier 75 / € Run-Time Library
ANSI Standard C Routines

Time and Date Preferences
System Time
Time Formats
Date and Time Strings

16-Bit Character Support
16-Bit Character Types
16-Bit String Function
String Composition Functions

7 Chapter 76 / Math Run-Time
Library
Introduction

Programmatic Interface
Fixed-Point Numbers
Performance Notes
PenPoint Fixed-Point Summary

¥ List of Figures
74-1 PenPoint System Architecture

P List of Tables

74-1 theTimer Messages

74-2 Kernel Functions

74-3 Heap Routines

75-1 WATCOM C Run-Time Library
75-2 16-Bit String Functions

75-3 String Composition Functions
76-1 Fixed-Point Functions

75.1

75.2

75.2.1
75.2.2
75.2.3

75.3

75.3.1
75.3.2
75.3.3

76.1

76.2

76.2.1
76.2.2
76.2.3

109

109

110
110
110
110

110
111
111
114

115

115

115
115
115
116

97

104
105
107
109
111
114
116

Chapter 73 / Introduction

The PenPoint™ system services allow you to enhance memory utilization and
performance in your programs by providing access to the PenPoint kernel at the
lowest level, and by providing optimized run-time routines.

Simple applications may not need to use system services at all. Instead they rely on
the PenPoint Application Framework to install their code, create their processes,
and communicate with them. They use the class manager to communicate with
other objects.

The most common use of system services is to allocate and free memory using

OSHeapBlockAlloc() and OSHeapBlockFree().

3 [] [] []
Organization of This Part

This part explains the PenPoint system services concisely. The chapters of Part 8:
System Services cover the following information:

¢ Chapter 73, Introduction, is this chapter.

¢ Chapter 74, PenPoint Kernel Overview, describes the kernel, and the
functional elements such as processes, tasks, and task communications that
comprise the low-level operation of a PenPoint computer. At its end are
tables summarizing the kernel-level APIs.

¢ Chapter 75, C Run-Time Library, introduces GO’s run-time support for the
C programming language.

¢ Chapter 76, Math Run-Time Library, introduces GO’s fixed-point math
libraries.

Other S f Inf Hi
b
er sources or inrormarion 73.2

“Datasheets” for each function are in the PenPoint API Reference, so that you can
quickly locate the syntax for an individual kernel or run-time function.

Most datasheets in the PenPoint API Reference are formatted versions of the
information in the corresponding header file. However, because the run-time
library and other parts of system services are based on WATCOM’s standard
header files, the information in the header files is not the same as the information
in the datasheets.

The PenPoint Application Writing Guide explains common typedefs, status
values, and macros used in PenPoint.

PENPOINT ARCHITECTURAL REFERENCE / VOL II

PART 8 / SYSTEM SERVICES

Chapter 74 / PenPoint Kernel Overview

The kernel is the lowest-level application-accessible component of the PenPoint™
operating system. Applications and other programs access the kernel through
function calls; in turn, the kernel accesses the computer hardware:

¢ Directly when performing process management, scheduling,
synchronization, and memory management.

¢ Indirectly through the PenPoint MIL (Machine Interface Layer), when

communicating with devices.

These calls are invisible to the application programmer. The kernel provides the
following services for PenPoint operations:

® Multitasking, message-passing executive.
¢ Threads (lightweight tasks sharing the same address space).
¢ Protected memory management and code execution.
Semaphores for process synchronization.
¢ Procedural interface.
Figure 74-1 shows the position of the kernel in the PenPoint software architecture.

Figure 74-1
PenPoint System Architecture

MiL

Hardware

o8 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

7 The Machine Interface Layer 74.1

The PenPoint operating system is designed so that it is not dependent on the
hardware on which it runs.

The most obvious hardware dependency is on the central processor. However,
even hardware that uses a common central processor can have different peripheral
devices, such as screens, stylus and digitizers, storage devices, clock chips, and
ports.

To support different types of devices, the PenPoint operating system defines a
protocol for communicating with devices, called the Machine Interface Layer
(MIL). Only the PenPoint kernel and PenPoint device drivers (called MIL
services) make calls to the MIL; applications and non-MIL services never
communicate directly with MIL.

» The Kernel Layer 74.2

¥

The kernel is the portion of the operating system that interacts directly with the
processor to manage tasks, memory, and communication between tasks. It
allocates memory dynamically as applications run. It manages the sending and
receiving of synchronization messages between concurrent processes, and it
schedules the resources that these processes need as they execute (access to
common data, execution rights for shared code, and so on).’

The kernel layer is different in several ways from the portions of the PenPoint
operating system that are above the kernel layer:

¢ The kernel layer is not object-oriented, rather it provides support for the
PenPoint object-oriented architecture.

¢ The kernel layer does not send or receive messages, it uses function calls.

Task Management 74.3

In PenPoint, a task is the basic executing entity and refers to any executing thread
of control. There are two kinds of tasks: processes and subtasks. Processes and
subtasks are scheduled and run by a software scheduler based on a priority scheme
that determines which task should run at any given time.

Processes 74.3.1

A process s the first task that runs when an application is instantiated (typically
when the user turns to a document of that application). Processes own the
resources used by the instance including memory, subtasks, and semaphores (used
in locking and interrupts). When a process is terminated, all resources owned by it
are returned to the system.

Subtasks 74.3.2

A subtask is a thread of execution started by either a process or a subtask. It uses
the same context as its parent process. Subtasks created by other subtasks are called

CHAPTER 74 / PENPOINT KERNEL OVERVIEW 99
Task Management

sibling subtasks; all siblings are considered to be at the same level regardless of the
creator. The process that creates a subtask owns that subtask and any sibling
subtasks created by it in a child-parent relationship. A process and all its subtasks
make up a task family. When a process dies, all its subtasks are cleaned up so that
PenPoint can reuse the task family’s local memory.

A subtask has the following characteristics:
¢ It shares all memory with its parent process and any siblings.
¢ It owns no resources itself.
¢ It has its own general registers and stack.

[t can lock semaphores, receive and send messages.

7 Software Task Scheduler 74.3.3

PenPoint allows tasks to dynamically create and delete other tasks in the system.
Kernel functions are provided to start processes and subtasks. In addition, The
kernel allows for the termination of a given task by any other software task.

In order to start another process, the executable file that contains the code for that
process must have already been loaded into the loader database (see the
OSProgramInstall() function for more details). To start a process, the kernel
creates a new execution context (that is new local memory context).

Unlike subtasks, which are hierarchically below their parent process, processes
started by other processes (or subtasks) are not hierarchically linked. Since there is
no process hierarchy, the following is true:

¢ The process creator has no special impact on the process being created (and
vice versa). Thus, if the creator terminates, the newly created process is not
notified or terminated. Likewise, the creator is not notified if the newly
created process terminates.

A copy of the process creator’s file handles are not passed on to the new
process.

® A process is free to associate itself with other processes in whichever way it
wants. This more closely resembles the metaphor used by the notebook
software (where an application can move from one page to another and
applications can be arbitrarily embedded into other applications).

P Priority Level | 74.3.4

Software tasks have set priority levels to control their order of execution. Task
scheduling is by priority only. Processes and subtasks with higher priorities execute
before lower priority tasks. Priorities may be altered by the task itself or by any other
task in the system. Priorities are defined by their priority class (high, medium high,
medium low, and low) and a priority within that class (0-50). The PenPoint operating
system arranges task priorities within bands.

8 / SYSTEM SERVICES

100 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

[] (] .
Intertask Communication 74.4
Intertask communication in PenPoint takes place through messages and
semaphores.
P> Messages and Queues 74.4.1

An intertask message is a pre-defined PenPoint element that contains
miscellaneous information for a task along with an optional, variable-length
message buffer.

Intertask messages should not be confused with class manager messages. Intertask Important Intertask messages
messages are sent to tasks and begin with the prefix OSITMsg where OS stands ~ 2"¢ N0t the same as clase
)) manager messages.
for operating system and I'TMsg stands for intertask message. Class manager
messages are sent to objects and begin with the prefix msg.

For communications between tasks, the kernel relies on intertask messages.
Intertask messages are transferred between tasks, using the task identifier to target
the message. Messages contain miscellaneous information along with an optional
message buffer. Message buffers are variable length and are not interpreted by the
kernel. There is only one message queue per task (subtask or process). The
message queue is organized using a first in-first out algorithm.

Messages can be transferred in two modes: copy or noCopy. Copy is the normal
mode with all of the data associated with the message copied into the workspace
of the target task. NoCopy is used for high speed data exchange at the expense of
some protection. In noCopy mode, the sender passes a pointer to a shared heap,
which contains the message buffer.

The message facility also allows the client to pass a 32-bit token as part of the mes-
sage. In small transfers of data, this token could contain the entire message data.

ObjectSend() uses intertask messages to send a message to an object in a different
task. Application developers should use ObjectSend() instead of the kernel call
OSITMsgSend().

Normally messages are sent to just one task. However, the kernel will allow
messages to be sent to multiple tasks by the use of broadcast messages. When
broadcasting, the kernel sends the message to all tasks that are allowed to receive
messages. The broadcast message can be sent to all tasks in the system, or to a
single task and its task family. Note that the sending task does not receive its own
broadcast message.

As described above, messages are normally processed in FIFO order. However,
messages can be processed out of order by the use of filters. A task receiving
messages can choose to get a message from the queue using two types of filters:

¢ The task can have a filter that specifies the types of messages that can be \
placed in its queue.

¢ The dispatch loop for the task can use a filter when receiving messages from
the task’s message queue.

CHAPTER 74 / PENPOINT KERNEL OVERVIEW 101
Memory Management

The kernel uses messages to inform tasks of certain important events. As men-
tioned before, upon task termination, the kernel broadcasts a message to the entire
system on a special filter. Those applications that have enabled that filter in their
filter mask will be notified.

" Semaphores 74.4.2

For synchronization (which really is a form of communication), the kernel
provides semaphores. A semaphore, as in most operating systems, is a lock that
allows only one process or subtask access to a resource at one time. Semaphores
have two major purposes:

* To lock tasks in order to prevent collisions between contending tasks seeking
access.

¢ To accept interrupts in event handling, usually from device drivers.

The kernel implements a counting semaphore, so that if a particular task calls for
a particular number of lock operations, the task must issue an equal number of
unlock operations before the semaphore is free. If a task requests access to a
semaphore and is forced to wait because another task has already locked it, the
requesting task will be put to sleep until the semaphore is cleared. At that time the
highest priority task waiting on that semaphore will be given ownership of the
semaphore lock and will be put into the ready list. '

If a task with a locked semaphore dies, the kernel will unlock that semaphore and
notify the next task attempting to lock that semaphore of the forced unlock by the
system. It is up to that next task to determine if there is a problem (for example,
an inconsistent data structure). If the semaphore is protecting a critical data
structure, any task accessing that data structure (and semaphore) should know
how to clean up from accidental task termination. The best way to do this is to
centralize access to the semaphore. If all tasks access the semaphore using the same
code, then handling the exception case need only be done in that one location.

Memory Management 74.5

In the PenPoint operating system, memory has attributes, such as shared or local,
locked or unlocked, access rights, privilege level, length, and so on. Tasks must
request the amount of local and shared memory required for execution.

The PenPoint operating system provides a 32-bit flat memory model. Memory is
allocated in heaps. Allocation of heaps is referred to as heap management. The
heap manager uses a portion of address space that has already been allocated.

" Heaps 74.5.1

A heap is a region or list of regions of virtual memory. The heap manager handles
the allocation and freeing of smaller blocks within those regions. The heap
manager code runs at the privilege level of the code that calls it, so the memory it
allocates has the privilege of the code calling it.

8 / SYSTEM SERVICES

102 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

The size and characteristics of a heap is defined by the task that creates it. By
default, heap regions are 16K bytes long; heaps larger than 16K bytes are allocated
in multiples of 4K bytes. Each heap uses a minimum of 4K bytes; its elements
can be fixed or variable length. Heaps can be shared (accessible to multiple
processes) or local. See OSHEAPH for more information on heaps.

The system automatically creates two heaps for each process: a local heap and a
shared heap. osProcessHeapld is the handle (well-known UID) on the local heap
for each process; osProcessSharedHeapld is the handle for the shared heap.

Most applications should be able to use these predefined heaps and should not
need to create additional heaps. When necessary, an application can minimize
fragmentation within a heap by using different heaps for different functions. This
is only efficient when the data in each heap is greater than than 4K byrtes.

Because the heap manager allocates memory within a region, no hardware
protection is provided.

T'he PenPoint operating system does not support either heap compaction or
p g sy pp p
garbage collection.

The heap manager provides a number of utility routines to simplify the
management of heaps.

- P» 80386 Protected Mode 74.5.2

The PenPoint 1.0 runs in the protected mode of the 80386. This means that the
kernel utilizes the hardware facilities for task management and memory
protection. The hardware will provide a completely separate address space
(through virtual memory) for different programs.

A task family shares local memory. Each process has its own local memory, which
is accessible by all the subtasks in its task family, but not by other processes. This
means that if a task passes the address of some object in local memory to a task in
another task family, the pointer will be invalid or point to some random data for
the second task. You should be careful to use shared memory for data which needs
to be accessed by tasks using different process contexts.

Shared memory is accessible to all processes. When the CPU switches to a task in
a different process, it switches to the new process’s local memory.

A task can allocate memory that is either local to its task family or shareable
among many different tasks. Different tasks can share ownership of shared
memory. The memory manager maintains a reference count of the memory. The
memory will be freed only when all tasks sharing the memory have freed their
pointers to that memory.

The memory model does support memory movement. The memory manager
guarantees that the selector pointing to the memory block will always be valid
until that block is freed. In addition, the memory manager exports a number of
low level memory routines to support externally developed system code such as
device drivers.

CHAPTER 74 / PENPOINT KERNEL OVERVIEW 103
Date and Time Services

’» Rings 74.5.3

In addition to memory protection among processes, PenPoint utilizes the ring
structure of the 386 to protect system data structures from mischievous
applications. The kernel runs in supervisor mode (ring 0). Applications run in user
mode (ring 3). Data structures that are allocated in supervisor mode by the kernel
are not be accessible to application code. Application code can use the function
OSSupervisorCall() to access the kernel. Applications cannot access system buffers
(even those in shared memory).

Shared memory is used for anything that is required across many different
processes. Examples include system data structures, application code, and shared
objects.

% Privilege Levels 74.5.4

A task always executes at some privilege level. Memory is accessed through
regions. Each region has a privilege level and access permissions (read-only,
read-write). All of a task’s accesses to memory are checked against the privilege
level and access rights of the region. The PenPoint kernel and device drivers have a

higher privilege than application tasks.

A task cannot access more privileged data, nor can it execute code at other
privilege levels unless that code has made special arrangements. For example,
application code can only call PenPoint kernel routines through routines in
PENPOINT.LIB.

Date and Time Services 74.6

% Timer Routines 74.6.1

Timer notification comes in two flavors: notification by semaphore and
notification by message. In the first case, the client calls a function. In the latter
case, the client sends a message to a special well-known object, theTimer.

If notification is done by semaphore, the client must provide the semaphore; the
system will reset that semaphore at the appropriate notification time.

Because the kernel counts time by the system tick interrupt, no timeout values in
the range of the system tick interval time will be very accurate. When a timer
request occurs and is placed on the transaction queue, the timer subsystem has no
way of knowing how much time elapses between the request and the next system
tick. As a result, the timer allots the entire systick interval time (roughly 30
milliseconds) to the transaction.

% Alarm Services 74.6.2

The alarm subsystem uses the clock chip to keep track of the next alarm. A queue
of alarms transactions is maintained so that more than one alarm can be set in the
system. The alarm code calls the MIL clock device to handle the details of setting
an alarm.

8 / SYSTEM SERVICES

104 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

P» Current Time 74.6.3

The kernel provides routines to set and get the date and time from the clock chip.
The clock chip is updated through the MIL.

P» Other Routines ' 74.6.4

Chapter 75, C Run-Time Library, describes the run-time routines to manipulate
the time and date, and some system preferences that determine the user’s desired
time and date formats.

P> Object-Oriented Timer Interface 74.6.5

You can access timer and alarm services in an object-oriented manner. There is a
well-known object, theTimer, which responds to messages. You can ask it to
notify an object when a timer period expires, or repeatedly, or at a particular
alarm time. At the appropriate time, theTimer sends msgTimerNotify or
msgTimerAlarmNotify to that object.

theTimer is a well-known instance of clsTimer; it’s the only instance. (They share
y Y

the same UID, in fact.)
The messages which clsTimer defines are in \PENPOINT\SDK\INC\TIMER H.
They are:
Table 74-1
theTimer Messages
Message Takes Description
msgTimerRegister P_TIMER_REGISTER_INFO Registers a request for notification with
ObjectPost().
msgTimerRegisterAsync P_TIMER_REGISTER_INFO Registers a request for notification with
ObjectPostAsync().
msgTimerRegisterDirect P_TIMER_REGISTER_INFO Registers a request for notification with
ObjectPostDirect().
msgTimerRegisterInterval P_TIMER_INTERVAL_INFO Registers a request for interval notification.
msgTimerAlarmRegister P_TIMER_ALARM_INFO Registers a request for alarm notification.
msgTimerAlarmStop OS_HANDLE Stops a pending alarm request.
msgTimerTransactionValid OS_HANDLE Determines if a timer transaction is valid.
msgTimerStop OS_HANDLE Stops a timer transaction.
Advisory Messages
msgTimerNotify P_TIMER_NOTIFY Notifies the client that the timer request has
elapsed.
msgTimerAlarmNotify P_ALARM_NOTIFY Notifies the client that the alarm request has
elapsed.
A timer request can continue to count down afer a PenPoint computer is Note This is a hardware feature

powered-on. An alarm can go off while a PenPoint computer is off, and it will turn that may r‘_’t‘f mlay ';Ot:‘? Ii'" coent
. ’ . . on any particular renroin
the PenPoint computer back on in order to deliver the alarm message. Computr;r.

CHAPTER-74 / PENPOINT KERNEL OVERVIEW 105
PenPoint Kernel Summary

The Clock application uses theTimer extensively. Its code is in
\PENPOINT\SDK\SAMPLE\CLOCK, and is briefly discussed in the PenPoint
Application Writing Guide.

P Sound Routine 78.7

The kernel provides two basic routines to sound the speaker on a PenPoint
computer: OSErrorBeep() and OSTone(). In OSErrorBeep() you specify the type
of error (warning or fatal), and the computer beeps the appropriate tone.
OSTone() is more general; it allows you to sound the speaker, specifying a tone,
duration, and volume.

8 / SYSTEM SERVICES

[]
¥ PenPoint Kernel Summary 74.8

The PenPoint operating system kernel functions are defined in two header files:

OS.H Defines functions for tasking, memory information, inter-task

communication, and timer services.

OSHEAP.H Defines functions for memory management.
The corresponding Part 8 in the PenPoint API Reference describes the details of
PenPoint Kernel API. Every function is described along with its associated
parameters. The functions defined in OS.H are summarized in Table 74-2; the

functions defined in OSHEAPH are summarized in Table 74-3. For more
information on each of these functions, see the header files.

Table 74-2
Kernel Functions
Function Dascription
Task Monager Routines
OSProgramlInstall() Installs a program into the loader database.
OSProgramDeinstall() Deinstalls a program already loaded into the loader database.
OSProgramlInstantiate() Creates an'instance of a program.
OSProgramInfo() Returns information on the program from the loader.
OSSubTaskCreate() Creates a new execution thread in this context.
OSTaskI'erminate() Terminates a task.
OSThisTask() Passes back the task identifier of the current running task.
OSTaskPrioritySet() Sets the priority of a task or a set of tasks.
OSTaskPriorityGet() Passes back the priority of a task.
OSTaskNameSet() Sets a 4 character name for the given task.
OSTaskDelay() Delays the current task for a specified period of time.
OSNextTerminated TaskId() Notifies the caller of the tasks that have terminated.
OSModuleLoad() Loads a module into the loader’s database.
OSEntrypointFind() Finds an entrypoint in a loaded module either by name or by ordinal.
OSProcessProgHandle() Passes back the program handle for the process.
OSThisApp() Passes back the application object stored with the current process.
OSTaskApp() Passes back the application object for a given process.
OSTaskProcess() Returns the process id for the task specified.

continued

106 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

Table 74-2 {continued)

Function

OSTaskInstallTerminate()

Description

Notifies tasks waiting on OSProgramInstall that the instance is finished.

OSEnvSearch() Searches the environment for the specified variable and returns its value.
OSAppObjectPoke() Stores the application object for the current process.
Intertask Communications Routines
OSITMsgSend() Sends an inter-task message to a task or set of tasks.
OSITMsgReceive() Receives a message from the task’s message queue.
OSITMsgPeek() Gets the next message from the message queue without removing it.
OSITMsgFilterMask() Sets the filter mask for this task.
OSITMsgFromlId() Passes back the message associated with the message identifier.
OSITMsgQFlush() Flushes the message queue of all messages matching the message filter.
OSSemaCreate() Creates a semaphore.
OSSemaOpen() Opens (accesses) an already existing semaphore.
OSSemaDelete() Deletes a semaphore.
OSSemaRequest() Locks the counting semaphore (increments the count).
OSSemaClear() Unlocks the counting semaphore (decrements the count).
OSSemaReset() Resets event semaphore (no matter what count).
OSSemaSet() Sets the event semaphore to 1.
OSSemaWait() Waits for the event semaphore to be reset.
OSFastSemalnit() Initialize fast sema.
OSFastSemaRequest() Fast version of sema request.
OSFastSemaClear() Fast version of sema clear.
Memory Informeation Routines
OSMemlnfo() Returns information on memory usage for a specified task.
OSMemUselnfo() Returns information on memory usage for a specified task.
OSMemAvailable() Return amount of swappable memory available (to caution zone).
Date and Timer Routines
OSTimerAsyncSema() Reset a semaphore after time milliseconds.
OSTimerIntervalSema() Resets a semaphore after each time interval has elapsed.
OSTimerStop() Stops a timer request given its transaction handle.
OSGetTime() Returns local time.
OSSetTime() Sets the time or time zone.
OSPowerUpTime() Passes back the number of milliseconds since the last reset.
OSSetlnterrupt() Sets up an interrupt handler.

OSTimerTransactionValid()

Checks to see if the timer transaction is valid.

Debugger Entry Routines

Debugger()
OSDebugger()

Enters the debugger.
Enters the debugger, should only be called in special situations.

continued

CHAPTER 74 / PENPOINT KERNEL OVERVIEW 107
PenPoint Kernel Summary

Table 74-2 (continued)

Function Description
Keyboard Routines
KeyPressed() Determines if a key is available.
KeylIn() Passes back the next key and the scan code from the keyboard.
Tone Routines
OSErrorBeep() Outputs a tone based on the type of error encountered.
OSTone() Sends a tone for a given duration at the specified volume level.

Display or Screen Device Routines

ScreenOnlyStringPrint()

OSDisplay()
OSThisWinDev()
OSWinDevPoke()
osPrintBufferRoutine()

Prints a string onto the console.

Changes the display to the console or the graphics screen.
Passes back the windowing device for this application.
Stores the windowing device for the specified process.

Function variable print routine.

Miscellaneous Routines

OSPowerDown() Powers down the machine.
OSSystemlInfo() Passes back information on the system configuration.

Table 74-3

Heap Routines

Function Description
OSHeapCreate() Creates a heap.
OSHeapDelete() Deletes a heap. Frees all memory allocated by clients and by the heap manager.
OSHeapBlockAlloc() Allocates a block within the heap.
OSHeapBlockFree() Frees a heap block.
OSHeapBlockResize() Resizes a heap block.
OSHeaplInfo() Passes back information on a heap.
OSHeapld() Passes back the heap id from which a heap block has been allocated.
OSHeapBlockSize() Passes back the size of the heap block.
OSHeapPoke() Stores 32 bits of client info in the heap header.
OSHeapPeek() Passes back the client info previously set via OSHeapPoke().
OSHeapAllowError() Changes the “out of memory” behavior of heap block allocation.
OSHeapClear() Clears a heap. Deletes all the allocated heap blocks but not the heap.
OSHeapOpen() Adds the specified task as an owner of the specified heap.
OSHeapClose() Remove the specifed task as an owner of the specified heap.
OSHeapEnumerate() Enumerates all the heaps in the given process.
OSHeapWalk() Traverses the given heap.
OSHeapMark() Marks all the allocated blocks in given heap.

OSHeapPrint()

Prints debugging info about the given heap.

8 / SYSTEM SERVICES

PENPOINT ARCHITECTURAL REFERENCE / VOL II

PART 8 / SYSTEM SERVICES

Chapter 75 / € Run-Time Library

This chapter lists the C run-time library available to developers of PenPoint

applications and services. Many of the C run-time functions are provided by the
WATCOM C run-time library. Other functions provided in PenPoint include:

¢ Time and date preferences.

16-bit character support.

ANSI Standard € Routines 75.1

For information on the WATCOM C run-time library, see the WATCOM C
Library Reference for PenPoint.

Table 75-1 lists the files in the WATCOM C run-time library.

Table 75-1
WATCOM C Run-Time Library

File
ASSERTH
CONIO.H
CTYPE.H
DIRENT.H
ENVH
FCNTL.H
FLOAT.H
186.H
LIMITS.H
MALLOC.H
MATH.H
SEARCH.H
SETJMPH
SIGNAL.H
STDARG.H
STDDEEH
STDIO.H
STDLIB.H
STRING.H
TIME.H
UNISTD.H
UTIME.H

Lontents

Assertion macros.

Port I/O functions.

Character manipulation functions.

Directory functions and declarations.
Prototypes of environment string functions.
Flags used by open and sopen.

Declarations and constants used with floating point numbers.
Low-level CPU functions.

Constants for limits and boundaries.

Memory allocation and deallocation functions.
Mathematical functions.

Searching functions (lfind and Isearch).
Declarations for setjmp and longjmp functions.
Declarations for signal and raise functions.
Variable-length argument list functions.

A number of standard constants.

Standard input and output functions.
Declarations for standard functions.

String and memory functions.

Time and date functions.

System level I/O functions.

Declarations for utime function.

110 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

P Time and Date Preferences

The user (or a program) can specify the desired format for certain system para-
meters called preferences. These are maintained by theSystemPreferences in a
resource file. You can get and set preferences by sending resource messages such

as msgResReadData to theSystemPreferences. Resources are explained in Part 11:
Resources.

P> System Time

One of the preferences is the current system date and time, with the well-known
resource ID prTime. The time is in an OS_DATE_TIME structure.

Getting this resource is an alternative to calling the OSGetTime() routine.

P» Time Formats
Other user preferences indicate:

Whether the user prefers time in military (24-hour) format or regular format
(resource ID prTimeFormat).

¢ Whether the user wants to see seconds in time displays (ID prTimeSeconds).

¢ How the user prefers to see dates displayed (ID prDateFormat).

P> Date and Time Strings

Instead of retrieving all these resources, then formatting a string accordingly, you
can call functions that create formatted strings for a specified time based on the
current user preferences:

PrefsDateToString() fills in a string you supply with the date. The string
should be at least prefsMaxDate long (this may change if additional formats
are added).

¢ PrefsTimeToString() fills in a string you supply with the time. The string
should be at least prefsMaxTime long (this may change if additional formats

are added).

P 16-Bit Character Support

PenPoint 2.0 will contain support for applications that are written for more than
one language or region. To support languages that have large numbers of
characters (such as Japanese), PenPoint 2.0 will support 16-bit characters.

PenPoint 1.0 already includes many features that will be used to support 16-bit
character sets. These features include:

¢ New character types and macro support.
¢ New run-time library string functions.

¢ New string composition functions.

75.2

75.2.1

75.2.2

75.2.3

75.3

CHAPTER 75 / € RUN-TIME LIBRARY 111
16-Bit Character Support

¥» 16-Bit Character Types 75.3.1

PenPoint provides three character types: CHARS, CHAR16, and CHAR. The first
two provide eight and sixteen bit characters, respectively. In PenPoint 1.0, the
plain CHAR type is 8 bits long; in PenPoint 2.0, CHAR is 16 bits long.

When you use CHARS, you can use standard C conventions for forming character
and string constants. That is:

CHAR8 *s = "string";

CHAR8 ¢ = 'c¢’;
When you use the CHAR16 type, you must preceed the character or string
constant with the letter L, which tells the compiler you are using a 16-bit (or long)
character, as in:

CHAR16 *s = L"string"
CHAR16 ¢ = L'c’

When you use the CHAR type, you must preceed the character or string constant
with the identifier “U_L”, which means UNICODE, long. In PenPoint 1.0, this
tells the compiler to use 8-bit characters; in PenPoint 2.0, this tells the compiler to
use 16-bit characters.

CHAR *s = U L"string";
CHAR ¢ = U L'c’;

% 16-Bit String Function 75.3.2

The file INTL.H defines a new set of run-time library string functions that operate
on 16-bit characters. The names of the 16-bit functions are similar to the existing
8-bit functions, but the 16-bit function names are preceeded with the letter “U”.
For example, stremp() becomes Ustremp().

In PenPoint 1.0, the U... functions are identical to their 8-bit namesakes. In
PenPoint 2.0, the U... functions will be true 16-bit functions. In other words, the
old functions only work on CHARS strings, the U... functions in 1.0 work on
CHARS strings, in 2.0 the U... functions will work on CHAR16 strings.

Table 75-2 lists the 16-bit string functions and the corresponding 8-bit functions.

Table 75-2

16-Bit String Functions

T6H-Bit Function -8t Funetion
STRING.H

Ustrcat() strcat()
Ustrncat() strncat()
Ustremp() stremp()
Ustrnemp() strncmp()
Ustrepy() strepy()

continued

8 / SYSTEM SERVICES

112 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

Table 75-2 {continued)

16-Bit Funchion

8-Bir Function

Ustrnepy() strncpy()
Ustrlen() strlen()
Ustrdup() strdup()
Ustrrev() strrev()
Ustrset() strset()
Ustrnset() strnset()
Ustrchr() strchr()
Ustrrchr() strrchr()
Ustrspn() strspn()
Ustrespn() strespn()
Ustrpbrk() strpbrk()
Ustrstr() strstr()
Ustreok() strtok()
Ustricmp() stricmp()
Ustrnicmp() strnicmp()
Ustrlwr() strlwr()
Ustrupr() strupr()
Umemcpy() memcpy()
Umemccpy() memccpy()
Umemchr() memchr()
Umemcmp() memcmp()
Umemicmp() memicmp()
Umemmove() memmove()
Umemset() memset()
Ustrerror() strerror()
LIYPEH
Uisalpha() isalpha()
Uisalnum() isalnum()
Uisascii() isascii()
Uiscntrl() iscntrl()
Uisprint() isprint()
Uisgraph() isgraph()
Uisdigit() isdigit()
Ulsxdigit() isxdigit()
Uislower() islower()
Uisupper() isupper()
Uisspace() isspace()
Uispunct() ispunct()
Utolower() tolower()
Utoupper() toupper()

continued

CHAPTER 75 / C RUN-TIME LIBRARY 113
16-Bit Character Support

Table 75-2 {continued)

16-Bit Function

8-Bit Function

STDLIB.H

Uatoi() atoi()
Uatol() atol()
Uitoa() itoa()
Ultoa() ltoa()
Uutoa() utoa()
Ustrtol() strtol()
Uatof() atof()
Ustrtod() strtod()
Ustrtoul() strtoul()
STDIOH
Ufopen() fopen()
Usprintf() sprintf()
Uvsprintf() vsprintf()
Usscanf() sscanf()
Uputc() putc()
Ufputc() fputc()
Ugetc() getc()
Ufgetc() fgetc()
Uungetc() ungetc()
Ufdopen() fdopen()
Ufreopen() freopen()
Uprintf() printf()
Ufprint() fprintf()
Uvprintf() vprintf()
Uvfprintf() viprintf()
Uscanf() scanf()
Ufscanf() fscanf()
Uvscanf{() vscanf()
Uvfscanf() vfscanf()
Upvsscanf() vsscanf()
Ugetchar() getchar()
Ufgetchar() fgetchar()
Ugets() gets()
Ufgets() fgets()
Uputchar() putchar()
Ufputchar() fputchar()
Uputs() puts()
Ufputs() fputs()
Uremove() remove()
Urename() rename()
Utmpnam() tmpnam()

continued

8 / SYSTEM SERVICES

114 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

Table 75-2 [continued)

16-Bit Function 8-Bit Funciion
FCNTLH
Uopen() open()
Usopen() sopen()
Ucreat() creat()
TIME.H
Uasctime() asctime()
Uctime() ctime()
UNISTD.H
Urmdir() rmdir()
Uchdir() chdir()
Ugetcwd() getewd()
DIRENT.H
Uopendir() ‘ opendir()
Ureaddir() readdir()
¥» String Composition Functions 75.3.3

The file CMPSTEXT.H contains ComposeText functions for assembling a
composite string out of other pieces. Use these routines to create strings in your
Ul—don’t use sprint£()!

The ComposeText routines will also save you effort because you can specify the
resld of a format string and the code will read it from the resfile for you. You can,
of course, give the format string directly to the routines.

Table 75-3 lists the string composition functions.

' Table 75-3
String Compeosition Functions

Funetion Definition
SComposeText() Composes a string from a format and arguments.

VSComposeText() Composes a string from a format and a pointer to the argument list.

PENPOINT ARCHITECTURAL REFERENCE / VoL II

PART 8 / SYSTEM SERVICES

Chapter 76 / Math Run-Time Library

Introduction 76.1

¢ PenPoint provides a fixed-point math facility as a part of its run-time support for
ANSI C compilers. This math package resides permanently in the memory of the
computer and is shared among computational applications.

The mathematics library supports fixed-point calculations. Fixed-point arithmetic
is ideal for situations in which a fixed-point number with 16 bits of precision for
the integer part and 16 bits of precision for the fractional part is acceptable.

Floating point support is provided directly by the C language and a shared library
called directly from the compiler.

” Programmatic Interface 76.2

Application programs invoke the fixed-point functions through procedure calls.
For example:
FIXED a, b, c;

STATUS s;
s = FxAdd(b, c, a);

not:

a=D>b+ c;

We have choosen the simplest procedure names possible in order to enhance
readability of programs. The details of the routines are in the PenPoint API
Reference.

% Fixed-Point Numbers 76.2.1

The FIXED type is an $32. To create a fixed-point number, you use the routine
FxMakeFixed(), specifying an S16 whole part and a U16 fractional part. For
convenience, \PENPOINT\SDK\INC\GOMATH.H defines GoFx0, GoFx1, and
GoFxMinusl.

ImagePoint uses FIXED numbers to specify scale factors. To save including
GOMATH.H just to specify a scale factor, the definitions of FIXED and
FxMakeFixed() are in \PENPOINT\SDK\INC\GO.H.

P Performance Notes 76.2.2

FxAdd(), FxSub(), FxMul(), and FxDiv(), which include rounding and error
checking, perform about 5% slower than FxAddSC(), FxSubSC(), FxMulSC(),
and FxDivSC(), the truncating, trusting alternatives (which are macros instead of
function calls).

116 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

¥» PenPoint Fixed-Point Summary 76.2.3
Table 76-1
Fixed-Point Functions
Function Description
- Addition and Subtraction
FxAdd() Adds two FIXED numbers, producing a FIXED.
FxAddSC() Macro form of FxAdd() with no overflow detection.
FxSub() Subtracts two FIXED numbers, producing a FIXED.
FxSubSC() Macro form of FxSub() with no overflow detection.
Multiplication
FxMul() Multiplies two FIXED numbers, producing a FIXED.
FxMulSC() Multiplies two FIXED numbers returning the product. No overflow detection.
ExMullnt() Multiplies a FIXED number by an S32, producing a FIXED.
FxMulIntSC() Multiplies a FIXED number by an $32, returning the FIXED product. No overflow
detection.
FxMullntTolnt() Multiplies a FIXED number by an $32, producing an rounded S$32 product.
FxMullntTolntSC() Multiplies a FIXED number by an $32, returning a rounded S32 product. No overflow
detection. :
Division
FxDiv() Divides two FIXED numbers, producing a FIXED quotient.
ExDivSC() Divides two FIXED numbers, returning a FIXED quotient. No overflow detection.
ExDivlnts() Divides two 32-bit signed integers, producing a FIXED quotient.
FxDivIntsSC() Divides two FIXED numbers, returning a FIXED quotient. No overflow detection.
FxDivIntTolnt() Divides an §32 by a FIXED, producing a rounded S32 quotient.
FxDivIntTolntSC() Divides an $32 by a FIXED, producing a rounded S32 quotient. No overflow detection.
Trigonometric Functions
FxSin() Returns the sine of an angle specified as an integer degree.
FxCos() Returns the cosine of an angle specified as an integer degree.
FxTan() Returns the tangent of an angle specified in as iﬁteger degree.
FxSinFx() Returns the sine of an angle specified as a FIXED degree.
FxCosFx() Returns the cosine of an angle specified as a FIXED degtee.
FxTanFx() Returns the tangent of an angle specified as a FIXED degree.
FxArcTanInt() Returns an arctangent value as a FIXED angle.
FxArcTanFx() Returns an arctangent value as a FIXED angle.

continued

CHAPTER 76 / MATH RUN-TIME LIBRARY 117
Programmatic Interface

Table 76-1 {continued)

Function Description

Miscellaneous Functions
FxCmp() Compares two FIXED. |
FxRoundTolnt() Rounds a FIXED number to a 32-bit signed integer.
FxRound ToIntSC() Rounds a FIXED number to a 16-bit signed integer without overflow detection.
FxNegate() Negate a FIXED.
FxAbs() Takes the absolute value of a FIXED.
FxChop() Returns the 16-bit signed integer part of a FIXED.
FxChopSC Returns the 16-bit signed integer part of a FIXED. No overflow detection.
FxFraction() Returns the 16-bit fractional part of the absolute value a FIXED.
FxMakeFixed() Make a FIXED with an S16 (integer) and a U116 (fraction).
FxIntT'oFx() Convert a 16-bit signed integer into a FIXED.
FxBinToStr() Converts a FIXED format value into an ASCII string in decimal.
FxStrToBin() Converts a null-terminated ASCII string to a FIXED.

8 / SYSTEM SERVICES

PENPOINT ARCHITECTURAL REFERENCE / VoL Il

Utility Classes

PENPOINT ARCHITECTURAL REFERENCE / VOI. i

PART 9 / UTILITY CLASSES

¥ Chapter 77 / Introduction
Overview

Features

Organization of This Part

Other Sources of Information

¥ Chapter 78 / The List Class

List Concepts

Using List Messages
Creating Lists
Positioning Within a List

Adding, Removing, Getting, and
Replacing Items

Counting Items
Removing All Items
Enumerating Items

Destroying Lists
7 Chapter 79 / Class Stream

Overview

Creating a Stream Object

Reading and Writing Streams
Reading and Writing with a Timeout
Setting the Current Byte Position
Flushing the Stream

Examples

771
77.2
77.3
77 .4

78.1
78.2
78.3
78.4

78.5
78.6
78.7
78.8
78.9

79.1
79.2
79.3
79.4
79.5
79.6
797

¥ Chapter 80 / The Browser Class

Browser Concepts
Browsers and Tables of Contents
Integrating a Browser into
Your Application

Using clsBrowser
Creating a Browser Object
Getting the Current Selection
Setting the Current Selection
Making File System Changes
Refreshing the Browser Data
Changing Information Displayed
Changing the Sort Order
Expanding and Collapsing Sections
Reading and Writing the Browser State
Getting and Setting Browser Metrics
Changing the Browser Client
Navigating With the Browser
Getting the Internal Display Window

80.1
80.1.1

80.1.2

80.2
80.2.1
80.2.2
80.2.3
80.2.4
80.2.5
80.2.6
80.2.7
80.2.8
80.2.9
80.2.10
80.2.11
80.2.12
80.2.13

123

123
124
125
125

127

127
128
129
129

129
130
130
130
131

133

133
134
134
134
135
136
136

137

137
137

138

138
140
140
141
141
142
142
142
143
143
143
144
144
144

Browser Notification Messages
The Selection Changed
Bookmark Check Box Changed

Menu Messages
User Columns

¥ Chapter 81 / File Import
and Export

Concepts
Import Overview
Export Overview
Application Responsibilities
Handling the clsImport Messages
Responding to msgimportQuery
Responding to msglmport
Handling the clsExport Messages
How Export Happens
Responding to msgExportGetFormats
Responding to msgExportName
Responding to msgExport

7 Chapter 82 / The Selection
Manager

Concepts
The Selection Manager
Selection Owners
Preserving the Selection
Selection Transitions

Determining What is Selected
Classes that Handle Selection
The Selection Class Messages
Messages from Clients to the
SelectionManager
Setting the Selection Owner
Handling msgSellsSelected

Messages Sent to Selection Owners
Handling msgSelYield

Handling msgSelDemote and
msgSelPromote

Handling msgSelDelete

Handling msgSelOptions and
msgSelOptionTagOK

Beginning Move and Copy Operations
clsEmbeddedWin Handles Selection
Messages

Messages Passed to the Selection Manager
Finding the Selection Owners
Setting the Selection Owner

Observer Notification

80.3
80.3.1
80.3.2
80.4

80.5

81.1

81.1.1
81.1.2
81.1.3
81.2

81.2.1
81.2.2

81.3

81.3.1
81.3.2
81.3.3
81.3.4

82.1
82.1.1
82.1.2
82.1.3
82.1.4
82.2
82.3
82.4

82.5
82.5.1
82.5.2
82.6
82.6.1

82.6.2
82.6.3

82.6.4
82.6.5

82.6.6

82.7
82.7.1
82.7.2

82.8

145
145
145
145

145

147

147
148
148
150
150
150
151
152
152
152
153
154

155

155
155
156
156
157
157
157

157

158
159
159
159
160

160
160

160
160

161

161
161
162

163

PENPOINT ARCHITECTURAL REFERENCE / VOL Il

PART 9 / UTILITY CLASSES

7 Chapter 83 / Transfer Class 165 ¥ Chapter 86 / Search and Replace 195

Concepts 83.1 165 Concepts 86.1 195
General Scenario 83.1.1 166 Writing a Class That Can Be Searched 862 196
Tags for Data Transfer Types 83.1.2 166 Search and Replace Protocol 86.2.1 196

Transfer Protocols 83.2 167 Creating a Mark 86.22 196
One-Shot Transfers 83.2.1 167 Setting the Initial Search Position 86.23 196
Stream Transfers 83.2.2 168 Getting the Next Group 86.2.4 197
Client-Defined Protocols 83.23 170 Passing the Found Characters 86.2.5 197

The Transfer Functions and Messages 83.3 170 Searching the Text 8626 197

Establishing a Transfer Type 834 171 nghllghung Tex 8627 198
Requesting Transfer Types 83.4.1 172 Replacing Characters 8628 198
Listing Transfer Types 8342 172 Classes that Respond to Search Messages 86.3 198
Adding a Transfer Type to a List 83.43 172 The Search and Replace Messages 86.4 198
Searching a Transfer Type List 83.44 173

Performing One-Shot Transfers 835 173 7 Chapter 87 / Undo 199
Fixed-Length Buffer Transfers 83.5.1 174 Concepts 87.1 199
Variable-Length Buffer Transfers 83.52 174 The General Strategy 87.1.1 200
ASCII Metrics Transfers 83.53 175 Transaction Data 87.1.2 201
Replying to One-Shot Transfers 83.54 176 The Undo Messages 872 202

Performing Stream Transfers v 836 176 Using the Undo Messages 873 202
Creating the Receiver’s Stream 83.6.1 176 Beginning a Transaction 8731 202
Creating the Sender’s Stream 83.62 177 Adding Items to a Transaction 87.3.2 203
Frecing the Stream 83.63 177 Ending a Transaction 87.3.3 204
Accessing the Stream’s Auxiliary Data 83.6.4 177 Aborting a Transaction 87.34 204
Connecting a Stream to a Producer 83.6.5 178 Getting Transaction Metrics 87.3.5 205
Initializing a Stream 83.6.6 178 Changing the Size of the

Transaction Histo 87.3.6 205

¥ Chapter 84 / Help 179 Undoing a Transagion : 87.3.7 206

Help Concepts 84.1 179 Handling msgUndoltem 87.3.8 206
The Help Notebook 84.1.1 179 Handling msgUndoFreeltem 87.3.9 206
Quick Help Concepts 84.1.2 181 .

Defining Quick Help Resources 842 183 7 Chapter 88 / Byte Buffer Objects 207
Defining the Quick Help String Array 84.2.1 183 Concepts 88.1 207
Storing the Resource ID in a Gesture Using the Byte Buffer Messages 88.2 208
Window 84.2.2 186 Creating a Byte Buffer Object 88.2.1 208

Advanced Topics 843 187 Getting the Byte Buffer Data 88.2.2 208
Quick Help Message Summary 84.3.1 187 Resetting a Byte Buffer Object 88.2.3 208
Using Quick Help Messages 8432 187 Notification of Observers 88.2.4 209
Using the PenPoint Gesture Font 8433 188

” Chapter 89 / String Objecis 211

» Chapter 85 / The Busy Manager 195 Goncepts 01 211

Using theBusyManager 85.1 193 Using the String Object Messages 892 212
Placing the Busy Display 85.1.1 193 Creating a String Object 89.2.1 212

The Busy Clock Delay and Reference Count 852 194 Getting the String Object 89.2.2 212

Resetting a String Object 89.23 212

Notification of Observers 89.2.4 212

PENPOINT ARCHITECTURAL REFERENCE / VoL I1i

PART 9 / UTILITY CI.ASSES

¥ Chapter 90 / Table Class

A Distributed DLL

Table Concepts
Describing a Table
Table Data Files
Beginning Table Access
Positioning in Tables
Observing Tables

Shared Tables
Ownership
Access to the Table Object

Concurrency
Using Tables in a Database
Using Table Messages
Defining a Table
Creating a Table Object
Observing Tables
Start Access
Using Semaphores
Adding Rows to a Table
Setting Data
Getting Data
Deleting a Row
Searching a Table

Getting Information About a Table
Finding a Column Number

Converting a Row Number to a
Row Position

Getting the Number of Columns
in a Table

Gertting the Description of a Column
Getting the Entire Table Description
Getting the Number of Rows
Getting the Length of a Row
Getting a Table’s State

Ending Access
Freeing a Table

¥ Chapter 91 / The NotePaper
Component

The clsNotePaper View

NotePaper Metrics

NotePaper Messages

NotePaper Data

NotePaper Data Items

90.1

90.2

90.2.1
90.2.2
90.2.3
90.2.4
90.2.5

90.3

90.3.1
90.3.2
90.3.3

90.4
90.5
90.6
90.7
90.8
90.9
90.10
90.11
90.12
90.13
90.14
90.15

90.16
90.16.1

90.16.2

90.16.3
90.16.4
90.16.5
90.16.6
90.16.7
90.16.8

90.17
90.18

91.1
91.2
91.3
91.4
9ILS5

213

213

213
213
214
214
215
215

215
216
216
216

217
217
218
220
220
221
222
222
223
223
224
224

226
226

226

227
227
227
227
227
227

228
228

229

229
230
231
232
234

¥ List of Figures
81-1 Export Dialog
84-1 A Quick Help Window

7 List of Tables

78-1 clsList Messages

79-1 clsStream Messages

80-1 clsBrowser Messages

80-2 Browser Menu Messages
81-1 clsImport Messages

81-2 clsExport Messages

82-1 clsSelection Messages

83-1 clsXfer Transfer Types
83-2 clsXfer Functions

83-3 clsXferStream Messages
83-4 Transfer Buffer Types
84-1 clsQuickHelp Messages
84-2 PenPoint Gesture Font
86-1 Search and Replace Messages
87-1 clsUndo Messages

88-1 clsByteBuf Messages

89-1 clsString Messages

90-1 clsTable Messages

90-2 Table Column Data Types
90-3 Table Boolean Operators
90-4 Table Information Messages
91-1 clsNotePaper Messages
91-2 cIsNPData Messages

91-3 cIsNPItem Messages

P List of Examples

84-1 Defining a Quick Help Resource
90-1 Creating a Table

90-2 Beginning Access to a Table
90-3 Using Table Semaphores

149
186

128
133
138
145
150
152
158
166
170
171
174
187
188
198
202

- 208

212
217
219
225
226
231
233
234

184
221
221
222

PENPOINT ARCHITECTURAL REFERENCE / VOL -

PART 9 / UTILITY CLASSES

Chapter 77 / Introduction

The utility classes provide services to applications and other classes. Many of the
classes documented here are subclassed to implement special features. The
following classes are included in this part:

¢ The list class.

¢ The stream class.

¢ The file system browser.

¢ The import and export classes.

¢ The selection manager.

The transfer class and protocol.

¢ The Quick Help class.

¢ The busy manager.

@ The search and replace class and protocol.
¢ The undo manager.

¢ The byte buffer and string storage classes.
¢ The table component.

¢ The system component.

¢ The NotePaper component.

Overview 77.

There are various funtions which many objects in object-oriented systems have a
use for, such as:

sk

¢ Maintaining a list of items or table of data.
® Accessing a stream device.
¢ Browsing a directory or table of contents.

The PenPoint™ operating system supplies basic classes for each of these toolkit
functions. They are each like a function library in ordinary procedural
programming. The difference is that not only can your objects employ these utility
objects, they can actually bea list, stream, or browser, by inheriting from them. If
you look at the GO class diagram you will notice many sophisticated classes which
inherit from these utility classes.

124 PENPOINT ARCHITECTURAL REFERENCE
: Part 9 / Utility Classes

» Fealures , » 77.2

¢ clsList provides a fundamental set of tools for creating and managing a list of
32-bit values. It is no coincidence that UIDs and pointers are also 32-bits
long. You can use these objects to store lists of UIDs or pointers to larger
structures and you can pass these list objects to other objects.

¢ clsStream provides the basic messages used to communicate with a stream
device. Many other classes descend from clsStream, such as clsFileSystem
(the File System) and clsSio (the Serial Port class).

¢ The browser allows you to create a browser window or a table of contents on
screen so that the user can manipulate the files and directories or documents
and sections.

¢ File import and export uses messages from the browser to import files as
PenPoint documents and to export PenPoint documents as files.

¢ The selection manager provides a central manager that keeps track of the
selection owner. The selection manager notifies observers when the selection
changes.

¢ The transfer class provides the messages and functions that implement the
PenPoint operating system transfer protocol, which objects can use to
exchange data.

¢ The Quick Help API provides a simple way to provide help to users. When
the user makes a question mark gesture on a window, the Quick Help man-
ager locates the Quick Help resources associated with that window and dis-
plays the resources on screen.

¢ The busy manager allows applications to inform the user when a
time-consuming operation is taking place, thereby reassuring the user that
the machine is still running.

¢ The search and replace API provides the protocol and traversal driver to
search and replace text strings in embedded objects.

¢ The undo manager enables applications to respond to the Undo command
to undo user interface actions.

¢ clsByteBuf and clsString implement simple data objects which file byte
arrays and null-terminated strings.

¢ clsTable provides a general-purpose table component using a row and
column metaphor to implement random and sequential access to data in

a file.

¢ csNotePaper, clsNPData, and cIsNPItem together provide most of the
function necessary for a small note-taking application, including a generic
data item protocol that allows arbitrary items in the notes.

CHAPTER 77 / INTRODUCTION 125
Other Sources of Information

P Organization of This Part 77.3
This part is organized into 15 chapters:
¢ Chapter 77, this chapter, provides an introduction to the utility classes.
Each of the following chapters describes one utility class:

¢ Chapter 78, The List Class, describes the list class and how you use it to
maintain lists.

¢ Chapter 79, Class Stream, describes the stream I/O subsystem.
¢ Chapter 80, The Browser Class, describes the API for the file browser.

¢ Chapter 81, File Import and Export, describes the classes that you use to
import files as PenPoint documents and to export PenPoint documents as

files.

¢ Chapter 82, The Selection Manager, describes the API to the manager that
controls selection ownership.

¢ Chapter 83, Transfer Class, describes the generalized data transfer mechanism.
¢ Chapter 84, Help, describes the Help notebook and the Quick Help AP

¢ Chapter 85, The Busy Manager, describes the interface that you use to
indicate to the user that the machine is busy.

¢ Chapter 86, Search and Replace, describes the messages used to search and
replace text in applications.

¢ Chapter 87, Undo, describes how to use the undo manager so that your
application can respond to Undo commands.

¢ Chapter 88, Byte Buffer Objects, describes the byte buffer data object class.
¢ Chapter 89, String Objects, describes the string data object class.

¢ Chapter 90, Table Class, describes the concepts of the table component, how
to use a table, sharing tables, and table messages.

¢ Chapter 91, The NotePaper Component, describes the classes that make up
the NotePaper component, a very capable data/view system for note taking
applications.

Other Sources of Information 77.4

There are hundreds of classes in the PenPoint operating system, many of which
will also be of great use to you in developing your application. Other classes are
described throughout the PenPoint Architectural Reference.

Not everything in PenPoint is object-oriented. Utility functions in the PenPoint
C run-time library are documented in Part Eight: System Services, of this volume of
the PenPoint Architectural Reference.

Datasheets for all utility class messages of the utility classes are in the PenPoint API
Reference.

9 / UTILITY CLASSES

- PENPOINT ARCHITECTURAI. REFERENCE / VoL 11

PART 9 / UTILITY CLASSES

Chapter 78 / The List Class

clsList provides fundamental functions for maintaining lists of 4-byte values.
Typically, a list contains either the UIDs of related objects or pointers. This
chapter covers the following topics:

¢ The concepts of lists.

* How to use the list messages.

List Concepts 78.1

Alist is an object that holds a collection of items. Many components in the PenPoint™
operating system use lists for keeping track of objects and exchanging information.
Each item in the list is 32 bits in length; often this is a handle on (or a pointer to) a
larger item. Lists have no semaphores or other forms of access control mechanisms.

The messages defined by clsList allow you to:
¢ Create and destroy lists.
¢ Add items to and remove items from a list.
Replace items in a list.
¢ Find an item in a list.
¢ Count the items in a list.
¢ Remove all items from a list.
¢ Copy a part or all of the list to an array.

A simple picture of a list is a series of 4-byte cells that hold data. The list object
maintains an index to the current item (position). This index is used by most
messages that alter data in the list. To point to the beginning of the list, set
position to the value 0; to point to the end of the list, set position to the number
of members in the list (which you obtain through msgListNumItems).

128 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

msgListNotifyReplacement

msgListNotifyEmpty

7 Using List Messages | 78.2
Table 78-1 summarizes the clsList messages. clsList is a descendent of clsObject.
Table 78-1
cisList Messages
Message Jekes Description
Class Messages
msgNew) P_LIST_NEW Creates a new empty list.
msgNewDefaulcs P_LIST_NEW Initializes the LIST _NEW structure to default
values.
List Management Messages
msgListFree P_LIST_FREE Frees a list according to mode.
msgListAddItem LIST_ITEM Adds an item to the end of a list.
msgListAddItemAt P_LIST_ENTRY Adds an item to a list at pArgs->position.
msgListRemoveltem LIST_ITEM The list searches for pArgs in the list and removes
the item if found.
msgListRemoveltemAt P_LIST_ENTRY Removes the item in the list at pArgs->position.
msgListReplaceltem P_LIST_ENTRY Replaces the item in the list at pArgs->position.
msgListGetltem P_LIST_ENTRY Gets the item in the list at pArgs->position.
msgListFindltem P_LIST ENTRY Searches for pArgs->item in the list.
msgListNumltems P_UI16 Passes back the number of items in a list.
msgListRemoveltems no arguments Removes all of the items in a list.
msgListGetHeap P_OS_HEAP_ID Passes back the heap used by the list.
Enumeration Messages
msgListEnumItems P_LIST_ENUM Enumerates the items in a list.
msgListCall P_LIST NOTIFY Sends a message to each object in the list using
, ObjectCall().
msgListSend P_LIST_NOTIFY Sends a message to each object in the list using
ObjectSend().
msgListPost P_LIST_NOTIFY Sends a message to each object in the list using
ObjectPost().
Observer Notification Messages
msgListNotifyAddition P_LIST_NOTIFY_ADDITION Notifies observers that an item has been added to
the list.
msgListNotifyDeletion P_LIST_NOTIFY_DELETION Notifies observers that an item has been deleted

from the list.

