
GO Technical Library

PenPofnt

PenPointIM

Architectural Reference
VOLUME II

GO CORPORATION

GO TECHNICAL LIBRARY

PenPoint Application Writing Guide provides a tutorial on writing PenPoint
applications, including many coding samples. This is the first book you should
read as a beginning PenPoint applications developer.

'PenPoint Architectural Reference Volume I presents the concepts of the fun­
damental PenPoint classes. Read this book when you need to understand the
fundamental PenPoint subsystems, such as the class manager, application
framework, windows and graphics, and so on.

PenPoint Architectural Reference Volume II presents the concepts of the
supplemental PenPoint classes. You should read this book when you need
to understand the supplemental PenPoint subsystems, such as the text sub­
system, the file system, connectivity, and so on.

PenPoint API Reference Volume I provides a complete reference to the
fundamental PenPoint classes, messages, and data structures.

PenPoint API Reference Volume II provides a complete reference to the
supplemental PenPoint classes, messages, and data structures.

PenPoint User Interface Design Reference describes the elements of the
PenPoint Notebook User Interface, sets standards for using those elements,
and describes how PenPoint uses the elements. Read this book before
designing your application's user interface.

PenPoint Development Tools describes the environment for developing, de­
bugging, and testing PenPoint applications. You need this book when you
start to implement and test your first PenPoint application.

PenPotnf

PenPoint"
Architectural Reference

GO CORPORATION

GO TECHNICAL LIBRARY

Addison-Wesley Publishing Company
Reading, Massachusetts * Menlo Park, California * New York
Don Mills, Ontario * Wokingham, England * Amsterdam
Bonn * Sydney * Singapore * Tokyo * Madrid * San Juan
Paris * Seoul * Milan * Mexico City * Taipei

VOLUME II

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The authors and publishers have taken care in preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright ©1991-92 GO Corporation. All rights reserved. No part of this publication may be reproduced,
stor{':d in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo­
copying, recording, or otherwise, without prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

The following are trademarks of GO Corporation: GO, PenPoint, the PenPoint logo, the GO logo,
ImagePoint, GOWrite, NoteTaker, TableServer, EDA, MiniNote, and MiniText.

Words are checked against the 77,000 word Proximity/Merriam-Webster Linguibase, ©1983 Merriam
Webster. ©1983. All rights reserved, Proximity Technology, Inc. The spelling portion of this product is
based on spelling and thesaurus technology from Franklin Electronic publishers. All other products or
services mentioned in this document are identified by the trademarks or service marks of their respective
companies or organizations.

PenTOPS Copyright © 1990-1992, Sitka Corporation. All Rights Reserved.

Warranty ~i£dah'tler GO CORPORATION MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
and limitatian of LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT, REGARDING PENPOINT SOFIWARE OR ANYTHING ELSE.

U.S. Government
Restricted ~i9ht5

GO Corporation does not warrant, guarantee, or make any representations regarding the use or the
results of the use of the PenPoint software, other products, or documentation in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
PenPoint software and documentation is assumed by you. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you.

In no event will GO Corporation, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, cost of procurement of substitute goods or technology, and the
like) arising out of the use or inability to use the documentation or defects therein even if GO Corporation
has been advised of the possibility of such damages, whether under theory of contract, tort (including
negligence), products liability, or otherwise. Because some states do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitations may not apply to you. GO
Corporation's total liability to you from any cause whatsoever, and regardless of the form of the action
(whether in contract, tort [including negligence], product liability or otherwise), will be limited to $50.

The PenPoint documentation is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure
by the U.S. Government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer
Software-Restricted Rights) and DFAR 252.227-7013 (c) (I) (ii) (Rights in Technical Data and Computer
Software), as applicable. Manufacturer is GO Corporation, 919 East Hillsdale Boulevard, Suite 400, Foster
City, CA 94404.

ISBN 0-201-60860-X

123456789-AL-9695949392

First printing, June 1992

Preface

The PenPoint Architectural Reference provides detailed information on the various
subsystems of the PenPoint™ operating system. Volume I describes the functions
and messages that you use to manipulate classes and describes the fundamental
classes used by almost all PenPoint applications. Volume II describes the
supplemental classes and functions that provide many different capabilities to
PenPoint applications.

Intended Audience
The PenPointArchitectural Reference is written for people who are designing
and developing applications and services for the PenPoint operating system. We
assume that you are familiar with the C language, understand the basic concepts of
object-oriented programming, and have read the PenPointApplication Writing Guide.

What's Here
The PenPoint Architectural Reference is divided into several parts, which are split
across two volumes. Volume I contains these parts:

• Part 1: Class Manager describes the PenPoint class manager, which supports
object-oriented programming in PenPoint.

• Part 2: PenPoint Application Framework describes the PenPoint Application
Framework, which provides you the tools you use to allow your application
to run under the notebook metaphor.

• Part 3: Windows and Graphics describes ImagePoint, the imaging system for
the PenPoint operating system, and how applications can control the screen
(or other output devices).

• Part 4: UI Toolkit describes the PenPoint classes that implement many of the
common features required by the PenPoint user interface.

• Part 5: Input and Handwriting Translation describes the PenPoint input
system and programmatic access to the handwriting translation subsystems.

Volume II contains these parts:

• Part 6: Text Component describes the PenPoint facilities that allow any
application to provide text editing and formatting capabilities to its users.

• Part 7: File System describes the PenPoint file system.

• Part 8: System Services describes the function calls that applications can use
to access kernel functions, such as memory allocation, timer services, process
control, and so on.

vi PENPOINT ARCHITECTURAL REFERENCE

• Part 9: Utility Classes describes a wide variety of classes that save application
writers from implementing fundamental things such as list manipulation,
data transfer, and so on.

• Part 10: Connectivity describes the classes that applications can use to access
remote devices.

• Part 11: Resources describes how to read, write, and create PenPoint resource
files.

• Part 12: Installation API describes PenPoint sUl?port for installing appli­
cations, services, fonts, dictionaries, handwriting prototypes, and so on.

• Part 13: Writing PenPoint Services, describes how to write an installable
service.

You can quickly navigate between these sections using their margin tabs. Each
volume has its own index. The PenPoint Development Tools has a master index
for all the manuals in the Software Development Kit.

Other Sources of Information
As mentioned above, the PenPoint Application Writing Guide provides a tutorial
on writing PenPoint applications. The tutorial is illustrated with several sample
applications.

The PenPoint Development Tools describes how to run PenPoint on a PC, how to
debug programs, and how to use a number of tools to enhance or debug your
applications. This volume also contains a master index to the five volumes
included in the PenPoint SDK.

The PenPoint API Reference is· a set of "datasheets" that were generated from the
PenPoint SDK header files. These datasheets contain information about all the
messages defined by the public PenPoint classes. If you own the PenPoint SDK,
you can also find the header files in the directory \PENPOINT\SDK\lNC.

To learn how to use PenPoint, you should refer to the PenPoint user documen­
tation. The user documentation is included with the PenPoint SDK, and is usually
packaged with a PenPoint computer. The user documentation consists of these
books:

• Getting Started with PenPoint, a primer on how to use PenPoint.

• Using PenPoint, a detailed book on how to use PenPoint to perform tasks and
procedures.

,. Type Slyles in This Book
To emphasize or distinguish particular words or text, we use different fonts.

".. Computerese

We use fonts to distinguish two different forms of "computerese":

• C language keywords and preprocessor directives, such as switch,
case, #define, #ifdef, and so on.

• Functions, macros, class names, message names, constants, variables,
and structures defined by PenPoint, such as msgListAddltem, clsList,
stsBadParam, P _LIST _NEW, and so on.

Although all these PenPoint terms use the same font, you should note that
PenPoint has some fixed rules on the capitalization and spelling of messages,
functions, constants, and types. By the spelling and capitalization, you can
quickly identify the use of a PenPoint term.

• Classes begin with the letters "ds"; for example, dsList.

• Messages begin with the letters "msg"; for example, msgNew.

• Status values begin with the letters "sts"; for example, stsOK

• Functions are mixed case with an initial upper case letter and trailing
parentheses; for example, OSMemAvailableO.

• Constants are mixed case with an initial lower case letter; for example,
wsClipChildren.

PREFACE
Type Style. in This Book

• Structures and types are all upper case (with underscores, when needed,
to increase comprehension); for example, V32 or LIST_NEW_ONLY.

Code Listings

Code listings and user-PC dialogs appear in a fixed-width font.

II
II Allocate, initialize, and record instance data.
II
StsJrnp(OSHeapBlockAlloc(osProcessHeapld, SizeOf(*plnst), &plnst), \

s, Error);
plnst-»placeHolder = -lL;
ObjectWrite(self, ctx, &plnst);

vII

viii PEN POINT ARCHITECTURAL REFERENCE

Less significant parts of code listings are grayed out to de-emphasize them. You
needn't pay so much attention to these lines, although they are part of the listing.

new.object.uid
new.
new.cls.pMsg
new.cIs.ancestor

&new, Sf Error);
cIsTttAPPi
0;

cIsAPPi
SizeOf
SizeOf

"" true;
new. = false;
strcpy(new.~''')l·'''r

new. appMgr . '-An",,, .L-'..V.tH ..

ObjCaIIJmp(msgNew, cIsAppMgr, &neW, s, Error);

Placeholders

~''''''0H",,,,,, Reserved. If;

Anything you do not have to type in exactly as printed is generally formatted in
italics. This includes C variables, suggested filenames in dialogs, and pseudocode
in file listings.

Other Text

The documentation uses italics for emphasis. When a Part uses a significant term,
it is usually emphasized the first time. If you aren't familiar with the term, you can
look it up in the glossary in the PenPoint Application Writing Guide or the index of
the book.

DOS filenames such as \ \BOOT\PENPOINT\APP are in small capitals. PenPoint file
names can be upper and lower case, such as \My Disk\\Package Design Letter.

Book names such as PenPoint Application Writing Guide are in italics .

•

,.. Part 6 / Text 1 Part 10 / Connectivity 237

62 I Introduction 3 92 I Introduction 241

63 I Text Subsystem Concepts 7 93 I Concepts and Terminology 243

64 I Using Text Data Objects 11 94 I Using Services 255

65 I Using Text Views 23 95 I Serial 110 265

661 Using Text Insertion Pads 33 96 I Parallel 110 275

67 I Sample Code 35 97 I Data Modem Interface 279

68 I Advanced Information 37 98 I The Transport API 295

99 I In Box and Out Box 305
,.. Part 7 / File System 39 100 I The Address Book 317

69 I Introduction 43 101 I The Sendable Services 331

70 I File System Principles and Organization 49

71 I Accessing the File System 57 Part 1 1 / Resources 335

721 Using the File System 69 102 I Introduction 337

103 I Concepts and Terminology 341
Part 8 / SysteM Services 93 1041 Using dsResFile 347

73 I Introduction 95 105 I Defining Resources with the C Language 355

741 PenPoint Kernel Overview 97 106 I Compiling Resources 359

75 I C Run-Time Library 109 107 I System Preferences 361

761 Math Run-Time Library 115
Part 12 / Installation API 369

Part 9 / Utility Classes 119
108 I Introduction 373

77 I Introduction 123 109 I Installation Concepts 375

78 I The List Class 127 110 I PenPoint File Organization 381

79 I Class Stream 133 1111 Dynamic Link Libraries 399

80 I The Browser Class 137 112 I Installation Managers 405

81 I File Import and Export 147 113 I The Auxiliary Notebook Manager 421

82 I The Selection Manager 155 1141 The System Class 429

83 I Transfer Class 165

841 Help 179 ,.. Part 13 / Writing PenPolnt 433
Services

85 I The Busy Manager 193

86 I Search and Replace 195 115 I Introduction 435

87 I Undo 199 116 I Service Concepts 437

88 I Byte Buffer Objects 207 117 I Programming Services 449

89 I String Objects 211 118 I Distributing Your Service 473

90 I Table Class 213 119 I Test Service Examples 475

91 I The NotePaper Component 229 Index 507

Pari 6 /
Text

" Chapter 62 / Introduction 3 " Chapter 65 / Using Text Views 23

Overview 62.1 3 Text View Messages 65.1 23

Features 62.2 4 Creating a Text View 65.2 24

Developer's Quickstart 62.3 5 Getting the Viewed Object's UID 65.3 26

Organization of This Part 62.4 5 Embedding Objects in Views 65.4 26

" Chapter 63 / Text Subsystem
Interacting with the Input Subsystem 65.5 27

Obtaining the Text Inde~ from a Tap Position 65.5.1 27
Concepts 7 Processing an Input Xlist or Gesture 65.5.2 29

The Text Subsystem Classes 63.1 7 Scrolling a Text View 65.6 29

Text Data Objects 63.2 7 Inserting a Text View in a Scrolling Window 65.7 30
Organization of Text Data Objects 63.2.1 8 Getting the Current Selection 65.8 30
Attributes 63.2.2 8

Getting and Setting the Text Style 65.9 32
Paragraph Attributes 63.3 9

Checking Consistency of Text Views 65.10 32
Text Views 63.4 9

Text Insertion Pads 63.5 9 Chapter 66 / Using Text
Units of Measurement 63.6 10 Insertion Pads 33

Text Insertion Pad Messages 66.1 33
"W Chapter 64 / Using Text

Creating Text Insertion Pads 66.2 33 Data Obiects 11
Destroying Text Insertion Pads 66.3 33

Text Data Functions 64.1 11

Deleting Many Characters 64.1.1 11 "" Chapter 67 / Sample Code 35
Inserting a Character 64.1.2 12

Text Data Messages 64.2 12 " Chapter 68 / Advanced
Creating a New Text Data Object 64.3 13 Information 37

Getting and Setting Text Metrics 64.4 14 Counting the Changes 68.1 37

Reading Characters <in Text Data Objects 64.5 14 Atoms 68.2 37
Getting a Single Character 64.5.1 14 Predefined Atoms 68.2.1 38
Getting a Range of Characters 64.5.2 14

Text Length 64.6 14 List of Figures

Altering Text Data Objects 64.7 15 62-1 Text Class Hierarchies 4

Scanning Ranges of Characters 64.8 15 65-1 Text View X-Regions 28

Getting and Setting Attributes 64.9 16 65-2 Text View Y-Regions 28

Text Attribute Arguments 64.9.1 16
,,~ List of Tables

Getting Attributes 64.9.2 18

Modifying Attributes 64.9.3 19 63-1 Text Character Encoding 8

Embedding Objects 64.10 20 64-1 Text Data Functions 11

Observer Messages 64.11 21 64-2 dsText Messages 12

msg TextReplaced Observer Message 64.11.1 21 64-3 Character Attributes 17

msg TextAffected Observer Message 64.11.2 21 64-4 Character Font Masks 17

64-5 Paragraph Attributes 18

64-6 dsText Observer Messages 21

65-1 dsTextView Messages 23

65-2 msgNewDefaults for dsTextView 24

66-1 dsTextlP Messages 33

68-2 Predefined Atoms 38

Chapter 62 / Introduction

The Text subsystem presents text to the user for viewing and editing. It also
provides an API to clients to allow programmatic modification of the text and its
presentation attributes.

Overview
clsText implements the data object subclass of the Text subsystem. clsTextView
implements the viewing subclass of the Text subsystem; it is the user's view onto
the data managed by clsText. TXTDATA.H defines the messages used for text data
objects; TX1VIEWH defines the messages used for text view objects.

clsText is a descendent of clsObject. clsTextView is a subclass of cls View. Figure
62-1 shows the class hierarchy for clsText and clsTextView.

62.1

4 PEN POINT ARCHITECTURAL REFERENCE
Part 6 / Text

Fealures
The Text subsystem is implemented as a group of related classes. The Text
subsystem uses the PenPoint™ operating system class system. The classes allow:

• Your code to display both plain and fancy text to the user in one or more text
data objects.

• The user to interact with the text to modify both the characters and their
appearance.

• The user to transfer all or part of the text from one text data object to
another (possibly non-text) object, and vice versa.

• Your code to file text data objects.

• Your code to observe and direct the user's interactions with the text.

62.2

CHAPTER 62 I INTRODUCTION
Organization of This Part

5

• Embedded objects, which are used to implement insertion pads and
signature pads, and can include graphics, spread sheets and other applications
in documents.

There is a difference between displaying text through the graphics subsystem and
using the Text subsystem. You can use the graphics subsystem to display characters
on the screen, but users can't dynamically manipulate the text. Furthermore, the
text subsystem includes paragraph and document attributes that define things
such as margins and tabs.

Developer's Quickstart
If you want to display text on the screen, you can use the windows and graphics
subsystem to quickly display text in a window. If you want to make text available
for editing and be able to file text as separate objects, you need to use the Text
subsystem.

The simplest way to access the Text subsystem is to create a text view object by
sending msgNewDefaults and msgNew to clsTextView (thus specifying no
object to view). Like all views, the text view will create an empty text data object
automatically. When you insert the text view into a window, the empty text view
appears on screen. The user can now make an insertion gesture to bring up an
insertion pad.

If you want to open a view to an existing text data object, you specify the object
when you send msgNew to clsTextView. You can create a text data object
separately and map it to a view later.

Most of the time the user will modify the text attributes through an option sheet
for the application that uses text. You can programmatically change attributes
(both default attributes and local attributes).

Organization of This Part
This part consists of six chapters. This, the first chapter, presents a brief overview
of the Text subsystem.

Chapter 63, Text Subsystem Concepts, describes the organization and structure of
the Text subsystem and presents the terminology used in the Text subsystem.

Chapter 64, UsingText Data Objects, describes how to access the text subsystem.
It describes the messages defined for text data objects and how you use the
messages.

Chapter 65, Using Text Views, describes how to access text views. It describes the
messages defined for text view objects and how you use the messages.

Chapter 66, Using Text Insertion Pads, describes the messages used to handle text
insertion pads.

62.3

This section presents a quick
summary of the essential
things that application writers
will need to know about the Text
subsystem.

62.4

6 PEN POINT ARCHITECTURAL REFERENCE

Part 6 / Text

Chapter 67, Sample Code, lists the code that is used in the examples to demon­
strate features of the Text subsystem. These files are also available on disk in the
\PENPOINT\SDK\SAMPLE directory.

Chapter 68, Advanced Information, describes advanced features of the Text
subsystem. Although very powerful, these features are also rather complex.

Chapter 63 / Text Subsystem Concepts

This section describes the concepts related to the Text subsystem.

Topics covered in this chapter:

• The Text subsystem classes and objects.

• The types of attributes that text objects can have.

• Units of measurement used by the Text subsystem.

The Text Subsystem Classes
Messages for the Text subsystem are described by two separate files. TXTDATA.H

provides an interface to cl sT ext , which allows you to manipulate text data objects
(adding, modifying, formatting, and so on). TXTVIEWH provides an interface to
clsTextView, a subclass of clsView, which allows you to display text data objects so
that users can modify them.

Text Data Obiects
The fundamental component of the Text subsystem is the text data object. You
create a text data object by sending msgNewDefaults and msgNew to clsText.
There is no limit to the size of text data objects. .

A text data object has default attributes for characters, paragraphs, and the entire
document. Additionally, a text data object supports local attributes for characters
and paragraphs. Default attributes apply to an entire object; local attributes
apply to contiguous ranges of characters or paragraphs. A text data object has a
single set of default attributes, but it can have any number of local attributes. You
can use the clsT ext messages to change both the default attributes and the local
attributes.

In this description, a block is synonymous with a text data object. Your appli­
cation might choose to implement documents that have a larger scale than a
single text data object.

Text data objects are observable. Any object can add itself to a text data object's
observer list, so that the object will receive notification of changes in the text data
object. The changes include text affected and text replaced messages.

8 PEN POINT ARCHITECTURAL REFERENCE

Part 6 / Text

Organization of Text Data Obiects

A text data object is a stream of characters with no embedded formatting infor­
mation. The formatting information is managed internally by dsText, and is
available to advanced users.

The characters within a text data object are indexed with a value of type
TEXT_INDEX (which is a U32 value). The text index is zero based; the index 0

indicates the first character in the text data object.

You must always use TEXT_INDEX type variables' when indexing text.

The character encodings are similar to those used by the IBM-PC Code Page 850.
However, the GO text data objects use some controls that replace codes used by
Code Page 850. These codes and their meanings are defined in the file
TENCODE.H; the codes are listed in Table 63-1.

Symbol

teEmbeddedObject

teSpace

teTab

teNewLine

teNewPage

~@pr@5@flt5

An object is embedded at this location.

A space.

A tab.

A new line.

Anew page.

A new paragraph.

Table 63~1

Character

teN ewParagraph

teV nrecognized A character that was not recognized by the handwriting recognition system.

AHributes

As mentioned above, attributes exist for characters, paragraphs, and documents.
Default attributes are established when the text data object is created. You can
change the default attributes programmatically, or the user can use the option
sheet to change the attributes.

Your application can programmatically change local or default attributes (for
example, the type family or point size). However, most applications don't
intervene in formatting, they allow the user to change attributes by way of the
option sheet.

Character AHributes

Character attributes apply to any range of characters, regardless of paragraph
boundaries. The default character attributes apply to the entire text data object.

Characters have two types of attributes, display attributes and font attributes. The
display attributes include size, underlining, small caps, capital letters, and so on.
Font attributes include type face and weight.

CHAPTER 63 / TEXT SUBSYSTEM CONCEPTS 9

Text Insertion Pads

Defined but not used are:

• Display attributes (superscript and subscript) .

• Font attribute (aspect).

When you create a new text data object, clsText usually reads the current default
character attributes from the system resource file. However, an application can
override these defaults by redefining the resource in its own APP.RES file. If you
define your own character attribute resource, the resource ID must be
textResDefaultCharAttrs. These values are defined in TXTDATA.H.

Paragraph Attributes
Paragraph attributes include: alignment, leading, space before and after, margins,
and tabs. Each tab has its own position; alignment and leader characters are in the
design but are not implemented.

Text Views
You usually use text data objects because you want users to create, and modifY text
on screen. To display the text data objects, you use a text view, which is an
instance of clsTextView. clsTextView is a subclass of clsView, the view class.

While clsText provides facilities for storing the text's characters and attributes,
clsTextView provides a user interface that allows the user to view and modifY
those characters and attributes.

When you create a text view, it displays the initial portion of the data object (that
is, the characters beginning at index 0 and their associated attributes). The exact
formatting of the view depends both on the data object and on the view's style.
You set the view's style in the tv. style field of the TV_NEW structure (which you
send with the msgNew that creates the view). If there is more data than can be
completely displayed in the view, it is the client's responsibility to place the text
view within a scrolling window (clsScrollWin) so that it will have scroll bars.

You can use the TextCreate TextScrollWin function to create a text view and a
scrolling window, and then insert the text view into a scrolling window.

Because views file their own data, the text view will send filing messages to its data
object when it receives msgSave.

Text Insertion Pads
When you create a text view, clsTextView creates an insertion pad in the text view
by default. (You can turn off this behavior by clearing the tvFillWithIP flag in the
tv.flags field of TV_NEW.)

This insertion pad is an object of clsTextlP, the text insertion pad class. clsTextlP
inherits from clsIP. Most behavior of text insertion pads is identical to that of
other insertion pads. For a complete description of insertion pads, see Part 5:
Input and Handwriting Translation.

63.S

10 PEN POINT ARCHITECTURAL REFERENCE

Part 6 / Text

Units of Measurement
Many text data attributes can be expressed as dimensions (such as character size,
margin position, tab position, and so on).

In general, paragraph units (including tabs) and font sizes are expressed in twips.
Twips are described in Part 3: Windows and Graphics.

Internally, some attributes are converted from Twips to units that have a lower
resolution (and are stored that way). If you change one of these attributes and
then get the attribute again, you might notice some round off.

Chapter 64 / Using Text Data Obiects

This section describes the messages that create and modify text data objects.

Topics covered in this chapter include:

• Creating and destroying text data objects.

• Getting characters from text data objects.

• Scanning for characters in text data objects.

• Modifying text data objects.

• Setting character, paragraph, and block attributes in text data objects.

• Embedding and extracting objects in text data objects.

• The observer messages for text data objects.

Text Data Functions
The following functions are defined in TXTDATA.H. These functions implement
common actions that you might perform on text data. The functions are listed in
Table 64-1.

TextDeleteMany

TextlnsertOne

Deletes one or more bytes from a text data object.

Inserts a single byte in a text data object.

Deleting Many Characters

You use TextDeleteMany to delete a number of characters from a text data object.
The function prototype is:

STATUS EXPORTED TextDeleteMany(
const OBJECT dataObj,
const TEXT INDEX
const TEXT INDEX

pos,
length) ;

The function deletes length number of characters, starting at pos, in the text data
object dataObj. If there are any characters in dataObj beyond pos + length, they
are moved to pos.

This function uses an ObjectCall to msg TextModify to do its work.

12 PENPOINT ARCHITECTURAL REFERENCE
Part 6 I Text

Inserting a Character

You use TextlnsertOneO. to insert a single character into a text data object. The
function prototype is:

STATUS EXPORTED TextInsertOne(
const OBJECT dataObj,
const TEXT INDEX pos,
const CHAR toInsert);

The function inserts the character tolnsert at the location pos in the text data
object dataObj. Characters in the data object after pos have their indices
incremented by one.

If you insert a character between characters with different formatting (such as
between a plain text character and a bold text character), the character takes on
the attributes of the character to the right (that is, the character with the higher
TEXT_INDEX value).

This function uses an ObjectCallO to msgTextModify to do its work.

Text Data Messages
As described above, the messages for clsText are defined in TXTDATA.H. Most of
those messages are described here. In order to better organize the topics, some
messages defined by clsT ext are described later in Chapter 67, Advanced
Information.

Messtlge

msgNewDefaults

msgNew

msgT extGetMetrics

msgT extSetMetrics

msgTextChangeCount

msgTextGet

ittkes

P_TD_NEW

P_TD_NEW

P _ TD _METRICS

P_TD_METRICS

S32

TEXT_INDEX

Initializes the msgNew arguments.

Creates a new text data object.

Passes back the textData's metrics.

Sets a textData's metrics.

Passes back (and optionally sets) the
textData's changeCount.

Returns the character in a textData at the
specified position.

msgT extGetBuffer P_TEXT_BUFFER Passes back a contiguous range of characters
from a textData.

msgT extLength nothing

msgTextModify P_TEXT_BUFFER

msgTextSpan P_TEXT_SPAN

Returns the number of characters stored in
the textData.

Modifies the characters stored in the textData.

Determines the range corresponding to the
requested span.

continued

CHAPTER 64 / USING TEXT DATA OBJECTS 13

msgT extSpan Type

msgT extEmbedObject

cmsgTextExtractObject

msgT extGetAttrs

msgT extIni tAttrs

msgT extChangeAttrs

msgT extClearAttrs

msgT extPrintAttrs

P _TEXT _SPAN

P _TEXT_EMBED_OBJECT

OBJECT

P _TEXT_GET _ATTRS

P_TEXT_CHANGE_ATTRS

P_TEXT_CHANGE_ATTRS

ATOM

msgTextRead P _TEXT_READ

msgTextWrite P _TEXT_WRITE

msgT extEnumEmbeddedObjects P _ TEXT _ENUM_EMBED D ED

msgT extAffected

msgT extReplaced P _TEXT_REPLACED

Creating a New Text Data Object

Determines the span type of the specified range.

Embeds an object at a specified position.

Extracts the specified embedded object.

Gets the attributes of the specified type.

Initializes the attributes and mask before a
msgT extChangeAttrs.

Changes the attributes of the specified range.

Clears all attributes of the specified type to
the default values.

Prints the values of an attribute set and a mask
(DEBUG DLLs only).

Inserts Ascii, KIF, etc. at the specified location.

Outputs the specified span as one of Ascii, R1F, etc.

Enumerates the textData's embedded objects.

Notifies observers that a range of text has
been affected.

Notifies observers that a range of text has been
replaced via msgT extModify.

msgT extCounterChanged P _TEXT _COUNTER_CHANGED Notifies observers that textData's changeCount
has been modified.

Creating a New Text Data Obiect
To create a new text data object, send msgNewDefaults and msgNew to clsText.
These messages take a TO_NEW structure that contains:

metrics A set of metrics for the text object. The metrics include a flags value
that specifies whether the text object is read only (tdmReadOnly) and
whether operations on text can be undone (tdmCanUndo).

expectedSize The expected number of characters held by the text object.

expectedTagCount The expected number of tags. This field is reserved for
future extensions; just use the default value.

The TO_NEW structure returns the UID of the newly created text object.

If you create a text data object this way, you are responsible for making it visible to
the user. You can do this either by creating a window and displaying the text by
hand or, preferably, creating a text view and specifying the text data object to the
view. Like all views, clsTextView can create a text data object automatically. For
more information see Chapter 65, Using Text Views.

14 PEN POINT ARCHITECTURAL REFERENCE
Part 6 I Text

Ge"ing and SeBing Text Metrics
You specify metrics for a text data object when you create it. You can later get and
set the text data object's metrics with msg TextGetMetrics and
msgTextSetMetrics. Both messages take a pointer to a TD_METRICS structure,
which contains a flags field that indicates:

tdmReadOnly Whether the text object is read only.

tdmCanUndo Whether operations on text can be undone.

Reading Characters in Text Data Obiects 64$5

You can get a character or characters from a text data object by sending
msgTextGet or msgTextGetBuffer to the text data object.

GeHing a Single Character
To get a character from the text data object, send msgTextGet to the object,
specifying a text index. The message returns either the character at the specified
index or a status value. (Status values have the sign bit set.) If the sign bit is clear,
use a cast operator to convert the character from STATUS to CHAR. For example:

status = ObjectCall(textData, msgTextGet, (P_ARGS)10);
if (status < stsOK)
{

II Some kind of error

else
character = (CHAR) status;

If the text index is beyond the end of data, the message returns stsEndOfData.

GeHing a Range of Characters

To get a series of characters from a text data object, send msgTextGetBuffer to the
object. The message takes a pointer to a TEXT_BUFFER structure that contains:

first The index of the starting character.

length The number of characters to read.

bufLen The length of the buffer that will receive the characters.

buf The pointer to the buffer that receives the characters.

When msgTextGetBuffer returns, it passes back the number of characters read in
the bufUsed field. If the starting position was beyond the end of the text data
object, it returns stsEndOfData; otherwise it returns stsOK.

Text Length
You can request the length, in characters, of a particular text data object by
sending msgTextLength to the object. The message does not have any arguments,
and returns the length of the text data object.

64.5.2

64.6

CHAPTER 64 I USING TEXT DATA OBJECTS
Scanning Ranges of Characters

Altering Text Data Obiects
You can alter the contents of a text data object by sending msgTextModify to the
object. The message takes a TEXT_BUFFER structure that contains:

first The offset of the first character to replace.

length The number of characters to replace. If this value is 0,
msgTextModify inserts the characters in buf (rather than replacing any
characters) .

bufLen The length of the replacement characters.

buf A pointer to the buffer containing the replacement characters. If this
pointer is null, msgTextModify deletes the characters identified by first
and length.

When msgTextModify returns, the message passes back the number of characters
from buf that it used in bufUsed.

Scanning Ranges of Characters
The Text subsystem allows you to scan the characters in a text data object for
groups of characters. That is, you can search a text data object for characters that
belong to, or don't belong to, a certain class of characters.

You indicate the type of data you are searching for by an identifier, called an atom.
PenPoint predefines a number of atoms in TXTDATA.H; the two atoms used most
commonly in text are atomChar and atomPara. For further information, see
Chapter 68.

To search for a range of characters, send msgTextSpan to the object. The message
takes a TEXT_SPAN structure that contains:

first The starting character index.

length The length of the initial span.

type An atom that identifies the group to be matched. Usually the type is
atom Word or atomPara.

direction A direction indicator. If the direction indicator is tdForward, the
search range includes the starting character (first+length-l) through to
the last character in the text data object. If the direction indicator is
tdBackward, the search range includes the first character in the text data
object (index 0) to the starting character (first). To search the entire
string, you can OR the values.

needPreflX A BOOLEAN value that specifies whether the message should
return the prefix of the span.

needSufflX A BOOLEAN value that specifies whether the message should
return the suffix of the span.

When the message returns, the TEXT_SPAN structure contains:

first The index of the matched character.

length The number of characters that were matched.

64.7

15

16 PENPOINT ARCHITECTURAL REFERENCE

Part 6 I Text

prefrxLength A U16 that will receive the length of the prefix. This field is
updated only if needPrefix is true.

suffrxLength A U16 that will receive the length of the suffix. This field is
updated only if needSufflX is true.

Getting and SeNing Attributes
The messages that affect attributes (msg TextlnitAttrs, msg TextGetAttrs,
msgTextChangeAttrs, and msgTextClearAttrs) require similar arguments.
We will describe the messages after describing the arguments that they use.

Text AHribute Arguments

All text attribute messages include a tag argument that specifies the type of
attribute that is to change (character or paragraph). The tag argument uses an
atom to specifY the different types of attributes. The atoms that apply to text
attributes are atom Char, atomPara, atomParaTab, and atomEmbedded.

Most attribute messages require a first argument that indicates the position, or
beginning of the position affected by the message. If first contains the symbol
textDefaultAttrs, the message pertains to current defaults for that text data object.

Most attribute messages also require arguments that specifY new attributes and a
mask. The mask specifies the attributes to change.

The mask is most useful when changing attributes on a range of characters or
paragraphs. Any range of characters can contain many different formats. Without
the mask, it would be necessary to enumerate all of the existing formats within the
range, and carefully update each one with a separate call. With the mask, rather
than worry about what attributes are set already, you identifY the range of
characters you want to modifY and let clsText do the work. Similarly, the mask
allows modification of a subset of the default attributes without having to first
fetch the current values.

Character AHributes

When changing character attributes, applications use the tag atomChar. The
mask for character attributes is defined in TA_ CHAR_MASK and the attributes
are defined in TA_ CHAR_ATTRS. The symbols for the attributes and their corre­
sponding mask bits are almost identical, the difference is that the mask defines
additional symbols for the font (SYSDC_FONT_SPEC) structure.

Table 64-3 describes the symbols for the character attributes defined in
TA_CHAR_ATTRS.

CHAPTER 64 / USING TEXT DATA OBJECTS 17

Getting and Setting Attributes

Attribute

SIze

Ust:lge

Specifies the character size in Twips.

If true, characters are displayed in small capital letters.

If true, characters are displayed in all uppercase.

If true, characters have a line through them.

small Caps

upperCase

strikeout

underlines Specifies the underline style. The three possible styles are none (0), single underline 0),
or double underline (2).

font Specifies the font characteristics structure. The font characteristics are defined by
SYSDC_FONT _SPEC. These characteristics are described in Part 4: Windows and
Graphics and in SYSFONT.H.

As mentioned above, the symbols for the mask defined in TA_CHA~MASK are
similar to the symbols in TA_CHAR_ATTR, with the exception of the font
attributes, which are defined by SYSDC_FONT _SPEC. Table 64-4 describes the
mask symbols defined by TA_CHAR_MASK for the font attributes.

Mosk Mecming

id Enables use of font.id in the TA_ CHAR_ATTRS structure.

group

weight

aspect

italic

monospaced

encoding

Enables use of font.group in the TA_ CHAR_ATTRS structure.

Enables use of font.weight in the TA_CHAR_ATTRS structure.

Enables use of font. aspect in the TA_CHAR_ATTRS structure.

Enables use offont.italic in the TA_ CHAR_ATTRS structure.

Enables use of font.monospaced in the TA_ CHA~ATTRS structure.

Enables use of font.encoding in the TA_ CHA~ATTRS structure.

Paragraph AHributes

When changing paragraph attributes, set tag to atomPara. The mask for para­
graph attributes is defined in TA_PARA_MASK and the attributes are defined in
TA_PARA_ATTRS. The symbols for the attributes and their corresponding mask
bits are identical. Table 64-5 describes the symbols for the paragraph attributes
and masks defined in TA_P ARA_ATTRS and TA_PARA_MASK.

64.9.1.2

Masks

18 PEN POINT ARCHITECTURAL REFERENCE
Part 6 I Text

ribuh~~s
Attribwfe

alignment Specifies the alignment of the paragraph. The possible values are taParaLeft, taParaCenter,
or taParaRight to indicate left, center and right alignment respectively.

If true, text should be justified. If false, text is ragged right. justify

lineHeight Specifies the line height in Twips. This is usually the same as the character height.
The constant useMaxHeightOnLine indicates the the line height should be big enough
to accomodate the tallest character in the line.

If a line contains any character or embedded object larger than the specified lineHeight,
the larger value is used. Thus lineHeight is a minimum, not a maximum.

Specifies additional space between lines in Twips. interLineHeight

beforeS pacing Specifies the amount of space before the paragraph in Twips. This space is considered
to belong to the first line of the paragraph above the ink of the characters in the first
line.

afterSpacing Specifies the amount of space after the paragraph in Twips. The before and after spacing
are additive. This space is considered to belong to the last line of the paragraph below
the ink of the characters in the last line.

firstLineOffset Specifies the horizontal offset for the first line in Twips. This is a signed value; a negative
value will result in a hanging indent.

leftMargin

rightMargin

Specifies the position of the left margin, relative to the left edge of the view, in Twips.

The position of the right margin, relative to the right edge, in Twips.

~,". Paragraph Tabs

The tab stops for a paragraph are set independently of the other paragraph
attributes. The tag for tab stops is atomParaT abs; the mask is pN u11, and the
value is specified by a TA_MANY_TABS structure, which contains:

count The number of tab stops in the paragraph.

repeatAtEnd Whether the last explicit stop acts as a prototype for an
infinity of implicit stops.

tabs A fixed-length array ofTA_TAB_STOP descriptors. Only the first count
number of descriptors are valid. Each TA_ TAB_STOP descriptor contains:

x The position of the tab stop, relative to the left edge of the paragraph.

type The alignment for the tab. The only valid alignment is taTabLeft.

lead The leader characters for the tab. The only valid leader character is
space (taLeadSpace).

~pr GeHing AHributes

To get the character or paragraph attributes, send msgTextGetAttrs to the text
object. msgTextGetAttrs can retrieve either local or default attributes. The
message takes a pointer to a TEXT_GET_ATTRS structure, which specifies:

tag An atom that indicates the type of attribute to get.

first A text index to a location in the text data object. If you specify
textDefaultAttrs rather than a text index, the message returns the default

64.9.2

CHAPTER 64 / USING TEXT DATA OBJECTS
Getting and Setting Attributes

attributes for the type of data specified in tag. If you specify a text index,
the attributes are initialized to the tag attributes at that location (which
allows you to copy attributes from one location in text to another).

length Reserved for future use. Must be zero.

pValues The address of the buffer to receive the attributes. Because pValues
is of type P _UNKNOWN, you must use a cast to render the attributes in
their correct type (p _TA_CHAR_ATTRS for character attributes,
P _TA_PARA_ATTRS for paragraph attributes, P_TA_MANY_TABS for tabs).

When the message returns, pValues contains the specified attributes.

Modifying Attributes
When you change attributes, you can change either local or default attribute
sets. The first step in changing attributes is to initialize an attributes structure by
sending msgTextlnitAttrs to a text data object. After initializing the structure, you
can use it in the arguments to msgTextChangeAttrs.

To change all attributes to their defaults, you can send msgTextClearAttrs to the
text data object.

Initializing AHributes

To initialize an attributes structure and mask, send msgTextlnitAttrs to the text
data object. The message takes a pointer to a TEXT_CHANGE_ATTRS structure.
The interesting fields in the structure are:

tag An atom that indicates the type of attribute to initialize.

pNewMask The address of the buffer that will receive the initialized mask.

When the message returns, all bits in the mask are disabled (that is, the structure
won't affect any attributes if used in msgTextChangeAttrs).

If you want to avoid the time required to send another message, you can skip
sending msgTextlnitAttrs, but you must use memset to zero the mask. If you do
not zero the mask, unpredictable results can occur in msgTextChangeAttrs.

Changing AHributes

When you have initialized the attributes structure, you can send
msgTextChangeAttrs to the text data object.

msgTextChangeAttrs message takes a pointer to the initialized
TEXT_CHANGE_ATTRS structure, which contains:

tag An atom that indicates the type of attribute to change.

first A text index for a location in the text data object that specifies the
beginning of the range to change. If you specify textDefaultAttrs for
first, the message changes the default attributes.

length A text index that indicates the range of text over which the attribues
should be changed. If first is textDefaultAttrs, length is ignored.

64.9.3

64.9.3.2

10

20 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

pNewMask The address of the mask. The'mask's initialized state is all
attributes disabled. Therefore, you must enable at least one bit in the
mask before you send the change message.

pNewValues The address of the attributes buffer.

If you are changing paragraph or tab attributes for a range of paragraphs, the first
and length values identify the affected paragraphs to begin with the paragraph
containing first through to the paragraph containing first + length - 1.

~w Clearing AHributes

To change all attributes of a specific type to their defaults, send
msgTextClearAttrs to a text data object. The only argument for the message is an
atom that indicates the type of attributes to clear.

Embedding Obiecls
An embedded object is represented in a text data object by the character
teEmbeddedObject and associated attributes. However, you can't embed an object
by simply inserting teEmbeddedObject into the text data object. You must send
msgTextEmbedObject to the text data object. The message takes a pointer to a
TEXT_EMBED_OBJECT structure that contains:

first A text index that indicates where the object should be embedded.

toEmbed The UID of the object to embed.

dientFlags A set of client flags.

action A set of flags that specifies the type of embedding. The possible
values are: textEmbedInsert, textEmbedCopy, and textEmbedMove.
Most clients should only use textEmbedInsert, which specifies that a new
object is to be embedded.

Copy and move are used with the transfer protocol and can cause unpredictable
results if used incorrectly.

Again, to remove an embedded object, you can't simply delete the embedded
object character. To extract an object, send msgTextExtractObject to the text data
object. The only argument required by the message is the UID of the object to
extract. dsText observes embedded objects; if you free an embedded object,
dsText will clean up the embedded object character. To enumerate all the
embedded objects, use msgTextEnumEmbeddedObjects (see TXTDATA.H).

64.10

CHAPTER 64 / USING TEXT DATA OBJECTS 21
Observer Messages

Observer Messages 64.11

An observer of a text data object will receive the following four messages. The
most important fact to observers is that the text has changed.

Table 64-6
clsText Observer Messages

Des(ripti<m Message

msgTextReplaced A client replaced text in the observed object, using msgTextModify. Descendants
must pass this message to superclass.

msgT extAffected

msgT extMarkAllocated

msgT extFreed

A client changed attributes for the observed object.

Informs that a msg TextMarkAlloc has happened.

Informs that a msg TextMarkF ree has happened.

msgTextReplaced Observer Message

msgTextReplaced indicates that text in the observed object has been replaced. The
message takes a TEXT_REPLACED structure that consists of two elements: a
TEXT_SPAN_AFFECTED structure (span) and a TEXT_INDEX that indicates the
number of bytes that replaced the span (bytesTakenFromBuf).

The TEXT_SPAN~FFECTED structure contains:

span. object The object that was altered.

span. change Count The number of changes that the object has experienced
since the counter was last reset to zero, including this change.

span. first The first character that changed.

span.length The number of characters that changed.

msgTextAHected Observer Message

msgTextAffected indicates that attributes in the observed object have been
changed. The message takes a TEXT_AFFECTED structure that consists of two
elements: a TEXT_SPAN_AFFECTED structure (span) and a U16 value that indicates
whether the change affects the size of the characters in a view (remeasure).

The TEXT _SPAN_AFFECTED structure is described above in the msg TextModified
observer message.

remeasure is important to views. If it is true, it means that the change affected the
size of the characters in the view and that the view must be remeasured before it
can be redrawn.

64.11.2

Chapter 65 / Using Text Views

This section describes the messages that display text data objects. When displayed

in a text view, users can use the pen to modify the text data. Topics covered include:

• Creating and destroying text views.

• Embedding objects in views.

• Interacting with the input subsystem.

• Scrolling a text view.

• Getting the current selection.

Texl View Messages
clsT extView is a subclass of cis View, which inherits indirectly from clsEmbeddedWin.

Messages for clsTextView are defined in TXTVIEWH. The text view object messages are:

msgNew

msgNewDefaults

msgGWinXList

msgGWinGesture

msgXferGet

msgXfer List

msgXferStream Wri te

msgXferStreamConnect

msgXferStreamFreed

msgSelYield

msgSelDelete

msgTextViewAddIP

P_XLIST

P _ GWIN_ GESTURE

lots of things

OBJECT

STREAM

XFER_CONNECT

STREAM

BOOLEAN

U32

P _TV _EMBED_METRICS

Creates a new instance of clsTextView.

Initializes the NEW structure.

Defined in GWIN.H.

Defined in GWIN.H.

Sent by a Receiver to get "one-shot" data transfer
information.

Ask Sender for its list of data transfer types.

Asks the Sender to write more data to the stream.

Sent to the Sender to ask it to link the Sender's and
Receiver's pipe.

Sent to the Sender when the Receiver's side of the
stream has been freed.

theSelectionManager requires the release of selection.

The selection owner should delete the selection.

Adds an insertion pad to the textView.

24 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

msgTextViewEmbed P _TV _EMBED_METRICS

msgText ViewGetEmbedMetrics P _TV_EMBED _METRICS

msgText ViewResolveXY P _TV_RESOLVE

TextCreate TextScrollWin

msgN ewDefaults

msgT ext ViewScroll

msgT ext ViewGetStyle

msgT ext ViewSetSelection

msgT ext ViewS etS tyle

msgTextViewCheck

msgT ext ViewRepair

P _ TEXTIP _NEW

P_TV_SCROLL

P_TV_STYLE

P _TV_SELECT

P_TV_STYLE

P_UNKNOWN

pNull

Creating a Text View

Embeds an object in the textView. Makes associated
changes in text data.

Passes back the textView-specific metrics for an
embedded object.

Given an point in LWC space, passes back the
character at (or near) the point.

Utility function that creates a textView (with a data
object) placed inside a scroll window. (See swin.h.)

Initializes the NEW struct.

Repositions displayed text within the textView.

Passes back a textView's style.

Selects one or more characters displayed by the
. textView.

Sets a textView's style.

A textView performs a self-consistency check
(DEBUG DLLs only).

Forces a delayed paint operation to take place
immediately.

To create a new text view object, send msgNewDefaults and msgNew to
clsT extView. Both messages take a TV_NEW structure.

Because text views behave differently from many other views, msgN ewDefaults in
clsTextView changes many of the default values returned from clsView (its
ancestor). Table 65-2 lists the defaults provided by clsTextView.

msgNewDefaults
C!U$$ Wle!@ New Oefuu!t

clsWin flags.style wsSendLayout = false

clsWin flags. style wsCaptureLayout = false

clsWin flags. style wsGrowBottom = true

clsWin flags. s tyle wsSendFile = true

clsWin flags. style w:sSendGeometry = true

Table 6S~2

clsWin flags.style wsCaptureGeometry = true

clsWin flags.input inputMoveDown = true

clsWin flags.input inputMoveDelta= true

clsWin flags.input inputHoldTimeout = true

clsWin flags.input inputOutProx = true

clsWin flags.input input Tip = true

CHAPTER 65 I USING TEXT VIEWS 25

clsWin

clsWin

clsgWin

clsView

cls Text View

cls Text View

flags.input

flags.input

helpld

createDataObject

style. flags

flags

inputEnter = true

inputExit = true

tagT ext View

true

tvsWordWrap

tvFillWithIP

Creating a Text View

If view.CreateDataObject is true, clsTextView automatically creates a clsText data
object. To explicitly pass a data object, set view.dataObject to the desired data
object and set view.createDataObject to false.

The TV_NEW structure also contains:

flags A set of flags that specify properties of a new text view. The only flag
currently defined is fillWithIP, which specifies that the text view should
have a clsT extlP insertion pad added to the end of the text. fillWithIP is
the default; if you don't want an insertion pad, you must turn off this
flag. Subclasses of clsTextView can change this behavior by intercepting
msgTextAddIP.

dc A text data object to view. In PenPoint 1.0, you must leave dc set to its
default.

style Styles for the view. Styles are defined in TV_STYLE and include:

style. flags Indicate the behavior of the text view. These flags are de­
scribed in the next paragraph. The flags are saved in the text view's in­
stance data.

style. magnification A character size adjustment.

style.showSpecial Show special characters. The special characters that
are affected by this field are the tab, line break, paragraph break, and
page break characters. The possible values are ° to show none and 3 to
show all.

style.printer Reserved for future expansion. Leave this value set to its
default (null).

The TV_STYLE flags are:

tvsEmbedOnlyComponents Don't embed applications.

tvsEmbedOnlyIPs Only embed insertion pads.

tvsFormatForPrinter Format text for a printer.

tvsQuietWarning Don't display warning notes.

tvsQuietError Don't display error notes.

tvsQuiet Don't display either warning notes or error notes.

tvsReadOnlyChars Characters are read only.

tvsReadOnlyAttrs Attributes are read only.