P_LIST_NOTIFY_REPLACEMENT Notifies observers that an item in the list has

P_LIST NOTIFY_EMPTY

been replaced.

Notifies observers that a list is now empty.

CHAPTER 78 / THE LIST CLASS
Adding, Removing, Getting, and Replacing Items

7 Creating Lists 78.3

To create a new list, send msgNew to clsList. msgNew takes a LIST_NEW
structure that specifies:

fileMode A filing mode indicator, which specifies how the list object should
file items if it receives msgFile. There are three filing modes:
listFileItemsAsData File items as U32 data.
listFileItemsAsObjects Send filing messages to items.
listDoNotFileltems Don't file list items. Upon restore, the list will be
empty.

Positioning Within a List 78.4

Each list object maintains a current position indicator. You can change the
position by sending msgListFindItem to the list object. You must declare a
LIST_ENTRY structure and specify:

position The place to start the search.

item The item you are searching for.

msgListFindItem returns the first position where it found the item. If the item
was not found, msgListFindItem returns stsNoMatch.

Adding, Removing, Getting, and Replacing 7::
Items
When you have the position of an item, you can do any of the following:

¢ Add a new item at that position with msgListAddItemAt.

¢ Get the item at that position with msgListGetltem.

¢ Remove the item at that position with msgListRemoveltemAt.

¢ Replace the item at that position with msgListReplaceltem.

The four messages related with these tasks are similar. All messages require you to
declare a LIST_ENTRY structure, which contains:

position A position within the list.

item A 32-bit list item.
To add an item to the list, send msgListAddItemAt to the list. You specify the
item to add to the list and its position. The list manager adds the item at the

specified position (placing it before the item that is currently at that position). The
message returns the new item and its position.

To get an item from the list, send msgListGetltem to the list. You specify only a
position. The message returns the item and its position.

9 / UTILITY CLASSES

130 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

To remove an item from the list, send msgListRemoveltemAt to the list. You
specify only the position. The message returns the removed item and its position.
The heap memory where the item was stored is freed.

To replace an item in the list, send msgListReplaceltem to the list. You specify the
item to add to the list and its position. The message returns the old item and its
position.

You can read through a list by starting with the first item (give position the value
0), and increment position for each item.

If you specify a position that is beyond the end of the list, the message uses the last
item in the list; if you use a position beyond the end of the list in an add
operation, the item is added to the end of the list. A good way to access the end of
the list is to use the constant maxU16 for the position value.

Counting ltems 78.6

To get the number of items in a list, send msgListNumItems to the list. The
message takes only a pointer to a U16 value that will receive the count.

Removing All Items 78.7

Before you destroy a list, it is a good idea to remove all items from the list, thereby
removing them from the heap so that you don’t have to clear the items from the
heap by hand. To remove all items from the list, send msgListRemoveltems to the
list. The message does not require any arguments.

Enumerating ltems 78.8

To copy the list, or a portion of the list, to an array, send msgListEnumItems to
the list. When the message copies the items to the array, you can perform any
operation on the items, such as sorting the list or sending messages to UIDs. You
must declare a LIST_ENUM structure and specify:

max The size of the array, if you have allocated one.

count The number of items you are requesting.

pltems A pointer to an array, if you have allocated one.

pNext A pointer to a value that contains the current position in the list. Use

the value 0 to start at the beginning of the list.

You can either create the array yourself or you can specify a null pointer for
pltems, in which case msgListEnumItems will allocate an array for you. If you
create an array that is smaller than count, msgListEnumlItems will allocate a new
array that can contain count items.

msgListEnumItems uses count to indicate the number of items that it returned.

If msgListEnumItems allocated an array, it returns the size of the array in max
and the pointer to the new array in pItems. After each call to msgListEnumItems,
it is a good idea to make sure that the pointer sent to the message is the same as

CHAPTER 78 / THE LIST CLASS 131
Destroying Lists
the pointer returned. If the two are different, a new array was allocated. It is
important that you note this, because it is up to you to de-allocate the array.

If the list is long, or you can’t allocate a large amount of storage for your array, you
can read the list in chunks (by specifying a small count value). When the message
returns, pNext contains the index to the next item in the list. Usually pNext
points to the end of the list, but if count was less than the size of the list, pNext
points to count + 1.

P Destroying Lists 78.9

To free a list, send msgDestroy to the list object as usual. This frees the list data
structures but does not affect the items in the list.

If the items in the list are objects that you want to destroy along with the list
object, then use msgListFree. The message arguments are in a LIST_FREE structure
that contains:

key The object key for the list object.

mode A mode that specifies whether to free the items in the list or not.
There are two possible values for mode:
listFreeltemsAsData The items in the list should be treated like U32
data that doesn’t need freeing.
listFreeltemsAsObjects The items in the list should be freed as objects.
cIsList sends the items msgDestroy (with a nil key). All items in the list
must be object UIDs.

9 / UTILITY CLASSES

PENPOINT ARCHITECTURAL REFERENCE / VOL |11

PART 9 / UTILITY CLASSES

Chapter 79 / Class Stream

clsStream is an abstract superclass that defines messages for common stream
operations. A stream operation is one in which files or data items are treated as
a series of individual bytes.

clsStream inherits from clsObject. Many classes descend from clsStream. Structures
and \PENPOINT\SDK\INC\STREAM.H defines the structures and macros clsStream uses.

"Overview

781
clsStream is an abstract class; it does not implement the methods for its messages.
It is up to the individual subclasses to implement the methods.
Any class that subclasses clsStream must implement the “descendant responsibility”
messages listed in Table 79-1.
Table 79-1
cisStream Messages
Message Tokes Description
Class Messages
msgNewDefaults P_STREAM_NEW Initializes defaults for new stream object.
msgNew P_STREAM_NEW Creates a new stream object.
Descendant Responsibility Messages
msgStreamRead P_STREAM_READ WRITE Reads data from stream.
msgStreamWrite P_STREAM_READ_WRITE Writes data to stream.
msgStreamReadTimeOut P_STREAM_READ_WRITE_TIMEOUT Reads data from stream with timeout.

msgStreamWrite TimeOut

P_STREAM_READ_WRITE_TIMEOUT

Writes to the stream with timeout.

msgStreamFlush pNull The stream flushes any buffered data.
msgStreamSeek P_STREAM_SEEK Sets the stream’s current byte position.
msgStreamBlockSize P_STREAM_BLOCK_SIZE Passes back the most efficient write block

size for this stream. :

Functions
StdioStreamBind() OBJECT Returns a stdio file pointer bound to a stream
object.
StdioStreamUnbind() P_UNKNOWN (FILE *) Frees the stdio file handle bound to a stream
' object.

StdioStreamToObject() P_UNKNOWN (FILE *) Returns the stream object bound to a stdio file

pointer.

134 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

You can send these messages to any object whose class has implemented methods for
them. The most common stream object is a file handle; clsFileHandle is a subclass of
clsStream. For further discussion of the file system, see Part 7: File System.

Other stream objects are selection transfers, serial I/O, and the many kinds of
services (printers, Out boxes, etc.).

‘Creating a Stream Object 79.2

Before you can write or read a stream, you must create a stream object. To create a
stream object, send msgNewDefaults and msgNew to a clsStream subclass
(because clsStream is an abstract class, you should not create instances of
clsStream itsel f).

Reading and Writing Streams 79.3

To read or write stream data, send msgStreamRead or msgStreamWrite to a
stream object. Both messages require you to declare a STREAM_READ_WRITE
structure that specifies:

numBytes The number of bytes to read or write.

pReadBuffer A pointer to a buffer to receive the data, or containing data to
be written. On msgStreamRead, the buffer must hold at least numBytes
of data.

The STREAM_READ_WRITE structure passes back in count the number of bytes
read or written.

If the number of bytes read or written (count) equals the number of bytes
specified (numBytes), the messages return stsOK.

If you read the end of the stream and the number of bytes read is greater than
zero, msgStreamRead returns stsOK. If you read the end of the stream and the
number of bytes read is zero, msgStreamRead returns stsEndOfData. If you
specify zero for numBytes after you receive stsEndOfData, msgStreamRead
returns stsOK. ‘

Reading and Writing with a Timeout 79.4

The stream messages with timeouts are similar to the non-timeout messages.
msgStreamRead and msgStreamWrite return when a certain number of bytes
have been read or written (or when the end of the stream is reached). The timeout
stream messages (msgStreamReadTimeOut and msgStreamWriteTimeOut)
return when either of two conditions is met: :

A certain number of bytes have been read or written (or when the end of
" stream is reached).

® A specified amount of time elapses.

CHAPTER 79 / CLASS STREAM
Setting the Current Byte Position
To read or write stream with a timeout, send msgStreamRead TimeOut or
msgStreamWrite TimeOut to a stream object. Both messages take a pointer to
a STREAM_READ_WRITE_TIMEOUT structure that contains:

numBytes The number of bytes to read or write.

pBuf A pointer to a buffer to receive the data, or containing data to be
written. On msgStreamRead TimeOut, the buffer must hold at least
numBytes of data.

timeOut A timeout value in milliseconds.
If the message completes successfully, it returns stsOK and passes back the number

of bytes read or written in the count field of the STREAM_RFAD_WRITE_TIMEOUT
structure.

If you read to the end of the stream and the number of bytes read is less than
the number of bytes requested, msgStreamRead returns the warning status
stsTimeOutWithData.

If the timeout expires before numBytes bytes were read or written, the messages
return the warning status stsTimeOutWithData.

If the timeout expired and no data was read or written, the messages return the
error status stsEndOfData.

J” Setting the Current Byte Position 79.5

Some subclasses of clsStream can seek to a specific byte position in the stream.
This is true for file operations and some buffered operations, but is obviously not
possible when the stream originates from a serial port or a keyboard.

To get and set the current stream position, use the message msgStreamSeek. The
message takes a STREAM_SEEK structure that contains:

mode The starting position for the seek. This can be any one of the
following:
streamSeekBeginning Seek is relative to the beginning of the stream.
streamSeekEnd Seek is relative to the end of data.
streamSeekCurrent Seek is relative to the current position of the stream.

offset The offset in bytes. This offset is a signed value. Positive offsets move
the current byte position closer to the end of stream; negative offsets
move it closer to the beginning of the stream.

If you just want to find out the current byte position, specify 0 as the offset value,
relative to the current position.

If the subclass of clsStream does not support seeks, it should return
stsMessagelgnored. There is no way for a client to find out ahead of time whether
the stream supports seeks or not.

If msgStreamSeek completes successfully, it passes back a STREAM_SEEK structure
including the following fields:

135

9 / UTILITY CLASSES

136 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

curPos The current position in the stream, relative to the beginning.

oldPos The old position, relative to the beginning.

eof A BOOLFAN value that indicates whether the new position is at the end
of data.

The following example code fragment shows msgStreamSeek passing back the

current position:
STREAM SEEK ss;
OBJECT stream;
ss.offset = 0;

ss.mode = streamSeekCurrent;

status = ObjectCall (msgStreamSeek, stream, &ss);

Debugf ("Seek: 0ld Position: %1d, New Position: %1d %s",
ss.oldPos, ss.curPos, ss.eof ? "(EOF)" : "");

The following example code fragment shows msgStreamSeek setting the current
byte position to 80 bytes after the beginning of the stream:

STREAM SEEK ss;
OBJECT stream; // stream handle

ss.offset = 80;

ss.mode = streamSeekBeginning;

status = ObjectCall (msgStreamSeek, stream, é&ss);

Debugf ("Seek: 0ld Position: %1d, New Position: %1d %s",
ss.oldPos, ss.curPos, ss.eof ? "(EOF)" : "");

You can’t set the current byte position before the beginning of the stream or beyond
the end of data. If you seek from the current position and specify a byte offset that is
before the beginning of the stream, the new position is the beginning of the stream; if
the offset is after the end, the new position will be the end of stream. However, if you
specify seek relative to the beginning of the stream and pass a negative byte offset, or
you specify seek relative to the end of data and pass a positive byte offset,
msgStreamSeek returns stsBadParam.

7 Flushing the Stream 79.6

Occasionally you need to wait for a buffer to be written out before you can con-
tinue processing (or shut down an application). To flush the stream buffer, send
msgStreamFlush to the stream object. The message doesn’t take any arguments.

If the message succeeds in emptying the buffer, it returns stsOK. If the buffers do
not empty after a timeout period, the message returns stsFailed. When you
subclass clsStream, you must establish a timeout period.

7 Examples 79.7

All the sample programs which file use msgStreamWrite in response to msgSave to
save state, and use msgStreamRead in response to msgRestore to restore state. See the
source code under \PENPOINT\SDK\SAMPLE for simple examples of using these.

PENPOINT ARCHITECTURAL REFERENCE / VoL II

PART 9 / UTILITY CLASSES

Chapter 80 / The Browser Class

The browser class, clsBrowser, allows you to create a browser window in your
application. By making your application a client of a browser, the application
receives messages when the user taps on items in the browser. A browser is very
useful for file selection dialogs. Since the application hierarchy is part of the file
system hierarchy, a browser can also display the state of a notebook or section.
The Table of Contents of the Notebook and the Disks page of the Connections

notebook are examples of the use of browsers.

Browser Conceptis 80.1

A browser is a window that contains a list of files and directories on a particular
volume. As with the Disks page of the Connections notebook, which is docu-
mented in the manual Using PenPoint, the user can scroll the browser window.

If the user double taps on a directory, the directory expands to display its files

and directories; another double tap on the directory collapses it down to its name.

The user can select the criterion for sorting files and directories. The user can also
choose what information to show about files and directories.

clsBrowser allows your application to display and control a browser window, just
like the Connections notebook. You can send commands to the browser to change
the sort order, to display certain information, to go to or bring to the selection, to
set the selection to a particular file system node, and so on.

Additionally, if you application is a client of a browser window, it receives
notification messages when the user makes a selection, turns off the selection, or

taps on a bookmark check box.

clsBrowser inherits from clsScrollWin, a UT Toolkit class that supports scrolling.
You insert a browser window object into your application just like you would
insert a scrollwin. The object that displays the browser contents is actually the
client window inside the scrollwin. Usually you don’t have to do anything to this
“hidden” object; however if you need to modify it, you can get its UID by sending
msgBrowserGetBrowWin to the browser object.

"> Browsers and Tables of Contents 80.1.1

A table of contents is a specialized form of a browser window. While a browser
shows you the files and directories in a particular volume, a table of contents
displays the sections and documents in a notebook.

When you create an instance of clsBrowser, you can specify whether you want to
create a browser or a table of contents (in the tocView field of the BROWSER_NEW
structure).

138 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

If you create a table of contents, the window displays a list of sections and
documents, their page number, and the bookmark checkbox. You can choose
whether to sort by name or by page number, and whether or not to display the
bookmark check box or the icon for the application.

If you create a browser, whether a standard browser or a table of contents, the window
displays a list of files and directories (the table of contents variation of clsBrowser
interprets them as PenPoint documents). You can choose to sort the list by name,

size, or date and whether or not to display the size, date, type, or icon.

% Integrating a Browser into Your Application 80.1.2

If you incorporate a browser into your application, you should consider the user
interface guidelines for dialog boxes.

You can give your browser a menu bar similar to the menu on the Disks page of
the Connections notebook by creating a menu bar (an instance of clsMenu) with
commands such as Expand and Collapse, and adding the menu bar to your frame.
If the browser is a floating frame, to follow the user interface guidelines you
should create a command bar (an instance of clsCommandBar), to provide Apply
and Apply & Close buttons, and a close corner for your browser dialog.

For more information about clsMenu and clsCommandBar, see Part 4: Ul
Toolkiz. For more information about user interface guidelines, see the PenPoint
User Interface Design Reference manual.

Using clsBrowser 80.2

Table 80-1 lists the messages clsBrowser handles.

Table 80-1
clsBrowser Messages
Message Takes Description
Class Messages
msgNewDefaults P_BROWSER_NEW Initializes the BROWSER_NEW structure to
default values.
msgNew P_BROWSER_NEW Creates a new browser object.
instance Messoges
msgBrowserCreateDir nothing Creates a directory at the selection.
msgBrowserByName nothing Sorts by name order.
msgBrowserByType nothing Sorts by type order.
msgBrowserBySize nothing Sorts by size order.
msgBrowserByDate nothing Sorts by date order.
msgBrowserExpand nothing or P_FS_FLAT_LOCATOR Expands the section or directory that the argument

identifies. If the argument is pNull, expands all
sections or directories.

msgBrowserCollapse nothing or P_FS_FLAT_LOCATOR Collapses the section or directory that the argument
identifies. If the argument is pNull, collapses all
sections or directories.
continued

CHAPTER 80 / THE BROWSER CLASS 139
Using clsBrowser

Table 80-1 {continued)

Message

msgBrowserRefresh

msgBrowserDelete

msgBrowserRename

msgBrowserConfirmDelete

msgBrowserExport
msgBrowserByPage

msgBrowserWriteState
msgBrowserReadState
msgBrowserSetSaveFile

msgBrowserGetMetrics

msgBrowserSetMetrics

msgBrowserUserColumnGetState P_BROWSER_USER_COLUMN
P_BROWSER_USER_COLUMN

msgBrowserUserColumnSetState

Takes
nothing

nothing or P_FS_FLAT TLOCATOR

nothing or P_FS_FLAT_LOCATOR

BOOLEAN

nothing
nothing

nothing
nothing
P_FS_LOCATOR

P_BROWSER_METRICS
P_BROWSER_METRICS

Description

Refreshes the disk image the browser is displaying.

Deletes selection if arg is pNull, otherwise deletes
the file that the argument identifies.

Renames the selection if argument is pNull.
Otherwise, renames the file that the argument
identifies.

Sets a flag whether to confirm deletions within
a browser (OBSOLETE).

Puts the selection into export mode (OBSOLETE).
Sorts by page number.

Wrrites the current browser expanded/collapsed
state to a file.

Reads the browser expanded/collapsed state from a

disk file.

Sets the file that the browser will save open/close
state to.

Gets browser metrics.
Sets browser metrics.
Does nothing.

Sets the user column states in the browser for
columns that are marked changed.

msgBrowserUserColumnStateChanged P_BROWSER_USER_COLUMN Notifies subclass when user checks a user

msgBrowserUserColumnQueryState

msgBrowserShowlcon
msgBrowserShowButton
msgBrowserShowSize
msgBrowserShowDate
msgBrowserShowI'ype
msgBrowserShowBookmark
msgBrowserShowHeader
msgBrowserGoto

msgBrowserGotoBringto

msgBrowserUndo

msgBrowserSetSelection

msgBrowserSetClient
msgBrowserGetClient
msgBrowserGetBaseFlatLocator
msgBrowserSelectionPath

msgBrowserSelection

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
P_BROWSER_GOTO

nothing
P_FS_FLAT_LOCATOR

OBJECT

P_OBJECT
P_FS_FLAT_LOCATOR
P_BROWSER_PATH
P_FS_FLAT LOCATOR

column checkbox.

P_BROWSER_USER_COLUMN Gets the user column state from subclass.

Controls icon field display.

Controls button field display.

Controls size field display.

Controls date field display.

Controls type field display.

Controls bookmark field display.

Controls column header display.

Takes true to goto, false to bring to the selection.
Takes P_BROWSER_GOTO. If pFlat is pNull,

applies to selection.
Does nothing yet.

Causes browser/TOC to select and display the given
file system item.

Sets the target of the browser client messages.

Passes back the target of the browser client messages.
Passes back the directory the browser is looking at.
Passes back the full path of the selection.

Passes back the flat locator of the selection.

continued

9 / UTILITY CLASSES

140 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Table 80-1 {continued)

Message Takes Description

msgBrowserSelectionUUID P_UUID Passes back the UUID of the selection.

msgBrowserSelectionDir P_FS_FLAT LOCATOR Passes back the flat locator of the directory the
selection is in.

msgBrowserSelectionName P_CHAR Returns the name of the selection.

msgBrowserSelectionOn nothing Notifies client when a selection is made inside
the browser.

msgBrowserSelectionOff nothing Notifies client when selection is yielded by the
browser.

msgBrowserBookmark P_BROWSER_BOOKMARK Notifies client that the bookmark specified by

: locator has toggled.

msgBrowserCreateDoc - P_BROWSER_CREATE_DOC Creates a directory.

msgBrowserGetBrowWin P_OBJECT Passes back the browser’s internal display window.

msgBrowserGesture P_BROWSER_GESTURE Sends to self gesture and which file it landed on.

msgBrowserGet ThisApp P_OBJECT Returns the application associated with this
instance of clsBrowser. ;

msgBrowserSetThisApp OBJECT Sets the application associated with this instance
of clsBrowser.

P Creating a Browser Object 80.2.1

To create a browser window, send msgNewDefaults and msgNew to clsBrowser.
The messages take a BROWSER_NEW structure that contains:

base A locator that indicates the starting point in the file system to browse.

client The name of the client that is to receive the browser messages.
Usually client contains self.

tocView A BOOLEAN value that indicates whether the browser should take

the appearance of a browser or a table of contents. If tocView is true, the
browser object is a table of contents.

P Getting the Current Selection 80.2.2

You can use browser messages to get a file system path to the current browser
selection.

¢ To get a flat locator for the current selection, send msgBrowserSelection to
the browser object.

¢ To get the full path of the directory that contains the current selection, send
msgBrowserSelectionDir to the browser object.

The following three messages all take a pointer to a FS_FIAT_LOCATOR structure,
which they use to return the path or name of current selection. Flat locators are

explained in Part 7: File System.

¢ To get the full path of the selection, send msgBrowserSelectionPath to the
browser object. This takes a pointer to a BROWSER_PATH structure.

CHAPTER 80 / THE BROWSER CLASS 141
Using clsBrowser

¢ To get the name of the selection, send msgBrowserSelectionName to the
browser object. This takes a pointer to a string.

¢ To get the UUID of the selection, send msgBrowserSelectionUUID to the
browser object. This takes a pointer to a UUID.

P> Setting the Current Selection 80.2.3
To specify which file system object should be displayed by the browser, send

msgBrowserSetSelection to the browser object. The message takes a pointer to a
FS_FIAT_LOCATOR structure that contains the path to the file system object.

When the message completes, the browser display scrolls and displays the specified
file system object.

% Making File System Changes 80.2.4
You can use browser messages to create, rename, and delete directories or files.

¢ To create a new directory, send msgBrowserCreateDir to the browser object.
msgBrowserCreateDir creates a directory in the directory that contains the
current selection. The location of the new directory is unimportant, because
it will be positioned according to the current sort order.

¢ To create a new document, send msgBrowserCreateDoc to the browser
object.

¢ To rename a directory or file, send msgBrowserRename to the browser
object. msgBrowserRename brings up a dialog box to rename the current
selection or a file system node specified by a flat locator.

¢ To delete a directory or file, send msgBrowserDelete to the browser object.
msgBrowserDelete deletes the current selection or a file system node
specified by a flat locator.

msgBrowserCreateDir takes no arguments. msgBrowserRename,
msgBrowserExport, and msgBrowserDelete take one argument; if that argument
is null, the message affects the current selection; if the argument contains a pointer
to a FS_FLAT_LOCATOR structure, the message affects the file system node
indicated by the flat locator.

msgBrowserCreateDoc takes a pointer to a BROWSER_CREATE_DOC structure
that contains:

docClass The class of the document to create.

pName A pointer to a string that contains the name of the new document.

xy An XY32 value that specifies where to place the new document. This
value is meaningful only when atSelection is false. clsBrowser will create
the new document as close to the xy position as possible.

atSelection A BOOLEAN value that specifies whether to create the new
document immediately after the current selection or at the location

9 / UTILITY CLASSES

142 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

specified by xy. If atSelection is true, clsBrowser creates the new
document at the current selection. If false, uses the value in xy.

% Refreshing the Browser Data 80.2.5

The browser doesn’t monitor the file system for changes. Occasionally you might
need to tell the browser to update its information about the state of the file
system. To do this, send msgBrowserRefresh to the browser object.

The message doesn’t take any arguments. When the message completes
successfully, the browser reflects the new file system state.

% Changing Information Displayed 80.2.6

clsBrowser defines messages that allow you to select the information displayed by
the browser. You can elect to show or not show information by sending these
messages to the browser object:

¢ Send msgBrowserShowlcon to display the icon for the file or section.
¢ Send msgBrowserShowSize to display the size of the file or section.

¢ Send msgBrowserShowDate to display the date that the file or section was
last modified.

¢ Send msgBrowserShowBookmark to display the bookmark check box for

the file or section. This message applys only to table of contents windows.
¢ Send msgBrowserShowType to display the type of file.

¢ Send msgBrowserShowHeader to display the column heads at the top of the
browser display.

All of these messages take a BOOLEAN value. If the value is true, the browser
displays the information; if the value is false, the browser doesn’t display the
information.

% Changing the Sort Order 80.2.7

You can change the sort order of the information displayed by the browser by
sending these messages to the browser object:

¢ Send msgBrowserByName to sort the information by name.
¢ Send msgBrowserBySize to sort the information by size.

¢ Send msgBrowserByDate to sort the information by date.
¢ Send msgBrowserByType to sort the information by type.

¢ Send msgBrowserByPage to sort a table of contents by page number. (If the
browser window displays a table of contents.)

These messages take no arguments.

CHAPTER 80 / THE BROWSER CLASS 143
Using clsBrowser

% Expanding and Collapsing Sections 80.2.8

When the user double taps on the name of an unexpanded section, the section
expands to reveal the documents and sections contained in that section. If the user
double taps on the name of an expanded section, the section collapses down to
just its name.

You can programmatically expand and collapse the current selection or a specific
file system node by sending msgBrowserExpand and msgBrowserCollapse to the
browser object.

Both messages take a single argument. If the argument is null, these messages
expand and collapse the current selection. If the argument contains a pointer to a
FS_FIAT_LOCATOR structure, the message expands or collapses the file system
node specified by the path.

By specifying a path, you can expand or collapse a file system node, whether or
not that object is currently displayed. To scroll to that path, you must use
msgBrowserSetSelection.

P» Reading and Writing the Browser State 80.2.9

The browser state specifies which directories or sections are expanded in the
browser window. When the user turns to another page, you can save the browser
state. Then, when the user turns back to the browser, you can display it in the
same state as when the user turned away.

For example, the user might expand a section (to see its documents) and can turn
to one of those documents. When the user turns back to the table of contents, the
notebook restores the browser state so that the same section is expanded.

To save the browser state, send msgBrowserWriteState to the browser object. To
restore the browser state, send msgBrowserReadState to the browser object.
Neither message takes any arguments.

Usually the read and write state messages save the state in a file named

BROWSTAT (in the process directory). However, you can change the file by
sending msgBrowserSetSaveFile to the browser object. The message takes a
pointer to a file system locator that contains the path to the new browser state file.

¥ Getting and Setting Browser Metrics 80.2.10

The browser metrics save the type of information being displayed by a browser
window. That is, whether the browser window includes the icon, size, date, type,

or bookmark check box in its display.

You can set these values by sending msgBrowserSetMetrics or one of the
msgBrowserShow... messages to the browser object.

9 / UTILITY CLASSES

144 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

To get the metrics, send msgBrowserGetMetrics to the browser object. Both
msgBrowserGetMetrics and msgBrowserSetMetrics take a BROWSER_METRICS
structure that specifies or returns:
showlcon Whether to display the icon.
showType Whether to display the item type.
showSize Whether to display the size.
showDate Whether to display the date.
showBookmark Whether to display the bookmark check box.
showHeader Whether to display the browser column heads.
computeRecursive Whether to compute recursive size for directories.
showlconButton Whether to display page turn buttons instead of icons (for
TOC only).
sortBy A SORT_BY structure determining the field by which to sort items.
userColumn A subclass-definable array of BROWSER_COLUMN structures.
defaultColumn The default columns for the class.

The difference between sending msgBrowserShow... messages and setting the
metrics is that the messages are usually sent by an external UI, such as a browser
menu. If you subclass clsBrowser, you might want to intercept these messages.

’» Changing the Browser Client 80.2.11

You can change the client of the browser by sending msgBrowserSetClient to the
browser object. The only argument to the message is the UID of the new client.

When the message completes successfully, the browser window is left unchanged,
only the new client receives the browser messages.

’» Navigating with the Browser 80.2.12

Using a browser in TOC mode, the user can go to a particular document by
tapping on its page number or icon, or can float a particular document by double
tapping on its page number or icon.

You can do the same thing programmatically by sending msgBrowserGoto to the
browser object for a table of contents. The message only takes one argument, a
BOOLEAN value, which specifies whether the operation is a go-to or a bring-to. If
value is true, the notebook turns to the document currently selected. If the value is
false, the document currently selected is floated. '

If there is no current selection when msgBrowserGoto is sent, the message is ignored.

¥ Getting the Internal Display Window 80.2.13

Usually you don’t have to do anything to a browser’s internal display window;
clsBrowser creates the window and controls it. However if you need to access the
browser window, you can request its UID by sending msgBrowserGetBrowWin to the
browser object. The only argument to the message is a pointer to an OBJECT.

CHAPTER 80 / THE BROWSER CLASS
User Columns

When the message completes successfully it returns stsOK and passes back the
UID of the browser window.

7 Browser Notification Messages 80.3

The client of a browser object receives notification messages when the user
performs certain actions within the browser window. If you are a client of the
browser, you might need to respond to these messages.

% The Selection Changed 80.3.1

When the user makes a selection in the browser, it sends msgBrowserSelectionOn
to its client. The message doesn’t have any arguments, but you can always send
msgBrowserSelectionPath (or a related message) to the browser to find out what
was selected.

When the user selects something outside the browser (the browser no longer owns
the selection), the browser sends msgBrowserSelectionOff to its client.
This message has no arguments.

¥ Bookmark Check Box Changed 80.3.2

When the user taps the bookmark check box in the table of contents, the browser
sends msgBrowserBookmark to its client. The message takes a BROWSER_BOOKMARK
structure that contains a locator (loc). The locator indicates the file for which the

bookmark check box was set.

P Menu Messages 80.4

You can add a menu bar to your browser object. Table 80-2 lists the clsBrowser
messages that you are likely to associate with items on a menu or other user interface.

145

Table 80-2
Browser Menu Messages
Message Description
msgBrowserExpand Expands selection.
msgBrowserCollapse Collapses selection.
msgBrowserGolo Go to the selection.
msgBrowserCreateDir Pops up create dir dialog box.
msgBrowserRename Pops up rename dialog.
msgBrowserDelete Deletes selection. ‘
msgBrowserRefresh Renews file system data.
» User Columns 80.5

clsBrowser supports a column of text or checkboxes in addition to its usual
display contents. Subclasses of clsBrowser can control the appearance of the
column, the header above the column, and whether or not the checkboxes appear
next to sections or documents or both.

9 / UTILITY CLASSES

146 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

This optional user column is enabled by specifying metrics for it in the
userColumn field in BROWSER_METRICS. The subclass must respond to
msgBrowserUserColumnQueryState messages self-sent by the browser so that
clsBrowser can know whether to check the box or what text to display.

PENPOINT ARCHITECTURAL REFERENCE / VOL 1|1

PART 9 / UTILITY CLASSES

Chapter 81 / File Import and Export

File import and export are closely related to the browser. When the user selects a
file other than a PenPoint document (for example, a text file on a connected disk)
and copies or moves the file to the PenPoint computer, the PenPoint ™ operating
system prompts the user for the type of document to create from the file.
Similarly, when the user copies or moves a document from a PenPoint computer
to a connected volume, PenPoint prompts the user for the type of file to write.

This chapter covers the following topics:
¢ Export and import concepts.
¢ How to respond to import messages.

¢ How to respond to export messages.

Concepts 81.1

Most operating systems are designed so that the users run a single program and
open and close files of a specific type from that program. In PenPoint, the user
turns to a page that contains a particular document and the operating system finds
and runs the correct application.

This reversal of perspective requires some translation when moving files from
operating systems that have a program-data orientation to the PenPoint operating
system, which has a document-application orientation.

When the user moves a file from a traditional operating system to PenPoint, the
user must identify the application that will present the data. The browsers file
import mechanism presents the user with a list of available applications. When
the user chooses an application, the file import mechanism creates an instance of
the application and tells that instance to translate the data.

Similarly, when the user needs to give a document created under PenPoint to
someone who uses a different computer, the user must translate the document’s
instance data into a form that is understood by the other computer. The browser’s
file export mechanism presents the user with a choice of file format translators.

Import and export involve the use of the move or copy protocol and user interface
between two browsers:

¢ A disk viewer that presents the directory/file view of a foreign disk.
¢ A table of contents that presents the PenPoint document view.

The user simply drags an icon from one browser to another. The import and
export mechanisms prompt the user to select the appropriate file translation on

the fly.

148 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Import Overview : 81.1.1
P

When the user selects a file in a browser acting as a disk viewer and moves or copies This discussion will make more

the file to a location in the Table of Contents (TOC), the TOC browser examines the g611e¢ if you try import and

, . . X export yourself with a plain text
file’s appAttrClass file system attribute. If it exists, then the TOC browser creates an g5 and a MiniText documettt.
application instance of that application class in the application hierarchy and copies
the data. However, if the file does not have an appAttrClass attribute, then the TOC
browser assumes it isn’t a PenPoint document and needs to be imported. The user

must specify the type of document to use for displaying the data.
The TOC browser imports the file by:

1 Querying all installed application classes to see if they can import the file by
sending them msglmportQuery.

2 Ifan application responds affirmatively to the query, the browser adds it to a
list of applications that can import the file.

3 The browser displays the import dialog box to the user, listing all
applications that can import the document. The list will always contain at
least one application, the Placeholder application, that stores the data as a
stream of bytes. (If the user chooses the Placeholder application and later
turns to the imported document, the Placeholder will prompt the user to
choose an application with which to activate the document.)

4 The user selects an application and taps Move or Copy, depending on the
operation.

5 The browser creates a new instance of the application selected by the user.
The new document is at the location in the TOC where the user dragged the
file icon. ‘

6 The browser sends msglmport to the new document, telling it the file to
import.

7 The selected application class does whatever it has to do to translate the
chosen file’s data into its representation.

If everything succeeds, the user has created a new document in the TOC holding
the converted file contents.

’» Export Overview 81.1.2

The user exports a document to a file by copying or moving a document from a
TOC browser to a disk viewer. Typically, the user moves or copies a document
from the Notebook Table of Contents to a the disk viewer directory in the
Connections notebook. At this point clsApp takes over and performs the
following tasks:

1 Activates the selected document, if it isn’t currently active, by sending

msgAppMgrActivate to its class.

2 Sends msgExportGetFormats to the document to query the document for
the file formats that it can write.

149

CHAPTER 81 / FILE IMPORT AND EXPORT

Concepts

ject

10ns can use

its export format types and the UID of an ob

3 The application passes back

Usually this object is self, but applicati

that will translate the data

ill do the work
ing the export file

ject that w

this UID to identify a separate translator ob

ist

1

10n.

ialog box to the user,

1cat

clsApp presents the export d
formats provided by the appl

4

then taps the

le,

The user chooses a file format and name for the exported fi

Export button.

5

SISSVID ALITILN / 6

ination file and sends msgExport to the

.

6 The disk browser creates the dest

1vVES

ich format to write and also g

ion file.

translator. msgExport tells the translator wh
the translator the handle on the dest

1nat

-1

igure 81
Export D

F

ialog

.

.=

e R

o

-

=

-

150 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

% Application Responsibilities 81.1.3

The clsBrowser messages that lead to import and export episodes are not really impor-
tant to most application developers (although you can use them if you want to force
import or export to take place). The important thing is that all applications that im-
port or export files must respond to the messages defined by clsImport and clsExport.

clsImport and clsExport are abstract classes that define the messages used to
communicate information about importing and exporting files.

There are no instances of clsimport or clsExport.

Handling the clsimport Messages 81.2

The messages and defines for clsimport are defined in IMPORTH. Table 81-1 lists
the clsImport messages.

Table 81-1
cisimport Messages
Messoge Tokes Description ~
msgimportQuery P_IMPORT_QUERY Queries each app class to see if it is capable
of importing the file.
msglmport P_IMPORT_DOC Initiates the import procedure.
’» Responding to msgimportQuery 81.2.1

When the user drags an icon from a disk viewing browser to a TOC browser, the
TOC browser sends msgIlmportQuery to each installed application class.

msglmportQuery is sent to your application class, not to an instance of your
application. This means that to receive this message, your application class must set
the objClassMessage flag in its method table entry for msgImportQuery, as follows:

MSG_INFO myAppClassMethods [] = {

msgImportQuery, "MyImportQueryHandler", objClassMessage,
0
b
When your application class receives msglmportQuery, it should determine if it
can import the file. The message arguments for msglmportQuery are a pointer to
an IMPORT_QUERY structure that contains:

file An open file handle on the file. Your application class can use the file
handle to read data from the file to see if import would succeed. The
browser resets the file pointer before sending msgImportQuery to the
next application class.

fileName The file’s name.

fileType The files type, a file system attribute of the file. These file types are
defined in FILETYPE.H:
fileTypeUndefined Indicates that the file type is undefined. (This will
be the case for files from foreign operating systems which don’t use Pen-
Point file system attributes.)

% Responding to msgimport

CHAPTER 81 / FILE IMPORT AND EXPORT
Handling the clsimport Messages

fileTypeASCII Specifies that the file contains ASCII data; each line in
the file ends with a hard line break.
fileTypeASCIISoftLineBreaks Specifies that the file contains ASCII
data; however, hard line breaks in the file are treated as soft line breaks.
fileTypeRTF Specifies that the file contains Microsoft’s RTF (Rich Text
Format) data.
fileTypeTIFF Specifies that the file contains TIFF (Tagged Image File
Format) data.
fileTypePicSeg Specifies that the file contains data in GO Corporation’s
picture segment format.

canlmport Passed back, a BOOLEAN value specifying whether the
application can import the file format.

suitabilityRating Passed back, a value from 0 to 100 indicating how
suitable the file format is to the application. 0 indicates that the file is not

suitable to the application; 100 indicates that the file is very suitable to
the application; 50 is the average value.

Developers can register new file types with GO. If you have a special file type that
you want to register, please contact GO Developer Support for more information.

Your application class can check the file type, analyze the file name (for example,
the extension), and read the file contents to determine whether it can import the
file. Your application class should pass back an indication of whether it can import
the file in the canImport BOOLEAN field of the IMPORT_QUERY structure. If you
set this to true, the browser will add your application to the import dialog.

ps
woadh
o
N

“When the user chooses an application to import the file, the browser creates a
document of that application, starts it up, and sends msgImport to the document.
The message argument for msglmport points to an IMPORT_DOC structure
which contains:

file An open handle on the file.

fileName The file’s name.

fileType The file type, as described in the previous section.

sequence The sequence number of the destination.

destHandle The directory handle on the destination directory.
When your application receives msglmport, it should use the information in the

IMPORT_DOC structure to read the data from the file and attempt to translate it
into information that it can understand.

If your application can’t import the file contents, then it should return an error. If
clsApp gets an error from msglmport then it deletes the newly-created document.

9 / UTILITY CLASSES

152 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

If possible, it’s better to detect that import is impossible when your application
class receives msgImportQuery so that your application never shows up in the

import list. However, you may not discover that the file can’t be imported until
you try (for example, if the file is corrupt or otherwise unreadable).

‘Handling the cisExport Messages 81.3

The messages and defines for clsExport are defined in EXPORT.H. Table 81-2 lists
the clsExport messages. -

Table 81-2
clsExport Messages
Message Tekes Description -
msgExportGetFormats P_EXPORT_LIST Passes back the export format array from from the
‘ ‘ source of the export.
msgExport P_EXPORT_DOC Initiates export by the translator.
msgExportName P_EXPORT_FORMAT Passes back a possibly modified destination name

from the translator.

"> How Export Happens ' 81.3.1

The export protocol comes into play when the user moves or copies an icon from a
TOC browser to a disk viewer. Typically, the user moves or copies a document from the
Notebook Table of Contents to a disk viewer directory in the Connections notebook.

When the user releases the move or copy icon over a disk viewer, the disk viewer
asks the selection owner for supported transfer types: the TOC viewer supplies
clsExport as one of the data transfer types. This is how the disk viewer knows that
the copy is an export operation and not a simple copy operation to back up a
document onto disk.

This interaction with the selection and transfer protocols allows anything that can
be moved or copied to invoke export, although only selections from the TOC
currently support export.

The disk viewer sends the source of the copy msgExportGetFormats. The source of the
copy is the TOC browser, which does not know what export formats the document
supports. So the TOC browser returns stsExportActivateSource. This tells the disk
viewer to activate the source of the selection. The disk viewer sends msgAppMgrActivate
to the application class of the document that the user originally selected.

P> Responding to msgExportGetFormats 81.3.2

After activating the selected document, the disk viewer then sends msgExport-
GetFormats to the document. Your application is responsible for responding to
msgExportGetFormats with the file formats that it can write.

CHAPTER 81 / FILE IMPORT AND EXPORT
Handling the clsExport Messages

msgExportGetFormat’s message argument points to an EXPORT_LIST structure
that contains:

format A pointer to an array of EXPORT_FORMAT structures. You must
allocate this array from global memory. Fach EXPORT_FORMAT structure
describes one file format that your application can write.

numEntries The number of EXPORT_FORMAT structures in the array.
You should fill in each EXPORT_FORMAT structure with:

translator The UID of a translator that can convert the information from
the source document type to the export file type. Usually the translator
is self.

documentType The source document type. This field is meaningful only
when the translator field specifies a translator other than self. A translator
might be able to translate a number of different document types.

exportName A user-visible name for the export type.

exportType The type of file for the export destination. These file types are
defined in FILETYPE.H:

fileTypeUndefined Indicates that the file type is undefined. (This will
be the case for files from foreign operating systems which don’t use Pen-
Point file system attributes.)

fileTypeASCII Specifies that the file contains ASCII data; each line in
the file ends with a hard line break.

fileTypeASCIISoftLineBreaks Specifies that the file contains ASCII
data; however, hard line breaks in the file are treated as soft line breaks.
fileTypeRTF Specifies that the file contains RTF data.

fileTypeTIFF Specifies that the file contains TIFF data.

fileTypePicSeg Specifies that the file contains data in GO Corporation’s
Picture Segment format.

You can use the translator field to identify a separate translator object that will do
the work.

clsApp puts up an export dialog showing the export types (using the exportNames
in the EXPORT_FORMAT array).

"> Responding to msgExportName 81.3.3

‘When the user selects an export type, clsApp sends msgExportName to the
translator specified in the EXPORT_FORMAT structure. exportName contains
the name of the source document; the translator, if necessary, can pass back a
suggested destination file name in the same exportName field. For example, it
might append .TXT to the end. You can ignore this message. Regardless, the user
can write in a different name for the exported file.

153

9 / UTILITY CLASSES

154 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

The message argument for msgExportName is a pointer to an EXPORT_FORMAT
structure, described above.

’» Responding to msgExport 81.3.4

When the user selects a particular export format, clsApp sends msgExport to that
formar’s translator. The message argument for msgExport points to an
EXPORT_DOC structure that contains:

exportT'ype A tag that indicates the export type in the EXPORT_FORMAT
structure that the user selected.
source A locator for the source document.
destination An open file handle on the destination.
path The path to the destination document.
The translator should use this information to export the information in the
document into the file. It is the exporting application’s responsibility to clean up

any invalid file handles. If the export fails, this includes the destination file handle
provided by msgExport.

PARH'I' 9 / unurv cl.'"sszs

Chapter 82 / The Selection Manager

The selection manager provides a mechanism for keeping track of what process
owns the current selection, the data the user has selected for subsequent action
such as copying or deleting. Because the selection can be owned by many different
types of objects, the selection manager does not do any formatting.

The selection manager keeps track of the selection owner, even when the object
that contains the selection is not on screen.

clsSelection defines messages that allow objects to request ownership of the
selection. clsSelection can record the current selection owner before changing
ownership to another object.

An instance of clsSelection—theSelectionManager—keeps track of the current
selection owner and the preserved selection, if any. theSelectionManager is the
only instance of clsSelection.

Topics covered in this chapter:
¢ Selection concepts.
¢ Determining the selection.
¢ Existing PenPoint classes that handle the selection.
¢ Selection messages that operate on the selection.
Selection messages sent to selection owners.

¢ Selection messages passed to the selection manager.

Concepts 82.1

No more than one object can own the current selection at any one time. Objects
can request ownership of the selection. There doesn’t always have to be a selection.

If the user hasn’t selected anything, there is no selection owner.

%» The Selection Manager 82.1.1

The ownership of the selection is administered by theSelectionManager, the only
instance of clsSelection. theSelectionManager has the following responsibilities:

¢ It handles the transition between the current selection owner and the new
selection owner.

¢ It keeps track of the current selection owner.

¢ It sends messages to observers of theSelectionManager when selection
ownership changes.

156 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

The theSelectionManager is the only instance of the selection class, clsSelection,
which defines two categories of messages:

Messages that provide function for theSelectionManager.
Abstract messages for common operations performed by owners of the
selection. These abstract messages fall into two categories:

¢ Messages that an object or one of its ancestors must respond to (such
as “delete the selection” or “yield the selection”). If these messages
reach clsObject, it sends msgNotUnderstood.

¢ Messages that an object and its ancestors have the option of ignoring
(such as “make yourself the selection”). If these messages reach
clsObject, it returns stsIgnored.

You must always use ObjectCall() when you pass messages to theSelectionManager.

% Selection Owners 82.1.2

Just about any object can own the selection, so long as it handles the required
clsSelection messages. For example, when an object that owns the selection
receives a message asking it to yield the selection, it must yield the selection and
return.

Certain object types can't own the selection, either because there is no way for
them to receive messages from theSelectionManager, or because other objects
cannot communicate with them. These object types are:

¢ Objects that do not have global scope.

Global objects that cannot receive messages (those for which objCapSend is
disabled).

Any attempt to give an object of this type ownership of the selection will return a
scope violation status code, stsScopeViolation.

% Preserving the Selection 82.1.3

There are times when you need to preserve the current selection while allowing
the user to make a selection in another window. Generally, the only time this is
true is when using an option sheet. For example, the user might select some text in
a text editor and then put up an option sheet. theSelectionManager preserves the
text selection while the option sheet is up. The user can make a selection in the
option sheet, do something with the selection. When the user closes the option
sheet, the preserved text selection is restored.

CHAPTER 82 / THE SELECTION MANAGER 157
The Selection Class Messages

¥» Selection Transitions 82.1.4

While theSelectionManager requests one object to yield ownership and gives
ownership to another object, there is a time when the owner of the selection is not
defined. If another clsSelection message arrives in this time, problems could arise.
To avoid these problems, some clsSelection messages return stsSelYieldInProgress
while it is in transition from one owner to another. For example, if you request the
UID of the current selection owner (by sending msgSelOwner to
theSelectionManager) while ownership is in transition, msgSelOwner returns

stsSelYieldInProgress.

Certain other messages, rather than return stsSelYieldInProgress, just wait longer
than usual to complete, until the new owner is established. These messages are:

msgSelSetOwner
msgSelDelete

A deadlock situation can occur if you receive msgSelYield and immediately send
msgSelSetOwner to theSelectionManager, with your UID as the object to own
the selection. Eventually the block on the requests times out, allowing your object
to continue.

Determining What is Selected §2.2

If you inherit from clsEmbeddedWin, you will probably receive selection messages
at some time. If you present information on screen and do not inherit from a class
that handles clsSelection messages (as described below), you or one of your
component classes will need to:

¢ Handle clsInput messages to detect when the user makes a selection.

¢ Request the selection (by sending msgSelSetOwner to theSelectionManager
and specifying self as the new owner).

¢ Determine the type of selection.
¢ Show the user what is selected.

It is up to your application to determine what is selected.

Classes that Handle Selection | 82.3

Some classes already handle selection ownership for you. If you subclass these
classes, you inherit their selection behavior. In particular, clsEmbeddedWin and
its subclasses all have selection ownership behavior built in.

The Selection Class Messages | 82.4

Table 82-1 lists the clsSelection messages. The SEL.H header file declares these
messages. There are no msgNew or msgNewDefaults messages because
theSelectionManager is the only instance of clsSelection ever created.

9 / UTILITY CLASSES

158 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Table 82-1
cisSelection Messages
Message Tokes Description
Messages Clients Send to theSelectionManager
msgSelSetOwner OBJECT Sets the selection owner.
msgSelSetOwnerPreserve OBJECT Sets the selection owner with the preserve option.
msgSelOwner P_OBJECT Passes back the selection owner.
msgSelPrimaryOwner P_OBJECT Passes back the primary selection owner (the pre-
served owner if any, else the current owner).
msgSelOwners P_SEL_OWNERS Passes back both selection and preserved owners.
Messages theSelectionManager Sends to Observers
msgSelChangedOwners P_SEL_OWNERS Notifies observers when either of the selection
owners changes.
msgSelPromotedOwner P_SEL,_OWNERS Notifies observers when the preserved owner has
been promoted back to the selection owner.
Messages theSelectionManager Sends fo Selection Owners
msgSel Yield BOOLEAN theSelectionManager requires the release of the
selection.
msgSelDemote nothing Informs the owner that it is becoming the preserved
owner.
msgSelPromote nothing Informs the preserved owner that it is becoming the
owner.
Abstract Messages for clsEmbeddedwin and its Subclasses
msgSelSelect nothing Sets self to be the selection owner.
msgSellsSelected nothing Returns TRUE if self is current selection owner.
Abstract Messages for Move and Copy
msgSelBeginCopy P_XY32 Initiate a copy operation.
msgSelBeginMove P_XY32 Initiates a move operation.
msgSelCopySelection P_XY32 The receiver should copy the selection to self at (x, y).
msgSelMoveSelection P_XY32 The receiver should move the selection to self at (x, y).
msgSelDelete U32 The selection owner should delete the selection.
Abstract Message for Link Protocol
msgSelRememberSelection P_XY32 The receiver should “remember” the selection and

lace the “remembrance” at (x, y).
p y.

4 Messages from Clients to
theSelectionManager

Clients send messages to theSelectionManager to set the selection owner and to
get information about the selection owner.

82.5

CHAPTER 82 / THE SELECTION MANAGER 159
Messages Sent to Selection Owners

Py Setting the Selection Owner 82.5.1

To make an object the selection owner, send msgSelSetOwner to theSelectionManager.
msgSelSetOwner takes as its sole argument the UID of the object which is to become
the selection owner. theSelectionManager may send msgSelSelect (described in
“Embedded Window Messages,” below) to an object to ask it to become the selection
owner. The object should respond by sending msgSelSetOwner with self as the
argument.

When setting the selection owner, you can preserve the previous selection for later
restoration by sending msgSelSetOwnerPreserve instead of msgSelSetOwner to
set the new selection owner. For example, option sheets use
msgSelSetOwnerPreserve when the user makes a selection within the option
sheet. This preserves the original selection (the item to which the options apply)
so that the option sheet can later restore the original selection and apply the
options to it.

Both msgSelSetOwner and msgSelSetOwnerPreserve return stsScopeViolation if
the object specified as the argument cannot receive messages from other objects (either
because the object is not a global object or because its capability flags prevent it from
receiving messages). In this case, the selection owner does not change.

’» Handling msgSellsSelected 82.5.2

When your object receives msgSellsSelected, it should return a BOOLEAN value
that indicates whether it owns the selection or not. The message has no arguments.

If you don’t inherit from an ancestor that handles msgSellsSelected, the easiest
way to handle the message is to send msgSelOwner to theSelectionManager.
msgSelOwner sends back the UID of the current selection owner. If the returned
UID matches self, return true to msgSellsSelected; otherwise return false.

Messages Sent to Selection Owners 82.6

theSelectionManager sends certain messages to the selection owner. A class which
can own the selection (or one of its ancestor classes) must handle these messages.
If no one responds to the required messages, clsObject sends msgNotUnderstood
to self.

These messages perform the following functions:
¢ Tell the owner to give up the selection (msgSelYield).

¢ Tell the owner to demote the selection to the preserved selection or to
promote the selection from preserved selection (msgSelDemote and
msgSelPromote).

¢ Tell the owner to delete the selection (msgSelDelete).
¢ Tell the owner to display the option sheet for the selection (msgSelOptions).

¢ Tell the owner to begin a move or copy operation (msgSelBeginMove and
msgSelBeginCopy).

9 / UTILITY CLASSES

160 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

% Handling msgSelYield | 82.6.1

theSelectionManager sends you msgSelYield when you no longer own the
selection. The message has a single argument, a BOOLEAN value that indicates
whether you lost the selection or the preserved selection. If the argument is true,
yield the selection; if the argument is false, yield the preserved selection.

You should always return stsOK.

’» Handling msgSelDemote and msgSelPromote | 82.6.2

If you are the selection owner and a client sends msgSelSetOwnerPreserve to
theSelectionManager, theSelectionManager sends you msgSelDemote to inform
you that your selection has been preserved. ‘

If that client later sends msgSelSetOwnerPreserve to theSelectionManager with a
null argument, theSelectionManager sends you msgSelPromote to inform you
that your selection has been restored.

You can respond to msgSelDemote by graying the selection (or some other
response that shows the user that the selection is preserved, but not current).

These messages are essentially informative. You should always return stsOK.

If you maintain your own selection status, you can use these messages to update
your status indicators.

% Handling msgSelDelete 82.6.3

If you receive msgSelDelete and you have the selection, delete the current
selection. The message argument is a U32 that represents flags that specify the
visual behavior for your object after the delete. The flags specify:

SelDeleteReselect Display a selection after deleting the current selection.

SelDeleteNoSelect Show no selection after deleting the current selection.

After you receive and handle msgSelDelete, you still own the selection.

’» Handling msgSelOptions and msgSelOptionTagOK 82.6.4

If your object receives msgSelOptions, it should activate the option sheet for the
current selection. The message has no arguments.

An option sheet sends msgSelOptionTagOK to your object to check if its options
can be applied to the current selection. The message passes an option sheet tag. If
your object receives msgSelOptionTagOK, it should examine the option sheet tag
and see if the options can be applied to the selection.

’» Beginning Move and Copy Operations 82.6.5

The user can start a move or copy operation by making a selection and either
holding the pen on the selection or tapping on the Move or Copy commands in
the Edit menu. Either of these actions sends msgSelBeginMove or
msgSelBeginCopy to the selection owner.

CHAPTER 82 / THE SELECTION MANAGER 161
Messages Passed to the Selection Manager

If you own the selection and receive either of these messages, you should obey
the rules of the Embedded Window move/copy protocol. Usually, you send the
message to your ancestor (clsEmbeddedWin) which handles the protocol for
you. For a detailed explanation of the Embedded Window move/copy protocol,
see Chapter 9, Embedded Windows, in Part 2: The Application Framework of

volume [.

% clsEmbeddedWin Handles Selection Messages 82.6.6

While you can handle all of the selection messages yourself, clsEmbeddedWin
provides message handlers for most of the selection messages. If your class inherits
from clsEmbeddedWin, you can simply pass the messages to your ancestor.

The metrics of an embedded window object contains information about whether
it should preserve the selection or not before taking the selection. The client that
creates the embedded window sets this style information.

If you inherit from clsEmbeddedWin, you should pass msgSelSelect to your

ancestor. The message will trickle up to clsEmbeddedWin, which handles the message.
clsEmbeddedWin examines the Embedded Window metrics for the selection style. If
the selection style is ewSelect, clsEmbeddedWin sends msgSelSetOwner to the
theSelectionManager; if the style is ewSelectPreserve, cIsEmbeddedWin sends
msgSelSetOwnerPreserve to theSelectionManager. If the selection style is
ewSelectUnknown, clsEmbeddedWin runs up the window hierarchy to find a style
that is not ewSelectUnknown. The messages msgSelSetOwner and
msgSelSetOwnerPreserve are described later in this chapter.