26 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

tvsReadOnly Both characters and attributes are read only.

tvsWordWrap Wrap lines at word breaks.

Ge"ing .he Viewed Obiec"s UID
To get the object being viewed, send the message msgViewGetDataObject to
the view. You can read about using msgViewGetDataObject in Part 2: The
Application Framework. You can change the view's object to a new object by
sending msgViewSetDataObject to the view object.

Embedding Obiec.s in Views
There are two messages used to embed objects in a text view msgTextViewAddIP
and msgTextViewEmbed.

When the user makes a gesture to create an insertion pad, clsTextView sends
msgTextViewAddIP to itself. This allows its subclasses (such as the Writing Paper
application) to intercept the message and thereby learn that the user requested an
insertion pad.

You use msgTextViewEmbed to actually embed objects, such as insertion pads.
The message adds the embedded object character and associated attribute to the
text data object and inserts the object into the tree of views.

Both messages take a TV_EM BED_METRICS structure that contains:

pos A text data object index, that specifies where the object should be
embedded. The special value infTEXT _INDEX means at the end of the
document.

flags A flags word that specifies how the view should present the object.
The flags indicate that the embedded object:

tvEmbedReplace Will replace some text.

tvEmbedFloat Is floating.

tvEmbedOneChar Will insert a single character.

tvEmbedAddMargin Has a margin to leave space for gestures.

tvEmbedPreload Is preloaded with some text.

tvEmbedPara Will insert or replace a paragraph.

embedded The UID of the object to be embedded.

If you subclass clsTextViewand override msgTextViewAddIP, you must remember
that tvEmbedPreload directs clsTextView to preload the insertion pad with the text
under a circle gesture. However, if you intercept a msgT extViewAddIP that was caused
by a a circle-line gesture, you must ensure that tvEmbedPreload is dear. This ensures
that the insertion pad is not preloaded with the text under the gesture.

CHAPTER 65 / USING TEXT VIEWS
Interacting with the Input Subsystem

Also if you override the behavior of msgTextViewAddIP, you must free the object
specified in the embedded field before adding your own embedded object.

To determine the metrics of an embedded object, send msgTextViewGetEmbedMetrics
to the text view object. The message takes a TV _EMBED_METRICS structure. On input,
embedded must specify an embedded object; the message returns the index of the
object in text and the flags that pertain to the object.

Interacting with the Input Subsystem
The Text subsystem provides three messages that interact with the Input subsystem:
msgGWinGesture, msgTextViewResolveXY, and msgGWinRunXList.

Obtaining the Text Index from a Tap Position

msgTextViewResolveXY determines a character index (and a number of other
values) from the x and y coordinates for a pen event. The message takes a
TV_RESOLVE structure that specifies:

xy The x-y coordinates of the pen tap.

flags Flags that specify whether to select the next character beyond the tap
(tvrSelLPO) and whether to select relative to the midpoint of a character
(tvrBalance).

pos An index location to receive the position of the character directly under
xy. If no character is selected by the pen tap, pos receives the value
maxTEXT_INDEX.

lineStart An index location to receive the position of the first character on
the line that contains xy.

xRegion An S8 value to receive the x region of xy. See Figure 65-1.

yRegion An S8 value to receive the y region of xy. See Figure 65-2.

selects An index location to receive the position of the character closest to
xy, when the tap lies outside the text in the view. When the user taps
above or to the left of the text area, selects receives the first character in
the view; when the user taps below or to the left of the text area, selects
receives the last character in the view.

offset The offset to the previous or next character's ink. When using
tvrBalance, offset helps to determine which half of a character was
tapped.

If the message returns stsOK, the location was resolved. If the message returns
stsNoMatch, no text was found in the view to resolve the x and y position.

27

28 PENPOINT ARCHITECTURAL REFERENCE

Part 6 I Text

Figure 65-1 illustrates the xRegion of a block of text.

The View

lineStart

xRegion=-l

User Taps
on "B"

xRegion=O

Figure 65-2 illustrates the yRegion of a block of text.

lineStart

xRegion=l

yRegion=1

yRegion=O

yRegion=-1

Most views contain margins, where the user can tap without touching any text.
When msgTextViewResolveXY evaluates the position of a tap, it first resolves the
y (vertical) region. If the tap was above the text, yRegion contains a 1; if the tap
was in the text area, yRegion contains a 0; if the tap was below the text area,
yRegion contains a -1. If the tap was in the text area, the messages also evaluates
which line of text contains the tap and calculates the index for lineStart.

65 m 2

Y'."Regions

CHAPTER 65 I USING TEXT VIEWS
Scrolling a Text View

29

The message then uses that text line to evaluate the x (horizontal) region of the
tap. If the tap was to the left of the text line, xRegion contains a -1; if the tap was
within the text line, xRegion contains a 0; if the tap was to the right of the text
line, xRegion contains a 1.

Processing an Input Xlist or Gesture

To process an input xlist and act on the commands in the xlist, send msgGViewXList
to the text view. The only argument to the message is a pointer to an xlist. For further
information on xlists and the Input subsystem, see Part 5: Input and Handwriting
Translation.

To process just a gesture, send msgGWinGesture to the text view.

Scrolling a Text View
If your text view window doesn't display all the text in its text object, you might
want to scroll the text programmatically, either by one line, or to the top of the
page. To scroll text, send msgTextViewScroll to the text view object. The message
takes a TV_SCROLL structure that specifies:

pos The text index of the location in text to display.

flags A set of flags that specifies where the text at pos should be positioned
in the view. The flags are:

tsAlignAtTop Position text at the top of the view.

tsAlignAtBottom Position text at the bottom of the view.

tsAlignAtCenter Position the text at the center of the view.

tsAlignEdge Force the text to the edge of the view. Currently this hap­
pens whether or not you specify this flag.

tslfflnvisble Scroll only if the text is not currently visible.

textNoScrollNotify Do not notify the scroll bars to update after scroll­
ing. By default, clsTextView notifies the scroll bars that they should up­
date after msg TextViewScroll.

In the future, msgTextViewScroll might scroll so that it leaves some space between
pos and the edge of the view, thereby giving the user some context. If you want the
text to scroll to the edge specified by flags, OR tsAlignEdge with the position flag.
For example:

flags = tsAlignAtTop I tsAlignEdge

If you want the user to be able to scroll the text with the pen, you should insert
the text view in a scrolling window (see "Inserting a Text View in a Scrolling
Window" below).

By using t5AlignEdge now, you
can be sure that its behavior will
be consistent in future versions
of Pen Point.

30 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Inserting a Text View in a Scrolling Window 65&7

To enable the user to scroll a text view, you must insert the text view in a scrolling.
window. Because this set of actions is performed so many times, dsTextView
defines a function, TextCreate TextScrollWin, which creates a text view and inserts
it in a scrolling window.

The prototype for the function is:

STATUS TextCreateTextScrollWin(
P_TV_NEW pNew,
P_OBJECT scroIIWin);

The function takes a pointer to a new arguments structure (pNew) and a pointer
to an OBJECT (scrollWin). pNew must point to a TV_NEW structure or the new
arguments structure for a subclass of dsTextView. If pNew is null, the function
uses a TV_NEW structure by default.

The function uses the new argument structure to create a new text view and then
creates a scrolling window with the text view as its client window. The function
configures the scrolling window for text scrolling. The function determines
whether to format for printer or format for screen depending on the style flag in
the TV_NEW structure.

If the function completes successfully, it returns stsOK and passes back the UID
of the scrolling window in scrollWin.

The following code fragment illustrates the use of the function:

TV NEW tvn;
STATUS status;
OBJECT sw; II scrolling window

II Initialize the text view new structure.
status = ObjectCall(rnsgNewDefaults, clsTextView, &tvn);

II Modify initialized structure
tvn.flags = FlagClr (tvFiIIWithIP, tvn.flags II Turn off insertion pad flag
tvn.showSpecial = 3; II Show all special characters

II Create the text view and scroll window.
status = TextCreateTextScroIIWin(&tvn, &sw);
if (status stsOK)

GeHing the Current Selection
Like other views, dsTextView interacts with the selection owner. Using the Xfer
mechanism, you can query the text view for the span of the text contained in the
current selection.

For more information on the selection mechanism and the Application
Framework, see Part 2: PenPointApplication Framework. For more information on
the Xfer mechanism, see Part 9: Utility Classes.

CHAPTER 65 I USING TEXT VIEWS

Getting the Current Selection

The Xfer mechanism requires two steps: first your application must negotiate with
the selection owner for the protocols available for data transfer, then you must
send the message requesting the transfer using the best available protocol.

. Actually, we know that the text view supports the ASCII Metrics protocol (where
we pass a pointer to a metrics structure), so the negotiation is not necessary.

To get the current selection for a text view, you must:

• Make sure that your view owns the selection by sending msgSelOwner to
theSelectionManager.

• Declare an XFER_ASCII_METRICS structure and set the id field to
XferASCIIMetrics.

• Send msgXferGet to the text view.

When msgXferGet completes sucessfully, the first field of the XFER_ASCII_METRICS

structure contains the text index of the first character in the selection; the length field
contains the length of the selection, in characters. The level field indicates the units
that make up the selection. The possible units and their values are:

Value Unit

0 ignore

1 characters

2 words

3 sentences

4 paragraphs

The following example illustrates how the Writing Paper application gets the
current selection.

XFER ASCII METRICS xaMetrics;
OBJECT view;

/*
* If the view is null, this app can't be holding the selection.
*/
if (! view)

return(stsFailed);

/*
* Get the selection from theSelectionManager.
*/
StsJmp (ObjCallWarn (msgSelOwner, theSelectionManager, &sel) , s, \

ErrorExit) ;
if (sel == view) {

/*
* If this view is holding the selection, then get the selection
* metrics and return them to the client.
*/
xaMetrics.id = XferASCIIMetrics;
ObjCallRet(ObjCallWarn(msgXferGet, view, &xaMetrics), S)i

*pSelMetrics = xaMetrics;

31

32 PEN POINT ARCHITECTURAL REFERENCE

Part 6 I Text

Getting and Setting the Text Slyle
You can control several aspects about the the way that text views display their
contents. You can control whether the view responds to editing gestures, how the
text is formatted on screen, and whether to display special characters.

To get the style for a text view, send msgTextViewGetStyle to the text view. To set
the style, send msgT extViewSetStyle to the text view. Both messages take a
TV_STYLE structure that contains:

flags Flags that indicate the behavior of the text view. Flags include:

tvsEmbedOnlyComponents Don't embed applications.

tvsEmbedOnlyIPs Only embed insertion pads.

tvsFormatForPrinter Format text for a printer rather than the screen.

tvsReadOnlyChars Characters are read only.

tvsReadOnlyAttrs Attributes are read only.

tvsReadOnly Both characters and attributes are read only.

tvsWordWrap Wrap lines at word breaks.

magnification A magnification value for fonts. The magnification value

specifies the number of points to add to the fonts when they are
displayed on screen.

showSpecial A value that specifies whether the view shows special
characters, such as tab, paragraph, line break, and page break characters.

The special characters that are affected by this field are the line break and

paragraph break characters. The possible values are ° to show none and 3
to show all.

printer In PenPoint 1.0 this should be null.

Checking Consistency of Text Views
When debugging a text view application, you can check the consistency of a text
view by sending msgTextViewCheck to the text view object. This message per­
forms work only when you use the DEBUG version of the TEXT.DLL file (in
\PENPOINT\BOOT\DLL). msgTextViewCheck takes a 32-bit value that specifies

the type of consistency checks to make.

IfHighU16(pArgs) is 0, LowU16(pArgs) contains flags that indicate what type of
simple consistency checks should be made. Current.ly, the only check is made on
the line table when the LowU16(pArgs) is 0.

IfHighU16(pArgs) is not 0, pArgs is a pointer to a structure whose first 32 bits

specify more complicated consistency checks.

If the internal check does not detect a problem, the message returns stsOK.

If you do not use the DEBUG version of the TEXT.DLL, msgTextViewCheck does

not perform a consistency check and always returns stsO K.

65.10

Chapter 66 / Using Text Insertion Pads

This section describes the messages associated with text insertion pads. The
text insertion pads incorporate many gestures that are useful for adding text to
a text view.

Topics covered in this chapter:

• Creating and destroying text insertion pads.

Text Insertion Pad Messages
clsTextiP is a subclass of clsIP. Messages for clsTextiP are defined in TXTVIEWH.

Table 66-1 lists the text insertion pad messages.

msgN ewDefaults

msgNew

P_TEXTIP_NEW

P_TEXTIP_NEW

Initializes text insertion pad arguments.

Creates a new instance of cis TextlP.

msgT extlPGetMetrics

msgT extlPSetMetrics

P _ TEXTIP _METRICS

P _ TEXTIP _METRICS

Passes back a textlP's metrics.

Sets a textlP's metrics.

Creating Text Insertion Pads
Usually clsTextView creates a text insertion pad by default (provided that
tvFillWithIP is not clear). To create a text insertion pad, send msgNewDefaults
and msgNew to clsT extiP. Both messages take a TEXTIP _NEW structure that
contains a flags field. The flags field is reserved for future expansion; leave it at its
default value.

Mter creating the insertion pad, you can insert it in a text view by sending
msgTextViewAddIP to the text view, specifYing the UID of the text insertion pad
in the 1V _EMBED _METRICS structure.

Destroying Text Insertion Pads
To destroy a text insertion pad, send msgDestroy to the text insertion pad object.

66.2

Chapter 67 / Sample Cocle

The most trivial use of the Text subsystem is to simply create an object of
clsTextView and display it on theRootWindow. This can be achieved with the
following code fragment.

#include <txtview.h>
TV NEW new;
STATUS s;

s = ObjectCall(msgNewDefaults, clsTextView, &new);
new.win.bounds.size.h = ... ,

new.win.bounds.size.w = ... ;
new.win.bounds.origin.y = ... ;

new.win.bounds.origin.x = ... ;
s = ObjectCall(msgNew, clsTextView, &new);

if (s < stsOK) { ... }

II insert the'text view in the root window
new.win.parent = theRootWindow;
new.win.options = wsPosTop;
s = ObjectCall(msgWinlnsert, new.object.id, &new.win);

The resulting view is connected to an empty data object (automatically created by
the view because the view.dataObject field of the msgNew argument was not
filled in). Such a view is far from useless, because the user can now use pen
gestures to create an insertion pad inside the view and enter text through the
insertion pad.

The client can also pre-load the data object with text by making a call such as the
following before inserting the view into the window tree.

TEXT_BUFFER tBuf;

tBuf.first = 0;
tBuf . length = 0;
tBuf .buf = "Hello World";
tBuf.bufLen = strlen(tBuf.buf);
s = ObjectCall(msgTextModify, new.view.dataObject,&tBuf);

The view displays the text using the data object's default character, paragraph, and
document attributes. The user can change these attributes by selecting the desired
characters within the view and making a check mark vi' to bring up the view's
option sheet. Alternatively, client code can obtain these attributes by sending
msgTextGetAttrs to the text object, and then modify them with
msgTextChangeAttrs.

36 PEN POINT ARCHITECTURAL REFERENCE

Part 6 / Text

As an example, suppose that the client wanted to change the default font size to
20 points, and then to make the characters in "Hello" be in 12 points.

#inelude <txtdata.h>
#inelude <txtview.h>

#define MakeTwips (i) (i*20)

TEXT CHANGE ATTRS tea;
TA CHAR ATTRS charAttrs;
TA CHAR MASK charMask;

tea. tag = atomChar
tea. first = txtDefaultAttrs;
tea.pNewMask = &eharMask;
tea.pNewValues = &eharAttrs;
s = ObjeetCall(msgTextlnitAttrs, new.view.dataObjeet, &tea);

eharAttrs.size = MakeTwips(20); II points
eharMask.size = true;
s = ObjeetCall(msgTextChangeAttrs, new. view. dataObjeet , &tea);

tea. tag = atomChar;
tea. first = 0;
tea. length = 5;
eharMask.size = true;
eharAttr.size = MakeTwips(12); II points·
s = ObjeetCall(msgTextChangeAttrs,new.view.dataObjeet, &tea);

Chapter 68 / Advanced InforMation

This chapter covers topics that might be useful for sophisticated applications, but
which most clients will not need.

Topics covered in this chapter include:

• Counting changes

• Atoms.

Counting the Changes
The text class keeps a count of the number of times msgTextModify has changed
the text. You can get and set the change counter by sending msgTextChangeCount
to the text data object. The argument is an 532 value. If the value is maxS32, the
message increments the counter and returns the new value. If the argument value is
greater than zero, the value becomes the new change count. If the value is minS32,
the message returns the current/counter.

Atoms
The Text subsystem provides a database of unique identifiers through a globally valid,
compact, unique identifier, called atoms.

The strings stored in the database have the following properties:

• They are terminated by a zero byte.

• They have at least one character, other than the terminator.

• They do not contain characters in the ASCII ranges 1 through 31 and
127 through 159.

• Case is preserved when the strings are stored, but it is ignored when
searching for a string in the database.

The atom for a nil string is Nil (ATOM) .

68.2

38 PENPOINT ARCHITECTURAL REFERENCE
Part 6 / Text

Predefined Atoms

The following nine atoms are predefined:

atom Char

atomWord

atom WSDelimit

atomLine

atomSentence

atom Para

atomParaTabs

atomDoc

atomEmbedded

Any character

l~able 68$2

Predefined Atoms

A word, delimited by a space or the characters: "!"&O*+.,:;<=>?@[\]A'{I}--"

A span of characters delimited by white space.

A line, terminated by a paragraph, newline, or newpage mark.

A sentence, terminated by the characters: .?!

A paragraph, terminated by a paragraph mark.

The tab stops for a paragraph.

A document, which is the whole text data object.

An embedded object.

Part 7 /
File System

", Chapter 69 / Introduction 43 "'Chapter 72 / Using the File

Overview 69.1 43
System 69

Developer's Quick Start 69.2 44 Creating Directories and Files 72.1 69

Writing Objects and Data 69.2.1 44 Creating Handles 72.1.1 69

Reading Objects and Data 69.2.2 45 Checking Valid File and Directory Names 72.1.2 70

Opening and Closing Files 69.2.3 46 Creating a Directory Handle 72.1.3 71

Comparison with Other File Systems 69.3 46
Creating a File Handle 72.1.4 71

Mapping a File to Memory 72.1.5 73
Organization of This Part 69.4 47

Closing Files 72.2 74

'" Chapter 70 / File System Deleting Files and Directories 72.3 75

Principles and Organization 49 Forcing Deletion of a File or Directory 72.4 75

Volumes 70.1 49 Getting and Setting Attributes 72.5 76

Volume Concepts 70.1.1 49 Lists of Attributes 72.5.1 76

Volume Types 70.1.2 50 Zero Value Attributes 72.5.2 77

Nodes 70.2 52 File System Attributes 72.5.3 77

Directories and Directory Entries 70.3 54
Client-Defined Attributes 72.5.4 77

Attributes
Getting Attribute Values 72.5.5 78

70.4 54 Setting Attribute Values 72.5.6 79
Files 70.5 55 Getting the Length of Attribute Values 72.5.7 79
Locators 70.6 55 Node Attribute Flags 72.5.8 79

Creating and Using Directory Indexes 72.5.9 80
Chapter 71 / Accessing the Copying and Moving Nodes 72.6 80
File System 57

Traversing Nodes 72.7 81
File System Handles 71.1 57 The Traverse Call-Back Routine 72.7.1 82

Handles and Locators 71.1.1 58 The Traverse Quicksort Routine 72.7.2 82
Directory Handles 71.1.2 59 Order of Traversal 72.7.3 82
File Handles 71.1.3 61

Renaming Nodes 72.8 83
File System Messages 71.2 62

Determining the Existence of aNode 72.9 83
clsFileSystem Messages 71.2.1 62

clsDirHandle Messages 71.2.2 64
Reading and Writing Files 72.10 83

dsFileHandle Messages 71.2.3 64 File Position and Size 72.11 84

Using Handles with Temporary Files 71.3 65
Getting and Setting File Position 72.11.1 84

Getting and Setting File Size 72.11.2 85
Accessing the File System with stdio 71.4 65

Translating Between Handles and FILE Pointers 71.4.1 65
Flushing Buffers 72.12 85

Paths and stdio 71.4.2 66 Getting the Path of a Handle 72.13 85

Using stdio 71.4.3 66 Changing the Target Directory 72.14 86

Concurrency Considerations 71.5 66 Comparing Handles 72.15 86

Protecting Your File Data 71.5.1 66 Getting and Setting Handle Mode Flags 72.16 87
File Location Considerations 71.5.2 67 Reading Directory Entries 72.17 87
Volume Protection Considerations 71.5.3 67 Reading All Directory Entries 72.17.1 88

Sub classing File System Classes 71.6 67 Sorting Directory Entries 72.17.2 88

The PENPOINT.DIR File 71.7 68 Observing Changes 72.18 89

How the Notebook Uses the File System 71.8 68 Making a Node Native 72.19 89

Getting Volume Information 72.20 90

Setting or Changing a Volume Name 72.21 91

Ejecting Floppies 72.22 91

Volume Specific Messages 72.23 91

--- -~------- ... -----

List of Figures

70-1 Directory Structure on a Volume 53

70-2 Contents of a PENPOINT.DIR

Directory Entry 54

71-1 Using Directory Handles 60

71-2 File Handles and Byte Position 61

72-1 File Attribute Arguments 76

List of Tables

69-1 Common File System Operations 47

71-1 dsFileSystem Messages 63

71-2 Directory Handle Instance Messages 64

71-3 File Handle Instance Messages 64

72-1 Directory Mode Flags 71

72-2 File Mode Flags 72

72-3 File System Attributes 77

72-4 Node Attribute Flags 80

72-5 FS_SEEK Flags 84

72-6 Volume Metrics Information 90

Chapter 69 / Introduction

The PenPoint™ file system enables you to control and access all aspects of files and
file organization. This part describes the file system and how you use it.

Overview
The organization of the file system is similar to most hierarchical file systems. The
file system has a hierarchical structure of directories and files (similar to those of
MS-DOS and UNIX). Each directory or file is called a node.

The file system is divided into volumes. Each volume represents an installable
portion of the file system. PenPoint has a boot volume, which is always present,
and supports the dynamic connection and disconnection of additional volumes.

Each volume has a root directory, which is the starting point for the hierarchical
organization on that volume. The file system maintains a list of all currently
known volumes, connected and disconnected.

You can use file system handle objects to access nodes. There are two types of file
system handles: directory handles and file handles. To create a directory or file
handle, you send msgNew to either clsDirHandle or clsFileHandle.

To perform file system operations, you send messages to file or directory handles.
Messages sent to file handles affect the file directly. Messages sent to directory
handles usually include other information indicating the specific node that the
message affects. Much confusion can result if you don't remember that a handle is
not a node, but a means to access a node. You send messages to the handles; the
handles in turn indicate which node to modifY.

The file system allows you to:

• Create, open, close, and delete files.

• Read and write file data.

• Copy, rename, and move files and directories.

• Seek to a new position within a file or find out the current byte position
within a file.

• Modify file and directory attributes.

• Create user-defined attributes for files and directories.

You can also access nodes with the stdio run-time package. The stdio run-time
package provides a conventional C-Ianguage interface to the file system. stdio is
faster than the object-based file system when performing many small reads or
writes to a file. On the other hand, stdio calls are no faster at operations such as
opening files, and stdio can't provide all the features of the PenPoint file system.

44 PENPOINT ARCHITECTURAL REFERENCE
Part 7 I File System·

You use the file system to create data files for your applications, to read and write data
in those files, and to manipulate file and directory organization. You can also use the
file system to get information about volumes and to get and set nodes' attributes.
PenPoint itself uses the file system for storing objects and application data. The
organization of the Notebook, which is a specialized PenPoint application, is mapped
onto the file system. Each section in the Notebook is a directory in the file system.
Each page in a section is a directory within that directory. The In box and Out box
sections of the Notebook use the file system to store the contents of their queues.

Developer's Quick Start
As an application writer, you'll most commonly use the file system to:

• Save your instance data when you receive msgSave.

• Restore your instance data when you receive msgRestore.

• Open and close files that contain data from other operating systems.

Writing Obiects and Data
When the user closes your application (turns away from or deletes your
application), you'll receive msgSave. Upon receiving msgSave, you must:

• Tell your objects to save themselves by sending msgResPutObject to each
object. Part 11: Resources describes how to use msgResPutObject.

• Write your instance data to the resource file by sending msgStreamWrite to
the resource file handle passed to you in the pArgs for msgSave. You can use
msgStream Write more than once.

There are several approaches to writing your instance data. If you have fixed­
length data, it is a good idea to copy the data to a single struct and write that
struct to the file. However, if you have variable-length instance data, you'll need
to use one msgStream Write message to write the length of the data and another to
write the data itself. That way you will know how many bytes to specify in
msgStreamRead when you read the data back in.

If you do write several small pieces of data, you might consider using stdio functions
rather than msgStream Write. '~ccessing the Files System with stdio," in Chapter 72,
Using the File System, describes some of the criteria for determining when this is
appropriate and how to access stdio using file handles.

The following example shows a typical message handler that responds to msgSave:

MSGPROC ...
case Msg(msgSave):

return MyAppWrite(self, (P_OBJ_SAVE)pArgs, ctx, pInst);

METHOD MyAppWrite(
OBJECT
P OBJ SAVE
CONTEXT
P MY INSTANCE DATA - - -

class,
pObjSave,
ctx,
pInst)

69.2

CHAPTER 69 I INTRODUCTION 45

STATUS s;
STREAM READ WRITE srw;
MY_FILED_DATA filedData;
ObjectCaIIAncestor(msgSave, class, (P_ARGS) pObj Save , ctx);
/* Copy instance data to structure */
filedData.foo = pInst->foo;
filedData.bar = pInst->bar;
/* Fill in the stream read write structure */
srw.numBytes = SizeOf(MY_FILED_DATA);
srw.pBuf = &filedData;
/* call msgStreamWrite */
s = ObjectCall(msgStreamWrite, pObjSave->file, &srw);
return stsOK;

Reading Obiects and Data
When the user opens or reopens your application, you'll receive msgRestore.
Upon receiving msgSave, you must:

Developer's Quick Start

• Re-create your objects by sending msgResGetObject to the resource file
handle passed to you by msgRestore. Part 11: Resources describes how to use
msgResGetObject.

• Read your instance data by sending msgStreamRead to the resource file
handle.

Be sure to read the same number of bytes that you wrote when you received
msgSave.

The following example shows a typical message handler that responds to
msgRestore:

MSGPROC
case Msg(msgRestore) :

return MyAppRead(self, (P_OBJ_RESTORE)pArgs, ctx, pInst);

METHOD MyAppRead(
OBJECT
P OBJ RESTORE

class,
pObjRest,

CONTEXT ctx,
P MY INSTANCE DATA pInst)

STATUS s;
STREAM READ WRITE srw;
OF GET get;
MY_FILED_DATA filedData;
ObjectCaIIAncestor(msgRestore, class, (P_ARGS)pObjRest, ctx);
/* Read in the filed instance data */
srw.pBuf = &filedData;
srw.numBytes = SizeOf(MY_FILED_DATA);
s = ObjectCall(msgStreamRead, pObjRest->file, &srw);
pInst->foo = filedData.foo;
pInst->bar = filedData.bar;
return stsOK;

46 PENPOINT ARCHITECTURAL REFERENCE
Part 7 I File System

Opening and Closing Files
The other common reason for using the file system is for reading or writing files
that belong to other operating systems. For example, you might want to read a
database file created on an MS-DOS machine so that you could import the data
to your PenPoint application.

To open a file:

1 Declare an FS_NEW structure.

2 Fill in the defaults by sending msgNewDefaults to clsFileHandle.

3 Modify the FS_NEW structure to specify the volume, directory, and file that
you want to open.

4 Send msgNew to dsFileHandle.

msgNew returns a file handle on the open file. You can read and write data by
sending msgStreamRead and msgStreamWrite to the file handle.

To close the file, send msgFree to the file handle.

The following code excerpt shows how to open and dose a file:

STATUS Si

FS NEW fsNewi
FILE_HANDLE myFileHandlei

s = ObjectCall(msgNewDefaults, clsFileHandle, &fsNew)i
/*

*/

The following filled in by msgNewDefaults
fsNew.object.key = objWKNKeYi
fsNew.object.cap = objCapCalli
fsNew.object.uid = nUlli
fsNew.fs.locator.uid = theWorkingDiri
fsNew.fs.mode = fsFileNewDefaultModei
fsNew.fs.exist = fsExistDefaulti

fsNew.fs.locator.pPath = "MyDir\\MyFile"i
status = ObjectCall(msgNew, clsFileHandle, &fsNew)i
myFileHandle = fsNew.object.uidi

/* time to free the handle */
s = ObjectCall(msgFree, myFileHandle, (P_ARGS) objWKNKeY)i

Comparison with Other File Systems
The PenPoint file system is similar to most other file systems in the following ways:

• It has a hierarchical directory structure.

• You locate nodes in the file system hierarchy by using paths.

• Files and directories have attributes, which you can get and set.

• You access files through handles.

CHAPTER 69 I INTRODUCTION 47
Organization of This Part

The PenPoint file system is different from other file systems in these ways:

• File system handles are instances of file system classes; you can subclass the
file system classes to add special capabilities.

• Clients can define their own file and directory attributes. Many file systems
have file and directory attributes, but very few allow clients to add their own
attributes.

• In some operating systems (including UNIX), nodes can be subordinate to
more than one directory; in PenPoint n~des can have only one parent.

• The PenPoint file system is designed to smoothly handle events when
volumes are disconnected and reconnected.

Table 69-1 describes how PenPoint implements many common file operations.

Common
Ope rt1ti O!'l Fiie System Method

Get a list of installed volumes Send msgFSGetlnstalledVolumes to theFileSystem.

Table 69~1

Get information on a volume

Get a node's attributes

Change a node's attributes

Open a file, create if necessary

Open a file, return error if it

Send msgFSGetVolMetrics to a handle for a file or directory on that volume.

Send msgFSGetAttr to a file or directory handle.

doesn't exist

Read from a file

Wri te to a file

Move file pointer within a file

Copy a file or directory

Move a file or directory

Rename a file or directory

Change a directory handle's
target directo ry

Delete a file or directory

Close a file

Send msgFSSetAttr to a file or directory handle.

Send msgNew to clsFileHandle. (Create is the default.)

Send msgN ew to clsFileHandle specifying fsN oExistGenError in exist.

Send msgStreamRead to a file handle.

Send msgStream Write to a file handle.

Send msgFSSeek to a file handle.

Send msgFSCopy to a directory handle, specifying the path to the file and the location
for the new file.

Send msgFSMove to a directory handle, specifying the path to the file and the location
for the new file.

Send msgFSSetAttr to a directory handle, specifying a path to a file or directory node
and a new name for that node.

Send msgFSSetTarget to a directory handle.

Send msgFSDelete to a directory handle, specifying a path to the node to delete.

Send msgFSFree to the directory handle.

Organization of This Part 69.4

This part is organized into four chapters.

Chapter 69, Introduction, presents a brief overview of the file system.

Chapter 70, File System Principles and Organization, describes how the file
system is organized and presents the terminology used with the file system.

48 PENPOINT ARCHITECTURAL REFERENCE
Part 7 I File System

Chapter 71, Accessing the File System, describes how you access the file system. It
describes how the notebook and other applications use the file system. This chapter

also describes how to subclass file system classes and presents considerations for dealing
with remote file systems.

Chapter 72, Using the File System, describes in detail how you use the file system

to perform most file system operations.

Chapter 70 / File System Principles and
Organization

This chapter discusses general concepts about the file system organization and
defines file system terms. Topics covered in this chapter include:

• Volumes supported by the PenPoine
M

operating system, including local disk
volumes, remote volumes, memory-resident volumes, memory mapped files.

• File and directory nodes.

• Directories and directory entries.

• File and directory attributes.

• Files.

• Locators.

Volumes :70. ~

Directories and files are grouped together in a volume. When a volume is removed, .11

the files and directories on that volume are no longer accessible to the file system.

Volume Concepts 1'(). ~.1

The file system maintains a list of volume objects. You can get a copy of this list
by sending msgGetlnstalledVolumes to the well-known object theFileSystem.
When a new volume is connected to the PenPoint computer, the UID of the
volume's root directory handle is added to the list of volumes.

You can make yourself an observer of the volume list by sending msgAddObserver
to theFileSystem. When a volume is added, removed, or changes state, you will
receive notification.

Volume Metrics

Each volume has information associated with it. You can retrieve volume
information by sending msgFSGetVolMetrics to a volume object. Volume
information includes:

• The volume's ,type.

• The volume's name.

• The volume's root directory.

• The volume's serial number.

• The total number of bytes on the volume.

• The number of free bytes on the volume.

50 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

There are three types of volumes: local disk volumes, remote volumes, and
memory-resident volumes. These types are explained in detail below.

The possible characters in the volume name, depend on the volume type.

Duplicate Volume Names

The file system allows duplicate volume names. When you write application
programs, be aware that duplicate volume names might exist. This is especially
critical when you use the list of volumes to find a particular volume. You can use
msgFSGetVolMetrics and examine the volType, serialNum, and creationDate
values to distinguish between volumes with the same name.

Connecting and Disconnecting Volumes

PenPoint supports the dynamic connection and disconnection of volumes. For
example, when the user connects the PenPoint computer to a network, the net­
work volumes become available. The user installs and removes a volume as a single
unit; either the file system can access the entire volume or it cannot access it at all.

The user can physically disconnect a volume from the PenPoint computer. For
example, the user can disconnect the computer from a network, or remove a
floppy disk from its drive. Your application must be prepared to handle this
situation.

If any task has active references to nodes on the disconnected volume, the volume
remains in the volume list, but is no longer marked connected. Any attempts by
your application to read or modify data on a disconnected volume pops up a
dialog box asking the user to connect the volume. (You can suppress this behavior
when you first access the file; see "Creating a File Handle" in Chapter 72.)

If the user connects the volume and taps the OK button on the dialog, the file
system operation completes and the volume can be used normally once again.
Optionally, the user can tap the Cancel button, which causes the file system to
send the status message stsFSVolDisconnected to your application.

If no tasks have active references to nodes on the disconnected volume, that
volume is removed from the volume list, effectively removing all traces of the
volume from the PenPoint computer.

Volume Types

As mentioned above, the file system defines three types of volumes:

• Local disk volumes

• Remote volumes

• Memory-resident volumes.

Local disk volumes are volumes directly attached to the PenPoint computer.
Remote volumes are those that are connected through a network or channel
controller. Memory resident volumes reside in PenPoint computer RAM.

1ll. L 1.3

CHAPTER 70 / File System Principles and Organization 51
Volumes

Local Disk Volumes 70.1.2.1

Local disk volumes exist on hard or floppy disk drives internal to or attached to the
PenPoint computer. The user can connect and disconnect external disks at any time.

PenPoint has no native disk format. Rather, the file system makes use of a volume's
normal organization to store additional information. Currently PenPoint uses the
MS-DOS FAT disk format.

An MS-DOS volume name is a string containing between 1 and 11 characters.
The volume name cannot use the following characters:

/\;:=<>[]

The name can use spaces, but not tabs.

Here are some examples of MS-DOS volume names:

.A

• MYDISK

• RAM
• MYVOLUME

• BACKUP 3

• ACCNTS RCVL.

The MS-DOS disk format consists of files and directories. In MS-DOS, file names are
limited to 8 characters with a 3-character file extension, there are only a few file attri­
butes, and there is only one type offile (data). PenPoint uses MS-DOS format files and
directories whenever possible to store its own files and directories. However, when a file
or directory has one or more of these characteristics:

• A node name that uses any control characters, lowercase characters, or any of
these special characters: * ? / \ I . , ; : + = < > [] " (space).

• A name longer than eight characters, plus a three-character extension.

• A name that uses lower case characters.

• Has client-defined attributes.

PenPoint creates a special file, named PENPOINT.DIR, in that file or directory's
parent directory, which contains the additional information. The PENPOINT.DIR

file is described in further detail in Chapter 71, Accessing the File System.

In the future, PenPoint may support disk formats other than the MS-DOS FAT
format. The file system architecture makes it easy for GO or third parties to
develop support for other disk formats.

Remote Volumes

Remote volumes are available over a network or a communication channel. The
name for a remote volume is limited only by the network's volume naming
conventions.

70.1.2.2

52 PEN POINT ARCHITECTURAL REFERENCE
Part 7 / File System

A computer that responds to a remote file access protocol is called a remote file
server. A remote file server can be any sort of computer, ranging from a personal
computer to a dedicated file server with gigabytes of storage. The administrator of
the remote file server decides how much of the file system to make available to the
PenPoint computer and what sort of security to enforce.

As with local disk volumes, the file system provides features that might exceed the
remote file system's capabilities. PenPoint supports these extended features in a
fashion similar to that for local disk volumes.

To access a remote volume, file system operations must use the remote file access
protocol that is appropriate to the server. For example, a TOPS remote volume
requires a TOPS remote file access protocol. Like file system support for local disk
volumes, the file system architecture makes it easy for GO or third parties to
develop support for other protocols.

Memory-Resident Volumes

Memory-resident volumes reside in the PenPoint computer's RAM. The
memory-resident RAM volume is named RAM. This volume is only available
with the SDK version of Pen Point 1.0, and only when the ENVIRON.INI file
includes the Config=DebugRAM directive. There is only one RAM volume, and
PenPoint dynamically allocates RAM memory to the RAM volume as needed.

Nodes
Within each volume, the file system maintains a tree of file system nodes. There
are two types of nodes:

• Directory nodes

• File nodes.

Directories are catalogs of files and directories. Directories can contain both files
and other directories. As in MS-DOS, a volume is organized into a strictly
hierarchical structure of files and directories. Strictly hierarchical means that each
node appears in only one directory; there are no multiple references to nodes.

The top-most node in a volume's directory structure is the root directory. All
other nodes in the volume are descendants of the root directory. Because a volume
is self-contained, the directories within a given volume contain nodes only in that
volume.

Figure 70-1 illustrates an example of the file system on a volume.

CHAPTER 70 / File System Principles and Organization 53

file file file

file

The name of a node is a string containing 1 to 31 characters. Any character is
valid except backs lash (\) and null (character code 0), and a node name is not
valid if it begins or ends with a space character. Here are some examples of valid
node names:

• Red

• GO Corporation

• A Very, Very, Lengthy Node Name

• Patient X: Cardiac Status

• FILENAME.DOS.

Note that the characters can be uppercase or lowercase. The file system stores the
node names in upper and lower case, but ignores the case when it performs
compansons.

Your application can use the FSNameValid function to determine if a
user-supplied file name is a valid node name.

All of the node names within a single directory are unique; the file system will
reject any request to create a duplicate node name. You can use the
fsExistGenUnique or fsNoExistCreateUnique flags, discussed in Chapter, 72,

Nodes

54 PENPOINT ARCHITECTURAL REFERENCE

Part 7 I File System

Using the File System, to direct the file system to generate a unique node name
when it creates a new node .

. Directories and Directory Entries
A directory is a container for file system nodes; it contains a directory entry for
each node directly subordinate to it. Each directory entry contains the file-system
and client-defined attributes for the node it describes.

Figure 70-2 shows the contents of one of the directory entries shown in Figure 70-1.

PENPOINT.DIR file

File Entry

File Entry

Attributes

Contents of a PENPOINT@DIR

File Entry Detail (Not to Scale)

Each node in the file system has a set of attributes. The file system stores a node's
attributes in its parent directory (with the directory entry) or in the PENPOINT.DIR

file if the attributes are beyond the native file system's capabilities. There are two kinds
of attributes:

• Client-defined attributes

• File-system attributes.

Nodes can have any number of client-defined attributes. Client-defined
attributes can contain any sort of data. Clients can explicitly create and destroy
client-defined attributes.

70.3

CHAPTER 70 I File System Principles and Organization 55

Every node has a fIxed set of file system attributes. Clients can alter some of these
attributes, but cannot remove any of them. Among the fIle system attributes are:

• The node name.

• Flags (such as access flags).

• ModifIcation date.

• For fIles, the size of the fIle.

Files
A file is a repository for data. The maximum size of a PenPoint fIle is limited only
by the available disk or memory space.

When an application opens a data fIle, it must read information from the fIle into
main memory. An alternative to traditional stdio-style fIle access is to memory
map the fIle.

PenPoint support memory mapped files, which allow you to address data in a fIle
as if it were in main memory. PenPoint makes use of several memory mapped fIles,
including:

• Font fIles.

• Handwriting prototypes.

• The dictionary, which is used to proof handwriting translations.

• The indexes for the Table Server (clsTable).

Memory mapped fIles will work for all volume types.

Locators
To fInd a particular node, a client must be able to specifY the location of the node
in the fIle system. The location is specified by a locator, which consists of:

• A starting point.

• A path to a node.

The starting point is a handle on either a directory or file node.

A path is a null-terminated string that defInes a traversal of the file system
hierarchy. There are fIve types of paths:

• If the path is null, the location is the starting point node.

• If the path begins with" .\" or contains a node name, the traversal begins at
the starting point directory node.

• If the path begins with " .. \", the traversal begins at the parent directory of the
starting point. If the path contains " .. " the target of the path is the directory
that contains the starting point node.

Locators

56 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

• If the path begins with a backslash (\), the traversal begins at the root
directory of the starting point's volume.

• If the path begins with two backslashes (\ \), what follows is a volume name.
The traversal begins at the root directory of that volume. If the volume name
is not recognized as an installed volume, the file system prompts the user to
attach the correct volume.

Locators in the file system messages take on two forms. Explicit locators use the
FS_LOCATOR structure, which contains both a starting point and a path. Implicit
locators use the file or directory handle to which the message was sent as the
starting point a~d require only a path argument.

Because PenPoint is a multi-tasking operating system, it is possible for another
task to change (move, rename, or delete) nodes in the file system tree. A path that
successfully located a node at one time might not locate the same node at a later
time. Remember that a path is not a direct handle on the node, but more like a
road map to it; the location of a node might change.

Another way to locate a directory is to use a directory index. A directory index is
a unique identifier for a directory. You create a directory index the same way you
create an attribute. Directory indexes work only for nodes in the \PENPOINT

directory tree.

-I
I

Chapter 71 / Accessing the File System

This chapter discusses the mechanism by which you access the file system.

Topics covered in this chapter include:

• Directory and file handles.

• Volume root directory handle.

• Working directory handle.

• File access control.

• Summary of file system messages.

• Temporary files.

• Using stdio function calls.

• Concurrency considerations.

• Subclassing the file system classes.

• The PENPOINT.DIR file.

File System Handles
The programmatic interface to the file system provides:

• Access to information in files.

• Inspection and modification of node attributes.

• Alteration of the directory hierarchy.

This is all accomplished through file system handles. Handles provide a uniform
method of accessing file system nodes for every type of volume and shield your

application from the low-level file system implementation.

You access files and directories on a volume by sending messages to file system

handles.

There can only be one file system operation taking place at anyone time on a
given volume. Each operation on a volume is run to completion before another
operation is permitted to start. However, operations taking place on different
volumes can take place concurrently. For example, when copying a text file from
one volume to another, the file system can read text from one volume while it

writes text to another.

Handle objects guarantee consistent and atomic results if simultaneously used by
different tasks. If two tasks send messages to the same handle object at the same
time, or if two tasks use two handles to access the same file at the same time, the

58 PEN POINT ARCHITECTURAL REFERENCE
Part 7 / File System

PenPoint™ operating system will suspend one task until it finishes processing the
operation specified by the other task.

PenPoint defines two file system classes:

• dsDirHandle (directory handles), descended from dsObject.

• dsFileHandle (file handles), descended from dsStream.

Although these classes descend from different classes, they are designed to handle a
common set of dsFileSystem messages. dsFileSystem messages perform functions
such as creating new handles and nodes, destroying handles, and manipulating
node attributes. Generally, do not send messages directly to an instance of
dsFileSystem. Instead, you send messages to directory and file handles, both of
which are written to handle most dsFileSystem messages. A few messages are
specific to one of dsFileHandle or dsDirHandle.

To create a directory handle, you send msgNew to clsDirHandle; to create a file
handle, send msgNew to dsFileHandle. A directory handle has a target directory
node; a file handle points to a file node. In the arguments to msgNew, you specifY
the location of the node. You can also include a request in the message to create
the node if it does not exist already. If the message succeeds, the file system returns
a handle.

A process can create any number of handle objects (up to the memory limit of the
PenPoint computer). PenPoint may also allocate disk or communication system
buffers as a side effect of handle creation. Therefore, you should free handle
objects when they are no longer needed.

If a task terminates while it has active handles, the file system frees the handles.

You can create subclasses of the file system handles to impl~ment specialized file
access behavior. Creating descendant classes does not change the actual disk or
memory layout of files and directories; it only changes the manner in which
clients access them.

Handles and Locators

When you use handles, it is important to remember that the handle is not the
node itself.

The idea of a completely object-oriented programming environment encounters
some obstacles when it is applied to a file system. In a completely object-oriented
file system, each node would be an object. To perform any operation in such a file
system, you would send a message directly to the node. This approach has these
disadvantages: '

• Each time you send a message to an object, the file system has to locate that
object.

• As the number of files and directories grows, it becomes slow and unwieldy.

• Objects are usually short-lived. Files, being a means of permanent storage, are
much longer-lived than objects.

71. L 1

CHAPTER 71 / ACCESSING THE FILE SYSTEM 59

Rather than make each node an object, PenPoint uses handles, which add a level
of indirection between the object-based messages and the file system.

File System Handles

A handle is all you need in operations that manipulate information within files
and handles. For example, you need a handle on a file for msgStreamWrite (which
alters data in the file) and msgFSSeek (which alters the current file position in the
handle).

A file handle has a one-to-one relationship with its file. On the other hand,
directory handles have a target directory, which you can change to point to other
directories (with msgFSSetTarget). Some operations (msgFSGetAttr and
msgFSGetPath) allow you to indicate a file in two ways: either by sending the
message to a directory handle and specifying a path or by sending the message
directly to a file handle.

There are file operations that do not manipulate information within files. These
operations, such as move or copy, do not need to open nodes. In these operations
you use locators to indicate the source and destination nodes.

A locator makes directory handles even more flexible. A locator consists of a file
handle or a directory handle and a path. A file handle indicates the node; a
directory handle is merged with the path to give the location of a node. Thus, you
can use a locator to indicate a specific directory or file, without having a handle on
it. Also you can use one directory handle with any number of paths (one at a time)
to indicate many nodes.

Under the system of handles and locators, you can still write an application that
has a handle for each node (provided the memory will allow it). In a limited way,
this might be a desirable thing to do; however, handles do consume memory. If
you are concerned about memory limitations (and most PenPoint programmers
should be concerned), this is a high amount of overhead.

At the other extreme, you can use current directory or volume root handle and use
paths to specify all of the nodes. This scheme has to be bala~ced against the
memory that you use storing all of the path name strings, and the overhead of
always checking to be sure that the path still indicates a valid node.

Directory Handles

Directory handles support operations that query and manipulate nodes in the file
system.

A directory handle is associated with a directory node. You can use a directory
handle to designate the location of a directory, to create, copy, move, and delete
nodes, and to access the contents of directories.

Each directory handle has a target directory. The target directory is set when you
create the directory handle; you can change it at any time thereafter. This allows
you to use one directory handle to roam through the file system tree, and is similar
to the working directory concept in MS-DOS or UNIX.

60 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

You can also create a directory handle with the fsUnchangeable flag set, which
disallows changing the target directory. Figure 71-1 shows how directory handles
are used in the file system.

When you rename or move a node, the file system modifies any other directory
handles that reference it, so that they follow the node to its new location.

You can make yourself an observer of directory handles. If you observe a directory
handle, you receive notifications of any changes to nodes in the directory (but not
to the directory node itsel f).

Note that unlike files, there is no access control for directories, other than making
a directory node hidden.

Applications can pass directory handles between processes. However, the file
system destroys directory handles when the process that owns them is destroyed.

PenPoint has several well-known directory handles. Some are defined by the file
system, others are defined by the application framework.

• The boot volume's root directory handle.

• The "selected" volume, PenPoint's primary operating volume (this is usually,
but not always, the same as the boot volume).

• The current working directory handle.

• For the SDK version of Pen Point 1.0, the RAM volume's root directory
handle.

Volume Root Directory Handle

Each volume has a root directory. A root directory handle is an unchangeable
directory handle that points to a volume's root directory. There are two ways to get
a volume's root directory handle:

• Send msgFSGetlnstalledVolumes to theFileSystem to get a list of available
volumes, then send msgFSGetVolMetrics to each volume object in- the list,
until you find the needed volume.

7L 1.2.1

CHAPTER 71 I ACCESSING THE FILE SYSTEM 61

• Specify a locator that has a null UID and a path that contains only the
volume name.

A volume's root directory handle is stored in the FS_ VOL_METRICS structure.

The Working Directory Handle

theWorkingDir is a local, well-known directory handle object created by the file
system for each task at creation time. theWorkingDir is similar to the DOS or
UNIX concept of a default directory.

Both msgNewDefaults and the stdio run-time package uses theWorkingDir for
its default volume and directory.

The RAM Volume Handle

File System Handles

With the SDK version ofPenPoint 1.0, it is possible to configure the file system
so that there is a volume in RAM. When configured, the RAM volume has a root
directory and a handle on that directory.

File Handles

You use file handles to access data in a file node. Creating a file handle is
analogous to opening a file in MS-DOS or UNIX. Destroying a file handle is like
closing a file (however, destroying a handle should not be equated with deleting
the file to which the handle refers).

Each file handle has a current byte position, which represents the handle's
current position in the file. The current byte position points to the next byte to be
read or written. It is updated by read, write, and seek messages.

When the current byte position is at the end of a file, it is set one byte beyond the last
byte in the file. Writing past end-of-file automatically enlarges the file and sets the cur­
rent byte position to the new end-of-file. Reading past the end-of-file returns less data
than was requested and sets the current byte position to the end-of-file.

Figure 71-2 illustrates the use of file handles.

62 PEN POINT ARCHITECTURAL REFERENCE
Part 7 / File System

Applications can pass file handles between processes. However, file handles are
destroyed when the process that owns them is destroyed. When a client renames or
moves a file node, all handles that referenced that node continue to reference the node.

~ File Access Control

The file system supports limited access control for files. When you create a file
handle, you specify a set of access intentions (that is, what you plan to do with the
file) and a set of exclusivity requirements (the limits you want to place on other
applications that might attempt to access the same file). The access intentions are:

• Read-only access

• Read/write access.

Exclusivity requirements are:

• Exclusive access

• Deny other writers

• Public access.

Exclusivity requirements apply when the file system is asked to create a file handle
on the same file.

Note that access intentions and exclusivity requirements pertain to handles. Each
file has its own read-only attribute flag, which you set with msgFSSetAttr. When
a file is marked read-only, you must specify read-only access when you create a
handle for that file.

When you create a file handle, the file system compares your handle access intentions
and exclusivity requirements to the current state of the file (file's attributes and any
existing handles on the file). If your request is compatible with the file's state, the file
system allows you access to the file and returns you a file handle.

The access intentions, exclusivity requirements, and the file access flags are only
compared when you attempt to create a file handle. Once you have a file handle, a
change to the access intentions, exclusivity requirements, or file's access flags will
have no effect on you or anyone else currently accessing the file.

File System Messages
This section summarizes the file system ,messages for each of the three classes
(clsFileSystem, clsFileHandle, and clsDirHandle). theFileSystem, a global
well-known, is the only instance of clsFileSystem. Although neither clsFileHandle
nor clsDirHandle descend from clsFileSystem, they are designed to handle most
of the clsFileSystem messages. A few clsFileSystem messages apply only to
clsFileHandle or to clsDirHandle.

clsFileSystem Messages
clsFileSystem defines the operations that are common to directory handles and file
handles.

7L2

CHAPTER 71 / ACCESSING THE FILE SYSTEM 63

File System Messages

Table 71-1 lists the clsFileSystem messages. The class messages are those that you
send to clsDirHandle and clsFileHandle to create new instances of these classes;
the instance messages are those that you send to clsDirHandle and clsFileHandle
to operate on individual instances of these classes.

Message

msgNew

msgN ewDefaults

msgFSNull

msgF SGet VolMetrics

msgFSSetVolN arne

msgF SN odeExists

msgFSGetHandleMode

msgFSSetHandleMode

msgFSSame

msgFSGetPath

msgFSGetAttr

msgF SSetAttr

msgFSMove

msgFSCopy

msgFSMoveN otify

msgFSCopyN otify

msgFSDelete

msgFSFlush

msgFSMakeN ative

msgFSEjectMedia

msgFSForceDelete

msgFSV olSpecific

msgFSChanged

msgFSV olChanged

msgFSGetInstalledVolumes

void

P _FS_GET_ VOL_METRICS

P_STRING

P _FS_NODE_EXISTS

P_U16

P _FS_SET _HANDLE_MODE

OBJECT

P _FS_MOVE_COPY

P _FS_MOVE_COPY

P _FS_MOVE_COPY_NOTIFY

Creates a directory or file handle object on a new or
existing dir/file.

Initializes the FS_NEW structure to default values.

Does nothing.

Returns metrics of the volume.

Changes the name of a volume.

Tests the existence of a file or directory node.

Returns the "new" mode for the object's fs handle.

Changes the "new" mode for the object's fs handle.

Tests if another directory or file handle references
the same node.

Gets the path to (or name of) a directory or file
handle node.

Gets an attribute or attributes of a file or directory
node.

Sets the attribute or attributes of a file or directory
node.

Moves a node (and any children) to a new destination.

Copies a node (and any children) to a new destination.

Same as msgFSMove with notification routine
extensions.

P _FS_MOVE_COPY_NOTIFY Same as msgFSCopy with notification routine
extensions.

P_STRING

void

void

P_STRING

P _FS_ VOL_SPECIFIC

Deletes a node (and all of its children).

Flushes any buffers and attributes associated with the
file or directory.

Removes anything not supported by the native file
system.

Ejects media from an ejectable, removable volume.

Forcibly deletes a node (and all of its childen).

Sends a volume specific message via a dir or file handle.

P _FS_CHANGE_INFO Notifies observers of directory changes.

P _FS_ VOL_CHANGE_INFO Notifies observer of volume changes.

Returns list of all installed volumes.

64 PEN POINT ARCHITECTURAL REFERENCE

Part 7 / File System

clsDirHandle Messages

Directory handle objects support certain operations unique to directories. For
example, to open or create a file, you first need a directory handle, to which you
send a message. You can always use the root directory handle for a volume, or your
own the WorkingDir handle.

In addition to the instance messages listed in Table 71-1 above, a directory handle
responds to the instance messages listed in Table 71-2.

MCS5tJgs

msgFSSetTarget

msgFSReadDir

msgFSReadDir Reset

msgFSReadDirFull

msgFSf raverse

71~2

Directory Haildle Instance Messages

P _FS_READ_DIR

void

P _FS_READ_DIR_FULL

P_FS_TRAVERSE

i,,)cscf;pwi<*ft

Changes the target directory to directory specified
by locator.

Reads the next entry (its attributes) from a directory.

Resets the ReadDir position to the beginning.

Reads all the entries in a directory into a local buffer.

Traverse through the nodes of a tree starting with the
target of this msg.

Most of these messages take a path argument. The file system uses the directory
handle's target directory and the path to determine the location of the node to act
upon. You can reference the target directory alone by supplying an empty path.
Some messages do not take a path. These messages always operate on the target
directory node.

clsFileHandle Messages

In addition to the instance messages listed in Table 71-1 above, a file handle
responds to the instance messages listed in Table 71-3.

MCS5tJ9C

msgStreamRead

msgStream Write

msgStreamFlush

msgStreamSeek

msgFSSeek

msgFSGetSize

msgFSSetSize

msgFSMemoryMap

msgFSMemoryMapFree

msgFSMemoryMapSetSize

msgFSMemoryMapGetSize

FSNameValidO

P_STREAJJ_READ_WRITE

P _STREAJJ_READ _ WRITE

void

P _STREAJJ_SEEK

P_FS_SEEK

P _FS_FILE_SIZE

P _FS_SET _SIZE

PP_MEM

void

SIZEOF

P_SIZEOF

P_STRING

labl*-? 71~3
Handle Instance Messages

DC5criptk'H1

Reads data from the file.

Writes data to the file.

Flushes any buffers associated with the file.

Seeks to new position within the file.

Seeks to new position within the file.

Gets the size of the file.

Sets the size of the file.

Associates the file with a directly accessible memory
pointer.

Frees the memory map pointer currently associated
with the file.

Sets the size of the file's memory map.

Gets the size of the file's memory map.

Function to check a file or directory name for
validity.

CHAPTER 71 / ACCESSING THE FILE SYSTEM 65
Accessing the File System with stdio

Using Handles with Temporary Files
Sometimes you only need a file for a short time during the life of a task. You
might need a file that behaves like an object, which you bring into existence, use
it, and when you don't need it, you free it. To create a temporary file, specify the
fsTempFile flag in your call to msgNew.

When you specify fsTempFile for a non-existent file (and the exist flags specify
fsNoExistCreate), the file system creates the handle and the file at the same time.
When you free the handle, the file system deletes the file.

If you specify fsT empFile for a file that exists already (and the exist flags specify
fsExistGenUnique), the file system deletes the file when you free the handle.

If you don't know whether you will want to keep the file or not when you create
it, do not use fsTempFile. If you decide you want to delete the file, you can always
use msgFSSetHandleMode to make the handle an fsTempFile handle, or use
msgFSDelete to delete the file before you free the handle.

Accessing the File System with stdio
Your applications will usually open and close files and do most directory manage­
ment with file system handles. However, to facilitate porting an existing code base,
PenPoint supports the use of stdio calls to perform file handle. stdio calls are not
class-based, and therefore can't be subclassed.

Because stdio calls are buffered, consecutive, small reads and writes are much
faster than using msgStreamRead or msgStreamWrite. However, if the block of
information is equal to or larger than the stdio buffer size (usually 512 bytes), the
speed is roughly equal to that of the class-based operations. You can change the
buffer size with the setvbufO system service.

You must include the PenPoint SDK header files STREAM.H to use the stdio
functions (this is in addition to the usual STDIO.H). You can't use stdio operations
to change the WorkingDir.

Translating Between Handles and FILE Pointers

If you open a file by creating a handle, but want to use stdio calls to perform reads
and writes, you will need to translate the file handle into a file pointer. To do this,
use the StdioStreamBindO system service, supplying the handle. The routine
returns a file pointer.

This following code excerpt illustrates the conversion:

FS_NEW fsNew;
FILE *fp;
s = ObjectCall(msgNewDefaults, clsFileHandle, &fsNew);
s = ObjectCall(msgNew, clsFileHandle, &fsNew);
if (s < stsOK) ...
/* Build a FILE structure based on the handle. */
fp = StdioStreamBind(fsNew.object.uid);

11.3

66 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

You might also need to translate a file pointer into a handle. This operation is a
little easier, because the handle is stored in the uid field of the FILE struct. This
following code excerpt illustrates how to translate a file pointer into a file handle.

#include <stdio>
#include <stream.h>

OBJECT newHandlei
FILE *fPi
fp = fopen (nMyFile n, nrn) i

if (fp == NULL) ...
newHandle = StdioStreamToObject(fp);

Paths and stdio
When you use stdio functions that require a path to a file (such as fopenO), you
specify the path to the file as you would for any file system message. The stdio
functions use your task's current directory handle, theWorkingDir, for the volume
and directory defaults.

Thus, if the path begins with a volume name, indicated by two backslashes (\ \),
the function uses the path to locate the file. If the path begins with a backs lash
(\), the function uses the root directory of the volume identified by
the WorkingDir. If the path doesn't begin with a backslash, the function starts its
traversal at the WorkingDir.

Using stdio
You can close files using stdio. However, don't open files by creating a handle,
then close them with stdio. Because stdio doesn't know about the handle object,
this will result in unreclaimed resources.

If you open a file with stdio, close it with stdio. If you create a handle on a file,
destroy the handle.

Concurrency Considerations
PenPoint is a multitasking operating system. While your application is performing
some action, it might yield the processor to another task. The other task might
attempt to alter (or even delete) the file you are working on. This means that you
have to program more defensively than you would for an ordinary single-tasking
operating system. While you program, assume that another task might attempt to
access your files or change the file's location.

Protecting Your File Data
While you are not accessing a file, you can use msgSetAttr to make the file
read-only.

While you have a handle on a file, the file system will not allow anyone to delete
the file, unless they use msgFSForceDelete.

7'1.4.2

11.4.3

11.5

CHAPTER 71 I ACCESSING THE FILE SYSTEM 67
Subclassing File System Classes

When you create a file handle with msgNew, you can specify an exclusion mode
so that you can limit access to the file while your handle is attached to it.

File Location Considerations 11.5.2

Be aware that another task might change your file's location as well as its contents.
All tasks can change (move, rename, or delete) nodes in the file system tree. A
path that successfully located a node at one time might not locate the same node
later. Remember that a path is not a direct handle on the node, but more like a
road map to the node.

You can programmatically search for files with the message msgFSTraverse. Note
also that you can use directory indexes to find directories, no matter what their
path is.

A handle, on the other hand, will follow its node wherever the node is moved. If a
task has a handle on a node, the node can't be deleted by any other task (unless it
uses msgFSForceDelete).

Volume Protection Considerations

Remember also that other computers might have access to volumes you are using.
Another user can delete a target node by modifying a remote or local disk volume
outside of the PenPoint computer's control.

When a handle's target node is deleted or destroyed, the file system marks the
handle invalid. If you use an invalid handle, the file system returns
stsFSHandlelnvalid.

The only things you can do with an invalid directory handle are to free it with
msgFree or change its target directory to a valid directory with msgFSSetTarget.

The only valid thing you can do with an invalid file handle is to free it with
msgFree.

Subelassing File System Classes
In coding your application, you might find that you perform a particular set of file
operations many times or you need to supplement the file system messages with
your own. At this point you might consider subclassing dsFileHandle.

A good example of a subclass of dsFileHandle is dsResFile, the resource file class.
dsResFile defines a number of new messages that, when sent by the user or the class
manager, handle all the details of tracking all resources in the resource file. dsResFile
maintains tables that index resources within the file. Another example is dsAppDir,
which support the application directories used by the PenPoint Application
Framework.

Most of the details about creating a subclass are described in the Part 1,' The Class
Manager. In short, you must define the class and make it known to the class manager.

Directory indexes work only for
nodes under the \PENPOINT

directory tree.

71.5.3

71.6

68 PEN POINT ARCHITECTURAL REFERENCE

Part 7 I File System

'he PENPOINT.DIR File
As mentioned before, the PenPoint file system attempts to use a volume's native
file system whenever possible. When a file or directory has additional information
that the native file system cannot contain, the PenPoint file system creates a
PENPOINT.DIR entry for that information. The file system still relies on. the native
file format to carry most of the information. PENPOINT.DIR contains only the
information that the native file system cannot support.

On the standard MS-DOS FAT file system, the following characteristics will cause
the file system to create a PENPOINT.DIR entry:

• A node name that uses any control characters, lowercase characters, or any of
these special characters: * ? / \ I . , ; : + = < > [] " (space).

• A name longer than eight characters, plus a three-character extension.

• A name that uses lower case characters.

• A node that has client-defined attributes or other file attrbutes not 'supported
by the MS-DOS file system.

The structure of the PENPOINT.DIR file is quite simple. It consists of a series of
variable-length directory entries that contain:

• Entry information, including whether the file is in use, the total size of the
entry, the number of user-defined attributes, and offsets within the directory
entry.

• The node flags (both PenPoint-specific flags and those duplicated from the
native file system).

• The date the node was created.

• The PenPoint file name.

• The native file system file name.

• The user attributes (if any).

For further information on the PENPOINT.DIR file, see the file VOLGODIR.H.

1L1

How the Notebook Uses the File System 71.8

The organization of sections and pages in the Notebook is a direct map of the file
system. Each section in the Notebook is a directory in the file system; each page in
the Notebook is a directory within that directory. The names of the sections are
the actual names of the directories that contain the page nodes.

Chapter 72 / Using the File System

This chapter describes how to use the file system to perform most file system
operations. The section is organized in a rough "life cycle" order, that is, we
present the operations in an order that approximates how you will want to use the
file system to create, modifY, and delete a file.

Most of the structures and typedefs described in this chapter are defined in FS.H.

Topics covered in this chapter include:

• Creating a handle and creating a new node.

• Creating a handle for an existing node.

• Deleting a node.

• Freeing a handle.

• Freeing a handle and deleting a node.

• Getting and setting file and directory attributes.

Creating Directories and Files
Before you can create or access a node, you need to create a handle object that you
use to access the node. You create the handle by sending msgNewDefaults and
msgNew to clsDirHandle or clsFileHandle. In the call to msgNew, you direct the
file system to create the node (file or directory) if it doesn't exist already. This is the
first step in a file's life cycle.

Creating a file handle is equivalent to opening a file in other file systems. As with
most other file systems, you can specify certain open actions, such as what to do if
the file or directory does or does not exist.

Creating a directory handle has no equivalent operation in other file systems.

Creating Handles

To create a handle, send msgNewDefaults and msgNew to clsDirHandle or
clsFileHandle. Both messages take a FS_NEW structure that contains:

object.key A key value. If you specify this, you (and any other users of the
handle) must provide an equivalent key value in order to destroy the
handle. (Locks are further explained in Part 1: Class Manager). If you
don't want to use the lock, specify objWKNKey.

fs.locator A LOCATOR structure that indicates a directory handle and a path
to the node. If you do not specify the directory handle, the default is
theWorkingDir; if you do not specify a path, the default is nil.

12.1

70 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

volType The type of volume. The file system uses this argument when
locator.path contains afull path. If this argument is anything other than
fsAnyVolType, it is used for "filtering" if a volume is not found. The
available volume types are:

fsAnyVolType Any volume type.

fsVolTypeMemory A RAM volume (available only on the SDK version
ofPenPoint).

fsVolTypeDisk A local disk volume.

fsVolTypeRemote A remote (network) disk volume.

fs.dirlndex An optional directory index. The directory index is for directory
handles only. If you use a directory index, the locator must indicate the
volume to use.

fs.mode Flags that indicate handle characteristics. There are different
options for directory and file handles.

fs.exist What to do if the node does or doesn't exist.

Use msgNewDefaults to initialize the fields to their default values, then modify
any of the fields.

Use the constants defined in FS_EXIST to specify the action to take if the node
does or does not exist.

Two of the existence flags fsExistGenUnique and fsNoExistCreateUnique work
slightly differently from each other. Ostensibly, fsExistGenUnique takes effect if
the requested node exists already; whereas fsNoExistCreateUnique takes effect
when the requested node does not exist.

At a more detailed level, fsExistGenUnique will only generate a new unique name
if that name exists already. For example, if a node named BLUE exists already, fsN ew
will create a new node named BLUE 1. fsNoExistCreateUnique uses the input node
name to create a unique name, whether or not the file exists already. The Notebook
uses fsNoExistCreateUnique to create unique page numbers for pages.

Checking Valid File and Directory Names
If you get a file or directory name from the user, you probably will want to check
the validity of the name before creating a file or directory handle. You can use the
file system function FSName ValidO to test whether a name is valid. The prototype
for FSName ValidO is:

STATUS EXPORTED FSNameValid
P STRING pName

) ;

The pN arne argument is a string pointer to the file or directory name to be
validated.

CHAPTER 72 I USING THE FILE SYSTEM 71

Creating Directories and Files

If the name is valid, the function returns stsO K; if the name is not valid, the
function returns stsFailed.

Creating a Directory Handle

The next code fragment shows how to create a directory handle and a directory.
First the program declares an FS_NEW structure, and uses msgN ewDefaults to set
the default values. The program then sets the values that it needs to specify and
sends msgNew to dsDirHandle.

FS NEW fsNew;

status = ObjectCall(msgNewDefaults, clsDirHandle, &fsNew);
/* The following filled in by msgNewDefaults

fsNew.object.key = objWKNKey;
fsNew.object.cap = objCapCall;
fsNew.fs.mode = fsDirNewDefaultMode;
fsNew.fs.exist = fsExistDefault;
fsNew.fs.locator.uid = theWorkingDir;

*/
fsNew.fs.locator.pPath = "MyDir";
status = ObjectCall (msgNew, clsDirHandle, &fsNew);
if (status < stsOK) {

Debugf ("Error creating dir = %lx", status);

When the file system creates the directory handle, it sends back the ,DID for the
handle in object.uid of the FS_NEW structure. When you need to send other
messages to the handle (such as msgFSGetAttr or msgFree), you can use this DID.

Use the constants defined in the FS_DIR_NEW _MODE typedef to specify the mode
flags for directories. The mode flags indicate the directory characteristics. Table
72-1 describes the mode flags for directories.

Meonlng ;f Set

1.3

F!og

fsTempDir

fs Unchangeable

fs UseDirIndex

The file system should delete the directory when the handle is destroyed.

Disallow changing the target directory.

fsSystemDir

Find the directory using the directory index specified in the dirIndex field. Use the
locator's UID and path to determine which volume to use.

Directory handle is owned by the system (ring 0).

You can use the constant fsDirNewDefaultMode, which is the same as specifying
a permanent and changeable directory (all flags clear).

To get or set the directory mode flags, use msgFSGetHandleMode and
msgFSSetHandleMode.

Creating a File Handle

The next code fragment shows how to create a file handle and a new file. First the
program declares an FS_NEW structure and initializes it with msgNewDefaults.

72 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

The program then specifies the value that it needs to change and sends msgNew
to clsFileHandle.

STATUS s;
FS NEW fsNewi
FILE_HANDLE myFileHandlei

s = ObjectCall(msgNewDefaults, clsFileHandle, &fsNew);
/*

*/

The following filled in by msgNewDefaults
fsNew.object.key = objWKNKey;
fsNew.object.cap = objCapCalli
fsNew.object.uid = null;
fsNew.fs.locator.uid = theWorkingDiri
fsNew.fs.mode = fsFileNewDefaultModei
fsNew.fs.exist = fsExistDefaulti

fsNew.fs.locator.pPath = "MyDir\\MyFile";
status = ObjectCall(msgNew, clsFileHandle, &fsNew);
myFileHandle = fsNew.object.uidi

Again, when the file system creates the file handle, it sends back the UID for the
handle in object.uid of the FS_NEW structure. In this example, the program saves
the handle in the variable myFileHandle. Now when the program needs to send
other messages to the handle (such as msgStreamRead or msgFree), it can use
myFileHandle.

Use the constants defined in FS_FILE_NEW _MODE to specify the mode flags for
files. The mode flags. indicate how the file system is to open the file. The mode
includes your access intentions, your exclusivity requirements, and whether
memory mapped regions should be in shared memory. Access intentions describe
how you intend to access the file (reading only, or writing and reading).
Exclusivity requirements describe what you will let other clients do to the file
while you have a handle on it (allow other readers and writers, allow readers only,
or deny access to all). If a memory mapped file region is shared, more than one
client can access the memory mapped file.

Table 72-2 describes the mode flags for files.

Fki%?

fsTempFile

fsReadOnly

fsSystemFile

fsSharedMemoryMap

fsDisableP rompts

fsNoExclusivity

fsDenyW riters

fsExclusiveOnly

Mecming If Set

Delete the file when the handle is destroyed.

Open the file with read-only access.

Directory handle is owned by the sy~tem (ring 0).

Shared memory used for memory mapped files.

Do not prompt the user if the volume containing the file is disconnected.
Always return stsFSV olDisconnected.

Me<Jning if Set

No exclusive access.

Deny access to readers.

Handle owner has exclusive access to the file.

CHAPTER 72 I USING THE FILE SYSTEM 73
Creating Directories and Files

You can use the constant fsFileNewDefaultMode to use the file open defaults.
The constant is the same as specifying fsNoExdusivity (the file is permanent with
read/wri te access).

To get or set the file mode flags, use msgFSGetHandleMode and
msgFSSetHandleMode.

Mapping a File to Memory

Memory mapped files allow you to address information in a file as if its contents
were in main memory. In PenPoint 1.0, you map files to memory by establishing
a block of virtual memory to which the file system can swap the file contents.

The message msgFSMemoryMapSetSize specifies the amount of virtual memory
available to a memory mapped file. You cannot specify a size of zero, less than the
file size, or less than the size set by any other client. The memory map size can be
larger than its previous size. The memory map size must be set before memory
mapping the file.

The memory map size should be set to a reasonable expected maximum. If your
file is static, then set the memory map size to the file size. If your file will grow
then set the limit to its anticipated size. Setting a file's memory map size to 1MB
does not take 1 MB of RAM, but does require approximately 1 KB of data
structures to support in the memory manager and uses 1MB of the virtual
memory address space. The minimum memory required is 4KB per file, so
memory mapping very small files is not efficient.

If a file is memory mapped, then the memory map size can't change (use
msgFSMemoryMapSetSize before msgFSMemoryMap) and the file size can't
grow (via either msgStreamWrite or msgFSSetSize). All of these error cases return
stsFSNodeBusy. The single pointer returned by msgFSMemoryMap can be used
to address the entire memory map. A zero length file can be memory mapped.

Sharing Memory Mapped Files

By default the memory mapped region is in local memory. If you want to share a
memory mapped file with other clients, you must specify fsSharedMemoryMap in
the mode argument of the FS_FILE_NEW _MODE structure when you create the file
handle.

Memory Mapped File Life Cycle

This section presents the life cycle of a memory mapped file. Clients need to be
particularly aware of the second step.

1 Open the file.

Some memory map related options are specified in pNew->fs.mode when
a file handle is created. Setting fsReadOnly will result in a read only memory
map. Setting fsSharedMemoryMap will result in a memory map allocated
from shared memory. Setting fsSystemFile will result in a memory map
owned by the system (this flag is only accessible to supervisor code).

12.1.5

1'2.1.5.2

74 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

2 Set the maximum size of the memory mapped file.

You specify the memory map size using msgFSMemoryMapSetSize. This
message takes a single argument, the memory map size. Decide on the
maximum size that your memory map will grow to and set that size. The
memory map size must be as large or larger than the actual file size. You may
want to set the memory map size based on the maximum of msgFSGetSize
and the desired memory map size. Setting unnecessarily large sizes will
quickly use up all of virtual memory space.

Also be aware that each 4KB of virtual memory map space still requires approx­
imately 16 bytes of real memory in the memory manager. If your memory map­
ped file is read-only or static (for example fonts or a dictionary) set the memory
map size to the file size. The message msgFSMemoryMapGetSize can be used
to query the current memory map size.

3 Memory map the file.

msgFSMemoryMap to the file handle will return a pointer to the memory
map. The pointer will always point to the base of the memory mapped
region. Sending msgFSMemoryMap to a memory mapped file handle will
return the same pointer, not another one. There is only one memory map per
file handle.

4 Flush the memory map (optional).

msgFSFlush to the file handle of the memory mapped file will cause all dirty
portions of the memory mapped file to be written to disk.

S Free the memory map.

msgFSMemoryMapFree frees the memory map.

6 Set the file size (optional).

If you want your file to be the size of the memory mapped data structures
that you have mapped onto the file, then you need to explicitly set the file
size before freeing the file handle. If you do not, then the file will be a
multiple of the system page size, and the undefined bytes past the end of the
memory mapped file will become part of the file on disk.

7 Close the file.

msgDestroy to the file handle will close the file handle. All dirty pages in the
memory map will be written to disk. The memory map will be freed if you
did not free it in step 5.

Closing Files
When you have finished with a file or directory, you should free the handle to
deallocate the memory required by the handle. This is equivalent to closing a file.

To free a handle, send the message msgDestroy to the handle that you want to
free. The only argument to msgDestroy is the key that was used to create the
handle, if any. The following fragment illustrates the use of msgDestroy:

CHAPTER 72 / USING THE FILE SYSTEM 75
Forcing Deletion of a File or Directory

myFileHandle = fsNew.object.uid;

status = ObjectCall(msgDestroy, myFileHandle, (P_ARGS) objWKNKey);

When the file system created the handle, it returned the UID in fsNew.object.uid.
Here the program calls msgDestroy to free that handle. The key value specified
here uses objWKNKey, the well-known key, which has a value ofO. Use
objWKNKey when you didn't specify a key value in msgNew. For more
information about the keys, see the Part 1,' The Class Manager.

Sending msgDestroy to a directory or file handle does not delete the node (unless
the file is marked temporary); it merely has the effect of closing the file and freeing
the resources used by the handle object. The handle is not the node.

Deleting Files and Directories
Delete a file or directory by sending msgFSDelete to a file or directory handle.
The only argument to the message is a path that specifies the node to delete. If the
path is empty, the file system deletes the file or directory handle's target node.
Deleting a directory hierarchically deletes all of the nodes in that directory.

This example illustrates msgFSDelete:

status = ObjectCall(msgFSDelete, theWorkingDir, "MyDir\\MyFile")

If you use the temporary file flag with msgNew, the file system deletes the file or
directory when you free the file or directory handle.

You can't delete a file that is marked read-only; you must change the file's attribute
to read/write before you can delete it. If you attempt to delete a node that is the
target of another directory handle, the deletion will fail with stsFSNodeBusy.

Forcing Deletion .of a File or Directory
To force the deletion of a node (file or directory) that is marked read-only, or that
is the target of another directory handle, send msgFSForceDelete to a directory
handle.

msgFSForceDelete is a powerful message. It will delete any file or directory
without question. Careless use of msgFSForceDelete could result in damage to your
installed software, including PenPoint.

msgFSForceDelete takes a pointer to a FS_FORCE_DELETE structure that contains
a pointer to a path that indicates the node to delete (pPath).

When the message completes successfully, it returns stsOK.

When a handle's target node is deleted or destroyed, the file system marks the
handle invalid. If you use an invalid handle, the file system returns
stsFSHandlelnvalid.

The only valid thing that you can do with an invalid file handle is to free it with
msgFree.

76 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

The only valid things that you can do with an invalid directory handle are to free
it with msgFree or change its target directory with msgFSSetTarget.

GeHing and SeHing AHribu.es
You can use the msgFSGetAttr and msgFSSetAttr messages to manipulate file and
directory attributes.

When you send an attribute message to a file handle, the message affects that file
directly. When you send an attribute message to a directory handle, you can
specify a path to any node. There are three types of attribute values:

• Fixed-size values (32 or 64 bits).

• Variable-sized values (up to a little less than 64K).

• Null-terminated strings ~up to a little less than 64K characters).

Lists of Attributes
msgFSGetAttr and msgFSSetAttr both take a FS_GET_SET_ATTR structure that
contains pointers to three parallel arrays:

• An array of 32-bit attribute labels (identifiers for particular attributes).

• An array of 32-bit (4-byte) or 64-bit (8-byte) attribute values or pointers to
variable-length or string attributes.

• An optional array of attribute sizes (in bytes).

72~1

file Attribute Argunlents

pPath
numAttrs

pAttrLabels
pAttrValues

pAttrSizes

CHAPTER 72 I USING THE FILE SYSTEM 77
Getting and Setting Attributes

The arrays must contain the same number of elements.

If an attribute is fixed-length, its value is stored in the attribute array; however, if
the attribute is variable length, the attribute array contains a pointer to the
attribute's buffer. Figure 72-1 shows the FS_GET_SET_ATTR structure for four
attributes. The first, third and fourth attributes are fixed-length values. The second
attribute is a string. The fourth value is a fixed-length 64-bit value, so its entry in
the pAttrValues array uses eight, rather than four, bytes.

Zero Value AHributes

When an attribute's value is 0, the attribute is deleted from the node's attribute
list. You can still get the attribute value, because the file system always passes back
the value ° for an "undefined" attribute.

This saves memory in attribute lists and in the PENPOINT.DIR files, but at the
expense of some confusion. You cannot determine if an attribute with a zero value
is defined just by asking for its value. What you can do is request all attributes for
a file system node, and then examine the attribute label array for presence or
absence of the attribute that you want.

File System AHributes

The file system defines the following attributes:

fsAttrName Node name.

fsAttr Flags

fsAttrDateCreated

fsAttrDateModified

fsAttrFileSize

fsAttrDirlndex

fsAttrF ile Type

Node attribute flags. For more information, see the discussion below.

Node creation date/time

Last modified dateltime.

Number of bytes in the file.

A directory index value (directories only).

A file type TAG, as defined in FILETYPE.H.

The PenPoint file system does not maintain an "archive" attribute that records
whether the file has been modified.

Client-Defined AHributes

The set of attributes the file system defines is fixed, but you can create any
number of client-defined attributes.

The file system header file (FS.H) defines three macros to create attribute labels.
The macros are:

FSMakeFixAttr (class, tag)
FSMakeVarAttr (class, tag)
FSMakeStrAttr (class, tag)

78 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

where class is the class to which the attribute belongs (for example, file system
attributes are defined by clsFileSystem) and tag is a unique value for the attribute.

In many ways client-defined attributes are no different from file system attributes.
You can perform the same operations on client-defined attributes (get size, get
value, set value). However, when you send msgFSSetAttr and indicate a previously
undefined attribute, the file system creates a client-defined attribute.

When you specify the value 0 (or a null pointer) for a client-defined attribute,
the file system deletes the attribute. Note that you can still get the attribute value;
the file system will return 0 (which is both the value of the attribute and the
indication that the attribute does not exist).

Getting Attribute Values

To get attribute values, send the message msgFSGetAttr to a file or directory handle.
The message takes a pointer to a FS_GET_SET_ATTR structure that contains:

pPath A pointer to a path. This path, combined with the handle to which
the message is sent, forms an implicit locator.

numAttrs The number of attributes you are requesting.

pAttrLabels A pointer to the array of attribute labels.

pAttrValues A pointer to the array of 32-bit values that either receive the
fixed length attributes or point to the buffers that receive the variable­
length attributes. You must specify the pointers in the array when you
call msgFSGetAttr, the message will not return the pointers for you.

pAttrSizes A pointer to the array that receives attribute sizes. If you don't
want to receive attribute sizes, use Nil(p _FS_ATTR_SIZE) for this pointer.
When you call msgFSGetAttr, you can use this array to specify the
maximum sizes of the variable-length attribute buffers; on return, the
array contains the actual sizes returned.

If the attribute does not exist, the value for that attribute is o.
If you don't want to allocate the variable-length attribute value and size buffers ahead of
time, you can direct msgFSGetAttr to allocate the buffers for you. To automatically
allocate the value buffer, specify fsAllocAttrValuesBuffer in pAttrValues; to allocate
the sizes buffer, specify fsAllocAttrSizesBuffer in pAttrSizes.

You can direct msgFSGetAttr to return all attributes by specifying the constant
fsAllocAttrLabelsBuffer in pAttrLabels. If you specify this value, specify maxU16
for numAttrs, and use fsAllocAttrValuesBuffer and fsAllocAttrSizesBuffer in
pAttrValues and pAttrSizes. The actual number of attributes is returned in numAttrs.

When you are done with the attributes, you must free the returned memory regions
with OSHeapBlockFreeO; PenPoint cannot do it for you. OSHeapBlockFreeO is
documented in the Part 8: System Services.

CHAPTER 72 I USING THE FILE SYSTEM 79
Getting and Setting Attributes

SeHing AHribute Values

Setting attribute values is similar to getting attribute values. Send the message
msgFSSetAttr to a file or directory handle. The message takes a pointer to a
FS_GET_SET_ATTR structure that contains:

pPath A pointer to a path, if sending the message to a directory handle.

numAttrs The number of attributes you are setting.

pAttrLabels A pointer to the array of attribute labels.

pAttrValues A pointer to the array of 32-bit values or pointers to
variable-length attributes.

pAttrSizes A pointer to the array that specifies the attribute sizes. This is
required for variable-length attributes; it is optional for fixed-length and
string attributes.

The list of attribute labels and the list of pointers must contain the same number
of elements.

GeHing the Length of AHribute Values

If you need to get a fixed-length attribute, you usually don't have to worry about
allocating space for it, whether you allocate space at compilation or dynamically.
However, when you are dealing with variable-length attributes and need to be
cautious about memory consumption. You can use msgFSGetAttr to obtain only
the length of an attribute.

The message attributes are similar to those for msgFSGetAttr, but you specify null
in the arrays indicated by pAttrValues.

Node AHribute Flags

The node attribute flags define information that is common to all file system
nodes (such as read-only, hidden, and whether it is a directory or file node). To
get the node attribute flags, you must create a FS_NODE_FLAGS_ATTR structure,
which contains a FS_NODE_FLAGS structure and a mask.

To get attribute flags, you use the FS_NODE_FLAGS structure to indicate the node
attribute flags that you want. The file system ignores the mask on input. When
msgFSGetAttr sends back the structure, the node flags contains OxFFFF.

To set attribute flags, you use both the FS_NODE_FLAGS structure and the mask.
The mask specifies which node attribute flags you want to change. The mask
enables you to alter selected node attribute flags without having to get all the node
attribute flags first.

80 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

Table 72-4 summarizes the attribute flags defined by FS_NODE_FLAGS.

12~4

Node Attribute Flags

The node is read-only (applies to files only).

The node is hidden.

The node is a directory. Clients cannot change this attribute.

f!Dg

fsNodeReadOnly

fsNodeHidden

fsNodeDir

fsNodeGoFormat The node has additional GO information (such as a long name or client­
defined attributes). Clients cannot change this attribute.

fsNodePenPointHidden Node is hidden from user in disk browsers.

Creating and Using Directory Indexes

A directory index is a fast way of specifying a directory, that is independent of
paths. The Notebook uses directory indexes to implement GoT 0 buttons and to
jump to section tabs.

To create a directory index, send msgFSSetAttr to a directory handle. Specify
fsAttrDirIndex as the label. The attribute is a variable-length attribute that contains a
64-bit unique identifier (UUID). You must create the UUID by calling the function
MakeDynUUIDO. MakeDynUUIDO is described in Part 2: Application Framework.

You can use the directory index in a msgNew rather than a locator. When you
send msgNew to clsDirHandle, specify the mode flag fsUserDirIndex and put the
directory index in dirIndex. The locator.uid must specify the volume root.

Copying and Moving Nodes
You copy nodes by sending msgFSCopy to a file or directory handle; you move
nodes by sending msgFSMove to a file or directory handle. Both messages take a
FS_MOVE_COPY structure that contains:

pSourcePath A path to the source node.

destLocator A locator that indicates the destination for the new node.

mode A set of flags that specify the type of move or copy operation.
Currently there are three flags defined for mode:

msMoveCopylntoDest Used when copying or moving directories.
If you specify this flag, the directory node is moved or copied into the lo­
cation specified by the locator. If you do not specify this flag, the direc­
tory node becomes the location specified by the locator.

fsMoveCopyVerityOnly Verifies that the move or copy would succeed
if performed, but does not do the actual move or copy.

exist What to do if the destination node exists already.

pNewDestName Passes back the name of the new node. If you specify
NULL for this address, the buffer is not written. This parameter is
necessary only if you specify fsExistGenUnique, so that you can receive
the new name.

12.5.9

CHAPTER 72 / USING THE FILE SYSTEM 8'

The following example copies the file MYDIR\MYFILE to MYDIR\MYCOPY on the
same volume. If the destination file already exists, the exist, flag specifies that the
file system should overwrite it.

FS MOVE COpy - - dhCopy;
dhCopy.pSourcePath = "MyDir\\MyFile";
dhCopy.destLocator.uid = theWorkingDir;
dhCopy.destLocator.pPath = "MyDir\\MyCopy";
dhCopy.intoDest = FALSE;
dhCopy.pNewDestName = Nil(P_STRING);
dhCopy.exist = fsCopyExistOverwrite;
status = ObjectCall (msgFSCopy, theWorkingDir, &dhCopy);

If you move a node that has other handles it, those handles are updated to reflect
the new location of the node.

Traversing Nodes
At times, you might need to examine attributes for all nodes that are subordinate
to a particular node. For example, you might want to sum the sizes of all nodes
subordinate to a directory. To traverse the nodes of a tree, send msgFSTraverse to
a directory handle, specifying an attribute list (similar to msgFSGetAttr or
msgFSReadDir) .

msgFSTraverse will traverse all directory entries subordinate to the directory that
received the message. For each directory entry that it encounters, the message
retrieves the specified attributes and can invoke a call-back routine, wherein you
cart examine the attributes. A quicksort comparison routine allows you to sort the
directory entries for each directory before invoking the call-back routine.

msgFSTraverse takes a pointer to an FS_ TRAVERSE structure that contains:

mode The call-back mode) defined in FS_TRAVERSE_MODE. The mode is
explained in "The Traverse Call-Back Routine," below.

numAttrs The number of attributes you are requesting.

pAttrLabels An array of numAttrs attribute labels. The array must include
fsAttrFlags and fsAttrName at a minimum.

pCallBackRtn The name of a call-back routine. For more information on
the call-back routine, see "The Traverse Call-Back Routine," below.

pClientData A pointer to an area of data that can be read and written by
the call-back routine.

pQuickSortRtn The name of an optional quicksort routine. If you don't
want the directory sorted, specify Nil(p _UNKNOWN). For more
information on the quicksort routine, see "The Traverse Quicksort
Routine," below.

When traversing a directory handle, msgFSTraverse modifies the target of the

Traversing Nodes

12.7

handle as it visits each subdirectory. This causes a problem when you want to traverse
an entire volume, because root directory handles cannot be modified. This means that
msgFSTraverse will return stsFS.Unchangeable if you send it to a root directory handle.

82 PEN POINT ARCHITECTURAL REFERENCE
Part 7 / File System

To traverse a volume starting at the root directory node, you must create a
directory handle whose target node is a copy of the volume's root directory. Send
msgFSTraverse to the new handle and it will traverse the entire volume. Be sure to
destroy the new handle when you no longer need it.

The Traverse Call-Back Routine
Along with your arguments to msgFSTraverse, you name a call-back routine. The
call-back routine is a user-written routine that acts on attributes found by
msgFSTraverse.

When msgFSTraverse encounters a file node, enters a directory node, or exits a
directory node, it can invoke your call-back routine. The mode argument to
msgFSTraverse specifies when it should invoke the call-back routine.

The call-back routine receives these arguments, which are defined in
P _FS_ TRA VERSE_CALL_BACK:

dir If the node is a directory, the directory handle to the node. If the node is
a file, the directory handle to the file's parent directory. The call-back
routine can use this directory handle along with the file name attribute
(fsAttrName) to open a file.

level The current level in the directory hierarchy, relative to starting
directory for traversal.

pNextEntry A pointer to a FS_READ_DIR structure that contains the
requested attributes. See the discussion of msgFSReadDir for more
information on FS_READ_DIR.

pClientData A pointer to the client data.

You can use this area to send data to the call-back routine and to receive
information gathered by the call-back routine.

The Traverse Quicksort Routine
If you specify the name of a quicksort comparison routine, the message sorts each
directory according to the quicksort comparison routine before inv.oking the
callback routine. The comparison routine must compare two values, and return
-1, 0, or 1, depending on the result of the comparison.

Order of Traversal
When searching the directories, the traversal starts with the directory that received
the message. The traversal examines each directory entry in order.

When it encounters an entry for another directory node, the traversal moves to
that directory. The traversal continues recursively until it finishes with the
directory entries in a node. It then returns to the previous directory in the traversal
and continues.

72.7~ 1

CHAPTER 72 I USING THE FILE SYSTEM 83
Reading and Writing Files

Renaming Nodes 12.8

You rename nodes by using msgFSSetAttr to change the node name.

Determining the Existence of a Node 72.9

To test whether a file or directory node exists, send msgFSNodeExists to a directory
or file handle. The message takes a pointer to an FS_NODE_EXISTS structure that
contains a path that specifies the node that might exist (pPath). The path can be
null, but that would imply that you are sending the message to a handle on a node
whose existence you aren't sure. If you can send messages to the handle, the node
probably exists.

When the message completes, it returns stsOK if the file or directory exits, or
stsFSNodeNotFound if it doesn't exist. The message sends back the
FS_NODE_EXISTS structure with a BOOLEAN value that contains true if the node
is a directory and false if the node is a file (isDir).

Reading and Writing Files
This section discusses how to read and write files using file handles.

When you have a file handle, you can use msgStreamRead and msgStream Write
to read and write data. For both messages take a STREAM_READ_WRITE structure
that contains:

numBytes Number of bytes to read or write. This number can be as large as
fsMaxReadWrite (defined in FS.H as Ox40000000).

pBuf A pointer to a buffer of data to read or write.

When msgStreamRead or msgStreamWrite complete successfully, they send back
the actual number of bytes read or written in count.

This example illustrates the use of msgStreamRead and msgStreamWrite.

STREAM_READ_WRITE srWi
char outbuf[80]i
status = ObjectCall(msgNewDefaults, clsFileHandle, &fsNew)i
fsNew.fs.locator.pPath = "MyDir\\RWFile"i
if ((status = ObjectCall(msgNew, clsFileHandle, &fsNew)) < stsOK)

FSErr("****FileHandle msgNew 1. Object Open failed", status)i
fh = fsNew.object.uidi
/* Everyone's typical data ... */
srw.pBuf =

"This is the text to write to the file.\r\n"i
srw.numBytes = strlen(srw.pBuf)i

if ((status = ObjectCall(msgStreamWrite, fh, &srw)) < stsOK)
FSErr("****FileHandle msgNew 1. Write failed", status)i

srw.numBytes = 80;
srw.pBuf = (P_U8) outbufi
if ((status = ObjectCall(msgStreamRead, fh, &srw)) < stsOK)

FSErr("****FileHandle msgNew 1. Readfailed", status) i

72.10

84 PEN POINT ARCHITECTURAL REFERENCE

Part 7 I File System

File Position and Size
As with other file systems, you can ask the file system for the current position
within a file or you can set it to a new location. You can also find or change the
size of a file.

GeHing and SeHing File Position
To get and set the current file position, use the message msgFSSeek. The message
takes a pointer to a FS_SEEK structure that contains:

mode The starting position for the seek. You can start a seek at the
beginning of a file, the end of a file, or at the current byte position. The
starting position symbols are defined in FS_SEEK_MODE (shown in Table
72-5, below).

offset The offset in bytes. This offset is a signed value. Positive offsets move
the current byte position closer to the end of file; negative offsets move it
closer to the beginning of the file.

~;!t:t9

fsSeekBeginning

fsSeekEnd

fsSeekCurrent

fsSeekDefaultMode

Mezming If Set

Seek is relative to the beginning of the file.

Seek is relative to the end of the file.

Seek is relative to the current position of the file.

The default mode is fsSeekBeginning.

msgFSSeek sends back the current byte position, the old position, and indicates
whether you are at the end-of-file marker.

To find out the current byte position, specify 0 as the offset value, relative to the
current position. The following example shows a msgFSSeek call that sends back
the current position.

FS_SEEK fhSeek;
fhSeek.offset = 0;
fhSeek.mode = fsSeekCurrent;
status = ObjectCall(msgFSSeek, fh, &fhSeek);
Debugf("Seek: Old Position: %ld, New Position: %ld Is",

fhSeek.oldPos, fsSeek.curPos, fsSeek.eof ? "(EOF)" : "H);

The following example shows a call to msgFSSeek that sets the current byte
position 80 bytes after the beginning of the file.

FS_SEEK fhSeeki
fhSeek.offset = 80;
fhSeek.mode = fsSeekBeginning;
status = ObjectCall(msgFSSeek, fh, &fhSeek);
Debugf("Seek: Old Position: %ld, New Position: %ld Is",

fhSeek.oldPos, fsSeek.curPos, fsSeek.eof ? " (EOF) " : "H);

You can't set the current byte position before the beginning of the file or beyond
the end-of-file. If you seek from the current position and specify a byte offset that

72,,5

FS~>SEEK Flags

CHAPTER 72 I USING THE FILE SYSTEM 85
Getting the Path of a Handle

is before the beginning of the file, the new position is the beginning of the file; if
the offset is after the end, the new position will be end-of-file. However, if you
specify seek relative to the beginning of the file and pass a negative byte offset, or
you specify seek relative to the end-of-file end and pass a positive byte offset,
msgFSSeek returns stsBadParam.

GeHing and SeHing File Size 72. 11.2

Use msgFSGetSize to get the file size and msgFSSetSize to set it. msgFSGetSize
takes a pointer to a FS_FILE_SIZE value; when the message completes successfully,
it stores the size in that location. msgFSSetSize takes a pointer to a FS_SET _SIZE

structure that contains the new size of the file (newSize); when the message
completes successfully, it sends back the previous size of the file (oldSize).

This example shows calls to msgFSGetSize and msgFSSetSize.

#define MIN SIZE 2048
FS_FILE_SIZE gs;

status = ObjectCa1l(msgFSGetSize, fh, &gs);
if (gs < MIN_SIZE)
{

ss.newSize = MIN_SIZE;
status = ObjectCall(msgFSSetSize, fh, &ss);

If you set the file size to 0, you can delete information in the file without deleting
the file itself.

Flushing Buffers
You flush buffered data and node attributes with msgFSFlush. You send
msgFSFlush to the handle of the file you want to flush. This message does not
take any arguments.

You might want to use msgFSFlush to be sure that buffered data is written to a
file system buffer before another process writes to the same file system buffer. This
example shows a call to msgFSFlush:

status = ObjectCall(msgFSFlush, fh, (P_ARGS) null);

Sending msgFSFlush to the root directory of a volume flushes data and attributes
for every file on the volume that has buffered information.