Messages Passed to the Selection Manager ::-

You pass messages to theSelectionManager for three reasons:

* You want to know who the current and preserved selection owners are.
You want to set a selection owner.

¢ You want to set a selection owner and preserve the current selection owner.

% Finding the Selection Owners 82.

]
-

Ifyou receive a message that instructs you to something with the selection,

but you don’t know who the current owner is, you can pass msgSelOwner to
theSelectionManager. The message takes a pointer to the OBJECT location that
receives the UID of the current selection owner.

If the message completes successfully, it returns stsOK. The OBJECT location
contains the UID of the selection owner.

To find out the current owner and the owner of the preserved selection, send
msgSelOwners to theSelectionManager. The message takes a pointer to a
SEL_OWNERS structure, which theSelectionManager uses to send back the UIDs of
the owners. The structure contains:

owner The UID of the selection owner. objNull is a valid value.

9 / UTILITY CLASSES

162 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

preservedOwner The UID of the owner of the preserved selection. objNull

is a valid value. '

hasPreservedOwner A BOOLEAN indicating whether preservedOwner is
defined.

If the selection was between owners when you sent msgSelOwner or
msgSelOwners, theSelectionManager might return stsSelYieldInProgress. The
best thing to do is wait and try again.

% Setting the Selection Owner 82.7.2

To set the selection owner, send msgSelSetOwner to theSelectionManager. The
message takes the UID of the object that will become the new selection owner.

%7 Preserving the Selection Owner 82.7.2.1

To set the selection owner and preserve the current owner, send
msgSelSetOwnerPreserve to theSelectionManager. This message also takes the
UID of the object that will become the new selection owner.

When theSelectionManager receives msgSelSetOwnerPreserve with a valid
argument, it:

¢ Sends msgSelDemote to the current owner.
Sets the current preserved owner to be the current owner.
¢ Sets the current owner to be the UID received in pArgs.

¢ Sends msgSelChangedOwners to observers of theSelectionManager.

%+ Restoring the Selection Owner 82.7.2,2
To restore the preserved selection owner, send msgSelSetOwnerPreserve to
theSelectionManager with a null argument value.

When theSelectionManager receives msgSelSetOwnerPreserve with a null
argument, it:

¢ Sends msgSelYield to the current owner, if one exists.
¢ Sends msgSelPromote to the current preserved owner.
@ Sets the current owner to the current preserved owner.
Sets the current preserved owner to null.

¢ Sends msgSelChangedOwners to observers of theSelectionManager.

CHAPTER 82 / THE SELECTION MANAGER 163
Observer Notification

J” Observer Notification 82.8

An object that wants to watch the current selection can be an observer of
theSelectionManager. For example, property sheets need to know when the
selection owner changes. If the user selected some text, requested the property
sheet for text, and then selected a scribble object in a MiniNote document, the
text property sheet should inform the user that it cannot affect the new selection

(by making itself gray).

When the owner of the selection or the preserved selection owner changes,
theSelectionManager sends msgSelChangedOwners to observers of
theSelectionManager. When the preserved selection owner is promoted back to
selection owner, theSelectionManager sends msgSelPromotedOwner to observers.

The argument to the message is a pointer to a SEL_OWNERS structure that
contains:

owner The UID of the new selection owner.

preservedOwner The UID of the preserved selection owner.

hasPreservedOwner A BOOLEAN indicating whether preservedOwner is
defined.

9 / UTILITY CLASSES

PENPOINT ARCHITECTURAL REFERENCE / VOL Il

PART 9 / UTILITY CI.ASSES

Chapter 83 / Transfer Class

Although most messages transfer data between two objects, usually the objects
have a relationship of ownership or inheritance. The transfer class, clsXfer, defines
a general mechanism for exchanging information between two unrelated objects.
This mechanism becomes particularly useful when responding to move or copy
gestures. When two objects participate in a move or copy, they might have never
communicated before.

Using clsXfer, the destination can send a message requesting the types of data that
the source can transmit. When the source responds with the data types that it
supports, the destination can decide whether it wants the data in one of the
source’s data types. If the destination can handle one of the source’s data types, it
asks the source to send the data using that data type.

clsXfer provides three different models for exchanging data, which allow for small
or large transfers, one-shot or stream transfers, and formatted or unformatted
transfers.

Topics covered in this chapter:
¢ Transfer concepts
¢ Agreeing on a transfer type
¢ One-shot transfers
¢ Stream transfers
¢ Using transfer messages

¢ Using transfer functions.

Concepts 83.1

The greatest single use of data transfers occur when the user moves or copies data

from one location to another.

When an object receives a move or copy gesture, it is responsible for finding the
owner of the selection and attempting to move or copy the selection to itself at the
hot point of the gesture. The PenPoint™ operating system, through the
application framework, allows users to attempt to move or copy any object they
can select to any location they can draw a move or copy gesture.

This means that any object that responds correctly to application framework
(embedded window) messages can be asked to move or copy information from
any object to itself, perhaps from a class of object with which it has never
communicated before.

166 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

The transfer class, clsXfer, provides protocols that allow unrelated objects to
determine if they both understand the same data types. If the objects can agree on
a data type, they use clsXfer protocols to transfer data using that data type.

% General Scenario 83.1.1

In transferring data there are always two participants: the sender and receiver. The
sender is an object in a PenPoint task that sends data to the receiver, which is
another PenPoint object. In the transfer protocols, the receiver always requests
data from the sender.

When responding to move or copy gestures, the sender is the owner of the
selection. The receiver can find out the selection owner by sending msgSelOwner
to the selection manager, which sends back the UID of the selection owner.

All transfers begin the same way. The receiver sends a message to the potential
sender asking it to provide a list of the data transfer types that it can send. A data
transfer type identifies a specific data format (such as a string or a structure) and
transfer protocol. The receiver examines the sender’s list and finds the best transfer
type that it can use.

"> Tags for Data Transfer Types 83.1.2

The data transfer type is identified by a well-known tag that specifies the format of
the data. The data transfer type is associated with a transfer protocol, although the
protocol is not encoded in the tag.

clsXfer defines tags for several transfer types that are commonly used by PenPoint
components. The tags and uses for the data transfer types are listed in Table 83-1.
The table also lists the protocol implied by each transfer type. The following

section discusses protocols in more detail.

Table 83-1
cisXfer Transfer Types
Transfer Type Tag Protocol Date Type
xferString one-shot A string up to 256 bytes.
xferLongString one-shot A variable length string.
xferName one-shot A label (such as a GoI'o button).
xferFullPachName one-shot A full path name.
xferFlatLocator one-shot A flat locator file path.
xterASCIIMetrics one-shot Metrics for a block of ASCII text (doesn’t return
the text). ‘
xferRTF stream A stream of RTF data.
xferScribbleObject one-shot A scribble object.
xferPicSegObject one-shot A picture segment object (see Part 3, Windows and
Graphics).

The clsXfer transfer types are defined in XFER.H.

CHAPTER 83 / TRANSFER CLASS 167
Transfer Protocols
You can use the MakeTag() macro (defined in GO.H) to define tags for other
transfer types. clsXfer is the class for the PenPoint transfer type tags. If you use any
other class, it implies that the data transfer type uses a client-defined protocol,

defined by that class.

If you define your own transfer types, they must be understood by both the sender
and receiver. Thus, you cannot use your own transfer types to transfer data with
PenPoint components, unless you subclass a PenPoint component to handle your
transfer types.

" Transfer Protocols 83.2

When the receiver finds an acceptable data transfer type in the list sent back by
the sender, it initiates the data transfer protocol. The data transfer type implies the
data transfer protocol that will be used to exchange data. There are three protocols
for transferring data:

¢ One-shot. The receiver sends a single block of data to the receiver. One-shot
transfers also identify the type of data being transferred (such as string, long
string, or path name).

¢ Stream. The sender and receiver create a data stream. Stream transfers are
used to transfer large amounts of data or continually arriving data.

¢ Client-defined protocol. The sender and receiver agree on a special protocol
for transferring data. The client-defined protocol is usually defined by
another class. For example, embedded windows (clsEmbeddedWin) establish
their own protocol for transferring data.

One-Shot Transfers 83.2.1

In one-shot transfers, the receiver asks the sender for a block of data by sending
msgXferGet to the sender. The specific structure used with the message depends
on the transfer type. XFER.H defines the following transfer buffer structures:

XFER_FIXED_BUF Transfers a fixed length buffer of 256 bytes.

XFER_BUF Transfers a variable length buffer (of up to 64K byrtes).

XFER_ASCII_METRICS Transfers ASCII metrics (this type is only used by
the xferASCIIMetrics transfer type).

XFER_OBJECT Transfers an arbitrary object.

Each structure includes a TAG field representing the transfer type being used and a
buffer or pointer to a buffer for the data to be transferred. All structures also
include a U32 value that the receiver can use to communicate information to the
sender, such as more specific information on the requested data.

If you create other transfer types, you can also define other buffer structures. Your
transfer types will be known only to your senders and receivers, unless you make them
available to other application developers by publishing information about them.

9 / UTILITY CLASSES

168 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

When the sender receives msgXferGet, it should move the information into the
buffer and return stsOK.

% Stream Transfers 83.2.2

In stream transfers, the receiver and sender must create and initialize a stream.
When the stream is established, the sender and receiver use clsStream messages to
read from and write to the stream (usually msgStreamRead and msgStreamWrite).

Because the steps that the receiver and the sender take to create a stream are so
common, clsXfer defines a set of functions that do most of the work for you.

Before we describe the functions, we should describe the stream itself.

%¥ Streams 83.2.2.1
The stream consists of two stream objects; one belonging to the sender and one
belonging to the receiver. The stream objects are instances of a private class that
inherits from clsStream, they respond to clsStream messages, but have additional
features to support the transfer protocol.

The two stream objects share a common stream buffer, a shared storage area. The
sender’s stream object handles msgStreamWrite by copying data from the sender’s

buffer into the stream buffer. The receiver’s stream object handles msgStreamRead
by copying data from the stream buffer into the receiver’s buffer.

%+ Stream Protocols ' $83.2.2.2

There are two stream protocols variations that you can use. The variations are:

¢ Blocking protocol, in which clsXfer blocks the sender when its buffer is full
and releases the sender when the receiver empties the buffer sufficiently for it
to continue. Blocking protocol works only when the sender and receiver are
in separate tasks. '

¢ Producer protocol, in which clsXfer communicates with an object (called a
producer) that works on behalf of the sender to manage the transmission.
When the sender and receiver are in the same task, they must use producer
protocol (or limit their transfer to 64K bytes of data).

%7 Blocking Protocol 83.2.2.3

In stream transfers, the stream uses an intermediate buffer to store the data being
transferred. The sender specifies the size of the stream buffer when it calls

XferStreamAccept.

Usually, blocking protocol is faitly straightforward. The sender uses
msgStreamWrite to copy data from its buffer into the stream. clsXferStream
receives the data and stores it in the stream buffer. When the receiver sends
msgStreamRead to its stream object, clsXferStream copies the data from the
stream buffer to the receiver’s buffer.

CHAPTER 83 / TRANSFER CLASS
Transfer Protocols

However, if the receiver doesn’t read enough data from the stream (either because
it dido’t send msgStreamRead or it only read a portion of the data), the stream
buffer can become full. Before data gets lost, clsXferStream blocks the sender’s
task (by setting a semaphore).

When the receiver sends msgStreamRead and empties the stream buffer,

clsXferStream clears the sender’s semaphore, allowing clsStream to send more data.

All this occurs while the sender’s msgStreamWrite is being handled. The sender
doesn’t have to know anything about being blocked. When msgStreamWrrite
returns stsOK to the sender, all data has been transferred.

% Blocking Protocol Deadlocks

Thus far we have assumed that the sender and receiver are in different tasks. If the
sender and receiver are in the same task, however, blocking protocol presents some
synchronization problems. If the sender and receiver are in the same task and
clsXfer blocks the sender’s task, the receiver is blocked also. A deadlock exists; the
sender is blocked until the receiver removes information from the buffer, but the
receiver is blocked because it is in the same task as the sender.

clsXfer does as much as it can to avoid full-buffer deadlocks. If the sender and
receiver are in the same task, and there is no producer, and the buffer is smaller
than the data to be transferred, clsXfer will allocate additional space for the stream
transfer buffer (up to 64K). However, if there is more than 64K to be transferred,
this will not work because the maximum size of a stream transfer buffer is 64K.

%» Producer Protocol

Producer protocol avoids the blocking protocol’s deadlock situation by making the
producer keep track of the amount of information that has been transferred.
clsXfer communicates with the producer to let it know when it can copy more
information into the transfer buffer. The producer works for the sender; it can be
a separate object or it can be the sender.

The receiver initiates the transfer by sending msgStreamRead to its stream object.
The stream object knows that there is a producer, so it sends msgXferStreamWrite
to the producer. The producer uses msgStreamWrite to copy the sender’s data to
the stream buffer. If the stream buffer is unable to accommodate all of the data,
msgStreamWrite returns to the producer and passes back the number of bytes that
it accepted. The producer must remember the location of the last byte accepted.

The producer then returns msgXferStreamWrite and the receiver’s stream object
copies the stream data to the receiver’s buffer. If it reaches the end of data, it sends
msgXferStreamWrite to the producer again. The producer sends msgStreamWrite
to copy more data to the stream buffer.

83.2.2.4

83.2.2.5

169

9 / UTILITY CLASSES

170 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Note that the sender never issues a message during the transfer. The producer acts as
the sender’s agent to handle the transfer. Of course the producer has to know what
buffer the sender wanted to be transferred. There are two ways to accomplish this:

¢ When the sender initially creates the producer, part of the instance data can

be the address of the send buffer.

¢ The receiver can use msgXferStreamSetAuxData to store auxiliary data in
the stream (such as the address of the sender’s buffer). The producer can send
msgXferStreamAuxData to the stream to read the data.

Eventually the producer will have sent all the data from the sender’s buffer. To
terminate the stream, the producer sends msgFree to the stream object. When
the stream is freed, the receiver can read the remaining data from the stream
buffer, but when there is no more data, the receiver gets an EOF. The receiver
should free its end of the stream.

If the receiver needs to abort a transfer that is in progtess, it can free its stream
object. When it does so, the sender’s stream object sends msgXferStreamFreed to
the producer. The producer should free its stream object.

% Client-Defined Protocols 83.2.3

Client-defined protocols can encompass a wide range of data transfer schemes,
from clones of the one-shot or stream protocols to specialized transfer methods
that use a transfer medium other than shared buffers or message data.

As described above, if the sender and receiver agree on a transfer type that is
defined by a class other than clsXfer, the receiver should initiate the transfer using
the protocol defined by that class.

For one example of a client-defined protocol, see the embedded window
move/copy protocol described in Chapter 9, Embedded Documents, in Part 2:
Application Framework of volume I.

The Transfer Functions and Messages 83.3

Because the steps used to start and perform a transfer are common, no matter
which transfer type you finally agree on, clsXfer defines a set of functions that
perform most of the work for you.

Table 83-2 lists the clsXfer functions.

Table 83-2
cisXfer Functions
Function Description
XferMatch() The receiver calls XferMatch() to find a mutually acceptable data transfer type.
XferListSearch() Searches two sets of data transfer types for a match.
XferAddIds() Adds data transfer types to a list of acceptable types.
XferStreamConnect() A receiver calls this function to create a stream connection to a sender.

XferStreamAccept() Called by sender in response to msgXferStreamConnect.

CHAPTER 83 / TRANSFER CLASS 171
Establishing a Transfer Type

Table 83-3 lists the clsXferStream messages. Generally, these messages are used by
the clsXferStream functions; most clients shouldn’t need to use them.

Table 83-3
clsXferStream Messages
Message Tokes Description
msgXferList OBJECT Ask sender for its list of data transfer types.
msgXferGet lots of things Sent by a receiver to get one-shot data transfer
information.
msgXferStreamConnect XFER_CONNECT Sent to the sender to ask it to link the sender’s and
receiver’s pipes.
msgXferStreamAuxData PP_UNKNOWN Passes back auxiliary information associated with the
pipe.
msgXferStreamSetAuxData P_UNKNOWN Stores arbitrary client data with the pipe.
msgXferStream Write STREAM Asks the sender to write more data to the stream.
msgXferStreamFreed STREAM Sent to the sender when the receiver’s side of the
: stream has been freed.
Establishing a Transfer Type 83.4

The job of establishing a transfer type is made fairly easy by calling the clsXfer
functions. However, before describing the functions, let’s take a look at how the
receiver and sender interact to establish the transfer type.

1 The receiver calls XferMatch(), which creates two lists:
¢ An array of the transfer types that it can use.
¢ An empty clsXferList object.

2 XferMatch() sends msgXferList to the potential sender. The messages
arguments include the empty clsXferList object.

3 When the sender receives msgXferList, it uses the function XferAddIds() to
add its transfer types to the list. The sender then sends msgXferList to its
ancestor.

4 When the ancestor returns the message, the sender returns msgXferList to
the receiver. ‘

5 XferMatch() uses the XferListSearch() function to compare the list of
returned transfer types against the array of acceptable transfer types provided
by the receiver.

6 When the first match is found, XferMatch() places the matched transfer type

in the location specified by the receiver and returns stsOK.

The order the array of transfer types and the order of the transfer types in the
clsXferList object is extremely important. XferAddlIds() adds transfer types to the
end of the clsXferList object. XferListSearch() starts at the beginning of both the
array of transfer types and the clsXferList object.

If the receiver has a preferred transfer type, it should put it at the beginning of the
transfer type array.

9 / UTILITY CLASSES

172 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

If the sender (or more importantly one of its ancestors) has a strong preference
for a transfer type, it should use clsList messages to insert the transfer type at the
beginning of the list object (XferAddIds() adds transfer types to the end of the list).

"% Requesting Transfer Types 83.4.1

The process of looking for a transfer type is made fairly simple by the XferMatch()
function. The prototype for XferMatch() is:

STATUS EXPORTED XferMatch (

OBJECT sender,
TAG idsI[],
SIZEOF idsLen,

P_TAG pId
)i

The parameters to XferMatch() are:

sender The UID of the potential sender of data.

ids An array of transfer types familiar to the receiver.

idsLen The number of elements in the ids array.

pld A pointer to a TAG that will receive the returned transfer type.
If XferMatch() does not find a matching transfer type, it returns stsNoMatch. On
receiving stsNoMatch, the receiver should call ancestor with the message that

caused it to call XferMatch() (usually msgGWinGesture). This enables the

receiver’s ancestors to attempt to find a transfer type.

For example, clsText intercepts msgGWinGesture and uses XferMatch() to
determine if the selection owner can send text data. If the selection is actually an
an object or application, XferMatch() returns stsNoMatch. clsText sends the
msgGWinGesture to its ancestor. Eventually clsEmbeddedWin receives the
message, which is able to move an object or application.

P Listing Transfer Types 83.4.2

To get a list of the available transfer types from the receiver, most clients use the
XferMatch() function. However, if you need to provide special transfer type
handling, you can send msgXferList on your own. '

Before you send msgXferList, you need to do two things:
¢ You must identify the object that is the potential sender.
¢ You must create a transfer list (by sending msgNew to clsXferList).

Then you can send msgXferList to the sender; the only argument for the message
is the UID of the transfer list.

¥ Adding a Transfer Type to a List 83.4.3

If you are acting as a sender and receive msgXferList, you must add your transfer
types to the list indicated by pArgs. To make this job easier, you can call
XferAddlds(). The prototype for XferAddIds() is:

CHAPTER 83 / TRANSFER CLASS 173
Performing One-Shot Transfers

STATUS EXPORTED XferAddIds (

OBJECT listObject,
TAG ids{],
SIZEOF idsLen

)

The parameters are:
listObject The transfer list object indicated by pArgs.
ids An array of transfer types that you support.

idsLen The number of transfer types in the ids array.
The function sends msgListAddItem to the list for each transfer type in the array.

Remember that the order of the transfer types in ids is important. XferAddIds()
adds the transfer types to the end of the list object as they appear in ids.

After adding your transfer types to the list, you must send it to your ancestor.
When msgXferList returns from your ancestor, the transfer list object contains the
transfer types supported by your class and all your ancestors. At this point you can
return from msgXferList.

%> Searching a Transfer Type List | 83.4.4

When the sender and its ancestors return msgXferList, the XferMatch() function
calls XferListSearch(), which searches the transfer list returned by msgXferList,
looking for a transfer type that matches one in an array of acceptable transfer
types. The first array element is compared to all list elements, then the second
array element, until every array element has been tried. Thus, the array should
contain the optimal transfer types first.

If your class provides special operations, you can call XferListSearch() yourself.
The prototype for XferListSearch() is:

STATUS EXPORTED XferListSearch (

OBJECT listObject,
TAG ids[],

SIZEOF idsLen,
P_TAG pld

)i

The parameters are:
listObject The transfer list object sent to the sender.
ids The list of transfer types that the receiver supports.
idsLen The number of elements in the ids array.

pld A pointer to the location to receive the matched transfer type.

7 Performing One-Shot Transfers 83.5

If the transfer type is a one-shot type transfer, the receiver sends msgXferGet to
the sender. The message takes a pointer to a transfer buffer. Transfer buffers can
take on a number of forms. XFER.H defines the following types of transfer buffers:

¢ XFER_FIXED_BUF transfers up to 256 bytes in a single transfer.

9 / UTILITY CLASSES

174 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

XFER_BUF transfers a variable length buffer (of up to 64K bytes).

XFER_ASCII_METRICS is used to transfer ASCII metrics. This type is only
used by xferASCIIMetrics transfer type.

XFER_OBJECT is used to transfer an arbitrary object.

The type of transfer buffer depends on the transfer type. Table 83-4 lists the various
one-shot transfer types and the corresponding buffer type. (The information in this
table was obtained from XFER H, which includes the transfer buffer type as a comment
when defining the transfer types. If you define your own transfer types, it is a good idea
to follow this practice.)

Table 83-4
Transfer Buffer Types
Transfer Type Buffer Type
xferString XFER_FIXED_BUF
xferLongString ‘ XFER_BUF
xferName XFER_FIXED_BUF
xferFullPathName XFER_FIXED_BUF
xferFlatLocator XFER_FIXED_BUF
xferASCIIMetrics XFER_ASCII_METRICS
xferRTF : (stream protocol)
xferScribbleObject XFER_OBJECT
xferPicSegObject XFER_OBJECT

If you define your own transfer types, you can use these transfer buffers or you can
define your own transfer buffers. Of course, transfer types that you create are
known only to your senders and receivers.

% Fixed-Length Buffer Transfers 83.5.1

If the transfer type is xferString, xferName, xferFullPathName, or xferFlatLocator,
the argument to msgXferGet is a pointer to an XFER_FIXED_BUF structure, which
contains:

id The transfer type.

buf A 256 byte buffer that contains the data.

len The length of the data in buf.

P Variable-Length Buffer Transfers 83.5.2

If the transfer type is xferLongString, the argument to msgXferGet is a pointer to
an XFER_BUF structure, which contains:

id The transfer type.

pBuf A pointer to a buffer that contains the data.

len The length of the data in buf.

CHAPTER 83 / TRANSFER CLASS 175
Performing One-Shot Transfers

The buffer indicated by pBuf must be shared. The sender should allocate the buffer Whenever possible, the client
by calling OSSharedMemAlloc() or by calling OSHeapBlockAlloc() with a shared 22332”:["1”0 562;)2’:;@6 1;:; f:dti iifer
heap such as osProcessSharedHeapld. s

When the receiver has read the data from the shared buffer, it should deallocate Whenever possible, the client

the buffer (a shared buffer does not have to be allocated and deallocated by the that requested the data should
ask) deallocate the shared buffer.
same task).

When the message sends back XFER_BUF, the len field contains the length of the
data in pBuf.

P ASCIl Metrics Transfers 83.5.3

If the transfer type is XferASCIIMetrics, the argument to msgXferGet is a pointer
to an XFER_ASCII_METRICS structure, which contains:

(]
')
(7]
(%]
<
v
E
vl
=
5
~
o

id The transfer type.
When the sender returns msgXferGet, XFER_ASCII_METRICS contains:

first The text index of the first character in the range.
length The length of the text range.

level The parts of text being transferred. The level enables word processors
to apply the correct styles to the data moved into a document. The
possible values are:

ignore
characters

words

»D N = O

sentences
4 paragraphs
This example shows a receiver sending msgXferGet to a sender.

STATUS GetShortString(
P_TAG pID, // pointer to ID from XferMatch
P_MY DATA pMyData) // pointer to instance data

XFER_FIXED BUF fb; // Fixed buffer

STATUS status;
fb.id = *pID;
fb.data = pMyData;

status = ObjectSendUpdate (msgXferGet, pMyData->sender, &fb);

if (status >= stsOK)

{
strncpy (pMyData->pFixedData, fb.buf, fb.len);
pMyData->fixedLen = fb.len;
return stsOK;

176 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

’% Replying to One-Shot Transfers 83.5.4

When the sender receives msgXferGet, it should move the information into the
buffer and return the message. This example shows how the sender responds when
it receives msgXferGet:

// Handle msgXferGet for fixed data

STATUS ReplyFixedData (
P_XFER FIXED BUF pArgs)

{
P_MY DATA *myData; // pointer for data
STATUS rstatus; // returned status

rstatus = stsOK;

// Find data to transfer
FindData (mydata);

if (myData->len > 256)
{
pArgs->len = 256;
rstatus = stsTrunc; // data truncated

}
else
pArgs->len = myData->len;
strncpy (pArgs->buf, myData->data, pArgs->len);

return rstatus;

}

Performing Stream Transfers 83.6

If the transfer type is a stream transfer, the receiver and sender must create their

halves of a stream.

¥» Creating the Receiver’s Stream ’ 83.6.1

The receiver always creates its half of the stream first, by calling the function
XferStreamConnect(). The function’s arguments are:

¢ The UID of the sender.
¢ The transfer type.

¢ An optional pointer to client data for the sender. This client data might
indicate more specifically what portions of the data the receiver is interested
in. When the stream sends msgXferStreamWrite, it passes this pointer to the
producer.

¢ A pointer to the location that receives the UID of the receiver’s stream object.
The function does the following:

1 Initializes and creates a stream object (by sending msgNewDefaults and
msgNew to clsXfer).

2 Tells the sender to create its own stream object by using ObjectPostAsync()
to send msgXferStreamConnect to the sender.

CHAPTER 83 / TRANSFER CLASS 177
Performing Stream Transfers

3 Initalizes the stream by sending msgXferStreamlInit to its stream object.

If the function completes correcty, it returns stsOK.

" Creating the Sender’s Stream 83.6.2

When the sender receives msgXferStreamConnect, it should create its half of the
stream by calling the function XferStreamAccept. The function arguments are:

¢ The receiver’s stream object (pArgs->stream in msgXferStreamConnect).
The size of the stream transfer buffer (can be up to 64K bytes).

An optional producer UID. If this argument is null, the stream uses blocking
protocol; if this argument indicates an object, the stream uses producer
protocol, with the indicated object as the producer.

® A pointer to the location that receives the UID of the sender’s stream object.
The function:
1 Initializes the stream object (by sending msgNewDefaults to clsXfer).
2 Establishes that the stream object has a producer and identifies the receiver.
3 Cireates the stream object (by sending msgNew to clsXfer).
4 Copies the UID of the stream object to the location specified by the caller.

If the function completes correctly, it returns stsOK.

% Freeing the Stream 83.6.3

When the transfer is complete, the sender or the producer frees the stream by
sending msgFree to its stream object. When clsXfer receives msgFree, it sends
msgXferStreamFreed to the producer.

When the receiver gets msgXferStreamFreed, it frees its half of the stream.

7> Accessing the Stream’s Auxiliary Data 83.6.4

The stream’s data includes a pointer value for auxiliary data. The receiver and the
sender can write and read this value to exchange information about the transfer.

To store information in the stream’s auxiliary data, send msgXferStreamSetAuxData
to the stream object. The message takes a pointer to any type of data. When the
message completes successfully, it returns stsOK.

To read the stream’s auxiliary data, send msgXferStreamAuxData to the stream
object. The message takes a pointer to the location that receives the pointer stored
in the stream.

When the message completes successfully, it returns stsOK and the location
contains the pointer stored in the stream.

9 / UTILITY CLASSES

178 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

%> Connecting a Stream to a Producer 83.6.5
When the receiver in a stream transfer creates its half of the stream, it sends
msgXferStreamConnect to the sender. The message takes an XFER_CONNECT
structure that contains:

id The transfer type.
stream The UID of the receiver’s stream object.
clientData A pointer to optional, client-specified data.

When the sender receives msgXferStreamConnect, it should create its stream
object by calling the function XferStreamAccept().

% Initializing a Stream ’ 83.6.6

When the sender returns msgXferStreamConnect, the receiver should initialize
the stream by calling msgXferStreamInit. The message takes no arguments.

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

Chapter 84 / Help

There are two help facilities built into the PenPoint™ operating system:

¢ Quick Help, which provides object-specific reminders when the user:
¢ Makes the question mark 0 gesture over an object.

* Taps on the Help icon, then taps on an object.

¢ The Help notebook, which provides users with full on-line help

documentation.
Application designers can add both types of help to their application.
Topics covered in this chapter:
¢ Concepts of Help and Quick Help.
¢ How to add help to the Help notebook.
¢ How to define Quick Help resources.

¢ How to use the Quick Help messages.

Help Concepts 84.1

There are two help components in PenPoint: Quick Help and the Help notebook.
Quick Help provides a reminder mechanism for windows which support Quick
Help. The user invokes Quick Help either by making the question mark ? gesture
over a window, or by tapping the Help icon, and then tapping on a window. Both
methods display a brief help message in the Quick Help window.

The Help notebook is the location in which the full on-line help documentation
for the system and applications exists. It is a true notebook and has a table-of-
contents, tabs, sections, etc. The user invokes the Help notebook by tapping the
Help icon, then tapping the Help notebook button in the Quick Help window.

% The Help Notebook ' 84.1.1

The Help notebook contains tutorial Help information. It is a true notebook that
can contain any application—there is no requirement on the type of application
that can be placed in this notebook. An application can even put a instance of

itself in the Help notebook.

%7 Help Directories 84.1.1.1

To add a help application to the Help notebook, create a HELP directory in your
application directory \PENPOINT\APP\MYAPP\HELP) and place directories
containing help applications in this directory.

180 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

When the user installs your application, the installer copies the help applications
into the Help notebook, just as stationery documents in a STATNRY directory are
copied into the Stationery notebook.

If you don’t want to create a help apblication, you can use clsTexteditApp to
display your help text. To use the text editor:

1 Create an ASCII text file called HELPTXT or a Rich Text Format (RTF) file
called HELPRTF that contains your help text.

2 Store the text file in a subdirectory of your document’s HELP directory. The
- name of the subdirectory is the title of the document in the Help notebook.

You can provide more than one help document (or help application), but each
requires its own subdirectory under the HELP directory.

HELP subdirectories that are application documents must be labeled with the class
of the application. If a directory is not labeled with an application class when the
installer copies it into the Help notebook, the installer labels it with clsT'exteditApp
(the MiniText application class). When the user turns to your help text, the help
notebook activates the text as a text editor document.

The following directory tree shows the help for an application named MyApp.
Under the directory named \MyApp is a HELP directory. The HELP directory
contains two subdirectories for two separate help text files, Summary Help and
Detailed Help.

\ﬁ’ENPOINT
\MyA D
g
ary He
\ﬁ;— HELP. TXT
tailed Help
?— HELP . TXT

When the files in this example are loaded by the Installer, the Help notebook

would contain two documents named Summary Help and Detailed Help.

%» Creating Help Text £84.1.1.2

If you use clsTexteditApp to display your help, your help text can be either an
ASCII text file called HEIP.TXT or an RTF file called HELPRTF.

You can create an ASCII text file in any text editor or word processor. If you use a
word processor, make sure that you save the file as a plain text document—not the
word processor’s format.

RTF is a document description language that allows you to transfer formatted
documents among different word processors. You can create RTF files by editing
your help text in a word processor that can save its documents as RTF files.

An additional benefit of using RTF for your help text is that you can include gesture
characters in your documents, using the PenPoint Gesture font (GS80). For infor-
mation about how to add the PenPoint Gesture font characters to your help text, see
“Advanced Topics,” later in this chapter.

CHAPTER 84 / HELP 181
Help Concepts

¥ Quick Help Concepts 84.1.2

The system support for Quick Help consists of a well-known object,
theQuickHelp, which is the window which displays the current help information.
The Quick Help window is a floating window with two buttons, Done and Help
notebook.

The default support in the system for Quick Help is based in the gesture window
class, clsGWin. A Quick Help ID can be stored with a gesture window as a
property of the object. When the question mark gesture gets to clsGWin, it will
send this Quick Help ID to the Quick Help window. The Quick Help window
will then attempt to find the resource with the Quick Help ID. If it finds the
resource, it reads in the text and displays it.

The resource described above currently contains the strings for the title and
summary (there is also a gesture string which is unused). It is the responsibility of
the developer to provide the Quick Help resources and store them in the
application or system directories.

To use the Quick Help facility, developers create Quick Help resources and
associate them with PenPoint objects. When the user makes a help gesture ? over
the object, clsGWin intercepts the gesture, and sends msgQuickHelpShow to put
the Quick Help window on-screen and present the text to the user. When the user
taps on another object while the Quick Help window is on-screen, the Quick
Help window simulates the gesture.

For objects that do not descend from clsGWin, the Quick Help API enables
clients to direct the Quick Help manager to display text from a help resource.

Adding Quick Help to an object that inherits from clsGWin requires two steps:

¢ You define a Quick Help resource in a resource file, either by saving the
resource to disk from an application or by using the resource compiler to
compile a resource definition file (see Parz 11: Resources for more
information).

¢ You store the ID portion of the Quick Help resource ID in the metrics of the
clsGWin object.

When the user makes a Quick Help gesture on the object, clsGWin receives the
gesture (if it isn’t intercepted) and sends messages to the Quick Help manager to
display the Quick Help resource.

If the object does not inherit from clsGWin, adding Quick Help is almost as easy.
After defining the Quick Help resource, you ensure that the object stores the
Quick Help resource ID. When needed, the object sends messages to the Quick
Help manager, directing it to display the Quick Help resource.

%¥ Quick Help Resources 84.1.2.1

The Quick Help resource for an object consists of three strings that contain: This discussion assumes that

. . . you are familiar with resources.
¢ A title for the Quick Help window.

9 / UTILITY CLASSES

182 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

A gesture string (currently unused; should be empty).
¢ The Quick Help summary.

The strings can either contain plain text or RTF strings. RTF is useful if you need
to use multiple fonts or add other stylistic changes to your text. For example, an
RTF string can include characters from the PenPoint Gesture Font. For
information on adding PenPoint Gesture Font characters to your help strings, see
the “Advanced Topics,” later in this chapter.

You define a Quick Help resource as a string-array resource that contains all of the

Quick Help strings for the class.

The Quick Help resources for an application must be stored in the APPRES file for
that application. The Quick Help resources for system-wide objects should be
stored in the system resource file.

% Quick Help and cIsGWin 84.1.2.2

When you create an instance of an object that inherits from cIsGWin, you and

store a Quick Help resource ID in the gwin.helpID field for the clsGWin object.

If the user makes the Quick Help gesture on an object that inherits from clsGWin
and no subclass intercepts the gesture, clsGWin receives the gesture and:

1 Uses the application UID to locate the application’s resource list.
2 Uses the Quick Help ID in gwin.helpld to identify the resource.
3 Sends clsQuickHelp messages to the Quick Help manager (theQuickHelp).

% Quick Help without cIsGWin 84.1.2.3

If you use a class that does not inherit from clsGWin, but you want to be able to
display Quick Help for instances of that class, you can send Quick Help messages
to theQuickHelp (the same way that clsGWin invokes Quick Help).

You can also use this technique if you want to intercept the Quick Help gestures
and display the Quick Help information yourself.

The messages defined by clsQuickHelp allow clients to:
¢ Display Quick Help.
Open and close the Quick Help window.
¢ Determine which Quick Help string to display.

“Advanced Topics,” later in this chapter, describes the Quick Help messages and
how to use them.

*»» theQuickHelp Object 84.1.2.4
’ There is only one Quick Help object in the system: theQuickHelp. theQuickHelp
is defined when the PenPoint operating system is booted. You do not need to send

msgNew to any class to create theQuickHelp (in fact, there is no well known UID
for the Quick Help class).

CHAPTER 84 / HELP 183
Defining Quick Help Resources

 Defining Quick Help Resources 84.2

You define the Quick Help resources in C language files that are compiled by the
Resource Compiler. Before you read about defining Quick Help resources, you
should be familiar with the material in Part 11: Resources.

Each resource is defined by a string resource that defines the title and summary
strings. All of the Quick Help string resources are combined into a single string
array resource.

% Defining the Quick Help String Array 84.2.1

To define a Quick Help string array resource you define a static string array and
a resource definition that points to the string array. Each string in the string array
combines the title and summary strings for a single Quick Help resource. Each of
the Quick Help strings in the array has the following format:
static CHAR label-of-string[] = {
// title
"title text||"
// summary
"summary text "
"more summary text"
i
The title and summary strings are combined into a single string, with a sequence
of two vertical bar characters (Il) separating the two parts of the string. Note that
ANSI C concatenates consecutive strings, so the above template actually defines a
single string.

All of the Quick Help strings for a class are combined into a single string array,
plus a null string to indicate the end of the array. This string array is the data for
the Quick Help resource for the class.

The resource definition has this format:

static RC_INPUT res-label = {
MakeListResId(class-UID, resGrpQhelp, list-number), // list-number is typically 0
label-of-string-array, // Name of the string array
0, // datalLength is not needed for strings
resTaggedStringArrayResAgent // Use string array resource agent

}i

9 / UTILITY CLASSES

184 PENPOINT ARCHITECTURAL REFERENCE »
Part 9 / Utility Classes

The following exampie shows a typical Quick Help resource using string resources.

Example 84-1
Defining a Quick Help Resource

This example shows how to define the Quick Help resource. It comes from the Quick Help for the view of the Tic-Tac-Toe
sample program, in \PENPOINT\SDK\SAMPLE\T TT. The tag for the resource is defined in TTTQHEIP.RC as:

#ifndef RESCMPLR_INCLUDED
#include <rescmplr.h>
#endif

#ifndef QHELP INCLUDED
#include <ghelp.h>
#endif

#ifndef TTTVIEW_INCLUDED
#include "tttview.h"
#endif

//
// Quick Help string for ttt’s option card.
//
static CHAR tttOptionString[] = {
// Title for the quick help window
"TTT Card||")
// Quick help text
"Use this option card to change the thickness of the lines "
"on the Tic-Tac-Toe board."
};
//
// Quick Help string for the line thickness control in ttt’s option card.
// ‘
static CHAR tttLineThicknessString[] = {
// Title for the quick help window
"Line Thickness||"
// Quick help text
"Change the line thickness by writing in a number from 1-9."
}i
//
// Quick Help string for the view.
//
static CHAR tttViewString[] = {
// Title for the quick help window
"Tic-Tac-Toel | "
// Quick help text
"The Tic-Tac-Toe window lets you to make X’s and 0’s in a Tic-Tac-Toe "
"grid. You can write X’s and 0’s and make move, copy "
"and pigtail delete gestures.\n\n"
"It does not recognize a completed game, either tied or won.\n\n"
"To clear the game and start again, tap Select All in the Edit menu, "
"then tap Delete."
}i
// Define the quick help resource for the view.
static P_RC_TAGGED_STRING tttViewQHelpStrings[] = {
tagCardLineThickness, tttOptionString,
tagTttQHelpForLineCtrl, tttLineThicknessString,
tagTttQHelpForView, tttvViewString,
pNull
}i

continued

CHAPTER 84 / HELP 185
Defining Quick Help Resources

Example 84-1 [continued)

static RC_INPUT tttViewHelp = {
MakeListResId(clsTttView, resGrpQhelp, 0),

tttViewQHelpStrings, // Name of the string array
0,
resTaggedStringArrayResAgent // Use string array resource agent

}i
/**

The glue that ties everything together -- resInput.
**/

// resInput is an exported variable that the resource compiler expects.
// Each element is a pointer to a structure describing the next resource.
// The list is terminated with a null pointer.
P_RC_INPUT reslInput [] = {

&tttViewHelp, // this is the one defined in this example

// any other resource pointers would go here

pNull
i

9 / UTILITY CLASSES

186 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes :

Figure 84-1 illustrates the Quick Help that results from the resource shown here:
Figure 84-1
' A Quick Help Window

,ﬁgﬁ;& o
P

S
t w’g!&“arm” 5
.

.
e
.

.

o
v

- ~
.
‘

. ggi%%%aé«m

. .
- g’%%ﬁiﬁ .

s
s
o

T
e
.
T
ao

i
i

.

o

.
.

o

5

P
-

=
i

o
2

-
o

.
i
e
=

e
-

-
.
e

-

e

o
-
-

.
'
o

-
.

S
e

-
-
ton
-

-

T

‘.
P
e

-
o

-

sREas

S
g
=

L

-

L
éjﬁ;%}%@

-

o
. o f%gg |

e
o

Y S
.

i e e

- -

-

o

.

L
=

=
i

5
o
-

e
oo o
.
.

e
i
o
e
L

o
o

=
e
e
o

o

i

.
5

e
-
o

e
- ot
... =
Bl L -

s
o

i

e

. .
st o
. .
Rl R o . . -
e . L . e M&%ﬁ
e . .
y%@f‘éﬁ’%@fﬁm ! : e %m%
. , .
L o . . e
... .
L e .
e o ; o .

.

c
-
.
.

.
o
.
oy
e

e
s

..
o
.
.
. .

e
s
-

i

i -
S .

e

-
o

o
L
.

e

s

i
e
.
e
L
o

5
o

-

=

e

-
o

o 5
s (3 i i i
.
S Lo
e . o
.

-

o
sk A @g
1)
g " -
Leeae Sa S
o .

. . .
. o ..
. .
i i Tl

;,%%gw

.

.

- .

L e L
o i . =

o
=

o
e

-

-

-
-

G

-
-
-

,555%: o
-
S
e

.
o

-
-
o
e
o

o
i
.

.
-
seensitiin
-
e

o

S
-

.
-

o

Senan
G
o

i
e

e
]

.

-
ey

L
foo i
.

o
oon
o
et
o
e
i
.

e

o

.

.

.
.

mEE
o
o

% Storing the Resource ID in a Gesture Window 84.2.2

To associate a Quick Help resource with a window class that inherits from
clsGWin, store the resource ID in the gWin.helpld field of the window. For
example, while handling msgNewDefaults, clsTTT View sets its gWin.helpID to
the resource ID of one of the strings defined in Example 84-1 (this code fragment
is from \PENPOINT\SDK\SAMPLE\TTT\TTTVIEW.C):

pArgs->gWin.helpld = tagTttQHelpForView;

CHAPTER 84 / HELP 187
Advanced Topics

7 Advanced Topics 84.3

Most application designers shouldn’t need to communicate with theQuickHelp.
However, if you create a class that does not inherit from clsGWin or want to
intercept the Quick Help messages and handle them on your own, you can send
messages to theQuickHelp.

¥» Quick Help Message Summary 84.3.1
The Quick Help messages and structures are defined in QHELP.H.
Table 84-1 lists the messages defined by Quick Help.

Table 84-1
clsQuickHelp Messages
Messages Tokes Bescription
msgQuickHelpHelpShow P_XY32 Sent to a window to request it to display quick help.
The window typically responds by posting
msgQuickHelpShow.
msgQuickHelpShow P_QUICK_DATA Sent to theQuickHelp to displays the Quick Help
associated with a resource ID.
msgQuickHelpOpen Forces the Quick Help window to appear.
msgQuickHelpHelpDone OBJECT Sent to a window when quick its quick help is no
longer displayed.
Messages Sent to Observers
msgQuickHelpOpened nothing Indicates that the quick help window has been
opened.
msgQuickHelpClosed nothing Indicates that the quick help window has been
closed.
msgQuickHelpInvokedNB nothing Indicates that the notebook associated with quick
help should be open.
P> Using Quick Help Messages 84.3.2

This section describes how to use the Quick Help messages. You should rarely
need to send any of these messages since default Quick Help handling is
implemented by clsGWin, and most application windows inherit from clsGWin.

smndh

% Displaying Quick Help Text 84.3.2.

To tell the Quick Help window to open and display help text, send
msgQuickHelpShow to theQuickHelp. Normally, theQuickHelp will send
msgQuickHelpHelpShow to your window, and your window will respond by
using ObjectPost() to send msgQuickHelpShow to theQuickHelp.

msgQuickHelpShow takes as its argument a pointer to a QUICK_DATA structure
that contains:

helpld The Quick Help resource identifier.
appUID The UID of the application that owns the Quick Help resource.

The Quick Help window remains open until the user closes it.

9 / UTILITY CLASSES

188 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

%> Opening the Quick Help Window 84.3.2.2

You can force the Quick Help window to appear on screen. To open the window,
send msgQuickHelpOpen to theQuickHelp. The message takes no arguments.
The Quick Help window displays the text that was last displayed by
msgQuickHelpShow.

~ % Using the PenPoint Gesture Font 84.3.3

The PenPoint Gesture font allows you to incorporate glyphs that resemble gestures
in your Help and Quick Help documents. The PenPoint Gesture font file is in
\PENPOINT\FONT\GS80.PCK. You must use Rich Text Format (RTF) documents to
include the gesture font with ordinary text in your document.

Table 84-2 shows the characters in the Gesture font as they appear on the
PenPoint computer screen, their ASCII values, and the meanings of the characters.
Not all gestures are currently used; not all have glyphs in the gesture font. The
ASCII values are assigned tags in the file \PENPOINT\SDK\INC\XGESTURE.H.

Table 84-2

PenPoint Gesture Font
Gesture Tag Symbol ASCH Value
xgsLeftParens [40
xgsRightParens] 41
xgsPlus + 43
xgslTap y 46
xgsQuestion ? 63
xgsAGesture A 65
xgsBGesture B 66
xgsCGesture C 67
xgsDGesture D 68
xgsEGesture E 69
xgsFGesture F 70
xgsGGesture G 71
xgsHGesture H 72
xgslGesture I 73
xgs] Gesture J 74
xgsKGesture K 75
xgsDownRight,
xgsLGesture L 76
xgsMGesture M , 77
xgsNGesture N 78
xgsCircle,
xgsOGesture o 79
xgsPGesture P 80
xgsQGesture Q 81

continued

CHAPTER 84 / HELP
Advanced Topics

Table 84-2 {continued)

189

Gesture Tag
xgsRGesture

xgsSGesture

xgs TGesture
xgsUGesture
xgs WGesture

xgsCross,
xgsXGesture

xgsYGesture
xgsZGesture
xgs2Tap

xgs3Tap

xgs4Tap
xgsCheckTap
xgsTapHold
xgsPressHold
xgsScratchOut
xgsPigtailVert
xgsCirdeTap
xgsUpCaret
xgsCircleLine
xgsCircleFlickUp
xgsCircleFlickDown
xgsUpCaretDot
xgsDblCircle
xgsUpArrow
xgsUp2Arrow
xgsDownArrow
xgsDown2Arrow
xgsLeftArrow
xgsLeft2Arrow
xgsRightArrow
xgsRight2Arrow
xgsDblUpCaret
xgsRightUp
xgsRightUpFlick
xgsRightDown
xgsDownRightFlick
xgsDownlLeft

- xgsDownlLeftFlick

i g fe s e N =X

=58>0 0> 0 2

V1t

L Ly ¥

L Lr 4

ASCH Value
82

83
84
85
87

88

89

90

128
129
130
136
137
138
140
141
142
143
146
147
148
149

152

153
154
155
156
157
158
159
160
161
165
166
167
168
169
170

continued

9 / UTILITY CLASSES

190 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Table 84-2 [continued)

Gesture Tag Symbol ASCH Value
xgsParagraph 171
xgsUpRight I 173
xgsFlickUp J 174
xgsFlickDown | 175
xgsFlickLeft : — 176
xgsFlickRight — 177
xgsDblFlickUp I 178
xgsDblFlickDown] 179
xgsDblFlickLeft = 180
xgsDblFlickRight = 181
xgs TrplFlickUp] 186
xgs TrplFlickDown m 187
xgs TrplFlickLeft = 188
xgs TrplFlickRight = 189
xgsQuadFlickUp [l 190
xgsQuadFlickDown m 191
xgsQuadFlickLeft = 192
xgsQuadFlickRight = 193
xgsLeftDown — 197
xgsLeftUp - 198
xgsUpLeft - 199
xgsVertCounterFlick) 200
xgsHorzCounterFlick = 201
xgsCircleCrossOut s 203
xgsBordersOn 204
xgs2TapHold A 244
xgs3TapHold ol 245
xgs4TapHold X 246
%> Adding Gestures to Help Text 84.3.3.1

To add the gesture characters to help text, edit the help text file using a text editor
that supports multiple fonts and can save a document in RTF format. Insert the
value for the gesture font character and change the font of the character to
symbol-h.

When MiniText reads an RTF document, it interprets characters styled with the
symbol-h font as using the PenPoint Gesture font.

CHAPTER 84 /lHELP

%r Adding Gestures to Quick Help Strings

Adding gestures to Quick Help strings is somewhat more complicated, because
you have to create your Quick Help strings in RTF to take advantage of the
PenPoint Gesture font.

If you examine a few RTF strings, you will be able to understand most of the
language. A complete description of RTF is available in the Microsoft Word for
Windows Technical Reference, which is available from Microsoft Press.

The escape character for RTF strings is a backslash. When defining RTF strings in
C, you must remember to double the backslash.

The first part of an RTF description of a document assigns fonts to font numbers,
describes the style sheet (if there is one), and describes the document layout.
PenPoint provides a shorthand method for describing this information with the
\qh control word.

The change to the PenPoint Gesture font begins is specified with the string \\f63;
the return to the normal font is specified with the string \\f0. RTF files cannot
contain characters other than the 127 ASCII characters, so characters beyond
decimal 127 must be specified with the RTF hexadecimal character representation
(\V hex-digits).

Advanced Topics

84.3.3.2

9 / UTILITY CLASSES

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

Chapter 85 / The Busy Manager

Occasionally your application might need to perform some time-consuming
work—time-consuming enough for the user to notice that the machine is not
responding. Such work might include performing compute-intensive work or
copying large files across a network. To assure the user that the computer is still
working, you can put up a busy clock, a small animated image of a clock face, on
the screen.

The PenPoint™ Application Framework ensures that all applications automatically
bring up the busy clock if they take more than about half a second to respond to
an input event, then automatically take down the busy closk when they are no
longer busy. Furthermore, you can control the busy clock programmatically by
sending messages to theBusyManager. Messages for theBusyManager are defined
in BUSY.H. '

p” Using theBusyManager | 85.1

theBusyManager responds to the message, msgBusyDisplay. When your
application starts some work that will not change the display for a number of
seconds, send msgBusyDisplay to theBusyManager with busyOn (a U32) as the
argument. When your application is no longer busy, send msgBusyDisplay to
theBusyManager with busyOff (a U32) as the argument.

This example shows a use of theBusyManager.

#include <busy.h>
STATUS s;

s = ObjectCall (msgBusyDisplay, theBusyManager, busyOn);
// (Perform some time-consuming task)

// Done, take down busy display
s = ObjectCall (msgBusyDisplay, theBusyManager, busyOff);

% Placing the Busy Display 85.1.1

If you want to locate the busy clock at a particular point on-screen, send
msgBusySetXY with a pointer to an XY32 as its argument. The next time
theBusyManager receives msgBusyDisplay with an argument of busyOn, the
busy clock will appear a the root window coordinates specified by the XY32.

msgBusySetXY sets the location of the busy clock only for the duration of one
send of msgBusyDisplay. When the busy clock is turned off, the coordinates for
the next display of the busy clock are set to minS32, minS32.

194 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

7 The Busy Clock Delay and Reference Count ::.2

Normally, theBusyManager allows a short delay from the time it receives
msgBusyDisplay with an argument of busyOn and the time it displays the busy
clock. This usually prevents situations in which the busy clock appears on screen
for so brief a period that it simply flickers. However, if you know that your
application will be busy for an extended period and would like the busy clock to
come up immediately, you can use an OR operation to combine the flag
busyNoDelay with busyOn. If you pass the result as the argument to
msgBusyDisplay, theBusyManager will put the busy clock up with no delay.

theBusyManager maintains a reference count which records how many objects
have turned on the busy clock and how many have turned it off. Using the
reference count, theBusyManager can handle msgBusyDisplay more efficiently.
For example, suppose two clients send msgBusyDisplay with an argument of
busyOn. When the first client send msgBusyDisplay with an argument of
busyOff, theBusyManager does not need to take down the busy clock (which is
still needed for the second client), and instead simply reduces the reference count
and returns stsOK. theBusyManager doesn’t execute the code to take down the
busy clock until the reference count comes back down to zero.

It is possible to override the reference count mechanism, although this is not
recommended. If you use an OR operation to combine the flag busyNoRefCount
with busyOn, msgBusyDisplay will do nothing if the reference count is greater
than zero. If you combine busyNoRefCount with busyOff, msgBusyDisplay will
set the reference count to zero and bring down the busy clock.

PENPOINT ARCHITECTURAL REFERENCE / VOL 11}

PART 9 / UTILITY CLASSES

Chapter 86 / Search and Replace

The search and replace API provides a protocol used by clients that need to search
and replace text strings in embedded objects. Additionally, the search and replace
library provides functions that search for and replace text in specified objects.

Topics covered in this chapter:
Writing an application that searches and writing a class that can be searched.
¢ The search and replace protocol.
¢ Responding to traversal messages.
¢ The search and replace library.

¢ Advanced topics (for those not using the search and replace driver provided
by the PenPoint™ operating system).

7 Concepts 86.1

Before reading this chapter, you should be familiar with embedded documents
and using marks, which are both described in Part 2: PenPoint Application
Framework.

A search and replace operation is a specialized form of traversal. The search and
replace operation scans a document looking for a particular pattern of text.
Traversal is necessary, because the document might contain embedded documents;
those documents might contain embedded documents, and so on. When
initiating the search, the user can specify whether to search in embedded
documents or to only search the document that contains the selection.

At any one time, there are two interesting participants in a traversal: the driver and
the slave. If you are writing a class that will contain data that can be searched,
instances of the class will be the slave.

A search and replace operation is managed by a search and replace driver. The
search and replace driver sends traversal messages to the objects being searched.

Most applications do not need to create a search and replace driver themselves. If
an application allows clsApp to handle msgAppSearch, clsApp presents the user
with a search dialog and creates the search and replace driver. (You can read about
how to handle Standard Application Menu messages in Part 2: PenPoint
Application Framework.)

If your class will be a slave (that is, instances of your class contain data that can be
searched), you must be prepared to handle both mark messages and the search and
replace messages. Most of this chapter discusses how to handle those messages.

196 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

7 Writing a Class 'I'hqi Can Be Searched

To start a search or search and replace operation, an application should allow the
class manager to pass msgAppSearch to clsApp. clsApp displays the search dialog
and searches the appropriate portion of the document.

If your application needs to start a search by itself, you can send msgAppSearch to
self. The message takes no arguments.

If you want instances of your class to be searched, you must respond to:
¢ The clsMark messages sent to you by the search and replace driver.

¢ The search and replace messages.

% Search and Replace Protocol

The following sections describe the protocol exchanged between theSearchManager
and the object being searched. The search (and replace) operation follows these steps:

1 cIsMark asks the object to create a token for a mark.

theSearchManager asks the object to set the initial search position.

theSearchManager asks the object to pass it characters delimited by the token.

O A WON

theSearchManager searches the characters for its search string. It repeats
steps 3 through 5 until it finds the text (or reaches the end of data).

6 If theSearchManager finds a match, it asks the object to reposition its token
to the matched string,

7 theSearchManager asks the object to select take the selection and show the
matched string to the user.

8 If replacing, theSearchManager asks the object to replace the characters.

9 If replacing all, repeat steps 3 through 9 until the object reaches the end of
its data.

P» Creating a Mark

When the user starts a search and replace operation, theSearchManager creates an
instance of clsMark, which in turn requests the object being searched to create a
mark by sending it msgMarkCreateToken.

The object that receives this messages should create a token for the mark, as
described in Part 2: PenPoint Application Framework.

P» Setting the Initial Search Position

When the searched object has created the token, theSearchManager requests the
object to position its token to the beginning (or end) of the data that it will search
by sending one of msgMarkPositionAtEdge, msgMarkPositionAtSelection, or
msgMarkPositionAtGesture.

theSearchManager asks the object to position to the next group of characters.

86.2

86.2.1

86.2.2

86.2.3

theSearchManager does not
currently send msgMark-
PositionAtSelection, but might
at some time in the future.

CHAPTER 86 / SEARCH AND REPLACE 197
Writing a Class That Can Be Searched

’» Getting the Next Group 86.2.4

To search for text, theSearchManager requests the object to position its token to
the next group of characters that might contain match the search. The arguments

for msgSRNextChars identify the token to be moved.

The method that handles msgSRNextChars, and all methods that handle search
and replace messages should call the function MarkHandlerForClass(). The only
parameter for the function is the well-known UID of the class to which the
method belongs.

Usually a group ends at a non-text element (such as an embedded document).
However, the group can end anywhere that is convenient for your data.

The method must also set the blockStart and blockEnd BOOLEAN values. These
indicate whether the group of characters is the beginning or end of a block of
characters. Text within groups is not matched across block boundaries, but is
matched across other groups.

There are three status values your method can return:

stsOK Next group found and token repositioned.

stsEndOfData There is no more data to be searched. (When your method
finds the last group, it still returns stsOK; only when another
msgSRNextChars arrives should it return stsEndOfData.)

stsMarkEnterChild The next item is an embedded document.

P» Passing the Found Characters 86.2.5

If your method for msgSRNextChars returned stsOK, theSearchManager asks
the object to pass back the characters matched by the token by sending
msgSRGetChars.

The message passes a pointer to an SR_GET_CHARS structure, which contains:

first An offset to the first character in the token to copy.

len The number of characters to copy.

bufLen The size of the buffer.

pBuf A pointer to the buffer to which your method copies the characters.

Your method must copy a null terminate string into pBuf.

" Searching the Text 86.2.6

theSearchManager does the actual searching by comparing its search string to the
characters passed in by msgSRGetChars.

If theSearchManager finds a match, it asks the object to position its token to the
matched characters by sending it msgSRPositionChars. The message passes a
pointer to an SR_POSITION_CHARS structure, which identifies the new position
for the token.

9 / UTILITY CLASSES

198 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

% Highlighting the Text 86.2.7
The search manager then asks the object to display the found text by:
Asking the object to take the selection by sending it msgMarkSelectTarget. -

¢ Asking the object to display the matched characters to the user by sending it
msgMarkShowTarget.

’» Replacing Characters 86.2.8

If the user is using find and replace and chooses to replace the matched text,
theSearchManager asks the object to replace some or all of the characters matched
by the token with new text by sending it msgSRReplace. The message passes a
pointer to an SR_REPLACE_CHARS structure, which contains:

first The offset to starting character within the token to replace.

len The number of characters to replace.

bufLen The number of characters in the replacement string.

pBuf A pointer to the replacement string.

The first field can be negative, indicating that the text to be replaced starts before
the token.

After replacing the text, your method must update the token to reflect any change Your method must update the
in size of the replaced text. token.

Classes That Respond to Search Messages ::.:

If your class inherits from a class that responds to the search and replace messages,

you may not have to do anything.

Currently clsText is the only class that responds to the search and replace messages.

The Search and Replace Messages 86.4
Table 86-1 lists the messages defined by clsSR in the file SR.H.

Tuble 86-1

Search and Replace Messages
Message Tokes Desgription
msgSRNextChars P_SR_NEXT_CHARS Asks the client to move the token to the next group

of characters.
msgSRGetChars + P_SR_GET_CHARS The component passes back the characters from the

location identified by the token.
msgSRReplaceChars P_SR_REPLACE_CHARS Ask the component to replace some of the characters

at the location identified by the token.

msgSRPositionChars P_SR_POSITION_CHARS Asks the component to reposition the token to some

of the characters in the current group.

Chapter 87 / Undo

The undo manager provides the mechanism that allows applications to respond to
the standard application menu undo command.

Topics covered in this chapter:
¢ The concepts behind the undo manager.
¢ Undo manager messages.

¢ Using the undo manager messages.

Conceplis 87.1

The undo manager provides a centralized facility within each application for The undo manager is not a

managing undo information and handling undo commands local to a document. 962”?' d,ﬁ‘;@ab%@ transaction
undo facility.

Applications use the undo manager to store records of user actions and can request
the undo manager to undo those user actions. Currently there is no support for
undoing actions between documents (such as move or copy between documents);
each document sees its part of such operations as a separate undo item.

When designing the user interface for an application or component, you need to
identify particular user actions that the user might want to undo. Each user action
that is undoable is called a transaction. One or more objects contribute one or
more undo items to a single transaction.

A transaction should appear to the user a single action, such as deleting a
spread-sheet cell, inserting text in a document, or changing all the text in the
selection to italics.

When the user issues an undo command, the undo manager undoes the most
recent transaction by sending a message to the objects mentioned in the
transaction. Those objects must know how to undo their parts of the transaction,
but the undo manager keeps track of what to undo. The undo manager allows
applications to support a transaction history, so that subsequent undo commands
remove transactions from the history in the reverse order in which they were

added.

Because PenPoint™ applications are built by integrating a number of components,
the PenPoint undo is slightly different than undo under other operating
environments. In traditional operating environments, the program that performs
the undo keeps track of all of its own actions. However, under PenPoint, actions
may be performed by the application or any of its component objects.

Each component that performs a function that a user might want to undo must
cooperate in the undo strategy. If a component doesn’t cooperate in the undo
strategy, changes made by that component are not undoable; if the component

200 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

contributes to an overall action that is undoable, the undo might not work
correctly.

% The General Strategy | 87.1.1

When the user turns to a document, the PenPoint Application Framework creates
an instance of the undo manager for that document (named theUndoManager).

When the user performs some action that is undoable, the application tells
theUndoManager that a transaction is beginning. Applications and components
divide the steps that it takes to complete the transaction into a series of items. An
undo item describes an operation by a class and how to undo that operation. The
application and its components add items to the transaction data until the trans-
action ends. The application tells theUndoManager when the transaction ends.

When the user taps on Undo, theUndoManager gets the data for the most recent
transaction. theUndoManager removes the last item in the transaction, examines
it, and sends a message to the object that created the item. The object’s class (or
one of its ancestors) uses the item data to undo that part of the operation and then
frees the item data. theUndoManager continues to remove and examine the items
in the transaction (in the reverse order in which they were received), until the
transaction is completely undone.

When the user turns away from the document, the PenPoint Application
Framework destroys theUndoManager and the undo history as part of
deactivating the document.

At any time there is at most one undo transaction open. The data associated with
each transaction includes:

® A unique identification of type UNDO_ID.

¢ A nesting count that tracks the number of “begin undo” transaction messages
that have not been matched by a corresponding “end undo” transaction
message.

¢ A heap with global scope, from which clients can allocate space to hold undo
item information.

A list of undo items contributed by applications or components.
‘® A variety of transaction state information.

The transaction information is stored in the UNDO_METRICS structure; applications
can get this information by sending msgUndoGetMetrics to theUndoManager.

CHAPTER 87 / UNDO

%> Transaction Data

The undo manager stores transaction data in the undo history. An application can
change the size of its undo history, thereby allowing larger transaction histories.

The data for a transaction consists of one or more items. An item describes a
change made to data by an application or component. For example, if a user
replaced a value in a cell, the transaction might consist of a single item, the
original value for the cell. On the other hand, a search and replace operation could
potentially create items for each replacement.

An item contains:
¢ The object and class that performed the change.

¢ A 32-bit value that the class uses to store its own information about the
change.

¢ A variety of attributes stored in a 16-bit flag variable.

In simple cases, the 32-bit value can contain the actual data that is changed; in
more complex cases, it points to a buffer that describes the change. The object that
creates an item and data is also responsible for restoring that item from the data.
Thus, the organization of the data for each item is up to you.

Your application allocates the buffer used in the item. When you undo an item,
you are also responsible for deallocating the buffer.

However, there are two other reasons why you might need to deallocate the buffer;
in these cases either you or the undo manager can do the deallocation.

¢ When the transaction history is full, the undo manager removes the oldest
transaction from the history. As part of removing a transaction, the undo
manager must coordinate deallocation of the item data buffers.

¢ When an application or component aborts a transaction, the undo manager
removes the items from the aborted transaction and must coordinate
deallocating the data buffers for those items.

When you add an item to the transaction history, you can tell the undo manager
how the data buffer was allocated. You can also tell the undo manager to
deallocate the item’s buffer automatically when either of the above events occur (or
you can deallocate the buffer yourself).

If you don’t tell the undo manager how to deallocate the buffer, the undo manager
sends you a message telling you to deallocate the buffer.

87.1.2

Concepts

201

9 / UTILITY CLASSES

202 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

P The Undo Messages - §7.2

The messages used by theUndoManager are described in the file UNDO.H. Table
87-1 lists the undo messages. '

Table 87-1
clsUndo Messages
Message ' Takes Description
msgUndoAbort pNull Aborts the current undo transaction.
msgUndoAddItem P_UNDO_ITEM Adds a new item to the current undo transaction if

and only if it is still open.

msgUndoBegin RES_ID Creates a new undo transaction if there is no current
transaction, or increments the nesting count if
there is a current transaction.

msgUndoCurrent pNull Undoes the most recent undo transaction.

msgUndoEnd pNull Decrements the nesting count of (and thus may end)
the current transaction.

msgUndoGetMetrics P_UNDO_METRICS Passes back the metrics associated with an undo
transaction.

msgUndoLimit U32 Sets the maximum number of remembered undo
transactions.

Messages Sent to Clients

msgUndoltem P_UNDO_ITEM Sent to pArgs->object to have the item undone.
msgUndoFreeltemData P_UNDO_ITEM Sent to pArgs->object to have pArgs->pData freed.

P Using the Undo Messages | 87.3

%

The following sections describe how to use the clsUndo messages to save
transactions and then how to restore them when the user taps on Undo.

Beginning a Transaction 87.3.1

When the user initiates an action that your application or component might need
to undo, start a new transaction by sending msgUndoBegin to theUndoManager.
The message takes no arguments.

If an application or component attempts to start a transaction while a transaction
is already in progress, theUndoManager increments a counter that counts the
number of begins; theUndoManager does little else. This is necessary because a
component is not expected to know what happened in its owning application
before it receives a message (nor should it know what application or component
might own it). If your component performs some task that can be undone, it
might send msgUndoBegin just to be on the safe side. If the owning application
also sent msgUndoBegin, it won’t matter.

By nesting transactions, the undo manager allows separately implemented
components to behave consistently when used together in a transaction. Each
component can add items to the current transaction, but the transaction shows no
indication of the nesting. ’

CHAPTER 87 / UNDO 203
Using the Undo Messages

The most important thing is that for each msgUndoBegin, there must be the
same number of msgUndoEnd messages at the end of the transaction
(msgUndoEnd is described below). Keep this in mind before you use the
ObjCallRet(), ObjCallJmp(), StsRet(), or StsJmp() macros.

To prevent run-away applications from nesting transaction-begins too deeply (and
to detect errors when a msgUndoBegin does not have a matching msgUndoEnd),
theUndoManager returns stsFailed if you exceed the nesting limit, which is
approximately 1000.

When msgUndoBegin completes successfully, it returns an UNDO_ID. This value
identifies the transaction; you can use it to get metrics of a specific transaction.

The memory allocated for transactions is finite. When you start a new transaction,
the undo manager might need to make space in the transaction history, which it
does by freeing the earliest transaction. Thus, you shouldn’t be surprised that
before msgUndoBegin returns you receive a msgUndoFreeltemData, asking you
to free buffers used by items in the freed transaction. You should free the buffers,
return msgUndoFreeltemData and, eventually, msgUndoBegin returns.

P Adding ltems to a Transaction 87.3.2

As your application or component performs the steps within the transaction, it
needs to note what change took place in each of the steps. For each change, send
msgUndoAddItem to theUndoManager. The message takes a pointer to an
UNDO_ITEM structure that describes a change to data. The structure contains:

object The UID of the object that is performing the transaction.
subclass The UID of the class that is making the change.
flags Flags that specify how the undo manager should free the item. The

flags are described below.
pData A 32-bit value that either is the change data or points to a buffer that
contains the change data.

dataSize A value that contains the size of the data in pData. If this field is
non-zero, theUndoManager assumes that pData points to a data buffer
. and copies that data into the transaction’s heap.

ol
(&
[

i

%7 ltem Flags 87.3.2.1
There are two sets of flags in the flags field.

The first set contains four flags that are not interpreted by theUndoManager. You
can use these flags to represent what ever you want in the undo item. The value
ufClient is a mask that you can use to access the client-specific portion of flags.

The other set of flags describe how the pData buffer for an item was allocated. If
you specify one of these flags, the undo manager frees the pData buffer
automatically when it removes an old transaction from the history or when it
aborts a transaction. The flags can be one of the following:

9 / UTILITY CLASSES

204 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

ufDatalnUndoHeap pData points to a stand-alone node from the current
undo transaction’s heap; the undo manager can free the buffer by freeing
the entire heap.

ufDatalsHeapNode pData points to a stand-alone node from a global
heap; the undo manager can free the buffer with
OSHeapBlockFree(pData).

ufDatalsObject pData contains the UID of an object; the undo manager
can free the object by an ObjectSend of msgDestroy.

ufDatalsSegment pData points to a stand-alone segment; the undo
manager can free the buffer with OSMemPFree().

ufDatalsSimple pData is a simple value (for example a U32); the undo
manager can free the value by just forgetting it.

You can use the value ufDataType as a mask to access the data type flags in the
flags field. The data type flags are 12-bits long. If you store the ufDataType
portion, use a U16 value.

If you do not specify one of these flags when you add an item, the undo manager
sends you msgUndoFreeltem when it needs to remove an item from a transaction.

The transaction must be open when yoﬁ send msgUndoAddItem. If there is no
open transaction when you send msgUndoAddItem, the message returns stsFailed.

If there is an open transaction, but there isn’t enough memory to add the item to
the transaction, msgUndoAddItem returns stsOSOutOfMem.

If msgUndoAddItem returns stsUndoAborting Transaction, the transaction is
aborting. You must free an storage allocated for the item that you attempted to
add (unless the storage is in the transaction’s heap).

» Ending a Transaction

When you conclude the transaction (before returning control to the user), you
tell the undo manager to close the current transaction by sending msgUndoEnd
to theUndoManager. The message takes no arguments.

For every msgUndoBegin there must be a corresponding msgUndoEnd.
msgUndoEnd decrements the nesting count; if the message lowers the nesting
count to zero, the undo manager closes the transaction. You cannot add items
to a closed transaction. ’

¥ Aborting a Transaction

When your application or component is unable to complete its work because
of an error, you will probably want to abort the current transaction.

If you need to abort a transaction, send msgUndoAbort to theUndoManager.
The message takes a pNull value.

When theUndoManager receives msgUndoAbort, it marks the current transaction
as aborting. If you send msgUndoAddItem to an aborting transaction, it will return

8§7.3.3

87.3.4

CHAPTER 87 / UNDO 205
Using the Undo Messages

stsUndoAbortingTransaction. You must deallocate the item’s data buffer, unless the
buffer was allocated from the transaction’s heap.

In an aborting transaction, the state field in the UNDO_METRICS structure has the
flag undoStateAborting set.

Aborting a transaction does not close that transaction; you are still responsible for
closing the transaction. The undoStateAborting flag remains set until the final
msgUndoEnd closes the transaction.

P Getting Transaction Metrics 87.3.5
You can get the transaction metrics for any of the transactions in the transaction
history by sending msgUndoGetMetrics to theUndoManager. The message takes
a pointer to an UNDO_METRICS structure. To get the metrics of the current or
latest transaction, set the id field in the UNDO_METRICS structure to pNull. To
get the metrics for another transaction, set the id field to the UNDO_ID value for
that transaction.

When the message completes successfully, it returns stsOK and sends back the
UNDO_METRICS structure with:
id An UNDO_ID value that contains the transaction ID.

heapld An OS_HEAP_ID value that indicates the heap that you can use to
store item data.

state A U16 that indicates the transaction’s current state. The state field does
not contain a value that indicates the state, rather it contains a set of flags
that indicate attributes of the current transaction. The flags are:

undoStateBegun The transaction is open.
undoStateUndoing The transaction is being undone.
undoStateAborting The transaction is aborting. If the state field con-
tains the value undoStateNil, all these flags are clear.

transactionCount A count of the number of transactions in the undo
history.

itemCount A count of the number of items in the transaction.

limit The maximum number of transactions allowed in the transaction
history. The default for the limit value is 2; you can modify this value
with msgUndoLimit.

resID A resource ID identifying the string to use for the Undo menu item.
This resource ID should specify a resGrpTK string resource list.

info A U32 fields reserved for future system use.

% Changing the Size of the Transaction History 87.3.6

To change the size of the transaction history, send msgUndoLimit to
theUndoManager. The message takes a U32 value that contains the new maximum
number of transactions that the undo manager can store. If the value is 0, you
effectively disable the undo capabilities of your application or component.

9 / UTILITY CLASSES

206 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

%> Undoing a Transaction 87.3.7

When the user taps on the undo button in the Edit menu the menu sends
msgAppUndo to self (the document that is open). When your application receives
msgAppUndo, the PenPoint Application Framework sends msgUndoCurrent to
theUndoManager; the message argument is always pNull. (For more information
on Standard Application Menu messages, see Part 2: PenPoint Application
Framework.

When the undo manager receives msgUndoCurrent, it locates the latest transaction
(whether it is still open or not) and removes the last item from that transaction.
Because each UNDO_ITEM structure contains an object UID and a class UID, the
undo manager sends the item to the object UID with msgUndoltem (you must be
prepared to receive and handle msgUndoltem, described below). The undo manager
continues to remove items from the transaction and send them to their corresponding
owners until the transaction is empty.

When the transaction is empty, msgUndoCurrent returns. If there is a previous
transaction in the transaction history that transaction becomes the next
transaction to be undone (the next time the undo manager receives
msgUndoCurrent.

’» Handling msgUndoltem 87.3.8

When you receive msgUndoltem, compare the class in the UNDO_ITEM structure
to your class. If the class doesn’t match, send the message to your ancestor. If the
class does match, use the data indicated by pData to undo the action.

Again, the way that you store the data in an item and undo that action is totally
up to you.

% Handling msgUndoFreeltem 87.3.9

If you did not specify one of the data type flags in UNDO_ITEM, the undo manager
does not know how to free pData, so it sends msgUndoFreeltem to you. The message
sends you a pointer to an UNDO_ITEM structure.

As with msgUndoltem, you should compare the class field in the structure with
your class, if they don’t match, send the message to your ancestor. If they do
match, free the data. It is up to you to know how the data was allocated and how
to free it.

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

 PART 9 / UTILITY CLASSES

Chapter 88 / Byte Buffer Objects

The byte buffer object class (clsByteBuf) allows clients to create a simple data
object that contains an array of bytes. clsByteBuf allocates space for the byte array,
handles filing messages, and deallocates the space when the client destroys the byte
buffer object.

7 Concepts 88.1

Frequently applications maintain some data in an array of bytes. If this data is
stateful, you need to file the data when you receive filing messages. One way to do
this is to keep the data in one or more data objects and file the objects using

msgResPutObject.

To save you from writing your own class to maintain and file byte arrays, PenPoint
provides clsByteBuf, which you can use to store byte arrays. If you need to save a
string, use the string object class defined in Chapter 89, String Objects.

If you have an array of bytes that you need to save, you create a clsByteBuf object
and store the bytes in the object. You can store any type of bytes in the clsByteBuf
object. clsByteBuf only sees the data as an array of bytes; the organization of the
data is up to your application. clsByteBuf handles the allocation, deallocation, and
filing messages for you. All you have to do is ensure that your byte buffer object
receives filing messages at the proper time.

clsByteBuf allocates its memory from the system heap. When you ask a byte
buffer object for its data, it sends back a pointer to the system heap, so you don’t
have to allocate space to accomodate the data.

Because the storage for byte buffer data is in a system heap. The location in the
heap changes when the data changes, so you cannot maintain or file other pointers
to that buffer. When the byte buffer object is saved and restored, there is no
guarantee that the object will be restored at the same address. If you need to
maintain a location within a byte buffer object, use an index rather than a pointer.

clsByteBuf has no concurrency support. If two clients access the same byte buffer
object at the same time, they manipulate the same data.

208 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Using the Byte Buffer Messages | 88.2

The clsByteBuf messages are listed in Table 88-1. The messages are defined in the
file BYTEBUF.H.

Table 88-1
clsByteBuf Messages
Message . Tolees Description
msgNew P_BYTEBUF_NEW Creates a new buffer object.
msgNewDefaults P_BYTEBUF_NEW Initializes the BYTEBUF_NEW structure to
default values. '
msgByteBufGetBuf P_BYTEBUF_DATA Passes back a pointer to the object’s buffer.
msgByteBufSetBuf P_BYTEBUF_DATA Copies the specified buffer data into the object’s
buffer.
msgByteBufChanged OBJECT Sent to observers when the object data changes.
’ Creating a Byte Buffer Object 88.2.1
To create a byte buffer object, send msgNewDefaults and msgNew to clsByteBuf.
The messages take a pointer to a BYTEBUF_NEW structure that contains an
OBJECT_NEW_ONLY structure and a BYTEBUF_NEW_ONLY structure. The
BYTEBUF_NEW_ONLY structure contains:
allowObservers A BOOLEAN value that specifies whether the object send
messages to observers.
data A BYTEBUF_DATA structure that contains:
pBuf A byte pointer to the byte array to be saved.
bufLen A U16 value that specifies the length of the byte array in pBuf.
When the message completes successfully, it returns stsOK.
’» Getting the Byte Buffer Data 88.2.2
To get the address of the byte buffer data, send msgByteBufGetBuf to the byte
buffer object. The message takes a pointer to an empty BYTEBUF_DATA structure.
When the message completes successfully, it returns stsOK and passes back the
BYTEBUF_DATA structure containing:
pBuf A byte pointer to the byte array.
bufLen A U16 value that indicates the length of the byte array in pBuf.
¥» Resetting a Byte Buffer Object 88.2.3

When you create a byte buffer object, you set its initial value, but if you want to
change the contents of a byte buffer object, you send msgByteBufSetBuf to the
byte buffer object. The message takes a pointer to a BYTEBUF_DATA structure that
contains:

pBuf A byte pointer to the byte array.
bufLen A U16 value that indicates the length of the byte array in pBuf.

CHAPTER 88 / BYTE BUFFER OBJECTS 209
Using the Byte Buffer Messages

If bufLen is different from the size of the byte buffer that was stored there before,
clsByteBuf automatically changes the size of the allocated storage.

When the message completes successfully, it returns stsOK.

% Notification of Observers 88.2.4

Clients can observe a byte buffer object (provided that the creator of the object
specified allowObservers when it sent msgNew). When a client sends
msgByteBufSetBuf to a byte buffer object, clsByteBuf sends
msgByteBufChanged to all observers of that byte buffer object. The message
passes an OBJECT value that identifies the byte buffer object that changed.

9 / UTILITY CLASSES

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

Chapter 89 / String Objects

The string object class (clsString) allows clients to create a simple data object that
~ contains a null-terminated ASCII string. clsString allocates space for the string,
handles filing messages, and deallocates the space when the client destroys the
string object.

clsString inherits from clsByteBuf. The difference is that you must supply the
length of a byte buffer as well as a pointer to it, whereas string objects are
null-terminated, so you need only supply a pointer to the string.

" Concepls 89.1

Most applications maintain some data in the form of null-terminated ASCII
strings. If this data is stateful, you need to file the data when you receive filing
messages. One way to do this is to keep the data in one or more data objects and
file the objects using msgResPutObject.

To save you from writing your own class to maintain and file string data, PenPoint
provides clsString, which you can use to store strings. If you need to save a byte
array, use the byte buffer object class described in Chapter 88, Byte Buffer Objects.

If you have a string that you need to save, you create a clsString object and store the
string in the object (you must create a clsString object for each string). clsString
handles the allocation, deallocation, and filing messages for you. All you have to do
is ensure that your string object receives filing messages at the proper time.

clsString allocates its memory from the system heap. When you ask a string object
for its data, it sends back a pointer to the system heap, so you don't have to
allocate space to accomodate the string.

Because the string object is in system heap, you cannot maintain (and file) other
pointers to that string. When the string object is saved and restored, there is no
guarantee that the object will be restored at the same address. If you need to
maintain a location within a string object, use an index rather than a pointer.

clsString has no concurrency support. If two clients access the same string object
at the same time, they manipulate the same data.

212 PENPOINT ARCHITECTURAL REFERENCE
' Part 9 / Utility Classes

"Using the String Object Messages 89.2
The clsString messages are listed in Table 89-1. The messages are defined in the
file STROBJ.H.
Table 89-1
clsString Messages
Message Talces Deseription
msgNew P_STROBJ_NEW_ONLY Creates a new string object.
msgNewDefaults P_STROBJ_NEW Initializes the STROBJ_NEW structure to default
values.
msgStrObjGetStr PP_CHAR Passes back the object’s string.
msgStrObjSetStr P_CHAR Copies the specified string data into the object’s
string buffer.
msgStrObjChanged OBJECT Sent to observers when the string object data
changes.
% Creating a String Object 89.2.1

To create a string object, send msgNewDefaults and msgNew to clsString.
The messages take a pointer to a STROBJ_NEW structure that contains an
OBJECT_NEW_ONLY structure and a STROBJ_NEW_ONLY structure. The
STROBJ_NEW_ONLY structure contains a pointer to the string to be saved

(pString). 4

% Getting the String Object 89.2.2

To get a pointer to a string in a string object, send msgStrObjGetStr to the
string object. The message takes a pointer to a string pointer (PP_STRING).

When the message completes, it returns stsOK and passes back the pointer to
system heap in the specified location.

%» Resetting a String Object 89.2.3

When you create a string object, you set its initial value, but if you want to change’
the contents of a string object, you send msgStrObjSetStr to the string object.
The message takes a pointer to the string that you want stored in the string object.

If the string is a different size from the string that was stored there before,
clsString automatically changes the size of the allocated storage.

When the message completes successfully, it returns stsOK.

’» Notification of Observers , 89.2.4

Clients can observe a string object. When a client sends msgStrObjSetStr to a
string object, clsString sends msgStrObjChanged to all observers of that string
object. The message passes an OBJECT value that identifies the string object that
changed.

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

PART 9 / UTILITY CLASSES

Chapter 90 / Table Class

The class clsTable provides a general-purpose table mechanism with random and
sequential access. You can use clsT'able as a superclass for specialized table classes.

You create, destroy, modify, and access tables using a row and column metaphor.
Tables are PenPoint objects; the data for tables is stored in table files. clsT'able

also provides a semaphore mechanism that you can use to control concurrent table
access.

Tables are observable objects. Any object can add itself to a table’s observer list, so
that the object will receive notification of changes in the table. Changes can
include adding, removing, or changing entries, or destruction of the table.

clsT'able inherits from clsObject.

7 A Distributed DLL 90.1

The table class component is implemented in a DLL, \PENPOINT\SDK\
DLL\TS.DLL. This DLL is #oz automatically loaded at boot time—it is not
mentioned in \PENPOINT\SDK\INC\BOOT.DLC. You need to mention it in your
application’s .DLC file and include it in your application’s installation disk. This
ensures that all applications that use the table class will load the DLL if necessary
and share the same copy of the code.

Structures and #defines used by clsT'able are defined in \PENPOINT\SDK\INC\TS.H.
The library support routines for clsT'able are in the table library, \PENPOINT\SDK\
LIB\TS.LIB.

The send list application uses clsTable to maintain the user’s address list.

' Table Concepts 90.2

A table is a two-dimensional array consisting of a fixed number of columns and a
variable number of rows. Each column contains a single type of data, such as U32,
variable-length string, fixed size byte field, date and time, and so on.

When you create a table, you define the number of columns in the table and the
data type of each column. Once you create a table, you cannot change its
organization.

P> Describing a Table 90.2.1

You describe a table by creating a structure that contains the total number of
columns in the table and a pointer to an array of column descriptors. For each
column in the table, you must create a column descriptor. The order of the

214 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

column descriptors indicates the order of the columns in the table; you use an
index into the column array to indicate specific columns.

Each of the column descriptors contains:
¢ The name of the column.
The type of data in the column (such as U32, string, date and time, or UID).
¢ The width of the column.
¢ The number of times the columns is to be repeated.
¢ The byte offset to the column.

+ Whether the column is a sort field or not.

Table Data Files 90.2.2

The first time you create a table object (by sending msgNew to clsT'able), clsTable
creates a table file in which it stores the data for that table. The msgNew
arguments include the file name and file options. If you destroy the table object
and send msgNew again, clsT'able accesses the table data stored in the table file.

The table object is transitory; the table file can last forever.

You also use arguments to msgNew to indicate whether the table should be
destroyed when it has no observers or no clients, and whether the table file should
be deleted when the table object is destroyed.

clsTable opens the file with exclusive access rights; this means that only one table
object can be associated with a given table file at one time. However, multiple
clients can access the table by using the same table object.

- Beginning Table Access 90.2.3

After creating a table object, you register as a user of the table by sending
msgTBLBeginAccess to the table object. Each client that accesses the table object
must send a separate msgTBLBeginAccess (Even if you created the table object,
you must still register as a table user.) When you no longer need to access a table,
send msgITBLEndAccess to the table object.

The table object maintains a count of the number of accessing clients. When a
client begins access, the table increments the count; when a client ends access, the
table decrements the count. You cannot destroy a table object until the number of
accessing clients is zero. (One of the table destruction options uses this count to
destroy the table automatically when the number of accessors goes to zero.)

You can access a table without using msgTBLBeginAccess and
msgTBLEndAccess, but it is not recommended. If you use a table object for
which you haven'’t registered, the table object might vanish without warning (if
another accessor destroys the object or table file). The table object has no
indication that you are an accessor of the table.

CHAPTER 90 / TABLE CLASS
Shared Tables

%> Positioning in Tables 90.2.4
There are two ways to locate records in a table:

¢ Searching for a specific value in a column, starting at the beginning of the

table.
¢ Searching for a specific value in a column, starting at the current position.

The order in which the records are searched depends on the column that you
search. Unlike other data bases, the table class has no concept of a last record.

When you request a new position from clsTable, it sends back a TBL_ROW_POS

~ value that indicates the row position. This value is not an index or offset within
the table. You cannot advance to the next row in a table by simply incrementing
the row position value. When you request clsT'able to advance to the next record,
you must specify the current TBL_ROW_POS value.

If you know that you will need to examine records in the order in which they were
added to the table, one of the columns in your table should be a sorted column
containing a sequence number. When you add a record to the table, assign a new
sequence number to the record.

Each table object has the concept of a current state. These states are “at the
beginning,” “at the end,” and “somewhere in between.” tsBegin indicates that the
table’s current row is the first row in that column; tsEnd indicates that the table’s
current row is the last row in that column; tsPosition indicates that the current
row is not at the beginning or the end of the column. A client of an empty table is
always positioned at tsEnd.

You use msg TBLGetState to get the current state and row position of a table.

¥» Observing Tables 90.2.5

Table objects are observable. This means that an object can add itself to a table’s
observer list. When anything changes in the table or when other objects add or
remove themselves from the table’s observer list, the table object sends a message
to objects in the observer list. A table client does not have to add itself to the
observer list. In fact, adding observers has a detrimental impact on table performance.
You should add an observer only when you really need it.

Shared Tables | 90.3

Most clients use a table as an unshared, private database. The client creates the
table object, accesses the table, and frees the object all on its own.

Clients can also share a table with other clients. Sharing a table raises several issues
about simultaneous access to the table, such as:
Ownership An object exists only as long as its creator exists.

Access All clients that access a shared table must know the UID of the table
object.

9 / UTILITY CLASSES

216 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Concurrency Problems arise when two clients try to write to the table at
the same time, or when one client writes a record which another client
is reading.

Remember that the table object is transitory, but that the underlying table object

file can exist practically forever. When clsTable creates a table object, it opens the
table object file with exclusive access. This prevents any other client from creating
a table object for the same table object file.

P> Ownership | 90.3.1

The process that created a table object must remain active as long as any other
process is using the table; the table object will be freed when the creating process
terminates.

One way to handle ownership is through a requester-server model. In the
requester-server model one client (the server) creates a table and serves requests
from other clients (the requesters) that want to access the table. The server must
be in existence before the first requester requests access. The server should exist as
long as requesters needs to access the table.

% Access to the Table Object 90.3.2

If you use the requester-server model, only the server has to know the UID of the
table object. However, if you don’t use the requester-server model, the other clients

must be able to find the UID of the table object.
Making the UID well-known global is one way to accomplish this. Explicitly

passing the UID to other processes is another approach (this works well in a server
situation).

Another approach is to have each process that wants to use a table attempt to
create it. If the creation is successful, the process should put the table object UID
in a publicized global location. If the creation fails, another client has already
created the table; client should look for the existing table object UID in the global
location. '

#» Concurrency 90.3.3
A table object has the following access concurrency characteristics:

¢ The last row in the table is always the last row that was added to the table.
Because the table rows are enumerated in random order, there is no notion of
an “end” to the table. However, while a client refers to a sorted column, the
rows are sorted in the order determined by the data in the column. ‘

¢ When a client writes data to the table file, it is permanently changed. Any
other clients that hold data retrieved from the changed row and column now
have invalid data.

CHAPTER 90 / TABLE CLASS 217
Using Table Messages

clsTable provides a semaphore that you can use to synchronize access to a table among
multiple clients. You can use this semaphore (by sending msgTBLSemaRequest to the
table object) when you want to treat multiple updates as a single, atomic update.

If msgTBLSemaRequest is sucessful, you can access the table; all other clients that
request the semaphore while you hold it will be suspended. If another client holds
the semaphore, msgTBLSemaRequest will suspend your process until the other
client releases the semaphore.

Using semaphores extensively can lead to a deadlock situation (that is, a circular
list of clients waiting for each other’s resources). You can avoid deadlocks by
releasing the semaphore (with msgTBLSemaClear) on one table before requesting
the semaphore on another.

Using Tables in a Database 90.4

There is no explicit database class in PenPoint. However, you can use a single table
as a flat-file database. A table is simply a flat database. Each row is a record, each
column is a field. ’

With a bit more effort you can link a series of tables together (a table of tables) to
create a relational database.

[]
Using Table Messages 90.5
This section describes the tasks associated with table objects.

Table 90-1 lists the clsT'able messages.

Table 90-1
clsTable Messages
Message Takes Description
Class Messages
msgNew P_TBL_NEW Creates a new table object.
msgNewDefaults P_TBL_NEW Initializes the TBL_NEW structure to default values.
Instance Messages
msgTBLAddRow P_TBL_ROW_POS - Adds a row/record with no data to the table server
object.
msgTBLDeleteRow P_TBL_ROW_POS Deletes the specified row.
msgTBLColGetData P_TBL_COL_GET_SET_DATA Passes back the data for the specified row and
column.
msg IBLColSetData P_TBL_COL_GET_SET_DATA Sets the data for the specified row and column.
msg ' BLRowGetData P_TBL_GET_SET_ROW Gets the contents of an entire row.
msg TBLRowSetData P_TBL_GET_SET_ROW Sets the contents of an entire row.
msgTBLGetinfo P_TBL_HEADER Gets the table header information.
msg TBLGetColCount P_TBL_COL_COUNT Gets the number of columns in the table.

continued

9 / UTILITY CLASSES

218 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes -

Table 90-1 {continued)

Message Takes Description

msg IBLGetColDesc P_TBL_GET_COL_DESC Passes back the column description for the specified
column.

msgTBLGetRowCount P_TBL_ROW_COUNT Gets the current number of rows in the table.

msgTBLGetRowLength P_TBL_ROW_LENGTH Gets the length (in bytes) of the specified row.

msgTBLGetState P_TBL_GET _STATE Gets the current state of a specified row.

msg TBLBeginAccess P_TBL_BEGIN_ACCESS Initiates table access by a client on this table.

msgTBLEndAccess P_TBL_END_ACCESS Ends client access to the table.

msgTBLSemaClear nothing Releases the table’s semaphore.

msgTBLSemaRequest nothing Requests access to the table’s semaphore.

msg TBLFindFirst P_TBL_FIND_ROW Finds the first record that meets the search
specification.

msgTBLFindNext P_TBL_FIND_ROW Find the next record following the specified
TBL_ROW POS that meets the search
specification.

msg TBLFindColNum P_TBL_COL NUM_FIND Passes back the column number for the specifed
column name.

msgTBLCompact nothing Compacts the table without closing it.

msgTBLRowNumToRowPos P_TBL_CONVERT_ROW_NUM Converts a TBL_ ROW_NUM to its corresponding
TBL_ROW_POS for the specified column.

Observer Notification Messages

msgTBLRowAdded P_TBL_ROW_POS Sent to observers indicating that a row has been
added.

msgTBLRowDeleted nothing Sent to observers indicating that a row has been
deleted.

msg TBLRowChanged P_TBL_ROW_POS Sent to observers indicating that row data has been

changed.

Defining a Table

90.6

Before you create a table with msgNew, you need to declare the organization of
the table with a TBL_CREATE structure. The TBL_CREATE structure consists of a
value that indicates the number of columns in the table (colCount) and the
address of an array of one or more TBL_COL_DESC structures (colDescAry).

Each TBL_COL_DESC structure describes one column and contains:

name A string contdining the name of the column. This name is used by
applications when displaying a table. Internally, you usually identify
columns by an index to their position. You can get the index from the

name with msgTBLFindColNum or you can get the name using an
index with msgTBLColGetDesc.

CHAPTER 90 / TABLE CLASS
Defining a Table

type A TBL_TYPES value that specifies the type of data in the column (such
as U32, string, date and time, or UID). The values defined by TBL_TYPES
are described in Table 90-2, below.

length The width of the column in bytes. This argument only has meaning
for columns of type tsChar and tsCaseChar.

repeatFactor The number of times to repeat the column. This allows you to
create an array in a column. You cannot address repeated columns
individually; rather, you access the whole column and locate the
appropriate bytes.

offset The byte offset to the column. This allows you to locate data in a row
by its offset, rather than by column index. clsTable allows you to request
the entire row, or just the individual item. It is often much faster to -
request the entire row and use byte offsets to find individual pieces of
data. This will not work if any of the columns in the table are sorted.

sorted A BOOLEAN value that indicates whether the contents of the column
should be sorted or not. When a column is sorted, data access on a
specific column occurs in that column’s sort order, regardless of the
position of the row in the table.

Currently sorting is only ascending (in ASCII lexicographic order) and does not
support alternate sorting keys. There is no limit to the number of columns in a
table that can have the sorted flag set.

The data types defined by TBL_TYPES are listed in Table 90-2. If the column
contains fixed length data types, the actual values are stored in the row data.
However, if the column contains variable-length data types (such as tsString or
tsByteArray), the actual values are stored in buffers; the value stored in the row
data is a pointer to the buffer. These pointers to variable-length data buffers are
internal and cannot be used by clients. For this reason, tables with variable-length
columns cannot use the Get-Row and Set-Row operations.
Table 90-2
Table Column Data Types

219

Symbol Meaning

tsChar Fixed-length array of case-sensitive characters.

tsCaseChar Fixed-length array of case-insensitive characters.

tsU16 Unsigned 16-bit integer.

tsU32 Unsigned 32-bit integer.

tsFP GOMath floating point (GO_DP) value.

tsDate Date field in system timestamp format.

tsString Variable-length, case-sensitive ASCII string (null terminated).

tsCaseString Variable-length, case-insensitive ASCII string (null terminated).

tsByteArray Variable-length byte array, contained in unsigned characters. Use TS_STRING structure.

tsUUID 64-bit UUID structure.

9 / UTILITY CLASSES

220 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

"Creating a Table Object 50.7

To create a table object send msgNewDefaults and msgNew to clsT'able. Both
messages take a pointer to a TBL_NEW structure, which contains:

name The name of the table. This name allows multiple clients to share a
common name for the table and its data. (Note that this is not the file
name; you specify the file name in the locator, below.)

locator A file locator for the table file, which includes a directory handle
and a path. For more information on locators, see Part 7: File System.

exist A TBL_EXIST value that specifies what to do if the table file does or
doesn’t exist. The constants defined by TBL_EXIST are similar in name
and function to the file system FS_EXIST constants.

create A TBL_CREATE structure that describes the columns in the table.

freeBehavior A TBL_FREE_BEHAVE value that describes how to dispose of
the table file when the table object is destroyed. This structure also
identifies conditions under which clsT'able should automatically destroy
the table. These options are described below.

createSemaphore A BOOLEAN value that specifies whether to create a
semaphore for the table.

Use the values defined by TBL_FREE_BEHAVE to specify what to do with the table file
when the table is freed (and when to automatically free the table). The values are:

tsFreeDeleteFile Delete the file when the table is destroyed.

tsFreeWhenNoClients Free the table when the number of accessors goes
to zero.

tsFreeNoObservers Free the table when the number of observers goes
to zero.

The default (tsFreeDefault) is not to delete the file when the table is destroyed, do

not free the table when accessors or observers goes to zero.

Observing Tables 90.8

There are two ways to add yourself as the observer of a table. You can either include
your UID in the TBL_BEGIN_ACCESS structure when you send msgTBLBeginAccess
to table object (see below) or you can send msgAddObserver to an existing table object
(before you send msgTBLBeginAccess).

If you use msgAddObserver to add yourself as an observer, you should use
msgRemoveObserver to remove yourself from the observer list. If you send

msg TBLEndAccess and include your UID in the message arguments, the message
will send msgRemoveObserver to the table object automatically. '

CHAPTER 90 / TABLE CLASS
Start Access

Example 90-1
Creating a Table

221

This example shows how to create a table with two columns. One column holds a 40-byte string (a name), the other column

uses a date to store a birthday:

STATUS s;

TBL_NEW tn;

TBL COL_DESC colDesc[2]; // two column table
s = ObjectCall (msgNewDefaults, clsTable, &tn);
tn.table.exist = tsExistOpen | tsNoExistCreate;
tn.table.freeBehavior = tsFreeNoDeleteFile;
tn.table.createSemaphore = false;
tn.table.locator.uid = theWorkingDir;
tn.table.locator.pPath = "\\MyDir\\Table Data";
strcpy (colDesc[0] .name, "Name");

colDesc[0] .type = tsChar;

colDesc[0].length = 40;

colDesc[0] .repeatFactor 0;

strcpy (colDesc([1l] .name, "Birthday");

colDesc[1l].type = tsDate;

colDesc[1l].length 1;

colDesc[1l].repeatFactor = 0;

strcpy (tn.table.name, "Names and Birthdays");
tn.table.create.colCount = 2; // Number of columns
tn.table.create.colDescAry colDesc; // First column descriptor
tn.table.createSemaphore = true;

s = ObjectCall (msgNew, clsTable, &tn);

Start Access 90.9

To initiate access to a table, send msg TBLBeginAccess to the table you want to access.
msgTBLBeginAccess takes a pointer to a TBL_BEGIN_ACCESS structure, which con-
tains your object’s UID (sender). The sender value is required if you want to add your-
self (or another object) to the table’s observer list. If you don’t want to add the object to
the table’s observer list, use objNull. When msgTBLBeginAccess completes succes-
sfully, it sends a TBL_ROW_LENGTH value containing the table’s width (rowLength).

When you begin access to a table, the current row position is at the end of the
table. When you access a table, it is your responsibility to keep track of your
position within the table. There is no message to indicate where you are.

Beginning Access to a Table

W

STRTUS 7BL, NEW tn; ¥
TBL_BEGIN ACCESS tba;
TBL_ROW_LENGTH width;

s = ObjectCall (msgNew, clsTable, (P_ARGS) (&tn));
sharedTable = tn.object.uid;

// Fill in TBL BEGIN ACCESS structure

tba.sender = objNull;

s = ObjectCall (msgTBLBeginAccess, sharedTable, &tba);
width = tba.rowLength;

9 / UTILITY CLASSES

222 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Using Semaphores 90.10

To ensure that your task is the only one accessing a table, you can request a table
semaphore. Each table has one semaphore, which is managed by that table object.
You specify whether the semaphore should be available when you create the table.

The semaphore does not actually control access to the table. Applications that use
the table must agree beforehand (at programming time) to use the semaphore to
signal among themselves who has access to the table.

You acquire the semaphore for a table by sending msgTBLSemaRequest to the
table. The message doesn’t require any arguments. If the semaphore is available,
the call completes immediately. If the semaphore is in use, your task will be
suspended until the semaphore becomes available.

When you complete the operations that require exclusive access to the table, you
release the semaphore with msgTBLSemaClear.

It is a good idea to acquire the semaphore just before the operations and release it
as soon as possible. This reduces the chance that other processes that require access
to the table will be suspended.

Example 90-3
Using Table Semaphores

This example shows an object that requests a table’s semaphore, performs some action, then releases the semaphore.

TBL BEGIN_ ACCESS tba;
STATUS s;

tn.table.createSemaphore = true;

s = ObjectCall (msgNew, clsTable, &tn);

sharedTable = tn.object.uid;

// Fill in TBL_BEGIN ACCESS structure

tba = Nil (OBJECT);

s = ObjectCall (msgTBLBeginAccess, sharedTable, &tba);

if (ObjCallFailed(msgTBLSemaRequest, sharedTable, void) {
// Handle error, if any (there should be no error if
// the table created a semaphore)

}
// Perform protected operation

s = ObjectCall (msgTBLSemaClear, sharedTable, void);

Adding Rows to a Table | 90.11

Use msgTBLAddRow to add a row to a table. In the table objects there is no
concept of a last row; sequential ordering of rows is not guaranteed. However, if
you define a column with the sorted attribute and use that column to access rows,
access will occur in an ordered manner.

msg TBLAddRow has one argument, a pointer to a row position value of type

TBL_ROW_POS. The message uses this location to return the position of the newly
added row.

CHAPTER 90 / TABLE CLASS

This code fragment shows an application adding a row to a table

TBL_ROW_POS curPos;

s = ObjectCall (msgTBLAddRow, myTable, &curPos);

You can set data in a single column of a row or you can set data in an entire row.
To set data in a column, send msgTBLColSetData to the table object; to set data
in a row, send msgTBLRowSetData. Tables with variable-length columns cannot
use msgTBLRowSetData, because the data for variable-length columns is stored
using an internal, private format.

msgTBLColSetData takes a pointer to a TBL_COL_GET_SET_DATA structure,
which contains:
tblIRowPos The row position in the table that will receive the data.
colNumber The column number in the table that will receive the data.
tblColData A pointer to the data buffer.
To set data in a variable-width column, the tblColData field should contain the
address of a TBL_STRING structure that specifies:
strtLen A U16 that specifies the length of the data.

strtMax A U16 that specifies the size of the buffer. Usually strLen should be
the same as strMax.

pStr A pointer to the buffer that receives the data.
msgTBLRowSetData takes a pointer to a TBL_GET_SET_ROW structure that
contains:

tblIRowPos A TBL_ROW_POS value that will receive the data.

pRowData A pointer to the data buffer that contains an image of the entire
row. msgTBLRowSetData returns stsTBLContainsIndexedCols if any
of the columns in the table are variable-length.

Getting data is similar to setting data. You can get data for a single column within
a row (by sending msgTBLColGetData to the table object), or you can get data
-for an entire row (by sending msgTBLRowGetData to the table object).

Again the structures are similar. msgTBLColGetData takes a pointer to a
TBL_COL_GET_SET_DATA structure that contains:

tbIRowPos A TBL_ROW_POS value that specifies the row position.

colNumber A TBL_COL_INX_TYPE value that specifies the column number.

tblColData A pointer to the buffer that will receive the data.

If your client allocates the data buffer on an as-needed basis, you can use
msgTBLGetColDesc to find out the current width and the data type of

Getting Data

20.12

223

9 / UTILITY CLASSES

224 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

fixed-width columns. Note that tables do not allocate the data buffer; it is your
client’s responsibility. '
To get data for variable-width columns, store the address of a TBL_STRING
structure in the tblColData field. The TBL_STRING structure specifies:

strtLen A U16 to receive the length of the returned data.

sttMax A U16 that specifies the size of the buffer.

pStr A pointer to the buffer that receives the data.

If the size of the data is larger than the buffer (strMax), the data is truncated,
sttLen contains the size of the data returned, and the message returns the status

stsTBLStrBufTooSmall.

msg TBLRowGetData takes a pointer to a TBL_GET_SET_ROW structure that
contains:

tbIRowPos A TBL_ROW_POS value that specifies the row that we want.

pRowData A pointer to a data buffer that will receive an image of the
entire row.

If you allocate the data buffer dynamically, you can use msgTBLGetRowLength
to find out the length of a row.

Deleting a Row 90.14

You delete a row from a table by sending msgTBLDeleteRow to the table object.
The row is not actually deleted until the client sends msgTBLCompact to the
table object or until the table object is freed and the file is closed. If you want to
prevent compaction when the file is closed, specify tsFreeNoCompact in the
TBL_FREE_BEHAVE argument to msgNew.

After you delete a row, you can no longer access it, even though it hasn’t actually
been deleted from the file.

msgTBLDeleteRow takes one argument, a pointer to a TBL_ROW_POS value that
identifies the row that you want to delete.

Searching a Table 90.15

To search a table for a particular item, use the messages msgTBLFindFirst and

msgTBLFindNext.

Use msgTBLFindFirst to search for the first occurrence of a particular item in a
table. Use msgTBLFindNext to search for the next occurence of an item when
searching from a specified position.

Both messages take a pointer to a TBL_FIND_ROW structure that contains:

rowPos A TBL_ROW_POS value that specifies the current table position.
When the message completes, rowPos will contain the row position of
the located row.

CHAPTER 90 / TABLE CLASS
Searching a Table

rowNum A TBL_ROW_NUM value that specifies the index position in the

specified column.

stchSpec A TBL_SEARCH_SPEC structure that contains the search
specification. In this structure you specify:

colOperand The column number.

relOp A TBL_BOOL_OP value that specifies the operator used to match
the search string against the column string in each row. The operators are

described below in Table 90-3.
pConstOperand A pointer to a buffer containing the search item.
pRowBuffer A pointer to a ROW_BUFEFER that specifies the client’s buffer
space (this might be pNull).
sortCol A TBL_COL_INX_TYPE value that specifies the column to sort the
search by, if any. If sortCol is null, there is no sort.

The operands in the table search specification read the way they would if they
were written in an equation, that is: column operand, operator, search constant.
Thus, a less-than operator means “search until the column operand is less than the

search constant.”

The BOOLEAN operators are defined by TBL_BOOL_OP. Table 90-3 lists the

BOOLEAN operators.

Table 90-3
Table BOOLEAN Operators

225

Operator
tsEqual

tsLess
tsGreater
tsGreaterEqual
tsLessEqual
tsNotEqual

tsSubstring

tsStartsWith
tsAlwaysTrue

Meaning

Satisfied only if both items the same object.

Satisfied if the column operand is less than the search constant.

Satisfied if the column operand is greater than the search constant.

Satisfied if the column operand is greater than or equal to the search constant.
Satisfied if the column operand is less than or equal to the search constant.
Satisfied if the column operand is not equal to the search constant.

Satisfied if the column operand is a substring of the search constant. This operator is
currently limited to case-dependent searches, even when searching a tsCaseChar or
tsCaseString column.

Satisfied if the column starts with the specified string.

Matches everything. Use tsAlwaysTrue to match the first row that the search encounters.

For msgTBLFindFirst, this is the first row in the table; for msgTBLFindNext, this is
the next row in the table (unless you are at the end of the table).

If the message finds a match, it returns stsOK and passes back the TBL_FIND_ROW

structure with:

rowPos A TBL_ROW_POS value that indicates the row where the match was

found.

rowNum A TBL_ROW_NUM value that indicates the indexed row number
for sorted columns. If the column was not a sorted column, this value

always contains 0.

9 / UTILITY CLASSES

226 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

If either msgTBLFindFirst or msngBLFindNext does not find a match, or if the
row position is at the end of the table, the message returns stsTBLEndOfTable.

Getting Information About a Table 90.16

cIsTable provides a number of ways to get information about a table. Table 90-4
lists the messages and the information they return. The sections following the
table describe the messages in detail.

Table 90-4
Table Information Messages
Message Tokes Bescription -
msgTBLFindColNum P_TBL_COL_NUM_FIND Passes back the column number for the specifed

column name.

msgTBLRowNumToRowPos P_TBL_CONVERT_ROW_NUM Converts a TBL_ROW_NUM to its corresponding
TBL_ROW_POS for the specified column.

msgTBLGetInfo P_TBL_HEADER Gets the table header information.

msgTBLGetColCount ' P_TBL_COL_COUNT Gets the number of columns in the table.

msg TBLGetColDesc P_TBL_GET_COL_DESC Passes back the column description for the specified
column.

msgTBLGetRowCount P_TBL_ROW_COUNT Gets the current number of rows in the table.

msg TBLGetRowLength P_TBL_ROW_LENGTH Gets the length (in bytes) of the specified row.

msgTBLGetState P_TBL_GET_STATE Gets the current state.

The following sections describe these messages.

% Finding a Column Number 90.16.1

If you have a column name string and need to find out the number of the column,
send msgTBLFindColNum to the table. The message takes a pointer to a
TBL_COL_NUM_FIND structure, in which you specify a pointer to the column
name string (name).

When the message completes successfully, it returns stsOK and passes back the
TBL_COL_NUM_FIND structure with a TBL_COL_INX_TYPE value that contains
column number (number). ’

"> Converting a Row Number to a Row Position 90.16.2

To covert a row number to a row position for a specific column, send
msg TBLRowNumToRowPos to the table object. The message takes a pointer
to a TBL_CONVERT_ROW_NUM structure that contains: ‘
rowNum A TBL_ROW_NUM value that specifies the row number to convert.
colNum A TBL_COL_INX_TYPE value that specifies the sorted column to
use in the conversion.

If the message completes successfully, it returns stsOK and passes back a
TBL_ROW_POS value in rowPos that specifies the position of the row.

If the column is not sorted, the message returns stsTBLColNotIndexed.

CHAPTER 90 / TABLE CLASS
Getting Information About a Table

’» Getting the Number of Columns in a Table 90.16.3

Send msgTBLGetColCount to a table get the number of columns in the table.
The only argument for this message is a pointer to the TBL_COL_COUNT value
that will receive the column count. When the message completes successfully, it
returns stsOK and passes back the column count.

P> Getting the Description of a Column 90.16.4

Send msgTBLGetColDesc to a table to get the description of a column in the
table. The message takes a pointer to a TBL_GET_COL_DESC structure that
contains a TBL_COL_INX_TYPE value that specifies the index of the column that
you want (colInx).

When the message completes successfully, it returns stsOK and passes back a
TBL_COL_DESC structure that will contain the column descriptor (colDesc)
information.

%> Getting the Entire Table Description 90.16.5

Send msgTBLGetlnfo to a table to get the entire description of that table. The
only argument for this message is a pointer to a TBL_HEADER structure that will
receive the table description.

% Getting the Number of Rows 90.16.6

Send msgTBLGetRowCount to a table to get the number of rows in that rable.
The only argument for this message is a pointer to a TBL_ROW_COUNT value that
will receive the number of rows.