GeHing the Path of a Handle
If you need to know the path currently used by a file or directory handle, use
msgFSGetPath. The message takes a pointer to a FS_GET_PATH structure that
contains:

mode What the returned path is relative to. The possible values are:

fsGetPathAbsolute Relative to the volume (the returned path begins
with two backslashes (\ \».

72.12

72.13

86 PENPOINT ARCHITECTURAL REFERENCE
Part 7 I File System

fsGetPathRoot Relative to the root directory (the returned path begins
with a. backslash (\)).

fsGetPathRelative Relative to a specified directory (see dir, below).

fsGetPathName The node name only.

dir If you specified fsGetPathRelative for mode, you must specify a
directory handle.

bufLength The length of your return buffer.

, pPathBuf A pointer to the buffer that receives the path.

This example shows an example of msgFSGetPath:

FS_GET_PATH fsGetPathi
char pPath[fsMaxPathLength]i
fsGetPath.mode = fsGetPathRooti
fsGetPath.dir = objNulli
fsGetPath.pPathBuf = pPathi
fsGetPath.bufLength = fsMaxPathLengthi
status = ObjectCall(msgFSGetPath, dh, &fsGetPath)i

Changing the Target Directory
You can change the target directory for a directory handle by sending the message
msgFSSetTarget to any directory handle. This message takes a pointer to a
FS_LOCATOR structure that specifies:

uid A directory handle.

pPath The path to the new target directory. '

This example illustrates a call to msgFSSetT arget.

FS_LOCATOR lOCi

loc.uid = theWorkingDir;
loc.pPath = "MyDir\\SubDir"i

status = ObjectCall(msgFSSetTarget, dh, &loc);

You can also use msgFSSetTarget to change the target of the well-known handle,
the WorkingDir.

Remember that the unchangeable attribute might prevent you from changing the
target on other well-known or global handles. If you attempt to change a target to
a file node, rather than a directory node, msgFSSetT arget returns stsFSNotDir.

Comparing Handles
Use msgFSSame to find out whether two handles reference the same node. You
call msgFSSame' by sending it to a handle; the only message argument is another
handle. If the two handles reference the same node, msgFSSame returns stsOK; if
different, it returns stsFSDifferent.

CHAPTER 72 / USING THE FILE SYSTEM 87
Reading Directory Entries

This example illustrates the use of msgFSSame.

FS_LOCATOR loc;
DIR_HANDLE dhl;

loc.uid = theWorkingDir;
loc.pPath = "MyDir\\MyFile I";
status = ObjectCall(msgFSSetTarget, dhl, &loc);

status = ObjectCall(msgFSSame, theWorkingDir, dhl);

GeMing and SeNing Handle Mode Flags
When you create a directory or file handle, you specify mode flags that indicate
options for the different handles. If, at a later time, you want to get or re-set the
options for a handle, you can use msgFSGetHandleMode and
msgFSSetHandleMode.

msgFSGetHandleMode takes a pointer to a UI6 value that will receive the mode
flags. When you send the message to a file handle, it interprets the pointer as a
pointer to a FS_FILE_NEW _MODE value; when you send the message to a directory
handle, it interprets the pointer as a pointer to a FS_DIR_NEW _MODE value.

The mode flags for directory handles are described in Table 72-1; the mode flags
for file handles are described in Table 72-2.

msgFSSetHandleMode takes a pointer to a FS_SET_HANDLE_MODE structure,
which contains:

mode A FS_FILE_NEW _MODE or FS_DIR_NEW _MODE value. The type of
value depends on whether you send the message to a file or directory
handle (both types are actually UI6s).

mask A mask value.

The mask specifies which mode flags you want to change. The mask enables you
to alter selected mode flags without having to get all the mode flags first.

msgFSSetHandleMode can change only a few of the handle mode fields
(fsTempDir or fsTempFile and fsSharedMemoryMap, for example). Very few, if
any, network file systems allow you to change the read-write access or exclusivity
of a file once you have opened it.

Reading Directory Entries
Use msgFSReadDir to sequentially read selected attributes from all entries in a
directory. Each time you send msgFSReadDir, the file system sends back the
specified attributes, then updates the directory's current directory position. The
current directory position is initially set to the beginning of the directory entries,
and is advanced each time you send msgFSReadDir.

The arguments to msgFSReadDir are similar to msgFSGetAttr. You define three
parallel arrays that contain attribute labels, locations or pointers, and sizes.

72.16

-~---.. -~~---

88 PENPOINT ARCHITECTURAL REFERENCE
Part 7 / File System

msgFSReadDir takes a pointer to a FS_READ_DIR structure that contains:

numAttrs The number of attributes that you want.

pAttrLabels An array of attribute labels, numAttrs long.

pAttrValues An arrayofP_UNKNOWN, used to store both 32-bitvalues and
pointers to buffers that receive variable-length attributes. You. must
specify the pointer values when you send msgFSReadDir.

pAttrSizes An array of FS_ATTR_SIZE, used to store the length of the
variable-length attributes. If you don't want the message to return the
sizes, specify Nil(p _FS_ATTR_SIZE) for the pointer.

Mter you read the last entry, any subsequent msgFSReadDir messages return
stsEndOfData. You can move the current directory pointer back to the beginning
of the directory with msgFSReadDirReset.

When you change a target node (with msgFSSetTarget), the current directory
position is set to O.

Reading All Directory Entries

You use msgFSReadDirFull to get a copy all directory entries. You tell PenPoint
which directory you want and the attributes you are interested in. PenPoint
allocates a heap block, creates a linked list of blocks containing the attributes you
requested, and sends back a pointer to the first block (in pNext) and the number
of blocks in the list (numEntries).

Each block contains a pointer to next block (NULL for the last block) and a series
of pointers to the requested attribute values. The values are part of the returned
heap block.

When you are done with the attributes, you must free the memory block with
OSHeapBlockFreeO; PenPoint cannot do it for you. OSHeapBlockFreeO is
documen ted in the Part 8: System Services.

The current directory position used by msgFSReadDir is not affected by
msgFSReadDirFull.

Sorting Directory Entries

One reason to use msgFSReadDirFull is to sort a series of directory entries on a
particular attribute. To sort the returned directory entries, use the PenPoint
quicksort routine.

quicksort sorts a linked list of variable length blocks (which is the format of
attributes returned by msgFSReadDirFull). quicksort takes a pointer to the list
and a user-supplied routine for comparing two blocks. It rearranges the sequence
by readdressing the links. quicksort is described in detail in the API Reference
Manual Part Eight: System Services.

CHAPTER 72 / USING THE FILE SYSTEM 89
Making a Node Native

This example uses quicksort to sort directory entries. It was drawn from the
PenPoint application framework.

/***
AppDirCompSeq

Comparison routine for sorting directory entries by sequence
number.

***/
int cdecl AppDirCompSeq

P_FS_READ_DIR p,
P_FS_READ_DIR q)

U32 a;
U32 b;
a = ({P_APP_DIR_NEXT) {p->attrValue.pValues))->attrs.sequence;
b = ({P_APP_DIR_NEXT) {q->attrValue.pValues))->attrs.sequence;
if (a < b) return -1;
else if (a > b) return 1;
else return 0;

/* Read entire directory. */
readDirFull.numAttrs appDirNumReadDirFullAttrs;
readDirFull.attrLabel.pLabels appDirAttrLabels;
ObjCallRet{msgFSReadDirFull, dir, &readDirFull, status);
pReadDir = pArgs->handle = readDirFull.pDirBuf;
/* Sort directory snapshot by sequence. */
pReadDir = quicksort{pReadDir, AppDirCompSeq);

/* Deallocate attributes' segment. */
status = OSHeapBlockFree(pReadDir);

Observing Changes
The file system allows you to make yourself an observer of theFileSystem or a
directory. When a volume is added or removed from theFileSystem or when nodes
are added or removed from a directory, observers receive msgFSChanged. The
message carries an FS_CHANGE_INFO structure that contains:

observed The UID of the observed object that changed.

reason The message that caused the change.

Making a Node Native
At some point you might need ensure that a node will be fully compatible in a
non-PenPoint environment. This means removing all PenPoint-specific infor­
mation from a file, such as the long file names, PenPoint-specific attributes, and
client-specified attributes. To remove the PenPoint-related information, use
msgFSMakeNative.

72.18

12.19

90 PEN POINT ARCHITECTURAL REFERENCE
Part 7 I File System

msgFSMakeNative takes a pointer to an FS_MAKE_NATIVE structure that contains:

pPath A path to the node.

newName A pointer to the buffer that will hold the new node name.

This example shows a call to msgFSMakeNative.

FS_MAKE_NATlVE make_native;
char nameArray[13];
make_native.pPath = "File with a long name";
make_native.newName = nameArray;
status = ObjectCall(msgFSMakeNative, theWorkingDir, &make_native);

Getting Volume Information
You can get information about a specific volume by sending msgFSGetVolMetrics
to a volume object. To get a list of volume objects send msgFSGetlnstalledVolumes
to theFileSystem.

The message takes a pointer to an FS_GET_VOL_METRICS structure that contains:

updatelnfo A BOOLEAN value that indicates that all volume information
should be refreshed before it is returned.

pVolMetrics An FS_ VOL_METRICS structure that defines the variables that
contain the returned information. Table 72-6 lists the members in
FS_ VOL_METRICS and their meanings.

72.20

Table 72~6
Volume Metrics Inforn10tion

type

flags
fsVolReadOnly
fsVolConnected
fs VolRemovableMedia
fs VolEjectableMedia
fs VolDirsIndexable
fs VolFormattable
fs VolDuplicatable

rootDir
volObj
serialNum
optimalSize
totalBytes
freeBytes
commSpeed

iconResId

pName

Me©lnlng

Indicates the volume type. The type constants are defined in FS_ VOL_TYPE.

Indicates a number of volume attributes. The flags are defined in FS_ VOL_FLAGS and are:
The volume is read-only.
The volume is currently connected (must set update=true to keep this current).
The volume is located on removable media.
The volume media can be ejected.
The volume supports directory indexes. Some volumes cannot support directory indexes.
The volume can be formatted.
The volume can be duplicated by a track-by-track physical duplicator. A common way

to duplicate entire volumes is to physically copy each track to the identical track on a
volume of the exact same type, without interpreting the data or attempting to un­
fragment the files. Some volumes cannot be duplicated this way (such as hard disks).

A handle on the volume's root directory.
The volume object UID.
The volume's serial number.
The optimal block size for 110.
Total number of bytes on the volume.
The number of free bytes on the volume (must set update=true to keep this current).
The communication speed (for remote volumes).

The resource ID for the volume's icon.

A buffer to receive the volume name.

CHAPTER 72 I USING THE FILE SYSTEM 91
Volume Specific Messages

The following example illustrates a call to msgFSGetVolMetrics that gets volume
information for the current directory.

FS_GET_VOL_METRICS volMetrics;
volMetrics.updatelnfo = TRUE; II This ensures an update to all fields.
status = ObjectCall(msgFSGetVoIMetrics, theWorkingDir, &voIMetrics);

SeHing or Changing a Volume Name 72~21

To set or change the name of a volume, send msgFSSetVolName to a file or
directory handle on the volume that you want to rename. The message takes a
single argument, a pointer to a string that contains the new volume name.

Currently the volume name must conform to MS-DOS volume naming
conventions (up to 11 characters; cannot contain / \ ; : = < > [or]). If the volume
name does not conform, the message returns stsBadParam.

liecling Floppies
For floppy disk drives that support programmatic control of disk ejection, there is
normally no eject button on the drive. Usually the user ejects such a floppy disk
volume by making an E, e, or X gesture on the disk icon in the disk browser.

If you need to eject the floppy disk volume under programmatic control, send
msgFSEjectMedia to a directory handle or file handle. The file system ejects the
volume associated with that handle. The message takes no arguments.

Volume Specific Messages
You can send messages that are specific to a particular device with
msgFSVolSpecific. You can send this message to either a directory or file handle.
Among the reasons for using this message are:

• Getting or setting the Macintosh icon on a TOPS file that resides on a
Macintosh.

• Getting a volume-specific error code.

• Low-level device access to device drivers.

The message takes a pointer to a VOL_SPECIFIC structure that contains:

pPath A path to a node. This is only meaningful when you send the
message to a directory handle; it must be null if you send the message
to a file handle.

msg A message. You must define the messages yourself.

pArgs A pointer to the arguments for the message.

Part 8 /
System Services

", Chapter 73 / Introduction 95 ", Chapter 75 / C Run-Time Library 109

Organization of This Part 73.1 95 ANSI Standard C Routines 75.1 109
Other Sources of Information 73.2 95 Time and Date Preferences 75.2 110

System Time 75.2.1 110
", Chapter 74 / Pen Point Kernel Time Formats 75.2.2 110 Overview 97 Date and Time Strings 75.2.3 110
The Machine Interface Layer 74.1 98 16-Bit Character Support 75.3 110
The Kernel Layer 74.2 98 16-Bit Character Types 75.3.1 111
Task Management 74.3 98 16-Bit String Function 75.3.2 111

Processes 74.3.1 98 String Composition Functions 75.3.3 114
Subtasks 74.3.2 98

Chapter 76 / Math Run-Time Software Task Scheduler 74.3.3 99 Library 115 Priority Level 74.3.4 99

Intertask Communication 74.4 100 Introduction 76.1 115
Messages and Queues 74.4.1 100 Programmatic Interface 76.2 115
Semaphores 74.4.2 101 Fixed-Point Numbers 76.2.1 115

Memory Management 74.5 101 Performance Notes 76.2.2 115
Heaps 74.5.1 101 PenPoint Fixed-Point Summary 76.2.3 116

80386 Protected Mode 74.5.2 102
List of Figures Rings 74.5.3 103

Privilege Levels 74.5.4 103 74-1 PenPoint System Architecture 97

Date and Time Services 74.6 103 List of Tables Timer Routines 74.6.1 103
Alarm Services 74.6.2 103 74-1 theTimer Messages 104

Current Time 74.6.3 104 74-2 Kernel Functions 105
Other Routines 74.6.4 104 74-3 Heap Routines 107
Object-Oriented Timer Interface 74.6.5 104 75-1 WATCOM C Run-Time Library 109

Sound Routine 74.7 105 75-2 16-Bit String Functions 111
PenPoint Kernel Summary 74.8 105 75-3 String Composition Functions 114

76-1 Fixed-Point Functions 116

Chapter 73 / Introduction

The PenPoineM system services allow you to enhance memory utilization and
performance in your programs by providing access to the PenPoint kernel at the
lowest level, and by providing optimized run-time routines.

Simple applications may not need to use system services at all. Instead they rely on
the PenPoint Application Framework to install their code, create their processes,
and communicate with them. They use the class manager to communicate with .
other objects.

The most common use of system services is to allocate and free memory using
OSHeapBlockAllocO and OSHeapBlockFreeO.

Organization of This Part
This part explains the PenPoint system services concisely. The chapters of Part 8:
System Services cover the following information:

• Chapter 73, Introduction, is this chapter.

• Chapter 74, PenPoint Kernel Overview, describes the kernel, and the
functional elements such as processes, tasks, and task communications that
comprise the low-level operation of a PenPoint computer. At its end are
tables summarizing the kernel-level APIs.

• Chapter 75, C Run-Time Library, introduces GO's run-time support for the
C programming language.

• Chapter 76, Math Run-Time Library, introduces GO's fIxed-point math
libraries .

. Other Sources of Information
"Datasheets" for each function are in the PenPoint API Reference, so that you can
quickly locate the syntax for an individual kernel or run-time function.

Most datasheets in the PenPoint API Reference are formatted versions of the
information in the corresponding header fIle. However, because the run-time
library and other parts of system services are based on WATCOM's standard
header fIles, the information in the header fIles is not the same as the information
in the datasheets.

The PenPoint Application Writing Guide explains common t ypedefs, status
values, and macros used in PenPoint.

Chapter 74 / PenPoint Kernel Overview

The kernel is the lowest-level application-accessible component of the PenPoint™
operating system. Applications and other programs access the kernel through
function calls; in turn, the kernel accesses the computer hardware:

• Directly when performing process management, scheduling,
synchronization, and memory management.

• Indirectly through the PenPoint MIL (Machine Interface Layer), when
communicating with devices.

These calls are invisible to the application programmer. The kernel provides the
following services for PenPoint operations:

• Multitasking, message-passing executive.

• Threads (lightweight tasks sharing the same address space)'.

• Protected memory management and code execution.

• Semaphores for process synchronization.

• Procedural interface.

Figure 74-1 shows the position of the kernel in the PenPoint software architecture.

74~1

wa,.nw,&%,!lIt'!>w System Architecture

98 PENPOINT ARCHITECTURAL REFERENCE
Part 8 I System Services

The Machine Interface Layer
The PenPoint operating system is designed so that it is not dependent on the
hardware on which it runs.

The most obvious hardware dependency is on the central processor. However,
even hardware that uses a common central processor can have different peripheral
devices, such as screens, stylus and digitizers, storage devices, clock chips, and
ports.

To support different types of devices, the PenPoint operating system defines a
protocol for communicating with devices, called the Machine Interface Layer
(MIL). Only the PenPoint kernel and PenPoint device drivers (called MIL
services) make calls to the MIL; applications and non-MIL services never
communicate directly with MIL.

The Kernel Layer
The kernel is the portion of the operating system that interacts directly with the
processor to manage tasks, memory, and communication between tasks. It
allocates memory dynamically as applications run. It manages the sending and
receiving of synchronization messages between concurrent processes, and it
schedules the resources that these processes need as they execute (access to
common data, execution rights for shared code, and so on) ..

The kernel layer is different in several ways from the portions of the PenPoint
operating system that are above the kernel layer:

• The kernel layer is not object-oriented, rather it provides support for the
PenPoint object-oriented architecture.

• The kernel layer does not send or receive messages, it uses function calls.

Task Management
In PenPoint, a task is the basic executing entity and refers to any executing thread
of control. There are two kinds of tasks: processes and subtasks. Processes and
subtasks are scheduled and run by a software scheduler based on a priority scheme
that determines which task should run at any given time.

Processes
A process is the first task that runs when an application is instantiated (typically
when the user turns to a document of that application). Processes own the
resources used by the instance including memory, subtasks, and semaphores (used
in locking and interrupts). When a process is terminated, all resources owned by it
are returned to the system.

Subtasks
A subtask is a thread of execution started by either a process or a subtask. It uses
the same context as its parent process. Subtasks created by other subtasks are called

14,,1

14.2

14.3.1

CHAPTER 74 / PENPOINT KERNEL OVERVIEW 99
Task Management

sibling subtasks; all siblings are considered to be at the same level regardless of the
creator. The process that creates a sub task owns that subtask and any sibling
subtasks created by it in a child-parent relationship. A process and all its subtasks
make up a task family. When a process dies, all its subtasks are cleaned up so that
PenPoint can reuse the task family's local memory.

A subtask has the following characteristics:

• It shares all memory with its parent process and any siblings.

• It owns no resources itself.

• It has its own general registers and stack.

• It can lock semaphores, receive and send messages.

Software Task Scheduler
PenPoint allows tasks to dynamically create and delete other tasks in the system.
Kernel functions are provided to start processes and subtasks. In addition, The
kernel allows for the termination of a given task by any other software task.

In order to start another process, the executable file that contains the code for that
process must have already been loaded into the loader database (see the
OSProgramlnsta110 function for more details). To start a process, the kernel
creates a new execution context (that is new local memory context).

Unlike subtasks, which are hierarchically below their parent process, processes
started by other processes (or subtasks) are not hierarchically linked. Since there is
no process hierarchy, the following is true:

• The process creator has no special impact on the process being created (and
vice versa). Thus, if the creator terminates, the newly created process is not
notified or terminated. Likewise, the creator is not notified if the newly
created process terminates.

• A copy of the process creator's file handles are not passed on to the new
process.

• A process is free to associate itself with other processes in whichever way it
wants. This more closely resembles the metaphor used by the notebook
software (where an application can move from one page to another and
applications can be arbitrarily embedded into other applications).

Priority Level

Software tasks have set priority levels to control their order of execution. Task
scheduling is by priority only. Processes and subtasks with higher priorities execute
before lower priority tasks. Priorities may be altered by the task itself or by any other
task in the system. Priorities are defined by their priority class (high, medium high,
medium low, and low) and a priority within that class (0-50). The PenPoint operating
system arranges task priorities within bands.

74.3.3

100 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

Intertask COll1l11unication
Intertask communication in PenPoint takes place through messages and
semaphores.

Messages and Queues

An intertask message is a pre-defined PenPoint element that contains
miscellaneous information for a task along with an optional, variable-length
message buffer.

Intertask messages should not be confused with class manager messages. Intertask
messages are sent to tasks and begin with the prefix OSITMsg where OS stands
for operating system and ITMsg stands for intertask message. Class manager
messages are sent to objects and begin with the prefix msg.

For communications between tasks, the kernel relies on intertask messages.
Intertask messages are transferred between tasks, using the task identifier to target
the message. Messages contain miscellaneous information along with an optional
message buffer. Message buffers are variable length and are not interpreted by the
kernel. There is only one message queue per task (subtask or process). The
message queue is organized using a first in-first out algorithm. t.

Messages can be transferred in two modes: copy or no Copy. Copy is the normal
mode with all of the data associated with the message copied into the workspace
of the target task. NoCopy is used for high speed data exchange at the expense of
some protection. In no Copy mode, the sender passes a pointer to a shared heap,
which contains the message buffer.

The message facility also allows the client to pass a 32-bit token as part of the mes­
sage. In small transfers of data, this token could contain the entire message data.

ObjectSendO uses intertask messages to send a message to an object in a different
task. Application developers should use ObjectSendO instead of the kernel call
OSITMsgSendO.

Normally messages are sent to just one task. However, the kernel will allow
messages to be sent to multiple tasks by the use of broadcast messages. When
broadcasting, the kernel sends the message to all tasks that are allowed to receive
messages. The broadcast message can be sent to all tasks in the system, or to a
single task and its task family. Note that the sending task does not receive its own
broadcast message.

As described above, messages are normally processed in FIFO order. However,
messages can be processed out of order by the use of filters. A task receiving
messages can choose to get a message from the queue using two types of filters:

• The task can have a filter that specifies the types of messages that can be
placed in its queue.

• The dispatch loop for the task can use a filter when receiving messages from
the task's message queue.

Important Intertask messages
are not the same as class
manager messages.

CHAPTER 74 I PENPOINT KERNEL OVERVIEW 101
Memory Management

The kernel uses messages to inform tasks of certain important events. As men­
tioned before, upon task termination, the kernel broadcasts a message to the entire
system on a special filter. Those applications that have enabled that filter in their
filter mask will be notified.

Semaphores 74.4.2

For synchronization (which really is a form of communication), the kernel
provides semaphores. A semaphore, as in most operating systems, is a lock that
allows only one process or subtask access to a resource at one time. Semaphores
have two major purposes:

• To lock tasks in order to prevent collisions between contending tasks seeking
access .

• To accept interrupts in event handling, usually from device drivers.

The kernel implements a counting semaphore, so that if a particular task calls for
a particular number of lock operations, the task must issue an equal number of
unlock operations before the semaphore is free. If a task requests access to a
semaphore and is forced to wait because another task has already locked it, the
requesting task will be put to sleep until the semaphore is cleared. At that time the
highest priority task waiting on that semaphore will be given ownership of the
semaphore lock and will be put into the ready list.

If a task with a locked semaphore dies, the kernel will unlock that semaphore and
notify the next task attempting to lock that semaphore of the forced unlock by the
system. It is up to that next task to determine if there is a problem (for example,
an inconsistent data structure). If the semaphore is protecting a critical data
structure, any task accessing that data structure (and semaphore) should know
how to clean up from accidental task termination. The best way to do this is to
centralize access to the semaphore. If all tasks access the semaphore using the same
code, then handling the exception case need only be done in that one location.

Memory Management
In the PenPoint operating system, memory has attributes, such as shared or local,
locked or unlocked, access rights, privilege level, length, and so on. Tasks must
request the amount of local and shared memory required for execution.

The PenPoint operating system provides a 32-bit flat memory model. Memory is
allocated in heaps. Allocation of heaps is referred to as heap management. The
heap manager uses a portion of address space that has already been allocated.

Heaps

A heap is a region or list of regions of virtual memory. The heap manager handles
the allocation and freeing of smaller blocks within those regions. The heap
manager code runs at the privilege level of the code that calls it, so the memory it
allocates has the privilege of the code calling it.

74.5

102 PENPOINT ARCHITECTURAL REFERENCE
Part 8 I System Services

The size and characteristics of a heap is defined by the task that creates it. By
default, heap regions are 16K bytes long; heaps larger than 16K bytes are allocated
in multiples of 4K bytes. Each heap uses a minimum of 4K bytes; its elements
can be fixed or variable length. Heaps can be shared (accessible to multiple
processes) or local. See OSHEAP.H for more information on heaps.

The system automatically creates two heaps for each process: a local heap and a
shared heap. osProcessHeapId is the handle (well-known UID) on the local heap
for each process; osProcessSharedHeapId is the handle for the shared heap.

Most applications should be able to use these predefined heaps and should not
need to create additional heaps. When necessary, an application can minimize
fragmentation within a heap by using different heaps for different functions. This
is only efficient when the data in each heap is greater than than 4K bytes.

Because the heap manager allocates memory within a region, no hardware
protection is provided.

The PenPoint operating system does not support either heap compaction or
garbage collection.

The heap manager provides a number of utility routines to simplify the
management of heaps.

80386 Protected Mode
The PenPoint 1.0 runs in the protected mode of the 80386. This means that the
kernel utilizes the hardware facilities for task management and memory
protection. The hardware will provide a completely separate address space
(through virtual memory) for different programs.

A task family shares local memory. Each process has its own local memory, which
is accessible by all the subtasks in its task family, but not by other processes. This
means that if a task passes the address of some object in local memory to a task in
another task family, the pointer will be invalid or point to some random data for
the second task. You should be careful to use shared memory for data which needs
to be accessed by tasks using different process contexts.

Shared memory is accessible to all processes. When the CPU switches to a task in
a different process, it switches to the new process's local memory.

A task can allocate memory that is either local to its task family or shareable
among many different tasks. Different tasks can share ownership of shared
memory. The memory manager maintains a reference count of the memory. The
memory will be freed only when all tasks sharing the memory have freed their
pointers to that memory.

The memory model does support memory movement. The memory manager
guarantees that the selector pointing to the memory block will always be valid
until that block is freed. In addition, the memory manager exports a number of
low level memory routines to support externally developed system code such as
device drivers.

CHAPTER 74 I PENPOINT KERNEL OVERVIEW 103
Date and Time Services

Rings
In addition to memory protection among processes, PenPoint utilizes the ring
structure of the 386 to protect system data structures from mischievous
applications. The kernel runs in supervisor mode (ring 0). Applications run in user
mode (ring 3). Data structures that are allocated in supervisor mode by the kernel
are not be accessible to application code. Application code can use the function
OSSupervisorCallO to access the kernel. Applications cannot access system buffers
(even those in shared memory).

Shared memory is used for anything that is required across many different
processes. Examples include system data structures, application code, and shared
objects.

Privilege Levels
A task always executes at some privilege level. Memory is accessed through
regions. Each region has a privilege level and access permissions (read-only,
read-write). All of a task's accesses to memory are checked against the privilege
level and access rights of the region. The PenPoint kernel and device drivers have a
higher privilege than application tasks.

A task cannot access more privileged data, nor can it execute code at other
privilege levels unless that code has made special arrangements. For example,
application code can only call PenPoint kernel routines through routines in
PENPOINT.LIB.

Date and Time Services

Timer Routines
Timer notification comes in two flavors: notification by semaphore and
notification by message. In the first case, the client calls a function. In the latter
case, the client sends a message to a special well-known object, theTimer.

If notification is done by semaphore, the client must provide the semaphore; the
system will reset that semaphore at the appropriate notification time.

Because the kernel counts time by the system tick interrupt, no timeout values in
the range of the system tick interval time will be very accurate. When a timer
request occurs and is placed on the transaction queue, the timer subsystem has no
way of knowing how much time elapses between the request and the next system
tick. As a result, the timer allots the entire systick interval time (roughly 30
milliseconds) to the transaction.

Alarm Services
The alarm subsystem uses the clock chip to keep track of the next alarm. A queue
of alarms transactions is maintained so that more than one alarm can be set in the
system. The alarm code calls the MIL clock device to handle the details of setting
an alarm.

74.5.3

74.5.4

14.6.2

104 PENPOINT ARCHITECTURAL REFERENCE
Part 8 I System Services

Current Time

The kernel provides routines t<;> set and get the date and time from the clock chip.
The clock chip is updated through the MIL.

Other Routines

Chapter 75, C Run-Time Library, describes the run-time routines to manipulate
the time and date, and some system preferences that determine the user's desired
time and date formats.

Obiect-Oriented Timer Interface

You can access timer and alarm services in an object-oriented manner. There is a
well-known object, theTimer, which responds to messages. You can ask it to
notify an object when a timer period expires, or repeatedly, or at a particular
alarm time. At the appropriate time, theTimer sends msgTimerNotify or
msgTimerAlarmNotify to that object.

theTimer is a well-known instance of clsTimer; it's the only instance. (They share
the same UID, in fact.)

The messages which clsTimer defines are in \PENPOINT\SDK\INC\TIMER.H.

They are:

MessQge

nnsgTinnerFlegister

nnsg Tinner FlegisterAsync

nnsg TinnerFlegister Direct

nnsg TinnerRegisterInterval

nnsg TinnerAlarnnFlegister

nnsgTinnerAlarnnStop

nnsg TinnerT ransaction Valid

nnsg TinnerStop

nnsg TinnerN otify

nnsg TinnerAlarnnNotify

P _TIMEFl_INTEFlVAL_INFO

P _ TIMEFl_ALARM_INFO

OS_HANDLE

OS_HANDLE

OS~HANDLE

Descriptiorl

Flegisters a request for notification with
ObjectPostO.

Flegisters a request for notification with
ObjectPostAsyncO.

Flegisters a request for notification with
ObjectPostDirectO.

Flegisters a request for interval notification.

Flegisters a request for alarnn notification.

Stops a pending alarnn request.

Deternnines if a tinner transaction is valid.

Stops a tinner transaction.

Notifies the client that the tinner request has
elapsed.

Notifies the client that the alarnn request has
elapsed.

A timer request can continue to count down after a PenPoint computer is Note This is a hardware feature

powered-on. An alarm can go off while a PenPoint computer is off, and it will turn that mayor may not be present
. on any particular PenPoint

the PenPoint computer back on in order to deliver the alarm message. computer.

CHAPTER·74 I PENPOINT KERNEL OVERVIEW 105
PenPoint Kernel Summary

The Clock application uses theTimer extensively. Its code is in
\PENPOINT\SDK\SAMPLE\CLOCK, and is briefly discussed in the PenPoint
Application Writing Guide.

Sound Routine 14.1

The kernel provides two basic routines to sound the speaker on a PenPoint
computer: OSErrorBeepO and OSToneO. In OSErrorBeepO you specify the type
of error (warning or fatal), and the computer beeps the appropriate tone.
OSToneO is more general; it allows you to sound the speaker, specifying a tone,
duration, and volume.

PenPoint Kernel Summary
The PenPoint operating system kernel functions are defined in two header files:

OS.H Defines functions for tasking, memory information, inter-task
communication, and timer services.

OSHEAP.H Defines functions for memory management.

The corresponding Part 8 in the PenPoint API Reference describes the details of
PenPoint Kernel API. Every function is described along with its associated
parameters. The functions defined in OS.H are summarized in Table 74-2; the
functions defined in OSHEAP.H are summarized in Table 74-3. For more
information on each of these functions, see the header files.

Installs a program into the loader 4atabase.

14.8

labl~ 14~2

Kernel Functions

OSProgramInstallO

OSProgramDeinstallO

OSProgramInstantiateO

OSProgramInfo 0
OSSubTaskCreateO

OST askT erminateO

OSThisTaskO

Deinstalls a program already loaded into the loader database.

Creates an instance of a program.

OST askPrioritySetO

OST askPriorityGetO

OST askN ameSetO

OST askDelayO

OSN ext TerminatedTaskIdO

OSModuleLoadO

OSEntrypointFindO

OSProcessProgHandleO

OSThisAppO

OSTaskAppO

OST askProcessO

Returns information on the program from the loader.

Creates a new execution thread in this context.

Terminates a task.

Passes back the task identifier of the current running task.

Sets the priority of a task or a set of tasks.

Passes back the priority of a task.

Sets a 4 character name for the given task.

Delays the current task for a specified period of time.

Notifies the caller of the tasks that have terminated.

Loads a module into the loader's database.

Finds an entrypoint in a loaded module either by name or by ordinal.

Passes back the program handle for the process.

Passes back the application object stored with the current process.

Passes back the application object for a given process.

Returns the process id for the task specified.

106 PENPOINT ARCHITECTURAL REFERENCE
Part 8 I System Services

OST askInstallTerminateO

OSEnvSearchO

OSAppObjectPokeO

OSITMsgSendO

OSITMsgReceiveO

OSITMsgPeekO

OSITMsgFilterMaskO

OSITMsgFromldO

OSITMsgQFlushO

OSSemaCreateO

OSSemaOpenO

OSSemaDeleteO

OSSemaRequestO

OSSemaClearO

OSSemaResetO

OSSemaSetO

OSSema WaitO

OSFastSemalnitO

OSF astSemaRequestO

OSFastSemaClearO

OSMemlnfoO

OSMem UseInfoO

OSMemAvailableO

OSTimerAsyncSemaO

OSTimerlntervalSemaO

OSTimerStopO

OSGetTimeO

OSSetTimeO

OSPowerU p TimeO

OSSetlnterruptO

OSTimerTransaction ValidO

DebuggerO

OSDebuggerO

Descriptku.

Notifies tasks waiting on OSProgramlnstall that the instance is finished.

Searches the environment for the specified variable and returns its value.

Stores the application object for the current process.

Sends an inter-task message to a task or set of tasks.

Receives a message from the task's message queue.

Gets the next message from the message queue without removing it.

Sets the filter mask for this task.

Passes back the message associated with the message identifier.

Flushes the message queue of all messages matching the message filter.

Creates a semaphore.

Opens (accesses) an already existing semaphore.

Deletes a semaphore.

Locks the counting semaphore (increments the count).

Unlocks the counting semaphore (decrements the count).

Resets event semaphore (no matter what count).

Sets the event semaphore to 1.

Waits for the event semaphore to be reset.

Ini tialize fast serna.

Fast version of serna request.

Fast version of serna clear.

Returns information on memory usage for a specified task.

Returns information on memory usage for a specified task.

Return amount of swappable memory available (to caution zone).

Reset a semaphore after time milliseconds.

Resets a semaphore after each time interval has elapsed.

Stops a timer request given its transaction handle.

Returns local time.

Sets the time or time zone.

Passes back the number of milliseconds since the last reset.

Sets up an interrupt handler ..

Checks to see if the timer transaction is valid.

Enters the debugger.

Enters the debugger, should only be called in special situations.

KeyPressedO

KeyInO

OSErrorBeepO

OSToneO

ScreenOnlyStringPrintO

OSDisplayO

OSThis WinDevO

OSWinDevPokeO

osPrintBufferRoutineO

OSPowerDownO

OSSystemInfoO

OSHeapCreateO

OSHeapDeleteO

OSHeapBlockAllocO

OSHeapBlockFreeO

OSHeapBlockResizeO

OSHeapInfoO

OSHeapIdO

OSHeapBlockSizeO

OSHeapPokeO

OSHeapPeekO

OSHeapAllowErrorO

OSHeapClearO

OSHeapOpenO

OSHeapCloseO

OSHeapEnumerateO

OSHeap WalkO

OSHeapMarkO

OSHeapPrintO

CHAPTER 74 I PENPOINT KERNEL OVERVIEW 107
PenPoint Kernel Summary

Table 74-2

Description

Determines if a key is available.

Passes back the next key and the scan code from the keyboard.

Tone Routines

Outputs a tone based on the type of error encountered.

Sends a tone for a given duration at the specified volume level.

[)i~l;.nlnv or Screen Device Routines

Prints a string onto the console.

Changes the display to the console or the graphics screen.

Passes back the windowing device for this application.

Stores the windowing device for the specified process.

Function variable print routine.

Powers down the machine.

Passes back information on the system configuration.

Descripti<m

Creates a heap.

Deletes a heap. Frees all memory allocated by clients and by the heap manager.

Allocates a block within the heap.

Frees a heap block.

Resizes a heap block.

Passes back information on a heap.

Passes back the heap id from which a heap block has been allocated.

Passes back the size of the heap block.

Stores 32 bits of client info in the heap header.

Passes back the client info previously set via OSHeapPokeO.

Changes the "out of memory" behavior of heap block allocation.

Clears a heap. Deletes all the allocated heap blocks but not the heap.

Adds the specified task as an owner of the specified heap.

Remove the specifed task as an owner of the specified heap.

Enumerates all the heaps in the given process.

Traverses the given heap.

Marks all the allocated blocks in given heap.

Prints debugging info about the given heap.

Chapter 75 / C Run-tillie Library

This chapter lists the C run-time library available to developers of Pen Point
applications and services. Many of the C run-time functions are provided by the
WATCOM C run-time library. Other functions provided in PenPoint include:

• Time and date preferences.

• 16-bit character support.

ANSI Standard C Routines
For information on the W ATCOM C run-time library, see the WATCOM C
Library Reference for PenPoint.

Table 75-1 lists the files in the WATCOM C run-time library.

75.1

Table 15=1
WATCOM C Run w Tinle library

ASSERT.H

CONIO.H

CTYPE.H

DIRENT.H

ENY.H

FCNTL.H

FLOAT.H

I86.H

LIMITS.H

MALLOC.H

MATH.H

SEARCH.H

SETJMP.H

SIGNAL.H

STDARG.H

STDDEEH

STDIO.H

STDLIB.H

STRING.H

TIME.H

UNISTD.H

UTIME.H

Assertion macros.

Port 110 functions.

Character manipulation functions.

Directory functions and declarations.

Prototypes of environment string functions.

Flags used by open and sopen.

Declarations and constants used with floating point numbers.

Low-level CPU functions.

Constants for limits and boundaries.

Memory allocation and deallocation functions.

Mathematical functions.

Searching functions (Hind and lsearch).

Declarations for setjmp and longjmp functions.

Declarations for signal and raise functions.

Variable-length argument list functions.

A number of standard constants.

Standard input and output functions.

Declarations for standard functions.

String and memory functions.

Time and date functions.

System level 110 functions.

Declarations for utime function.

110 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

Time and Date Preferences
The user (or a program) can specify the desired format for certain system para­
meters called preferences. These are maintained by.theSystemPreferences in a
resource file. You can get and set preferences by sending resource messages such
as msgResReadData to theSystemPreferences. Resources are explained in Part 11:
Resources.

System Time

One of the preferences is the current system date and time, with the well-known
resource ID prTime. The time is in an OS_DATE_TIME structure.

Getting this resource is an alternative to calling the OSGetTimeO routine.

Time Formats

Other user preferences indicate:

• Whether the user prefers time in military (24-hour) format or regular format
(resource ID prTimeFormat).

• Whether the user wants to see seconds in time displays (ID prTimeSeconds).

• How the user prefers to see dates displayed (ID prDateFormat).

Date and Time Strings

Instead of retrieving all these resources, then formatting a string accordingly, you
can call functions that create formatted strings for a specified time based on the
current user preferences:

• PrefsDateToStringO fills in a string you supply with the date. The string
should be at least prefsMaxDate long (this may change if additional formats
are added).

• PrefsTimeToStringO fills in a string you supply with the time. The string
should be at least prefsMax Time long (this may change if additional formats
are added).

I 6-Bit Character Support
PenPoint 2.0 will contain support for applications that are written for more than
one language or region. To support languages that have large numbers of
characters (such as Japanese), PenPoint 2.0 will support 16-bit characters.

PenPoint 1.0 already includes many features that will be used to support 16-bit
character sets. These features include:

• New character types and macro support.

• New run-time library string functions.

• New string composition functions.

CHAPTER 75 I C RUN-TIME LIBRARY 111
16-Bit Character Support

16-Bit Character Types

PenPoint provides three character types: CHARS, CHAR16, and CHAR. The first
two provide eight and sixteen bit characters, respectively. In PenPoint 1.0, the
plain CHAR type is 8 bits long; in PenPoint 2.0, CHAR is 16 bits long.

When you use CHARS, you can use standard C conventions for forming character
and string constants. That is:

CHAR8 *s = "string";
CHAR8 c = , c' ;

When you use the CHAR16 type, you must preceed the character or string
constant with the letter L, which tells the compiler you are using a 16-bit (or long)
character, as in:

CHAR16 *s = L"string"
CHAR16 c = L'c'

When you use the CHAR type, you must preceed the character or string constant
with the identifier "U_L", which means UNICODE, long. In PenPoint 1.0, this
tells the compiler to use 8-bit characters; in PenPoint 2.0, this tells the compiler to
use 16-bit characters.

CHAR *s = U_L"string";
CHAR c = U_L' c' ;

16-Bit String Function

The file INTL.H defines a new set of run-time library string functions that operate
on 16-bit characters. The names of the 16-bit functions are similar to the existing
8-bit functions, but the 16-bit function names are preceeded with the letter "U".
For example, strcmp() becomes Ustrcmp() .

In PenPoint 1.0, the U ... functions are identical to their 8-bit namesakes. In
PenPoint 2.0, the U ... functions will be true 16-bit functions. In other words, the
old functions only work on CHARS strings, the U ... functions in 1.0 work on
CHARS strings, in 2.0 the U ... functions will work on CHAR16 strings.

Table 75-2 lists the 16-bit string functions and the corresponding 8-bit functions.

75.3.1

Table 15~2
16 ... Bit String Functions

] 6·~lt flmdion 8-i\lt Furtdl@n

UstrcatO strcatO

UstrncatO strncatO

UstrcmpO strcmpO

UstrncmpO strncmpO

UstrcpyO strcpyO

112 PEN POINT ARCHITECTURAL REFERENCE

Part 8 I System Services

i 6·~it function ~~~lt Fundicm

UstrncpyO strncpyO

UstrlenO strlenO

UstrdupO strdupO

UstrrevO strrevO

UstrsetO strsetO

UstrnsetO strnsetO

UstrchrO strchrO

UstrrchrO strrchrO

UstrspnO strspnO

UstrcspnO strcspnO

UstrpbrkO strpbrkO

UstrstrO strstrO

UstrtokO strtokO

UstricmpO stricmpO

UstrnicmpO strnicmpO

UstrlwrO strlwrO

UstruprO struprO

UmemcpyO memcpyO

UmemccpyO memccpyO

UmemchrO memchrO

UmemcmpO memcmpO

UmemicmpO memicmpO

UmemmoveO memmoveO

UmemsetO memsetO

UstrerrorO strerrorO

UisalphaO isalphaO

UisalnumO isalnumO

UisasciiO isasciiO

UiscntrlO iscntrlO

UisprintO isprintO

UisgraphO isgraphO

UisdigitO isdigitO

UisxdigitO isxdigitO

UislowerO islowerO

UisupperO isupperO

UisspaceO isspaceO

UispunctO ispunctO

Utol ower 0 tolowerO

UtoupperO toupperO

CTYPE.H

CHAPTER 75 I C RUN-TIME LIBRARY 113
16-Bit Character Support

Table 75-2 (continued)

1 ~H~it Fundi<m ~H~it Fum:tion

STDUB.H

UatoiO atoiO

UatolO atolO

UitoaO itoaO

UltoaO ltoaO

UutoaO utoaO

UstrtolO strtolO

UatofO atofO

UstrtodO strtodO

UstrtoulO strtoulO

STDIO.H

UfopenO fopenO

UsprintfO sprintfO

UvsprintfO vsprintfO

UsscanfO sscanfO

UputcO putcO

UfputcO fputcO

UgetcO getcO

UfgetcO fgetcO

UungetcO ungetcO

UfdopenO fdopenO

UfreopenO freopenO

UprintfO printfO

UfprintfO fprintfO

UvprintfO vprintfO

UvfprintfO vfprintfO

UscanfO scanfO

UfscanfO fscanfO

UvscanfO vscanfO

UvfscanfO vfscanfO

UvsscanfO vsscanfO

UgetcharO getcharO

UfgetcharO fgetcharO

UgetsO getsO

UfgetsO fgetsO

Up utchar 0 putcharO

UfputcharO fputcharO

UputsO putsO

UfputsO fputsO

UremoveO remove 0
UrenameO renameO

UtmpnamO tmpnamO

114 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

16·ilit function $~3it function

UopenO openO

UsopenO sopenO

UcreatO creatO

UasctimeO asctimeO

UctimeO ctimeO

UrmdirO rmdirO

UchdirO chdirO

UgetcwdO getcwdO

UopendirO opendirO

UreaddirO readdirO

String Composition Functions

The file CMPSTEXT.H contains ComposeText functions for assembling a
composite string out of other pieces. Use these routines to create strings in your
UI-don't use sprintf()!

The ComposeText routines will also save you effort because you can specify the
resId of a format string and the code will read it from the resfile for you. You can,
of course, give the format string directly to the routines.

Table 75-3 lists the string composition functions.

Composes a string from a format and arguments.

75~3,,3

SComposeTextO

VSComposeTextO Composes a string from a format and a pointer to the argument list.

fCNTl.H

DIRENr~H

Chapter 76 / Math Run-Time Library

Introduction
9 PenPoint provides a ftxed-point math facility as a part of its run-time support for

ANSI C compilers. This math package resides permanently in the memory of the
computer and is shared among computational applications.

The mathematics library supports fixed-point calculations. Fixed-point arithmetic
is ideal for situations in which a ftxed-point number with 16 bits of precision for
the integer part and 16 bits of precision for the fractional part is acceptable.

Floating point support is provided directly by the C language and a shared library
called directly from the compiler.

Programmatic Interface
Application programs invoke the ftxed-point functions through procedure calls.
For example:

not:

FIXED a, b, Ci

STATUS Si

S = FxAdd(b, c, a)i

a = b + Ci

We have choosen the simplest procedure names possible in order to enhance
readability of programs. The details of the routines are in the PenPoint API
Reference.

Fixed-Point Numbers

The FIXED type is an 532. To create a ftxed-point number, you use the routine
FxMakeFixedO, specifying an 516 whole part and a U16 fractional part. For
convenience, \PENPOINT\SDK\INC\GOMATH.H deftnes GoFxO, GoFxl, and
GoFxMinusl.

ImagePoint uses FIXED numbers to specify scale factors. To save including
GOMATH.H just to specify a scale factor, the deftnitions of FIXED and
FxMakeFixedO are in \PENPOINT\SDK\INC\GO.H.

Performance Notes

FxAddO, FxSubO, FxMulO, and FxDivO, which include rounding and error
checking, perform about 5% slower than FxAddSCO, FxSubSCO, FxMulSCO,
and FxDivSCO, the truncating, trusting alternatives (which are macros instead of
function calls).

76.1

16.2~ 1

116 PENPOINT ARCHITECTURAL REFERENCE
Part 8 / System Services

PenPoint Fixed-Point Summary

FxAddO

FxAddSCO

FxSubO

FxSubSCO

FxMulO

FxMulSCO

FxMulIntO

FxMulIntSCO

FxMulIntToIntO

FxMulIntToIntSCO

FxDivO

FxDivSCO

FxDivIntsO

FxDivIntsSCO

FxDivIntToIntO

FxDivIntToIntSCO

FxSinO

FxCosO

FxTanO

FxSinFxO

FxCosFxO

FxTanFxO

FxArcTanIntO

FxArcTanFxO

Adds two FIXED numbers, producing a FIXED.

Macro form of FxAddO with no overflow detection.

Subtracts two FIXED numbers, producing a FIXED.

Macro form of FxSubO with no overflow detection.

Multiplies two FIXED numbers, producing a FIXED.

Multiplies two FIXED numbers returning the product. No overflow detection.

Multiplies a FIXED number by an S32, producing a FIXED.

Multiplies a FIXED number by an S32, returning the FIXED product. No overflow
detection.

Multiplies a FIXED number by an S32, producing an rounded S32 product.

Multiplies a FIXED number by an S32, returning a rounded S32 product. No overflow
detection.

Divides two FIXED numbers, producing a FIXED quotient.

Divides two FIXED numbers, returning a FIXED quotient. No overflow detection.

Divides two 32-bit signed integers, producing a FIXED quotient.

Divides two FIXED numbers, returning a FIXED quotient. No overflow detection.

Divides an S32 by a FIXED, producing a rounded S32 quotient.

Divides an S32 by a FIXED, producing a rounded S32 quotient. No overflow detection.

Returns the sine of an angle specified as an integer degree.

Returns the cosine of an angle specified as an integer degree.

Returns the tangent of an angle specified in as integer degree.

Returns the sine of an angle specified as a FIXED degree.

Returns the cosine of an angle specified as a FIXED degree.

Returns the tangent of an angle specified as a FIXED degree.