%> Getting the Length of a Row 90.16.7

Send msgTBLGetRowLength to a table to get the number of bytes in a table row.
The only argument for this message is a pointer to a TBL_ROW_LENGTH value
that will receive the number of bytes in a row.

The length passed back by this message does not include the length of variable-
length data. To get the width of a variable length column for a particular row, send
msgTBLColGetData to the table object, specifying the row, column, a pointer to
a TBL_STRING structure, and specify strtMax as 0. When the message returns
strLen contains the length of the data.

¥» Getting a Table’s State 90.16.8

Occasionally you might need to find out a table’s state. To get the state, send
msgTBLGetState to a table object. The message takes a pointer to a
TBL_GET_STATE structure, that contains:

tblState A TBL_STATE enum value that will receive an indicator of the
position within the table.

227

9 / UTILITY CLASSES

228 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes
tbIRowPos A TBL_ROW_POS value that specifies the row for which you are
requesting the table state.

Ending Access 90.1

When you have no longer need to access a table, send msgTBLEndAccess to the
table. The message takes a pointer to a TBL_END_ACCESS structure that contains a
single element, the UID of the sender (sender). This is usually self. If you specify
sender, the message will remove the sender from the table’s observer list.

b

The message also decrements the table’s reference count.

Freeing a Table .’ 90.18

When a table is no longer useful, destroy it by sending it msgDestroy. The
options specified when the table was created determine if the file should be
preserved and whether the rows should be compacted.

If a table’s owner terminates without explicitly destroying the table, PenPoint
sends msgFree to the table object.

PENPOINT ARCHITECTURAL REFERENCE / voL 11

PART 9 / UTILITY CLASSES

Chapter 91 / The NotePaper
Component

The NotePaper component, consisting primarily of the clsNotePaper view and
the cIsNPData data object, provides a capable building block for applications that
manage ink as a data type. For example, the NotePaper component provides much
of the function of the the MiniNote note-taking application that comes bundled
with the PenPoint™ operating system.

clsNotePaper is a subclass of clsView. Like all subclasses of clsView, clsNotePaper
is designed to interact with and and display a data object—in this case an instance
of cIsNPData. A cIsNPData data object manages a collection of data items whose
classes inherit from the abstract class clsNPItem.

This chapter presents the API for clsNotePaper, cIsNPData, and cIsNPItem. To
get a better understanding of the way these classes interact, you should study the
NotePaperApp sample application, a simple note-taking application. The source
code for this application is in the SDK sample application directory
\PENPOINT\SDK\SAMPLE\NPAPP.

it
3

‘The clsNotePaper View 91.1

clsNotePaper is a subclass of clsView designed to observe a data object of
clsNPData. clsNotePaper supports embedding, undo, move and copy, import,
export, and option sheets. It also supports marks, which in turn provide support
for search and replace, spell checking, and reference buttons. With all of these
features, clsNotePaper is a very capable class.

clsNotePaper displays and alters the contents of a NotePaper data object, an
instance of clsNPData. The data object maintains a database of items. The view
sends messages to the data object to alter or query the database, and the data
object notifies the view when it needs to update its presentation of the data items.

In displaying the data items, clsNotePaper maintains a coordinate system whose
origin is the upper left corner of the view. This has the advantage that, as the
NotePaper window changes in width and height, its contents remain relative to
the upper left corner of the page (the expected behavior for notes). One thing to
be aware of, though, is that an upper left origin means that all y (vertical)
coordinates are negative.

230 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

cIsNotePaper maintains a set of metrics including a paper style, a pen style, font
and line spacing for displaying text, and a set of flags that determines various
behaviors of the instance. All of this information is represented in a
NOTE_PAPER_METRICS data structure, which includes the following fields (the
data type follows the field name in parentheses):

paperStyle (NP_PAPER_STYLE) The style of the “paper” the cIsNotePaper
instance displays. paperStyle can have any one of the following
enumerated values:

npPaperRuled Horizontal rules but no vertical rules.

npPaperRuledLeftMargin Horizontal rules with a single vertical rule
down the left side of the page.

npPaperRuledCenterMargin Horizontal rules with a single vertical rule
down the center of the page.

npPaperRuledLegalMargin Horizontal rules with two vertical rules di-
vidng the page into thirds.
npPaperBlank No horizontal or vertical rules.

npPaperLeftMargin No horizontal rules and a single vertical rule run-
ning down the left side of the page.

npPaperCenterMargin No horizontal rules and a single vertical rule
running down the center of the page.

npPaperGrid Horizontal rules with vertical rules across the page with
the same spacing as the horizontal rules.

penStyle (U8) The pen color and weight. To generate valid values, use the
NPPenStyle() macro.

paperFont (SYSDC_FONT_SPEC) The font for displaying text items.

lineSpacing (COORD16) The font size and distance between horizontal
rules, measured in twips (a twip is 1/20 of a point, or 1/1440 of an inch.

style (NOTE_PAPER_STYLE) A set of bit fields that determine various
behaviors of the view. The bit field names and their meanings are:

bEditMode Gesture mode if true, ink mode if false.
bAutoGrow If true, automatically grow in height as user enters data.
bWidthOpts Include page width in option sheet if true.

bHideTopRule If true, don’t display the top-most horizontal rule when
paperStyle is set to one of the npPaperRuled... styles.

CHAPTER 91 / THE NOTEPAPER COMPONENT 231

Table 91-1 summarizes the messages clsNotePaper defines. See NOTEPAPR.H and
the NPAPP sample application for more information about their use.

NotePaper Messages

@1.3

Table 911
cisNotePaper Messages

Message

Takes

Deseription

Claiss Messages

msgNewDefaults
msgNotePaperGetMetrics

P_NOTE_PAPER_NEW
P_NOTE_PAPER_METRICS

Initializes pArgs.

Passes back receiver’s metrics.

instance Messages

msgNotePaperSetEditMode
msgNotePaperSetPaperAndPen
msgNotePaperSetPenStyle
msgNotePaperGetPenStyle
msgNotePaperAddMenus
msgNotePaperAddModeCtrl

msgNotePaperClear
msgNotePaperClearSel
msgNotePaperInsertLine
msgNotePaperSetStyle
msgNotePaperGetStyle
msgNotePaperGetSel Type

msgNotePaperTranslate
msgNotePaperUntranslate

msgNotePaperEdit

msgNotePaperGetDclnfo
msgNotePaperTidy

msgNotePaperCenter
msgNotePaperAlign
msgNotePaperMerge
msgNotePaperSplit
msgNotePaperSelectRect

msgNotePaperSelectLine

BOOLEAN
P_NOTE_PAPER_METRICS
U32

U32

OBJECT

OBJECT

pNull

pNull

P_NULL
P_NOTE_PAPER_STYLE
P_NOTE_PAPER_STYLE
P_NOTE_PAPER_SEL_TYPE

P_NULL
P_NULL
P_NULL

P_NOTE_PAPER_DC_INFO
P_NULL

P_NULL
U32
P_NULL
P_NULL
P_RECT32
P_RECT32

9 / UTILITY CLASSES

Sets receiver to either gesture or edit (true) or
writing/ink (false) mode.

Sets paperStyle, lineSpacing, penColor, and
penWeight.

Sets the pen style for selected items as well as the
default for new items.

Gets the pen style for selected items (or the default
if nothing selected).

Modifies the passed in menu bar and appends
standard NotePaper menus.

Adds the standard NotePaper mode icon to the
passed in menu bar.

Deletes all items in receiver.

Deletes all selected items in receiver.
Inserts a blank line above the selection.
Sets the receiver’s style values.

Passes back the receiver’s style values.

Passes back information about the types of items
selected in receiver.

Translates untranslated scribbles in the selection.
Untranslates translated scribbles in the selection.

Edits text and translates and edits scribbles in the
selection.

Passes back the drawing contexts used by receiver.

Tidies the selection by normalizing the spacing of
items each line.

Centers the entire selection.

Aligns the selection according to pArgs.

Joins scribbles and text in the selection.

Splits scribbles and text.

Selects items within rect in the receiver’s data.

Selects items whose baselines intersect rect in the
receiver’s data.

continued

232 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Table 91-1 lkontinued)

Message Takes Description

msgNotePaperDeselectLine P_RECT32 Deselects items whose baselines intersect rect in
the receiver’s data.

msgNotePaperDeleteLine P_RECT32 Deletes items whose baselines intersect rect in the

‘ view’s data.

msgNotePaperScribble OBJECT Handles scribble (including creating and insert
object into view’s data).

msgGWinGesture P_GWIN_GESTURE Self-sent to process the gesture.

msgAppSelectAll P_NULL Selects all items in the view.

msgSelDelete P_NULL) Deletes selected items in the view.

msgOptionAddCards P_OPTION_TAG Creates and adds the Pen and Paper option sheets.

msglmportQuery P_IMPORT_QUERY Indicates whether or not passed-in file can be
imported.

msglmport P_IMPORT_DOC Imports the passed in file.

msgExportGetFormats P_EXPORT_LIST Passes back list of formats that can be exported.

msgExport P_EXPORT_DOC Writes an ASCII version of receiver’s data to the
passed in file.

msgNotePaperUpdateSel NULL Takes or releases the selection as is appropriate.

msgNotePaperSplitAsAtoms NULL Splits the selected item to its constituent pieces.

msgNotePaperSplitAsWords NULL " Splits the selected scribbles and text into words.

msgNotePaperGrowHeightTo COORD32 Grows the height of the view to at least COORD32.

msgNotePaperGrowHeightBy COORD32 Grows the height of the view by COORD32.

NotePaper Datla 91.4

Like all views, clsNotePaper is designed to display a rendition of the data in an
observed data object. The data object it uses is an instance of clsNPData, which
mantains a database of “items,” accepts requests to change the items, and notifies
observers of the changes.

cIsNPData maintains items of any type, so long as they support the protocol
defined by the abstract class clsNPItem (discussed later). All clsNPData has to do
is maintain a set of objects whose classes inberit from clsNPItem. Each of the
different subclasses of cIsNPItem (PenPoint includes scribble and text item classes)
responds differently to a single protocol of messages which clsNPData uses.

Table 91-2 summarizes the messages clsNPData defines.

CHAPTER 91 / THE NOTEPAPER COMPONENT 233

NotePaper Data

Table 91-2
clsNPData Messages

Message Takes Deseription
Class Messages
msgNewDefaults P_NP_DATA_NEW Initializes pArgs.
Dotabase Manipulation Messoges
msgNPDatalnsertltem OBJECT Adds item to the data base.

msgNPDatalnsertltemFromView

msgNPDataDeleteltem
msgNPDataMoveltem
msgNPDataMoveltems

P_NP_DATA_ADDED_NP_ITEM_VIEW Adds item to the data base.

OBJECT
P_NP_DATA_XY
P_MOVE_ITEMS

Deletes an item from the data base.
Moves an item within the data base.

Moves all items below pArgs->y by pArgs->yDelta.

Enumeration Messages

ENUM_CALLBACK()

msgNPDataEnumOverlappedltems P_ENUM_RECT_ITEMS

msgNPDataEnumBaselineltems

msgNPDataEnumSelectedItems

P_ENUM_RECT_ITEMS

P_ENUM_ITEMS

msgNPDataEnumSelectedItemsReverse P_ENUM_ITEMS

msgNPDataEnumAllltems

P_ENUM_ITEMS

msgNPDataEnumAllltemsReverse P_ENUM_ITEMS

msgNPDataSendEnumSelectedltems P_SEND_ENUM_ITEMS

This template describes the the callback function
used in item enumeration.

Enumerates each item
that overlaps the given rectangle.

Enumerates each item whose baseline overlaps the
given rectangle.

Enumerates each item that is selected (in paint order).

Enumerates each item that is selected
(in reverse paint order).

Enumerates each item (in paint order).
Enumerates each item (in reverse paint order).

Enumerates each selected item (in paint order).

msgNPDataGetCurrentltem P_OBJECT Passes back the current item in the receiver.
msgNPDataGetNextltem P_OBJECT Increments the current item to the next item and sets
*pArgs to it.

Database Attributes Messages
msgNPDataltemCount P_U32 Passes back the count of items in the receiver.
msgNPDataSelectedCount P_U32 Passes back the count of selected items in receiver.
msgNPDataSetBaseline P_XY32 Sets the receiver’s baseline (used for alignment).
msgNPDataGetBaseline P_XY32 Gets the receiver’s baseline (used for alignment).
msgNPDataSetLineSpacing P_XY32 Sets receiver’s line spacing (used as the font size).
msgNPDataGetLineSpacing P_XY32 Gets receiver’s line spacing (used as the font size).
msgNPDataGetBounds P_RECT32 Passes back the bounding rectangle for all items in

receiver.
msgNPDataGetSelBounds P_RECT32 Passes back the bounding rectangle for all selected

msgNPDataGetFontSpec
msgNPDataSetFontSpec
msgNPDataGetCachedDCs

P_SYSDC_FONT_SPEC
P_SYSDC_FONT_SPEC
P_NP_DATA_DC

items in receiver.
Passes back the receiver’s font specification.
Sets the receiver’s font specification.

Passes back DC’s with normal and bold fonts at the
given line spacing.
continued

9 / UTILITY CLASSES

234 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Table 91-2 [continued)

Messuge Takes Description
Messuges Sent to Observers
msgNPDataAddedItem P_NP_DATA_ADDED_ITEM Sent to observers when item has been has been added
or moved. ‘
msgNPDataltemChanged P_NP_DATA_ITEM_CHANGED Sent to observers when item has been changed.

msgNPDataHeightChanged

msgNPDataltemEnumDone

P_NP_DATA _ITEM_CHANGED Sent to observers when receiver’s height has been

NULL

changed.

Sent to observers when an enumeration that deleted
or moved items is complete.

» NotePaper Data ltems

The NotePaper data item class, clsNPItem, defines a protocol of messages that
defines the interactions possible between an instance of clsNPData and the items

it maintains. clsNPItem is an abstract class; it handles only the generic behavior of
the messages it defines. Instances of clsNPItem are not generally useful. Instead, the
items a clsNPData object maintains are instances of subclasses of clsNPItem, not of
clsNPItem itself. PenPoint includes two such subclasses: clsNPScribbleltem, an ink
scribble, and cIsNPTextItem, a text item.

Table 91-3 summarizes the messages that clsNPItem and its subclasses handle:

91.5

Table 91-3
cisNPltem Messages

Message Takes Descripiion
Class Messages
msgNewDefaults P_NP_ITEM_NEW Initializes pArgs.
Instance Messages
msgNPItemGetPeﬁStyle P_U32 Gets the pen style of an item. (Pen styles are defined
in notepapr.h.)
msgNPItemDelete pNull Deletes item from its data.
msgNPItemPaintBackground P_NP_ITEM_DC Paints a gray background if the receiver is selected.
msgNPItemSelect BOOLEAN Selects or deselects item.
msgNPItemSelected P_BOOLEAN Passes back item’s selection status.
msgNPItemMove P_XY32 Moves item to the indicated position.
msgNPItemDelta P_XY32 Moves item by the indicated amount.
msgNPItemGetViewRect P_RECT32 Passes back the receiver’s bounding rectangle.
msgNPItemHitRect P_RECT32 Returns stsOK if the receiver’s bounds overlaps pArgs.
msgNPItemGetMetrics P_NP_ITEM_METRICS Gets the item’s metrics.
msgNPItemSetBaseline P_XY32 Sets receiver’s baseline.
msgNPItemSetBounds P_RECT32 Sets receiver’s bounds.
msgNPItemHold NULL Increments the reference count for the item.
msgNPItemRelease NULL Decrements the reference count for the item.

continued

CHAPTER 91 / THE NOTEPAPER COMPONENT 235

NotePaper Data Items

e & » . k]
Tuble 91-3 [continued)

Maessage

msgNPItemAlignToBaseline
msgNPItemPaint
msgNPItemSetPenStyle

msgNPItemSetOrigin
msgNPItemScratchOut
msgNPltemSplitGesture
msgNPItemSplit
msgNPItemSplitAsWords

msgNPItemJoin
msgNPItemTie

msgNPItemGetScribble
msgNPItemGetString
msgNPItemSetString
msgNPItemToT ext

msgNPItem ToScribble
msgNPItemHitRegion
msgNPItemCalcBaseline
msgNPItemCalcBounds
msgNPItemGetWordSpacing

msgNPItemCanBeT ranslated

msgNPltemCanBeUntranslated

msgNPItemHasString
msgNPltemCanJoin

msgNPItemSetDataObject
msgNPItemSetAdjunct
msgNPItemMark
msgNPItemUnmark

msgNPItemGetMarkld

Tokes
P_XY32

P_NP_ITEM_DC

U32

P_XY32
P_RECT32
P_XY32
NULL
NULL

OBJECT
OBJECT

P_OBJECT
PP_STRING
P_STRING
P_OBJECT

P_ARGS
P_RECT32
P_XY32
OBJECT
P_U16

pNull
pNull
pNull
OBJECT

OBJECT
OBJECT
P_U32

P_ARGS

P_U32

Daseription

Moves item so that it aligns to passed-in line spacing.
Paints item using the passed in drawing contexts.

Sets the item’s pen style. (Pen styles are defined in
NOTEPAPR.H.)

Set the receiver’s origin.

Handles the scratch-out gesture on an item.
Handles the split gesture on an item.

Splits an item into its constituent items.

Splits receiver into words. Deletes receiver, inserts
new items.

Joins receiver and OBJECT and deletes OBJECT.

Joins OBJECT and receiver and deletes them. Inserts
new object.

Pass back the item’s scribble.
Passes back the text string for the item.
Sets the text string for the item.

Item converts itself to a text item, passes back text
item.

Item converts itself to a scribble item.

Returns stsOK if receiver’s path overlaps pArgs.
Calculates and sets the receiver’s baseline.

The receiver calculates and sets its new bounds.

The receiver passes back the size of its “space”
character.

The receiver returns stsOK if it can be translated.
The receiver returns stsOK if it can be untranslated.
The receiver returns stsOK if the item has a string.

Subclasses should return stsOK of they can join
with OBJECT.

Sets the receiver’s data (e.g. instance of clsNPData).
g
Sets the receiver’s adjunct item.
J
The receiver marks itself and provides its mark token.

The receiver unmarks itself and passes back the mark
ID if applicable.

Passes back the mark ID of an item.

9 / UTILITY CLASSES

Part 10 /
Connectlivity

¥ Chapter 92 / Introduction
Layout of This Part

Other Sources of Information

7 Chapter 93 / Concepts and
Terminology

Principles of PenPoint Connectivity
PenPoint Connectivity Strategies
PenPoint Computer Connectivity

PenPoint Connectivity
MIL Services
MIL Services and Other Services

Services and Interfaces
The Service Manager
PenPoint Facilities
Adding Network Protocols

Survey of the Remote Interfaces
Serial I/O
Parallel I/O
High-Speed Packet I/O
File System
File Import Export
Modem Interface
Networking Interface

7 Chapter 94 / Using Services

Concepts
Installing Services
Service Managers
Access Overview
Ownership
Targeting
Connections

Accessing Services
Predefined Service Managers
Binding to a Service
Opening a Service

The Service Manager Messages

Using the Service Manager
Accessing a Service
Finding a Service
Binding to a Service
Opening and Closing a Service
Unbinding from a Service
Finding a Handle

92.1
92.2

93.1
93.2
93.3

93.4
93.4.1
93.4.2
93.4.3
93.5
93.6
93.7
93.8
93.8.1
93.8.2
93.8.3
93.8.4
93.8.5
93.8.6
93.8.7

94.1

94.1.1
94.1.2
94.1.3
94.1.4
94.1.5
94.1.6

94.2

94.2.1
94.2.2
94.2.3

94.3

94.4

94.4.1
94.4.2
94.4.3
94.4.4
94.4.5
94.4.6

241

241
242

243

243
244
244
245
245
246
249
250
250
251
251
251
251
252
252
252
253
253

255

255
256
256
257
257
258
258

258
258
259
259
260

261
261
261
262
262
263
263

Receiving Connection State Notification
Setting a Service Owner

7 Chapter 95 / Serial 1/0

Serial I/0 Concepts
Interrupt Driven I/O
Buffered Darta
Flow Control
Events
Concurrency Issues

Using Serial Messages
Requesting and Releasing a Serial Handle
Reinitializing the Serial Port
Serial Port Configuration
Reading and Writing with the Serial Port
Flow Control
Sending BREAK
Detecting Events
High-Speed Packet I/0 Concepts
HSPKT on Serial Lines
Parallel Cable Connection Detection
Protocol Variations
Notes

7 Chapter 96 / Parallel 1/0

Parallel Port Concepts
Parallel Port Interrupts

Parallel Port Messages

Using the Parallel Port
Requesting a Parallel Port Handle
Releasing the Parallel Port Object
Parallel Port Configuration
Initializing the Printer

- Writing to the Parallel Port

Getting Status
Cancelling Printing

¥ Chapter 97 / Data Modem
Iinterface

Concepts
Getting a Serial Port Handle
Configuring the Serial Port

The clsModem API

The clsModem Messages
Creating a clsModem Object
Configuring the Modem

94.4.7
94.4.8

95.1

95.1.1
95.1.2
95.1.3
95.1.4
95.1.5

95.2

95.2.1
95.2.2
95.2.3
95.2.4
95.2.5
95.2.6

95.2.7
953

95.3.1
95.3.2
95.3.3
95.3.4

96.1
96.1.1

- 96.2

96.3

96.3.1
96.3.2
96.3.3
96.3.4
96.3.5
96.3.6
96.3.7

97.1
97.1.1
97.1.2
97.2

97.3
97.3.1
97.3.2

264
264

265

265
265
265
265
266
266

267
268
268
268
271
272
272
272

273
273
274
274
274

275

275
275
276
276
276
277
277
277
278
278
278

279

279
279
280
281
281
282
283

Establishing a Connection with a
Data Modem

Dial String Modifiers

Waiting for a Connection with

a Data Modem

Sending and Receiving Data
MNP Data Communication

Direct Communication with the Data Modem

The Data Modem AT Command Set

L REFERENCE / VOL II

/ CONNECTIVITY

97.3.3
97.3.4

97.3.5
97.3.6
97.3.7
97.4

97.4.1

7 Chapter 98 / The Transport API

Transport Concepts
Participants in Communication
Transport Service Types
Agreeing on Conventions
Asynchronous Communication

Using clsT'ransport
- Accessing a Socket
Closing a Socket Handle
Sending Datagrams
Receiving Datagrams
Requesting a Transaction Service
Responding to a Transaction Service
Binding to a Local Transport Address

Using clsT'ransport for AppleTalk
Using the AppléTalk Protocol
AppleTalk Name and Zone Protocols

7 Chapter 99 / In Box and
Out Box

Introduction to the In Box and Out Box

General Device Concepts
Service Sections
Services and Devices
Installing Devices and Services
Targeting Communications Devices
Enabling and Disabling Services
Out Box Concepts
Out Box Operation
Out Box Protocol Messages
Documents in the Out Box
Writing Your Own Out Box Service
In Box Concepts
Passive and Active In Box Services
In Box Documents

In Box and Out Box Service Messages

98.1

98.1.1
98.1.2
98.1.3
98.1.4

98.2

98.2.1
98.2.2
98.2.3
98.2.4
98.2.5
98.2.6
98.2.7

98.3
98.3.1
98.3.2

929.1

99.2

99.2.1
99.2.2
99.2.3
99.2.4
99.2.5

99.3
99.3.1
99.3.2
99.3.3
99.3.4
99.4

99.4.1
99.4.2

- 995

287
287

289
289
289

290
290

295

295
295
296
297
297

297
298
299
299
300
300
301
301
301
301
302

305

305
306
306
306
307
307
307
308
308
308
309
310
312
312
313

313

¥ Chapter 100 / The Address
Book

Concepts
Participants
The Address Book Protocols
Organization of Data
Groups

The GO Address Book Application
Loading the GO Address Book
Using the GO Address Book

The Address Book Messages

Using an Address Book
Opening the Address Book
Searching the Address Book
Changing Information
Adding a New Entry
Deleting an Entry

Writing an Address Book
Registering an Address Book
Unregistering an Address Book
Becoming the System Address Book
Deactivating the System Address Book
Observing theAddressBookMgr
Handling Option Sheet Protocol

» Chapter 101 / The Sendable
Services

The Sendable Services Protocol
Creating Address Descriptors
Displaying a User Interface

The Sendable Services Messages
Getting Address Descriptors
Creating and Filling Address Windows
Summarizing Address Information

7 List of Figures
93-1
93-2 Applications, Drivers, and Devices
93-3
93-4

100-1

Applications and Ports

Layered Services
Devices and Interfaces

The GO Address Book

100.1

100.1.1
100.1.2
100.1.3
100.1.4

100.2
100.2.1
100.2.2

100.3

100.4

100.4.1
100.4.2
100.4.3
100.4.4
100.4.5

100.5

100.5.1
100.5.2
100.5.3
100.5.4
100.5.5
100.5.6

101.1

101.1.1
101.1.2
101.2

101.2.1
101.2.2
101.2.3

317

317
318
318
320
322
323
323
323
324
325
326
326
328
328
328
328
329
329
329
330
330
330

331

331
331
332

333
333
333
334

245
246
248
249
324

7 List of Tables

94-1
95-1
95-2
96-1
97-1
97-2
97-3
97-4
98-1
98-2
99-1
99-2
99-3
100-1
100-2
100-3
100-4
101-1

clsServiceMgr Messages
clsMILAsyncSIODevice Messages
Event Mask Indicators

Parallel Port Messages

clsModem Messages

Modem Reset Settings

Modem Connection Types
Summary of AT Command Set
clsTransport Messages

NBP and ZIP Messages
clsOBXService Messages
cIsINBXService Messages
clsIOBXService Messages
Attribute Identifiers

Address Book Gestures
clsAddressBookApplication Messages
clsABMgr Messages

Sendable Services Messages

260
267
272
276
281
283
285
291
297
301
314
315
316
321
323
324
325
333

Chapter 92 / Introduction

The PenPoint™ operating system allows applications to communicate with devices
and networks through device ports in the PenPoint computer.

For most operating systems, this level of connectivity is sufficient. However, other
operating systems expect connections to be always present, uninterrupted, and
require the user to reboot the machine between installing a new device driver and
using it.

The PenPoint approach to connectivity enables users to:

Store data so that it will be sent only when the machine connected to the
correct network (deferred connectivity).

¢ Disconnect the machine from a network and reconnect without losing the
current data transfer (automatic connection detection).

¢ Install and deinstall new device drivers (or other non-application software)
without rebooting the machine (service architecture).

The PenPoint operating system also defines a protocol for applications or services
that contain addressing information. These applications or services are called
address books. By defining a common address book protocol, all service providers
can access a single resource for all addresses, phone numbers, and other such
information.

Layout of This Part
Part 10 is organized into nine chapters.

Chapter 92, this chapter, presents a brief overview of the PenPoint remote
interface.

Chapter 93, Concepts, provides you with the fundamental concepts needed to
understand the PenPoint remote interface.

Each of the following chapters describes one remote interface.

Chapter 94, Using Services, describes the service manager and how to access
services through the service manager. Part 13: Writing PenPoint Services describes
how to implement a service.

Chapter 95, Serial I/O, describes the serial I/O interface.
Chapter 96, Parallel 1/0, describes the parallel I/O interface.
Chapter 97, Data Modem Interface, describes the interface to the data modem.

Chapter 98, The Transport API, describes PenPoint support for local area network
communication using the AppleTalk protocol.

242 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Chapter 99, In Box and Out Box, describes support for delayed data transfer
through the In box and Out box.

Chapter 100, The Address Book, describes the address book protocol used to
query and modify the system address book.

Chapter 101, The Sendable Services, describes the protocol used by the address
book for communicating with services that provide Send capabilities, such as fax
and e-mail.

[]
Other Sources of Information
For useful insights on the topics covered in this part, refer to these books:

¢ For further reading on data communication, see Computer Networks, 2nd.
Edition by Tannenbaum (Prentice Hall, 1989).

¢ For an excellent summary of AppleTalk, see /nside AppleTalk by Gursharan S.

Sidhu, RichardF. Andrews, and Alan B. Oppenheimer (Addison Wesley,
1989). ’

If you are developing MIL devices (device drivers that interface to the PenPoint
machine interface layer), you may need to refer to the documentation in the
PenPoint HDK (hardware development kit). For more information on the HDK
and MIL Devices, please contact GO Developer Technical Support.

92.2

NT ARCHITECTURAL REFERENCE / VOL II

PART 10 / CONNECTIVITY

Chapter 93 / Concepts and
Terminology

The PenPoint™ operating system has a flexible architecture that can accomodate
many forms of networking and connectivity.

This chapter presents the “big-picture” concepts that tie together all of the PenPoint
communications and networking software. This chapter covers these topics:

¢ The principles of PenPoint connectivity.

¢ The hardware ports.

Software access to those ports.

¢ The service manager.

¢ A summary of the actual implementation of PenPoint connectivity.
How to integrate other network protocols with PenPoint.

® A survey of the remote interface features.

Principles of PenPoint Connectivity 93.1

There are four recurrent principles of PenPoint connectivity:

1 Many different communication facilities can coexist in a running PenPoint
system.

2 All device drivers can be installed and deinstalled dynamically, unlike some
other operating systems, where device drivers must be configured as part of
the cold-boot process. To add a new device driver to these systems, you must
shut the system down, add the device driver, and reboot.

3 PenPoint expects that there might be a chain of device drivers that handle
communication between an application and a device (rather than just one
driver per device).

4 All devices can be dynamically connected and disconnected. The operating
system and the device drivers are prepared to handle disconnection and
reconnection events while accessing a device.

244 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

PenPoint Connectivity Strategies 93.2

PenPoint was designed to allow many connectivity options. The PenPoint

connectivity strategies include:

¢ A volume connectivity strategy that enables users to install and configure
volumes from many different file systems on the fly. Volumes include
internal disks, hard or floppy disk volumes, and volumes on remote file
systems. PenPoint detects when a volume is connected or disconnected and
manages volume connection. '

An adaptable file system designed to use multiple existing file systems
that allows PenPoint to offer data sharing capabilities with many file system
architectures.

¢ A device connectivity strategy enabling users to install and configure devices,
device drivers, and network protocol stacks on the fly. As with volumes,
PenPoint provides automatic connection detection and management.

¢ Basic hardware support, including a parallel port, serial port, high-speed
packet, and a SCSI interface. With these hardware interfaces, PenPoint
machines can connect (through adapters) to many networks and peripherals.

¢ Multiple network protocol stacks that can coexist concurrently. A protocol
stack is a layered set of protocols, each of which handles a specific com-
munication task, such as establishing and maintaining connections, trans-
porting data, or presenting the data to the application.

¢ A general-purpose document import and export architecture. The operating
system and its user interface makes it easy to exchange information between
PenPoint applications and other file formats.

¢ An In box and an Out box that allows deferred document I/O for printing,
faxing, e-mail, and so on. If the user makes an output request while the
machine is disconnected, the Out box queues the document. The document
is output automatically when the machine is reconnected. While the
machine is connected, input accumulates in the In box; the user can review
the input documents after the machine is disconnected.

PenPoint Computer Connectivity 93.3

Itis up to the manufacturers of PenPoint computers to determine what connectivity
their machine will offer. While some machines will not have any ports, most machines

will include at least one, if not several of these connectors:

Serial connectors
Parallel connectors
SCSI connectors
AppleTalk connectors
Modem connectors

Other communications connectors

CHAPTER 93 / CONCEPTS AND TERMINOLOGY
PenPoint Connectivity

If a machine doesn’t implement a port, the user doesn’t have to install the service
for that port. Applications can query service managers for available services. If
the service is not installed on a machine, the application that uses the service can
handle the situation by notifying the user or suggesting an alternate service.

Additionally, hardware manufacturers can easily create and distribute services that
support non-standard ports, or ports that are not supported by the PenPoint
operating system.

PenPoint Connectivity 93.4

The essential point of any connectivity architecture is to allow applications and
other programs to communicate with hardware devices. The problem is in
translating the applications needed to write and read bytes of data into device
instructions to perform those tasks.

Figure 93-1
Applications and Ports

245

P> MIL Services 93.4.1

MIL services (PenPoint device drivers) provide an interface between programs
and devices. The MIL service can configure and initialize the device, buffer data
(if necessary), and inform the program when a device error has occurred. MIL
services are usually written by GO and other hardware vendors.

Although different devices might perform equivalent functions, they take different
instructions to perform those functions. For example, data can be written to a disk
volumes or to the serial port, but the instructions to control those devices are very
different. Thus, each device requires a separate MIL service.

10 / CONNECTIVITY

246 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Most MIL services use the stream interface, you can use the same stream messages
to send and receive data from the MIL service. However, most MIL services also
provide control functions in their API; these control functions vary from device to
device. Your application should always be aware of the type of device with which it
is communicating,

Figure 93-2
Applications, Drivers, and Devices

¥» MIL Services and Other Services 93.4.2

MIL services control physical ports, such as the serial port or the SCSI port. There
is a fixed set of MIL services created at boot time for all of the available hardware
ports. Additional MIL services can be loaded after boot time for things like
networks or plug-in peripherals.

Each MIL service has a programmatic interface; MIL services that perform related
functions have similar interfaces. These interfaces can themselves be controlled by
another service, which has a more general interface or provides another layer of
functionality. Networks use services to implement the various network protocols.

In the PenPoint operating system a service is an instance of a particular service
class. A service class provides the interface to a particular type of device (for

CHAPTER 93 / CONCEPTS AND TERMINOLOGY 247
PenPoint Connectivity

example, there is a service for Hewlett-Packard’s Laser]et printers and there is a
service class for Microsoft MS-DOS disk drives).

When the user attaches a device to a PenPoint computer and identifies it through
the device option sheet, PenPoint creates an instance of a service instance that
corresponds to that device. An instance of the LaserJet class might handle the
user’s Laser]et; an instance of the MS-DOS disk drive class handles the floppy disk
volume named DISK1. The service instance contains configuration information
(for example one paper tray or two), has a user-visible name, and can be bound
(directly or through another service) to a MIL service which represents an actual
hardware port.

%7 Binding 93.4.2.1
A service is joined to a port or another service in a process called binding. Binding
can be static or dynamic. Static binding is performed at compile time and is
permanent (such as binding a MIL service to a port). Dynamic binding is
performed when a service is installed, which allows the service to bind to a service
chosen by the user.

More than one service can be bound to a given service. For example, the serial
g p

port could have two different services, such as a printer service and the modem

service.

Some services, such as networks or the SCSI device, have no problem with this
situation, because the peripherals connected to these devices are self-identifying.
However, a device such as the serial port cannot be shared by peripherals; only one
thing can be connected to it at any time. Devices of this nature can be accessed by
only one service at a time.

To solve this problem, the user must identify the application or service that owns
the service (the owner). A service keeps track of all the services that are bound to
it, but only allows communication with its owner. Services that can be shared by
peripherals can allow more than one owner.

%7 Connection Management 93.4.2.2

MIL services can recognize when actual connections are made and broken. For
intelligent peripherals, the services are able to detect connection by monitoring
their hardware port. For dumb peripherals, those that aren’t able to detect
connections, the user must tell the service which device is connected. For example,
the SCSI port can detect when SCSI devices come and go, but standard PC floppy
drives can’t. Therefore, the user must triple tap on the Connections notebook for
it to recognize a new floppy.

When a service detects that a connection is made or broken, it sends object
notification messages to the services that are bound to it. In turn, a service can
relay the connection status message to any services that are bound to it. Any object
can add itself to the notification list to receive these connection status messages.
All MIL services support a common set of connection status messages.

10 / CONNECTIVITY

248 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Services also broadcast connection status. They observe the MIL service to which
they are bound and essentially pass the connection messages on to their own
observers.

Figure 93-3 illustrates the logical and MIL services.

Figure 93-3
Layered Services

CHAPTER 93 / CONCEPTS AND TERMINOLOGY
PenPoint Connectivity
Figure 93-4
Devices and Interfaces

249

%> Services and Interfaces 93.4.3

Figure 93-4 shows the PenPoint networking and connectivity architecture. Each
interface in the figure (denoted by dotted lines) is a PenPoint class. Applications
can send messages to instances of these classes to control individual devices. Thus
an application might use the file system interface to communicate with a remote

10 / CONNECTIVITY

250 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

computer, but it can also use the SoftTalk interface (available from Sitka
Corporation) to communicate with the remote computer.

The interface that an application uses depends on the level of control that the
application needs to exercise, offset by the amount of work the application wants
to perform itself. Usually in bypassing one of the upper-level interfaces, an
application takes on more work for itself.

The Service Manager 93.5

At the root of PenPoint connectivity architecture is the service manager class. A
service is any general, non-application DLL that enables PenPoint clients to
communicate with a device or to access a function, such as a database engine.

Related services are managed by an instance of the service manager class. A service
manager instance performs these tasks:

Locates and accesses the service.

¢ Manages the connections between a client and a service (services may
themselves by clients of another service).

Notifies its observers of additions and deletions.

¢ Monitors the state of each connection between a service and its target and
passes change notifications to its observers.

PenPoint Facilities 93.6

Using the principles and architecture described above, PenPoint provides these
facilities for networking and connectivity:

* A file system that works on top of MS-DOS disk ofganization.

¢ A Connections notebook, in which the user can view the available volumes
and printer queues.

Basic Appletalk services at the ATP (AppleTalk Transport Protocol) level and
below. This does not include ASP (AppleTalk Session Protocol) and ADSP
(AppleTalk Data Stream Protocol).

¢ 19.2K asynchronous serial support, which allows a PenPoint computer to
communicate with a single IBM PC through the PC’s standard serial port.

¢ Appletalk connections between a PenPoint computer with a modem and
another computer with a modem.

¢ High-speed serial (115K) and parallel data connections.

¢ Printer services for 8- and 24-pin dot-matrix printers and the H-P Laser]et
printer.

CHAPTER 93 / CONCEPTS AND TERMINOLOGY 251
Survey of the Remote Interfaces

Adding Network Protocols 93.7

PenPoint can support multiple protocol stacks and multiple remote volumes.

To allow users to connect a PenPoint computer directly to a network, you have to
obtain or write a network protocol stack, or supplement an existing one and write
support for another remote file system.

The service manager allows users to add new network protocol stacks dynamically;
they don’t have to cold-boot the system to add a new protocol. To connect a
PenPoint computer to a new network device (provided the device uses SCSI or

AppleTalk connectors), all the user has to do is:
¢ Install the protocol stack for the new network.
¢ Connect the PenPoint computer to the device.

¢ Tell the connection manager which protocol stack to use with the device.

Survey of the Remote Interfaces 93.8

The rest of this chapter provides an overview of the remote interface APIs
provided by the PenPoint operating system. Most of these APIs are described in
full in the remaining chapters.

Most of the device interfaces described here descend from clsStream. To read from
and write to these devices, applications use the stream read and stream messages.
clsStream is described in Part 9: Utility Classes.

% Serial 1/O 93.8.1

The serial I/O interface provides access to and control of a serial port. The serial
interface is managed by theSerialDevices service manager. When an application
gets a handle on a serial port from theSerialDevices, it can perform these tasks:

Alter the serial port configuration, including baud rate, line control, and flow
control.

¢ Transmit and receive data on the serial port.
¢ Detect events on the serial port.

For more information on the serial port, see Chapter 95, Serial 1/O.

% Parallel 1/0O 93.8.2

The parallel I/O interface provides access to and control of a parallel port. The
parallel interface is managed by theParallelDevices service manager. When an
application gets a handle on a parallel port from theParallelDevices, it can:

Initialize a printer attached to the parallel port.
¢ Transmit and receive data on the parallel port.
¢ Change the auto-line-feed characteristics of a printer.

¢ Get and set the initialization and interrupt time-out intervals.

10 / CONNECTIVITY

252 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

For more information on the parallel port, see Chapter 96, Parallel I/O.

% High-Speed Packet 1/0 | | 93.8.3

The high-speed packet I/O interface (HSPKT) provides access to a protocol that
performs high-speed data transfers using either a serial or parallel port. The high-
speed packet interface is managed by theHighSpeedPacketHandlers service

manager.

High-speed packet I/O implements a builtin RTS/CTS type protocol by sending a
lead in character and expecting a data acknowledge character in return before
actually sending a packet of data.

High-speed packet I/O is also discussed in Chapter 96, Parallel 1/O.

% File System 93.8.4

The PenPoint file system provides access to files and directories on a RAM
volume, local disk volumes, and remote volumes. The file system API provides
all standard file system control functions. In addition, it provides these capabilities:

¢ Reliable handling of disconnect and reconnect events for volumes.

¢ Memory-mapped files that allows you to open files with direct byte
addressing capability.

A volume traversal mechanism that allows you to visit all file system nodes
that match a particular criterion.

The PenPoint file system currently is layered on the MS-DOS volume structure.
Implementations using other volume structures (such as Apple’s HES) are possible
in the future.

For more on the PenPoint file system, see Part 7: File System.

% File Import Export 93.8.5

The PenPoint operating system provides system-based support for importing and
exporting documents in different file formats; each application developer
determines which import and export formats to supply.

When the user moves or copies a file into a PenPoint computer, PenPoint
examines the file to see if it is a PenPoint document. If not, PenPoint asks every
application that is currently installed whether it can import the file. Those
applications that can import the file are displayed in a dialog box. When the user
chooses an application, the import mechanism tells the application to translate the
file into a document of that application type.

To export a file, the export mechanism asks the application what file formats it can
write and displays the list of formats in a dialog box. The user selects a file format
and the export mechanism tells the application to write the file using that format.

An additional mechanism allows applications and file translators to communicate
with each other, allowing third parties to provide additional file translators.

CHAPTER 93 / CONCEPTS AND TERMINOLOGY
Survey of the Remote Interfaces

The text editor application, MiniText, that is bundled with PenPoint imports and
exports using three file formats:

¢ PenPoint internal text format.
¢ ASCII text.
#® Microsoft’s Rich Text Format (RTF).

For more information on the import/export mechanism see Chapter 81, File

Import and Export, in Part 9: Utility Classes.

7% Modem Interface 93.8.6

The modem interface provides access to modem control functions through a
high-level API, which allows you to configure the modem, dial out, and
auto-answer.

The modem interface handles all the low-level modem line functions for you.

To use the modem interface, you open the serial port, create a modem object
using the serial port handle, and then send messages to the modem object.

For more information on the modem manager, see Chapter 97, Data Modem
Interface.

’» Networking Interface 93.8.7

As described previously in this chapter, PenPoint includes support for networking
protocols. PenPoint provides these protocols:

¢ A transport protocol, which establishes communication with another
program that understands the same protocol and transports data between the
two programs.

Several link protocols, which send and receive the data using various physical
media (parallel and serial lines).

The session layer protocols are available from other vendors, such as Sitka
Corporation, who provides TOPS for PenPoint.

%7 Transport 93.8.7.1

The transport protocol establishes communication with a partner and handles
data exchange with the partner. Currently the only transport protocol supported
by the transport API is the AppleTalk transport protocol (ATP).

For more information on the Transport Protocol, see Chapter 98, Transport API.

v Link 93.8.7.2

The link protocol provides communication on physical network devices
(Locall'alk). The interface to the link protocol is not described in this part. For
further information, please contact GO Developer Technical Support.

253

10 / CONNECTIVITY

PENPOINT ARCHITECTURAL REFBRENCE / VO

PART 10 / CONNECTIVITY

Chapter 94 / Using Services

PenPoint™ service classes provide installable, configurable system extensions.

To access a particular service instance, clients need to communicate with a service
manager. The service manager controls access to service instances and keeps track
of all clients that are interested in a particular service instance.

There are a number of service managers in PenPoint. Each service manager is
responsible for a particular category of services, such as the modems, the printing
devices, or the handwriting translators.

Some of these categories may actually overlap (such as the printing devices and
the parallel ports). A particular service instance can be managed by several service
managers.

This chapter describes some fundamental service concepts, but is primarily
concerned with the API for the service managers.

Chapter 94 covers these topics:

® Service concepts, including user installation and configuration of services,
service managers, binding and opening services, and chaining services.

¢ Messages for service managers.
¢ How to use the service manager messages.

This chapter does not describe how to write services; for that information, see
Part 13: Writing PenPoint Services.

"Concepts

A service is a general, non-application DLL that provides an extension to the
system. Services can perform many types of work, including—but not limited
to—database engines, e-mail backends, and device drivers.

Each service is a class that inherits from clsService. For some services the service
writer provides a user interface so that the user can create instances of a service;
for other services, their instances are created automatically when the service is
installed.

The services architecture can be though of as being quite similar to the PenPoint
application framework. Services are similar to application classes; service instances
are similar to documents.

However, the key concept to services is not with the services themselves, but the
service manager architecture. Most clients of services deal far more with the service
managers and service manager messages than with the actual services.

256 PENPOINT Al'tCHITECTURAI. REFERENCE
Part 10 / Connectivity

% Installing Services 94.1.1
There are three ways to install services:

¢ The user can explicitly install a service through the services page of the
Connections notebook. This action may be initiated by the service developer
enabling service quick installation on a distribution disk.

Applications or services can list a set of services in a SERVICE.INI file. If the
service is not already installed in the system, PenPoint will install the service
(if it is already installed, PenPoint will increase its reference count).

¢ A program can explicitly install a service by sending msgIMInstall to
thelnstalledServices (most applications will not do this).

You cannot list a service DLL file in any DLC file. Warning You cannot include a

.. .. L. service DLL file in any DLC file.
When an application requests a service in a SERVICE.INI file, the application

is said to be dependent on the service. When someone attempts to deinstall the
service, any application that is dependent on the service can veto the deinstallation.

The user can deinstall services by the Connections notebook interface or
thelnstalledServices. When the user deinstalls a service, the service manager
destroys the service handles and removes the service’s code and all saved service
instances from PenPoint.

Clients that are bound to a service receive msgIMDeinstalled when the service
class is deinstalled. Clients can observe the service manager to find out when the
service is reinstalled.

A service cannot be deinstalled if it is marked as being in use when any instance of
the service is open. By default, services are marked in use when anyone has their
instances open.

P» Service Managers 94.1.2
A service manager provides a system-wide way of managing categories of services.

A service manager is an instance of clsServiceMgr. There is no single, central
service manager; rather, there are a number of service managers. For example, the
print services are managed by the print service manager; the serial ports are
managed by the serial port manager.

A service manager performs several functions:
¢ It maintains a list of service instances.
¢ It provides protocol that allow clients to access service instances.
It controls access to service instances.

It notifies all observers when service instances are added or removed from
its list.

However, when the client that initially loaded the service is deinstalled, the
dependent applications receive notification, but cannot veto the deinstallation.

CHAPTER 94 / USING SERVICES

A service can appear on more than one service manager list. For example,
theSerialDevices lists the available serial ports, but thePrinterDevices lists all the
devices that can support printers, including the serial ports. This frees clients from
having to search many lists to find the correct service; they just look for a service
listed on by the most likely service manager.

All services controlled by a particular service manager support the same minimal
set of functions.

"> Access Overview 94.1.3

The service manager provides access protocols that allow clients to:
¢ Find a particular service.
¢ Express an interest in a particular service instance (called binding).
* Open and close service instances.
¢ Acquire and release ownership of service instances.

Rather than perform these actions explicitly, the service manager also provides
access messages that perfor all of these actions.

For example, when a client needs to access a specific serial port driver, the client
P p
performs the following tasks:

1 Sends a message to a service manager that manages the driver (such as
theSerialDevices), giving it the name of the serial port and asking it to find
the service for that device. theSerialDevices replies with a handle on the
service. | '

2 The client sends a message to theSerialDevices asking to bind with that
service.

3 When client needs to send or receive serial data, it sends an open message to
theSerialDevices.

4 When the client is done sending or receiving, it sends a close message to
theSerialDevices and eventually unbinds from the service.

A client should open a service only when it is ready to actually use the service.
Opening a service returns the service object. The client should close the service as
soon as it is done with the service.

Ownership 94.1.4
The service manager also works to control access to service instances.

Some services (such as those that communicate with ports) can only be used
by one client at a time. For example, if the fax service owns a serial port and a
fax/data modem is connected to that port, you don’t want an E-mail service to
be able to access the port.

A service manager can maintain an owner of a service instance and, if suitably
configured, will allow only the owner of a service instance to open that service.

Concepts

257

10 / CONNECTIVITY

258 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

%> Targeting 94.1.5

A service can have a target, which can be either a physical device or another
service. By using targeting, several services can be chained together, much like a
network protocol stacks.

Targeting is used to pass both data and control information up and down target
chains. (Here data is the actual information that a client is trying to transmit
through a device; control information is information about the other services in
the chain—such as connection information.)

%> Connections 94.1.6

Services can maintain connection status. Usually connection status is important to
services that control devices, but connection status is not limited to those services.

Changes in connection state are transmitted to observers of the service (in
addition to observers of the service manager in which the service is listed). By -
default, a service’s connection state follows that of it’s target.

With targeting and connection information, PenPoint applications can easily
inform their users that a required device is available (or unavailable).

Accessing Services 94.2

To access a service, a client must observe the service protocol of binding to the
service when interested in it, opening the service when access is needed, closing
the service when done, and releasing the service when no longer interested in it.

Clients use messages defined by both clsInstallMgr and clsServiceMgr to
communicate with the service manager. For example, your application gets the
name of a service given its handle by sending msgIMGetName to the service
manager.

clsInstallMgr is described in Chapter 112, Installation Managers of Part 12:
Installation APL

% Predefined Service Managers | 94.2.1
GO defines a number of service managers in UID.H.

theMILDevices
theParallelDevices
theAppleTalkDevices
theSerialDevices
thePrinterDevices
thePrinters
theSendableServices
theTransportHandlers
theLinkHandlers
theHWXEngines

CHAPTER 94 / USING SERVICES 259
Accessing Services

theModems
theHighSpeedPacketHandlers
theFaxIOServices

The names of these service managers make them fairly self-explanatory.

% Binding to a Service 94.2.2

A client binds to a service by sending msgSMBind to the service’s manager. The
service manager then adds the client to the service’s notification list. That way the
service can inform the client about its availability through notification messages.

These notification messages include messages defined by the service, plus the
following service manager messages:

msgIMActiveChanged
msgIMDeinstalled
msgIMModifiedChanged
msgIMInUseChanged
msgIMCurrentChanged
msgSMConnectChanged

’» Opening a Service 94.2.3

Most services have service-specific arguments that the client must include in the
arguments to msgSMOpen. The structure and organization of these arguments is
described in the documentation for the specific service. Some services provide
their own defaults for their open arguments. To initialize the service specific
arguments to their default values and to allow the clsService to perform other
work for the service, the client must always call msgSMOpenDefaults before
calling msgSMOpen.

A client opens a service by sending msgSMOpen to the service’s manager. If the
service has no other openers, or if the service can be shared, the service manager
passes back the UID of the service object. If the service manager refuses the open
request, it returns stsFailed.

Once the client has the UID of the service object, it can send service-specific
messages to the service.

The client should open a service just before it needs to use it, and should close the
service as soon as its use is completed. Services are a resource; many of them only
allow one client at a time. An open service cannot be deinstalled.

10 / CONNECTIVITY

260 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

7 The Service Manager Messages 94.3

Most clsServiceMgr messages are sent by clients attempting to access a service;
they are sent to instances of the service manager.

Table 94-1 lists the clsServiceMgr messages.

Table 94-1
€§§§®W§C@M§§“ Messages
Message Tokes ' Desaription
Maodified Ancestor Messages
msgIMGetState P_IM_GET_STATE Gets the state of a service manager.
msgIMSetModified P_IM_SET_MODIFIED Changes an item’s modified setting.
instance Messages
msgSMAccess P_SM_ACCESS Accesses a service instance, given its name.
msgSMRelease P_SM_RELEASE Releases a service instance.
msgSMBind P_SM_BIND Binds to a service.
msgSMUnbind P_SM_BIND Unbinds from a service.
msgSMAccessDefaults P_SM_ACCESS Sets pArgs defaults for msgSMAccess.
msgSMOpenDefaults P_SM_OPEN_CLOSE Initializes SMOpen pArgs to default value.
msgSMOpen P_SM_OPEN_CLOSE Opens a service, given its handle.
msgSMClose P_SM_OPEN_CLOSE Closes an open service.
msgSMGetState P_SM_GET_STATE Gets the state of a service.
msgSMFindHandle P_SM_FIND_HANDLE Finds a handle, given a service instance UID.
msgSMGetOwner P_SM_GET_OWNER Gets the current owner of a service.
msgSMSetOwner P_SM_SET_OWNER Sets a new service owner.
msgSMSetOwnerNoVeto P_SM_SET_OWNER Sets a new service owner without giving owners
Veto power.
msgSMQueryLock P_SM_QUERY_LOCK Gets the UID of a service and locks out any opens.
msgSMQuery P_SM_QUERY_LOCK Gets the UID of a service.
msgSMQueryUnlock P_SM_QUERY_UNLOCK Unlocks a service that was locked via
msgSMQueryLock.
msgSMSave P_SM_SAVE Saves a service instance to a specified external
location.
msgSMGetClassMetrics P_SM_GET_CLASS_METRICS Gets the service’s class metrics.
msgSMRemoveReference P_SM_REMOVE_REF Removes a service from a service manager without

destroying the service.

Notification Messages

msgSMConnectedChanged P_SM_CONNECTED_NOTIFY A service’s connection state changed.
msgSMOwnérChanged P_SM_OWNER_NOTIFY A service’s owner has changed.

CHAPTER 94 / USING SERVICES 261
Using the Service Manager

Using the Service Manager 94.4

Whenever a client needs to access a service, it sends install manager and service
manager messages to a service manager. The service managers are always present in
a running system.

Accessing a Service 94.4.1
Your application can access the service in one of two ways:

¢ It can use the msgSMAccess to find, bind to, set owner, and then open a
service.

¢ It can explicitly find, bind to, set owner, and open the service.

This section discusses msgSMAccess. The following sections discuss msgIMFind,

msgSMBind, and msgSMOpen.

msgSMAccess provides a convenient way for clients to perform the most common
sequence of messages used to access a service. msgSMAccess takes a pointer to an
SM_ACCESS structure that contains:

10 / CONNECTIVITY

pServiceName The name of the service that your application needs
to access.

caller The UID of the object making the call (usually self).

pArgs A pointer to a set of arguments, if required by the service.
If the service requires arguments, your application must send
msgSMAccessDefaults first.

If the message does not succeed, it can return these status values:

stsNoMatch The specified service instance wasn’t found.
stsSvcLocked An exclusive-access service is locked by another client.
stsSvcNotOwner Your application is not the current owner of the service.

stsSvcAlreadyOpen An exclusive-open service is open by another client.
If the message does succeed, it passes back:

handle The handle on the service object.

service The UID of the service instance.

Applications should never store an device’s object UID in their instance data. Applications should never file a
While a document is saved and the application is terminated, the user could device's object UID.

deinstall the service, or reconfigure the service, rendering the UID invalid. Your

application should find and bind to a service when it receives msgApplnit or

msgAppRestore; it should unbind from the service when it receives msgFree.

Finding a Service 94.4.2

Before your application can bind to a service, it must get the name of the service
and a handle on the service.

To get the name of a service, your application can send msgIMGetList to a service
manager, which passes back a list of service instance UIDs. Your application can

262 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

then use msgIMGetName to find the name of each service; the application then
displays display the names to the user and allows the user to choose one.

If your application knows the name of the service ahead of time, it can send
msgIMFind to the service manager for that type of service, specifying the name.
msgIMFind passes back the handle on the service.

This example gets a handle on parallel I/O port:

STATUS S;

IM FIND imf;
SM_BIND sm;
SM_OPEN s0;
OBJECT sioUid;

imf.pName = PPortName; // PPortName is defined by the user.
ObjCallRet (msgIMFind, theParallelDevices, &imf, s);

" Binding to a Service 94.4.3

When your application binds to a service, the service manager adds your
application to the observer list for that service. Observers of a service receive
messages that relate to the status and availability of the service.

When your application has the handle on the service, it can send msgSMBind to
the handle. The message takes a pointer to an SM_BIND structure that contains:

handle The handle on the service.
caller The UID of the object sending the message. Usually caller is self.

When the message completes successfully, it returns stsOK. The message does not
send back anything. If the handle is not found, the message returns stsNoMatch.

This example continues from the example above. The caller binds to the option

slot serial I/O port:
sm.handle = imf.handle;
sm.caller = self;

ObjCallRet (msgSMBind, theParallelDevices, &sm, S);

7» Opening and Closing a Service 94.4.4

When your application is ready to use the service, your application can open it by Open service objects are
sending msgSMOpenDefaults and then msgSMOpen to the service manager for ~described in Fart 13: Writing
. . . FenFoint Services.

the service. msgSMOpenDefaults allows the service class to provide defaults for
its arguments, and also allows clsService to initialize other internal data structures,
such as open service objects.

Clients should only open the service when they are ready to use it and should
leave the service open for as little time as possible.

Both messages take a pointer to an SM_OPEN_CLOSE structure that contains:

handle The handle on the service. This is the same handle that your
application sent with msgIMFind. ‘

caller The UID of the object sending the message. Usually caller is self.

CHAPTER 94 / USING SERVICES 263
Using the Service Manager

pArgs A pointer to service-specific arguments. Your application must check
the description of the service to see if it has any service-specific
arguments. Some services can initialize their pArgs structure to default
values; for these services, call msgSMOpenDefaults before calling
msgSMOpen.

If the message completes successfully, it returns stsOK and sends back the UID of
the service in the service field of the SM_OPEN_CLOSE structure.

If the service manager refuses the request, it returns stsRequestDenied. A
common reason for refusal is that only one client is allowed to open the service at
a time and the service is busy. See the documentation for individual services for
the exact reasons for returning stsRequestDenied.

This example continues from the previous two examples to show the client
opening the service:

so.handle = imf.handle;
so.caller = self;
ObjCallRet (msgSMOpen, theSerialParallel, &so, s);

pportUid = so.service;

When your application has finished with a service, send msgSMClose to the
service manager for that service. The message takes a pointer to an
SM_OPEN_CLOSE structure that contains:

handle The handle of the service to close.

caller The UID of the object sending the message. Usually caller is self.

pArgs A pointer to service-specific arguments.

service The UID of the service to close.

Your application must specify both the handle on the service and the UID of the
service.

L
ps
b

P
i

% Unbinding from a Service

To remove yourself from a service’s observer list, send msgSMUnbind to the
service manager for that service. If your application has the service open when it
send msgSMUnbind, the service manager also sends msgSMClose to close the
service. The message takes a pointer to an SM_BIND structure, which contains:

handle The handle on the service.

caller The UID of the object sending the message. Usually caller is self.

When the message completes successfully, it returns stsOK.

% Finding a Handle 94.4.6

If your application has the UID of a service object, but don’t have the handle, it
can send msgSMFindHandle to the service manager for the service. The message
takes a pointer to an SM_FIND_HANDLE structure that contains the service UID
(service).

10 / CONNECTIVITY

264 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

When the message completes successfully, it sends back the handle on the service
in the handle field of the SM_FIND_HANDLE structure.

Receiving Connection State Notification

Most services support the notion of being connected. When the connection state
of a service changes, clients that are bound to that service receive
msgSMConnectedChanged, indicating that the connection state has changed.
The message pArgs point to an SM_CONNECTED_NOTIFY structure that contains:

manager The UID of the manager that sent the notification.
handle The handle of the service whose state changed.

connected A BOOLEAN value that indicates the new connection state.
When connected is TRUE, the service is connected.

- Sefting a Service Owner

To set a new owner of a service, send msgSMSetOwner to a service manager.
The message takes a pointer to an SM_SET_OWNER structure that contains:

handle The handle of the service that your application is changing.

owner The UID of the new owner. To make yourself the new owner of a
service, owner should be self.

When your application sends this message to a service manager, the service
manager sends msgSvcOwnerReleaseRequested to the current owner and
msgSvcOwnerAcquireRequested to the new owner. The current owner and new
owner have the option to veto the change owner.

If the current and new owner do not veto, the service manager sends
msgSvcOwnerChangeRequested to the owned service, so that the service
has the opportunity to veto the change owner.

If the service doesn’t veto the change owner, the service manager sends
msgSvcOwnerReleased to the current owner, msgSvcOwnerAcquired to the new
owner, and msgSMOwnerChanged to all clients that are bound to the service.

If the current or new owner, or the owned service vetoes the change, the message
returns any status value less than stsOK.

If your application sends msgSMSetOwnerNoVeto instead of msgSMSetOwner,
the service manager does not send msgSvcOwnerChangeRequested to the current
owner.

94.4.7

94.4.8

p-tnpo“anr ARC

PART 1o Ve cou’u‘zfcnvnv

Chapter 95 / Serial 1/0

This chapter presents clsMILAsyncSIODevice, the serial port device driver
interface class. The class provides an object-oriented interface to the serial port and
supports the functionality necessary for a wide variety of serial applications.

To access a serial port, you send open and bind messages to the serial device
service manager (theSerialDevices), requesting the port by name. If that port is
available, the service manager gives you a handle on the port.

cIsMILAsyncSIODevice inherits from clsStream. Structures and #defines used
by cIsMILAsyncSIODevice are in \GO\INC\SIO.H.

Serial 1/0 Concepts 95.1

The following sections discuss the concepts of serial I/O under the PenPoint™
operating system.

% Interrupt Driven 1/O 95.1.1

Serial communications can burden a system with a high volume of asynchronous
real-time events. The serial hardware generates interrupts in response to these
events. The serial driver takes full advantage of this interrupt capability to buffer
the data before passing it to its client.

% Buffered Data 95.1.2

When data is received, the hardware generates a receive character interrupt. The
serial driver interrupt handler takes the received character and places it in the
input buffer. Thus, the client code avoids the responsibility of responding in real
time to each input character.

Output is similar. The client code does not wait around sending characters one by
one. Instead, the client places outgoing data in an output buffer and passes the
buffer to the serial driver. The serial driver moves the characters to the serial port
as the port becomes ready for them. When a character is loaded, the hardware
generates a send character interrupt.

The serial port client selects the size of the input and output buffers.

% Flow Control 95.1.3

At high data rates, or when the system is busy with other tasks, it’s possible for receive
data to arrive in the input buffer faster than the client task can remove it. To prevent
buffer overflow the serial driver utilizes two flow control protocols: XON/XOFF flow
control and hardware RTS/CTS flow control. Of course, both sides of the serial

connection must be using the same protocol for proper operation.

266 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

XON/XOFF flow control is limited to working with ASCII data, but has the
advantage of being independent of the serial hardware and cable. Two characters,
XON (usually Curl-Q) and XOFF (usually Ctrl-S), have special meaning. When
the input buffer is nearly full and in danger of overflowing the driver sends an
XOFF character to the remote serial port. When the remote serial port receives the
XOFF character it immediately suspends transmission. When there is enough
room in the input buffer the driver sends an XON character to the remote serial
port which can start transmitting again.

Hardware RTS/CTS flow control works with any data but requires a particular
hardware setup. It uses the serial port hardware input clear-to-send (CTS) and
output request-to-send (RTS) control lines; these lines must be connected to the
remote serial port. The CTS input enables data transmission to the remote serial
port. The RTS output disables transmission from the remote serial port.

¥» Events , 95.1.4

The serial driver includes an event mechanism that can notify you when an
interesting serial event happens. The event mechanism allows you to respond
quickly to serial events without polling loops, which drain batteries and waste
machine cycles. You can select which event messages you want to receive by
sending msgSioEventSet to the serial driver. When one of the events occurs, the
serial driver uses ObjectSend to send msgSioEventHappened and an event
indication to you.

The possible interesting serial events are:
¢ CTS input line has changed state.
¢ DSR input line has changed state.
¢ DCD input line has changed state.
¢ Rl input line has changed state.
¢ Input buffer is no longer empty.

Break character has been received.
¢ Output buffer has become empty.

Receive error condition has occured (parity, framing error, or overrun error).

’» Concurrency Issues 95.1.5

Only one client can access the serial port at a time. If you request a handle for a
port that is owned by another client, cIsMILAsyncSIODevice returns an error
status code stsSioPortInUse.

You can define a global handle for a serial port, however, the serial port has no
built-in access control mechanism. If you share a port with other clients, you must
create your own access control mechanism.

CHAPTER 95 / SERIAL I/O 267
Using Serial Messages

msgStream WriteTimeOut

P” Using Serial Messages 95.2
Table 95-1 lists the messages defined by clsMILAsyncSIODevice.
! Table 95-1
clsMiLAsyncSIODevice Messages
Message Tokes ‘ Description
Modified Ancestor &%mmgm
msgStreamRead P_STREAM_READ_WRITE Reads data from stream.
msgStreamWrite P_STREAM_READ_WRITE Writes data to stream.
msgStreamRead TimeOut P_STREAM_READ _WRITE_TIMEOUT Reads data from stream with timeout.

P_STREAM_READ WRITE_TIMEOUT Writes to the stream with timeout.

Instance Mossages

msgSiolnit
msgSioBaudSet

msgSioLineControlSet

msgSioControlOutSet

msgSioControllnStatus
msgSioFlowControlCharSet

msgSioBreakSend

msgSioBreakStatus

msgSiolnputBufferStatus
msgSioOutputBufferStatus
msgSioFlowControlSet

msgSioEventStatus

msgSioEventSet
msgSioEventGet
msgSioEventHappened
msgSioGetMetrics
msgSioSetMetrics

msgSioReceiveErrorsStatus

msgSiolnputBufferFlush
msgSioOutputBufferFlush
msgSioSetReplaceCharProc

P_SIO_INIT
U32 Sets the serial port baud rate.
P_SIO_LINE_CONTROL _SET

Initializes the serial device to its default state.

Sets serial port data bits per character, stop
bits, and parity.

P_SIO_CONTROL_OUT_SET
P_SIO_CONTROL_IN_STATUS

Controls serial port output lines dur and rts.

Reads the current state of the serial port in
put control lines.

P_SIO_FLOW_CONTROL_CHAR_SET Defines serial port XON/XOFF flow

control characters.
P_SIO_BREAK_SEND
P_SIO_BREAK_STATUS

Sends a break for the specified duration.

Sends back the number of breaks received
so far.

P_SIO_INPUT_BUFFER_STATUS
P_SIO_OUTPUT_BUFFER_STATUS
P_SIO_FLOW_CONTROL_SET
P_SIO_EVENT_STATUS

Provides input buffer status.
Provides output buffer status.
Selects flow control type.

Sends back current state of event word, and
then clears the event word.

P_SIO. EVENT_SET Enables event notification.
P_SIO_EVENT_SET
P_SIO_EVENT_HAPPENED
P_SIO_METRICS
P_SIO_METRICS

P_SIO_RECEIVE_ERRORS_STATUS Sends back the number of receive errors and
the number of dropped bytes (due to buffer

Gets the current sio event setting.
Notifies client of event occurance.
Sends back the sio metrics.

Sets the sio metrics.

overflows).
pNull Flushes the contents of the input buffer.
pNull Flushes the contents of the output buffer.

P_SIO_REPLACE_CHAR

Replaces the built in receive character
interrupt routine.

10 / CONNECTIVITY

268 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

’» Requesting and Releasing a Serial Handle 95.2.1

Before you can communicate through the serial port, you must request a handle
on the port from theSerialDevices service manager. To locate the port by name,
send msgIMFind to theSerialDevices, then bind the port to your process by
sending msgSMBind to theSerialDevices. Finally, you open the port by sending
msgSMOpen to theSerialDevices.

This example shows how a client requests a handle on a serial port.

STATUS S;

IM FIND imf;

SM_BIND sm;

SM_OPEN s0;

OBJECT sioUid;

imf.pName = userName; // The name was requested from the user earlier
ObjCallRet (msgIMFind, theSerialDevices, &imf, s);
sm.handle = imf.handle;

sm.caller = self;

ObjCallRet (msgSMBind, theSerialDevices, &sm, s);
so.handle = imf.handle;

so.caller = self;

ObjCallRet (msgSMOpen, theSerialDevices, &so, s);
sioUid = so.service;

The symbol sioUid now contains the UID of the serial port object. You can
communicate with the serial port by sending messages to this object.

When you have finished with the serial port, you should free the port by sending
msgSMClose to theSerialDevices. Do not send msgDestroy to the serial port object.

This example shows the correct way to free a port:

sioUid = so.service;

ObjCallRet (msgSMClose, theSerialDevices, wknKey);

"> Reinitializing the Serial Port 95.2.2

To reinitialize a serial port to its default state and change the buffer sizes, send
msgSiolnit to the handle on the serial port. The message takes a pointer to an
SIO_INIT structure that contains:

inputSize A U16 value that specifies the size of the input buffer.
outputSize A U16 value that specifies the size of the output buffer.

’» Serial Port Configuration 95.2.3

Before you communicate over the serial port, you must configure the port so that can
communicate with the device at the other end of the line. Both devices must be con-
figured identically, or communication will not occur. The configurable items are:

¢ Baud rate

¢ Number of bits per byte

CHAPTER 95 / SERIAL I/O
Using Serial Messages

Parity
Stop bits
¢ Flow control
¢ Flow control characters.
When you first create a handle on a serial port, it has these defaults:
* 8 bits
¢ No parity
¢ One stop bit
¢ XON/XOFF flow control
¢ Curl-Q and Curl-S are the XON and XOFF characters
¢ DTR and RTS are on.

%v Setting the Baud Rate 95.2,3.1
You set the baud rate by sending msgSioBaudSet to the serial port handle. The
message takes a single argument, a U32 value that specifies the data rate in bits per
second. The maximum allowed setting is 115200; there is no default setting.

*»+ Setting the Line Control
You set the number of data bits, the stop bits, and the parity by sending
msgSioLineControlSet to the serial port handle. msgSioLineControlSet takes a
pointer to an SIO_LINE_CONTROL_SET structure that specifies:

£
o
:

[
L

G
[

dataBits The number of bits in a byte. Three constants define the possible
byte sizes: sioSixBits, sioSevenBits, and sioEightBits.

stopBits The stop bits. Three constants define the possible stop bits:
sioOneStopBit, sioOneAndAHalfStopBits, and sioTwoStopBits.

parity The parity. Three constants define the possible parity settings:
sioNoParity, sioOddParity, and sioEvenParity.

£,

% Specifying the Flow Control 95,2.3.
You specify the flow control for a serial port by sending msgSioFlowControlSet to
a serial port handle. The message takes a pointer to an SIO_FLOW_CONTROL_SET
structure. The structure contains a single member, flowControl, which indicates

whether the port will use XON/XOFE CTS/RTS, or no flow control. The
constants defined by SIO_FLOW_TYPE are:
sioNoFlowControl No flow control.

sioXonXoffFlowControl Use XON/XOFF flow control. Use
msgSioFlowControlCharSet to change the control characters from their
defaults).

sioHardwareFlowControl Use the CTS and RTS lines for flow control.

269

10 / CONNECTIVITY

270 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

%» Changing the Flow Control Characters 95.2.3.4
If, for some reason, you cannot use Ctrl-Q (ASCII 17) as the XON character or
Curl-S (ASCII 19) as the XOFF character, you can to change the default flow
control character values by sending msgSioFlowControlCharSet to the serial port
handle. The message takes a pointer to an SIO_FLOW_CONTROL_CHAR_SET
structure that specifies:

xonChar A U8 value for the XON character.
xoffChar A U8 value for the XOFF character.

%7 Controlling DTR and RTS For Output | 95.2.3.5
If both the local and remote hardware support data-terminal-ready (DTR) and
request-to-send (RTS) lines, you can set the state of the output DTR and RTS
lines by sending msgSioControlOutSet to the serial port handle. The message
takes a pointer to an SIO_CONTROL_OUT_SET structure, which contains:

dtr A BOOLEFAN value that specifies the state of the DTR line.
rts A BOOLEAN value that specifies the state of the RTS line.

In both BOOLEAN values, true activates the line.

»# Requesting the Input Line States 95.2.3.6
If the local and remote hardware supports DTR and RTS lines, you can request
the states of the input lines by sending msgSioControlInStatus to the serial port
handle. The message takes a pointer to an SIO_CONTROL_IN_STATUS structure,
which contains:
cts A BOOLEAN value that receives the staté of the CTS line.
dsr A BOOLFAN value that receives the state of the DSR line.
rlsd A BOOLEAN value that receives the state of the RLSD line.
ri A BOOLEAN value that receives the state of the ring-indicator (RI) line.

In all BOOLEAN values, true means active.

%7 Requesting All Serial Port Settings 95.2.3.7

You can request all the serial port settings by sending msgSioGetMetrics to the
serial port handle. The message takes a pointer to an SIO_METRICS structure that
contains:

baud An SIO_BAUD_SET structure that receives the baud rate.
line An SIO_LINE_CONTROL_SET structure that receives the line control.

controlOut An SIO_CONTROL_OUT_SET structure that receives the serial
port output line settings.

flowChar An SIO_FLOW_CONTROL_CHAR_SET structure that receives the
flow control characters.

flowType An SIO_FLOW_CONTROL_SET structure that receives the flow
control settings.

CHAPTER 95 / SERIAL I/O
Using Serial Messages

All of the structures here are described in the foregoing message descriptions.

You can use the same SIO_METRICS structure with msgSioSetMetrics to set all of
the current serial port settings.

% Reading and Writing with the Serial Port 95.2.4

To read from or write to the serial port, send msgStreamRead or msgStreamWrrite
to the serial port handle. Both messages take a pointer to a STREAM_READ_WRITE
structure that specifies:

numBytes The number of bytes to read or write.

pReadBuffer A pointer to a buffer that receives the data, or containing
data to be written. On msgStreamRead, the buffer must hold at least
numBytes of data.

To read or write with a timeout value, send msgStreamRead Timeout or
msgStreamWrite Timeout to the serial port handle. These messages require
a STREAM_READ_WRITE_TIMEOUT structure that contains numBytes and
pReadBuffer and a timeout value in milliseconds (timeOut).

For more information on reading or writing streams, see Chapter 79, Class Stream

in Part 9: Utility Classes.

%7 Input and Output Buffer Status ' 95.2.4.1
To find out the number of characters in the input or output buffer and the amount of
room left in the buffer, send msgSiolnputBufferStatus or msgSioOutputBufferStatus
to the serial port handle. The msgSiolnputBufferStatus message takes a pointer to an
SIO_INPUT_BUFFER_STATUS structure that contains:

bufferChars A location that receives the number of characters in the buffer.

bufferRoom A location that receives amount of room left in the buffer.
The msgSioOutputBufferStatus message takes an SIO_OUTPUT_BUFFER_STATUS
structure that contains:

bufferChars A location that receives the number of characters in the buffer.

bufferRoom A location that receives amount of room left in the buffer.

transmitterFrozen A BOOLEAN value that indicates whether the transmitter
is frozen. This can happen when the serial port receives XOFF or the
RTS line is not active. For more information, see “Flow Control,” below.

%» Flushing the Input and Output Buffers 95.2.4.2
To flush (delete the contents of) the input or output buffers, send
msgSiolnputBufferFlush or msgSioOutputBufferFlush to the serial port handle.
The messages do not take any arguments.

271

10 / CONNECTIVITY

272 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

’ Flow Control 95.2.5

Now comes the moment when all the flow control information becomes useful. If
you are performing your own buffer management and detect that your buffer is in
danger of overflowing, you need to tell the device with which you are commun-
icating to stop sending data; usually you do this with CTS/RTS.

%> Sending BREAK 95.2.6

A more drastic way to signal your partner to stop transmission is to send a BREAK
signal (a series of zeros). BREAK sends a series of zeros to the stream. Of course,
you can't use a stream write message, because you don’t want the zeros buffered.
Instead, you send msgSioBreakSend to the serial port handle. The message takes a
pointer to an SIO_BREAK_SEND structure, which contains a single member,
milliseconds. milliseconds specifies the length of time that zeros should be sent on
the line, in milliseconds. A typical break duration is 200 to 400 milliseconds.

¥» Detecting Events 95.2.7

The previous section discussed how to halt data transmission. This section
describes how to detect those signals.

The best way to detect the halt signals is to make yourself an observer of the serial
port manager. To do this, send msgSioEventSet to the serial port handle. The
message takes a pointer to an SIO_EVENT_SET structure that contains:

eventMask An event mask, which describes the events for which you want
to receive notification. Table 95-2 lists the event mask indicators.

client The UID of an object to inform when the event happens. This is

usually yourself. A
Table 95-2
Event Mask Indicators
fndicotor Meaning
sioEventCTS The CTS line changed state.
sioEventDSR The DSR line changed state.
sioEventDCD The DCD line changed state.
sioEventRI The RI line changed state.
sioEventRxChar Your receive buffer is no longer empty.
sioEventRxBreak Received a break condition.
sioEventTxBufferEmpty The sender’s transmission buffer is empty.
sioEventRxError A parity, framing, or overrun error occurred.

If you send msgSioEventSet to the serial port handle and one of the specified
events occurs, the object named in the message receives msgSioEventHappened.
The argument for this message is a pointer to an SIO_EVENT_HAPPENED
structure, which contains:

CHAPTER 95 / SERIAL I/O
High-Speed Packet 1/0O Concepts

eventMask An SIO_EVENT_MASK structure that indicates the event
or events that occurred. When the serial port manager sends
msgSioEventHappened, it also clears its event mask.

self The UID of the object that generated this message.

Note that some eventMask indicators might be set for events that you are not
observing.

To get the current SIO_EVENT_SET structure, send msgSioEventGet to the handle
on the serial port. The message takes a pointer to an SIO_EVENT_SET structure
that will receive the event information.

% Polling for Events 95.2.7.1
An alternative method for detecting events is to poll the event word, by sending
msgSioEventStatus to the serial port handle. The message takes a pointer to an
SIO_EVENT_STATUS structure that contains a location to receive the current state
of the event mask (eventMask).

When the serial port manager receives this message, it returns the event mask to
the requestor and clears the mask.

%+ Checking BREAK Status
You can also poll the BREAK counter by sending msgSioBreakStatus to the serial
port handle. The message takes a pointer to an SIO_BREAK_STATUS structure,
which contains the location to receive the current break count (breaksReceived).

3
[2{]

When the serial port manager receives the message, it sends back the number of
breaks received since the last time the counter was cleared and then clears the
counter.

"High-Speed Packet 1/0 Concepts 95.3

The high-speed packet I/O interface (HSPKT) provides access to a protocol that
performs high-speed data transfers using either a serial or parallel port. The
high-speed packet interface is managed by theHighSpeedPacketHandlers service

manager.

High-speed packet I/O implements a builtin RTS/CTS type protocol by sending a
lead in character and expecting a data acknowledge character in return before
actually sending a packet of data. '

&3
b
s
sk

%> HSPKT on Serial Lines

When running running on a parallel line, HSPKT uses a connection detection
protocol. When running on a serial line, DSR high signals that it is connected,
regardless of what the serial port is connected to.

Also when running on serial lines, the high-speed packet /0O can dynamically
negotiate the baud rate.

In case of send errors, baud rates are renegotiated with remote station automatically.

273

10 / CONNECTIVITY

Py

(4

274 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Parallel Cable Connection Detection 95.3.2

The parallel connection protocol involves sending a parallel connect character and
expecting to receive a connect acknowledge character back.

Protocol Variations ©5.3.3

By setting leadInChar to 0, no lead in character is sent (and of course no

dataAckChar is expected).

By setting dataAckChar to 0, no acknowledge character is sent upon receiving the
lead in character, i.e. DVHSPKT goes on expecting data to arrive right after the
lead in character.

By setting parConnectChar to 0, DVHSPKT reports always connected, leaving it
up to users at a higher level to determine actual connection.

By setting parConnectAckChar to 0, no connect acknowledge character is sent
upon receiving the connect character.

- Notes 95.3.4

As data is transmitted/received in parallel mode, DVHSPKT remains synchronized
with the other side during the entire data transfer. As a result, both transmissions and
receptions are subject to failure, making the use of a lead in/ack protocol not always a
necessity when communicating through the parallel port. The use of at least a lead in
character may however improve performance as fake interrupts would be noticed early
(by DVHSPKT itself) saving the upper layer code the trouble of validating the
beginning of a packet.

Parallel transfer speeds depend on the speed of the machines transmitting/

receiving data.

In asynchronous serial mode, DVHSPKT synchronizes itself with the other side
only upon receiving the first byte (lead in) by sending a data ack character to
inform the other side. The absence of a lead in/ack protocol might then cause
overruns on slower machines.

See MIL specifications for an explanation of the protocols used by this device.

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

PART 10 / CONNECTIVITY

Chapter 96 / Pardllel 1/0

This chapter presents both clsParallelPort, the parallel port device driver interface
class, and clsHighSpeedPacket, the high-speed packet I/O class (HSPKT).

Parallel Port Concepts 96.1

Usually application writers don’t need to communicate directly with the parallel port.
Rather, applications (with the assistance of the PenPoint™ Application Framework)
communicate with a printer driver, the printer driver then communicates with the
parallel port. However, you can use the parallel port to communicate with devices
other than printers.

To access a parallel port, a printer driver sends open and bind messages to the
parallel device service manager (theParallelDevices), requesting the port by name.
If that port is available, the service manager gives the printer driver a handle on
the parallel port.

clsParalle]Port inherits from clsMILService, which is a descendent of clsStream.
Structures and #defines used by clsParallelPort are in \GO\INC\PPORT.H.

% Parallel Port Interrupts 96.1.1

Because of a problem in the 8259 programmable interrupt controller (PIC) used
by most PCs, some machines can generate sporadic interrupt 7s under certain,
unpredictable conditions. The symptom is that you see several “Int w/o RB: 7”
messages at boot time. We have not seen this behavior on tablet hardware.

The PenPoint operating system attempts to avoid hanging conditions by disabling
interrupt 7 whenever too many bad interrupts occur, and the re-enabling interrupt
7 at a later time. This does not limit PenPoint’s functionality.

Theoretically, parallel port I/O could become impossible, if PenPoint were to
constantly disable and enable interrupt 7. However, we have not seen this
situation.

276 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

7 Parallel Port Messages 96.2
Table 96-1 lists the messages defined by clsParallelPort. These messages, their
structures, and #defines are all defined in PPORT.H.
Table 96-1
Parallel Port Messages
Message Takes Description
Cluss Messages
msgNew P_PPORT_NEW Creates a new pport object.
msgNewDefaults P_PPORT_NEW Initializes a structure cto create a new pport object.
Instance Messages
msgPPortStatus P _PPORT STATUS Returns the current status of the printer.
msgPPortlnitialize P_NULL Initializes the printer.
msgPPortAutoLineFeedOn P_NULL Inserts a line feed after each carriage return.
msgPPortAutoLineFeedOff P_NULL Disables inserting a line feed after each carriage return.

P_PPORT_TIME_DELAYS
P_PPORT_TIME_DELAYS
P_NULL

msgPPortGetTimeDelays Gets the initialization and interrupt time-out intervals.

msgPPortSetTimeDelays Sets the initialization and interrupt time-out intervals.

Cancels the printing of the buffer currently being
printed.

msgPPortCancelPrint

Using the Parallel Port 96.3

Like other device drivers, the parallel driver is a service. To access a parallel port, you
must use the services protocol to find a parallel port service, bind to the service, and
then open it. The service manager for parallel ports, theParalle]Devices, controls access
to the parallel ports.

’» Requesting a Parallel Port Handle 96.3.1

Before you can use a parallel port, you must request a handle on a port from
theParallelDevices service manager. To locate the port by name, send msgIMFind
to theParallelDevices. To bind the port to your process, send msgSMBind to
theParallelDevices. Finally, to open the port, send msgSMOpen to
theParallelDevices. This example demonstrates how to open a parallel port.

STATUS S;

IM FIND imf;
SM_BIND sm;
SM_OPEN s0;
OBJECT pportUid;

imf.pName = userName; // The name was requested from the user earlier
ObjCallRet (msgIMFind, theParallelDevices, &imf, s);

sm.handle = imf.handle;

sm.caller = self;

ObjCallRet (msgSMBind, theParallelDevices, &sm, s);
so.handle = imf.handle;

so.caller = self;

ObjCallRet (msgSMOpen, theParallelDevices, &so, s);
pportUid = so.service; :

CHAPTER 96 / PARALLEL 1/O
Using the Parallel Port

The symbol pportUid now contains the UID of the parallel port object. You can
communicate with the parallel port by sending messages to this object.

% Releasing the Parallel Port Object 96.3.2

When you have finished with the parallel port, you should release the port by
sending msgSMClose to theParallelDevices, as shown in the example below. Do
not send msgDestroy to the parallel port object.

pportUid = so.service;

ObjCallRet (msgSMClose, theParallelDevices, wknKey);

% Parallel Port Configuration 96.3.3

When you have the UID of the parallel port object, you should configure the
parallel port for the printer that is attached to it. This involves setting the auto line
feed state and setting the initialization and interrup time-out intervals.

%7 Setting Auto Line Feed 96.3.3.1

Some printers allow you to specify whether the printer should do a line feed after
cach carriage return. Mostly it is up to your application to determine whether it
should send a line feed or enable the printer to insert line feeds automatically.

To turn on auto line feed, send msgPPortAutoLineFeedOn to the parallel port
object. To turn off auto line feed, send msgPPortAutoLineFeedOff to the parallel
port object. Both messages take a pointer to NULL.

% Get and Set Time Delays 96.3.3.2

The parallel port driver allows you to get and set two time values:
¢ The duration of the initialization pulse.
¢ The interval at which characters can be sent to the printer.

To get or set these values, send msgPPortGetTimeDelays or
msgPPortSetTimeDelays to the parallel port object. Both messages take a pointer
to a PPORT_TIME_DELAYS structure, which contains:

initDelay A U32 that specifies the duration of the initialization pulse (in
microseconds).

interruptTimeOut A U32 that specifies the maximum amount of time to
wait for the printer to indicate it is ready to accept another character (in
milliseconds). '

% Initializing the Printer 96.3.4

Before printing, you should initialize the printer attached to the parallel port by
sending msgPPortlnitialize to the parallel port object. The message takes no
arguments.

277

10 / CONNECTIVITY

278 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

msgPPortlnitialize sends the initialization signal for the amount of time specified
by the initDelay argument to msgPPortSetTimeDelays.

%» Writing to the Parallel Port 96.3.5

Your application sends data through the parallel port by sending msgStreamWrite
to the parallel port object. This is the only clsStream message that clsParallelPort
handles.

¥» Getting Status 96.3.6

To get the current printer status, send msgPPortStatus to the printer. The message
takes a pointer to a PPORT_STATUS structure that contains a single U16 value
(pportStatus), which contains one or more of the following values:

pportStsBusy The printer is busy.

pportStsAcknowledge The printer has accepted a character.

pportStsEndOfPaper The paper is out.

pportStsSelected The printer is on line.

pportStsIOError There was an I/O error on the printer.

pportStsInterruptHappened An interrupt occurred.

¥ Cancelling Printing 96.3.7

To cancel printing, send msgPPortCancelPrint to the parallel port object. The
message takes a pointer to NULL.

Chapter 97 / Data Modem Interface

This section describes the modem interface implemented by clsModem.
cIsModem provides device-independent access to a data modem attached to a
serial port and makes the data modem command sets transparent to clients.

Chapter 97 covers these topics:
How to access the data modem.
¢ Sending modem commands and data.

¢ The data modem command set.

Concepts 97.1

The data modem plugs into an option slot on the PenPoint computer. Before you
communicate with the data modem, you need to establish communication with
the option slot serial port. You establish communication with the serial port by
sending bind and open messages to theSerialDevices.

When you have access to a serial port, there are two ways to communicate with
the data modem:

¢ Communicating through the modem interface.
¢ Sending commands and data directly through the serial port.

The modem interface is implemented by clsModem and provides a
device-independent, object-oriented interface to the modem. If you use the
modem interface, you let clsModem perform all of the management tasks
associated with establishing data modem communications. clsModem can also
auto-answer the modem.

Communicating directly with the modem through the serial port is not
recommended, but certain applications may need to do so. If you choose to
communicate with the modem through the serial port, your code will be
device-dependent. You must not initiate the modem driver (clsModem) when you
communicate with the modem directly. Additionally, you are responsible for

~ separating modem responses from data received by the modem.

Getting a Serial Port Handle 97.1.1

The data modem connects to a serial port on a PenPoint computer. You access the
serial port by sending bind and open messages to theSerialDevices service
manager; the open message sends back a handle on the serial port, you send
commands and data to the port by sending serial I/O messages to the handle.

280 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

To get a handle on the serial port, you must send msgSMBind and msgSMOpen
to theSerialDevices, specifying the name of the serial port. For example:

STATUS s;

IM FIND imf;

SM_BIND sm;

SM_OPEN s0;

OBJECT serialHandle;

imf.pName = "Option Slot";
ObjCallRet (msgIMFind, theSerialDevices; &imf, s);

sm.handle = imf.handle;

sm.caller = self;

ObjCallRet (msgSMBind, theSerialDevices, &sm, s);
so.handle = imf.handle;

so.caller = self;

ObjCallRet (msgSMOpen, theSerialDevices, &so, s);
serialHandle = so.service;

¥» Configuring the Serial Port 97.1.2

You can change the configuration of the serial port before or after you create the modem
object. Typically you might want to set the baud rate, data bits, parity; stop bits to
match the configuration of the remote modem.

¢ No parity

¢ One stop bit

¢ XON/XOFF flow control

¢ Cul-Q and Ctrl-S are the XON and XOFF characters
¢ DTR and RTS are on.

You can either use the get and set metrics messages for clsSio, or if you only need
to adjust one or two characteristics, you can send messages to configure those
characteristics independently.

In the following example, the application reconfigures the serial port to
communicate at 2400 baud with 7 bit bytes by sending msgSioBaudSet and

msgSioLineControlSet to the serial port handle opened in the previous example
(serialHandle).

STATUS s;
SIO_BAUD_SET sioBaud;
SIO_LINE CONTROL SET sioLineControl;

sioBaud.baudRate = 2400;
= ObjectCall (msgSioBaudSet, serialHandle, &sioBaud) ;
sioLineControl.dataBits = sioSevenBits;
sioLineControl.StopBits = sioOneStopBit;
sioLineControl.parity = sioNoParity;
= ObjectCall (msgSioLineControlSet, serialHandle, &sioLineControl);

CHAPTER 97 / DATA MODEM INTERFACE 281

The cisModem API

The cIsModem Messages

@7.2

The modem interface provides an object-oriented interface for you to
communicate with a modem. The modem interface also provides two other

capabilities:

¢ Auto-answer and connection detection.

¢ Asynchronous event handling.

To use the modem interface, you must get a handle on the serial port to which the
modem is attached. When you have the serial port handle, you send msgNew to
clsModem, specifying the serial port handle. clsModem sends back a new handle,
to which you send all modem, serial, and stream messages until you destroy the

modem interface object.

Do not send modem commands directly to a serial port that is being used by a

modem interface object; you must send messages to the modem object. clsModem
expects the modem to be configured in a certain way. If you send an AT command
that changed the modem’s responses, clsModem will produce unpredictable results.

"The clsModem Messages
The clsModem messages are defined in the file MODEM.H. Table 97-1 lists the

clsModem messages.

oG
g
Y
7

Table 97-1
cisModem Messages

Message Takes Description
Class Messages
msgNew P_MODEM_NEW Creates a new instance of a modem service.
msgNewDefaults P_MODEM_NEW Initializes the MODEM_NEW structure to
default values.
Instonce Messages
msgModemReset nothing Resets the modem firmware, I/O port, and
service state.
msgModemOnline nothing Forces the modem online into data mode.
msgModemSetDialType MODEM_DIAL MODE Establishes the mode for dialing telephone
numbers.
msgModemHangUp nothing Hang-ups and disconnects to terminate a
connection.
msgModemOffHook nothing Picks up the phone line.

msgModemSetSpeakerControl
msgModemSetAutoAnswer

msgModemSendCommand
msgModemSetDuplex

MODEM_SPEAKER_CONTROL

P_MODEM_SET_AUTO_ANSWER

P_MODEM_SEND_COMMAND
MODEM_DUPLEX_MODE

Enables, disables and controls modem speaker
behavior.

Disables or enables the modem auto-answer
feature.

Sends a specified command to the modem.

Sets the duplex mode for inter-modem-
communications while on-line.
continued

10 / CONNECTIVITY

282 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Table 97-1 {continued)

Message Takes ‘ Description
msgModemDial P_MODEM_DIAL Performs dialing and attempts to establish a
connection.

comsgModemSetResponseBehaviorP_ MODEM_RESPONSE_BEHAVIOR = Set the modem response mode, and comand-

to-response time-out values.

msgModemGetResponseBehavior P_MODEM_RESPONSE_BEHAVIOR Passes back the current modem response mode

and the current command-to-response time-

out values.
msgModemGetConnectionlnfo ~ P_MODEM_CONNECTION_INFO Passes back information about the current

connection.
msgModemSetAnswerMode MODEM_ANSWER_MODE Filters the type of calls to answer and

connection reporting,.
msgModemAnswer nothing : Immediately answers a telephone call.

msgModemSetSignallingModes ~ P_MODEM_SIGNALLING_MODES Restricts the modem to use specific signalling
modes or standards.

msgModemSetToneDetection MODEM_TONE_DETECTION Enables or disables busy tone or dial tone
detection.
mngodemSetSpeakerVolume MODEM_SPEAKER_VOLUME Sets the volume of the modem speaker.
msgModemSetCommandState ~ nothing Sets the modem into command mode.
msgSveGeiMeirics P_SVC_GET_SET_METRICS Passes back the current modem metrics.
msgSvcSetMetrics P_SVC_GET_SET_METRICS Set current modem metrics, and re-initialize
modem with specified metrics.
msgSvcCharactersticsRequested ~ P_SVC_CHARACTERISTICS Passes back the characteristics of the modem
service.
msgModemSetMNPMode MODEM_MNP_MODE Sets the MNP mode of operation.
msgModemSetMNPCompression MODEM_MNP_COMPRESSION Sets MNP class 5 compression on or off.
msgModemSetMNPBreakType =~ MODEM_MNP_BREAK_TYPE Specifies how a break is handled in MNP
mode.
msgModemSetMNPFlowControl MODEM_MNP_FLOW_CONTROL Specifies the flow control to use in MNP
' mode.

Observer Messages

msgModemConnected nothing The modem has connected with a remote
node modem.

msgModemDisconnected nothing ‘ The current connection has been terminated.

msgModemRingDetected nothing A ring indication has been received from the

' modem. '

msgModemErrorDetected nothing An unexpected error indication has been
received from the modem.

msgModemTransmissionError ~ nothing ‘ An error has been detected during data
transmission.

% Creating a clsModem Object 97.3.1

To create the clsModem object, you first get a handle on the serial port to which
the modem is connected. You then send msgNewDefaults and msgNew to

% Configuring the Modem

CHAPTER 97 / DATA MODEM INTERFACE
The clsModem Messages

cIsModem. The messages take a pointer to a MODEM_NEW structure that
contains an OBJECT_NEW_ONLY structure (object) and a MODEM_NEW_ONLY
structure (modem). The MODEM_NEW_ONLY structure contains:

modem.client The UID of the client that will use the modem object. This
is usually self.
modem.sioPort The UID of the serial port handle.

When the message completes, the object.uid field of the MODEM_NEW structure
contains the UID of the new modem object.

&
“od
Y

fe)
&

When you get the modem object, the first thing you should do is reset the modem
to its default settings; that way you know the state of the modem before
continuing. To reset the modem, send msgModemReset to the modem object.
The message has no arguments. When the message completes successfully, it
returns stsOK.

Table 97-2 lists the default settings established by msgModemReset. clsModem
requires certain settings so that it can interpret responses from the modem and
pass its interpretation on to the client. Because you are using clsModem, you
shouldn’t have any reason for setting these values. The required settings are:

¢ EO0 Echo mode must be off.
* QO Return result codes.
V1 result codes must be whole words.
Table 97-2

Modem Reset Sefings

W

283

Attribute AT Command Meaning

Bell or CCITT protocol Bl Use Bell protocol.

Duplex F1 Use full duplex.

Speaker M1 ‘ Speaker on until carrier.

Dialing mode T Use touch tone dialing.

Result code range X4 Wait for dial tone, detect busy signal.
Long space disconnect YO Disabled.

Carrier detect (CD) &C1 On in presence of carrier.

DTR off action &D2 Hang up, no auto-answer.

Pulse dial ratio &P0 Ratio is 39/61 (USA).

Guard tones &GO No guard tones.

RDL test &T4 Grant RDL test request.
Auto-answer mode S0=000 Auto-answer disabled.

Escape character $2=043 Escape character is +.

Carriage return $3=013 Carriage return is 13.

CD timeout §7=30 Wiait 30 seconds for CD.

Response to carrier S9=6 Respond to CD after .6 seconds.
Lost carrier hang-up S10=14 " Wait 1.4 seconds after loss of carrier before hang-up.
Touch tone spacing S11=95 ‘Wait 70 ms between tones.

Escape code guard time S12=50 Wait 1 second before sensing escape characters.
Test timer : S18=0 Test timer is 0.

DTR detect delay §25=5 Wait .05 seconds for DTR.

10 / CONNECTIVITY

284 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

clsModem provides messages that allow you to set the following modem
characteristics:

¢ Dial type

o Autoanswer mode

¢ Carrier state

* Speaker mode

¢ Command/data mode

¢ Duplex mode

¢ MNP mode.

%7 Setting the Dial Type 97.3.2.1
The modem can dial in either pulse or touch-tone mode. To set the dialing type of
the modem, send msgModemDijalTypeSet to the modem object. The message
takes a pointer to a MODEM_DIAL_TYPE_SET structure that contains a single
element, a MODEM_DIAL_TYPE value (dType) that specifies pulseDialing or
touchtoneDialing. '

%7 Sefting the Auto-Answer Mode 97.3.2.2
You can configure the modem so that it automatically answers the phone after a
specified number of rings. To set the modem’s auto-answer mode, send
msgModemAutoAnswerSet to the modem object. The message takes a pointer to
a MODEM_AUTO_ANSWER_SET structure that contains:

answerType An AUTO_ANSWER_TYPE value that specifies the answer
mode. Possible values are:

autoAnswerOff Do not answer the phone.
dataModemAnswer Answer the phone in data mode.

rings The number of rings after which to answer the phone. This value can
be between 0 and 255. If the value is 0, or is not specified, the modem
answers after one ring; if the value is greater than 255, clsModem uses 255.

%v Sefting the Carrier State 97.3.2.3

When you have a connection with another modem, you can enable or disable the
carrier state by sending msgModemCarrierStateSet to the modem object. The
message takes a pointer to a MODEM_CARRIER_STATE_SET structure that contains
a single element, a MODEM_CARRIER_STATE value (carrierState) that specifies
either enableCarrier or disableCarrier. |

%»v Controlling the Speaker 97.3.2.4
You can turn the modem speaker on and off. When the speaker is on, you can choose
to turn it off when the carrier is detected or you can keep it on all the time. Most
applications turn the speaker on and then turn it off when the carrier is detected. This

CHAPTER 97 / DATA MODEM INTERFACE 285
The clsModem Messages

provides the user with an audible signal when the connection is made (a tone, followed
by a higher tone, and then a burst of noise indicates that a carrier was detected).

To set the speaker, send msgModemSpeakerControlSet to the modem object. The
message takes a pointer to a MODEM_SPEAKER_STATE_SET structure that contains
a single element, a SPEAKER_STATE value that can specify:

speakerOff Turn the speaker off.

speakerOnConnectOff Turn the speaker on, but turn it off when the
carrier is detected.

speakerOn Turn the speaker on.

o
Z
£
P

[

Sefting Command and Data Modes 97.3
When the modem is in command mode, it can receive the AT commands. In data
mode, the modem sends data to and receives data from the modem to which it is
connected.

To put the modem in command mode, send msgModemCommandModeSet to
the modem object. The message takes no arguments.

To put the modem in data mode, send msgModemOnline to the modem object.
The message takes a pointer to a MODEM_ONLINE structure that contains a single
object, a pointer to a MODEM_CONN_TYPE value. When the message completes
successfully, it sends back the connection type in the MODEM_CONN_TYPE value.
Table 97-3 lists the modem connection types and their meanings.

If the modem connects successfully, the message returns stsOK. If the modem
does not connect within a reasonable amount of time, the message returns
stsTimeOut. Otherwise, the message returns stsModemUnexpectedResponse.

When the modem detects a carrier, it automatically goes to data mode.

‘ Table 97-3
Modem Connection Types

Symbal Meaning

noConnection No connection.

connect300 Data connection at 300 baud.
connect600 Data connection at 600 baud.
connect1200 Data connection at 1200 baud.
connect2400 Data connection at 2400 baud.
connect4800 Data connection at 4800 baud.
connect9600 Data connection at 9600 baud.
connect19200 Data connection at 19200 baud.
connectMNP1200 MNP connection at 1200 baud.
connect MNP2400 MNP connection at 2400 baud.
connectLAPM1200 Lap M connection at 1200 baud.

connectLAPM2400 Lap M connection at 2400 baud.

10 / CONNECTIVITY

Wy

286 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Setting Duplex Mode ' ; 97.3.2.6
The modem allows you to choose either duplex or half duplex mode. In duplex

mode, the modem echoes characters as they are sent; in half duplex mode, the

modem does not echo the characters.

To set the duplex mode, send msgModemDuplexSet to the modem object. The
message takes a pointer to a MODEM_DUPLEX_SET value that contains a single
element, a DUPLEX_TYPE value that can be either halfDuplex or fullDuplex.

Setting MNP Mode 97.3.2.7
The Microcom Network Protocol (MNP) provides date compression and

enhanced error checking. If both modems in a connection implement MNP, the

modems communicate using MNP,

The MNP mode specifies how the modem will act when it connects to another
modem that does or does not support MNP, To set the MNP mode, send
msgModemMNPModeSet to the modem object. The message takes a pointer to a
MODEM_MNP_MODE_SET structure that contains a single element, a
MNP_MODE value that specifies:

mnpAutoReliableMode Attempt to connect using MNP at the baud rate
specified in msgModemDial or msgModemOnline. If not successful,
drop the baud rate back until you get an MNP connection. If you still
don’t get a connection, attempt a connection at the highest baud rate
without MNP If not successful at that baud rate, drop the baud rate back
until you get a connection.

mnpReliableMode Attempt to connect using MNP at the baud rate
specified in msgModemDial or msgModemOnline. If not successful,
drop the baud rate back until you get an MNP connection. If you still
don’t get a connection, give up. v

mnpDirectMode Communicate directly with no error checking or
compression, that is, without MNP,

mnpLapMMode Use Link Access Protocol for Modems (LAP-M) Mode.
LAP-M is the CCITT V.42 error correcting code. LAP-M also includes
support for MNP levels 2 through 4.

Further messages that affect the MNP protocol are described in the section titled
“MNP Data Communication.”

%v Sending Your Own AT Commands 97.3.2.8

If you need to send specific commands to the modem through the modem interface,
you can send msgModemSendCommand to the modem object. However, this message
does not work with all modem commands. Do not use msgModemSendCommand to
send dial commands or to set the echo mode (En), quiet mode (Qn), and result code
style (Vn); clsModem will fail if these values are modified.

CHAPTER 97 / DATA MODEM INTERFACE 287
The cIsModem Messages

msgModemSendCommand takes a pointer to a MODEM_SEND_COMMAND
structure that contains:

pCmd A pointer to the command string.

responseTimeout A timeout value for a response from the modem.

When the message completes, it sends back the response from the modem in the
response field of the MODEM_SEND_COMMAND structure.

¥» Establishing a Connection with a Data Modem 97.3.3

To establish a connection, you can use clsModem commands to dial or connect
directly with another modem.

To dial another modem, make sure the dial type matches your phone equipment
(it is usually touch-tone) and send msgModemDial to the modem object. The
message takes a pointer to a MODEM_DIAL structure that contains:

pPhoneNumber A pointer to the phone number to dial in ASCII.

pClype A pointer to the MODEM_CONN_TYPE value that will receive the
connection type.

The phone number usually contains the number to dial. It can also contain a
number of dial string modifiers defined by the AT command set. These dial
string modifiers are described in the following section Dial String Modifiers.

When the other modem answers, clsModem waits for the connection to be estab-

lished, then sends back the connection type in the value indicated by pCType.

When msgModemDial successfully completes, it establishes a connection and
send back the connection type. If you go back to command mode (by sending
msgModemCommandModeSet to the modem object) to change the modem
configuration, you can return to data mode by sending msgModemOnline to the
modem object.

When you have finished with a connection by either telephone or direct wiring,
send msgModemHangup to the modem object. The message takes no arguments.

The message terminates the connection and, if you are connected by telephone,

hangs up the phone.

% Dial String Modifiers

The phone number in pPhoneNumber usually contains the number to dial. It can
also contain a number of dial string modifiers defined by the AT command set.
These dial string modifiers can:

£y
3
to
B

¢ DPause dialing (useful when waiting for an outside line or using alternative
long distance companies).

¢ Wait for silence (waiting through a prerecorded message).

10 / CONNECTIVITY

288 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

¢ Switch between pulse and tone dialing (useful when dealing with
hetrogenous phone systems).

¢ Flash the switch hook.
The phone number can contain these characters:

¢ The numbers 0 through 9, the alphabetic characters A B C D, and the
special characters * and #.

¢ The alphabetic characters: P T R W.

¢ The special characters: comma (,), semicolon (;), at sign (@), exclamation

point (), and slash (/).
¢ The string S=n. |

The characters 0-9, A, B, C, D, *, and #, are the same as the keys on a touch-tone
phone. The characters A B C D, and the symbols * and #, can be used only during
tone dialing; they are typically used to access newer features of modern telephone
systems.

The character P directs the modem to pulse dial the digits that follow it. The
character T directs the modem to tone dial the digits that follow it. These
modifiers are useful when you dial into systems that require a mix of tone and

pulse signals.

The character R forces the modem to use answer mode frequencies after dialing
the number. This allows you to dial up an originate-only modem. This character
must only be at the end of the dialing string.

The character W causes the modem to wait a specified amount of time for a dial
tone before proceeding. The default is 30 seconds.

The semicolon character (;) causes the modem to go back into the command state
after dialing, which allows you to enter other commands while online.

The comma (,) causes the modem to pause. The default time for the pause is two
seconds, and can be changed by modifying register S8.

The at sign (@) causes the modem to wait for a 5 second period of quiet before
proceeding. It will wait up to 30 seconds until the period of quiet begins. This is
often used to detect the end of a prerecorded message. The default wait time is 30
seconds.

The exclamation point (!) causes a “hookflash.” This simulates hanging up for 0.5
second and then reconnecting. It is typically used for transferring calls.

A slash (/) causes the modem to wait for 0.125 second before proceeding with the
rest of command line.

The S=n dial string modifier causes the modem to dial one of the four phone
numbers previously stored in the modem’s non-volatile memory. You store
numbers with the &Zn=number command.

CHAPTER 97 / DATA MODEM INTERFACE 289
The clsModem Messages

% Waiting for a Connection with a Data Modem 97.3.5

You can tell the modem object to automatically answer the phone, or you can
answer the phone yourself (with clsModem messages).

To instruct the modem to answer the phone automatically, send
msgModemAutoAnswerSet to the modem object, specifying dataModemAnswer.
When another modem dials your number and the phone rings, clsModem picks the
phone up, determines the type of connection, and sends you msgModemConnected,
which indicates the type of connection and the baud rate.

To answer the phone yourself, send msgModemAutoAnswerSet to your modem
object, specifying autoAnswerOff.

When the phone rings, the modem object sends you msgModemRingDetected. The
message has no arguments. You answer the phone by sending msgModemOffHook
to the modem object (the message takes no arguments).

You then send msgModemOnline to the modem object. The message takes

a pointer to a MODEM_ONLINE structure that contains a pointer to a
MODEM_CONN_TYPE. When the message returns, it sends back the connection
type in the MODEM_CONN_TYPE value. The connection types are listed above
in Table 97-3.

It is up to you to examine the connection type and determine if you want that
connection or not.

% Sending and Receiving Data 97.3.6

To send data to the other modem, send msgStreamWriteTimeout to the modem
object. To receive data from a modem, send msgStreamRead Timeout to the
modem object.

If the connection is lost at any time, you will receive msgModemDisconnected.

% MNP Data Communication 97.3.7

As mentioned earlier, MNP performs additional error checking and data com-
pression when two MNP-capable modems have a connection. To set MNP mode,
send msgModemMNPModeSet to the modem object. This message is described
above in “Setting MNP Mode.”

To turn MNP compression on or off, send msgModemMNPCompressionSet to the
modem object. This message takes a pointer to a MODEM_MNP_COMPRESSION_SET
structure that contains a single MNP_COMPRESSION_TYPE value (mnpCompression),
which specifies mnpNoDataCompression or mnpDataCompression.

If you use MNP, you can specify when clsModem will send break messages to the
other modem. Sometimes you want to send break immediately, at other times you
want to wait until the send buffer is empty. To set the break type, send
msgModemMNPBreakTypeSet to the modem object. The message takes a

10 / CONNECTIVITY

290 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

pointer to a MODEM_MNP_BREAK_TYPE_SET structure that contains a single
element, an MNP_BREAK_TYPE value that specifies:
mnpSendNoBreak Do not send breaks.
mnpEmptyBuffersThenBreak Send breaks when the buffer is empty.
mnpIlmmediatelySendBreak Send breaks immediately.
mnpSendBreakInSequence Send breaks in the sequence that they are

received.

When using MNP, you can direct it to use different types of flow control, or not
to use flow control at all. To set the MNP flow control, send
msgModemMNPFlowControlSet to the modem object. The message takes a
pointer to a MODEM_MNP_FLOW_CONTROL_SET structure that contains a single
element, an MNP_FLOW_CONTROL value (mnpFlowControl), which specifies:

mnpDisableFlowControl Do not use flow control.
mnpXonXoffFlowControl Use XON/XOFF flow control.
mnpCtsRtsFlowControl Use the hardware CTS/RTS flow control.

Direct Communication with the Data Modem 7.5

If you do not want to use clsModem to interpret the modem’s responses and
handle asynchronous events, you can communicate directly with the modem.

After configuring the serial port to which the modem is attached, use clsStream
messages to send information to and receive information from the modem.

If you write an application that communicates directly with the modem, your Important!
application will not be device-independent. Additionally, you cannot commun-
icate directly with the modem and use the modem interface at the same time.

You send the following instructions to the modem:
¢ Commands to control and configure your modem.
¢ Data to be transmitted to another modem.
You receive the following information back from the modem:
¢ Responses from your modem (about your modem commands).

¢ Data transmitted by another modem.

"% The Data Modem AT Command Set 97.4.1

You use the AT command set to control the modem switch-hook operations, baud
rate, and other standard functions.

This section contains a brief summary of the AT command set.
The AT commands have the following syntax:

ATcommand [arg] [én] [command. . .]

CHAPTER 97 / DATA MODEM INTERFACE 291
Direct Communication with the Data Modem

The only commands that do not follow this syntax are the A/ and +++ commands.
All commands can be in either upper or lowercase. After the initial AT you can
append a number of AT commands on the same command line, however the total
length of the line cannot exceed 40 characters.

If you omit a parameter, its value is assumed to be 0.

Teble 974 \
Summary of AT Command Set

Command Meoning
+H+ Escape from modem data mode.
A Answers a call, regardless the of SO setting. =
Al Re-executes the last command. %
Bn Selects Bell (BO) or CCITT (B1) protocols. Ignored at 2400 baud. g
Cn Turns the carrier signal on and off. CO turns the carrier off; C1 turns the carrier on. g
Dn..n Dials a phone number using most recently used dialing method (pulse or tone). °
DTn..n Dials a phone number using pulse dialing.
DTn..n Dials a phone number using tone dialing.
En Sets echo mode. EO turns echo mode off; E1 turns echo mode on.
Fn : Sets Halfduplex (FO) or Fullduplex (F1).
Hn Operates the switch hook. HO is on switch hook (hang up); H1 is off switch hook

(pick up).
In Asks the modem to identify itself. I0 returns the product identification code; 11

returns the firmware ROM checksum; 12 computes the firmware ROM checksum
and returns either OK or ERROR.