Returns an arctangent value as a FIXED angle.

Returns an arctangent value as a FIXED angle.

Function

FxCmpO

FxRoundToIntO

FxRoundToIntSCO

FxNegateO

FxAbsO

FxChopO

FxChopSC

FxFractionO

FxMakeFixedO

FxIntToFxO

FxBinToStrO

FxStrToBinO

CHAPTER 76 / MATH RUN-TIME LIBRARY 117
Programmatic Interface

Table 76-1 (continuedl

Description

Miscellaneous Functions

Compares two FIXED.

Rounds a FIXED number to a 32-bit signed integer.

Rounds a FIXED number to a 16-bit signed integer without overflow detection.

Negate a FIXED.

Takes the absolute value of a FIXED.

Returns the 16-bit signed integer part of a FIXED.

Returns the 16-bit signed integer part of a FIXED. No overflow detection.

Returns the 16-bit fractional part of the absolute value a FIXED.

Make a FIXED with an S16 (integer) and a U116 (fraction).

Convert a 16-bit signed integer into a FIXED.

Converts a FIXED format value into an ASCII string in decimal.

Converts a null-terminated ASCII string to a FIXED.

Part 9 /
Utility Classes

Chapter 77 / Introduction 123 Browser Notification Messages 80.3 145

Overview 77.1 123
The Selection Changed 80.3.1 145

Features 77.2 124
Bookmark Check Box Changed 80.3.2 145

Organization of This Part 77.3 125
Menu Messages 80.4 145

Other Sources of Information
User Columns 80.5 145

77.4 125

Chapter 78 / The List Class 127
Chapter 81 / File Import
and Export 147

List Concepts 78.1 127 Concepts
Using List Messages

81.1 147
78.2 128 Import Overview 81.1.1 148

Creating Lists 78.3 129 Export Overview 81.1.2 148

Positioning Within a List 78.4 129 Application Responsibilities 81.1.3 150

Adding, Removing, Getting, and Handling the clsImport Messages 81.2 150
Replacing Items 78.5 129 Responding to msgImportQuery 81.2.1 150

Counting Items 78.6 130 Responding to msgImport 81.2.2 151

Removing All Items 78.7 130 Handling the clsExport Messages 81.3 152

Enumerating Items 78.8 130
How Export Happens 81.3.1 152

Destroying Lists 78.9 131
Responding to msgExportGetFormats 81.3.2 152
Responding to msgExportN arne 81.3.3 153

JV Chapter 79 I Class Stream 133
Responding to msgExport 81.3.4 154

Overview 79.1 133 JV Chapter 82 / The Selection
Creating a Stream Object 79.2 134 Manager 155

Reading and Writing Streams 79.3 134 Concepts 82.1 155

Reading and Writing with a Timeout 79.4 134 The Selection Manager 82.1.1 155

Setting the Current Byte Position 79.5 135
Selection Owners 82.1.2 156

Flushing the Stream 79.6 136
Preserving the Selection 82.1.3 156

Examples
Selection Transitions 82.1.4 157

79.7 136 Determining What is Selected 82.2 157

Chapter 80 / The Browser Class 137 Classes that Handle Selection 82.3 157

Browser Concepts 80.1 137
The Selection Class Messages 82.4 157

Browsers and Tables of Contents 80.1.1 137 Messages from Clients to the

Integrating a Browser into SelectionManager 82.5 158

Your Application 80.1.2 138 Setting the Selection Owner 82.5.1 159

Using clsBrowser 80.2 138
Handling msgSelIsSelected 82.5.2 159

Creating a Browser Object 80.2.1 140 Messages Sent to Selection Owners 82.6 159

Getting the Current Selection 80.2.2 140 Handling msgSelYield 82.6.1 160

Setting the Current Selection 80.2.3 141 Handling msgSelDemote and

Making File System Changes 80.2.4 141
msgSelPromote 82.6.2 160

Refreshing the Browser Data 80.2.5 142 Handling msgSelDelete 82.6.3 160

Changing Information Displayed 80.2.6 142 Handling msgSelOptions and

Changing the Sort Order 80.2.7 142
msgSelOptionTagOK 82.6.4 160

Expanding and Collapsing Sections 80.2.8 143
Beginning Move and Copy Operations 82.6.5 160

Reading and Writing the Browser State 80.2.9 143
clsEmbeddedWin Handles Selection

Getting and Setting Browser Metrics 80.2.10 143
Messages 82.6.6 161

Changing the Browser Client 80.2.11 144 Messages Passed to the Selection Manager 82.7 161

Navigating With the Browser 80.2.12 144 Finding the Selection Owners 82.7.1 161

Getting the Internal Display Window 80.2.13 144 Setting the Selection Owner 82.7.2 162

Observer Notification 82.8 163

Chapter 83 / Transfer Class 165 Chapter 86 / Search and Replace 195

Concepts 83.1 165 Concepts 86.1 195

General Scenario 83.1.1 166 Writing a Class That Can Be Searched 86.2 196

Tags for Data Transfer Types 83.1.2 166 Search and Replace Protocol 86.2.1 196

Transfer Protocols 83.2 167 Creating a Mark 86.2.2 196

One-Shot Transfers 83.2.1 167 Setting the Initial Search Position 86.2.3 196

Stream Transfers 83.2.2 168 Getting the Next Group 86.2.4 197

Client-Defined Protocols 83.2.3 170 Passing the Found Characters 86.2.5 197

The Transfer Functions and Messages 83.3 170 Searching the Text 86.2.6 197

Establishing a Transfer Type 83.4 171
Highlighting Text 86.2.7 198

Requesting Transfer Types 83.4.1 172
Replacing Characters 86.2.8 198

Listing Transfer Types 83.4.2 172 Classes that Respond to Search Messages 86.3 198

Adding a Transfer Type to a List 83.4.3 172 The Search and Replace Messages 86.4 198

Searching a Transfer Type List 83.4.4 173

Performing One-Shot Transfers 83.5 173 ". Chapter 87 / Undo 199

Fixed-Length Buffer Transfers 83.5.1 174 Concepts 87.1 199

Variable-Length Buffer Transfers 83.5.2 174 The General Strategy 87.1.1 200

ASCII Metrics Transfers 83.5.3 175 Transaction Data 87.1.2 201

Replying to One-Shot Transfers 83.5.4 176 The Undo Messages 87.2 202

Performing Stream Transfers 83.6 176 Using the Undo Messages 87.3 202

Creating the Receiver's Stream 83.6.1 176 Beginning a Transaction 87.3.1 202

Creating the Sender's Stream 83.6.2 177 Adding Items to a Transaction 87.3.2 203

Freeing the Stream 83.6.3 177 Ending a Transaction 87.3.3 204

Accessing the Stream's Auxiliary Data 83.6.4 177 Aborting a Transaction 87.3.4 204

Connecting a Stream to a Producer 83.6.5 178 Getting Transaction Metrics 87.3.5 205

Initializing a Stream 83.6.6 178 Changing the Size of the
Transaction History 87.3.6 205

" Chapter 84 / Help 179 Undoing a Transaction 87.3.7 206

Help Concepts 84.1 179 Handling msgU ndoItem 87.3.8 206

The Help Notebook 84.1.1 179 Handling msgU ndoF reel tern 87.3.9 206

Quick Help Concepts 84.1.2 181

Defining Quick Help Resources 84.2 183
" Chapter 88 / Byte BuHer Obiects 207

Defining the Quick Help String Array 84.2.1 183 Concepts 88.1 207

Storing the Resource ID in a Gesture Using the Byte Buffer Messages 88.2 208

Window 84.2.2 186 Creating a Byte Buffer Object 88.2.1 208

Advanced Topics 84.3 187 Getting the Byte Buffer Data 88.2.2 208

Quick Help Message Summary 84.3.1 187 Resetting a Byte Buffer Object 88.2.3 208

Using Quick Help Messages 84.3.2 187 Notification of Observers 88.2.4 209

Using the PenPoint Gesture Font 84.3.3 188
". Chapter 89 / String Obiects 211

" Chapter 85 / The Busy Manager 193 Concepts 89.1 211

Using theBusyManager 85.1 193 Using the String Object Messages 89.2 212

Placing the Busy Display 85.1.1 193 Creating a String Object 89.2.1 212

The Busy Clock Delay and Reference Count 85.2 194 Getting the String Object 89.2.2 212

Resetting a String Object 89.2.3 212

Notification of Observers 89.2.4 212

~ Chapter 90 / Table Class 213 List of Figures
A Distributed DLL 90.1 213 81-1 Export Dialog 149
Table Concepts 90.2 213 84-1 A Quick Help Window 186

Describing a Table 90.2.1 213
Table Data Files 90.2.2 214 List of Tables
Beginning Table Access 90.2.3 214 78-1 clsList Messages 128
Positioning in Tables 90.2.4 215 79-1 clsStream Messages 133
Observing Tables 90.2.5 215 80-1 clsBrowser Messages 138

Shared Tables 90.3 215 80-2 Browser Menu Messages
Ownership 145

90.3.1 216
81-1 clsImport Messages Access to the Table Object 90.3.2 216 150

Concurrency 90.3.3 216 81-2 clsExport Messages 152

Using Tables in a Database 90.4 217 82-1 clsSelection Messages 158

Using Table Messages 90.5 217 83-1 clsXfer Transfer Types 166

Defining a Table 90.6 218 83-2 clsXfer Functions 170

Creating a Table Object 90.7 220 83-3 clsXferStream Messages 171

Observing Tables 90.8 220 83-4 Transfer Buffer Types 174

Start Access 90.9 221 84-1 clsQuickHelp Messages 187

Using Semaphores 90.10 222 84-2 PenPoint Gesture Font 188

Adding Rows to a Table 90.11 222 86-1 Search and Replace Messages 198

Setting Data 90.12 223 87-1 clsUndo Messages 202

Getting Data 90.13 223 88-1 clsByteBuf Messages 208

Deleting a Row 90.14 224 89-1 clsString Messages 212

Searching a Table 90.15 224 90-1 clsTable Messages 217

Getting Information About a Table 90.16 226 90-2 Table Column Data Types 219

Finding a Column Number 90.16.1 226 90-3 Table Boolean Operators 225
Converting a Row Number to a 90-4 Table Information Messages 226
Row Position 90.16.2 226 91-1 clsNotePaper Messages
Getting the Number of Columns

231
91-2 clsNPData Messages in a Table 90.16.3 227 233

Getting the Description of a Column 90.16.4 227 91-3 clsNPltem Messages 234

Getting the Entire Table Description 90.16.5 227 List of Examples Getting the Number of Rows 90.16.6 227
Getting the Length of a Row 90.16.7 227 84-1 Defining a Quick Help Resource 184
Getting a Table's State 90.16.8 227 90-1 Creating a Table 221

Ending Access 90.17 228 90-2 Beginning Access to a Table 221
Freeing a Table 90.18 228 90-3 Using -Table Semaphores 222

,. Chapter 91 / The NotePaper
Component 229

The clsN otePaper View 91.1 229
NotePaper Metrics 91.2 230
NotePaper Messages 91.3 231
NotePaper Data 91.4 232
NotePaper Data Items 91.5 234

Chapter 77 / Introduction

The utility classes provide services to applications and other classes. Many of the
classes documented here are subclassed to implement special features. The
following classes are included in this part:

• The list class.

• The stream class.

• The file system browser.

• The import and export classes.

• The selection manager.

• The transfer class and protocol.

• The Quick Help class.

• The busy manager.

• The search and replace class and protocol.

• The undo manager.

• The byte buffer and string storage classes.

• The table component.

• The system component.

• The NotePaper component.

Overview
There are various funtions which many objects in object-oriented systems have a
use for, such as:

• Maintaining a list of items or table of data.

• Accessing a stream device.

• Browsing a directory or table of contents.

The PenPoineM operating system supplies basic classes for each of these toolkit
functions. They are each like a function library in ordinary procedural
programming. The difference is that not only can your objects employ these utility
objects, they can actually be a list, stream, or browser, by inheriting from them. If
you look at the GO class diagram you will notice many sophisticated classes which
inherit from these utility classes.

77'.1

124 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Features
• clsList provides a fundamental set of tools for creating and managing a list of

32-bit values. It is no coincidence that UIDs and pointers are also 32-bits
long. You can use these objects to store lists of UIDs or pointers to larger
structures and you can pass these list objects to other objects.

• clsStream provides the basic messages used to communicate with a stream
device. Many other classes descend from clsStream, such as clsFileSystem
(the File System) and clsSio (the Serial Port class).

• The browser allows you to create a browser window or a table of contents on
screen so that the user can manipulate the files and directories or documents
and sections.

• File import and export uses messages from the browser to import files as
PenPoint documents and to export PenPoint documents as files.

• The selection manager provides a central manager that keeps track of the
selection owner. The selection manager notifies observers when the selection
changes.

• The transfer class provides the messages and functions that implement the
PenPoint operating system transfer protocol, which objects can use to
exchange data.

• The Quick Help API provides a simple way to provide help to users. When
the user makes a question mark gesture on a window, the Quick Help man­
ager locates the Quick Help resources associated with that window and dis­
plays the resources on screen.

• The busy manager allows applications to inform the user when a
time-consuming operation is taking place, thereby reassuring the user that
the machine is still running.

• The search and replace API provides the protocol and traversal driver to
search and replace text strings in embedded objects.

• The undo manager enables applications to respond to the Undo command
to undo user interface actions.

• clsByteBuf and clsString implement simple data objects which file byte
arrays and null~terminated strings.

• clsTable provides a general-purpose table component using a row and
column metaphor to implement random and sequential access to data in
a file.

• clsN otePaper, clsNPData, and clsNPltem together provide most of the
function neces~ary for a small note-taking application, including a generic
data item protocol that allows arbitrary items in the notes.

77/1.

CHAPTER 77 / INTRODUCTION 125
Other Sources of Information

Organization of This Part
This part is organized into 15 chapters:

• Chapter 77, this chapter, provides an introduction to the utility classes.

Each of the following chapters describes one utility class:

• Chapter 78, The List Class, describes the list class and how you use it to
maintain lists.

• Chapter 79, Class Stream, describes the stream I/O subsystem.

• Chapter 80, The Browser Class, describes the API for the file browser.

• Chapter 81, File Import and Export, describes the classes that you use to
import files as PenPoint documents and to export PenPoint documents as
files.

• Chapter 82, The Selection Manager, describes the API to the manager that
controls selection ownership.

• Chapter 83, Transfer Class, describes the generalized data transfer mechanism.

• Chapter 84, Help, describes the Help notebook and the Quick Help API.

• Chapter 85, The Busy Manager, describes the interface that you use to
indicate to the user that the machine is busy.

• Chapter 86, Search and Replace, describes the messages used to search and
replace text in applications.

• Chapter 87, Undo, describes how to use the undo manager so that your
application can respond to Undo commands.

• Chapter 88, Byte Buffer Objects, describes the byte buffer data object class.

• Chapter 89, String Objects, describes the string data object class.

• Chapter 90, Table Class, describes the concepts of the table component, how
to use a table, sharing tables, and table messages.

• Chapter 91, The NotePaper Component, describes the classes that make up
the NotePaper component, a very capable data/view system for note taking
applications.

Other Sources of Information
There are hundreds of classes in the PenPoint operating system, many of which
will also be of great use to you in developing your application. Other classes are
described throughout the PenPoint Architectural Reference.

Not everything in PenPoint is object-oriented. Utility functions in the PenPoint
C run-time library are documented in Part Eight: System Services, of this volume of
the PenPoint Architectural Reference.

Datasheets for all utility class messages of the utility classes are in the PenPoint API
Reference.

77.3

77.4

Chapter 78 / The List Class

clsList provides fundamental functions for maintaining lists of 4-byte values.
Typically, a list contains either the UIDs of related objects or pointers. This
chapter covers the following topics:

• The concepts of lists.

• How to use the list messages.

List Concepts 78.1

A list is an object that holds a collection of items. Many components in the PenPoint™
operating system use lists for keeping track of objects and exchanging information.
Each item in the list is 32 bits in length; often this is a handle on (or a pointer to) a
larger item. Lists have no semaphores or other forms of access control mechanisms.

The messages defined by clsList allow you to:

• Create and destroy lists.

• Add items to and remove items from a list.

• Replace items in a list.

• Find an item in a list.

• Count the items in a list.

• Remove all items from a list.

• Copy a part or all of the list to an array.

A simple picture of a list is a series of 4-byte cells that hold data. The list object
maintains an index to the current item (position). This index is used by most
messages that alter data in the list. To point to the beginning of the list, set
position to the value 0; to point to the end of the list, set position to the number
of members in the list (which you obtain through msgListNumltems).

128 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Using List Messages
Table 78-1 summarizes the clsList messages. clsList is a descendent of clsObject.

msgNew

msgN ewDefaults

msgListFree

msgListAddItem

msgListAddItemAt

msgListRemoveI tem

msgListRemoveI temAt

msgListReplaceI tem

msgListGetItem

msgListFindItem

msgListN umItems

msgListRemoveI tems

msgListGetHeap

msgListEnumItems

msgListCall

msgListSend

msgListPost

msgListNotifyAddition

msgListNotifyDeletion

msgListN otifyReplacement

msgListNotifyEm pty

P_LIST_NEW

P_LIST_NEW

P _LIST_FREE

LIST_ITEM

P _LIST_ENTRY

LIST_ITEM

P _LIST_ENTRY

P _LIST_ENTRY

P _LIST_ENTRY

P _LIST_ENTRY

P_U16

no arguments

P _OS_HEAP _ID

P _LIST _ENUM

P _LIST_NOTIFY

P _LIST_NOTIFY

P _LIST_NOTIFY

78~1

clsList Messages

Creates a new empty list.

Initializes the LIST_NEW structure to default
values.

Frees a list according to mode.

Adds an item to the end of a list.

Adds an item to a list at pArgs->position.

The list searches for pArgs in the list and removes
the item if found.

Removes the item in the list at pArgs->position.

Replaces the item in the list at pArgs->position.

Gets the item in the list at pArgs->position.

Searches for pArgs->item in the list.

Passes back the number of items in a list.

Removes all of the items in a list.

Passes back the heap used by the list.

Enumerates the items in a list.

Sends a message to each object in the list using
ObjectCallO.

Sends a message to each object in the list using
ObjectSendO.

Sends a message to each object in the list using
ObjectPostO.

P _LIST_NOTIFY_ADDITION Notifies observers that an item has been added to
the list.

P _LIST _NOTIFY_DELETION Notifies observers that an item has been deleted
from the list.

P _LIST _NOTIFY_REPLACEMENT Notifies observers that an item in the list has
been replaced.

Notifies observers that a list is now empty.

CHAPTER 78 I THE LIST CLASS 129
Adding, Removing, Getting, and Replacing Items

Creating Lists
To create a new list, send msgN ew to clsList. msgN ew takes a LIST_NEW

structure that specifies:

fileMode A filing mode indicator, which specifies how the list object should
file items if it receives msgFile. There are three filing modes:

listFileltemsAsData File items as U32 data.

listFileltemsAsObjects Send filing messages to ~tems.

listDoNotFileltems Don't file list items. Upon restore, the list will be
empty.

18.3

Positioning Within a List 18.4

Each list object maintains a current position indicator. You can change the
position by sending msgListFindltem to the list object. You must declare a
LIST_ENTRY structure and specifY:

position The place to start the search.

item The item you are searching for.

msgListFindltem returns the first position where it found the item. If the item
was not found, msgListFindltem returns stsNoMatch.

Adding, Removing, Getting, and Replacing 18.5

Items
When you have the position of an item, you can do any of the following:

• Add a new item at that position with msgListAddltemAt.

• Get the item at that position with msgListGedtem.

• Remove the item at that position with msgListRemoveltemAt.

• Replace the item at that position with msgListReplaceltem.

The four messages related with these tasks are similar. All messages require you to
declare a LIST_ENTRY structure, which contains:

position A position within the list.

item A 32-bit list item.

To add an item to the list, send msgListAddltemAt to the list. You specifY the
item to add to the list and its position. The list manager adds the item at the
specified position (placing it before the item that is currently at that position). The
message returns the new item and its position.

To get an item from the list, send msgListGedtem to the list. You specifY only a
position. The message returns the item and its position.

130 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

To remove an item from the list, send msgListRemoveltemAt to the list. You
specify only the position. The message returns the removed item and its position.
The heap memory where the item was stored is freed.

To replace an item in the list, send msgListReplaceItem to the list. You specify the
item to add to the list and its position. The message returns the old item and its
position.

You can read through a list by starting with the first item (give position the value
0), and increment position for each item.

If you specify a position that is beyond the end of the list, the message uses the last
item in the list; if you use a position beyond the end of the list in an add
operation, the item is added to the end of the list. A good way to access the end of
the list is to use the constant maxU16 for the position value.

Counting Items
To get the number of items in a list, send msgListNumltems to the list. The
message takes only a pointer to a U16 value that will receive the count.

Removing All Items
Before you destroy a list, it is a good idea to remove all items from the list, thereby
removing them from the heap so that you don't have to clear the items from the
heap by hand. To remove all items from the list, send msgListRemoveltems to the
list. The message does not require any arguments.

Enumerating Items
To copy the list, or a portion of the list, to an array, send msgListEnumltems to
the list. When the message copies the items to the array, you can perform any
operation on the items, such as sorting the list or sending messages to UIDs. You
must declare a LIST _ENUM structure and specify:

max The size of the array, if you have allocated one.

count The number of items you are requesting.

pltems A pointer to an array, if you have allocated one.

pNext A pointer to a value that contains the current position in the list. Use
the value 0 to start at the beginning of the list.

You can either create the array yourself or you can specify a null pointer for
pltems, in which case msgListEnumltems will allocate an array for you. If you
create an array that is smaller than count, msgListEnumltems will allocate a new
array that can contain count items.

msgListEnumltems uses count to indicate the number of items that it returned.

If msgListEnumltems allocated an array, it returns the size of the array in max
and the pointer to the new array in pltems. After each call to msgListEnumItems,
it is a good idea to make sure that the pointer sent to the message is the same as

78,,1

18.8

CHAPTER 78 I THE LIST CLASS 131

the pointer returned. If the two are different, a new array was allocated. It is
important that you note this, because it is up to you to de-allocate the array.

If the list is long, or you can't allocate a large amount of storage for your array, you
can read the list in chunks (by specifying a small count value). When the message
returns, pNext contains the index to the next item in the list. Usually pNext
points to the end of the list, but if count was less than the size of the list, pNext
points to count + 1.

Destroying Lists

Destroying Lists 18.9

To free a list, send msgDestroy to the list object as usual. This frees the list data
structures but does not affect the items in the list.

If the items in the list are objects that you want to destroy along with the list
object, then use msgListFree. The message arguments are in a LIST_FREE structure
that contains:

key The object key for the list object~

mode A mode that specifies whether to free the items in the list or not.
There are two possible values for mode:

listFreeltemsAsData The items in the list should be treated like U32

data that doesn't need freeing.

listFreeltemsAsObjects The items in the list should be freed as objects.
dsList sends the items msgDestroy (with a nil key). All items in the list
must be object UIDs.

Chapter 79 / Class Strealll

clsStream is an abstract superclass that defines messages for common stream
operations. A stream operation is one in which files or data items are treated as
a series of individual bytes.

clsStream inherits from clsObject. Many classes descend from clsStream. Structures
and \PENPOINT\SDK\INC\STREAM.H defines the structures and macros clsStream uses.

Overview 79.1

clsStream is an abstract class; it does not implement the methods for its messages.
It is up to the individual subclasses to implement the methods.

Any class that subclasses clsStream must implement the "descendant responsibility"
messages listed in Table 79-1.

msgN ewDefaults

msgNew

msgStreamRead

msgStream Write

msgStreamReadTimeOut

msgStream Write TimeOut

msgStreamFlush

msgStreamSeek

msgStreamBlockSize

StdioStreamBindO

StdioStream UnbindO

StdioStream ToObjectO

P _STREAM_NEW

P _STREAM_NEW

P _STREAM_READ _WRITE

P _STREAM_READ _ WRITE

P _STREAM_READ _WRITE_TIMEOUT

P _STREAM_READ_ WRITE_TIMEOUT

pNull

P _STREAM_SEEK

P _STREAM_BLOCK_SIZE

OBJECT

P _UNKNOWN (FILE *)

P _UNKNOWN (FILE *)

79'~1

clsStreamMessages

Initializes defaults for new stream object.

Creates a new stream object.

Reads data from stream.

Writes data to stream.

Reads data from stream with timeout.

Writes to the stream with timeout.

The stream flushes any buffered data.

Sets the stream's current byte position.

Passes back the most efficient write block
size for this stream.

Returns a stdio file pointer bound to a stream
object.

Frees the stdio file handle bound to a stream
object.

Returns the stream object bound to a stdio file
pointer.

134 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

You can send these messages to any object whose class has implemented methods for
them. The most common stream object is a file handle; clsFileHandle is a subclass of
clsStream. For further discussion of the file system, see Part 7: File System.

Other stream objects are selection transfers, serial I/O, and the many kinds of
services (printers, Out boxes, etc.).

Creating a Stream Obiect
Before you can write or read a stream, you must create a stream object. To create a
stream object, send msgNewDefaults and msgNew to a clsStream subclass
(because clsStream is an abstract class, you should not create instances of
clsStream itsel f) .

Reading and Writing Streams
To read or write stream data, send msgStreamRead or msgStreamWrite to a
stream object. Both messages require you to declare a STREAM_READ_ WRITE

structure that specifies:

numBytes The number of bytes to read or write.

pReadBuffer A pointer to a buffer to receive the data, or containing data to
be written. On msgStreamRead, the buffer must hold at least numBytes
of data.

The STREAM_READ_WRITE structure passes back in count the number of bytes
read or written.

If the number of bytes read or written (count) equals the number of bytes
specified (numBytes), the messages return stsOK.

If you read the end of the stream and the number of bytes read is greater than
zero, msgStreamRead returns stsO K. If you read the end of the stream and the
number of bytes read is zero, msgStreamRead returns stsEndOfData. If you
specify zero for numBytes after you receive stsEndOfData, msgStreamRead
returns stsO K.

Reading and Writing with a Timeout
The stream messages with timeouts are similar to the non-timeout messages.
msgStreamRead and msgStream Write return when a certain number of bytes
have been read or written (or when the end of the stream is reached). The timeout
stream messages (msgStreamReadTimeOut and msgStream WriteTimeOut)
return when either of two conditions is met:

• A certain number of bytes have been read or written (or when the end of
. stream is reached).

• A specified amount of time elapses.

79.2

79.4

CHAPTER 79 I CLASS STREAM 135
Setting the Current Byte Position

To read or write stream with a timeout, send msgStreamReadTimeOut or
msgStreamWriteTimeOut to a stream object. Both messages take a pointer to
a STREAM_READ_WRITE_TIMEOUT structure that contains:

numBytes The number of bytes to read or write.

pBuf A pointer to a buffer to receive the data, or containing data to be
written. On msgStreamReadTimeOut, the buffer must hold at least
numBytes of data.

timeOut A timeout value in milliseconds.

If the message completes successfully, it returns stsOK and passes back the number
of bytes read or written in the count field of the STREAM_READ _ WRITE_TIMEOUT

structure.

If you read to the end of the stream and the number of bytes read is less than
the number of bytes requested, msgStreamRead returns the warning status
stsTimeOutWithData.

If the timeout expires before numBytes bytes were read or written, the messages
return the warning status stsTimeOutWithData.

If the timeout expired and no data was read or written, the messages return the
error status stsEndOfData.

SeHing the Current Byte Position
Some subclasses of clsStream can seek to a specific byte position in the stream.
This is true for file operations and some buffered operations, but is obviously not
possible when the stream originates from a serial port or a keyboard.

To get and set the current stream position, use the message msgStreamSeek. The
message takes a STREAM_SEEK structure that contains:

mode The starting position for the seek. This can be anyone of the
following:

streamSeekBeginning Seek is relative to the beginning of the stream.

streamSeekEnd Seek is relative to the end of data.

streamSeekCurrent Seek is relative to the current position of the stream.

offset The offset in bytes. This offset is a signed value. Positive offsets move
the current byte position closer to the end of stream; negative offsets
move it closer to the beginning of the stream.

If you just want to find out the current byte position, specify 0 as the offset value,
relative to the current position.

If the subclass of clsStream does not support seeks, it should return
stsMessageIgnored. There is no way for a client to find out ahead of time whether
the stream supports seeks or not.

If msgStreamSeek completes successfully, it passes back a STREAM_SEEK structure
including the following fields:

136 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

curPos The current position in the stream, relative to the beginning.

oldPos The old position, relative to the beginning.

eof A BOOLEAN value that indicates whether the new position is at the end
of data.

The following example code fragment shows msgStreamSeek passing back the
current position:

STREAM_SEEK ss;
OBJECT stream;

ss.offset = 0;
ss.mode = streamSeekCurrent;
status = ObjectCall(msgStreamSeek, stream, &ss);
Debugf("Seek: Old Position: %ld, New Position: %ld %s",

ss.oldPos, ss.curPos, ss.eof ? "(EOF)" : "H);

The following example code fragment shows msgStreamSeek setting the current
byte position to 80 bytes after the beginning of the stream:

STREAM_SEEK ss;
OBJECT stream; II stream handle

ss.offset = 80;
ss.mode = streamSeekBeginning;
status = ObjectCall(msgStreamSeek, stream, &ss);
Debugf("Seek: Old Position: %ld, New Position: %ld %s",

ss.oldPos, ss.curPos, ss.eof ? "(EOF)" : '"');

You can't set the current byte position before the beginning of the stream or beyond
the end of data. If you seek from the current position and specify a byte offset that is
before the beginning of the stream, the new position is the beginning of the stream; if
the offset is after the end, the new position will be the end of stream. However, if you
specify seek relative to the beginning of the stream and pass a negative byte offset, or
you specify seek relative to the end of data and pass a positive byte offset,
msgStreamSeek returns stsBadParam.

Flushing the Stream
Occasionally you need to wait for a buffer to be written out before you can con­
tinue processing (or shut down an application). To flush the stream buffer, send
msgStreamFlush to the stream object. The message doesn't take any arguments.

If the message succeeds in emptying the buffer, it returns stsOK. If the buffers do
not empty after a timeout period, the message returns stsFailed. When you
subclass dsStream, you must establish a timeout period.

All the sample programs which file use msgStreamWrite in response to msgSave to
save state, and use msgStreamRead in response to msgRestore to restore state. See the
source code under \PENPOINT\SDK\SAMPLE for simple examples of using these.

79,,7

Chapter 80 / The Browser Class

The browser class, clsBrowser, allows you to create a browser window in your
application. By making your application a client of a browser, the application
receives messages when the user taps on items in the browser. A browser is very
useful for file selection dialogs. Since the application hierarchy is part of the file
system hierarchy, a browser can also display the state of a notebook or section.
The Table of Contents of the Notebook and the Disks page of the Connections
notebook are examples of the use of browsers.

Browser Concepts
A browser is a window that contains a list of files and directories on a particular
volume. As with the Disks page of the Connections notebook, which is docu­
mented in the manual Using PenPoint, the user can scroll the browser window.
If the user double taps on a directory, the directory expands to display its files
and directories; another double tap on the directory collapses it down to its name.

The user can select the criterion for sorting files and directories. The user can also
choose what information to show about files and directories.

clsBrowser allows your application to display and control a browser window, just
like the Connections notebook You can send commands to the browser to change
the sort order, to display certain information, to go to or bring to the selection, to
set the selection to a particular file system node, and so on.

Additionally, if you application is a client of a browser window, it receives
notification messages when the user makes a selection, turns off the selection, or
taps on a bookmark check box.

clsBrowser inherits from clsScrollWin, a UI Toolkit class that supports scrolling.
You insert a browser window object into your application just like you would
insert a scrollwin. The object that displays the browser contents is actually the
client window inside the scrollwin. Usually you don't have to do anything to this
"hidden" object; however if you need to modify it, you can get its UID by sending
msgBrowserGetBrowWin to the browser object.

Browsers and Tables of Contents

A table of contents is a specialized form of a browser window. While a browser
shows you the files and directories in a particular volume, a table of contents
displays the sections and documents in a notebook.

When you create an instance of clsBrowser, you can specify whether you want to
create a browser or a table of contents (in the tocView field of the BROWSER_NEW

structure) .

80.1

80. L 1

138 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

If you create a table of contents, the window displays a list of sections and
documents, their page number, and the bookmark checkbox. You can choose
whether to sort by name or by page number, and whether or not to display the
bookmark check box or the icon for the application.

If you create a browser, whether a standard browser or a table of contents, the window
displays a list of files and directories (the table of contents variation of clsB rows er
interprets them as PenPoint documents). You can choose to sort the list by name,
size, or date and whether or not to display the size, date, type, or icon.

Integrating a Browser into Your Application

If you incorporate a browser into your application, you should consider the user
interface guidelines for dialog boxes.

You can give your browser a menu bar similar to the menu on the Disks page of
the Connections notebook by creating a menu bar (an instance of clsMenu) with
commands such as Expapd and Collapse, and adding the menu bar to your frame.
If the browser is a floating frame, to follow the user interface guidelines you
should create a command bar (an instance of clsCommandBar), to provide Apply
and Apply & Close buttons, and a close corner for your browser dialog.

For more information about clsMenu and clsCommandBar, see Part 4: UI
Toolkit. For more information about user interface guidelines, see the PenPoint
User Interface Design Reference manual.

Using clsBrowser
Table 80-1 lists the messages clsBrowser handles.

msgN ewDefaults

msgNew

msgBrowserCreateDir

msgBrowserByN ame

msgBrowserByType

msgBrowserBySize

msgBrowserByDate

msgBrowserExpand

msgBrowserCollapse

nothing

nothing

nothing

80~1

clsBrowser Messa es

Initializes the BROWSER_NEW structure to
default values.

Creates a new browser object.

Creates a directory at the selection.

Sorts by name order.

Sorts by type order.

nothing Sorts by size order.

nothing Sorts by date order.

nothing or P _FS_FLAT_LOCATOR Expands the section or directory that the argument
identifies. If the argument is pNull, expands all
sections or directories.

nothing or P _FS_FLAT_LOCATOR Collapses the section or directory that the argument
identifies. If the argument is pN ull, collapses all
sections or directories.

Message

msgBrowserRefresh

msgBrowserDelete

msgBrowserRename

msgBrowserConfirmDelete

msgBrowser Export

msgBrowser ByPage

msgB rowserWriteS tate

msgBrowserReadState

msgBrowserSetSaveFile

msgBrowserGetMetrics

CHAPTER 80 I THE BROWSER CLASS 139
Using clsBrowser

Table 80-1 tcorltlmJedl

Tokes Oescripti<;m

nothing Refreshes the disk image the browser is displaying.

nothing or P _FS_FLAT _LOCATOR Deletes selection if arg is pNull, otherwise deletes
the file that the argument identifies.

nothing or P _FS_FLAT _LOCATOR Renames the selection if argument is pNull.

BOOLEAN

nothing

nothing

nothing

nothing

Otherwise, renames the file that the argument
identifies.

Sets a flag whether to confirm deletions within
a browser (OBSOLETE).

Puts the selection into export mode (OBSOLETE).

Sorts by page number.

Writes the current browser expanded/collapsed
state to a file.

Reads the browser expanded/collapsed state from a
disk file.

Sets the file that the browser will save open/close
state to.

Gets browser metrics.

msgBrowserSetMetrics P _BROWSER_METRICS Sets browser metrics.

msgBrowserUserColumnGetState P _BROWSER_ USER_COLUMN Does nothing.

msgBrowserUserColumnSetState P _BROWSER_USER_COLUMN Sets the user column states in the browser for
columns that are marked changed.

msgBrowserUserColumnStateChanged P _BROWSER_USER_COLUMN Notifies subclass when user checks a user
column checkbox.

msgB rowserUserColumnQueryS tate P _BROWSER_USER_COLUMN Gets the user column state from subclass.

msgBrowserShowIcon BOOLEAN Controls icon field display.

msgBrowserShowButton

msgBrowserShowSize

msgBrowserShowDate

msgBrowserShowType

msgBrowserShowBookmark

msgBrowserShowHeader

msgBrowserGoto

msgBrowserGotoBringto

msgBrowserUndo

msgBrowserSetSelection

msgBrowserSetClient

msgBrowserGetClient

msgBrowserGetBaseFlatLocator

msgBrowserSelectionPath

msgBrowserSelection

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

P _BROWSER_GOTO

nothing

P _FS_FLAT_LOCATOR

OBJECT

P_OBJECT

P _FS_FLAT _LOCATOR

P _BROWSER_PATH

P _FS_FLAT_LOCATOR

Controls button field display.

Controls size field display.

Controls date field display.

Controls type field display.

Controls bookmark field display.

Controls column header display.

Takes true to goto, false to bring to the selection.

Takes P _BROWSER_GOTO. If pFlat is pNull,
applies to selection.

Does nothing yet.

Causes browser/TOC to select and display the given
file system item.

Sets the target of the browser client messages.

Passes back the target of the browser client messages.

Passes back the directory the browser is looking at.

Passes back the full path of the selection.

Passes back the flat locator of the selection.

(ontiruJed

140 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

[)es(;riptit'>r!

80-1

Nbess@~@

msgBrowserSelection UUID P_UUID Passes back the UUID of the selection.

msgBrowserSelectionDir

msgBrowserSelectionN arne

msgBrowserSelectionOn

msgBrowserSelectionOff

msgBrowserBookmark

msgBrowserCreateDoc

msgB rows erG etBrowWin

msgBrowserGesture

msgBrowserGet ThisApp

msgBrowserSet ThisApp

P _FS_FLAT _LOCATOR

P_CHAR

nothing

nothing

P _B ROWS ER_ CREATE_DOC

P_OBJECT

P _B ROWS ER_ GESTURE

P_OBJECT

OBJECT

Creating a Browser Obiect

Passes back the flat locator of the directory the
selection is in.

Returns the name of the selection.

Notifies client when a selection is made inside
the browser.

Notifies client when selection is yielded by the
browser.

Notifies client that the bookmark specified by
locator has toggled.

Creates a directory.

Passes back the browser's internal display window.

Sends to self gesture and which file it landed on.

Returns the application associated with this
instance of clsBrowser.

Sets the application associated with this instance
of clsBrowser.

To create a browser window, send msgNewDefaults and msgNew to clsBrowser.
The messages take a BROWSER_NEW structure that contains:

base A locator that indicates the starting point in the file system to browse.

client The name of the client that is to receive the browser messages.
Usually client contains self.

tocView A BOOLEAN value that indicates whether the browser should take
the appearance of a browser or a table of contents. If tocView is true, the
browser object is a table of contents.

Getting the Current Selection

You can use browser messages to get a file system path to the current browser
selection.

• To get a flat locator for the current selection, send msgBrowserSelection to
the browser object.

• To get the full path of the directory that contains the current selection, send
msgBrowserSelectionDir to the browser object.

The following three messages all take a pointer to a FS_FIAT_LOCATOR structure,
which they use to return the path or name of current selection. Flat locators are
explained in Part 7: File System.

• To get the full path of the selection, send msgBrowserSelectionPath to the
browser object. This takes a pointer to a BROWSER_PATH structure.

CHAPTER 80 / THE BROWSER CLASS 141

• To get the name of the selection, send msgBrowserSelectionName to the
browser object. This takes a pointer to a string.

• To get the UUID of the selection, send msgBrowserSelectionUUID to the
browser object. This takes a pointer to a UUID.

SeHing the Current Selection

To specify which file system object should be displayed by the browser, send
msgBrowserSetSelection to the browser object. The message takes a pointer to a
FS_FIAT_LOCATOR structure that contains the path to the file system object.

When the message completes, the browser display scrolls and displays the specified
file system object.

Making File System Changes

You can use browser messages to create, rename, and delete directories or files.

• To create a new directory, send msgBrowserCreateDir to the browser object.
msgBrowserCreateDir creates a directory in the directory that contains the
current selection. The location of the new directory is unimportant, because
it will be positioned according to the current sort order.

• To create a new document, send msgBrowserCreateDoc to the browser
object.

• To rename a directory or file, send msgBrowserRename to the browser
object. msgBrowserRename brings up a dialog box to rename the current
selection or a file system node specified by a flat locator.

• To delete a directory or file, send msgBrowserDelete to the browser object.
msgBrowserDelete deletes the current selection or a file system node
specified by a flat locator.

msgBrowserCreateDir takes no arguments. msgBrowserRename,
msgBrowserExport, and msgBrowserDelete take one argument; if that argument
is null, the message affects the current selection; if the argument contains a pointer
to a FS_FIAT_LOCATOR structure, the message affects the file system node
indicated by the flat locator.

msgBrowserCreateDoc takes a pointer to a BROWSER_CREATE_DOC structure
that contains:

docClass The class of the document to create.

pName A pointer to a string that contains the name of the new document.

xy An XY32 value that specifies where to place the new document. This
value is meaningful only when atSelection is false. clsBrowser will create
the new document as close to the xy position as possible.

atSelection A BOOLEAN value that specifies whether to create the new
document immediately after the current selection or at the location

Using clsBrowser

80.2.3

142 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

specified by xy. If atSelection is true, dsBrowser creates the new
document at the current selection. If false, uses the value in xy.

Refreshing the Browser Data

The browser doesn't monitor the file system for changes. Occasionally you might
need to tell the browser to update its information about the state of the file
system. To do this, send msgBrowserRefresh to the browser object.

The message doesn't take any arguments. When the message completes
successfully, the browser reflects the new file system state.

Changing Information Displayed

dsBrowser defines messages that allow you to select the information displayed by
the browser. You can elect to show or not show information by sending these
messages to the browser object:

• Send msgBrowserShowIcon to display the icon for the file or section.

• Send msgBrowserShowSize to display the size of the file or section.

• Send msgBrowserShowDate to display the date that the file or section was
last modified.

• Send msgBrowserShowBookmark to display the bookmark check box for
the file or section. This message applys only to table of contents windows.

• Send msgBrowserShowType to display the type of file.

• Send msgBrowserShowHeader to display the column heads at the top of the
browser display.

All of these messages take a BOOLEAN value. If the value is true, the browser
displays the information; if the value is false, the browser doesn't display the
information.

Changing the Sort Order

You can change the sort order of the information displayed by the browser by
sending these messages to the browser object:

• Send msgBrowserByName to sort the information by name.

• Send msgBrowserBySize to sort the information by size.

• Send msgBrowserByDate to sort the information by date.

• Send msgBrowserByType to sort the information by type.

• Send msgBrowserByPage to sort a table of contents by page number. (If the
browser window displays a table of contents.)

These messages take no arguments.

CHAPTER 80 I THE BROWSER CLASS 143

Expanding and Collapsing Sections

When the user double taps on the name of an unexpanded section, the section
expands to reveal the documents and sections contained in that section. If the user
double taps on the name of an expanded section, the section collapses down to
just its name.

You can programmatically expand and collapse the current selection or a specific
file system node by sending msgBrowserExpand and msgBrowserCollapse to the
browser object.

Both messages take a single argument. If the argument is null, these messages
expand and collapse the current selection. If the argument contains a pointer to a
FS_FIA T _LOCATOR structure, the message expands or collapses the file system
node specified by the path.

By specifying a path, you can expand or collapse a file system node, whether or
not that object is currently displayed. To scroll to that path, you must use
msgBrowserSetSelection.

Reading and Writing the Browser State

The browser state specifies which directories or sections are expanded in the
browser window. When the user turns to another page, you can save the browser
state. Then, when the user turns back to the browser, you can display it in the
same state as when the user turned away.

For example, the user might expand a section (to see its documents) and can turn
to one of those documents. When the user turns back to the table of contents, the
notebook restores the browser state so that the same section is expanded.

To save the browser state, send msgBrowserWriteState to the browser object. To
restore the browser state, send msgBrowserReadState to the browser object.
Neither message takes any arguments.

Usually the read and write state messages save the state in a file named
BROWSTAT (in the process directory). However, you can change the file by
sending msgBrowserSetSaveFile to the browser object. The message takes a
pointer to a file system locator that contains the path to the new browser state file.

Getting and Setting Browser Metrics

The browser metrics save the type of information being displayed by a browser
window. That is, whether the browser window includes the icon, size, date, type,
or bookmark check box in its display.

You can set these values by sending msgBrowserSetMetrics or one of the
msgBrowserShow ... messages to the browser object.

Using clsBrowser

80.2.8

80.2~9

144 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

To get the metrics, send msgBrowserGetMetrics to the browser object. Both
msgBrowserGetMetrics and msgBrowserSetMetrics take a BROWSER_METRICS

structure that specifies or returns:

showIcon Whether to display the icon.

showType Whether to display the item type.

showSize Whether to display the size.

showDate Whether to display the date.

showBookmark Whether to display the bookmark check box.

showHeader Whether to display the browser column heads.

compute Recursive Whether to compute recursive size for directories.

showIconButton Whether to display page tuin buttons instead of icons (for
TOC only).

sortBy A SORT_BY structure determining the field by which to sort items.

userColumn A subclass-definable array of BROWSER_COLUMN structures.

defaultColumn The default columns for the class.

The difference between sending msgBrowserShow ... messages and setting the
metrics is that the messages are usually sent by an external UI, such as a browser
menu. If you subclass clsBrowser, you might want to intercept these messages.

Changing the Browser Client

You can change the -client of the browser by sending msgBrowserSetClient to the
browser object. The only argument to the message is the UID of the new client.

When the message completes successfully, the browser window is left unchanged,
only the new client receives the browser messages.

Navigating with the Browser

Using a browser in TOC mode, the user can go to a particular document by
tapping on its page number or icon, or can float a particular document by double
tapping on its page number or icon.

You can do the same thing programmatically by sending msgBrowserGoto to the
browser object for a table of contents. The message only takes one argument, a
BOOLEAN value, which specifies whether the operation is a go-to or a bring-to. If
value is true, the notebook turns to the document currently selected. If the value is
false, the document currently selected is floated.

If there is no current selection when msgBrowserGoto is sent, the message is ignored.

GeHing the Internal Display Window

80 .. 2.11

Usually you don't have to do anything to a browser's internal display window;
clsBrowser creates the window and controls it. However if you need to access the
browser window, you can request its UID by sending msgBrowserGetBrowWin to the
browser object. The only argument to the message is a pointer to an OBJECT.

CHAPTER 80 I THE BROWSER CLASS 145

When the message completes successfully it returns stsOK and passes back the
UID of the browser window.

User Columns

Browser Notification Messages 80.3

The client of a browser object receives notification messages when the user
performs certain actions within the browser window. If you are a client of the
browser, you might need to respond to these messages.

The Selection Changed 80.3$1

When the user makes a selection in the browser, it sends msgBrowserSelectionOn
to its client. The message doesn't have any arguments, but you can always send
msgBrowserSelectionPath (or a related message) to the browser to find out what
was selected.

When the user selects something outside the browser (the browser no longer owns
the selection), the browser sends msgBrowserSelectionOff to its client.
This message has no arguments.

Bookmark Check Box Changed
When the user taps the bookmark check box in the table of contents, the browser
sends msgBrowserBookmark to its client. The message takes a BROWSER_BOOKMARK

structure that contains a locator (loe). The locator indicates the file for which the
bookmark check box was set.

Menu Messages
You can add a menu bar to your browser object. Table 80-2 lists the clsBrowser
messages that you are likely to associate with items on a menu or other user interface.

Messcse

msgBrowserExpand

msgBrowserCollapse

msgBrowserGoTo

msgBrowserCreateDir

msgBrowserRename

msgBrowserDelete

msgBrowserRefresh

User Columns

lJescriptic)tl

Expands selection.

Collapses selection.

Go to the selection.

Pops up create dir dialog box.

Pops up rename dialog.

Deletes selection.

Renews file system data.

clsBrowser supports a column of text or checkboxes in addition to its usual
display contents. Subclasses of clsBrowser can control the appearance of the
column, the header above the column, and whether or not the checkboxes appear
next to sections or documents or both.

Table 80-2

146 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

This optional user column is enabled by specifying metrics for it in the
userColumn field in BROWSER_METRICS. The subclass must respond to
msgBrowserUserColumnQueryState messages self-sent by the browser so that
clsBrowser can know whether to check the box or what text to display.

Chapter 8' / File Import and Export

File import and export are closely related to the browser. When the user selects a
file other than a PenPoint document (for example, a text file on a connected disk)
and copies or moves the file to the PenPoint computer, the PenPoint ™ operating
system prompts the user for the type of document to create from the file.
Similarly, when the user copies or moves a document from a PenPoint computer
to a connected volume, PenPoint prompts the user for the type of file to write.

This chapter covers the following topics:

• Export and import concepts.

• How to respond to import messages.

• How to respond to export messages.

Concepts
Most operating systems are designed so that the users run a single program and
open and close files of a specific type from that program. In PenPoint, the user
turns to a page that contains a particular document and the operating system finds
and runs the correct application.