Ln Sets speaker volume. Values for n are between 0 and 3; LO is lowest volume, L3 is
highest volume.

Mn Turns speaker on and off. MO means speaker is always off, M1 means speaker is on until
carrier is detected, M2 means speaker is always on, and M3 means the speaker goes on
after the last digit is dialed and goes off after carrier is detected.

On Returns modem to data state. OO returns without breaking connection; O1 returns after
an equalizer retrain sequence.

P Sets dial mode to pulse.

Qn Sets quiet mode. QO reports result codes; Q1 remains quiet.

Sr? Returns the current value of register r. r is between 0 and 27.

Sr=n Sets the value of register r. r is between 0 and 27; n is between 0 and 255.

T Sets dial mode to tone.

Vn Sets reports to cither textual or numeric result codes. VO returns numeric result codes;
V1 returns textual result codes.

Xn Sets extended result code reporting. See the data modem documentation for details.

Yn Enables and disables long space disconnect mode. YO disables the mode; Y1 enables it.

Zn Resets the modem to one of two stored profiles. Z0 resets the modem to stored profile
0; Z1 resets it to profile 1.

&Cn Sets how the modem controls the CD signal. &CO0 forces CD on; &C1 sets CD on

when there isa valid carrier signal.
continued

292 PENPOINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

Table 97-4 lcontinued)

Commaond

&Dn

&F
\Vn

\Y
&Gn

&Pn
&Rn
&Sn
&Tn
&V
&Wn

&Yn

&Zn=x
%Cn

\Kn
\Nn

\O
\Qn

\U

Meaning

Sets how the modem reponds to a DTR OFF signal. &DO0 ignores DTR; &D1 causes
the modem to enter command state when DTR goes off; &D2 causes the modem to
hang up, disable auto-answer, and enter command state when DTR goes off; &D3
causes the modem to reset and use the stored profile set with the &Yn command.

Replaces the active profile with the factory standard profile stored in ROM.

Enables or disables MNP and V.42 result codes. When QO is set, \V0 disables MNP and
V.42 result codes and \V'1 enables MNP and V.42 result codes.

Switch from MNP direct mode to MNP reliable mode.

Selects which guard tones to generate (not used in the United States). &GO sets no
guard tone; &G1 sets 550Hz guard tone; &G2 sets 1800Hz guard tone.

Sets the pulse dialing switch hook interval. &P0 sets a 39%:61% make:break ratio
(United States); &P1 sets a 33%:67% make:break ratio (United Kingdom and
Hong Kong).

Sets CTSS state. Both &R0 and &R1 set CTS on.
Sets DSR state. Both &S0 and &S1 set DSR on.
Controls the test mode. See the Data Modem documentation for details.

Displays the currently active configuration profile, both stored configuration profiles,
and any stored telephone numbers. This command cannot be accompanied by any
other commands.

Stores the currently active configuration profile in one of two non-volatile memory
locations (&WO0 or &W1).

Sets the default configuration profile. &YO sets the default to the profile stored by &W0;
&Y1 sets the default to the &W1 profile.

Stores the phone number, x, in the non-volatile storage location n. n is between 0 and 3.

Enables of disables data compression in MNP mode. %C0 disables compression; %C1
enables MNP data compression.

Sends a specific break. \KO does not send break; \K1 empties data buffers and sends
break; \K2 sends a break immediately; \K3 sends a break in sequence with data.

Sets the MNP operating mode for the modem. \NO and \N1 set direct mode; \N2 sets
reliable mode; \N3 sets auto-reliable mode; \N4 sets V.42 (LAP-M) mode.

Force modem to initiate an MNP reliable link.

Sets the flow control. \QO disables MNP flow control; \Q1 enables XON/XOFF flow
control; \Q2 enables RTS/CTS flow control.

Accepts an MNP reliable link.

CHAPTER 97 / DATA MODEM INTERFACE 293
Direct Communication with the Data Modem

In the following example, the application sends the commands to set the result
codes to numeric and then dials a phone number, using tone dialing:

STREAM READ WRITE srw;
U8 setnum[] = "ATVO\n";
U8 dialnum[] = "ATDT5551234\n";

// Send V0 command to set status reports to numeric
srw.numBytes = strlen(setnum);
srw.pReadBuffer = setnum;
s = ObjectCall (msgStreamWrite, pInst->ModemHandle, &srw);

// Check returned status report for OK (0)

srw.numBytes = 256;

s = ObjectCall (msgStreamRead, pInst->ModemHandle, &srw);

if (srw.pReadBuffer '= ’0’) // If not OK, handle error
goto Errorl;

// Send dial instructions to modem

srw.numBytes = strlen(dialnum);

srw.pReadBuffer = dialnum;

s = ObjectCall (msgStreamWrite, pInst->ModemHandle, &srw);

10 / CONNECTIVITY

Chapter 98 / The Transport API

This section addresses how to communicate through a local area network (LAN)
with programs running on other computers.

The Transport API provides a number of features for communicating through a
local area network. If you are writing an application that communicates through
the network with another program, GO recommends that you read this section
for background information, but encourages you to consider using the TOPS
SoftTalk API, provided by Sitka Corporation. TOPS SoftTalk provides

session-layer protocols, which are much easier to use.
Chapter 98 covers these topics:
¢ Transport concepts, including transport service types and conventions.

¢ Using clsT'ransport, including how to access a socket, sending and receiving
datagrams, requesting and responding to transaction services, and binding to
local transport addresses.

¢ Using clsT'ransport for AppleTalk, including AppleTalk protocol and

AppleTalk name and zone protocols.

Transport Conceplis

The aim of data communications is to move information from one device,
through a network, to another device.

The PenPoint™ operating system transport API provides end-to-end services
between the PenPoint computer and other computers. You can use Transport API
services to send information to and receive information from a program running
on another computer. The same services that are available to you are available to
the other program. This set of common services and their encoding is called a
protocol.

There are many different protocols for transporting information. The PenPoint
Transport API provides a general set of capabilities, which can be used by a
number of different transport protocols. Currently PenPoint supports only the
AppleTalk transport protocol (ATP).

% Participants in Communication

When you communicate, you exchange data with a remote server. A remote
server is a program or device on another computer that can communicate over the
network.

To access the network, you must access a socket, through which you send and
receive transport messages. A socket is a communication endpoint. The remote

296 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

server also accesses the network through its own socket. A connection is an
association between two sockets.

Each socket is assigned a transport address. When other programs (usually on
other computers) want to establish communication with your program, they
search for your socket’s transport address. A transport address consists of
identifiers for these network components:

¢ Network
¢ Node (or computer)
Socket.

The socket identifier is also known as a protecol port or port. There are two
types of ports: well-known ports that have pre-assigned, specific uses, and
dynamic ports that are assigned when they are requested.

- Transport Service Types 98.1.2

There are two types of transport services: connection-oriented and connectionless
communication.

In connection-oriented communication, you establish a connection with
another socket, exchange data, and then break the connection.
Connection-oriented communication is useful when the connection will last a
long time. Currenty the PenPoint Transport API does not support
connection-oriented communication.

In connectionless communication, data is transferred from one socket to another
without explicitly establishing a connection. The data transfer is accomplished at
the transport layer—the layer that knows the location of each socket. This method
of communication is also called datagram delivery. In each datagram you specify
the transport address of the other socket.

There is no guarantee that the datagram will be delivered to the receiving socket;
nor is there a guarantee that several datagrams will be delivered in the order that
they were sent.

However, the advantage of datagram delivery is that on a fast, highly reliable
medium, such as a LAN, datagrams are an efficient way of communicating
information.

There are two types of datagram delivery. At-least-once delivery guarantees that
the datagrams are delivered to their destination at least once. Exactly-once delivery
guarantees that the datagrams are delivered to their destination exactly once.

Datagram delivery also provides transaction services. The transaction services
send a datagram to another socket and expect the receiver to reply to it with
another datagram.

CHAPTER 98 / THE TRANSPORT API

7» Agreeing on Conventions

Communication is based on agreement. When you design and write data
communication applications, you must either create conventions that both you
and your communications partner agree on or use established conventions
(especially if your partner was written separately and has already specified how
communication is to take place).

When creating conventions, you must make these specifications:
¢ Communication protocol and the layer you will use.
¢ Type of communication (connection-oriented or connectionless).
¢ Service type (transaction or datagram).

¢ Order in which you will send or receive data, including establishing who
sends first.

A good source of information on conventions for communicating information is

Computer Networks by Tannenbaum (see Chapter 92 for publishing details).

- Asynchronous Communication

When you send a clsTransport I/O message, you must wait until the message
returns (the I/O operation succeeds or fails) — it’s communication is totally
synchronous. If you need to communicate asynchronously, you must create
another task with OSSubtaskCreate. The subtask sends the I/O message for you
and returns the received data and some completion status when it is done.

You can read more about creating tasks and OSSubtaskCreate() in Part 8: System
Services.

Using clsTransport

clsTransport provides a set of messages that allow you to communicate with
remote processes. clsI'ransport can support a variety of transport protocols. This
means that you can potentially connect the PenPoint computer to a variety of

different networks. Currently AppleTalk (ATP/DDP) is the only protocol
supported by GO.

The clsTransport messages are defined in the file TPH. Table 98-1 lists the
clsT'ransport messages.

cisTransport Messages

Using clsTransport

98.1.3

O
o
2

Table 98-1

297

Message Takes Description

msgTPBind P_TP_BIND Binds a socket to an address.
msgTPRecvFrom P_TP_RECVFROM Receives a datagram.
msgTPSendTo P_TP_SENDTO Sends a datagram.

msgTPSendRecvTo P_TP_SENDRECVTO Sends a request, wait for a response.

10 / CONNECTIVITY

298 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

¥ Accessing a Socket 98.2.1

Each socket is a service instance maintained by the theTransportHandlers service
manager. When the user configures ATP, the Connections notebook creates a
service instance for a socket.

To establish transport-level communication with another socket, you must locate,
bind to, and open a local socket by:

¢ Sending msgIMFind to theTransportHandlers to locate a socket service
handle.

¢ Sending msgSMBind to the socket service handle.
¢ Sending msgSMOpenDefaults to the socket service handle.

¢ Sending msgSMOpen to the socket service handle, which passes back the
UID for the socket.

Both msgSMOpenDefaults and msgSMOpen take a standard SM_OPEN_CLOSE
structure. pArgs in SM_OPEN_CLOSE contains a pointer to a TP_NEW structure
that contains an OSO_NEW structure (0so) and a TP_NEW_ONLY structure (tp).
The OSO_NEW (open service object) structure is used internally by clsT'ransport.
For more information on open service objects, see Part 13: Writing PenPoint
Services. The TP_NEW_ONLY structure contains:

pArgs.tp.service A TP_SERVICE value that specifies the service type. The
- possible service types are:
tpReliableService
tpDatagramService
tpI'ransactionService
When the message completes successfully, clsT'ransport passes back the UID

of the service in the service field of the SM_OPEN_CLOSE structure as in the
following example:

For example:

STATUS PASCAL OpenTransportHandle (

P_TP_NEW pTPnew,
P_OBJECT pTPhandle,
. OBJECT self)
{
SM_OPEN_CLOSE smOpen;
STATUS s;

smOpen.caller = self;
smOpen.handle = targetServiceHandle;
smOpen.pArgs = (P_ARGS) pTPnew;

s = ObjectCall (msgSMOpenDefaults, theTransportHandlers, &smOpen);

s = ObjectCall(msgSMOpen, theTransportHandlers, &smOpen);
*pTPhandle = smOpen.service;
return(stsOK);

CHAPTER 98 / THE TRANSPORT API 299
Using clsTransport

"> Closing a Socket Handle 98.2.2

To close a socket handle, send msgSMClose to theTransportHanders. You must
specify both the handle of the ATP service and the UID of the service that you
received from msgSMOpen, as shown in the following example:

STATUS PASCAL CloseTransportHandle (

OBJECT tpHandle,
OBJECT self)
{
SM_OPEN_CLOSE smClose;
STATUS S;
smClose.caller = self;
smClose.handle = targetServiceHandle;

smClose.service = tpHandle;
smClose.pArgs = pNull;

Debugf("Closing socket handle %1x. pArgs=%1x, %1x", tpHandle, &smClose, smClose.pArgs);

s = ObjectCall(msgSMClose, theTransportHandlers, &smClose);
if (s '= stsOK) {

//Debugf ("msgSMClose failed %1x.", s);

return(s);

}
//Debugf("Closed socket handle.");

return(stsOK);

7% Sending Datagrams 98.2.3

To send a datagram, send msgTPSendTo to the socket handle. The message takes
a TP_SENDTO structure that specifies:

pBuffer A pointer to the buffer of data. A datagram can contain up to 586
bytes of data.

count The length of the data.

pOptions A pointer to a transport options block. This block varies,
depending on the transport protocol. The AppleTalk options are
described in “Using clsT'ransport for AppleTalk.”

pAddress A pointer to a buffer that contains the transport address of the
destination socket.

When the message completes successfully, it returns stsOK. If you attempt to send
more than 586 bytes you will receive the status message stsTPlength from

ObjectCall.

10 / CONNECTIVITY

300 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

’» Receiving Datagrams 98.2.4
When you are ready to receive a datagram, send msgTPRecvFrom to the socket
handle. The message takes a TP_RECVFROM structure that contains:
pBuffer A pointer to the buffer that will receive the data.
length The size of the buffer. '
count A location that receives the actual number of bytes written to pBuffer.

pAddress A pointer to the buffer that receives the transport address of the
sending socket.

pOptions A pointer to a transport options block. This block varies
depending on the transport protocol. The AppleTalk options are
described below “Using clsI'ransport for Applélalk.”

When the message completes successfully, it returns stsOK and sends back the
TP_RECVFROM structure in which:

¢ The buffer indicated by pBuffer contains the data received.
¢ count contains the length of data in pBuffer.

¢ The buffer indicated by pAddress contains the transport address of the
socket that sent the data.

P> Requesting a Transaction Service 98.2.5

Frequently you will send a datagram to a socket and expect the socket to send you
a datagram in return. You could use both msgTPSendTo and msgTPRecvFrom
messages, or you can use msg I PSendRecvTo. To send msgTPSendRecvTo, you
must specify tpI'ransactionService in the service field of TP_NEW when you create
your socket handle. '

msgTPSendRecvTo takes a TP_SENDRECVTO structure that contains:

pSendBuffer A pointer to the buffer of data to send.
sendCount The length of the data be sent.
pRecvBuffer A pointer to the buffer that receives data.
recvLength The size of the receive buffer.

recvCount A location that receives the actual number of bytes written to
pRecvBuffer.

pAddress A pointer to a buffer that contains the transport address of the
destination socket. '

pOptions A pointer to a transport options block. This block varies,
depending on the transport protocol. The AppleTalk options are
described below “Using clsI'ransport for AppleTalk.”

When the message completes successfully, it returns stsOK and sends back the
TP_SENDRECVTO structure in which:

¢ The buffer indicated by pRecvBuffer contains the data received.

¢ recvCount contains the length of data in pBuffer.

CHAPTER 98 / THE TRANSPORT API 301
Using cIsTransport for AppleTalk

’» Responding to a Transaction Service 98.2.6

When you use transaction services, both your application and the server must
agree on certain conventions. Among these conventions are the types of com-
munication (connection-oriented or connectionless) and the service type
(transaction or datagram). If you have agreed to transaction services and you
receive an unsolicited message from the remote server, then it is implied that
you must respond to the message. '

¥» Binding to a Local Transport Address 98.2.7

Before a server can locate your socket, you must bind your socket to a local
transport address.

To bind your socket, send msgTPBind to the socket handle. The message requires
a TP_BIND structure that contains a pointer to the buffer that receives the address

(pAdderess).

Using cilsTransport for AppleTalk 98.3

This section describes how to use clsT'ransport to communicate on an AppleTalk
network. If you need information on AppleTalk concepts and protocols, see Inside
AppleTalk by Gursharan S. Sidhu (see Chapter 92 for publishing details).

Table 98-2 lists the messages that are defined in the file ATALK.H.

Table 98-2
NBP and ZIP Messages
Message Takes Dascription
msgATPRespPktSize P_ATP_RESPPKTSIZE Sets the size of the response packets.
msgNBPRegister P_NBP_REGISTER Registers a name with NBP.
msgNBPRemove P_NBP_REMOVE Removes a name from NBP.
msgNBPLookup P_NBP_LOOKUP Looks up a name in NBP.
msgNBPConfirm P_NBP_CONFIRM Confirms address and name.
msgZIPGetZoneList P_7ZIP_GETZONES Gets list of zones.
msgZIPGetMyZone P_ZIP_GETZONES Gets my zone name.
% Using the AppleTalk Protocol 98.3.1

% AppleTalk Protocol Options 98.3.1.1

One of the arguments to the transport API messages msgTPSendTo, msgTPRecvErom,
and msgTPSendRecvTo is a pointer to a block of protocol options. When the
Transport API builds its transport packets, is uses these options.

Protocol options for AppleTalk are contained in the ATP_OPTIONS structure
(defined in ATALK.H). The AppleTalk options contained in the structure are:
ddpType A specifier for the type of ddp traffic.

flags A set of flags that specify ATP options. The flags are defined in
ATP_FLAGS and specify:

10 / CONNECTIVITY

302 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

ATP_XO_Flag Whether datagrams should be sent exactly once or at
least once.

ATP_Checksum_Flag Whether datagrams should be send with a check-
sum. Checksums are used only for messages that will be sent through a
bridge or a router (internet messages).

ATP_ALONoResponse_Flag Tells ATP not to expect a response to the
datagram.

transaction]D A transaction ID. When you reply to a datagram, you use
the transaction ID to specify which datagram you are replying to.

interval The interval between send retries.

retries The number of retries to attempt. If the transport API exceeds the
number of retries, it returns stsTPfailed in the message’s completion
code argument.

minRespPackets The minimum number of response packets that the
transport API must use to send a response. This number can be in the
range 0 through 8. Usually minRespPackets indicates the number of sets
of userBytes in this array.

userBytes An array of up to eight sets of user bytes. Each set of user bytes is
four bytes long. userBytes are used for communicating additional,
encoded information.

%»» Changing the Size of ATP Packets 98.3.1.2

For each AppleTalk request, a server can return up to eight AppleTalk Protocol
(ATP) packets.

When you use AppleTalk for transaction services, the AppleTalk protocol specifies
that the Transport API can create only one ATP packet for each request. Usually
the ATP packets contain 578 bytes of data (586-byte datagram, minus an 8-byte
header). Responses can contain up to eight ATP packets, or 4624 (578 * 8) bytes
of data.

Some protocols, such as PAP (the printer access protocol), require a smaller
response packet size.

You can change the size of ATP packets, by sending msgATPRespPktSize to the
socket. The message takes a pointer to an ATP_RESPPKTSIZE structure that
contains a single element, a U16 value that specifies the new size for ATP packets
(size). The maximum size for an ATP packet is 578 bytes.

% AppleTalk Name and Zone Protocols 98.3.2

AppleTalk defines messages that you can use to manipulate the names of the
sockets on the network. The name binding protocol (NBP) messages allow you to
search for, add, and delete names from the NBP tables.

Each station maintains its own NBP table. When you add a name, NBP adds it to your
table. When you search for a name, NBP searches all NBP tables in the network.

CHAPTER 98 / THE TRANSPORT API 303
Using clsTransport for AppleTalk

NBP messages can accept wildcard characters, but they are valid only within a
user-specified zone. A network is divided into two or more zones when it is joined by a
bridge. A bridge is a computer or other smart device that can link two networks and
route traffic from one zone to another.

The zone information protocol (ZIP) messages allow you to get a list of zone
names, or get the name of your zone.

The following sections describe how to use NBP and ZIP messages. If you need to
cancel any of these NBP requests, send msgNBPCancel to the socket.

%7 Registering a Name 98.3.2.1
When you create a server on the network, you will want others to know where to
find it. When your server starts, create a socket and send msgNBPRegister to it.
The message requires an NBP_REGISTER structure that contains a pointer to the
buffer that contains the name (pName).
The names have the format:

name:object@zone
where:

name [s the name of the actual server.
object Is the object type (such as TOPSServer, LaserWriter, and so on).
zone Is the name of the zone.
If you register a name that is already bound to a local transport address, the
Transport API stores both the name and address in the NBP table. If the name is

not bound to a local transport address, the Transport API creates a transport
address and binds it to the name, then stores them in the NBP table.

%7 Removing a Name 98.3.2.2

When your server is removed, you must remove its name from NBP by sending
msgNBPRemove to the socket. The message requires an NBP_REMOVE structure
that contains a pointer to the buffer that contains the name to delete (pName).

%7 Looking for a Name 98.3.2.3
To look for a server name, send msgNBPLookup to the socket. The message
requires a NBP_LOOKUP structure that contains:

pName A pointer to a buffer containing the name of the server you want to
find. The name can contain wildcard characters, described at the end of
this list.

pBuffer A pointer to the buffer that receives the names that match pName.
length The number of bytes in pBuffer.
numMatches A location that receives the number of matches.

The server name can contain the equal sign (=) as a wildcard in any field. An asterisk (*)
in the zone field means the current zone. For example, =:Printer@Marketing would

10 / CONNECTIVITY

304 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity ‘

find all printers in the zone Marketing; MyServe : TOP2Server@=would find all
TOPS servers with the name MyServe in all zones.

If more names match pName than will fit in the buffer, the message stores as
many as it can in the buffer and returns stsTPNoRoom.

You cannot search for a server registered on a PenPoint computer from that same
PenPoint computer.

%» Confirming an Address 98.3.2.4
Because the user might disconnect the PenPoint computer from the network and
reconnect it at a later time, your application might want to confirm that a server is
still associated with the same transport address. If your application hasn’t commun-
icated with a server for a long time, it might also be a good idea to confirm the address.

To confirm the network address associated with a name send msgNBPConfirm to
the socket handle. The message requires an NBP_CONFIRM structure that specifies
pointers to two buffers containing:

pName The name
pAddress The address.

%7 Listing the Zone Names 98.3.2.5
To get a list of the zone names, send msgZIPGetZoneList to the socket. The
message takes a pointer to a ZIP_GETZONES structure that contains:

pBuffer A pointer to the buffer that will receive the list of zone names. You
must allocate the buffer.

length A U16 value that specifies the length of the buffer. If length is less
than the space required for the list of zone names, the message passes
back only those zone names that will fit in the available space (it does not
return partial zone names). If length is less than the first zone name, it
will not pass back any zone names.

When the message completes successfully, it returns stsOK and stores the zone
names in pBuffer. Each zone name is stored as a Pascal string (that is, a length
byte followed by that number of characters).

The message also passes back:
length The total size of all zone names passed back in pBuffer.

numZones A U16 value that contains the number of zone names passed

back in pBuffer.

%» Getting Your Zone Name 98.3.2.6
To get the name of your own zone, send msgZIPGetMyZone to your socket. The
message takes a pointer to a ZIP_GETZONES structure, as described in the
preceeding section.

PENPOINT ARCHITECTURAL REFERENCE / VOL II

PART 10 / CONNECTIVITY

Chapter 99 / In Box and Out Box

This chapter describes the In box and Out box services, how to insert or retrieve
documents from the queues, and how you subclass the service classes for the In
box and Out box (to create queues for new types of output devices).

Chapter 99 covers these topics:
¢ General device concepts.
¢ Out box service concepts.
¢ In box service concepts.

¢ In box and Out box service messages.

niroduction 1o the In Box and Out Box 99.1

One of the unique features of the PenPoint™ operating system is its capability for
deferred input and output. Deferred input and output means that the user doesn’t
have to connect the PenPoint computer to an input or output device before
beginning an input or output operation. The actual input or output process is
deferred until the input or output device becomes ready.

For example, if a printer is not connected when the user prints a document,
PenPoint places the document into an output queue associated with the printer.
When a printer is connected, PenPoint prints documents that have been queued
for that printer.

The PenPoint user interface presents the deferred input and output queues as
sections within the In box and Out box notebooks. The user can open the
notebook and look at a particular section to see documents in the queue.

In PenPoint, deferred input operations are handled by a special class of services
known as In box services; deferred output operations are handled by Out box
services. Input services are subclasses of cIsINBXService; output services are
subclasses of clsOBXService. Both clsINBXService and clsOBXService inherit
from clsIOBXService. clsIOBXService creates the service sections and provides
the queuing mechanism for the In box and Out box.

All three service classes, cIsSINBXService, clsOBXService, and clsIOBXService

define many messages that must be implemented by subclasses.

If you are writing a service for deferred input or output, you must subclass one of
these three services and implement methods to handle their input or output
messages.

306 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Before reading this section, you should be familiar with PenPoint services, which
are described in Chapter 94. If you are going to write an In box or Out box
service, you must also read Part 13: Writing PenPoint Services.

General Device Concepts 99.2

The PenPoint operating system expects that the PenPoint computer will not
always be attached to most input and output devices. Therefore it must:

¢ Defer output until the output services are available.

¢ Gather input from input services to a central location when the services
become available.

’» Service Sections 99.2.1

When the user creates an instance of an In box or Out box service class, the
service class creates a corresponding section in the In box or Out box.

The service sections are different from normal sections because:

Service sections must restrict what the user can do to documents in the
service section. Usually the user cannot move or copy documents between
service sections (because each service section can support a different type of
document), nor can the user move documents directly into a service section.

Each service section is bound to an instance of a specific service. For
example, if the user has installed two printers named First Floor and Second
Floor, there are two corresponding Out box sections, also named First Floor
and Second Floor. The First Floor service section is bound to an instance of
the printer service named First Floor; the Second Floor service section is
bound to an instance of the printer service named Second Floor.

¢ Each Out box service section is related to the queue for the service to which
it is bound. The user can change ordering of documents in a queue by
moving the documents within the service section.

% Services and Devices 99.2.2

Chapter 93, Concepts and Terminology, described how services, such as logical
and physical device drivers enabled applications to communicate directly with
devices. Chapter 94, Using Services, described how applications acquire access to
particular services through the service managers.

Usually a PenPoint computer is not attached to any peripheral devices, such as .
printers, LAN servers, and the like. For this reason, PenPoint must be able to defer
input and output operations until the user connects the appropriate peripheral
device.

Each service section in the In box and Out box is associated with an instance of a
service class. Each service instance is associated with a specific device—possible
through a series of logical device drivers.

CHAPTER 99 / IN BOX AND OUT BOX 307
General Device Concepts

For example, the Out box service section for “Marketing Printer” might be
associated with an instance of the HP Laser]et printer service. That instance of the
Laser]Jet printer service owns and is connected to the parallel port service instance
that controls a parallel port in the PenPoint computer.

As another example, the In box service section for fax might be associated with an
instance of a fax receiver. The fax receiver owns and is connected to the serial port
service instance that controls a serial port in the PenPoint computer.

Installing Devices and Services | 99.2.3

Installing In box and Out box services is no different from installing any other
service. Once the service is installed, the service must provide its own user
interface by which the user creates new instances of the service. (Although users
create new instances of printer services through the Connections notebook, there
is no plan to add an extensible interface to the Connections notebook.)

When creating the service instance, the user:
¢ Names the specific device (such as “Accounting Printer: 4th Floor”).
Specifies the type of device (such as HP LaserJet II).

Specifies the communication port used by the service (such as the parallel
port).

Targeting Communications Devices 99.2.4

PenPoint communicates with its peripheral devices through its communciation
devices (such as serial ports, parallel ports, data or fax modems, and LAN servers).
The software that controls each of these communication devices is implemented as
a PenPoint service.

As mentioned before, deferred input and output operations are handled by In box
and Out box services. An In box or Out box service targets a communication
service so that it will be notified whenever the physical communication device
becomes connected or disconnected. See Chapter 94 for more information on
targeting services.

Enabling and Disabling Services 99.2.5

An Out box service must be enabled before its output process can begin. This
enabled state is represented by a checkbox in the Enabled column of the Out box
notebook. Typically, a communications device permits only exclusive access. If
multiple Out box services are connected to the same output device, only one can
be enabled at a time. Enabling an Out box service causes it to become the owner
of its target service. The service remains enabled until either:

¢ The user disables it (by unchecking the Enabled box).

¢ The service willingly releases ownership of the communications device so
that another service can become the new owner.

10 / CONNECTIVITY

308 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Service ownership is discussed in more detail in Chapter 94.

Enabling or disabling an In box or Out box service also provides a convenient
mechanism for managing communications devices that can’t automatically
determine when they become connected or disconnected. Because these devices
cannot inform the Out box service when they are connected or disconnected,
their status will always remain connected, regardless of the connection status of
the physical device. Such services can be explicitly disabled to prevent documents
from being sent to a device that is not ready for output.

Out Box Concepis 99.3

Each instance of an Out box service has a corresponding section in the system Out
box notebook. The name of the service and the name of the section are the same.
For example, the user can create two instances of a printer Out box service class.
The instances are named “Engineering Printer” and “Marketing Printer.” Each
instance of the printer Out box service class has its own output queue. These
output queues appear as sections in the Out box named “Engineering Printer” and
“Marketing Printer.”

Documents are placed in the Out box service sections by an output service
manager. There are two output service managers, thePrintManager and
theSendManager. thePrintManager is responsible for placing documents in the
appropriate printer service sections. theSendManager supports the other service
sections, including fax and e-mail. If you write a new output service, you can
integrate it into theSendManger.

"> Out Box Operation $9.3.1

When the user gives a Print or Send command, PenPoint invokes the appropriate

output manager (thePrintManager or theSendManager). These output managers
are provided by GO, but have no APL

The output manager responds by performing these tasks:
¢ Prompts the user for the destination device.
¢ Prompts the user for the options that are related to that output manager. -
¢ Adds the document to the queue for the device.

For thePrintManager, the output service is a printer service that is associated with
a destination printer.

For theSendManager, the output service provides e-mail, fax, deferred file transfers,
and so on. theSendManager is an open-ended mechanism, which allows it to handle
any services that are installed and active.

’» Out Box Protocol Messages 99.3.2

The primary function of an Out box service is to manage the output queue for
each service instance. This function is implemented by a standard Out box
protocol consisting of eight interrelated messages.

CHAPTER 99 / IN BOX AND OUT BOX

1 The client of an Out box service sends msgOBXSvcMovelnDoc or
msgOBXSvcCopylnDoc to the Out box service instance, telling the Out
box to add an existing PenPoint document to its output queue.

2 Once a document is added to the Out box, msgOBXSvcPollDocuments
informs an Out box service that it should check to see if conditions are right
tO Start an output process.

Other events may also cause the Out box service or the client to send
msgOBXSvcPollDocument to the Out box service. For example, an Out
box service will selfsend this message when the service has just been enabled.

3 If the service is enabled and the outpur device is connected, the service sends
msgOBXSvcNextDocument to self to locate the next document ready for
output.

4 Ifadocument exists in the output queue but is not ready for output, the
service selfsends msgOBXSvcScheduleDocument to reschedule output at a
later time.

5 Ifadocument is ready for output, the service will lock the document with
msgOBXSvcLockDocument, and kick off the output process with
msgOBXSvcOutputStart.

6 At the end of the output process, the document being sent will send
msgOBXDocOutputDone to the Out box service.

7 Finally, if the output finished normally, the service selfsends msgOBXSvc-
PollDocuments again to see if anything else is ready for output.

Out Box Concepts

If the output didn't finish normally, the service selfsends msgOBXSvcUnlockDocument

to restore the document to its preoutput state.

’» Documents in the Out Box

The primary focus of an Out box service is to manage its output queue. An
output queue is essentially a collection of documents located in an Out box
section. The primary focus of a document in the Out box is to manage a single
output job.

An Out box document can be any PenPoint document, that is, an instance of an
application inheriting from clsApp. The document can be created, opened, and
closed just like a regular page in the notebook. There are two ways to implement
Out box documents:

¢ The application that created the document knows how to respond to Out
box messages. For example, an electronic mail application might also respond
to Out box messages so that it can send its own documents to an electronic
mail service. The document in the Out box would contain destination
information for the document.

99.3.3

309

10 / CONNECTIVITY

310 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

¢ The Out box document is a wrapper, which contains (embeds) the
document being output. The wrapper document responds to the Out box
messages and other PenPoint Application Framework messages. In response
to these messages, the wrapper document controls how the embedded
document is output. Printing in PenPoint is implemented in this way.

An Out box document is also responsible for interacting with the Out box service
and controlling the output process, such as sending out an electronic mail message
through a communication device. Thus, in addition to responding to clsApp
messages, an Out box document also understand the following clsOBXService
messages:

msgOBXDocOutputStartOK
msgOBXDocOutputStart
msgOBXDocOutputCancel
msgOBXDocOutputDone
msgOBXDocStatusChanged

% Writing Your Own Out Box Service 99.3.4

clsOBXService is an abstract class. If you are writing an Out box service, you must
create a subclass of clsOBXService. (cIsOBXService manages the output queue
only, it does not actually cause the output to happen.) Typically, your Out box
service inherits its output queue management behavior from cIsOBXService. You
must add any servicespecific behaviors for the communication protocol or devices
you need to handle.

By default, clsOBXService provides a simple first-in-first-out queue. If your Out
box service requires sophisticated scheduling algorithms, you must replace the
default behaviors with your own. In this case, your service might need to handle
these messages:

msgOBXSvcMovelnDoc

msgOBXSvcCopylnDoc

msgOBXSvcNextDocument

msgOBXSvcLockDocument

msgOBXSvcUnlockDocument

msgOBXSvcScheduleDocument

mngBXSchutputStart
Another example would be msgOBXSvcLockDocument and msgOBXSvcUnlock-

Document. Their default behavior is to mark the document so that gestures over the
document icon will not be processed while output is in progress (in fact they cause an
error note to appear). A msgOBXSvcUnlockDocument typically indicates that the
output has been aborted for some reason. You may wish to add to the default behavior,
such as notifying your observers that some error has just occurred.

CHAPTER 99 / IN BOX AND OUT BOX

%» Working with Existing Out Box Services

All output operations should be performed through an Out box service in order to
take advantage of PenPoint’s deferred output feature. An application or a service
can bypass the Out box protocol only if the output device is always present or is
rarely detached from the PenPoint computer.

The key to working with an existing Out box service is to conceptually break up
the output process into two distinct phases:

The first phase is either adding an existing PenPoint document to the output
queue, or creating a special document of some sort in temporary storage and
and then move it into the output queue.

The second phase is the actual output process, during which a devicespecific
data stream is sent out through some communication device.

clsOBXService provides a framework for managing the transition from one phase
to another.

The separation of these two phases of output operation has an additional benefit.
In many cases, an application developer can avoid writing a new Out box service
in order to handle application-specific output functions. It is often sufficient to
handle only one of the two phases of the output operation. There are several
options:

¢ One inexpensive solution is to have the application export the data into a
format that is easier to output under an existing Out box service. For
example, a database document can generate a report as an ASCII file or a
word processor document and move it into a printer, fax or e-mail Out box
section. Similarly, a spreadsheet document can export its pie chart into a
popular drawing program document and move it to the Out box for output.

¢ Another approach is to allow the database or spreadsheet document itself to
be moved or copied into the output queue. When the document receives
msgOBXSvcOutputStart, it knows that the output device is ready. It then
proceeds to perform the output operation the old-fashioned way. Such
applications already have sophisticated output capabilities, and we only need
to ensure not to start the output process until the device is ready. The
obvious disadvantage of this approach is that it requires additional memory if
we have to make a copy of the document in order to put it into the Out box.

¢ A third approach represents a compromise between the two. During the first
phase of the output operation, a “surrogate” document, rather than the real
one, is copied into the output queue. This surrogate document not only
understands the Out box output protocol, but also knows how to
communicate with the original document. It is effectively a “pointer” back to
the original document. When the output process begins, the surrogate
document communicates with the original one to cause the device-specific
data stream to be sent to the correct output port.

Out Box Concepts

99.3.4.1

311

10 / CONNECTIVITY

312 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

%v Services that Handle Input or Output 99.3.4.2

clsOBXService deals only with output operations; cIsSINBXService deals only with
input operations. If a service wants to handle both input and output (for example, an
electronic mail service), it can use clsIOBXService, which is another abstract class (and
the ancestor of both cIsINBXService and clsOBXService). clsIOBXService associates
the service with both an input queue and an output queue. The service, the In box
section, and the Out box section all have the same name.

7 In Box Concepts 99.4

Although the In box contains service sections that are associated with queues and
services, the similarity between the In box and Out box stops there. The Out box
must schedule documents for output when the communication devices become
available; the output service drives the output.

The In box on the other hand must handle incoming data and convert it into a
PenPoint document, whenever possible.

Some services convert incoming data streams into PenPoint documents. Other
services do not know what type of data they are receiving and must create a data file.

Passive and Active In Box Services 99.4.1

There are two type of In box services: passive and active. A passive In box service
waits for an input event to happen. An active In box service initiates the com-
munication process. For example, a fax input service may wish to periodically poll
a store-and-forward facility (to receive a fax image).

Typically, when a user enables a passive In box service, the service becomes the owner
of its communication device. While the In box service owns the I/O device, no other
services can transmit or receive data through the same device: A simple fax In box
service, for example, becomes the owner of the fax modem (and the serial port) and
sets it up to start receiving fax images whenever a phone call comes in.

Some In box services may want to activly solicit input from a remote agent. For
example, a service that queries a remote database will have to establish the
communication link between the PenPoint computer and the remote database
server. For these active In box services, clsINBXService provides default behaviors
to manage three things:

The state of the device (connected or disconnected).

¢ The protocol to initiate input operation (whether the service is enabled

or disabled).
¢ Automatic polling behavior similar to that of an Out box service.

Thus, the user can defer the input operation until it becomes possible to establish
a communication link with a remote agent. Note, however, that to enable such
behavior for an In box service, the polling flag (iobxsvc.in.autoPoll) must be true
when the service is created.

CHAPTER 99 / IN BOX AND OUT BOX 313
In Box and Out Box Service Messages

After a remote agent initiates the input operation, the In box service detects the
input event and then receives the incoming data stream.

In Box Documents 99.4,3

Normally, an input event results in a PenPoint document being created in an In
box section. For example, a fax In box section can create a document containing
the fax images received by the fax modem. Such documents are normal PenPoint
documents. Their contents have nothing to do with the input device or where the
document came from.

Sometimes an In box document contains not only data, but also some control
information about the input operation to be performed. For example, the user
may construct a specific query statement for an online database and put it into the
appropriate In box section before the PenPoint machine is connected to the remote
database. When the input service becomes ready, the query statement is sent to the
remote database, and the result is put into either another document or the same
document containing the query statements. This type of In box document is very
similar to the Out box document that controls the actual output operation.

Note that the deferred I/O protocol implemented by cIsSINBXService assumes that
an input operation is controlled by an In box document. This assumption may be too
cumbersome and confusing for many services. If this is the case, an In box service can
simply store the input control information (such as a database query statement) with
the service itself. When the service receives msgINBXSvcPollDocuments, it simply
handles the input operation directly and bypasses the rest of the protocol.

bt

In Box and Out Box Service Messages 99.5

The following three tables list the messages defined by clsOBXService,
cIsSINBXService, and clIsIOBXService. For more detailed description of these
messages, see Part 10: Connectivity in the PenPoint API Reference, or read the
header files (OBXSVC.H, INBXSVC.H, and IOBXSVC.H).

10 / CONNECTIVITY

314 PENPOINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

Table 99-1
cisOBXService Messages

Messuge

msgOBXSvcMovelnDoc
msgOBXSvcCopylnDoc
msgOBXSvcPollDocuments

msgOBXSvcNextDocument

msgOBXSvcScheduleDocument

msgOBXSvcLockDocument
msgOBXSvcUnlockDocument
msgOBXSvcOutputStart

msgOBXDocOutputDone
msgOBXSvcSwitchIcon

msgOBXSvcGetTempDir
msgOBXSvcOutputCancel
msgOBXSvcOutputCleanUp
msgOBXSvcStateChanged
msgOBXSveQueryState
msgOBXSvcGetEnabled
msgOBXSvcSetEnabled
msgOBXDocGetService
msgOBXDocInOutbox

msgOBXDocOutputStartOK
msgOBXDocOutputStart
msgOBXDocOutputCancel

msgOBXDocStatusChanged

 Tekes

P_OBXSVC_MOVE_COPY_DOC
P_OBXSVC_MOVE_COPY_DOC

nothing

P_OBXSVC_DOCUMENT
P_OBXSVC_DOCUMENT
P_OBXSVC_DOCUMENT
P_OBXSVC_DOCUMENT
P_OBXSVC_DOCUMENT

P_OBX_DOC_OUTPUT_DONE

nothing

P_OBJECT

nothing ,
P_OBX_DOC_OUTPUT_DONE
OBJECT
P_OBXSVC_QUERY_STATE
P_BOOLEAN

BOOLEAN
P_OBX_DOC_GET_SERVICE
P_OBX_DOC_IN_OUTBOX

nothing
nothing
nothing

P_OBX_DOC_STATUS_CHANGED

Description

Move a document into the Out box section.
Copy a document into the Out box section.

Poll all documents in an output queue and
output those that are ready.

Pass back the next document ready for output.
Schedule a document that is not ready for output.
Lock the document in preparation for output.

Unlock a document that was previously locked.

Start the output process for a document in the
output queue. '

Tell the Out box service that output is finished.

Toggle the Out box icon (to empty or filled) if

neccessary.
Pass back a handle for a temporary directory.
Cancel the output process.

Clean up after the current output is done.

Tell observers that the service state just changed.
Pass back the state of the service.

Get the enabled state of the service.

Set the enabled state of the service.

Get the service name.

Check if a document is in a section in the

Out box.

Ask the Out box document if it is OK to start
the output process.

Tell an Out box document to start the output
Y
process.

Tell an Out box document to cancel the output
process.

Tell the Out box service that the document
status is changed.

CHAPTER 99 / IN BOX AND OUT BOX

315

In Box and Out Box Service Messages

Table 99-2
clsiINBXService Messages

Messuge

msgINBXSvcSwitchIcon

msgINBXDocGetService
msgINBXDocInInbox

msgINBXSveMovelnDoc
msgINBXSvcCopylnDoc
msgINBXSveGetTempDir
msgINBXSvcPollDocuments

msgINBXSvcNextDocument
msgINBXSvcLockDocument
msgINBXSvcUnlockDocument
msgINBXSvceScheduleDocument
msgINBXSvclnputStart

msgINBXSvelnputCancel
msgINBXSvclnputCleanUp
msgINBXSvcStateChanged
msgINBXSvcQueryState
msgINBXSvcGetEnabled
msgINBXSvcSetEnabled
msgINBXDoclnputStartOK

msgINBXDoclnputStart

msgINBXDocInputDone
msgINBXDocInputCancel

msgINBXDocStatusChanged

Takes

nothing

P_INBX_DOC_GET_SERVICE
P_INBX_DOC_IN_INBOX

P_INBXSVC_MOVE_COPY_DOC
P_INBXSVC_MOVE_COPY_DOC
P_OBJECT

nothing

P_INBXSVC_DOCUMENT
P_INBXSVC_DOCUMENT
P_INBXSVC_DOCUMENT
P_INBXSVC_DOCUMENT
P_INBXSVC_DOCUMENT

nothing
P_INBX_DOC_INPUT_DONE
OBJECT
P_INBXSVC_QUERY_STATE
P_BOOLEAN

BOOLEAN

nothing
nothing

P_INBX_DOC_INPUT_DONE

nothing

Deseription

Toggle the In box icon (to empty or filled) if
neccessary.

Get the service name.

Check if a document is in a section in the
In box.

Move a document into the In box section.
Copy a document into the In box section.
Pass back a handle for a temporary directory.

Poll all documents in an input queue and input
those that are ready.

Pass back the next document ready for input.
Lock the document in preparation for input.

Unlock a document that was previously locked.

Schedule a document that is not ready for input.

Start the input process for a document in the
input queue.

Cancel the input process.

Clean up after the current input is done.

Tell observers that the service state just changed.

Pass back the state of the service.
Get the enabled state of the service.
Set the enabled state of the service.

Ask the In box document if it is OK to start the
input process.

Tell an In box document to start the input
process.

Tell the In box service that input is finished.

Tell an In box document to cancel the input
process.

P_INBX_DOC_STATUS_CHANGED Tell the In box service that the document status

is changed.

10 / CONNECTIVITY

316 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Table $9-3
clsiOBXService Messages

Message

msgl OBXSvcSwitchIcon

msglOBXDocGetService
msglOBXDocInlOBox

msglOBXSvcMovelnDoc
msglOBXSvcCopylnDoc

msglOBXSvcGetTempDir
msglOBXSvcPollDocuments
msglOBXSvcNextDocument

msglOBXSvcLockDocument

msglOBXSvcUnlockDocument
msglOBXSvcScheduleDocument

msglOBXSvcIOStart

msglOBXSvclOCancel
msglOBXSvclOCleanUp
msglOBXSvcStateChanged
msglOBXSvcQueryState
msglOBXSvcGetEnabled
msglOBXSvcSetEnabled
msglOBXDoclOStartOK

msglOBXDocIOStart
msglOBXDocIODone
msglOBXDoclOCancel

msglOBXDocStatusChanged

Tokes
nothing

P_IOBX_DOC_GET_SERVICE
P_IOBX_DOC_IN_IOBOX

P_IOBXSVC_MOVE_COPY_DOC
P_IOBXSVC_MOVE_COPY_DOC

P_OBJECT
nothing
P_IOBXSVC_DOCUMENT

P_IOBXSVC_DOCUMENT

P_IOBXSVC_DOCUMENT
P_IOBXSVC_DOCUMENT

P_IOBXSVC_DOCUMENT

nothing
P_IOBX_DOC_OUTPUT_DONE
OBJECT
P_IOBXSVC_QUERY_STATE
P_BOOLEAN

BOOLEAN

nothing
nothing
P_IOBX_DOC_OUTPUT_DONE

nothing

Description
Toggle the In box or Out box icon (to empty
or filled) if necessary.

Get the service name.

Check if a document is in a section in the
In box or Out box notebook.

Move a document into the Out box section.

Copy a document into the In box or Out box
section.

Pass back a handle for a temporary directory.
Poll all documents waiting for input/output.

Pass back the next document ready for input/
output.

Lock the document in preparation for input/
output.

Unlock a document that was previously locked.

Schedule a document that is not ready for
input/output.

Start the input/output process for a document
in the input/output queue.

Cancel the input/output process.

Clean up after the current input/output is done.
Tell observers that the service state just changed.
Pass back the state of the service.

Get the enabled state of the service.

Set the enabled state of the service.

Ask the In box or Out box document if it is OK
to start the input/output process.

Tell an In box or Out box document to start the
input/output process.

Tell the In box or Out box service that input/
output is finished.

Tell an In box or Out box document to cancel
the input/output process.

P_IOBX_DOC_STATUS_CHANGED Tell the In box or Out box service that the

document status is changed.

Chapter 100 / The Address Book

The PenPoint™ operating system address book protocol allows you to write an
application or service that responds to requests from services or other applications
for address information. The addresses can be, but are not limited to, street
addresses, voice phone numbers, phone numbers for data communication devices
(such as fax machines, e-mail routers, and so on).

An address book application should be a subclass of clsAddressBookApplication. .
Although it doesn’t have to, a subclass of clsAddressBookApplication inherits
some additional address book behavior.

This chapter covers these topics:

¢ Concepts of the address book, including the address book and address book

manager classes, organization of data, and groups.
¢ How to install and use the GO address book application.

¢ Using the address book messages to add, delete, set, and get address book
entries and their service data.

The PenPoint SDK provides a simple address book (described later in this
chapter) with a user interface that allows you to test your services and applications
that access an address book. ‘

The information in this chapter is not exhaustive. Please refer to the header files
ADDRBOOK.H and ABMGR.H for more information.

Concepts 100.1

When you try to communicate with someone, you have to consider which
communication method you want to use before you can make contact. If you
phone someone, you have to find their phone number. If you send a fax to
someone, you have to find their fax number. If you want to send electronic mail to
someone, you need to find the phone number of the mail service — then you
need to find the e-mail address for that person.

Services on PenPoint computers are faced with much the same problem. Any one
person might have several different addresses for several different communications
methods.

In traditional operating systems, it is up to each application to provide an address
book through which the application can find a person’s address. This means that
the user has to enter names and phone numbers in a separate address book for
each application.

To avoid this duplication and scattering of information, PenPoint defines a
protocol for address books. An address book is an application or a service that

318 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

responds to the address book protocol. All clients that need to access the address
book use-the same protocol. The protocol specifies particular messages that get
and set information in an address book; the protocol also specifies the types of
information to be stored in address books and the structures that store this
information.

All clients that want to access an address book do it by sending messages to the
system object, theAddressBookMgr, which then forwards the message to the
system address book. While there can be many address books running in
PenPoint, the system address book is identified as the address book that is
currently receiving messages through theAddressBookMgr. All address books
must register with theAddressBookMgr, but only one address book can be the
system address book.

The address book protocols allow an application to activate an address book, that
is, to make it the system address book. The user chooses which address book to
make the system address book through a a user interface provided by an address
book, or by any application that chooses to do so. theAddressBookMgr provides
a way for applications to provide this user interface through option sheets. All the
application needs to do is forward msgOptionAddCards to theAddressBookMgr
after the application has handled the message.

The user interface for a particular service or application can access an address book
(through theAddressBookMgr) and allow the user to modify information in the
system address book.

% Participants , 100.1.1
There are three principal participants in any address book operation:

¢ The client is any service or application that requests an address book
operation.

¢ theAddressBookMgr is a well-known object, through which all address book

requests are channeled.

¢ An address book is an application or a service that is registered with
theAddressBookMgr and is made current by theAddressBookMgr. The

address book is responsible for storing and retrieving address information.

An address book announces its availability by registering with theAddressBookMgr.
Any number of address books can register with theAddressBookMgr.

% The Address Book Protocols 100.1.2
There are three protocols used to communicate with the address book:

The address book protocol Enables clients to communicate with address
books. This protocol is defined in the file ADDRBOOK.H.

The address book manager protocol Enables address books to register them-
selves with theAddressBookMgr and to get information about other

CHAPTER 100 / THE ADDRESS BOOK 319
Concepts

registered address books. This protocol is defined in ABMGR.H. The class
for theAddressBookMgr is private.

The sendable services protocol Enables address books to request addressing
information from a service that is accessed through theSendableServices
service manager. This protocol is defined by clsSendableService in the
file SENDSERV.H. The whole topic of sendable services is discussed in
Chapter 101. |

%+# The Address Book Protocol 100.1.2.3

The address book protocol, defined in ADDRBOOK.H, allows clients to com-
municate with the system address book. The protocol allows the client to:

¢ Get information.

¢ Set information.

¢ Delete information.

¢ Get address book metrics.
Search for information.

Remember that the address book is not a file; it is an application or service that
responds to the clsAddressBook messages. Thus, it is better to think of an address
book as a server; the client sends requests to the server and it responds with
addresses.

Your client sends all address book requests to theAddressBookMgr. Before requesting
information from theAddressBookMgr, your client must declare that it wants to use
the system address book by sending msgABMgrOpen to theAddressBookMgr. If the
system address book is an application, theAddressBookMgr activates the application;
if the system address book is a service, theAddressBookMgr binds to the service.

When your client needs information from the address book, it sends a message to
theAddressBookMgr. theAddressBookMgr forwards the message to the system
address book (with ObjectSend()). Because theAddressBookMgr uses ObjectSend ()
(rather than ObjectCall()), your client must use shared memory to allocate buffers
that it will use to send or retrieve information from the address book.

All address book requests that deal with a specific entry in the address book
require a key to the address book. The key is 7ot an index to the address book
entries, rather it contains information that is used by the address book to locate an
entry.

To get a key, send msgAddrBookSearch to theAddressBookMgr. If you are simply
interested in retrieving the the information contained at that location, your search
arguments can specify what information you need; msgAddrBookSearch returns
the information when it finds the entry. (You can also cache the key passed back

by msgAddrBookAdd.)

10 / CONNECTIVITY

320 - PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

%7 The Address Book Manager Protocol 100.1.2.2

The address book manager (theAddressBookMgr) keeps track of the system
address book. When a client needs information from the address book, it uses
ObjectCall() to pass a message to theAddressBookMgr. theAddressBookMgr then

forwards the message to the system address book using ObjectSend ().

Although any application or client can be an address book, an address book must
register itself with theAddressBookMgr. The protocol for registering address
books is defined in ABMGR.H. The protocol allows address books to:

Register an address book.

¢ Unregister an address book.

¢ List the registered address books.

¢ Activate an address book (make it the system addresss book).
¢ Deactivate an address book.

If an address book is an application that inherits from clsAddrBookApplication,
an instance of application is automatically registered with theAddressBookMgr
when it is created; the application is automatically unregistered when it is

destroyed. clsAddrBookApplication provides no other special behavior.

"> Organization of Data 100.1.3
The address book is organized by entries. An individual entry contains:

¢ Attributes, which contain individual information for the entry such as
names, phone numbers, a street address, and so on.

Service addresses, which contain service-related information such as e-mail
addresses and so on.

For each entry in the address book there can be many addresses.

% Entry Attributes 100.1.3.1

Within each entry, there are one or more attributes, which are used to store the
information commonly thought of as “address book information.” An attribute is
described by the ADDR_BOOK_ATTR structure. Each attribute contains:

¢ An attribute identifier, which indicates what the data is used for (for example
given name, surname, street, company, and so on). Table 100-1 lists the
minimum set of attribute identifiers that all address books must implement.

¢ An attribute type, which indicates the type of data contained in this
attribute. The possible types are:
abNumber A 32-bit number.
abString A null-terminated string,
abPhoneNumber A phone number, as defined by clsDialEnv.
abOther An encoded byte array.

CHAPTER 100 / THE ADDRESS BOOK
Concepts

¢ The actual value.
¢ A label that can be used when displaying the attribute value.

The address book protocol defines a minimum set of attribute identifiers and
attribute types that all address books must implement. If you know of an identifier
or type that is commonly used, but not represented in this set of attributes, please
contact GO Developer Technical Support.

Table 1001
Attribute Identifiers

321

Identifier Type Meaning
AddrBookGroupNameld abString Name of a group.
AddrBookGivenNameld abString A person’s given name.
AddrBookSurNameld abString A person’s surname (family name).
AddrBookHomePhoneld abPhoneNumber Home phone number.
AddrBookBussPhoneld abPhoneNumber Work phone number.
AddrBookBussPhone2ld abPhoneNumber Second work phone number.
AddrBookCountryld abString Country in postal address.
AddrBookStateld abString State or prefecture.
AddrBookZipld abString Zip code or post code.
AddrBookCityld abString City.

AddrBookDistrictld abString District within a city.
AddrBookStreetld abString Street, building, apartment, and so on.
AddrBookCompanyld abString Company name.

AddrBookTitleld abString A person’s title.
AddrBookPositionld abString A person’s position.
AddrBookNickNameld - abString A person’s nickname.
AddrBookFaxId abPhoneNumber A fax phone number.
AddrBookSvcNameld abString The name of a service.
AddrBookSvcNoteld abString User define nickname for service.

The identifier AddrBookStreetld can contain number, street, building, apartment
number, suite, floor, or any other addressing information. If the actual address
contains several lines when written, you can use the character \012 (LF in ASCII)
to separate the lines. For example, an address might contain:

919 East Hillsdale Blvd,
Suite 400

You could store this information as:
"919 East Hillsdale Blvd, \012Suite 400"
But it is up to the address book how to display such information.

When requesting information from an address book, one of the fields in the
ADDR_BOOK_ENTRY structure specifies the number of entry attributes for which
you expect information (numAttrs). To specify all attributes, set numAttrs to

10 / CONNECTIVITY

322 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

AddrBookAll. The address book will allocate the necessary storage for the

information. It is up to the client to free these buffers.