This reversal of perspective requires some translation when moving files from
operating systems that have a program-data orientation to the PenPoint operating
system, which has a document-application orientation.

When the user moves a file from a traditional operating system to PenPoint, the
user must identify the application that will present the data. The browser's file
import mechanism presents the user with a list of available applications. When
the user chooses an application, the file import mechanism creates an instance of
the application and tells that instance to translate the data.

Similarly, when the user needs to give a document created under PenPoint to
someone who uses a different computer, the user must translate the document's
instance data into a form that is understood by the other computer. The browser's
file export mechanism presents the user with a choice of file format translators.

Import and export involve the use of the move or copy protocol and user interface
between two browsers:

• A disk viewer that presents the directory/file view of a foreign disk.

• A table of contents that presents the PenPoint document view.

The user simply drags an icon from one browser to another. The import and
export mechanisms prompt the user to select the appropriate file translation on
the fly.

81.1

148 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Import Overview 81"Ll

When the user selects a file in a browser acting as a disk viewer and moves or copies This discussion will make more

the file to a location in the Table of Contents (TOC) the TOC browser examines the sense if you try import and
,' export yourself with a plain text

file s appAttrClass file system attnbute. If It eXIsts, then the TOC browser creates an file and a MiniT ext document.

application instance of that application class in the application hierarchy and copies
the data. However, if the file does not have an appAttrClass attribute, then the TOC
browser assumes it isn't a PenPoint document and needs to be imported. The user
must specify the type of document to use for displaying the data.

The TOC browser imports the file by:

1 Querying all installed application classes to see if they can import the file by
sending them msgImportQuery.

2 If an application responds affirmatively to the query, the browser adds it to a
list of applications that can import the file.

3 The browser displays the import dialog box to the user, listing all
applications that can import the document. The list will always contain at
least one application, the Placeholder application, that stores the data as a
stream of bytes. (If the user chooses the Placeholder application and later
turns to the Imported document, the Placeholder will prompt the user to
choose an application with which to activate the document.)

4 The user selects an application and taps Move or Copy, depending on the
operation.

S The browser creates a new instance of the application selected by the user.
The new document is at the location in the TOC where the user dragged the
file icon.

6 The browser sends msgImport to the new document, telling it the file to
import.

7 The selected application class does whatever it has to do to translate the
chosen file's data into its representation.

If everything succeeds, the user has created a new document in the TOC holding
the converted file contents.

Export Overview

The user exports a document to a file by copying or moving a document from a
TOC browser to a disk viewer. Typically, the user moves or copies a document
from the NotebookTable of Contents to a the disk viewer directory in the
Connections notebook. At this point clsApp takes over and performs the
following tasks:

1 Activates the selected document, if it isn't currently active, by sending
msgAppMgrActivate to its class.

2 Sends msgExportGetFormats to the document to query the document for
the file formats that it can write.

CHAPTER 81 / FILE IMPORT AND EXPORT 149

3 The application passes back its export format types and the UID of an object
that will translate the data. Usually this object is self, but applications can use
this UID to identify a separate translator object that will do the work.

4 clsApp presents the export dialog box to the user, listing the export file
formats provided by the application.

S The user chooses a file format and name for the exported file, then taps the
Export button.

6 The disk browser creates the destination file and sends msgExport to the
translator. msgExport tells the translator which format to write and also gives
the translator the handle on the destination file.

Concepts

150 PEN POINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Application Responsibilities 81"L3

The clsBrowser messages that lead to import and export episodes are not really impor­
tant to most application developers (although you can use them if you want to force
import or export to take place). The important thing is that all applications that im­
port or export files must respond to the messages defined by clsImport and clsExport.

clsImport and clsExport are abstract classes that define the messages used to
communicate information about importing and exporting files.

There are no instances of clsImport or clsExport.

Handling the clslmport Messages
The messages and defines for clsImport are defined in IMPORT.H. Table 81-1 lists
the clsImport messages.

le&kes Oes<:ripticwt

81 .. 2

lVtes~e&~e

msgImportQuery P _IMPORT_QUERY Queries each app class to see if it is capable
of importing the file.

msgImport Initiates the import procedure.

Responding to msglmportQuery
When the user drags an icon from a disk viewing browser to a TOC browser, the
TOC browser sends msgImportQuery to each installed application class.

msgImportQuery is sent to your application class, not to an instance of your
application. This means that to receive this message, your application class must set
the objClassMessage flag in its method table entry for msgImportQuery, as follows:

MSG_INFO myAppClassMethods [] = {

} ;

msglmportQuery, "MylmportQueryHandler" , objClassMessage,
a

When your application class receives msgImportQuery, it should determine if it
can import the file. The message arguments for msgImportQuery are a pointer to
an IMPORT_QUERY structure that contains:

file An open file handle on the file. Your application class tan use the file
handle to read data from the file to see if import would succeed. The
browser resets the file pointer before sending msgImportQuery to the
next application class.

fileName The file's name.

fileType The file's type, a file system attribute of the file. These file types are
defined in FILETYPE.H:

fileTypeUndefined Indicates that the file type is undefined. (This will
be the case for files from foreign operating systems which don't use Pen­
Point file system attributes.)

CHAPTER 81 I FILE IMPORT AND EXPORT 151
Handling the clslmport Messages

fileTypeASCII Specifies that the file contains ASCII data; each line in
the file ends with a hard line break.

fileTypeASCIISoftLineBreaks Specifies that the file contains ASCII
data; however, hard line breaks in the file are treated as soft line breaks.

fileTypeRTF Specifies that the file contains Microsoft's RTF (Rich Text
Format) data.

fileTypeTIFF Specifies that the file contains TIFF (Tagged Image File
Format) data.

fileTypePicSeg Specifies that the file contains data in GO Corporation's
picture segment format.

canlmport Passed back, a BOOLEAN value specifying whether the
application can import the file format.

suitabilityRating Passed back, a value from 0 to 100 indicating how
suitable the file format is to the application. 0 indicates that the file is not
suitable to the application; 100 indicates that the file is very suitable to
the application; 50 is the average value.

Developers can register new file types with GO. If you have a special file type that
you want to register, please contact GO Developer Support for more information.

Your application class can check the file type, analyze the file name (for example,
the extension), and read the file contents to determine whether it can import the
file. Your application class should pass back an indication of whether it can import
the file in the canlmport BOOLEAN field of the IMPORT_QUERY structure. If you
set this to true, the browser will add your application to the import dialog.

Responding to msglmport
When the user chooses an application to import the file, the browser creates a
document of that application, starts it up, and sends msglmport to the document.
The message argument for msglmport points to an IMPORT_DOC structure
which contains:

file An open handle on the file.

fileName The file's name.

fileType The file type, as described in the previous section.

sequence The sequence number of the destination.

destHandle The directory handle on the destination directory.

When your application receives msglmport, it should use the information in the
IMPORT_DOC structure to read the data from the file and attempt to translate it
into information that it can understand.

If your application can't import the file contents, then it should return an error. If
dsApp gets an error from msglmport then it deletes the newly-created document.

81.2.2

152 PENPOINT ARC.HITECTURAL REFERENCE
Part 9 / Utility Classes

If possible, it's better to detect that import is impossible when your application
class receives msglmportQuery so that your application never shows up in the
import list. However, you may not discover that the file can't be imported until
you try (for example, if the file is corrupt or otherwise unreadable).

Handling the clsExport Messages
The messages and defines for dsExport are defined in EXPORT.H. Table 81-2 lists
the dsExport messages.

ilescrlpf'i@ft

8L3

Mes$@g®

msgExportGetFormats Passes back the export format array from from the
source of the export.

msgExport

msgExportName

How Export Happens

P_EXPORT_DOC

P _EXPORT_FORMAT

Initiates export by the translator.

Passes back a possibly modified destination name
from the translator.

The export protocol comes into play when the user moves or copies an icon from a
TOC browser to a disk viewer. Typically, the user moves or copies a document from the
Notebook Table of Contents to a disk viewer directory in the Connections notebook.

When the user releases the move or copy icon over a disk viewer, the disk viewer
asks the selection owner for supported transfer types: the TOC viewer supplies
clsExport as one of the data transfer types. This is how the disk viewer knows that
the copy is an export operation and not a simple copy operation to back up a
document onto disk.

This interaction with the selection and transfer protocols allows anything that can
be moved or copied to invoke export, although only selections from the TOC
currently support export.

The disk viewer sends the source of the copy msgExportGetFormats. The source of the
copy is the TOC browser, which does not know what export formats the document
supports. So the TOC browser returns stsExportActivateSource. This tells the disk
viewer to activate the source of the selection. The disk viewer sends msgAppMgrActivate
to the application class of the document that the user originally selected.

Responding to msgExportGetFormats

Mter activating the selected document, the disk viewer then sends msgExport­
GetFormats to the document. Your application is responsible for responding to
msgExportGetFormats with the file formats that it can write.

CHAPTER 81 / FILE IMPORT AND EXPORT 153
Handling the clsExport Messages

msgExportGetFormat's message argument points to an EXPORT_LIST structure
that contains:

format A pointer to an array of EXPORT_FORMAT structures. You must
allocate this array from global memory. Each EXPORT_FORMAT structure
describes one file format that your application can write.

numEntries The number of EXPORT_FORMAT structures in the array.

You should fill in each EXPORT_FORMAT structure with:

translator The UID of a translator that can convert the information from
the source document type to the export file type. Usually the translator
is self.

document Type The source document type. This field is meaningful only
when the translator field specifies a translator other than self. A translator
might be able to translate a number of different document types.

exportName A user-visible name for the export type.

exportType The type of file for the export destination. These file types are
defined in FILETYPE.H:

fileTypeUndefined Indicates that the file type is undefined. (This will
be the case for files from foreign operating systems which don't use Pen­
Point file system attributes.)

fileTypeASCII Specifies that the file contains ASCII data; each line in
the file ends with a hard line break.

fileTypeASCIISoftLineBreaks Specifies that the file contains ASCII
data; however, hard line breaks in the file are treated as soft line breaks.

fileTypeRTF Specifies that the file contains RTF data.

fileTypeTIFF Specifies that the file contains TIFF data.

fileTypePicSeg Specifies that the file contains data in GO Corporation's
Picture Segment format.

You can use the translator field to identify a separate translator object that will do
the work.

dsApp puts up an export dialog showing the export types (using the exportN ames
in the EXPORT_FORMAT array).

Responding to msgExportName

When the user selects an export type, dsApp sends msgExportN arne to the
translator specified in the EXPORT_FORMAT structure. exportName contains
the name of the source document; the translator, if necessary, can pass back a
suggested destination file name in the same exportNarne field. For example, it
might append .TXT to the end. You can ignore this message. Regardless, the user
can write in a different name for the exported file.

'54 PEN POINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

The message argument for msgExportName is a pointer to an EXPORT_FORMAT

structure, described above.

Responding to msgExport
When the user selects a particular export format, clsApp sends msgExport to that
format's translator. The message argument for msgExport points to an
EXPORT_DOC structure that contains:

exportType A tag that indicates the export type in the EXPORT_FORMAT

structure that the user selected.

source A locator for the source document.

destination An open file handle on the destination.

path The path to the destination document.

The translator should use this information to export the information in the
document into the file. It is the exporting application's responsibility to clean up
any invalid file handles. If the export fails, this includes the destination file handle
provided by msgExport.

Chapter 82 / The Selection Manager

The selection manager provides a mechanism for keeping track of what process
owns the current selection, the data the user has selected for subsequent action
such as copying or deleting. Because the selection can be owned by many different
types of objects, the selection manager does not do any formatting.

The selection manager keeps track of the selection owner, even when the object
that contains the selection is not on screen.

clsSelection defines messages that allow objects to request ownership of the
selection. clsSelection can record the current selection owner before changing
ownership to another object.

An instance of clsSelection-theSelectionManager-keeps track of the current
selection owner and the preserved selection, if any. theSelectionManager is the
only instance of clsSelection.

Topics covered in this chapter:

• Selection concepts.

• Determining the selection.

• Existing PenPoint classes that handle the selection.

• Selection messages that operate on the selection.

• Selection messages sent to selection owners.

• Selection messages passed to the selection manager.

Concepts
No more than one object can own the current selection at anyone time. Objects
can request ownership of the selection. There doesn't always have to be a selection.
If the user hasn't selected anything, there is no selection owner.

The Selection Manager

The ownership of the selection is administered by theSelectionManager, the only
instance of clsSelection. theSelectionManager has the following responsibilities:

• It handles the transition between the current selection owner and the new
selection owner.

• It keeps track of the current selection owner.

• It sends messages to observers of theSelectionManager when selection
ownership changes.

156 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

The theSelectionManager is the only instance of the selection class, clsSelection,
which defines two categories of messages:

• Messages that provide function for theSelectionManager.

• Abstract messages for common operations performed by owners of the
selection. These abstract messages fall into two categories:

• Messages that an object or one of its ancestors must respond to (such
as "delete the selection" or "yield the selection"). If these messages
reach clsObject, it sends msgNotU nderstood.

• Messages that an object and its ancestors have the option of ignoring
(such as "make yourself the selection"). If these messages reach
clsObject, it returns stsIgnored.

You must always use ObjectCallO when you pass messages to theSelectionManager.

Selection Owners

Just about any object can own the selection, so long as it handles the required
clsSelection messages. For example, when an object that owns the selection
receives a message asking it to yield the selection, it must yield the selection and
return.

Certain object types can't own the selection, either because there is no way for
them to receive messages from theSelectionManager, or because other objects
cannot communicate with them. These object types are:

• Objects that do not have global scope.

• Global objects that cannot receive messages (those for which objCapSend is
disabled).

Any attempt to give an object of this type ownership of the selection will return a
scope violation status code, stsScope Violation.

Preserving the Selection

There are times when you need to preserve the current selection while allowing
the user to make a selection iri another window. Generally, the only time this is
true is when using an option sheet. For example, the user might select some text in
a text editor and then put up an option sheet. theSelectionManager preserves the
text selection while the option sheet is up. The user can make a selection in the
option sheet, do something with the selection. When the user closes the option
sheet, the preserved text selection is restored.

CHAPTER 82 / THE SELECTION MANAGER 157
The Selection Class Messages

Selection Transitions

While theSelectionManager requests one object to yield ownership and gives
ownership to another object, there is a time when the owner of the selection is not
defined. If another clsSelection message arrives in this time, problems could arise.
To avoid these problems, some clsSelection messages return stsSelYieldlnProgress
while it is in transition from one owner to another. For example, if you request the
DID of the current selection owner (by sending msgSelOwner to
theSelectionManager) while ownership is in transition, msgSelOwner returns
stsSelYieldlnProgress.

Certain other messages, rather than return stsSelYieldlnProgress, just wait longer
than usual to complete, until the new owner is established. These messages are:

msgSelSetOwner

msgSelDelete

A deadlock situation can occur if you receive msgSelYield and immediately send
msgSelSetOwner to theSelectionManager, with your DID as the object to own
the selection. Eventually the block on the requests times out, allowing your object
to continue.

Determining What is Selected
If you inherit from clsEmbeddedWin, you will probably receive selection messages
at some time. If you present information on screen and do not inherit from a class
that handles clsSelection messages (as described below), you or one of your
component classes will need to:

• Handle clslnput messages to detect when the user makes a selection.

• Request the selection (by sending msgSelSetOwner to theSelectionManager
and specifying self as the new owner).

• Determine the type of selection.

• Show the user what is selected.

It is up to your application to determine what is selected.

Classes that Handle Selection
Some classes already handle selection ownership for you. If you subclass these
classes, you inherit their selection behavior. In particular, clsEmbeddedWin and
its subclasses all have selection ownership behavior built in.

The Selection Class Messages
Table 82-1 lists the clsSelection messages. The SEL.H header file declares these
messages. There are no msgNew or msgNewDefaults messages because
theSelectionManager is the only instance of clsSelection ever created.

82.2

'58 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Mess@~e l@kes

msgSelSetOwner OBJECT

msgSelSetOwner Preserve OBJECT

msgSelOwner P_OBJECT

msgSelPrimaryOwner P_OBJECT

msgSelOwners P _SEL_ OWNERS

msgSelChangedOwners P _SEL_ OWNERS

msgSelPromotedOwner P _SEL_ OWNERS

msgSelYield BOOLEAN

msgSelDemote nothing

msgSelPromote nothing

Abstract

msgSelSelect nothing

msgS elIsSelected nothing

msgSelBeginCopy P_XY32

msgSelBeginMove P_XY32

msgSel CopySelection P_XY32

msgSelMoveSelection P_XY32

msgSelDelete U32

msgSelRememberSelection P_XY32

Messages from Clients to
theSelectionManager

Sets the selection owner.

Sets the selection owner with the preserve option.

Passes back the selection owner.

Passes back the primary selection owner (the pre­
served owner if any, else the current owner).

Passes back both selection and preserved owners.

Notifies observers when either of the selection
owners changes.

Notifies observers when the preserved owner has
been promoted back to the selection owner.

theSelectionManager requires the release of the
selection.

Informs the owner that it is becoming the preserved
owner.

Informs the preserved owner that it is becoming the
owner.

Sets self to be the selection owner.

Returns TRUE if self is current selection owner.

Initiate a copy operation.

Initiates a move operation.

The receiver should copy the selection to self at (x, y).

The receiver should move the selection to self at (x, y).

The selection owner should delete the selection.

link Proto(oi

The receiver should "remember" the selection and
place the "remembrance" at (x, y).

Clients send messages to theSelectionManager to set the selection owner and to
get information about the selection owner.

CHAPTER 82 I THE SELECTION MANAGER 159

Messages Sent to Selection Owners

SeHing the Selection Owner 82.5.1

To make an object the selection owner, send msgSelSetOwner to theSelectionManager.
msgSelSetOwner takes as its sole argument the UID of the object which is to become
the selection owner. theSelectionManager may send msgSelSelect (described in
"Embedded Window Messages," below) to an object to ask it to become the selection
owner. The object should respond by sending msgSelSetOwner with self as the
argument.

When setting the selection owner, you can preserve the previous selection for later
restoration by sending msgSelSetOwnerPreserve instead of msgSelSetOwner to
set the new selection owner. For example, option sheets use
msgSelSetOwnerPreserve when the user makes a selection within the option
sheet. This preserves the original selection (the item to which the options apply)
so that the option sheet can later restore the original selection and apply the
options to it.

Both msgSelSetOwner and msgSelSetOwnerPreserve return stsScope Violation if
the object specified as the argument cannot receive messages from other objects (either
because the object is not a global object or because its capability flags prevent it from
receiving messages). In this case, the selection owner does not change.

Handling msgSelisSelected
When your object receives msgSelIsSelected, it should return a BOOLEAN value
that indicates whether it owns the selection or not. The message has no arguments.

If you don't inherit from an ancestor that handles msgSelIsSelected, the easiest
way to handle the message is to send msgSelOwner to theSelectionManager.
msgSelOwner sends back the UID of the current selection owner. If the returned
UID matches self, return true to msgSelIsSelected; otherwise return false.

Messages Senl 10 Seleclion Owners
theSelectionManager sends certain messages to the selection owner. A class which
can own the selection (or one of its ancestor classes) must handle these messages.
If no one responds to the required messages, dsObject sends msgNotUnderstood
to self.

These messages perform the following functions:

• Tell the owner to give up the selection (msgSeIYield).

• Tell the owner to demote the selection to the preserved selection or to
promote the selection from preserved selection (msgSelDemote and
msgSelPromote) .

• Tell the owner to delete the selection (msgSeIDelete).

• Tell the owner to display the option sheet for the selection (msgSelOptions).

• Tell the owner to begin a move or copy operation (msgSelBeginMove and
msgSelBeginCopy) .

82.6

160 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Handling msgSelYield

theSelectionManager sends you msgSelYield when you no longer own the
selection. The message has a single argument, a BOOLEAN value that indicates
whether you lost the selection or the preserved selection. If the argument is true,
yield the selection; if the argument is false, yield the preserved selection.

You should always return stsOK.

Handling msgSelDemote and msgSelPromote

If you are the selection owner and a client sends msgSelSetOwnerPreserve to
theSelectionManager, theSelectionManager sends you msgSelDemote to inform
you that your selection has been preserved.

If that client later sends msgSelSetOwnerPreserve to theSelectionManager with a
null argument, theSelectionManager sends you msgSelPromote to inform you
that your selection has been restored.

You can respond to msgSelDemote by graying the selection (or some other
response that shows the user that the selection is preserved, but not current).

These messages are essentially informative. You should always return stsOK.

If you maintain your own selection status, you can use these messages to update
your status indicators.

Handling msgSelDelete

If you receive msgSelDelete and you have the selection, delete the current
selection. The message argument is a U32 that represents flags that specify the
visual behavior for your object after the delete. The flags specify:

SelDeleteReselect Display a selection after deleting the current selection.

SelDeleteNoSelect Show no selection after deleting the current selection.

Mteryou receive and handle msgSelDelete, you still own the selection.

Handling msgSelOptions and msgSelOptionTagOK
If your object receives msgSelOptions, it should activate the option sheet for the
current selection. The message has no arguments.

An option sheet sends msgSelOptionTagOK to your object to check if its options
can be applied to the current selection. The message passes an option sheet tag. If
your object receives msgSelOptionTagOK, it should examine the option sheet tag
and see if the options can be applied to the selection.

Beginning Move and Copy Operations

The user can start a move or copy operation by making a selection and either
holding the pen on the selection or tapping on the Move or Copy commands in
the Edit menu. Either of these actions sends msgSelBeginMove or
msgSelBeginCopy to the selection owner.

CHAPTER 82 I THE SELECTION MANAGER 161
Messages Passed to the Selection Manager

If you own the selection and receive either of these messages, you should obey
the rules of the Embedded Window move/copy protocol. Usually, you send the
message to your ancestor (dsEmbeddedWin) which handles the protocol for
you. For a detailed explanation of the Embedded Window move/copy protocol,
see Chapter 9, Embedded Windows, in Part 2: The Application Framework of
volume I.

clsEmbeddedWin Handles Selection Messages

While you can handle all of the selection messages yourself, clsEmbeddedWin
provides message handlers for most of the selection messages. If your class inherits
from clsEmbeddedWin, you can simply pass the messages to your ancestor.

The metrics of an embedded window object contains information about whether
it should preserve the selection or not before taking the selection. The client that
creates the embedded window sets this style information.

If you inherit from dsEmbeddedWin, you should pass msgSelSelect to your

82.6.6

ancestor. The message will trickle up to clsEmbeddedWin, which handles the message.
clsEmbeddedWin examines the Embedded Window metrics for the selection style. If
the selection style is ewSelect, dsEmbeddedWin sends msgSelSetOwner to the
theSelectionManager; if the style is ewSelectPreserve, clsEmbeddedWin sends
msgSelSetOwnerPreserve to theSelectionManager. If the selection style is
ewSelectU nknown, clsEmbeddedWin runs up the window hierarchy to find a style
that is not ewSelectU nknown. The messages msgSelSetOwner and
msgSelSetOwnerPreserve are described later in this chapter.

Messages Passed to the Selection Manager 82.7

You pass messages to theSelectionManager for three reasons:

• You want to know who the current and preserved selection owners are.

• You want to set a selection owner.

• You want to set a selection owner and preserve the current selection owner.

Finding the Selection Owners

If you receive a message that instructs you to something with the selection,
but you don't know who the current owner is, you can pass msgSelOwner to
theSelectionManager. The message takes a pointer to the OBJECT location that
receives the UID of the current selection owner.

If the message completes successfully, it returns stsOK. The OBJECT location
contains the UID of the selection owner.

To find out the current owner and the owner of the preserved selection, send
msgSelOwners to theSelectionManager. The message takes a pointer to a
SEL_OWNERS structure, which theSelectionManager uses to send back the UIDs of
the owners. The structure contains:

owner The UID of the selection owner. objNu11 is a valid value.

82.1.1

162 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

preservedOwner The UID of the owner of the preserved selection. objNull
is a valid value.

hasPreservedOwner A BOOLEAN indicating whether preservedOwner is
defined.

If the selection was between owners when you sent msgSelOwner or
msgSelOwners, theSelectionManager might return stsSelYieldInProgress. The
best thing to do is wait and try again.

~ SeHing the Selection Owner

To set the selection owner, send msgSelSetOwner to theSelectionManager. The
message takes the UID of the object that will become the new selection owner.

Preserving the Selection Owner

To set the selection owner and preserve the current owner, send
msgSelSetOwnerPreserve to theSelectionManager. This message also takes the
UID of the object that will become the new selection owner.

When theSelectionManager receives msgSelSetOwnerPreserve with a valid
argument, it:

• Sends msgSelDemote to the current owner.

• Sets the current preserved owner to be the current owner.

• Sets the current owner to be the UID received in pArgs.

• Sends msgSelChangedOwners to observers of theSelectionManager.

~~. Restoring the Selection Owner

To restore the preserved selection owner, send msgSelSetOwnerPreserve to
theSelectionManager with a null argument value.

When theSelectionManager receives msgSelSetOwnerPreserve with a null
argument, it:

• Sends msgSelYield to the current owner, if one exists.

• Sends msgSelPromote to the current preserved owner.

• Sets the current owner to the current preserved owner.

• Sets the current preserved owner to null.

• Sends msgSelChangedOwners to observers of theSelectionManager.

82 •. 7.2~ 1

CHAPTER 82 / THE SELECTION MANAGER 163
Observer Notification

Observer Notification
An object that wants to watch the current selection can be an observer of
theSelectionManager. For example, property sheets need to know when the
selection owner changes. If the user selected some text, requested the property
sheet for text, and then selected a scribble object in a MiniNote document, the
text property sheet should inform the user that it cannot affect the new selection
(by making itself gray).

When the owner of the selection or the preserved selection owner changes,
theSelectionManager sends msgSelChangedOwners to observers of
theSelectionManager. When the preserved selection owner is promoted back to
selection owner, theSelectionManager sends msgSelPromotedOwner to observers.

The argument to the message is a pointer to a SEL_OWNERS structure that
contains:

owner The UID of the new selection owner.

preservedOwner The UID of the preserved selection owner.

hasPreservedOwner A BOOLEAN indicating whether preservedOwner is
defined.

82.8

Chapter 83 / Transfer Class

Although most messages transfer data between two objects, usually the objects
have a relationship of ownership or inheritance. The transfer class, clsXfer, defines
a general mechanism for exchanging information between two unrelated objects.
This mechanism becomes particularly useful when responding to move or copy
gestures. When two objects participate in a move or copy, they might have never
communicated before.

Using clsXfer, the destination can send a message requesting the types of dat~ that
the source can transmit. When the source responds with the data types that it
supports, the destination can decide whether it wants the data in one of the
source's data types. If the destination can handle one of the source's data types, it
asks the source to send the data using that data type.

clsXfer provides three different models for exchanging data, which allow for small
or large transfers, one-shot or stream transfers, and formatted or unformatted
transfers.

Topics covered in this chapter:

• Transfer concepts

• Agreeing on a transfer type

• One-shot transfers

• Stream transfers

• Using transfer messages

• Using transfer functions.

Concepts
The greatest single use of data transfers occur when the user moves or copies data
from one location to another.

When an object receives a move or copy gesture, it is responsible for finding the
owner of the selection and attempting to move or copy the selection to itself at the
hot point of the gesture. The PenPoint™ operating system, through the
application framework, allows users to attempt to move or copy any object they
can select to any location they can draw a move or copy gesture.

This means that any object that responds correctly to application framework
(embedded window) messages can be asked to move or copy information from
any object to itself, perhaps from a class of object with which it has never
communicated before.

83.1

-----.-----------~~

166 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

The transfer class, clsXfer, provides protocols that allow unrelated objects to
determine if they both understand the same data types. If the objects can agree on
a data type, they use clsXfer protocols to transfer data using that data type.

General Scenario

In transferring data there are always two participants: the sender and receiver. The
sender is an object in a PenPoint task that sends data to the receiver, which is
another PenPoint object. In the transfer protocols, the receiver always requests
data from the sender.

When responding to move or copy gestures, the sender is the owner of the
selection. The receiver can find out the selection owner by sending msgSelOwner
to the selection manager, which sends back the UID of the selection owner.

All transfers begin the same way. The receiver sends a message to the potential
sender asking it to provide a list of the data transfer types that it can send. A data
transfer type identifies a specific data format (such as a string or a structure) and
transfer protocol. The receiver examines the sender's list and finds the best transfer
type that it can use.

~ Tags for Data Transfer Types

The data transfer type is identified by a well-known tag that specifies the format of
the data. The data transfer type is associated with a transfer protocol, although the
protocol is not encoded in the tag.

clsXfer defines tags for several transfer types that are commonly used byPenPoint
components. The tags and uses for the data transfer types are listed in Table 83-1.
The table also lists the protocol implied by each transfer'type. The following
section discusses protocols in more detail.

I'r£1t1%rer Type '1'£19 Protocol

xferString one-shot

xfer LongString one-shot

xferName one-shot

xfer FullPathN arne one-shot

xferFlatLocator one-shot

xferASCIIMetrics one-shot

xferRTF stream

xferScribbleObject one-shot

xferPicSegObject one-shot

The clsXfer transfer types are defined in XFER.H.

D£1rt:J I'ype

83m l
clsXfer Transfer

A string up to 256 bytes.

A variable length string.

A label (such as a GoTo button).

A full path name.

A flat locator file path.

Metrics for a block of ASCII text (doesn't return
the text).

A stream of RTF data.

A scribble object.

A picture segment object (see Part 3, Windows and
Graphics).

CHAPTER 83 I TRANSFER CLASS 167
Transfer Protocols

You can use the MakeTagO macro (defined in GO.H) to define tags for other
transfer types. clsXfer is the class for the PenPoint transfer type tags. If you use any
other class, it implies that the data transfer type uses a client-defined protocol,
defined by that class.

If you define your own transfer types, they must be understood by both the sender
and receiver. Thus, you cannot use your own transfer types to transfer data with
PenPoint components, unless you subclass a PenPoint component to handle your
transfer types.

Transfer Protocols 83.2

When the receiver finds an acceptable data transfer type in the list sent back by
the sender, it initiates the data transfer protocol. The data transfer type implies the
data transfer protocol that will be used to exchange data. There are three protocols
for transferring data:

• One-shot. The receiver sends a single block of data to. the receiver. One-shot
transfers also identify the type of data being transferred (such as string, long
string, or path name).

• Stream. The sender and receiver create a data stream. Stream transfers are
used to transfer large amounts of data or continually arriving data.

• Client-defined protocol. The sender and receiver agree on a special protocol
for transferring data. The client-defined protocol is usually defined by
another class. For example, embedded windows (clsEmbeddedWin) establish
their own protocol for transferring data.

One-Shot Transfers

In one-shot transfers, the receiver asks the sender for a block of data by sending
msgXferGet to the sender. The specific structure used with the message depends
on the transfer type. XFER.H defines the following transfer buffer structures:

XFER_FIXED_BUF Transfers a fixed length buffer of 256 bytes.

XFER_BUF Transfers a variable length buffer (of up to 64K bytes).

XFER_ASCII_METRICS Transfers ASCII metrics (this type is only used by
the xferASCIIMetrics transfer type).

XFER_OBJECT Transfers an arbitrary object.

Each structure includes a TAG field representing the transfer type being used and a
buffer or pointer to a buffer for the data to be transferred. All structures also
include a U32 value that the receiver can use to communicate information to the
sender, such as more specific information on the requested data.

If you create other transfer types, you can also define other buffer structures. Your
transfer types will be known only to your senders and receivers, unless you make them
available to other application developers by publishing information about them.

83.2.1

168 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

When the sender receives msgXferGet, it should move the information into the
buffer and return stsO K.

Stream Transfers

In stream transfers, the receiver and sender must create and initialize a stream.
When the stream is established, the sender and receiver use clsStream messages to
read from and write to the stream (usually msgStreamRead and msgStreamWrite).

Because the steps that the receiver and the sender take to create a stream are so
common, clsXfer defines a set of functions that do most of the work for you.

Before we describe the functions, we should describe the stream itself.

Streams

The stream consists of two stream objects; one belonging to the sender and one
belonging to the receiver. The stream objects are instances of a private class that
inherits from clsStream, they respond to clsStream messages, but have additional
features to support the transfer protocol.

The two stream objects share a common stream buffer, a shared storage area. The
sender's stream object handles msgStream Write by copying data from the sender's
buffer into the stream buffer. The receiver's stream object handles msgStreamRead
by copying data from the stream buffer into the receiver's buffer.

Stream Protocols

There are two stream protocols variations that you can use. The variations are:

• Blocking protocol, in which clsXfer blocks the sender when its buffer is full
and releases the sender when the receiver empties the buffer sufficiently for it
to continue. Blocking protocol works only when the sender and receiver are
in separate tasks .

• Producer protocol, in which clsXfer communicates with an object (called a
producer) that works on behalf of the sender to manage the transmission.
When the sender and receiver are in the same task, they must use producer
protocol (or limit their transfer to 64K bytes of data).

Blocking Protocol

In stream transfers, the stream uses an intermediate buffer to store the data being
transferred. The sender specifies the size of the stream buffer when it calls
XferStreamAccept.

Usually, blocking protocol is fairly straightforward. The sender uses
msgStreamWrite to copy data from its buffer into the stream. clsXferStream
receives the data and stores it in the stream buffer. When the receiver sends
msgStreamRead to its stream object, clsXferStream copies the data from the
stream buffer to the receiver's buffer.

83.2 .. 2.3

CHAPTER 83 I TRANSFER CLASS 169

However, if the receiver doesn't read enough data from the stream (either because
it didn't send msgStreamRead or it only read a portion of the data), the stream
buffer can become full. Before data gets lost, clsXferStream blocks the sender's
task (by setting a semaphore).

Transfer Protocols

When the receiver sends msgStreamRead and empties the stream buffer,
clsXferStream clears the sender's semaphore, allowing clsStream to send more data.

All this occurs while the sender's msgStream Write is being handled. The sender
doesn't have to know anything about being blocked. When msgStream Write
returns stsO K to the sender, all data has been transferred.

,.~ Blocking Protocol Deadlocks 83.2.2.4

Thus far we have assumed that the sender and receiver are in different tasks. If the
sender and receiver are in the same task, however, blocking protocol presents some
synchronization problems. If the sender and receiver are in the same task and
clsXfer blocks the sender's task, the receiver is blocked also. A deadlock exists; the
sender is blocked until the receiver removes information from the buffer, but the
receiver is blocked because it is in the same task as the sender.

clsXfer does as much as it can to avoid full-buffer deadlocks. If the sender and
receiver are in the same task, and there is no producer, and the buffer is smaller
than the data to be transferred, clsXfer will allocate additional space for the stream
transfer buffer (up to 64K). However, if there is more than 64K to be transferred,
this will not work because the maximum size of a stream transfer buffer is 64K.

,.~ Producer Protocol

Producer protocol avoids the blocking protocol's deadlock situation by making the
producer keep track of the amount of information that has been transferred.
clsXfer communicates with the producer to let it know when it can copy more
information into the transfer buffer. The producer works for the sender; it can be
a separate object or it can be the sender.

The receiver initiates the transfer by sending msgStreamRead to its stream object.
The stream object knows that there is a producer, so it sends msgXferStreamWrite
to the producer. The producer uses msgStreamWrite to copy the sender's data to
the stream buffer. If the stream buffer is unable to accommodate all of the data,
msgStreamWrite returns to the producer and passes back the number of bytes that
it accepted. The producer must remember the location of the last byte accepted.

The producer then returns msgXferStreamWrite and the receiver's stream object
copies the stream data to the receiver's buffer. If it reaches the end of data, it sends
msgXferStreamWrite to the producer again. The producer sends msgStreamWrite
to copy more data to the stream buffer.

170 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Note that the sender never issues a message during the transfer. The producer acts as
the sender's agent to handle the transfer. Of course the producer has to know what
buffer the sender wanted to be transferred. There are two ways to accomplish this:

• When the sender initially creates the producer, part of the instance data can
be the address of the send buffer.

• The receiver can use msgXferStreamSetAuxData to store auxiliary data in
the stream (such as the address of the sender's buffer). The producer can send
msgXferStreamAuxData to the stream to read the data.

Eventually the producer will have sent all the data from the sender's buffer. To
terminate the stream, the producer sends msgFree to the stream object. When
the stream is freed, the receiver can read the remaining data from the stream
buffer, but when there is no more data, the receiver gets an EOF. The receiver
should free its end of the stream.

If the receiver needs to abort a transfer that is in progress, it can free its stream
object. When it does so, the sender's stream object sends msgXferStreamFreed to
the producer. The producer should free its stream object.

Client-Defined Protocols

Client-defined protocols can encompass a wide range of data transfer schemes,
from clones of the one-shot or stream protocols to specialized transfer methods
that use a transfer medium other than shared buffers or message data.

As described above, if the sender and receiver agree on a transfer type that is
defined by a class other than clsXfer, the receiver should initiate the transfer using
the protocol defined by that class.

For one example of a client-defined protocol, see the embedded window
move/copy protocol described in Chapter 9, Embedded Documents, in Part 2:
Application Framework of volume I.

The Transfer Functions and Messages
Because the steps used to start and perform a transfer are common, no matter
which transfer type you finally agree on, clsXfer defines a set of functions that
perform most of the work for you.

Table 83-2 lists the clsXfer functions.

Oeseription

83.3

XferMatchO

XferListSearch 0
XferAddldsO

XferStream ConnectO

XferStreamAcceptO

The receiver calls XferMatchO to find a mutually acceptable data transfer type.

Searches two sets of data transfer types for a match.

Adds data transfer types to a list of acceptable types.

A receiver calls this function to create a stream connection to a sender.

Called by sender in response to msgXferStreamConnect.

CHAPTER 83 I TRANSFER CLASS 171
Establishing a Transfer Type

Table 83-3 lists the clsXferStream messages. Generally, these messages are used by
the clsXferStream functions; most clients shouldn't need to use them.

Table 83,,3
'II',o,I¥"%dl'I¥',o,G"JI hl''!It'Th Messages

!>cst:dpt'km MCSSOg0

msgXfer List OBJECT

lots of things

Ask sender for its list of data transfer types.

msgXferGet Sent by a receiver to get one-shot data transfer
information.

msgXferStream Connect XFER_CONNECT Sent to the sender to ask it to link the sender's and
receiver's pipes.

msgXferStreamAuxI)ata PP_UNKNOWN Passes back auxiliary information associated with the
pipe.

msgXferStreamSetAuxI)ata

msgXferStream Write

msgXferStreamFreed

P_UNKNOWN

STREAM

STREAM

Stores arbitrary client data with the pipe.

Asks the sender to write more data to the stream.

Sent to the sender when the receiver's side of the
stream has been freed.

Establishing a Transfer Type
The job of establishing a transfer type is made fairly easy by calling the clsXfer
functions. However, before describing the functions, let's take a look at how the
receiver and sender interact to establish the transfer type.

1 The receiver calls XferMatchO, which creates two lists:

• An array of the transfer types that it can use.

• An empty clsXferList object.

2 XferMatchO sends msgXferList to the potential sender. The messages
arguments include the empty clsXferList object.

3 When the sender receives msgXferList, it uses the function XferAddIdsO to
add its transfer types to the list. The sender then sends msgXferList to its
ancestor.

4 When the ancestor returns the message, the sender returns msgXferList to
the receiver.

5 XferMatchO uses the XferListSearchO function to compare the list of
returned transfer types against the array of acceptable transfer types provided
by the receiver.

6 When the first match is found, XferMatchO places the matched transfer type
in the location specified by the receiver and returns stsO K.

The order the array of transfer types and the order of the transfer types in the
clsXferList object is extremely important. XferAddIdsO adds transfer types to the
end of the clsXferList object. XferListSearchO starts at the beginning of both the
array of transfer types and the clsXferList object.

If the receiver has a preferred transfer type, it should put it at the beginning of the
transfer type array.

83.4

172 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

If the sender (or more importantly one of its ancestors) has a strong preference
for a transfer type, it should use dsList messages to insert the transfer type at the
beginning of the list object (XferAddldsO adds transfer types to the end of the list).

Requesting Transfer Types

The process of looking for a transfer type is made fairly simple by the XferMatchO
function. The prototype for XferMatchO is:

STATUS EXPORTED XferMatch(
OBJECT sender,
TAG ids[],
SIZEOF idsLen,
P TAG pld

) ;

The parameters to XferMatchO are:

sender The UID of the potential sender of data.

ids An array of transfer types familiar to the receiver.

idsLen The number of elements in the ids array.

pld A pointer to a TAG that will receive the returned transfer type.

IfXferMatchO ·does not find a matching transfer type, it returns stsNoMatch. On
receiving stsNoMatch, the receiver should call ancestor with the message that
caused it to call XferMatchO (usually msgGWinGesture). This enables the
receiver's ancestors to attempt to find a transfer type.

For example, dsText intercepts msgGWinGesture and uses XferMatchO to
determine if the selection owner can send text data. If the selection is actually an
an object or application, XferMatchO returns stsNoMatch. dsText sends the
msgGWinGesture to its ancestor. Eventually dsEmbeddedWin receives the
message, which is able to move an object or application.

Listing Transfer Types

To get a list of the available transfer types from the receiver, most clients use the
XferMatchO function. However, if you need to provide special transfer type
handling, you can send msgXferList on your own.

Before you send msgXferList, you need to do two things:

• You must identify the object that is the potential sender .

• You must create a transfer list (by sending msgNew to clsXferList).

Then you can send msgXferList to the sender; the only argument for the message
is the UID of the transfer list.

Adding a Transfer Type to a List

If you are acting as a sender and receive msgXferList, you must add your transfer
types to the list indicated by pArgs. To make this job easier, you can call
XferAddldsO. The prototype for XferAddldsO is:

STATUS EXPORTED XferAddlds(
OBJECT listObject,
TAG ids[],
SIZEOF ids Len

) ;

The parameters are:

listObject The transfer list object indicated by pArgs.

ids An array of transfer types that you support.

idsLen The number of transfer types in the ids arr~y.

CHAPTER 83 I TRANSFER CLASS 173
Performing One-Shot Transfers

The function sends msgListAddltem to the list for each transfer type in the array.

Remember that the order of the transfer types in ids is important. XferAddldsO
adds the transfer types to the end of the list object as they appear in ids.

Mter adding your transf~r types to the list, you must send it to your ancestor.
When msgXferList returns from your ancestor, the transfer list object contains the
transfer types supported by your class and all your ancestors. At this point you can
return from msgXferList.

Searching a Transfer Type List

When the sender and its ancestors return msgXferList, the XferMatchO function
calls XferListSearchO, which searches the transfer list returned by msgXferList,
looking for a transfer type that matches one in an array ~f acceptable transfer
types. The first array element is compared to all list elements, then the second
array element, until every array element has been tried. Thus, the array should
contain the optimal transfer types first.

If your class provides special operations, you can call XferListSearchO yourself.
The prototype for XferListSearchO is:

STATUS EXPORTED XferListSearch(

) ;

OBJECT listObject,
TAG ids[],
SIZEOF
P TAG pld

idsLen,

The parameters are:

listObject The transfer list object sent to the sender.

ids The list of transfer types that the receiver supports.

idsLen The number of elements in the ids array.

pId A pointer to the location to receive the matched transfer type.

Performing One-Shot Transfers
If the transfer· type is a one-shot type transfer, the receiver sends msgXferGet to
the sender. The message takes a pointer to a transfer buffer. Transfer buffers can
take on a number of forms. XFER.H defines the following types of transfer buffers:

• XFER_FIXED_BUF transfers up to 256 bytes in a single transfer.

174 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

• XFER_BUF transfers a variable length buffer (of up to 64K bytes).

• XFER_ASCII_METRICS is used to transfer ASCII metrics. This type is only
used by xferASCIIMetrics transfer type.

• XFER . .:OBJECT is used to transfer an arbitrary object.

The type of transfer buffer depends on the transfer type. Table 83-4 lists the various
one-shot transfer types and the corresponding buffer type. (The information in this
table was obtained from XFER.H, which includes the transfer buffer type as a comment
when defining the transfer types. If you define your own transfer types, it is a good idea
to follow this practice.)

ircm$lrer Type liJfferlype

xferString XFER_FlXED _BUF

xferLongString XFER_BUF

xferName XFER_FlXED _BUF

xfer FullPathN arne XFER_FlXED _BUF

xferFlatLocator XFER_FlXED _BUF

xferASCIIMetrics XFER_ASCII_METRICS

xferRTF (stream protocol)

xferScribbleObject XFER_OBJECT

xferPicSegObject XFER_OBJECT

If you define your own transfer types, you can use these transfer buffers or you can
define your own transfer buffers. Of course, transfer types that you create are
known only to your senders and receivers.

Fixed-Length BuRer Transfers

If the transfer type is xferString, xferName, xferFu1IPathName, or xferFlatLocator,
the argument to msgXferGet is a pointer to an XFER_FlXED_BUF structure, which
contains:

id The transfer type.

buf A 256 byte buffer that contains the data.

len The length of the data in buf.

Variable-Length BuRer Transfers

If the transfer type is xferLongString, the argument to msgXferGet is a pointer to
an XFER_BUF structure, which contains:

id The transfer type.

pBuf A pohlter to a buffer that contains the data.

len The length of the data in buf.

CHAPTER 83 / TRANSFER CLASS 175

Performing One-Shot Transfers

The buffer indicated by pBuf must be shared. The sender should allocate the buffer
by calling OSSharedMemAllocO or by calling OSHeapBlockAllocO with a shared
heap such as osProcessSharedHeapld.

When the receiver has read the data from the shared buffer, it should deallocate
the buffer (a shared buffer does not have to be allocated and deallocated by the
same task).

When the message sends back XFER_BUF, the len field contains the length of the
data in pBuf.

Whenever possible, the client
that knows how big the data is
should allocate the shared buffer.

Whenever possible, the client
that requested the data should
deallocate the shared buffer.

ASCII Metrics Transfers 83.5~3

If the transfer type is XferASCIIMetrics, the argument to msgXferGet is a pointer
to an XFER_ASCII_METRICS structure, which contains:

id The transfer type.

When the sender returns msgXferGet, XFER~SCII_METRICS contains:

first The text index of the first character in the range.

length The length of the text range.

level The parts of text being transferred. The level enables word processors
to apply the correct styles to the data moved into a document. The
possible values are:

0 Ignore

1 characters

2 words

3 sentences

4 paragraphs

This example shows a receiver sending msgXferGet to a sender.

STATUS GetShortString(
P_TAG pID, II pointer to ID from XferMatch
P MY DATA pMyData) II pointer to instance data

XFER_FIXED_BUF fbi II Fixed buffer
STATUS status;

fb.id = *pID;
fb.data = pMyData;
status = ObjectSendUpdate(msgXferGet, pMyData->sender, &fb);

if (status >= stsOK)
{

strncpy(pMyData~>pFixedData, fb.buf, fb.len);
pMyData->fixedLen = fb.len;
return stsOK;

176 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Replying to One-Shot Transfers

When the sender receives msgXferGet, it should move the information into the
buffer and return the message. This example shows how the sender responds when
it receives msgXferGet:

II Handle msgXferGet for fixed data
STATUS ReplyFixedData(

P_XFER_FIXED_BUF pArgs)

P MY DATA *myData; II pointer for data
STATUS rstatus; II returned status

rstatus = stsOK;

II Find data to transfer
FindData(mydata);

if (myData->len > 256)
{

pArgs->len = 256;
rstatus = stsTrunc; II data truncated

else
pArgs->len = myData->len;

strncpy(pArgs->buf, myData->data, pArgs->len);

return rstatus;

Performing Siream Transfers
If the transfer type is a stream transfer, the receiver and sender must create their
halves of a stream.

Creating the Receiver's Stream

The receiver always creates its half of the stream first, by calling the function
XferStreamConnectO. The function's arguments are:

• The UID of the sender.

• The transfer type.

• An optional pointer to client data for the sender. This client data might
indicate more specifically what portions of the data the receiver is interested
in. When the stream sends msgXferStream Write, it passes this pointer to the
producer.

• A pointer to the location that receives the UID of the receiver's stream object.

The function does the following:

1 Initializes and creates a stream object (by sending msgNewDefaults and
msgNew to clsXfer).

2 Tells the sender to create its own stream object by using ObjectPostAsyncO
to send msgXferStreamConnect to the sender.

CHAPTER 83 / TRANSFER CLASS 177
Performing Stream Transfers

3 Initializes the stream by sending msgXferStreamlnit to its stream object.

If the function completes correctly, it returns stsOK.

Creating the Sender's Stream

When the sender receives msgXferStreamConnect, it should create its half of the
stream by calling the function XferStreamAccept. The function arguments are:

• The receiver's stream object (pArgs->stream in msgXferStreamConnect).

• The size of the stream transfer buffer (can be up to 64K bytes).