%¥ Service Addresses 100.1.3.2
When first created, an address book contains the minimum set of information as
described by the attribute identifiers (listed above). However, it has no address
descriptors for service information. To gather the address descriptors, the address
book queries the sendable services for the type of addressing information they
require. The address book can then add the descriptors to its attributes. The
sendable service protocol is described further in Chapter 101.

Within each entry there can be one or more service addresses. Each service address
contains:

¢ A key for a service instance.

¢ An address descriptor that contains a series of attributes that pertain to the
specific service. For instance, an e-mail address would contain both a string
attribute for the e-mail address and a phone number attribute for the dial-up
access line to the e-mail service.

Typically the service attributes use AddrBookSvcNameld to identify the service
and AddrBookSvcNoteld for a user-specified nickname.

When requesting information from an address book, one of the fields in the
ADDR_BOOK_ENTRY structure specifies the number of services for which you
expect information (numServices). You can use this field to specify different
combinations of services and their attributes.

¢ If you want all service attributes for all services, set numServices to

AddrBookAll.

¢ If you want selected attributes for all services, set numServices to
AddrBookAllSvcSelectAttrs. You must provide an additional attributes
structure that specifies these attributes.

¢ If you want all attributes for selected services, set numServices to
AddrBookSelectSvcAllAttrs. You must provide an addition services structure
that specifies these services.

¢ If you want selected attributes for selected services, set numServices to
AddrBookSelectSvcSelectAttrs. You must provide both additional attribute

and service structures that specify these attributes and services.

The address book will usually allocate the necessary storage for the information. If numServices is O, no
It is up to the client to free these buffers. information is returned.

¥» Groups 100.1.4

The address book protocol can enable address books to collect entries into groups, The protocol for groups is still
which are accessed through a single entry. A group consists of a group identifier, which = under design.
contains the name for the group, and an array of keys to the members of the group.

CHAPTER 100 / THE ADDRESS BOOK 323
The GO Address Book Application

p The GO Address Book Application 100.2

The PenPoint SDK includes an address book (in \PENPOINT\SDK\APP\AB.EXE) that
both serves as an address book and provides a user interface to its information.
Although it is possible for an address book to both hold information and provide a user
interface, usually an address book will simply contain the address information; other
services and applications will access the address book and provide a user interface.

The GO Address Book allows you to test your services and applications that access Important You need a separate

an address book. You must have a separate license from GO Corporation to distri- ~ cense from GO Corporation to
.. . distribute the GO Address Book
bute the GO Address Book application with your software. (AB.EXE).
¥» Loading the GO Address Book 100.2.1
You can load the GO Address Book by adding this line to your APPINI file in
\PENPOINT\BOOT:

\\boot \penpoint\sdk\app\Address Book

To create an address book, make a caret A in the Notebook’s table of contents and

tap Y on Address Book in the stationery menu. Tap on the address book icon to
turn to the Address Book.
P Using the GO Address Book 100.2.2

The screen in Figure 100-1 shows the GO Address Book.

The Address Book is initially empty. You add new entries by tapping on the Add
Entry... menu item and filling out information. Initially you add name and postal
address information. To add information related to sendable services, select an
entry, then tap on Add Service... in the Edit menu.

You can use many of the core gestures in the GO Address Book. This table lists
the gestures that are specific to the GO Address Book. For quick help on the
available gestures, make a Quick Help gesture ? on the Address Book.

Table 100-2
Address Book Gestures
Gesture Meaning
y Tap Selects the field.
Y Double tap Selects the current line.
J Tripletap Selects the entire entry.
o Circle Displays an edit pad for a selection.
A Caret Displays a new entry page; adds new lines to postal address information.
1 Caret tap Displays a pop-up list to add a new service to the selected entry.
7 Delete Deletes the selected information.
 Tap press Selects the entire entry and starts a copy operation.
L Press Selects the entire entry and starts a move operation.

10 / CONNECTIVITY

324 PENPOINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

Figure 100-1
The GO Address Book

Y
S

;m ummx
bt ;, ém .
Sy

. mw ; T *m -

o ﬁ&&“ﬂfﬁf”’”

*‘%;mmmwgm

&
e :

m&g &

’ dza«,w%

o

i s
e

o gu
Y

‘L
.

e
.

e
mggm G
i

“‘""‘x‘imr G

i

- "”Zsii'ﬁ -
fings ”%ﬁhﬁ

i

n

fhs Sl

"”“’”;Fw*”xama

L 2

. o o Mm -

‘ﬂﬁ& arteht.. i?f‘“““‘*‘W:gzgmwa .

éw»mm!x&; el uzxxmrxmm»kmp iy il i mv%muuﬂi’mﬂ&zﬁmmﬁ
-

A
L

i

aﬁh&”%ﬁﬁ%&%’ . mm;&w -

e
]
e

i

.
3 s&igﬁ o
o

- Mmﬂﬁmisnwn :

mmwwws
.

s Rt ‘“% e
Sy *&wmm e

Dot : .
5 g&j . %uxaxxt!v‘%ﬁ?%ew giﬁm - ‘

A il
r e

i Celes
aRlGe
G

s Brmsan HS&?IZE&IE%
.

e
nua)z«g&é;z;:a;g;):

tail S

. xmax

’;’x‘r‘?ﬁ’k =

-
o e
S

-
o
ey
;, §§§@, S

S

uﬁmuzam(ﬂ’

o -
.
o .

-

.
.

& ig%iimu«gu i
i

e

T
- i

H&%ﬁ

The Address Book Messages
Table 100-3 summarizes the clsAddressBookApplication

100.3

messages. Following it,

Table 100-4 summarizes the clsABMgr messages. Please see the header files
ADDRBOOK.H and ABMGR H for more detail on these messages.

Table 100-3

clsAddressBookApplication Messages

Messoge

Description

Object Messages

msgAddrBookGet P_ADDR_BOOK ENTRY

msgAddrBookSet
msgAddrBookAdd
msgAddrBookDelete

P_ADDR_BOOK_ENTRY
P_ADDR_BOOK_ENTRY
P_ADDR_BOOK_ENTRY

Fills in the specified entry field data, given an
address book key for the entry.

Sets the specified entry and service data.
Adds the specified entry and service data.
Deletes the specified entry or service data.

confinued

CHAPTER 100 / THE ADDRESS BOOK 325

Using an Address Book

Table 100-3 {continued)

Message

msgAddrBookSearch
msgAddrBookCount

msgAddrBookGetMetrics
msgAddrBookGetServiceDesc

msgAddrBookAddAttr

Tokes
P_ADDR_BOOK_SEARCH

P_ADDR_BOOK_COUNT

P_ADDR_BOOK_METRICS
P_ADDR_BOOK_SERVICES

P_ADDR_BOOK_ATTR

Description

Searches for the entry that matches the search
spec.

Finds the number of entries that match the
search spec.

Passes back the metrics for the address book.

Gets the service address description from the

address book.

Adds a new attribute to the active address book.

Notification Messages

msgAddrBookEntryChanged

P_ADDR_BOOK_ENTRY_CHANGE Sent to observers when an entry has been

changed, added or deleted.

Table 100-4
clsABMgr Messages
Message Tokes Description
Class Messages
msgABMgrRegister P_AB_MGR_ID Registers an application or a service as an address
book instance.
msgABMgrUnregister P_AB_MGR_ID Unregisters an application or a service as an address
book instance.
msgABMgrOpen nothing Used by address book clients to begin access to
address books.
msgABMgrClose nothing Used by address book clients to end access to
address books. _
msgABMgrList P_LIST Creates a list of currently registered address book
in pArgs.
msgABMgrActivate P_AB_MGR_ID Make a registered address book the system address
book.
msgABMgrDeactivate P_AB_MGR_ID Deactivates the current system address book.
msgABMgrlsActive P_AB_MGR_ID Passes back the UID of the system address book.
Notification Messages
msgABMgrChanged P_AB_MGR_LIST Sent to observers of theAddressBookMgr when the

system address book changes.

P Using an Address Book

The rest of this chapter covers two topics:

¢ Developing an address book client.

¢ Developing an address book.

100.4

This section discusses the messages that an address book client sends. The section
“Writing an Address Book” discusses the messages that an address book sends and

receives.

10 / CONNECTIVITY

326 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

’% Opening the Address Book 100.4.1

Before you can access the system address book, you must send msgABMgrOpen
to theAddressBookMgr.

When you are done with the address book, you must send msgABMnglose to
theAddressBookMgr.

%> Searching the Address Book 100.4.2

The root behind most address books operations is in finding a specific entry. You
use msgAddrBookSearch to find an entry and to return information from the
found entry.

msgAddrBookSearch enables you to make fairly sophisticated searches. You can
specify:

A search specification that can contain one or more comparisons.

¢ A sort order for the entries matched by the search specification.

¢ A number of matching entries to skip.

¢ A direction for the search.

When you search the address book, you must always specify a key (key in
ADDR_BOOK_SEARCH). When you are performing a series of searches, you start
the next search with the key passed back by the previous search. For the first
search, you should specify a null key; the direction field specifies whether the
search begins at the first or last entry in the sort order.

You can specify a sort order by specifying an attribute identifier in the sort field.
Attribute identifiers are described above.

To specify a search direction, set the dir field to abEnumNext to search forward
and abEnumPrevious to search backwards. When key is null, abEnumNext begins
the search at the first element, abEnumPrevious begins the search at the last element.

To specify the nth entry (from the current location) that matches the search
specification, specify a non-zero value for the nth argument. If #th is 1, the search
gets the next entry that matches the search.

% The Search Query 100.4.2.1

A search query can contain a number of different comparisons. The query
argument points to an ADDR_BOOK_QUERY structure that lists the number of
comparisons (numAttrs) and contains a pointer to the first in a list of
ADDR_BOOK_QUERY_ATTR structures (attrs), each of which specifies a separate
comparison.

The ADDR_BOOK_QUERY_ATTR structure specifies:

id The attribute identifier of the attribute being compared.

length The length of an eéncoded byte array (used only if attribute type is
abOther).

CHAPTER 100 / THE ADDRESS BOOK 327
Using an Address Book

valueOp The comparison operator; the comparison operators are:
abEqual Tests if the attribute is equal to value.
abNotEqual Tests if the attribute is not equal to value.
abGreater Tests if the attribute is greater than value.
abLess Tests if the attribute is less than value.
abGreaterEqual Tests if the attribute is greater than or equal to value.
abLessEqual Tests if the attribute is less than or equal to value.

abMatchBeginning Tests if the string specified in value is a substring of
the attribute, starting at the beginning.

abMatchEnd Tests if the string specified in value is a substring of the at-
tribute, starting at the end.

abMatchPartial Tests if the string specified in value is a substring of the
attribute (not anchored to the beginning or end).

value The value against which the attribute of the current entry is
compared.

attrOp The operator that specifies the relationship between this attribute
structure and the following attribute structure (if there is one). The last
attribute in the list does not need to specify an attrOp. The possible
values are:

abAnd Both the current attr structure and the next attr structure must
be true for the comparison to succeed.

abOr Either the current attr structure or the next attr structure can be
true for the comparison to succeed.

For example, if a client wants to specify a query that says match an entry whose
last name is Smith and whose zip code is greater than or equal to 95000, the query
would contain two attr structures:

pArgs->query id 1length wvalue valueOp attrOp

fsp
attr[0] AddrBookSurNameId n/a "Smith" abEqual abAnd
attr[l] AddrBookZipId n/a 95000 abGreaterEqual n/a

%+ The Search Result

When msgAddrBookSearch successfully matches an entry, it passes back the
information you specified in an ADDR_BOOK_ENTRY structure (result). The
ADDR_BOOK_ENTRY structure contains one or more ADDR_BOOK ATTR

structures (described above) that specifies the actual attributes that you need.

Because theAddressBookMgr uses ObjectSend() to relay messages to address
books, the ADDR_BOOK_ENTRY structure must be allocated from shared memory.

%7 Getting More Information

To get more information from an entry, send msgAddrBookGet to

theAddressBookMgr, specifying the key returned by msgAddrBookSearch.

Important The ADDR_BOOK_ENTRY
structure must be allocated
from shared memory.

100.4.2.3

10 / CONNECTIVITY

328 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

You specify the information you want from the address book entry in the
same way that you specify the search result in msgAddrBookSearch.

For example, you might use msgAddrBookSearch to find an entry that meets
particular criteria. The message passes back the fundamental information that you
need. You then compare that information against some other set of information
and, if you have a match, you can then send msgAddrBookGet, using the same
key to retrieve further information about the entry.

" Changing Information 100.4.3

To change information in an address book entry, send msgAddrBookSet to
theAddressBookMgr. The message takes a pointer to an ADDR_BOOK_ENTRY
that contains the changed information for the entry.

Because theAddressBookMgr uses ObjectSend() to relay messages to address Important The ADDR_BOOK_ENTRY

books, the ADDR_BOOK_ENTRY structure must be allocated from shared memory, Structure must be allocated
from shared memory.

% Adding a New Entry 100.4.4

To add a new entry to an address book, send msgAddrBookAdd to
theAddressBookMgr. The message takes a pointer to an ADDR_BOOK_ENTRY
that contains the new information for the entry.

As above, the ADDR_BOOK_ENTRY structure must be allocated from shared memory.

¥» Deleting an Entry 100.4.5

To delete an entire entry from an address book (or to delete services from an To clear information within an
entry), send msgAddrBookDelete to theAddressBookMgr. The message takesa Y. use msgAddrBookSet

. . . . to set the specific field to null.
pointer to an ADDR_BOOK_ENTRY that identifies the contains the changed
information for the entry. The key field identifies the entry to delete.

To delete an entire entry with services, the numServices field must be 0.

When deleting services, the numServices field specifies the number of services to
delete. The services field points to the first in an array of ADDR_BOOK_SERVICE
structures that contain the service IDs of the services to delete.

" Writing an Address Book 100.5

When you write an address book, it must be prepared to receive all address book
messages defined in ADDRBOOK.H.

In addition, your address book needs to send a number of address book manager
messages, which are defined in ABMGR.H. Particularly, your address book must be
able to:

® Register itself as an address book instance.
¢ Unregister itself when it is deleted.

¢ Give up the role as system address book, when appropriate.

%

CHAPTER 100 / THE ADDRESS BOOK
Writing an Address Book

The fundamental structure used in the address book manager messages is the
AB_MGR_ID. This structure contains:

name A string that contains the name of the address book.

type An AB_MGR_ID_TYPE that indicates that the address book is an
application (abMgrApplication) or a service or data object
(abMgrObject).

value A union that contains a UID or a UUID, depending on whether the
address book is a service or an application.
uid Is an OBJECT that contains the UID of the service.
uuid Is a UUID that contains the UUID of the application’s working:
directory.

Registering an Address Book 100.5.1

When an instance of your address book is created, it should register itself by
sending msgABMgrRegister to theAddressBookMgr. The message takes a pointer
to an AB_MGR_ID structure that identifies the address book.

Only when an address book is registered with theAddressBookMgr can it later be
selected as the system address book.

If your address book inherits from clsAddrBookApplication, it is registered
automatically when it is created.

% Unregistering an Address Book 100.5.2

- Becoming the System Address Book

When your address book is terminated (if an application, when it is deleted; if a
service, when deinstalled), it should send msgABMgrUnregister to
theAddressBookMgr. The message takes a pointer to an AB_MGR_ID structure
that identifies the address book.

If your address book inherits from clsAddrBookApplication, it is unregistered
automatically when it is deleted.

=
&
ia
&

When your address book needs to become the system address book, it sends
msgABMgrActivate to theAddressBookMgr. The message takes a pointer to an
AB_MGR_ID structure that identifies the address book.

In the current implementation of the address book manager, only one address
book can be the system address book at one time.

If there is currently a system address book, theAddressBookMgr deactivates that
address book first.

There are two important status values that you should note when sending

msgABMgrActivate:

stsABMgrAddrBookOpen The current system address book is currently
open, and therefore cannot be deactivated.

329

10 / CONNECTIVITY

330 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

stsABMgrAddrBookNotRegistered The specified address book is not a
registered address book.

% Deactivating the System Address Book 100.5.4

To deactivate the system address book, send msgABMgrDeactivate to
theAddressBookMgr. The message takes a pointer to an AB_LMGR_ID structure.

% Observing theAddressBookMgr 100.5.5

When an address book is activated or deactivated as the system address book,
theAddressBookMgr sends msgABMgrChanged to its observers (which includes

all registered address books). The messages passes a pointer to an
AB_MGR_NOTIFY structure, which contains:

type An AB_MGR_CHANGE_TYPE value that indicates the type of change.
Possible values are:
abMgrRegister An address book was registered.
abMgrUnregister An address book was unregistered.
abMgrActivated An address book was activated.
abMgrDeactivated An address book was deactivated.
abMgrOpened An address book was opened.
abMgrClosed An address book was closed.

addressBook An AB_MGR_ID structure that indicates the address book that
changed.

% Handling Option Sheet Protocol 100.5.6

To provide users with a common way of selecting the system address book, an
address book or other applications that want to provide this facility must be
prepared to handle msgOptionSheetAddCards. When it receives this message, the
address book can add cards to the option sheet, if it needs. the address book must
then forward the message to theAddressBookMgr.

When theAddressBookMgr receives the message, it creates a card that allows the
user to select the current address book. Subsequent option card related messages

are sent directly to theAddressBookMgr.

 PENPOINT ARCH

p‘Anr-k”ib;'/ < I NNEC

Chapter 101 / The Sendable Services

A sendable service is a service that provides some form of deferred data transmission,
such as e-mail or fax. Before sending data, the user must be able to address the fax or
e-mail to a particular recipient. The sendable service protocol allows address books
to query sendable services for the type of addressing information they require; the
protocol also allows address books to request a sendable service to present a user
interface, through which the user can update address information in the current

address book.

Sendable services inherit from the abstract superclass clsSendableService, which
defines the sendable service protocol. All sendable services are managed by
theSendableServices service manager.

"The Sendable Services Protocol

The PenPoint™ operating system has two general categories of data transfer
mechanisms:

¢ Printing, which is assumed to be accessible from any PenPoint computer,
and which has a simple addressing mechanism: the name of the printer.

¢ Other forms of data transfer, which the user could install separately, and
which has any number of transmission mechanisms and addressing
complexities.

This division is reflected in the Document menu in the PenPoint Application
FrameworK’s standard application menus: it contains a Print button and a Send
button. The Print button is specific to a single action (printing a document).
However, the Send button provides access to all other deferred data transfer
mechanisms. In other words, it provides access to the sendable services.

The Address Book uses the sendable services protocol at two different times:
¢ Gathering address descriptors from sendable services.

¢ Requesting the sendable service to display a user interface through which
the user can add, modify, or delete address data for that service.

- Creating Address Descriptors

As described in Chapter 100, all address books contain a fixed set of attributes for
usual addressing information, such as names, postal addresses, voice-phone numbers,
and so on. In addition to this fixed set, the address book can maintain addressing
information for services. Some services (such as fax) just need a phone number;
others (such as e-mail) need a phone number for the e-mail provider and one or
more strings for the actual mail address.

1011
101340

332 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

However, until the address book and all the sendable services are installed, the
address book does not know the addressing attributes that are required by each
service.

The address book requests an attribute descriptor from a sendable service by
sending msgSendServGetAddrDesc to the sendable service. In response to the
message, the sendable service creates an address descriptor and passes it back to the
address book. The address book then adds the descriptor to its attributes.

There are two times when an address book should send msgSendServGetAddrDesc:

¢ When a new instance of the address book is created, the address book should
enumerate all the services that belong to theSendableServices service

manager. It should then send msgSendServGetAddrDesc to each of the

sendable services.

¢ When the user installs a new sendable service, theSendableServices notifies
the address book that a new service is available (by sending msgIMInstalled).
The address book should then send msgSendServGetAddrDesc to the new

service. An address book should always observe theSendableServices.

% Displaying a User Interface

When you, or anyone else, writes an application that presents the user interface to
an address book, the application must allow additions or changes to all the
required attributes (name, postal address, and so on). It is easy to know what is
expected, by simply examining the list of attributes and ensuring that you have
implemented them all.

Unfortunately, you can't plan an address book user interface for modifying service
information, because the amount and types of information maintained for service
addresses is entirely up to each service. The solution is to provide a message
whereby the address book requests the service to present a user interface for its
own addressing information.

When an address book sends msgSendServCreateAddrWin to a sendable service,
the sendable service should create a window in which the user can add or modify
address information for the service.

When the address book sends msgSendServFillAddrWin to a sendable service, the
sendable service should fill or clear its window depending on the address
information passed in by the address book.

The address book can send msgSendServGetAddrSummary to a sendable service
to request a string that contains an address summary.

CHAPTER 101 / THE SENDABLE SERVICES 333
The Sendable Services Messages

P The Sendable Services Messages 101.2

The sendable services messages are defined in SENDSERV.H. These messages are
listed in Table 101-1.

Table 101-1
Sendable Services Messages
Message Takes Bescription
msgSendServGetAddrDesc P_ADDR_BOOK_SVC_DESC Responsibility of a sendable service to return its
service attribute-value pairs that describe its service
address.
msgSendServCreateAddrWin P_SEND_SERV_ADDR_WIN Converts address data into a window displaying
the data.
msgSendServFillAddrWin P_SEND_SERV_ADDR_WIN Refreshes pArgs->win with information in

pArgs->attrs.

msgSendServGetAddrSummary ~ P_SEND_SERV_ADDR_WIN Given pArgs->attrs, set pArgs->addrSummary to be
a displayable string that sums up the the address.

% Getting Address Descriptors 101.2.1

When an address book needs to get the address descriptor from a sendable service,
it sends msgSendServGetAddrDesc to the service. The message takes a pointer to
a P_ADDR_BOOK_SVC_DESC structure, which contains an uninitialized pointer
for an array of address attributes (attrs).

The sendable service allocates storage for the attribute-value pairs and stores the
addresss in attrs. The sendable service also sets the numAttrs field to the number
of attributes used by the service.

% Creating and Filling Address Windows 101.2.2

When an address book needs to present a user interface that gathers information
about a sendable service, the address book sends msgSendServCreateAddrWin to
request the sendable service to create an empty window for this information.

The address book then sends msgSendServFillAddrWin to the sendable service to
request it to fill in or update the window using the data passed in by the message.

Both messages take a pointer to a SEND_SERV_ADDR_WIN structure, which
contains a pointer to an array of address attributes (addrAttr) and the number of
attributes in the array (numAttrs).

When the sendable service receives msgSendServCreateAddrWin, it should create
a window suitable for containing its addressing information. The type of window
it creates and whether the window is inserted in the window hierarchy or not is
dependent on the implementation of the address book. For example, the GO
address book actually uses the option sheet protocol; when it requests the sendable
service to create an address window, the address book adds the new window to the
list of option cards.

10 / CONNECTIVITY

334 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

The sendable service should not fill information in the window when it creates it.
Instead it should wait for the address book to send msgSendServFillAddrWin.
When it receives msgSendServFillAddrWin, the sendable service should display
its addressing information in the window with proper formatting and labels. If
numAttrs is 0, the sendable service should display empty fields, presumably for
the user to fill in information.

%> Summarizing Address Information 101.2.3

The user interface for an address book might simply display a summary of an
address (or a series of addresses) to the user, rather than displaying all the
addressing information. For instance an address book might want to present the
e-mail names for recipients, but doesn’t need to present things like the phone
number used to access the e-mail system.

An address book can send msgSendServGetAddrSummary to a sendable service to
request summary of addressing information. The message takes a pointer to a
SEND_SERV_ADDR_WIN structure, which lists all the service attributes.

It is up to the sendable service to determine which attributes it can use and to
create a summary string, which it passes back in the addrSummary field of the
SEND_SERV_ADDR_WIN structure.

PENPOINT ARCHITECTURAL REFERENCE / VOL 11

Part 11 /
Resources

7V Chapter 102 / Introduction
Overview

Developer’s Quick Start

Layout of This Part

Other Sources of Information

7 Chapter 103 / Concepts and
Terminology

Object Resources
Once and Many Modes for
Object Resources

Data Resources
Resource Files

Identifying Resources
Resource Types
Well-Known Resource IDs
Dynamic Resource IDs

Well-Known List Resource IDs
Using Resource IDs
Resource Agents

Resource Lists

¥ Chapter 104 / Using cIsResFile

clsResFile Messages

Creating a Resource File Handle
Locating a Resource

Reading a Data Resource

Writing and Updating Data Resources
Reading an Object Resource

Writing an Object Resource
Enumerating Resources

Deleting a Resource

Compacting and Flushing Resource Files

Resource Agents
Reading and Writing Data Resources
Writing Your Own Agents

7 Chapter 105 / Defining

Resources with the € Language

Resource Source File Organization

Resource Definitions

Example

102.1
102.2
102.3
102.4

103.1

103.1.1
103.2
103.3

103.4

103.4.1
103.4.2
103.4.3
103.4.4

103.5
103.6
103.7

104.1
104.2
104.3
104.4
104.5
104.6
104.7

 104.8

104.9
104.10

104.11
104.11.1
104.11.2

105.1
105.2
105.3

337

337
337
338
339

341
341

342
342
342

342
343
343
343
344

344
345
345

347

347
348
349
349
349
350
351
351
352
353

353
353
354

355

355
356

356

7 Chapter 106 / Compiling
Resources

Running the Resource Compiler
The RESAPPND Utility
The RESDUMP Utility

¥ Chapter 107 / System
Preferences

Concepts

The System Preferences
System and User Fonts
Screen Orientation
Hand Preference
Writing Style
Handwriting Timeout
Press-Hold Timeout
Gesture Timeout
Power Management
Auto Suspend
Auto Shutdown
Floating Allowed
Zooming Allowed
Bell
Scroll Margin Style
Input Pad Style
Character Box Width
Character Box Height
Line Height
Pen Cursor
Time and Date
Date Format
Time Format
Display Seconds
Primary Input Device
Unrecognized Character

Preference Change Notification

P List of Tables
104-1 clsResFile Messages
107-1 System Preferences and Resource IDs

¥ List of Examples
105-1 A Tiny Resource Definition File
105-2 Defining Quick Help Resources

106.1
106.2
106.3

107.1

107.2
107.2.1
107.2.2
107.2.3
107.2.4
107.2.5
107.2.6
107.2.7
107.2.8
107.2.9
107.2.10
107.2.11
107.2.12
107.2.13
107.2.14
107.2.15
107.2.16
107.2.17
107.2.18
107.2.19
107.2.20
107.2.21
107.2.22
107.2.23
107.2.24
107.2.25

107.3

359

359
360
360

361

361

362
363
363
363
364
364
364
364
364
364
365
365
365
365
365
366
366
366
366
366
366
367
367
367
367
368

368

347
362

355
356

PAR'I“ 'l 1 /b RESO'URCES

Chapter 102 / Introduction

Resources provide a mechanism for storing objects and data in a file for later
retrieval. You can use resource files to store and retrieve application objects in
response to msgSave and msgRestore, to manage document configuration
information such as user preferences, and to store application-specific data such as
user interface text strings.

"Overview 102.1

A resource is an object or collection of data stored in a file. A resource file can
contain several resources, each with a resource ID that is unique for the resource
file. Resource files respond to messages for locating, reading, writing, updating,
and deleting individual resources.

You can search for resources in an ordered list of resource files called a resource
list. The PenPoint™ Application Framework provides every document with a
default resource list that allows the document to override application resources, an
application to override user preference resources, and user preference resources to
override system defaults.

The PenPoint operating system has built-in support for object resources—filed
representations of objects—as well as three kinds of data resource:

Byte array resources are filed byte streams. These are the simplest kind of
data resource, and your application must interpret the meaning of the bytes.

String resources are filed, null-terminated text strings.
¢ String array resources are filed, indexed lists of text strings.

You can write resource agents to support additional semantics for the bytes of a
resource.

To make it easier for you to create data resources, the PenPoint SDK includes a
header file that lets you define the data resources in a C language source file and

compile the source into a resource file with a resource compiler utility included
with the PenPoint SDK.

Developer’s Quick Start 102.2

As an application writer, you use resources to save and restore application instance
data and to create objects and data from resources stored in a resource file.

If you need to access a replaceable resource, you need to know the resource ID of
the resource and the resource file in which it is stored. It is the responsibility of
resource creators to publish their resource IDs in a header file.

338 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

Once you have the file handle and the resource ID, you can send ,
msgResReadData (for data resources) or msgResReadObject (for object resources)
to read the resource.

In the following example, we want to create a menu from a resource. We know
that the resource file MyResources contains the object, and that it’s well-known
resource ID is defined by the symbol tagMyMenu.

The first step is to generate a handle on the resource file as shown in the example
below:

STATUS status;
RES FILE NEW resNew;
FILE_HANDLE resFile;

status = ObjectCall (msgNewDefaults, clsFileHandle, &resNew);
resNew. fs.locator.pPath = “MyResources”;

status = ObjectCall (msgNew, clsFileHandle, &resNew);
resFile= fsNew.object.uid;

Once you have created the resource file handle (and thereby opened the resource
file), you can use msgResReadObject to read the specific object from the resource
file as shown in the example below:

RES_READ OBJECT rro;

STATUS status;
OBJECT myMenu;

rro.mode = resReadObjectMany; // let other procs have their own copy
rro.resId = tagMyMenu; // resource ID of target
ObjectCallRet (msgNewDefaults, clsObject, &rro.objectNew, status)
status = ObjectCallWarn (msgResReadObject, resFile, &rro);

myMenu = rro.objectNew.uid; // the UID of the retrieved object

Layout of This Part 102.3

Chapter 102, Introduction (this chapter) briefly introduces PenPoint resources.

Chapter 103, Concepts and Terminology, gives a more detailed overview of the
concepts and terminology of PenPoint resources.

Chapter 104, Using clsResFile, describes the API for clsResFile, the resource

file class.

Chapter 105, Defining Resources with the C Language, describes the resource
language used to create generic resources.

Chapter 106, Compiling Resources, describes the DOS utility that converts the

resource language files into resource files.

Chapter 107, System Preferences, describes the system preferences stored in the
system resource file. This chapter also describes notification messages sent to
observers when system preferences change.

CHAPTER 102 / INTRODUCTION 339
Other Sources of Information

p7 Other Sources of Information 102.4

Part 7: File System describes the organization of the PenPoint file system and the
messages used to access files. Resource files inherit characteristics (such as file
handles) from ordinary files, so you should be familiar with ordinary files before
programming with resource files.

Part 2: PenPoint Application Framework describes the message protocol involved in
saving and restoring application instance data. Handling the PenPoint Application
Framework save and restore messages is the most common reason for using object
resources. '

11 / RESOURCES

PENPOINT ARCHITECTURAL REFERENCE / v

PART 11 / RESOURCES

Chapter 103 / Concepts and
Terminology

Resource files are used throughout the PenPoint™ operating system to store and
recreate objects and data. Generally, you use resource files in the following ways:

¢ To file your application’s objects in response to msgSave, or to unfile them in
response to msgRestore.

¢ To read and modify configuration information, such as user preferences,
from a list of resource files.

¢ To store application-specific objects or data.

"Object Resources 103.1

An object resource contains information required for creating or restoring a
PenPoint object. Object resources are used to file object instance data as well as
store replaceable object resources.

Clients save and restore object instance data in response to the PenPoint
Application Framework messages msgSave and msgRestore. The PenPoint
Application Framework maintains one document resource file for each document.

When a document receives msgSave, it saves its state and sends msgResPutObject
once for each of its child windows. By default, the child windows handle this by
saving their state and sending msgResPutObject for each of their children, and so
on, until the document has saved all of its state. When the document receives
msgRestore, it simply reads the window objects from the document resource file
rather than create the entire window tree from scratch.

Replaceable object resources are used to store information to create a specific
object, such as a button, a menu, or a dialog box. You can improve code efficiency
by storing a complex object to a resource file before run time (at install time, for
example). At run time, rather than take the time to build the complex object while
the user waits, you can simply read the object from the resource file.

If your application creates a number of objects that are the same, you can reduce
the size of your executable file by storing one copy of the object in a resource file.
At run time, you read the resource several times to create the multiple objects. You
can also use this technique for objects that are not identical but are largely similar,
using the resource to create most of the object and writing only the code necessary
to modify each copy after reading it.

342 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

Once and Many Modes for Object Resources 103.1.1

When you read or write an object resource, you must specify either once mode,
in which only one copy of the object exists in memory and only one copy of the
resource exists in the file, or many mode. In many mode, any reader of the file
can restore the object resource, creating its own copy of the object resource in
memory (replacing the prior copy, if any); and any writer can replace the filed
resource with an object resource of its creation. The only time you normally use
once mode is when handling msgSave and msgRestore. For most other uses of
resource files, you use many mode.

'Data Resources 103.2

A data resource is an array of bytes stored in a resource file. You can write a
resource agent to interpret the byte array in a meaningful way. For example, the
PenPoint operating system provides resource agents for text string data resources
and for string list data resources.

Later versions of PenPoint will provide specific support for multiple-language
applications.

Data resources are useful for storing static data that the user might update or
replace. For example, you can make it easier to port your application to a second
language by using a resource file to store the all of the text strings your application
displays. When you want to support a second language from your application, you
can change the language of your application without writing new code, by simply
providing the user with a resource file containing the text strings in the new
language.

Resovurce Files 103.3

Resource files begin with a resource file header that contains general information
about the file. Each resource in the file has its own resource header. The resource
header contains the resource class, resource ID, and a resource type.

‘When you have created a resource file, you can write resources to it programmatically
by sending messages to the file. There are separate sets of filing messages for the two
types of resources. You can read and write object resources only with the object
resource filing messages, and data resources only with the data resource filing messages.
A single resource file can contain both object and data resources.

You can create data resources (but not object resources) by editing a resource
definition file, which you then compile into a resource file with the C compiler.

Identifying Resources 103.4

Each resource is tagged with a unique resource ID—a 32-bit TAG that appli-
cations use to locate the resource. Each resource in a file has a resource ID that is
unique within the file. As with most TAGs, the low 21 bits of a resource ID is the
administered portion and scope of the ID. The next two bits identify the resource
type of resource—well-known, dynamic, or well-known list. The remaining nine

CHAPTER 103 / CONCEPTS AND TERMINOLOGY
Identifying Resources

bits include eight bits to identify the unique tag number (tagNum) of the
resource. The high bit has a special meaning, explained below.

’» Resource Types 103.4.1

There are three types of resource ID: well-known resource IDs, dynamic resource
IDs, and well-known list resource IDs. The flags of the resource ID TAG indicate
which type of resource the ID identifies.

¢ A well-known resource ID (flags == 0) identifies a resource that any client
can use.

¢ A dynamic resource ID (flags == 1) generally identifies an object that is
nested within another object. For example, when you store an option sheet
as an object resource, it can store its child windows in the same file using
dynamic resource IDs.

¢ A well-known list resource ID (flags == 2) identifies a list resource such
as an array of strings. “List Resources” later in this chapter describes list
resources in more detail.

The high bit of the resource ID, when set, indicates that the object being
identified is a well-known object, and that the remainder of the resource ID is the

well-known UID of the object. You should take care not to modify the high bit

yourself, as its special meaning is maintained by the application.

The file RESFILE.H defines macros and functions that you can use to create
resource IDs of various types, and to extract individual values (such as flags) from
a resource ID.

% Well-Known Resource IDs 103.4.2

Well-known resource IDs are defined in the header file of the class that defines the

resource, so any client of the class can access the identified resource. You use the

same administered portion used in defining the class, and assign a unique tagNum
value for each well-known resource ID that uses the same administered portion.

Use the MakeWknResId() macro to create a well-known resource ID when you
compile your application. The macro has the following syntax:

MakeWknResId(wkn, tagNum)
For example:

RES_ID myButtonID; // create the resource ID

myButtonID = MakeWknResId(clsButton,1);

’» Dynamic Resource IDs 103.4.3

You normally send msgResPutObject in response to the PenPoint’s Application
Framework msgSave. msgResPutObject generates dynamic resource IDs for
storing application objects that are not well-known objects. Dynamic resource IDs

343

11 / RESOURCES

344 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

are 29-bit numbers composed of the 21 bits normally used for the administered
portion and the 8 bits normally used for the tagNum value.

If you want to store dynamic items without using msgResPutObject, you can
create your own dynamic resource ID by sending msgResNextDynResld to a
resource file handle. The message takes a pointer to a RES_ID value that will
receive the dynamic resource ID.

If the message is successful, it returns stsOK and stores the newly generated
resource ID in the specified RES_ID. In the example below:
RES_ID myDataResource;

OBJECT resFile;
STATUS s;

// create the dynamic resource ID
ObjCallJdmp (msgResNextDynResId, resFile, &émyDataResource, s,error) ;

Be aware that dynamic resource ID values are not recycled. Once a file uses up its
29 bits worth of dynamic resource IDs, msgResNextDynReslID returns stsFailed.

% Well-Known List Resource IDs 103.4.4

A well-known list resource ID identifies a list of indexed resources such as an
array of text strings. For list resource IDs, the eight bits normally used for the
tagNum value is used to indicate a six-bit list group and a two-bit list number
within that group. The list group identifies the type of list, while the list number
identifies one of up to four lists of that type in the resource file.

¢ List groups numbered from 0 to 1F hex are available for your use.

List group 20 hex is reserved for arrays of strings for toolkit tables.

¢ List group 21 hex is reserved for arrays of strings for standard message text.

List group 22 hex is reserved for arrays of strings for Quick Help text.

¢ List groups numbered from 23 to 3F hexadecimal are reserved for system use.

The data of a list resource includes a pseudo-resource ID index for each of the
elements of the list. These index IDs look like resource IDs, except that the 8 bits
normally used for the tagNum value instead indicate the item’s index in its list
resource, while the flags indicate which list. This allows each list to include up to
256 entries. Since each list group can have 4 lists per group, this yields up 1,024
items per list group for each unique administered portion. To access a list resource
item, you must have the resource ID as well as the index within the list. You can
generate the resource ID and index from the group number and list resource ID.

7 Using Resource IDs 103.5

RESFILE.H defines several macros that let you determine the type of resource ID
returned by a message. The macros are:
WknltemResId(resID) True if the resource ID is a well-known resource ID.
WhknListResId(resId) True if the resource ID is a well-known list resource ID.

CHAPTER 103 / CONCEPTS AND TERMINOLOGY 345
Resource Lists

WknResId(resId) True if the resource ID is a well-known resource or
resource list ID.

DynResld(resld) True if the resource ID is a dynamic resource ID.
WknODbjResId(resId) True if the resource ID is for a well-known object

(high bit is set).
" Resource Agents 103.6
Resource agents enhance the default reading and writing behavior of data Agents do not read or write

resources, interpreting the resource data in special ways. The simplest resource object resources.

agent is the default resource agent, which treats data resources as a stream of bytes.
However, data isn’t always just a byte stream; often the sequence of bytes has
meaning. The data might be a null-terminated string, a series of unsigned 32-bit
values, or a series of 8-byte floating point values. Agents work for you by
interpreting the formats of the data they read from the data resource file, and
converting data to a stream of bytes to write to the data file.

The PenPoint operating system comes with three resource agents:

¢ resDefaultResAgent is the default resource agent. This agent treats data
resources as a stream of bytes.

¢ resStringResAgent handles data resources that are NULL-terminated strings.

¢ resStringArrayResAgent handles data resources that are arrays of
NULL-terminated strings. The array of strings must be terminated by a pNull
string pointer.

Chapter 104, Using clsResFile, explains how to write your own agents to handle
other types of data resources.

Resource Lisis 103.7

A resource list is an instance of clsResList, which inherits from clsList. The entries in
a resource file are resource file handles, other resource file lists, or null entries. When
you send a read or find message to a resource file list object, it sends the message to
each of its entries in turn (skipping null entries) until the message returns stsOK
(msgResEnum, which enumerates the items in each file, is a special case).

Each application class maintains a default resource list object in its class metrics.
The default application installation process creates this list with four initial
elements:

¢ The document resource file, DOC.RES.
¢ The application resource file, APPRES.
¢ The system preferences resource file.

¢ The PenPoint system resource file.

11 / RESOURCES

346 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

The system resource file has the well-known file handle theSystemResFile; the
system preferences resource file has the well-known file handle
theSystemPreferences. Even though these resource file handles are well-known,
they are on the default resource list for easier resource searching.

The application resource file is stored in the directory for the corresponding
application (under \PENPOINT\SYS\APP). You should add dynamic resources to the
application resource file when you install the application (that is, when running
instance 0 of the application). For more information about adding dynamic
resources during installation, see Part 12: Installation APIL

You can create a resource list in addition to the default application resource list by
sending msgNewDefaults and msgNew to clsResList. Instances of clsResList pass
all other messages to clsList. For more information on clsList messages see the
description of clsList in Parz 9: Utility Classes.

PENPOINT ARCHITECTURAL REFERENCE / VOL II

PART 11 / RESOURCES

Chapter 104 / Using cisResFile

The resource file class, clsResFile, inherits from clsFileHandle. This chapter
presents the data structures used by clsResFile messages and discusses the messages

as well. For more information on using clsResFile, see the RESFILE.H header file

shipped with the PenPoint™ SDK.

Table 104-1 summarizes the messages that clsResFile defines.

104.1

Table 104-1
cisResFile Messages

Message Takes Description
Class Messuges
msgNew P_RES_FILE NEW Creates a resource file object.
msgNewDefaults P_RES_FILE NEW Initializes the RES_FILE_NEW structure to
default values.
Data Resource Messages
msgResReadData P_RES_READ_DATA Rleads resource data from a resource file or resource
ist.
msgResWriteData P_RES_WRITE _DATA Writes resource data to a file.
msgResUpdateData P_RES_WRITE_DATA Updates existing data resource data.
Object Resource Messoges
msgResReadObject P_RES_READ_OBJECT Reads a resource object from a resource file or
resource list.
msgResWriteObject P_RES_WRITE_OBJECT Writes a resource object to a file.
msgResGetObject P_OBJECT Reads the filed object resource from the current file
position. For use only during msgRestore.
msgResPutObject OBJECT Wrrites the object as a filed object resource to the

msgResReadObject WithFlags
msgResWriteObjectWithFlags

P_RES_READ_OBJECT
P_RES_WRITE_OBJECT

current file position. For use only during msgSave.
Reads a resource object, passing the supplied flags.

Wrrites a resource object, passing the supplied flags.

Generic Resource Messages

msgResDeleteResource

msgResGetlnfo
msgResEnumResources

msgResNextDynResld

RES_ID
P_RES_INFO

RES_ENUM

P_RES_ID

Marks as deleted the resource identified by RES_ID.

Gets information on a data or object resource in a
resource file or a resource list.

Enumerates resources in a resource file or resource
list.

Gets the next available dynamic resource ID from
the file.
: continued

3as PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

Table 104-1 [continued)

Message Takes Description
File Maintenance Messages
msgResCompact void Compacts the resource file, actually deleting the
resources marked as deleted.
msgResFlush ~ void Flushes the index of resources read from the file.
msgResAgent P_RES_AGENT Message sent by resource file to resource agent

when forwarding messages.

¥ Creating a Resource File Handle 104.2

To create a resource file handle, send msgNewDefaults and msgNew to
clsResFile. When msgNew completes, the object.uid field of the RES_NEW
structure contains the UID of the resource file handle.

msgNew and msgNewDefaults both take a pointer to a RES_FILE_NEW structure
as their argument. The RES_FILE_NEW structure includes all the fields that
cIsFileHandle’s FS_NEW structure includes. This is how clsResFile inherits from
clsFileHandle. In addition to the FS_NEW fields, RES_FILE_NEW includes the
following fields (the data type of each field is shown in parentheses following its
name):

mode (RES_ZNEW_MODE) A set of flags that controls various attributes of
the resource file handle. The flags can include any combination of the
following;

resSharedResFile (default: false) More than one client can use this file
handle concurrently. This does not mean that more than one client can

open a file handle on the file, just that multiple clients can safely share
the one file handle.

resCompactOnClose (default: true) Send msgCompact to file when-
ever the resource file is closed. '

resCompactAuto (default: false) Send msgCompact to file when ratio
of deleted to non-deleted resources in the file reaches compactRatio.

resVerifyVersions (default: true) Check that current system version is at
least the minimum supported version for each resource.

compactMinimum (U16) The minimum number of resources required in
the file before automatic compaction occurs.

compactRatio (U16) A percentage representing the minimum ratio of
deleted resources marked to undeleted resources required before
automatic compaction occurs.

When you delete a resource from a file, the resource is marked as deleted but is
not deleted until the file is compacted. If resCompactOnClose is set, the file is
compacted every time the controlling document closes. If resCompactAuto is set,
the file is compacted automatically if there are more than compactMinimum
resources in the file and a deletion causes the ratio of deleted resources to

CHAPTER 104 / USING CLSRESFILE
Writing and Updating Data Resources

undeleted resources to exceed compactRatio. For example, if compactRatio is 30,

the file is compacted when the ratio of deleted resources to undeleted resources
reaches 30%.

"Locating a Resource 104.3

To search for and get information about a resource, send msgResGetInfo to a
resource file handle or resource file list. msgResGetlnfo takes a pointer to a
RES_INFO structure as its argument. You pass in resld, and msgResGetInfo passes
back information about the identified resource. RES_INFO includes the following
fields (the data type of each field is shown in parentheses following its name):

resld (RES_ID) The ID of the resource to find.

file (RES_FILE) The file where the identified resource resides. This is mainly
useful when you send msgResGetlnfo to a resource list, so that you
know which of the files in the list contains the resource.

agent (UID) The agent that saved the resource.

objClass (UID) If an object resource, the class of the object.

offset (U32) The offset in bytes from the start of the file to the first byte of
the resource. Use only with caution.

size (U32) The size of the resource in bytes. Use only with caution.

minSysVersion (U16) The minimum system version with which the
resource is compatible.

Reading a Data Resource 104.4

To search for and read a data resource, send msgResReadData to either a resource
file handle or a resource file list. msgResReadData takes a pointer to a
RES_RFAD_DATA structure as its argument. RES_READ_DATA includes the
following fields (the data type of each field is shown in parentheses following its
name):

resld (RES_ID) The resource ID of the resource to read.
pData (P_UNKNOWN) The retrieved resource data.
heap (OS_HEAP_ID) A heap from which to allocate memory for storing the
retrieved resource data. Set to Nil(OS_HEAP_ID) if pData points to an
“allocated buffer.
length (U32) The length of the resource data.

pAgentData (P_UNKNOWN) Agent-specific data, such as the index into a
list resource.

Writing and Updating Data Resources 104.5

To write a data resource to a resource file, send msgResWriteData to a resource
file handle. To update a data resource, send msgResUpdateData to a resource file
handle. Updating a data resource is like writing a data resource, except that the

349

11 / RESOURCES

350 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

update operation reads the resource file to determine the correct agent to use. You
cannot send write or update messages to a resource file list, only to a resource file.

msgResWriteData and msgResUpdateData both take a pointer to a
RES_WRITE_DATA structure as their argument. RES_WRITE_DATA includes the
following fields (the data type of each field is shown in parentheses following its
name):

resId (RES_ID) The resource ID with which to write the resource.

pData (P_UNKNOWN) The data to be written.

length (U32) The length of the data (agent might compute this value).

agent (UID) The agent to use in writing the data. Not used for

msgResUpdateData.

pAgentData (P_UNKNOWN) Agent-specific data, such as the index into a
list resource. ‘

Reading an Object Resource 104.6

There are two messages that you can use to read object resources:
msgResReadObject and msgResReadObjectWithFlags. Both messages search for
and read an object resource from either a resource file handle or a resource file list.

The difference is that msgResReadObjectWithFlags takes additional flags

arguments, which it passes in msgRestore to the new object.

msgResReadObject and msgResReadObjectWithFlags both take a pointer to a
RES_READ_OBJECT structure as their argument. RES_READ_OBJECT includes the
following fields (the data type of each field is shown in parentheses following its
name):

mode (RES_READ_OBJ_MODE) Whether to read the object in once mode
(don’t read the object from file if already read) or many mode (allow each
read to create its own copy of the object). Possible values are:

resReadObjectOnce Read once mode.

resReadObjectMany Read many mode.
resld (RES_ID) The resource ID of the object resource to be read.
objectNew (OBJECT_NEW) Before reading the object resource, this field

must be initialized with a msgNewDefaults to clsObject. After reading
the object resource, the object UID will be objectNew.uid.

sysFlags (RES_SAVE_RESTORE_FLAGS) System-defined flags for
msgResReadObjectWithFlags.

appFlags (U16) Application-defined flags for msgResReadObjectWithFlags.

When the message returns successfully, the RES_READ_OBJECT structure contains
the UID of the newly created object in objectNew.uid. If you specified
resReadObjectOnce and the object existed already, objectNew.uid contains the
UID of the object created when the resource was first read, but the message does
not result in a second copy of the object.

P Writing an Object Resource 104,

CHAPTER 104 / USING CLSRESFILE
Enumerating Resources

When you use msgResReadObjectWithFlags, you must be very careful in
specifying the sysFlags and appFlags values. The values for sysFlags are specific to
PenPoint, and are currently used only on copy operations. You can define specific
appFlags for a class, but you must be careful that you only send the flags defined
for a specific class when restoring objects of that class.

[

There are two messages that you can use to write object resources:
msgResWriteObject and msgResWriteObjectWithFlags. Both messages write an
object resource to a resource file; you cannot send these messages to a resource file
list. The difference between the messages is that msgResWriteObjectWithFlags
takes additional flags arguments, which it passes in msgSave to the object being
written.

msgResWriteObject and msgResWriteObjectWithFlags both take a pointer to a
RES_WRITE_OBJECT structure as their argument. RES_WRITE_OBJECT includes
the following fields (the data type of each field is shown in parentheses following
its name):

mode (RES_WRITE_OBJ_MODE) Whether to write the object in once mode
or many mode. Possible values are:

resWriteObjectOnce Write once mode. Don’t write the object resource
to the file if it has already been written.

resWriteObjectMany Write many mode. Write the object reseource to
the file, creating it if it isn’t already in the file, or overwriting the old ver-
sion if it is already in the file.
resld (RES_ID) The resource ID with which to write the object resource.
object (UID) The UID of the object to be written.

sysFlags (RES_SAVE_RESTORE_FLAGS) System-defined flags for
msgResWriteObjectWithFlags.

appFlags (U16) Application-defined flags for msgResWriteObjectWithFlags.

When you use msgResWriteObjectWithFlags, you must be very careful in
specifying the sysFlags and appFlags values. The values for sysFlags are specific to
PenPoint, and are currently only used on copy operations. You can define specific
appFlags for a class, but you must be careful that you send only the flags defined
for a specific class when restoring objects of that class (the flags are passed along
with recursive writes, which may end up at objects of a different class than the

top-level object; use msgResWriteObjectWithFlags with care.

Enumerating Resources 104.8

To create an array of all resource IDs in a resource file or resource file list that
match a particular selection criteria, send msgResEnumResources to a resource
file handle or a resource file list.

351

11 / RESOURCES

352 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

msgResEnumResources takes a pointer to a RES_ENUM structure as its argument.
RES_ENUM includes the following fields (the data type of each field is shown in
parentheses following its name):

match (UID) The search key, for example an agent or class.

mode (RES_LENUM_MODE) How to filter the search. This can be one of the
following values:

resEnumAll (the default) Find next resource in file.

resEnumByResIdClass Find next resource in file whose resource ID ad-
ministrated part matches match.

resEnumByObjectClass Find next resource in file whose object class
matches match.

resEnumByObjectUID Find next resource in file whose object UID
matches match.

resEnumByAgent Find next resource in file whose agent matches match.
pResld (P_RES_ID) A pointer to the array of enumerated resource IDs.

pResFile (P_RES_FILE) A pointer to the array of file handles corresponding
to each entry of pResld.

max (U16) Maximum number of entries allocated for pResld and pResFile
arrays.

count (U16) The number of entries in the arrays. When passed in with a
message, count specifies the number of entries requested. When passed
back out, count specifies the number of entries actually retrieved.

When the message completes, pResId[] contains the resource IDs that match the
criterion, and pResFile[] contains the resource file handles for the corresponding
entries in pResId[]. If the final count is larger than max, the resource manager
allocates heap to accomodate the additional resource IDs and resource file handles.
You can tell that heap was allocated when the arrays indicated by pResld and
pResFile are different from their original values when the message returns. If the
resource manager allocated heap, you must free the heap when you are done.

If you are concerned about memory requirements, you can request the message to
return only a few resource IDs at a time. To do so, you keep the pResld and pResFile
arrays small and specify a small count value on the first call to msgResEnumResources.
On subsequent calls, you specify small count values, and you must OR in
resEnumNext in the mode field and repeat the data returned in cache.

7 Deleting a Resource 104.9

To mark a resource as deleted, send msgResDeleteResource to a resource file
handle. msgResDeleteResource takes as its argument a pointer to the RES_ID that
identifies the resource to be marked.

msgResDeleteResource marks a resource as deleted. Resources marked as deleted
are not actually removed from the resource file until the resource file compacts in
response to msgResCompact. You can send msgResCompact yourself to force a

CHAPTER 104 / USING CLSRESFILE 353
Resource Agents

resource file to compact, or it may compact automatically depending on the mode
settings at msgNew time (see “Creating a Resource File Handle” earlier in this

chapter).

J” Compacting and Flushing Resource Files 104.10

To explicitly compact a resource file, send msgResCompact to the resource file
handle. This deletes all resources in the resource file that are marked as deleted.
msgResCompact doesn’t take any arguments.

Flushing the resource file has the effect of clearing the internal table maintained by
the resource manager for the file. To do this, send msgResFlush to the resource file
handle. The message doesn’t require any arguments. This internal table keeps track of
the resource IDs, the UIDs associated with object resources, and maintains the flags
that indicate when an object resource has been written.

In addition to clearing the internal table associated with a resource file,

msgResFlush flushes any buffered file output to disk.

Essentially, a flush restores the resource file to the state it was in when you
opened it. This is particularly important if you are reading an object resource
with resReadObjectOnce mode, because the resource manager uses the table to
determine whether it has read the object before.

If you want to flush buffered output without flushing the resource file table, you
can send the clsFileHandle message msgFSFlush.

7 Resource Agents 104.11

As mentioned in Chapter 103, data resources are usually managed by agents that
interpret the bytes of a data resource in a special way. PenPoint comes with three
data resource agents: one that interprets the bytes simply as bytes, a second that
interprets them as NULL-terminated strings, and a third that interprets them as
arrays of NULL-terminated strings. This section explains how the resource manager
interacts with resource agents and how to write your own agents to handle special
types of data resource.

P> Reading and Writing Data Resources 104.11.1

When you send msgResWriteData to a resource file handle, you specify the agent
that will write the data. The resource manager finds a suitable location to store the
resource and writes the header information and the agent’s UID in the resource
file at that location. The resource manager then sends msgResAgent to the agent,
and the agent handles the rest of the write.

When you send msgResReadData or msgResUpdateData to a resource file handle
or resource file list, the message determines the correct agent to use by looking at
what msgResWriteData stored in the file. The resource manager then sends
msgResAgent to the agent, and the agent handles the rest of the read or update.

11 / RESOURCES

354 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

"» Writing Your Own Agents 104.11.2

A resource agent is a well-known object that responds to msgResAgent. The
easiest way to create your own agent is to create a single instance of the agent class
and make the UID of that instance well-known.

The agent needs to handle just one message: msgResAgent. As discussed above,
the resource manager will send msgResAgent to the agent during any
msgResReadData, msgResWriteData, or msgResUpdateData that specifies the
agent. msgResAgent takes a pointer to a RES_AGENT structure as its argument.
RES_AGENT includes the following fields (the data type of each field is shown in
parentheses following its name):

file (RES_FILE) The file containing the resource.
length (U32) Length of the resource entry, in bytes.

msg (MESSAGE) The original message (msgResReadData,
msgResWrit