• An optional producer UID. If this argument is null, the stream uses blocking
protocol; if this argument indicates an object, the stream uses producer
protocol, with the indicated object as the producer.

• A pointer to the location that receives the UID of the sender's stream object.

The function:

1 Initializes the stream object (by sending msgNewDefaults to clsXfer).

2 Establishes that the stream object has a producer and identifies the receiver.

3 Creates the stream object (by sending msgNew to clsXfer).

4 Copies the UID of the stream object to the location specified by the caller.

If the function completes correctly, it returns stsOK.

Freeing the Stream

When the transfer is complete, the sender or the producer frees the stream by
sending msgFree to its stream object. When clsXfer receives msgFree, it sends
msgXferStreamFreed to the producer.

When the receiver gets msgXferStreamFreed, it frees its half of the stream.

Accessing the Stream's Auxiliary Data

The stream's data includes a pointer value for auxiliary data. The receiver and the
sender can write and read this value to exchange information about the transfer.

To store information in the stream's auxiliary data, send msgXferStreamSetAuxData
to the stream object. The message takes a pointer to any type of data. When the
message completes successfully, it returns stsOK.

To read the stream's auxiliary data, send msgXferStreamAuxData to the stream
object. The message takes a pointer to the location that receives the pointer stored
in the stream.

When the message completes successfully, it returns stsOK and the location
contains the pointer stored in the stream.

83.6.2

83.6.3

83.6.4

178 PEN POINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Connecting a Stream to a Producer

When the receiver in a stream transfer creates its half of the stream, it sends
msgXferStreamConnect to the sender. The message takes an XFER_CONNECT

structure that contains:

id The transfer type.

stream The UID of the receiver's stream object.

clientData A pointer to optional, client-specified data.

When the sender receives msgXferStreamConnect, it should create its stream
object by calling the function XferStreamAcceptO.

Initializing a Stream

When the sender returns msgXferStreamConnect, the receiver should initialize
the stream by calling msgXferStreamInit. The message takes no arguments.

Chapter 84 / Help

There are two help facilities built into the PenPoint™ operating system:

• Quick Help, which provides object-specific reminders when the user:

• Makes the question mark 0 gesture over an object.

• Taps on the Help icon, then taps on an object.

• The Help notebook, which provides users with full on-line help
documentation.

Application designers can add both types of help to their application.

Topics covered in this chapter:

• Concepts of Help and Quick Help.

• How to add help to the Help notebook.

• How to define Quick Help resources.

• How to use the Quick Help messages.

Help Concepts
There are two help components in PenPoint: Quick Help and the Help notebook.
Quick Help provides a reminder mechanism for windows which support Quick
Help. The user invokes Quick Help either by making the question mark? gesture
over a window, or by tapping the Help icon, and then tapping on a window. Both
methods display a brief help message in the Quick Help window.

The Help notebook is the location in which the full on-line help documentation
for the system and applications exists. It is a true notebook and has a table-of­
contents, tabs, sections, etc. The user invokes the Help notebook by tapping the
Help icon, then tapping the Help notebook button in the Quick Help window.

The Help Notebook
The Help notebook contains tutorial Help inforl11ation. It is a true notebook that
can contain any application-there is no requirement on the type of application
that can be placed in this notebook. An application can even put a instance of
itself in the Help notebook.

Help Directories

To add a help application to the Help notebook, create a HELP directory in your
application directory (\PENPOINT\APP\MYAPP\HELP) and place directories
containing help applications in this directory.

84.1

84.1.1

'80 PEN POINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

When the user installs your application, the installer copies the help applications
into the Help notebook, just as stationery documents in a STATNRY directory are
copied into the Stationery notebook.

If you don't want to create a help application, you can use clsTexteditApp to
display your help text. To use the text editor:

1 Create an ASCII text file called HELP.TXT or a Rich Text Format (RTF) file
called HELP.RTF that contains your help text.

2 Store the text file in a subdirectory of your document's HELP directory. The
name of the subdirectory is the title of the document in the Help notebook.

You can provide more than one help document (or help application), but each
requires its own subdirectory under the HELP directory.

HELP subdirectories that are application documents must be labeled with the class
of the application. If a directory is not labeled with an application class when the
installer copies it into the Help notebook, the installer labels it with clsTexteditApp
(the MiniText application class). When the user turns to your help text, the help
notebook activates the text as a text editor document.

The following directory tree shows the help for an application named MyApp.

Under the directory named \MyApp is a HELP directory. The HELP directory
contains two subdirectories for two separate help text files, Summary Help and
Detailed Help.

\PENPOINT
L \APP

L \¥yApp

L- \eLP
\Sununary Help

L HELP.TXT
\Detailed Help

L HELP.TXT

When the files in this example are loaded by the Installer, the Help notebook
would contain two documents named Summary Help and Detailed Help.

~ Creating Help Text

If you use clsT exteditApp to display your help, your help text can be either an
ASCII text file called HElP.TXT or an RTF file called HELP.RTF.

You can create an ASCII text file in any text editor or word processor. If you use a
word processor, make sure that you save the file as a plain text document-not the
word processor's format.

RTF is a document description language that allows you to transfer formatted
documents among different word processors. You can create RTF files by editing
your help text in a word processor that can save its documents as RTF files.

An additional benefit of using RTF for your help text is that you can include gesture
characters in your documents, using the PenPoint Gesture font (GS80). For infor­
mation about how to add the PenPoint Gesture font characters to your help text, see
''Advanced Topics," later in this chapter.

CHAPTER 84 I HELP '8'

Quick Help Concepts

The system support for Quick Help consists of a well-known object,
theQuickHelp, which is the window which displays the current help information.
The Quick Help window is a floating window with two buttons, Done and Help
notebook.

The default support in the system for Quick Help is based in the gesture window
class, clsGWin. A Quick Help ID can be stored with a gesture window as a
property of the object. When the question mark gesture gets to clsGWin, it will
send this Quick Help ID to the Quick Help window. The Quick Help window
will then attempt to find the resource with the Quick Help ID. If it finds the
resource, it reads in the text and displays it.

The resource described above currently contains the strings for the title and
summary (there is also a gesture string which is unused). It is the responsibility of
the developer to provide the Quick Help resources and store them in the
application or system directories.

To use the Quick Help facility, developers create Quick Help resources and
associate them with PenPoint objects. When the user makes a help gesture? over
the object, clsGWin intercepts the gesture, and sends msgQuickHelpShow to put
the Quick Help window on-screen and present the text to the user. When the user
taps on another object while the Quick Help window is on-screen, the Quick
Help window simulates the gesture.

For objects that do not descend from clsGWin, the Quick Help API enables
clients to direct the Quick Help manager to display text from a help resource.

Adding Quick Help to an object that inherits from clsGWin requires two steps:

• You define a Quick Help resource in a resource file, either by saving the
resource to disk from an application or by using the resource compiler to
compile a resource definition file (see Part 11: Resources for more
information) .

• You store the ID portion of the Quick Help resource ID in the metrics of the
clsGWin object.

When the user makes a Quick Help gesture on the object, clsGWin receives the
gesture (if it isn't intercepted) and sends messages to the Quick Help manager to
display the Quick Help resource.

If the object does not inherit from clsGWin, adding Quick Help is almost as eao/.
Mter defining the Quick Help resource, you ensure that the object stores the
Quick Help resource ID. When needed, the object sends messages to the Quick
Help manager, directing it to display the Quick Help resource.

Quick Help Resources

The Quick Help resource for an object consists of three strings that contain:

• A title for the Quick Help window.

Help Concepts

84.1.2

84.1 ~2.1

This discussion assumes that
you are familiar with resources.

en
UI
en
en

[

'82 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

• A gesture string (currently unused; should be empty).

• The Quick Help summary.

The strings can either contain plain text or RTF strings. RTF is useful if you need
to use multiple fonts or add other stylistic changes to your text. For example, an
RTF string can include characters from the PenPoint Gesture Font. For
information on adding PenPoint Gesture Font characters to your help strings, see
the ''Advanced Topics," later in this chapter.

You define a Quick Help resource as a string-array resource that contains all of the
Quick Help strings for the class.

The Quick Help resources for an application must be stored in the APP.RES file for
that application. The Quick Help resources for system-wide objects should be
stored in the system resource file.

".". Quick Help and clsGWin

When you create an instance of an object that inherits from clsGWin, you and
store a Quick Help resource ID in the gwin.helpID field for the clsGWin object.

If the user makes the Quick Help gesture on an object that inherits from clsGWin
and no subclass intercepts the gesture, clsGWin receives the gesture and:

1 Uses the application UID to locate the application's resource list.

2 Uses the Quick Help ID in gwin.helpld to identify the resource.

3 Sends clsQuickHelp messages to the Quick Help manager (theQuickHelp).

~"" Quick Help without clsGWin

If you use a class that does not inherit from clsG~n, but you want to be able to
display Quick Help for instances of that class, you can send Quick Help messages
to theQuickHelp (the same way that clsGWin invokes Quick Help).

You can also use this technique if you want to intercept the Quick Help gestures
and display the Quick Help information yourself.

The messages defined by clsQuickHelp allow clients to:

• Display Quick Help.

• Open and close the Quick Help window.

• Determine which Quick Help string to display.

''Advanced Topics," later in this chapter, describes the Quick Help messages and
how to use them.

".". theQuickHelp Obiect

There is only one Quick Help object in the system: theQuickHelp. theQuickHelp
is defined when the PenPoint operating system is booted. You do not need to send
msgNew to any class to create theQuickHelp (in fact, there is no well known UID
for the Quick Help class).

CHAPTER 84 I HELP 183
Defining Quick Help Resources

Defining Quick Help Resources
You define the Quick Help resources in C language files that are compiled by the
Resource Compiler. Before you read about defining Quick Help resources, you
should be familiar with the material in Part 11: Resources.

Each resource is defined by a string resource that defines the title and summary
strings. All of the Quick Help string resources are combined into a single string
array resource.

84.2

Defining the Quick Help String Array 84.2.1

To define a Quick Help string array resource you define a static string array and
a resource definition that points to the string array. Each string in the string array
combines the title and summary strings for a single Quick Help resource. Each of
the Quick Help strings in the array has the following format:

static CHAR label-of-string[] = {

II title
"title text I I"
II summary
"sununary text "
"more sununary text"

};

The title and summary strings are combined into a single string, with a sequence
of two vertical bar characters (II) separating the two parts of the string. Note that
ANSI C concatenates consecutive strings, so the above template actually defines a
single string.

All of the Quick Help strings for a class are combined into a single string array,
plus a null string to indicate the end of the array. This string array is the data for
the Quick Help resource for the class.

The resource definition has this format:

static RC INPUT res-label = {

MakeListResId(class-UID, resGrpQhelp, list-number), II list-number is typically a
label-of-string-array, II Name of the string array
0, I I dataLength is not needed for strings
resTaggedStringArrayResAgent II Use string array resource agent

} ;

184 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

The following example shows a typical Quick Help resource using string resources.

This example shows how to define the Quick Help resource. It comes from the Quick Help for the view of the Tic-Tac-Toe
sample program, in \PENPOINT\SDK\SAMPLE\TTT. The tag for the resource is defined in TTTQHEIP.RC as:

#ifndef RESCMPLR_INCLUDED
#include <rescmplr.h>
#endif
#ifndef QHELP_INCLUDED
#include <qhelp.h>
#endif
#ifndef TTTVIEW INCLUDED
#include "tttview.h"
#endif

II
II Quick Help string for ttt's option card.
II
static CHAR tttOptionString[] = {

} ;

II

II Title for the quick help window
"TTT Card I I "
II Quick help text
"Use this option card to change the thickness of the lines "
"on the Tic-Tac-Toe board."

II Quick Help string for the line thickness control in ttt's option card.
II
static CHAR tttLineThicknessString[] =

II Title for the quick help window
"Line Thickness I I"

} ;

II

II Quick help text
"Change the line thickness by writing in a number from 1-9."

II Quick Help string for the view.
II
static CHAR tttViewString[] = {

} ;

II Title for the quick help window
"Tic-Tac-Toel I"
II Quick help text
"The Tic-Tac-Toe window lets you to make X's and O's in a Tic-Tac-Toe "
"grid. You can write X's and O's and make move, copy"
"and pigtail delete gestures.\n\n"
"It does not recognize a completed game, either tied or won.\n\n"
"To clear the game and start again, tap Select All in the Edit menu, "
"then tap Delete."

II Define the quick help resource for the view.
static P RC TAGGED STRING tttViewQHelpStrings[]

tagCardLineThickness, tttOptionString,
tagTttQHelpForLineCtrl, tttLineThicknessString,
tagTttQHelpForView, tttViewString,
pNul1

} ;

continued

CHAPTER 84 I HELP '85
Defining Quick Help Resources

static RC_INPUT tttViewHelp =
MakeListResld(clsTttView, resGrpQhelp, 0),
tttViewQHelpStrings, II Name of the string array
0,
resTaggedStringArrayResAgent II Use string array resource agent

} ;

1**
The glue that ties everything together -- reslnput.

**1
II reslnput is an exported variable that the resource compiler expects.
II Each element is a pointer to a structure describing the next resource.
II The list is terminated with a null pointer.
P_RC_INPUT reslnput [] = {

} ;

&tttViewHelp, II this is the one defined in this example
II any other resource pointers would go here
pNull

'86 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Figure 84-1 illustrates the Quick Help that results from the resource shown here:

Storing the Resource ID in a Gesture Window
To associate a Quick Help resource with a window class that inherits from
clsGWin, store the resource ID in the gWin.helpld field of the window. For
example, while handling msgNewDefaults, clsTTTView sets its gWin.helpID to
the resource ID of one of the strings defined in Example 84-1 (this code fragment
is from \PENPOINT\SDK\SAMPLE\TTT\TTTVIEW.C):

pArgs->gWin.helpld = tagTttQHelpForView;

ndow

84.2,,2

Advanced Topics
Most application designers shouldn't need to communicate with theQuickHelp.
However, if you create a class that does not inherit from clsGWin or want to
intercept the Quick Help messages and handle them on your own, you can send
messages to theQuickHelp.

Quick Help Message Summary

The Quick Help messages and structures are defined in QHELP.H.

Table 84-1 lists the messages defined by Quick Help.

CHAPTER 84 I HELP '87
Advanced Topics

84.3.1

Table 84~1
clsQuickHe essages

--------------------~~--= MCS,Gg0S

msgQuickHelpHelpShow

msgQuickHelpShow

msgQuickHelpOpen

msgQuickHelpHelpDone

msgQuickHelpOpened

msgQuickHelpClosed

msgQuickHelpInvokedNB

OBJECT

nothing

nothing

nothing

Using Quick Help Messages

Dcscription

Sent to a window to request it to display quick help.
The window typically responds by posting
msgQuickHelpShow.

Sent to theQuickHelp to displays the Quick Help
associated with a resource ID.

Forces the Quick Help window to appear.

Sent to a window when quick its quick help is no
longer displayed.

Indicates that the quick help window has been
opened.

Indicates that the quick help window has been
closed.

Indicates that the notebook associated with quick
help should be open.

84.3.2

This section describes how to use the Quick Help messages. You should rarely
need to send any of these messages since default Quick Help handling is
implemented by clsGWin, and most application windows inherit from clsGWin.

'jr~v Displaying Quick Help Text

To tell the Quick Help window to open and display help text, send
msgQuickHelpShow to theQuickHelp. Normally, theQuickHelp will send
msgQuickHelpHelpShow to your window, and your window will respond by
using ObjectPostO to send msgQuickHelpShow to theQuickHelp.

msgQuickHelpShow takes as its argument a pointer to a QUICK_DATA structure
that contains:

helpld The Quick Help resource identifier.

appUID The DID of the application that owns the Quick Help resource.

The Quick Help window remains open until the user closes it.

188 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Opening the Quick Help Window

You can force the Quick Help window to appear on screen. To open the window,
send msgQuickHelpOpen to theQuickHelp. The message takes no arguments.
The Quick Help window displays the text that was last displayed by
msgQuickHelpShow.

Using the PenPoint Gesture Font

The PenPoint Gesture font allows you to incorporate glyphs that resemble gestures
in your Help and Quick Help documents. The PenPoint Gesture font file is in
\PENPOINT\FONT\GS80.PCK. You must use Rich Text Format (RTF) documents to
include the gesture font with ordinary text in your document.

Table 84-2 shows the characters in the Gesture font as they appear on the
PenPoint computer screen, their ASCII values, and the meanings of the characters.
Not all gestures are currently used; not all have glyphs in the gesture font. The
ASCII values are assigned tags in the file \PENPOINT\SDK\INC\xGESTURE.H.

Gesture 1(;1~

xgsLeftParens

xgsRightParens

xgsPlus

xgs1Tap

xgsQuestion

xgsAGesture

xgsBGesture

xgsCGesture

xgsDGesture

xgsEGesture

xgsFGesture

xgsGGesture

xgsH Gesture

xgsI Gesture

xgs J Gesture

xgsKGesture

xgsDownRight,
xgsLGesture

xgsM Gesture

xgsN Gesture

xgsCircle,
xgsOGesture

xgsPGesture

xgsQGesture

+
y

?
A

B

C

D

E

F

G

H

I

J
K

L
M

N

o
P

Q

A5CU 'h:t!ue

40

41

43

46

63

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

84 .. 3.2 .. 2

Table 84~.2

CHAPTER 84 I HELP 189
Advanced Topics

Gesture Tag Symbol ASC!!Value

xgsRGesture R 82

xgsSGesture S 83

xgs TGesture T 84

xgs UGesture U 85

xgs WGesture W 87 '" IU

'" '" xgsCross, ~
xgsXGesture X 88

It xgs YGesture Y 89

xgsZGesture Z 90

xgs2Tap V 128 ..
xgs3Tap .. y 129

xgs4Tap y ... 130

xgsCheckTap v: 136

xgsTapHold ·1 137

xgsPressHold 1 138

xgsScratchOut ~ 140

xgsPigtailVert 1 141

xgsCircle Tap (!) 142

xgsUpCaret A 143

xgsCircleLine e 146

xgsCircleFlickU p cb 147

xgsCircleFlickDown <f 148

xgs UpCaretDot A 149

xgsDblCircle aD 152

xgsUpArrow t 153

xgsUp2Arrow if 154

xgsDownArrow ~ 155

xgsDown2Arrow
""

156

xgsLeftArrow ~ 157

xgsLeft2Arrow ~ 158

xgsRightArrow ~ 159

xgsRight2Arrow ==9 160

xgsDblU pCaret ~ 161

xgsRightUp -l 165

xgsRightUpFlick -l~ 166

xgsRightDown I 167

xgsDownRightFlick L 168

xgsDownLeft ---1 169

xgsDownLeftFlick ---1 170

190 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Gesture 1~%i

xgsParagraph

xgsUpRight

xgsFlickUp

xgsFlickDown

xgsFlickLeft

xgsFlickRight

xgsDblFlickU p

xgsDblFlickDown

xgsDblFlickLeft

xgsDblFlickRight

xgs TrplFlick U p

xgs TrplFlickDown

xgs TrplFlickLeft

xgs TrplFlickRight

xgsQuadFlickUp

xgsQuadFlickDown

xgsQuadFlickLeft

xgsQuadFlickRight

xgsLeftDown

xgsLeftUp

xgsUpLeft

xgs VertCounterFlick

xgsHorzCounterFlick

xgsCircleCrossOut

xgsBordersOn

xgs2TapHold

xgs3TapHold

xgs4TapHold

Symbol

r

=

UI

m

1111

"" =

I,

.1 .-
•• 1 .-
-:-!

Adding Gestures to Help Text

AS(UVolue

171

173

174

175

176

177

178

179

180

181

186

187

188

189

190

191

192

193

197

198

199

200

201

203

204

244

245

246

To add the gesture characters to help text, edit the help text file using a text editor
that supports multiple fonts and can save a document in RTF format. Insert the
value for the gesture font character and change the font of the character to
symbol-h.

When MiniText reads an RTF document, it interprets characters styled with the
symbol-h font as using the PenPoint Gesture font.

8gt3~3$1

CHAPTER 84 I HELP 191

"..,. Adding Gestures to Quick Help Strings

Adding gestures to Quick Help strings is somewhat more complicated, because
you have to create your Quick Help strings in RTF to take advantage of the
PenPoint Gesture font.

If you examine a few RTF strings, you will be able to understand most of the
language. A complete description of RTF is available in the Microsoft Wordfor
Windows Technical Reference, which is available from Microsoft Press.

The escape character for RTF strings is a backslash. When defining RTF strings in
C, you must remember to double the backslash.

The first part of an RTF description of a document assigns fonts to font numbers,
describes the style sheet (if there is one), and describes the document layout.
PenPoint provides a shorthand method for describing this information with the
\qh control word.

The change to the PenPoint Gesture font begins is specified with the string \ \f63;
the return to the normal font is specified with the string \\£0. RTF files cannot
contain characters other than the 127 ASCII characters, so characters beyond
decimal 127 must be specified with the RTF hexadecimal character representation
(\ \' hex-digits).

Advanced Topics

84.3.3.2

Chapter 85 / The Busy Manager

Occasionally your application might need to perform some time-consuming
work-time-consuming enough for the user to notice that the machine is not
responding. Such work might include performing compute-intensive work or
copying large files across a network. To assure the user that the computer is still
working, you can put up a busy clock, a small animated image of a clock face, on
the screen.

The PenPoint™ Application Framework ensures that all applications automatically
bring up the busy clock if they take more than about half a second to respond to
an input event, then automatIcally take down the busy closk when they are no
longer busy. Furthermore, you can control the busy clock programmatically by
sending messages to theBusyManager. Messages for theBusyManager are defined
in BUSY.H.

Using .heBusyManager
theBusyManager responds to the message, msgBusyDisplay. When your
application starts some work that will not change the display for a number of
seconds, send msgBusyDisplay to theBusyManager with busyOn (a U32) as the
argument. When your application is no longer busy, send msgBusyDisplay to
theBusyManager with busyOff (a U32) as the argument.

This example shows a use of theBusyManager.

#include <busy.h>
STATUS Si

s = ObjectCall(msgBusyDisplay, theBusyManager, busyOn)i

II (Perform some time-consuming task)

II Done, take down busy display
s = ObjectCall(msgBusyDisplay, theBusyManager, busyOff)i

Placing the Busy Display
If you want to locate the busy clock at a particular point on-screen, send
msgBusySetXY with a pointer to an XY32 as its argument. The next time
theBusyManager receives msgBusyDisplay with an argument of busyOn, the
busy clock will appear a the root window coordinates specified by the XY32.

msgBusySetXY sets the location of the busy clock only for the duration of one
send of msgBusyDisplay. When the busy clock is turned off, the coordinates for
the next display of the busy clock are set to minS32, minS32.

85.1

85.1.1

'94 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

The Busy Clock Delay and Reference Count 8S~2

Normally, theBusyManager allows a short delay from the time it receives
msgBusyDisplay with an argument of busyOn and the time it displays the busy
clock. This usually prevents situations in which the busy clock appears on screen
for so brief a period that it simply flickers. However, if you know that your
application will be busy for an extended period and would like the busy clock to
come up immediately, you can use an OR operation to combine the flag
busyNoDelay with busyOn. If you pass the result as the argument to
msgBusyDisplay, theBusyManager will put the busy clock up with no delay.

theBusyManager maintains a reference count which records how many objects
have turned on the busy clock and how many have turned it off. Using the
reference count, theBusyManager can handle msgBusyDisplay more efficiently.
For example, suppose two clients send msgBusyDisplay with an argument of
busyOn. When the first client send msgBusyDisplay with an argument of
busyOff, theBusyManager does not need to take down the busy clock (which is
still needed for the second client), and instead simply reduces the reference count
and returns stsOK. theBusyManager doesn't execute the code to take down the
busy clock until the reference count comes back down to zero.

It is possible to override the reference count mechauism, although this is not
recommended. If you use an OR operation to combine the flag busyN o RefCount
with busyOn, msgBusyDisplay will do nothing if the reference count is greater
than zero. If you combine busyNoRefCount with busyOff, msgBusyDisplay will
set the reference count to zero and bring down the busy clock.

Chapter 86 / Search anel Replace

The search and replace API provides a protocol used by clients that need to search
and replace text strings in embedded objects. Additionally, the search and replace
library provides functions that search for and replace text in specified objects.

Topics covered in this chapter:

• Writing an application that searches and writing a class that can be searched.

• The search and replace protocol.

• Responding to traversal messages.

• The search and replace library.

• Advanced topics (for those not using the search and replace driver provided
by the PenPoint™ operating system).

Concepls
Before reading this chapter, you should be familiar with embedded documents
and using marks, which are both described in Part 2: PenPoint Application
Framework.

A search and replace operation is a specialized form of traversal. The search and
replace operation scans a document looking for a particular pattern of text.
Traversal is necessary, because the document might contain embedded documents;
those documents might contain embedded documents, and so on. When
initiating the search, the user can specify whether to search in embedded
documents or to only search the document that contains the selection.

At anyone time, there are two interesting participants in a traversal: the driver and
the slave. If you are writing a class that will contain data that can be searched,
instances of the class will be the slave.

A search and replace operation is managed by a search and replace driver. The
search and replace driver sends traversal messages to the objects being searched.

Most applications do not need to create a search and replace driver themselves. If
an application allows clsApp to handle msgAppSearch, clsApp presents the user
with a search dialog and creates the search and replace driver. (You can read about
how to handle Standard Application Menu messages in Part 2: PenPoint
Application Framework.)

If your class will be a slave (that is, instances of your class contain data that can be
searched), you must be prepared to handle both mark messages and the search and
replace messages. Most of this chapter discusses how to handle those messages.

196 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Writing a Class That Can Be Searched
To start a search or search and replace operation, an application should allow the
class manager to pass msgAppSearch to clsApp. clsApp displays the search dialog
and searches the appropriate portion of the document.

If your application needs to start a search by itself, you can send msgAppSearch to
self. The message takes no arguments.

If you want instances of your class to be searched, you must respond to:

• The clsMark messages sent to you by the search and replace driver.

• The search and replace messages.

Search and Replace Protocol
The following sections describe the protocol exchanged between theSearchManager
and the object being searched. The search (and replace) operation follows these steps:

1 clsMark asks the object to create a token for a mark.

2 theSearchManager asks the object to set the initial search position.

3 theSearchManager asks the object to position to the next group of characters.

4 theSearchManager asks the object to pass it characters delimited by the token.

S theSearchManager searches the characters for its search string. It repeats
steps 3 through 5 until it finds the text (or reaches the end of data).

6 If theSearchManager finds a match, it asks the object to reposition its token
to the matched string.

7 theSearchManager asks the object to select take the selection and show the
matched string to the user.

8 If replacing, theSearchManager asks the object to replace the characters.

9 If replacing all, repeat steps 3 through 9 until the object reaches the end of
its data.

Creating a Mark
When the user starts a search and replace operation, theSearchManager creates an
instance of clsMark, which in turn requests the object being searched to create a
mark by sending it msgMarkCreateToken.

The object that receives this messages should create a token for the mark, as
described in Part 2: PenPoint Application Framework.

SeHing the Initial Search Position

When the searched object has created the token, theSearchManager requests the
object to position its token to the beginning (or end) of the data that it will search
by sending one of msgMarkPositionAtEdge, msgMarkPositionAtSelection, or
msgMarkPositionAtGesture.

the5earahManager does not
currently send m5gMark­
P05itionAt5eleation, but might
at some time in the future.

CHAPTER 86 I SEARCH AND REPLACE 197
Writing a Class That Can Be Searched

".. Getting the Next Group

To search for text, theSearchManager requests the object to position its token to
the next group of characters that might contain match the search. The arguments
for msgSRNextChars identify the token to be moved.

The method that handles msgSRN extChars, and all methods that handle search
and replace messages should call the function MarkHandlerForClassO. The only
parameter for the function is the well-known UID of the class to which the
method belongs.

Usually a group ends at a non-text element (such as an embedded document).
However, the group can end anywhere that is convenient for your data.

The method must also set the blockStart and blockEnd BOOLEAN values. These
indicate whether the group of characters is the beginning or end of a block of
characters. Text within groups is not matched across block boundaries, but is
matched across other groups.

There are three status values your method can return:

stsOK Next group found and token repositioned.

stsEndOfData There is no more data to be searched. (When your method
finds the last group, it still returns stsOK; only when another
msgSRNextChars arrives should it return stsEndOfData.)

stsMarkEnterChild The next item is an embedded document.

Passing the Found Characters

If your method for msgSRNextChars returned stsOK, theSearchManager asks
the object to pass back the characters matched by the token by sending
msgSRGetChars.

The message passes a pointer to an SR_GET_CHARS structure, which contains:

first An offset to the first character in the token to copy.

len The number of characters to copy.

bufLen The size of the buffer.

pBuf A pointer to the buffer to which your method copies the characters.

Your method must copy a null terminate string into pBuf.

Searching the Text

theSearchManager does the actual searching by comparing its search string to the
characters passed in by msgSRGetChars.

If theSearchManager finds a match, it asks the object to position its token to the
matched characters by sending it msgSRPositionChars. The message passes a
pointer to an SR_POSITION_CHARS structure, which identifies the new position
for the token.

86.2.4

86.2.5

86.2.6

-~----"------

198 PEN POINT ARCHITECTURAL REFERENCE

Part 9 I Utility Classes

Highlighting the Text

The search manager then asks the object to display the found text by:

• Asking the object to take the selection by sending it msgMarkSelectTarget.

• Asking the object to display the matched characters to the user by sending it
msgMarkShow Target.

Replacing Characters

If the user is using find and replace and chooses to replace the matched text,
theSearchManager asks the object to replace some or all of the characters matched
by the token with new text by sending it msgSRReplace. The message passes a
pointer to an SR_REPLACE_CHARS structure, which contains:

first The offset to starting character within the token to replace.

len The number of characters to replace.

bufLen The number of characters in the replacement string.

pBuf A pointer to the replacement string.

The first field can be negative, indicating that the text to be replaced starts before
the token.

After replacing the text, your method must update the token to reflect any change
in size of the replaced text.

Classes Thai Respond 10 Search Messages
If your class inherits from a class that responds to the search and replace messages,
you may not have to do anything.

Currently clsText is the only class that responds to the search and replace messages.

The Search and Replace Messages
Table 86-1 lists the messages defined by clsSR in the file SR.H.

Your method must update the
token.

86.3

lbble 86~1
Seol"ch Ofld Re (eA~esso es

msgSRNextChars

msgSRGetChars

msgSRReplaceChars

msgSRPositionChars

Oeszrlj:)tlon

Asks the client to move the token to the next group
of characters.

The component passes back the characters from the
location identified by the token.

Ask the component to replace some of the characters
at the location identified by the token.

Asks the component to reposition the token to some
of the characters in the current group.

Chapter 87 / Undo

The undo manager provides the mechanism that allows applications to respond to
the standard application menu undo command.

Topics covered in this chapter:

• The concepts behind the undo manager.

• Undo manager messages.

• Using the undo manager messages.

Concepts
The undo manager provides a centralized facility within each application for
managing undo information and handling undo commands local to a document.
Applications use the undo manager to store records of user actions and can request
the undo manager to undo those user actions. Currently there is no support for
undoing actions between documents (such as move or copy between documents);
each document sees its part of such operations as a separate undo item.

When designing the user interface for an application or component, you need to
identify particular user actions that the user might want to undo. Each user action
that is undoable is called a transaction. One or more objects contribute one or
more undo items to a single transaction.

A transaction should appear to the user a single action, such as deleting a
spread-sheet cell, inserting text in a document, or changing all the text in the
selection to italics.

When the user issues an undo command, the undo manager undoes the most
recent transaction by sending a message to the objects mentioned in the
transaction. Those objects must know how to undo their parts of the transaction,
but the undo manager keeps track of what to undo. The undo manager allows
applications to support a transaction history, so that subsequent undo commands
remove transactions from the history in the reverse ord~r in which they were
added.

Because PenPoineM applications are built by integrating a number of components,
the PenPoint undo is slightly different than undo under other operating
environments. In traditional operating environments, the program that performs
the undo keeps track of all of its own actions. However, under PenPoint, actions
may be performed by the application or any of its component objects.

Each component that performs a function that a user might want to undo must
cooperate in the undo strategy. If a component doesn't cooperate in the undo
strategy, changes made by that component are not undoable; if the component

87.1

The undo manager is not a
general database transaction
undo facility.

200 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

contributes to an overall action that is undoable, the undo might not work
correctly.

The General Strategy
When the user turns to a document, the PenPoint Application Framework creates
an instance of the undo manager for that document (named theUndoManager).

When the user performs some action that is undoable, the application tells
theUndoManager that a transaction is beginning. Applications and components
divide the steps that it takes to complete the transaction into a series of items. An
undo item describes an operation by a class and how to undo that operation. The
application and its components add items to the transaction data until the trans­
action ends. The application tells theUndoManager when the transaction ends.

When the user taps on Undo, theUndoManager gets the data for the most recent
transaction. theUndoManager removes the last item in the transaction, examines
it, and sends a message to the object that created the item. The object's class (or
one of its ancestors) uses the item data to undo that part of the operation and then
frees the item data. theUndoManager continues to remove and examine the items
in the transaction (in the reverse order in which they were received), until the
transaction is completely undone.

When the user turns away from the document, the PenPoint Application
Framework destroys theUndoManager and the undo history as part of
deactivating the document.

At any time there is at most one undo transaction open. The data associated with
each transaction includes:

• A unique identification of type UNDO_ID.

• A nesting count that tracks the number of "begin undo" transaction messages
that have not been matched by a corresponding "end undo" transaction
message.

• A heap with global scope, from which clients can allocate space to hold undo
item information.

• A list of undo items contributed by applications or components.

'. A variety of transaction state information.

The transaction information is stored in the UNDO_METRICS structure; applications
can get this information by sending msgUndoGetMetrics to theUndoManager.

87 .. Ll

CHAPTER 87 / UNDO 201

Transaction Data

The undo manager stores transaction data in the undo history. An application can
change the size of its undo history, thereby allowing larger transaction histories.

The data for a transaction consists of one or more items. An item describes a
change made to data by an application or component. For example, if a user
replaced a value in a cell, the transaction might consist of a single item, the
original value for the cell. On the other hand, a search and replace operation could
potentially create items for each replacement.

An item contains:

• The object and class that performed the change.

• A 32-bit value that the class uses to store its own information about the
change.

• A variety of attributes stored in a 16-bit flag variable.

In simple cases, the 32-bit value can contain the actual data that is changed; in
more complex cases, it points to a buffer that describes the change. The object that
creates an item and data is also responsible for restoring that item from the data.
Thus, the organization of the data for each item is up to you.

Your application allocates the buffer used in the item. When you undo an item,
you are also responsible for deallocating the buffer.

However, there are two other reasons why you might need to deallocate the buffer;
in these cases either you or the undo manager can do the deallocation.

• When the transaction history is full, the undo manager removes the oldest
transaction from the history. As part of removing a transaction, the undo
manager must coordinate deallocation of the item data buffers.

• When an application or component aborts a transaction, the undo manager
removes the items from the aborted transaction and must coordinate
deallocating the data buffers for those items.

When you add an item to the transaction history, you can tell the undo manager
how the data buffer was allocated. You can also tell the undo manager to
deallocate the item's buffer automatically when either of the above events occur (or
you can deallocate the buffer yourself).

If you don't tell the undo manager how to deallocate the buffer, the undo manager
sends you a message telling you to deallocate the buffer.

Concepts

202 PEN POINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

The Undo Messages
The messages used by theUndoManager are described in the file UNDO.H. Table
87-1 lists the undo messages.

M~$St19e;

msgU ndoAbort

msgU ndoAddltem

msgU ndoBegin

msgUndoCurrent

msgUndoEnd

msgU ndoGetMetrics

msgU ndoLimit

msgU ndoltem

msgU ndoF reel temData

l@k~$

pNull

P_UNDO_ITEM

pNull

pNull

P_UNDO_METRICS

U32

P_UNDO_ITEM

P_UNDO_ITEM

Using the Undo Messages

O~$(yipti;:;H1

Aborts the current undo transaction.

Adds a new item to the current undo transaction if
and only if it is still open.

Creates a new undo transaction if there is no current
transaction, or increments the nesting count if
there is a current transaction.

Undoes the most recent undo transaction.

Decrements the nesting count of (and thus may end)
the current transaction.

Passes back the metrics associated with an undo
transaction.

Sets the maximum number of remembered undo
transactions.

Sent to pArgs->object to have the item undone.

Sent to pArgs->object to have pArgs->pData freed.

The following sections describe how to use the dsU ndo messages to save
transactions and then how to restore them when the user taps on Undo.

Beginning a Transaction

When the user initiates an action that your application or component might need
to undo, start a new transaction by se~ding msgUndoBegin to theUndoManager.
The message takes no arguments.

If an application or component attempts to start a transaction while a transaction
is already in progress, theUndoManager increments a counter that counts the
number of begins; theUndoManager does little else. This is necessary because a
component is not expected to know what happened in its owning application
before it receives a message (nor should it know what application or component
might own it). If your component performs some task that can be undone, it
might send msgUndoBegin just to be op. the safe side. If the owning application
also sent msgUndoBegin, it won't matter.

By nesting transactions, the undo manager allows separately implemented
components to behave consistently when used together in a transaction. Each
component can add items to the current transaction, but the transaction shows no
indication of the nesting.

CHAPTER 87 I UNDO 203
Using the Undo Messages

The most important thing is that for each msgUndoBegin, there must be the
same number of msgUndoEnd messages at the end of the transaction
(msgUndoEnd is described below). Keep this in mind before you use the
ObjCallRetO, ObjCallJmpO, StsRetO, or StsJmpO macros.

To prevent run-away applications from nesting transaction-begins too deeply (and
to detect errors when a msgUndoBegin does not have a matching msgUndoEnd),
theUndoManager returns stsFailed if you exceed the nesting limit, which is
approximately 1000.

When msgUndoBegin completes successfully, it returns an UNDO_ID. This value
identifies the transaction; you can use it to get metrics of a specific transaction.

The memory allocated for transactions is finite. When you start a new transaction,
the undo manager might need to make space in the transaction history, which it
does by freeing the earliest transaction. Thus, you shouldn't be surprised that
before msgUndoBegin returns you receive a msgUndoFreeltemData, asking you
to free buffers used by items in the freed transaction. You should free the buffers,
return msgUndoFreeltemData and, eventually, msgUndoBegin returns.

Adding Items to a Transaction

As your application or component performs the steps within the transaction, it
needs to note what change took place in each of the steps. For each change, send
msgUndoAddltem to theUndoManager. The message takes a pointer to an
UNDO_ITEM structure that describes a change to data. The structure contains:

object The DID of the object that is performing the transaction.

subclass The UID of the class that is making the change.

flags Flags that specify how the undo manager should free the item. The
flags are described below.

pData A 32-bit value that either is the change data or points to a buffer that
contains the change data.

dataSize A value that contains the size of the data in pData. If this field is
non-zero, theUndoManager assumes that pData points to a data buffer

. and copies that data into the transaction's heap.

Item Flags

There are two sets of flags in the flags field.

The first set contains four flags that are not interpreted by theUndoManager. You
can use these flags to represent what ever you want in the undo item. The value
ufClient is a mask that you can use to access the client-specific portion of flags.

The other set of flags describe how the pData buffer for an item was allocated. If
you specify one of these flags, the undo manager frees the pData buffer
automatically when it removes an old transaction from the history or when it
aborts a transaction. The flags can be one of the following:

87.3.2.1

204 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

ufDatalnUndoHeap pData points to a stand-alone node from the current
undo transaction's heap; the undo manager can free the buffer by freeing
the entire heap.

ufDataIsHeapNode pData points to a stand-alone node from a global
heap; the undo manager can free the buffer with
OS HeapBlockFree (pData) ..

ufDataIsObject pData contains the UID of an object; the undo manager
can free the object by an ObjectSend of msgDestroy.

ufDataIsSegment pData points to a stand-alone segment; the undo
manager can free the buffer with OSMemFreeO.

ufDataIsSimple pData is a simple value (for example a U32); the undo
manager can free the value by just forgetting it.

You can use the value ufDataType as a mask to access the data type flags in the
flags field. The data type flags are 12-bits long. If you store the ufDataType
portion, use a UI6 value.

If you do not specify one of these flags when you add an item, the undo manager
sends you msgUndoFreeltem when it needs to remove an item from a transaction.

The transaction must be open when you send msgUndoAddltem. If there is no
open transaction when you send msgUndoAddltem, the message returns stsFailed.

If there is an open transaction, but there isn't enough memory to add the item to
the transaction, msgUndoAddltem returns stsOSOutOfMem.

If msgUndoAddltem returns stsUndoAbortingTransaction, the transaction is
aborting. You must free an storage allocated for the item that you attempted to
add (unless the storage is in the transaction's heap).

~ Ending a Transaction

When you conclude the transaction (before returning control to the user), you
tell the undo manager to close the current transaction by sending msgUndoEnd
to theUndoManager. The message takes no arguments.

For every msgUndoBegin there must be a corresponding msgUndoEnd.
msgUndoEnd decrements the nesting count; if the message lowers the nesting
count to zero, the undo manager closes the transaction. You cannot add items
to a closed transaction.

Aborting a Transaction

When your application or component is unable to complete its work because
of an error, you will probably want to abort the current transaction.

If you need to abort a transaction, send msgUndoAbort to theUndoManager.
The message takes a pN ull value.

When theUndoManager receives msgUndoAbort, it marks the current transaction
as aborting. If you send msgUndoAddltem to an aborting transaction, it will return

87~3,,4

CHAPTER 87 I UNDO 205
Using the Undo Messages

stsUndoAbortingTransaction. You must deallocate the item's data buffer, unless the
buffer was allocated from the transaction's heap.

In an aborting transaction, the state field in the UNDO_METRICS structure has the
flag undoStateAborting set.

Aborting a transaction does not close that transaction; you are still responsible for
closing the transaction. The undoStateAborting flag remains set until the final
msgU ndoEnd closes the transaction.

Getting Transaction Metrics 81.3.5

You can get the transaction metrics for any of the transactions in the transaction
history by sending msgUndoGetMetrics to theUndoManager. The message takes
a pointer to an UNDO_METRICS structure. To get the metrics of the current or
latest transaction, set the id field in the UNDO_METRICS structure to pNull. To
get the metrics for another transaction, set the id field to the UNDO_ID value for
that transaction.

When the message completes successfully, it returns stsOK and sends back the
UNDO_METRICS structure with:

id An UNDO_ID value that contains the transaction ID.

heapld An OS_HEAP _ID value that indicates the heap that you can use to
store item data.

state A U16 that indicates the transaction's current state. The state field does
not contain a value that indicates the state, rather it contains a set of flags
that indicate attributes of the current transaction. The flags are:

undoStateBegun The transaction is open.

undoStateUndoing The transaction is being undone.

undoStateAborting The transaction is aborting. If the state field con­
tains the value undoStateNil, all these flags are clear.

transaction Count A count of the number of transactions in the undo
history.

itemCount A count of the number of items in the transaction.

limit The maximum number of transactions allowed in the transaction
history. The default for the limit value is 2; you can modify this value
with msgUndoLimit.

resIO A resource ID identifying the string to use for the Undo menu item.
This resource ID should specify a resGrp TK string resource list.

info A U32 fields reserved for future system use.

Changing the Size of the Transaction History

To change the size of the transaction history, send msgUndoLimit to
theUndoManager. The message takes a U32 value that contains the new maximum
number of transactions that the undo manager can store. If the value is 0, you
effectively disable the undo capabilities of your application or component.

206 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Undoing a Transaction

When the user taps on the undo button in the Edit menu the menu sends
msgAppUndo to self (the document that is open). When your application receives
msgAppUndo, the PenPointApplication Framework sends msgUndoCurrent to
theUndoManager; the message argument is always pNull. (For more information
on Standard Application Menu messages, see Part 2: PenPoint Application
Framework.

When the undo manager receives msgU ndoCurrent, it locates the latest transaction
(whether it is still open or not) and removes the last item from that transaction.
Because each UNDO_ITEM structure contains an object UID and a class UID, the
undo manager sends the item to the object UID with msgUndoltem (you must be
prepared to receive and handle msgUndoItem, described below). The undo manager
continues to remove items from the transaction and send them to their corresponding
owners until the transaction is empty.

When the transaction is empty, msgUndoCurrent returns. If there is a previous
transaction in the transaction history that transaction becomes the next
transaction to be undone (the next time the undo manager receives
msgUndoCurrent.

Handling msgUndoltem

When you receive msgUndoltem, compare the class in the UNDO _ITEM structure
to your class. If the class doesn't match, send the message to your ancestor. If the
class does match, use the data indicated by pData to undo the action.

Again, the way that you store the data in an item and undo that action is totally
up to you.

Handling msgUndoFreeltem

If you did not specify one of the data type flags in UNDO_ITEM, the undo manager
does not know how to free pData, so it sends msgUndoFreeItem to you. The message
sends you a pointer to an UNDO_ITEM structure.

As with msgUndoltem, you should compare the class field in the structure with
your class, if they don't match, send the message to your ancestor. If they do
match, free the data. It is up to you to know how the data was allocated and how
to free it.

Chapter 88 / Byte BuHer Obiects

The byte buffer object class (clsByteBuf) allows clients to create a simple data
object that contains an array of bytes. clsByteBuf allocates space for the byte array,
handles filing messages, and deallocates the space when the client destroys the byte
buffer object.

Concepts
Frequently applications maintain some data in an array of bytes. If this data is
stateful, you need to file the data when you receive filing messages. One way to do
this is to keep the data in one or more data objects and file the objects using
msgResPutObject.

To save you from writing your own class to maintain and file byte arrays, PenPoint
provides clsByteBuf, which you can use to store byte arrays. If you need to save a
string, use the string object class defined in Chapter 89, String Objects.

If you have an array of bytes that you need to save, you create a clsByteBuf object
and store the bytes in the object. You can store any type of bytes in the clsByteBuf
object. clsByteBuf only sees the data as an array of bytes; the organization of the
data is up to your application. clsByteBuf handles the allocation, deallocation, and
filing messages for you. All you have to do is ensure that your byte buffer object
receives filing messages at the proper time.

clsByteBuf allocates its memory from the system heap. When you ask a byte
buffer object for its data, it sends back a pointer to the system heap, so you don't
have to allocate space to accomodate the data.

Because the storage for byte buffer data is in a system heap. The location in the
heap changes when the data changes, so you cannot maintain or file other pointers
to that buffer. When the byte buffer object is saved and restored, there is no
guarantee that the object will be restored at the same address. If you need to
maintain a location within a byte buffer object, use an index rather than a pointer.

clsByteBuf has no concurrency support. If two clients access the same byte buffer
object at the same time, they manipulate the same data.

88.1

208 PENPOINT ARCHITECTURAL REFERENCE
Part 9 fUtility Classes

Using .he Byte Buffer Messages
The clsByteBuf messages are listed in Table 88-1. The messages are defined in the
file BYTEBUP.H.

Table 88~1
elsB Buf Messages

---------------------------~--------------~~----~------=-------M0$S©90

msgNew

msgN ewDefaults

msgByteBufGetBuf

msgByteBufSetBuf

msgByteBufChanged

P _BYTEBUF _NEW

P _BYTEBUF _NEW

P _BYTEBUF _DATA

P_BYTEBUF_DATA

OBJECT

Creating a Byte BuHer Obiect

00$ct'ipt!©f!

Creates a new buffer object.

Initializes the BYTEBUF _NEW structure to

default values.

Passes back a pointer to the object's buffer.

Copies the specified buffer data into the object's
buffer.

Sent to observers when the object data changes.

To create a byte buffer object, send msgNewDefaults and msgNew to clsByteBuf.
The messages take a pointer to a BYTEBUF _NEW structure that contains an
OBJECT_NEW_ONLY structure and a BYTEBUF_NEW_ONLY structure. The
BYTEBUF _NEW _ONLY structure contains:

allowObservers A BOOLEAN value that specifies whether the object send
messages to observers.

data A BYTEBUF_DATA structure that contains:

pBuf A byte pointer to the byte array to be saved.

bufLen A U16 value that specifies the length of the byte array in pBuf.

"When the message completes successfully, it returns stsOK.

Getting the Byte BuHer Data

To get the address of the byte buffer data, send msgByteBufGetBuf to the byte
buffer object. The message takes a pointer to an empty BYTEBUF_DATA structure.

When the message completes successfully, it returns stsOK and passes back the
BYTEBUF_DATA structure containing:

pBuf A byte pointer to the byte array.

bufLen A U16 value that indicates the length of the byte array in pBuf.

Resetting a Byte BuHer Obiect

"When you create a byte buffer object, you set its initial value, but if you want to
change the contents of a byte buffer object, you send msgByteBufSetBuf to the
byte buffer object. The message takes a pointer to a BYTEBUF_DATA structure that
contains:

pBuf A byte pointer to the byte array.

bufLen A 016 value that indicates the length of the byte array in pBuf.

CHAPTER 88 I BYTE BUffER OBJECTS 209
Using the Byte Buffer Messages

IfbufLen is different from the size of the byte buffer that was stored there before,
clsByteBuf automatically changes the size of the allocated storage.

When the message completes successfully, it returns stsOK.

Notification of Observers

Clients can observe a byte buffer object (provided that the creator of the object
specified allowObservers when it sent msgNew). When a client sends
msgByteBufSetBuf to a byte buffer object, clsByteBuf sends
msgByteBufChanged to all observers of that byte buffer object. The message
passes an OBJECT value that identifies the byte buffer object that changed.

88.2.4

Chapter 89 / String Obiects

The string object class (clsString) allows clients to create a simple data object that
contains a null-terminated ASCII string. clsString allocates space for the string,
handles filing messages, and deallocates the space when the client destroys the
string object.

clsString inherits from clsByteBuf. The difference is that you must supply the
length of a byte buffer as well as a pointer to it, whereas string objects are
null-terminated, so you need only supply a pointer to the string.

Concepts
Most applications maintain some data in the form of null-terminated ASCII
strings. If this data is stateful, you need to file the data when you receive filing
messages. One way to do this is to keep the data in one or more data objects and
file the objects using msgResPutObject.

To save you from writing your own class to maintain and file string data, PenPoint
pro .. ides clsString, which you can use to store strings. If you need to save a byte
array, use the byte buffer object class described in Chapter 88, Byte Buffer Objects.

If you have a string that you need to save, you create a clsString object and store the
string in the object (you must create a clsString object for each string). clsString
handles the allocation, deallocation, and filing messages for you. All you have to do
is ensure that your string object receives filing messages at the proper time.

clsString allocates its memory from the system heap. When you ask a string object
for its data, it sends back a pointer to the system heap, so you don't have to
allocate space to accomodate the string.

Because the string object is in system heap, you cannot maintain (and file) other
pointers to that string. When the string object is saved and restored, there is no
guarantee that the object will be restored at the same address. If you need to
maintain a location within a string object, use an index rather than a pointer.

clsString has no concurrency support. If two clients access the same string object
at the same time, they manipulate the same data.

89.1

212 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Using the String Obiect Messages
The clsString messages are listed in Table 89-1. The messages are defined in the
file STROBJ.H.

89,,2

Table 89~1

MesS©ge

msgNew

Descripti@n

Creates a new string object.

Messages

msgN ewDefaults

P _STROBJ_NEW _ONLY

P _STROBJ_NEW Initializes the STROBJ_NEW structure to default
values.

msgStrObjGetStr

msgStrObjSetStr

msgStrObj Changed OBJECT

Creating a String Obiect

Passes back the object's string.

Copies the specified string data into the object's
string buffer.

Sent to observers when the string object data
changes.

To create a string object, send msgNewDefaults and msgNew to clsString.
The messages take a pointer to a STROBJ_NEW structure that contains an
OBJECT_NEW_ONLYstructure and aSTROBJ_NEW_ONLYstructure. The
STROBJ_NEW_ONLY structure contains a pointer to the string to be saved
(pString).

GeHing the String Obiect
To get a pointer to a string in a string object, send msgStrObjGetStr to the
string object. The message takes a pointer to a string pointer (pp _STRING).

When the message completes, it returns stsOK and passes back the pointer to
system heap in the specified location.

ReseHing a String Obiect
When you create a string object, you set its initial value, but if you want to change'
the contents of a string object, you send msgStrObjSetStr to the string object.
The message takes a pointer to the string that you want stored in the string object.

If the string is a different size from the string that was stored there before,
clsString automatically changes the size of the allocated storage.

When the message completes successfully, it returns stsOK.

Notification of Observers
Clients can observe a string object. When a client sends msgStrObjSetStr to a
string object, clsString sends msgStrObjChanged to all observers of that string
object. The message passes an OBJECT value that identifies the string object that
changed.

Chapter 90 / Table Class

The class clsTable provides a general-purpose table mechanism with random and
sequential access. You can use clsTable as a superclass for specialized table classes.

You create, destroy, modifY, and access tables using a row and column metaphor.
Tables are PenPoint objects; the data for tables is stored in table files. clsTable
also provides a semaphore mechanis!ll that you can use to control concurrent table
access.

Tables are observable objects. Any object can add itself to a table's observer list, so
that the object will receive notification of changes in the table. Changes can
include adding, removing, or changing entries, or destruction of the table.

clsTable inherits from clsObject.

A Distributed DLL
The table class component is implemented in a DLL, \PENPOINT\SDK\

DLL\TS.DLL. This DLL is not automatically loaded at boot time-it is not
mentioned in \PENPOINT\SDK\INC\BOOT.DLC. You need to mention it in your
application's .DLC file and include it in your application's installation disk. This
ensures that all applications that use the table class will load the DLL if necessary
and share the same copy of the code.

Structures and #defines used by clsTable are defined in \PENPOINT\SDK\INC\TS.H.

The library support routines for clsTable are in the table library, \PENPOINT\SDK\

LIB\TS.LIB.

The send list application uses clsTable to maintain the user's address list.

Table Concepts
A table is a two-dimensional array consisting of a fixed number of columns and a
variable number of rows. Each column contains a single type of data, such as U32,

variable-length string, fixed size byte field, date and time, and so on.

When you create a table, you define the number of columns in the table and the
data type of each column. Once you create a table, you cannot change its
organization.

Describing a Table

You describe a table by creating a structure that contains the total number of
columns in the table and a pointer to an array of column descriptors. For each
column in the table, you must create a column descriptor. The order of the

90.1

90.2

90.2.1

214 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

column descriptors indicates the order of the columns in the table; you use an
index into the column array to indicate specific columns.

Each of the column descriptors contains:

• The name of the column.

• The type of data in the column (such as V32, string, date and time, or UID).

• The width of the column.

• The number of times the columns is to be repeated.

• The byte offset to the column.

• Whether the column is a sort field or not.

Table Data Files

The first time you create a table object (by sending msgNew to clsTable), clsTable
creates a table file in which it stores the data for that table. The msgNew
arguments include the file name and file options. If you destroy the table object
and send msgN ew again, clsTable accesses the table data stored in the table file.

The table object is transitory; the table file can last forever.

You also use arguments to msgNew to indicate whether the table should be
destroyed when it has no observers or no clients, and whether the table file should
be deleted when the table object is destroyed.

clsTable opens the file with exclusive access rights; this means that only one table
object can be associated with a given table file at one time. However, multiple
clients can access the table by using the same table object.

Beginning Table Access

Mter creating a table object, you register as a user of the table by sending
msg TBLBeginAccess to the table object. Each client that accesses the table object
must send a separate msg TBLBeginAccess (Even if you created the table object,
you must still register as a table user.) When you no longer need to access a table,
send msgTBLEndAccess to the table object.

The table object maintains a count of the number of accessing clients. When a
client begins access, the table increments the count; when a client ends access;the
table decrements the count. You cannot destroy a table object until the number of
accessing clients is zero. (One of the table destruction options uses this count to
destroy the table automatically when the number of accessors goes to zero.)

You can access a table without using msg TBLBeginAccess and
msg TBLEndAccess, but it is not recommended. If you use a table object for
which you haven't registered, the table object might vanish without warning (if
another accessor destroys the object or table file). The table object has no
indication that you are an accessor of the table.

CHAPTER 90 I TABLE CLASS 215

Positioning in Tables

There are two ways to locate records in a table:

• Searching for a specific value in a column, starting at the beginning of the
table .

• Searching for a specific value in a column, starting at the current position.

The order in which the records are searched depends on the column that you
search. Unlike other data bases, the table class has no concept of a last record.

When you request a new position from clsT able, it sends back a TBL_ROW _POS

value that indicates the row position. This value is not an index or offset within
the table. You cannot advance to the next row in a table by simply incrementing
the row position value. When you request clsTable to advance to the next record,
you must specify the current TBL_ROW_POS value.

If you know that you will need to examine records in the order in which they were
added to the table, one of the columns in your table should be a sorted column
containing a sequence number. When you add a record to the table, assign a new
sequence number to the record.

Each table object has the concept of a current state. These states are "at the
beginning," "at the end," and "somewhere in between." tsBegin indicates that the
table's current row is the first row in that column; tsEnd indicates that the table's
current row is the last row in that column; tsPosition indicates that the current
row is not at the beginning or the end of the column. A client of an empty table is
always positioned at tsEnd.

You use msg TBLGetState to get the current state and row position of a table.

Observing Tables
Table objects are observable. This means that an object can add itself to a table's
observer list. When anything changes in the table or when other objects add or
remove themselves from the table's observer list, the table object sends a message
to objects in the observer list. A table client does not have to add itself to the
observer list. In fact, adding observers has a detrimental impact on table performance.
You should add an observer only when you really need it.

Shared Tables
Most clients use a table as an unshared, private database. The client creates the
table object, accesses the table, and frees the object all on its own.

Clients can also share a table with other clients. Sharing a table raises several issues
about simultaneous access to the table, such as:

Ownership An object exists only as long as its creator exists.

Access All clients that access a shared table must know the UID of the table
object.

Shared Tables

9l1.2.4

216 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Concurrency Problems arise when two clients try to write to the table at
the same time, or when one client writes a record which another client
is reading.

Remember that the table object is transitory, but that the underlying table object
file can exist practically forever. When clsTable creates a table object, it opens the
table object file with exclusive access. This prevents any other client from creating
a table object for the same table object file.

Ownership
The process that created a table object must remain active as long as any other
process is using the table; the table object will be freed when the creating process
terminates.

One way to handle ownership is through a requester-server model. In the
requester-server model one client (the server) creates a table and serves requests
from other clients (the requesters) that want to access the table. The server must
be in existence before the first requester requests access. The server should exist as
long as requesters needs to access the table.

Access to the Table Obiect
If you use the requester-server model, only the server has to know the UID of the
table object. However, if you don't use the requester-server model, the other clients
must be able to find the UID of the table object.

Making the UID well-known global is one way to accomplish this. Explicitly
passing the UID to other processes is another approach (this works well in a server
situation) .

Another approach is to have each process that wants to use a table attempt to
create it. If the creation is successful, the process should put the table object UID
in a publicized global location. If the creation fails, another client has already
created the table; client should look for the existing table object UID in the global
location.

Concurrency
A table object has the following access concurrency characteristics:

• The last row in the table is always the last row that was added to the table.
Because the table rows are enumerated in random order, there is no notion of
an "end" to the table. However, while a client refers to a sorted column, the
rows are sorted in the order determined by the data in the column .

• When a client writes data to the table file, it is permanently changed. Any
other clients that hold data retrieved from the changed row and column now
have invalid data.

90.3,.2

CHAPTER 90 / TABLE CLASS 217

Using Table Messages

clsTable provides a semaphore that you can use to synchronize access to a table among
multiple clients. You can use this semaphore (by sending msg TBLSemaRequest to the
table object) when you want to treat multiple updates as a single, atomic update.

If msgTBLSemaRequest is sucessful, you can access the table; all other clients that
request the semaphore while you hold it will be suspended. If another client holds
the semaphore, msgTBLSemaRequest will suspend your process until the other
client releases the semaphore.

Using semaphores extensively can lead to a deadlock situation (that is, a circular
list of clients waiting for each other's resources). You can avoid deadlocks by
releasing the semaphore (with msgTBLSemaClear) on one table before requesting
the semaphore on another.

Using Tables in a Database
There is no explicit database class in PenPoint. However, you can use a single table
as a flat-file database. A table is simply a flat database. Each row is a record, each
column is a field.

With a bit more effort you can link a series of tables together (a table of tables) to
create a relational database.

Using Table Messages
This section describes the tasks associated with table objects.

Table 90-1 lists the clsT able messages.

9('t4

msgNew Creates a new table object.

msgN ewDefaults

P_TBL_NEW

P_TBL_NEW Initializes the TBL_NEW structure to default values.

msgTBLAddRow

msg TBLDeleteRow

msgTBLColGetData

msgTBLColSetData

msgTBLRowGetData

msg TBLRowSetData

msg TBLGetInfo

msgTBLGetColCount

Adds a rowlrecord with no data to the table server
object.

P _ TBL_ROW _POS Deletes the specified row.

P _TBL_COL_GET_SET_DATA Passes back the data for the specified row and
column.

P_TBL_COL_GET_SET_DATA Sets the data for the specified row and column.

P_TBL_GET_SET_ROW

P _ TBL_ GET _SET_ROW

P_TBL_HEADER

P_TBL_COL_COUNT

Gets the contents of an entire row.

Sets the contents of an entire row.

Gets the table header information.

Gets the number of columns in the table.

----_._------

218 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

Me$ iiA19®

msg TBLGetColDesc

msg TBLGetRowCount

msg TBLGetRowLength

msg TBLGetState

msg TBLBeginAccess

msg TBLEndAccess

msg TBLSemaClear

msg TBLSemaRequest

msg TBLFindFirst

msg TBLFindNext

msg TBLFindColN urn

msg TBLCompact

msgTBLRowNumToRowPos

msg TBLRowAdded

msg TBLRowDeleted

msg TBLRowChanged

Defining a Table

P_TBL_ROW_COUNT

P _ TBL_ROW _LENGTH

P _TBL_GET_STATE

P _ TBL_BEGIN_ACCESS

P _ TBL_END _ACCESS

nothing

nothing

P _ TBL_FIND _ROW

90-1

j)escyipri©n

Passes back the column description for the specified
column.

Gets the current number of rows in the table.

Gets the length (in bytes) of the specified row.

Gets the current state of a specified row.

Initiates table access by a client on this table.

Ends client access to the table.

Releases the table's semaphore.

Requests access to the table's semaphore.

Finds the first record that meets the search
specification.

Find the next record following the specified
TBL_ROW ~POS that meets the search
specification.

Passes back the column number for the specifed
column name.

nothing Compacts the table without closing it.

P_TBL_CONVERT_ROW_NUM Converts a TBL_ROW_NUM to its corresponding
TBL_ROW _pas for the specified column.

nothing

Sent to observers indicating that a row has been
added.

Sent to observers indicating that a row has been
deleted.

Sent to observers indicating that row data has been
changed.

Before you create a table with msgNew, you need to declare the organization of
the table with a TBL_CREATE structure. The TBL_CREATE structure consists of a
value that indicates the number of columns in the table (coICount) and the
address of an array of one or more TBL_COL_DESC structures (coIDescAry).

Each TBL_COL_DESC structure describes one column and contains:

name A string containing the name of the column. This name is used by
applications when displaying a table. Internally, you usually identify
columns by an index to their position. You can get the index from the
name with msg TBLFindColNum or you can get the name using an
index with msg TBLColGetDesc.

CHAPTER 90 I TABLE CLASS 219

type A TBL_ TYPES value that specifies the type of data in the column (such
as U32, string, date and time, or DID). The values defined by TBL_TYPES

are described in Table 90-2, below.

length The width of the column in bytes. This argument only has meaning
for columns of type tsChar and tsCaseChar.

repeatFactor The number of times to repeat the column. This allows you to
create an array in a column. You cannot address repeated columns
individually; rather, you access the whole column and locate the
appropriate bytes.

offset The byte offset to the column. This allows you to locate data in a row
by its offset, rather than by column index. clsT able allows you to request
the entire row, or just the individual item. It is often much faster to
request the entire row and use byte offsets to find individual pieces of
data. This will not work if any of the columns in the table are sorted.

sorted A BOOLEAN value that indicates whether the contents of the column
should be sorted or not. When a column is sorted, data access on a
specific column occurs in that column's sort order, regardless of the
position of the row in the table.

Currently sorting is only ascending (in ASCII lexicographic order) and does not
support alternate sorting keys. There is no limit to the number of columns in a
table that can have the sorted flag set.

The data types defined by TBL_TYPES are listed in Table 90-2. If the column
contains fixed length data types, the actual values are stored in the row data.
However, if the column contains variable-length data types (such as tsString or
tsByteArray), the actual values are stored in buffers; the value stored in the row
data is a pointer to the buffer. These pointers to variable-length data buffers are
internal and cannot be used by clients. For this reason, tables with variable-length
columns cannot use the Get-Rowand Set-Row operations.

Symbol

tsChar

tsCaseChar

tsU16

tsU32

tsFP

Mecmtltg

Fixed-length array of case-sensitive characters.

Fixed-length array of case-insensitive characters.

Unsigned 16-bit integer.

Unsigned 32-bit integer.

GOMath floating point (GO_DP) value.

Date field in system timestamp format.

Defining a Table

Variable-length, case-sensitive ASCII string (null terminated).

Variable-length, case-insensitive ASCII string (null terminated).

es

tsDate

tsString

tsCaseS tring

tsByteArray

tsUUID

Variable-length byte array, contained in unsigned characters. Use TS_STRING structure.

64-bit UUID structure.

~~----.-.---------~~=

220 PEN POINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Creating a Table Obiect
To create a table object send msgNewDefaults and msgNew to dsTable. Both
messages take a pointer to a TBL_NEW structure, which contains:

name The name of the table. This name allows multiple clients to share a
common name for the table and its data. (Note that this is not the file
name; you specify the file name in the locator, below.)

locator A file locator for the table file, which includes a directory handle
and a path. For more information on locators, see Part 7: File System.

exist A TBL_EXIST value that specifies what to do if the table file does or
doesn't exist. The constants defined by TBL_EXIST are similar in name
and function to the file system FS_EXIST constants.

create A TBL_CREATE structure that describes the columns in the table.

&eeBehavior A TBL_FREE_BEHA VE value that describes how to dispose of
the table file when the table object is destroyed. This structure also
identifies conditions under which dsTable should automatically destroy
the table. These options are described below.

createSemaphore A BOOLEAN value that specifies whether to create a
semaphore for the table.

Use the values defined by TBL_FREE_BEHA VE to specify what to do with the table file
when the table is freed (and when to automatically free the table). The values are:

tsF reeDeleteFile Delete the file when the table is destroyed.

tsFreeWhenNoClients Free the table when the number of accessors goes
to zero.

tsFreeNoObservers Free the table when the number of observers goes
to zero.

The default (tsFreeDefault) is not to delete the file when the table is destroyed, do
not free the table when accessors or observers goes to zero.

Observing Tables
There are two ways to add yourself as the observer of a table. You can either include
your UID in the TBL_BEGIN_ACCESS structure when you send msg TBLBeginAccess
to table object (see below) or you can send msgAddObserver to an existing table object
(before you send msgTBLBeginAccess).

If you use msgAddObserver to add yourself as an observer, you should use
msgRemoveObserver to remove yourself from the observer list. If you send
msg TBLEndAccess and include your UID in the message arguments, the message
will send msgRemoveObserver to the table object automatically.

CHAPTER 90 / TABLE CLASS 221
Start Access

This example shows how to create a table with two columns. One column holds a 40-byte string (a name), the other column
uses a date to store a birthday:

STATUS
TBL NEW
TBL COL DESC

s;
tn;
colDesc[2]; II two column table

s = ObjectCall(msgNewDefaults, clsTable, &tn);
tn.table.exist = tsExistOpen I tsNoExistCreate;
tn.table.freeBehavior = tsFreeNoDeleteFile;
tn.table.createSemaphore = false;
tn.table.locator.uid = theWorkingDir;
tn.table.locator.pPath = "\\MyDir\\Table Data";
strcpy(colDesc[O] . name, "Name");
colDesc[O] .type = tsChar;
colDesc[O] . length = 40;
colDesc[O] .repeatFactor = 0;
strcpy(colDesc[l] .name, "Birthday");
colDesc[l] .type = tsDate;
colDesc[l] . length = 1;
colDesc[l].repeatFactor = 0;
strcpy(tn.table.name, "Names and Birthdays");
tn.table.create.colCount = 2; II Number of columns
tn.table.create.colDescAry = colDesc; II First column descriptor
tn.table.createSemaphore = true;
s = ObjectCall(msgNew, clsTable, &tn);

Start Access 90.9

To initiate access to a table, send msgTBLBeginAccess to the table you want to access.

msgTBLBeginAccess takes a pointer to a TBL_BEGIN_ACCESS structure, which con­
tains your object's UID (sender). The sender value is required if you want to add your­
self (or another object) to the table's observer list. If you don't want to add the object to
the table's observer list, use objNull. When msgTBLBeginAccess completes succes­
sfully, it sends a TBL_ROW _LENGTH value containing the table's width (rowLength).

When you begin access to a table, the current row position is at the end of the
table. When you access a table, it is your responsibility to keep track of your
position within the table. There is no message to indicate where you are.

fr<>1t[,11$WV'%W'MP 90~2

Beairulina Access to a Tallie - -
STATUS TBL _NEW tn; S;

TBL BEGIN ACCESS tba;
TBL_ROW_LENGTH width;

s = ObjectCall(msgNew, clsTable, (P_ARGS) (&tn»;
sharedTable = tn.object.uid;
II Fill in TBL_BEGIN_ACCESS structure
tba.sender = objNull;
s = ObjectCall(msgTBLBeginAccess, sharedTable, &tba);
width = tba.rowLength;

222 PEN POINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

Using Semaphores
To ensure that your task is the only one accessing a table, you can request a table
semaphore. Each table has one semaphore, which is managed by that table object.
You specify whether the semaphore should be available when you create the table.

The semaphore does not actually control access to the table. Applications that use
the table must agree beforehand (at programming time) to use the semaphore to
signal among themselves who has access to the table.

You acquire the semaphore for a table by sending msg TBLSemaRequest to the
table. The message doesn't require any arguments. If the semaphore is available,
the call completes immediately. If the semaphore is in use, your task will be
suspended until the semaphore becomes available.

When you complete the operations that require exclusive access to the table, you
release the semaphore with msgTBLSemaClear.

It is a good idea to acquire the semaphore just before the operations and release it
as soon as possible. This reduces the chance that other processes that require access
to the table will be suspended.

90,,10

ores
This example shows an object that requests a table's semaphore, performs some action, then releases the semaphore.

TBL BEGIN ACCESS tbai
STATUS Si

tn.table.createSemaphore = true;
s = ObjectCall(rnsgNew, clsTable, &tn);
sharedTable = tn.object.uid;
II Fill in TBL_BEGIN_ACCESS structure
tba = Nil(OBJECT);
s = ObjectCall(rnsgTBLBeginAccess, sharedTable, &tba)i
if (ObjCallFailed(rnsgTBLSernaRequest, sharedTable, void) {

II Handle error, if any (there should be no error if
II the table created a semaphore)

II Perform protected operation

s = ObjectCall(rnsgTBLSernaClear, sharedTable, void);

Adding Rows '0 a Table
Use msgTBLAddRow to add a row to a table. In the table objects there is no
concept of a last row; sequential ordering of rows is not guaranteed. However, if
you define a column with the sorted attribute and use that column to access rows,
access will occur in an ordered manner.

msg TBLAddRow has one argument, a pointer to a row position value of type
TBL~ROW ~POS. The message uses this location to return the position of the newly
added row.

90~ 11

CHAPTER 90 / TABLE CLASS 223

This code fragment shows an application adding a row to a table

s = ObjectCall(msgTBLAddRow, myTable, &curPos);

Setting Data
You can set data in a single column of a row or you can set data in an entire row.
To set data in a column, send msgTBLColSetData to the table object; to set data
in a row, send msgTBLRowSetData. Tables with variable-length columns cannot
use msg TBLRowSetData, because the data for variable-length columns is stored
using an internal, private format.

msgTBLColSetData takes a pointer to a TBL_COL_GET_SET_DATA structure,
which contains:

tblRowPos The row position in the table that will receive the data.

colNumber The column number in the table that will receive the data.

tblColData A pointer to the data buffer.

To set data in a variable-width column, the tblColData field should contain the
address of a TBL_STRING structure that specifies:

strLen A UI6 that specifies the length of the data.

strMax A UI6 that specifies the size of the buffer. Usually strLen should be
the same as strMax.

pStr A pointer to the buffer that receives the data.

msgTBLRowSetData takes a pointer to a TBL_GET_SET_ROW structure that
contains:

tblRowPos A TBL_ROW _POS value that will receive the data.

pRowData A pointer to the data buffer that contains an image of the entire
row. msgTBLRowSetData returns stsTBLContainslndexedCols if any
of the columns in the table are variable-length.

Getting Data
Getting data is similar to setting data. You can get data for a single column within
a row (by sending msgTBLColGetData to the table object), or you can get data
for an entire row (by sending msgTBLRowGetData to the table object).

Again the structures are similar. msgTBLColGetData takes a pointer to a
TBL_COL_GET_SET_DATA structure that contains:

tblRowPos A TBL_ROW _POS value that specifies the row position.

colNumber A TBL_COL_INX_TYPE value that specifies the column number.

tblColData A pointer to the buffer that will receive the data.

If your client allocates the data buffer on an as-needed basis, you can use
msg TBLGetColDesc to find out the current width and the data type of

Getting Data

90.12

90~ 13

224 PENPOINT ARCHITECTURAL REFERENCE
Pa rt 9 / Utility Classes

fixed-width columns. Note that tables do not allocate the data buffer; it is your
client's responsibility.

To get data for variable-width columns, store the address of a TBL_STRING

structure in the tblColData field. The TBL_STRING structure specifies:

strLen A UI6 to receive the length of the returned data.

strMax A UI6 that specifies the size of the buffer.

pStr A pointer to the buffer that receives the data.

If the size of the data is larger than the buffer (strMax), the data is truncated,
strLen contains the size of the data returned, and the message returns the status
sts TBLStrBuff ooSmall.

msgTBLRowGetData takes a pointer to a TBL_GET_SET_ROW structure that
contains:

tblRowPos A TBL_ROW _POS value that specifies the row that we want.

pRowData A pointer to a data buffer that will receive an image of the
entire row.

If you allocate the data buffer dynamically, you can use msg TBLGetRowLength
to find out the length of a row.

Deleting a Row
You delete a row from a table by sending msgTBLDeleteRow to the table object.
The row is not actually deleted until the client sends msg TBLCompact to the
table object or until the table object is freed and the file is closed. If you want to
prevent compaction when the file is closed, specify tsFreeNoCompact in the
TBL_FREE_BEHA VE argument to msgNew.

Mter you delete a row, you can no longer access it, even though it hasn't actually
been deleted from the file.

msg TBLDeleteRow takes one argument, a pointer to a TBL_ROW _POS value that
identifies the row that you want to delete.

Searching a Table
To search a table for a particular item, use the messages msg TBLFindFirst and
msgTBLFindNext.

Use msg TBLFindFirst to search for the first occurrence of a particular item in a
table. Use msgTBLFindNext to search for the next occurence of an item when
searching from a specified position.

Both messages take a pointer to a TBL_FIND_ROW structure that contains:

rowPos A TBL_ROW _POS value that specifies the current table position.
When the message completes, rowPos will contain the row position of
the located row.

90.14

90~ 15

CHAPTER 90 I TABLE CLASS 225

Searching a Table

rowNum A TBL_ROW _NUM value that specifies the index position in the
specified column.

srchSpec A TBL_SEARCH_SPEC structure that contains the search
specification. In this structure you specify:

colOperand The column number.

relOp A TBL_BOOL_OP value that specifies the operator used to match
the search string against the column string in each row. The operators are
described below in Table 90-3.

pConstOperand A pointer to a buffer containing the search item.

pRowBuffer A pointer to a ROW_BUFFER that specifies the client's buffer
space (this might be pNull).

sortCol A TBL_COL_INX_TYPE value that specifies the column to sort the
search by, ifany. If sortCol is null, there is no sort.

The operands in the table search specification read the way they would if they
were written in an equation, that is: column operand, operator, search constant.
Thus, a less-than operator means "search until the column operand is less than the
search constant."

The BOOLEAN operators are defined by TBL_BOOL_OP. Table 90-3 lists the
BOOLEAN operators.

tsEqual

tsLess

tsGreater

Table BOO
Mecming

Satisfied only if both items the same object.

Satisfied if the column operand is less than the search constant.

Satisfied if the column operand is greater than the search constant.

tsGreaterEqual

tsLessEqual

tsNotEqual

tsSubstring

Satisfied if the column operand is greater than or equal to the search constant.

Satisfied if the column operand is less than or equal to the search constant.

Satisfied if the column operand is not equal to the search constant.

Satisfied if the column operand is a substring of the search constant. This operator is
currently limited to case-dependent searches, even when searching a tsCaseChar or
tsCaseString column.

Satisfied if the column starts with the specified string. tsStarts With

tsAlwaysT rue Matches everything. Use tsAlwaysTrue to match the first row that the search encounters.
For msgTBLFindFirst, this is the first row in the table; for msgTBLFindNext, this is
the next row in the table (unless you are at the end of the table).

If the message finds a match, it returns stsOK and passes back the TBL_FIND_ROW

structure with:

rowPos A TBL_ROW _POS value that indicates the row where the match was
found.

rowNum A TBL_ROW _NUM value that indicates the indexed row number
for sorted columns. If the column was not a sorted column, this value
always contains O.

----~-~-~~----- ... -.------

226 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

If either msgTBLFindFirst or ms~TBLFindNext does not find a match, or if the
row position is at the end of the table, the message returns stsTBLEndOffable.

Getting Information About a Table
dsTable provides a number of ways to get information about a table. Table 90-4
lists the messages and the information they return. The sections following the
table describe the messages in detail.

90~16

90~4

Table Information Messa es
Mcss@ge Dcscripti@rI

msg TBLFindColN urn Passes back the column number for the specifed
column name.

msg TBLRowNum To RowPos P_TBL_CONVERT_ROW_NUM Converts a TBL_ROW_NUM to its corresponding
TBL_ROW _POS for the specified column.

msg TBLGetlnfo P_TBL_HEADER Gets the table header information.

msg TBLGetColCount

msg TBLGetColDesc

P _TBL_COL_COUNT

P_TBL_GET_COL_DESC

Gets the number of columns in the table.

Passes back the column description for the specified
column.

msg TBLGetRowCount

msg TBLGetRowLength

msg TBLGetState

P_TBL_ROW_COUNT

P _TBL_ROW _LENGTH

P _ TBL_ GET_STATE

Gets the current number of rows in the table.

Gets the length (in bytes) of the specified row.

Gets the current state.

The following sections describe these messages.

Finding a Column Number

If you have a column name string and need to find out the number of the column,
send msgTBLFindColNum to the table. The message takes a pointer to a
TBL_COL_NUM_FIND structure, in which you specify a pointer to the column
name string (name).

When the message completes successfully, it returns stsOK and passes back the
TBL_COL_NUM_FIND structure with a TBL_COL_INX_TYPE value that contains
column number (number).

Converting a Row Number to a Row Position

To covert a row number to a row position for a specific column, send
msgTBLRowNumToRowPos to the table object. The message takes a pointer
to a TBL_CONVERT_ROW_NUM structure that contains:

rowNum A TBL_ROW _NUM value that specifies the row number to convert.

colNum A TBL_COL_INX_TYPE value that specifies the sorted column to
use in the conversion.

If the message completes successfully, it returns stsOK and passes back a
TBL_ROW _POS value in rowPos that specifies the position of the row.

If the column is not sorted, the message returns stsTBLColNotlndexed.

90.16.1

90~ 16.2

CHAPTER 90 I TABLE CLASS 227
Getting Information About a Table

Getting the Number of Columns in a Table
Send msgTBLGetColCount to a table get the number of columns in the table.
The only argument for this message is a pointer to the TBL_COL_COUNT value
that will receive the column count. When the message completes successfully, it
returns stsOK and passes back the column count.

90.16.3

Getting the Description of a Column 90.16.4-

Send msg TBLGetColDesc to a table to get the description of a column in the
table. The message takes a pointer to a TBL_GET_COL_DESC structure that
contains a TBL_COL_INX_TYPE value that specifies the index of the column that
you want (colIm:).

When the message completes successfully, it returns stsOK and passes back a
TBL_COL_DESC structure that will contain the column descriptor (coIDesc)
information.

Getting the Entire Table Description
Send msgTBLGetlnfo to a table to get the entire description of that table. The
only argument for this message is a pointer to a TBL_HEADER structure that will
receive the table description.

Getting the Number of Rows
Send msg TBLGetRowCount to a table to get the number of rows in that table.
The only argument for this message is a pointer to a TBL_ROW _COUNT value that
will receive the number of rows.

Getting the Length of a Row
Send msgTBLGetRowLength to a table to get the number of bytes in a table row.
The only argument for this message is a pointer to a TBL_ROW _LENGTH value
that will receive the number of bytes in a row.

The length passed back by this message does not include the length of variable­
length data. To get the width of a variable length column for a particular row, send
msgTBLColGetData to the table object, specifying the row, column, a pointer to
a TBL_STRING structure, and specify strMax as O. When the message returns
strLen contains the length of the data.

Getting a Table's State
Occasionally you might need to find out a table's state. To get the state, send
msgTBLGetState to a table object. The message takes a pointer to a
TBL_GET_STATE structure, that contains:

tblState A TBL_STATE enum value that will receive an indicator of the
position within the table.

90.16.6

---...... ---------.... -.--.. -~=~~

228 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

tblRowPos A TBL_ROW _POS value that specifies the row for which you are
requesting the table state.

Ending Access
When you have no longer need to access a table, send msgTBLEndAccessto the
table. The message takes a pointer to a TBL_END_ACCESS structure that contains a
single element, the UID of the sender (sender). This is usually self. If you specify
sender, the message will remove the sender from the table's observer list.

The message also decrements the table's reference count.

Freeing a Table
When a table is no longer useful, destroy it by sending it msgDestroy. The
options specified when the table was created determine if the file should be
preserved and whether the rows should be compacted.

If a table's owner terminates without explicitly destroying the table, PenPoint
sends msgFree to the table object.

Chapter 91 / The NotePaper
Component

The NotePaper component, consisting primarily of the clsNotePaper view and
the clsNPData data object, provides a capable building block for applications that
manage ink as a data type. For example, the NotePaper component provides much
of the function of the the MiniNote note-taking application that comes bundled
with the PenPoint™ operating system.

clsN otePaper is a subclass of cls View. Like all subclasses of cls View, clsN otePaper
is designed to interact with and and display a data object-in this case an instance
of clsNPData. A clsNPData data object manages a collection of data items whose
classes inherit from the abstract class clsNPltem.

This chapter presents the API for clsNotePaper, clsNPData, and clsNPltem. To
get a better understanding of the way these classes interact, you should study the
NotePaperApp sample application, a simple note-taking application. The source
code for this application is in the SDK sample application directory
\PENPOINT\SDK\SAMPLE\NPAPP.

The clsNotePaper View
clsNotePaper is a subclass of clsView designed to observe a data object of
clsNPData. clsNotePaper supports embedding, undo, move and copy, import,
export, and option sheets. It also supports marks, which in turn provide support
for search and replace, spell checking, and reference buttons. With all of these
features, clsN otePaper is a very capable class ..

clsNotePaper displays and alters the contents of a NotePaper data object, an
instance of clsNPData. The data object maintains a database of items. The view
sends messages to the data object to alter or query the database, and the data
object notifies the view when it needs to update its presentation of the data items.

In displaying the data items, clsNotePaper maintains a coordinate system whose
origin is the upper left corner of the view. This has the advantage that, as the
NotePaper window changes in width and height, its contents remain relative to
the upper left corner of the page (the expected behavior for notes). One thing to
be aware of, though, is that an upper left origin means that all y (vertical)
coordinates are negative.

91.1

230 PENPOINT ARCHITECTURAL REFERENCE

Part 9 / Utility Classes

NotePaper Metrics
clsNotePaper maintains a set of metrics including a paper style, a pen style, font
and line spacing for displaying text, and a set of flags that determines various
behaviors of the instance. All of this information is represented in a
NOTE_PAPER_METRICS data structure, which includes the following fields (the
data type follows the field name in parentheses):

paperStyle (NP _PAPER_STYLE) The style of the "paper" the dsN otePaper
instance displays. paperStyle can have anyone of the following
enumerated values:

npPaperRuled Horizontal rules but no vertical rules.

npPaperRuledLeftMargin Horizontal rules with a single vertical rule
down the left side of the page.

npPaperRuledCenterMargin Horizontal rules with a single vertical rule
down the center of the page.

npPaperRuledLegalMargin Horizontal rules with two vertical rules di­
vidng the page into thirds.

npPaperBlank No horizontal or vertical rules.

npPaperLeftMargin No horizontal rules and a single vertical rule run­
ning down the left side of the page.

npPaperCenterMargin No horizontal rules and a single vertical rule
running down the center of the page.

npPaperGrid Horizontal rules with vertical rules across the page with
the same spacing as the horizontal rules.

penStyle (us) The pen color and weight. To generate valid values, use the
NPPenStyleO macro.

paperFont (SYSDC_FONT_SPEC) The font for displaying text items.

lineSpacing (COORD16) The font size and distance between horizontal
rules, measured in twips (a twip is 1/20 of a point, or 1/1440 of an inch.

style (NOTE_PAPER_STYLE) A set of bit fields that determine various
behaviors of the view. The bit field names and their meanings are:

bEditMode Gesture mode if true, ink mode if false.

bAutoGrow If true, automatically grow in height as user enters data.

b WidthOpts Include page width in option sheet if true.

bHideTopRule If true, don't display the top-most horizontal rule when
paperStyle is set to one of the npPaperRuled ... styles.

CHAPTER 91 / THE NOTEPAPER COMPONENT 231
NotePaper Messages

NotePaper Messages
Table 91-1 summarizes the messages dsNotePaper defines. See NOTEPAPR.H and
the NPAPP sample application for more information about their use.

msgN ewDefaults

msgN otePaperGetMetrics

msgN otePaperSetEditMode

msgN otePaperSetPaperAndPen

msgN otePaperSetPenStyle

msgN otePaperGetPenStyle

msgN otePaperAddMenus

msgN otePaperAddModeCtrl

msgN otePaperClear

msgN otePaperClearSel

msgN otePaper InsertLine

msgN otePaperSetStyle

msgN otePaperGetStyle

msgN otePaperGetSelType

msgN otePaperT ranslate

msgN otePaperU ntranslate

msgNotePaperEdit

msgN otePaperGetDclnfo

msgN otePaper Tidy

msgN otePaperCenter

msgN otePaperAlign

msgN otePaperMerge

msgNotePaperSplit

msgN otePaperSelectRect

msgN otePaperSelectLine

P _NOTE_PAPEILNEW

P _NOTE_PAPER_METRICS

BOOLEAN

U32

U32

OBJECT

OBJECT

pNull

pNull

P_NULL

P _N aTE_PAP ER_STYLE

P _NOTE_PAPER_STYLE

P _NOTE_PAPER_SEL_TYPE

P_NULL

P_NULL

P_NULL

P _NOTE_PAPER_DC_INFO

P_NULL

P_NULL

U32

P_NULL

P_NULL

P_RECT32

P_RECT32

Ttlble 91 ~l

(lsNotePa~let" ~V~le~:;$141'g~:~

Initializes pArgs.

Passes back receiver's metrics.

Sets receiver to either gesture or edit (true) or
writing/ink (false) mode.

Sets paperStyle, lineS pacing, penColor, and
penWeight.

Sets the pen style for selected items as well as the
default for new items.

Gets the pen style for selected items (or the default
if nothing selected).

Modifies the passed in menu bar and appends
standard NotePaper menus.

Adds the standard NotePaper mode icon to the
passed in menu bar.

Deletes all items in receiver.

Deletes all selected items in receiver.

Inserts a blank line above the selection.

Sets the receiver's style values.

Passes back the receiver's style values.

Passes back information about the types of items
selected in receiver.

Translates untranslated scribbles in the selection.

Untranslates translated scribbles in the selection.

Edits text and translates and edits scribbles in the
selection.

Passes back the drawing contexts used by receiver.

Tidies the selection by normalizing the spacing of
items each line.

Centers the entire selection.

Aligns the selection according to pArgs.

Joins scribbles and text in the selection.

Splits scribbles and text.

Selects items within rect in the receiver's data.

Selects items whose baselines intersect rect in the
receiver's data.

232 PENPOINT ARCHITECTURAL REFERENCE
Part 9 / Utility Classes

ME!$$O~E!

msgN otePaperDeselectLine

msgN otePaperDeleteLine

msgN otePaperScribble

msgGWinGesture

msgAppSelectAll

msgSelDelete

msgOptionAddCards

msgImportQuery

msgImport

msgExportGetFormats

msgExport

msgN otePaperU pdateSel

msgN otePaperS plitAsAtoms

msgN otePaperS plitAs Words

msgN otePaperGrowHeight To

msgN otePaperGrowHeightBy

'NotePaper Data

OBJECT

P _GWIN_GESTURE

P_NULL

P_NULL

P_OPTION_TAG

P_IMPORT_QUERY

P_IMPORT_DOC

P _EXPORT_LIST

P_EXPORT_DOC

NULL

NULL

NULL

COORD32

COORD32

91" !

!)E!$crlpti©n

Deselects items whose baselines intersect rect in
the receiver's data.

Deletes items whose baselines intersect rect in the
view's data.

Handles scribble (including creating and insert
object into view's data).

Self-sent to process the gesture.

Selects all items in the view.

Deletes selected items in the view.

Creates and adds the Pen and Paper option sheets.

Indicates whether or not passed-in file can be
imported.

Imports the passed in file.

Passes back list of formats that can be exported.

Writes an ASCII version of receiver's data to the
passed in file.

Takes or releases the selection as is appropriate.

Splits the selected item to its constituent pieces.

Splits the selected scribbles and text into words.

Grows the height of the view to at least COORD32.

Grows the height of the view by COORD32.

91.4

Like all views, clsN otePaper is designed to display a rendition of the data in an
observed data object. The data object it uses is an instance of clsNPData, which
mantains a database of "items," accepts requests to change the items, and notifies
observers of the changes.

clsNPData maintains items of any type, so long as they support the protocol
defined by the abstract class clsNPltem (discussed later). All clsNPData has to do
is maintain a set of objects whose classes inherit from clsNPltem. Each of the
different subclasses of clsNPltem (PenPoint includes scribble and text item classes)
responds differently to a single protocol of messages which clsNPData uses.

Table 91-2 summarizes the messages clsNPData defines.

CHAPTER 91 I THE NOTEPAPER COMPONENT 233

NotePaper Data

msgN ewDefaults Initializes pArgs.

msgNPDataInsertltem OBJECT Adds item to the data base.

msgNPDataInsertltemFrom View P _NP DATA_ADDED _NP _ITEM_ VIEW Adds item to the data base.

msgNPDataDeleteltem OBJECT Deletes an item from the data base.

msgNPDataMoveltem P _NP _DATA_XY Moves an item within the data base.

msgNPDataMoveItems

ENUM_ CALLBACKO

msgNPDataEnumOverlappedltems P _ENUM_RECT _ITEMS

msgNPDataEnumBaselineItems P _ENUM_RECT _ITEMS

msgNPDataEnumSelectedItems P _ENUM_ITEMS

msgNPDataEnumSelectedltemsReverse P _ENUM_ITEMS

msgNPDataEnumAllItems P _ENUM_ITEMS

msgNPDataEnumAllItemsReverse P _ENUM_ITEMS

msgNPDataSendEnumSelectedltems P _SEND _ENUM_ITEMS

msgNPDataGetCurrentltem P _OBJECT

msgNPDataGetNextltem P _OBJECT

msgNPDataItemCount

msgNPDataSelectedCount

msgNPDataSetBaseline

msgNPDataGetBaseline

msgNPDataSetLineSpacing

msgNPDataGetLineSpacing

msgNPDataGetBounds

msgNPDataGetSelBounds

msgNPDataGetFontSpec

msgNPDataSetFontSpec

msgNPDataGetCachedDCs

P_U32

P_U32

P_XY32

P_XY32

P_XY32

P_XY32

P_RECT32

P_RECT32

P _SYSDC_FONT _SPEC

P _SYSDC_FONT _SPEC

P_NP_DATA_DC

Moves all items below pArgs->y by pArgs->yDelta.

This template describes the the callback function
used in item enumeration.

Enumerates each item
that overlaps the given rectangle.

Enumerates each item whose baseline overlaps the
given rectangle.

Enumerates each item that is selected (in paint order).

Enumerates each item that is selected
(in reverse paint order).

Enumerates each item (in paint order).

Enumerates each item (in reverse paint order).

Enumerates each selected item (in paint order).

Passes back the current item in the receiver.

Increments the current item to the next item and sets
*pArgs to it.

Passes back the count of items in the receiver.

Passes back the count of selected items in receiver.

Sets the receiver's baseline (used for alignment).

Gets the receiver's baseline (used for alignment).

Sets receiver's line spacing (used as the font size).

Gets receiver's line spacing (used as the font size).

Passes back the bounding rectangle for all items in
receIver.

Passes back the bounding rectangle for all selected
items in receiver.

Passes back the receiver's font specification.

Sets the receiver's font specification.

Passes back DC's with normal and bold fonts at the
given line spacing.

234 PENPOINT ARCHITECTURAL REFERENCE
Part 9 I Utility Classes

msgNPDataAddedItem

msgNPDataItemChanged

msgNPDataHeightChanged

msgNPDataItemEnumDone

P _NP _DATA_ADDED_ITEM Sent to observers when item has been has been added
or moved.

P_NP_DATA_ITEM_CHANGED Sent to observers when item has been changed.

P _NP _DATA_ITEM_CHANGED Sent to observers when receiver's height has been
changed.

NULL Sent to observers when an enumeration that deleted
or moved items is complete.

NotePaper Data Items 91.5

The NotePaper data item class, clsNPltem, defines a protocol of messages that
defines the interactions possible between an instance of clsNPData and the items
it maintains. dsNPltem is an abstract class; it handles only the generic behavior of
the messages it defines. Instances of dsNPItem are not generally useful. Instead, the
items a dsNPData object maintains are instances of subclasses of clsNPltem, not of
dsNPItem itself. PenPoint includes two such subclasses: dsNPScribbleltem, an ink
scribble, and dsNPTexdtem, a text item.

Table 91-3 summarizes the messages that dsNPltem and its subclasses handle:

msgN ewDefaults

msgNPItemGetPenStyle

msgNPItemDelete

msgNPItemPaintBackground

msgNPItemSelect

msgNPItemSelected

msgNPItemMove

msgNPItemDelta

msgNPItemGetViewRect

msgNPItemHitRect

msgNPItem GetMetrics

msgNPItemSetBaseline

msgNPItemSetBounds

msgNPItemHold

msgNPItemRelease

pNull

P _NP _ITEM_DC

BOOLEAN

P_BOOLEAN

P_XY32

P_XY32

P_RECT32

P_RECT32

P _NP _ITEM_METRICS

P_XY32

P_RECT32

NULL

NULL

Initializes pArgs.

91~3

cisNPltem h\essages

Gets the pen style of an item. (Pen styles are defined
in notepapr.h.)

Deletes item from its data.

Paints a gray background if the receiver is selected.

Selects or deselects item.

Passes back item's selection status.

Moves item to the indicated position.

Moves item by the indicated amount.

Passes back the receiver's bounding rectangle.

Returns stsOK if the receiver's bounds overlaps pArgs.

Gets the item's metrics.

Sets receiver's baseline.

Sets receiver's bounds.

Increments the reference count for the item.

Decrements the reference count for the item.

M®SSC1g®

msgNPltemAlignToBaseline

msgNPltemPaint

msgNPItemSetPenStyle

msgNPItemSetOrigin

msgNPItemScratchOut

msgNPItemSpli tGesture

msgNPItemSplit

msgNPItemSpli tAs Words

msgNPItemJoin

msgNPItem Tie

msgNPItem GetScribble

msgNPItemGetString

msgNPItemSetString

msgNPItem ToT ext

msgNPItem ToScribble

msgNPItemHitRegion

msgNPItem CalcBaseline

msgNPItemCalcBounds

msgNPItemGetWordSpacing

msgNPItem CanBeT ranslated

msgNPItem CanBeU ntranslated

msgNPItemHasString

msgNPItemCanJoin

msgNPItemSetDataObject

msgNPItemSetAdj unct

msgNPItemMark

msgNPItem Unmark

msgNPItemGetMarkId

it1k:®s

P_XY32

P _NP _ITEM_DC

U32

P_XY32

P_RECT32

P_XY32

NULL

NULL

OBJECT

OBJECT

P_OBJECT

PP_STRING

P_STRING

P_OBJECT

P_ARGS

P_RECT32

P_XY32

OBJECT

P_U16

pNull

pNull

pNull

OBJECT

OBJECT

OBJECT

P_U32

P_ARGS

P_U32

CHAPTER 91 / THE NOTEPAPER COMPONENT 235
NotePaper Data Items

Moves item so that it aligns to passed-in line spacing.

Paints item using the passed in drawing contexts.

Sets the item's pen style. (Pen styles are defined in
NOTEPAPR.H.)

Set the receiver's origin.

Handles the scratch-out gesture on an item.

Handles the split gesture on an item.

Splits an item into its constituent items.

Splits receiver into words. Deletes receiver, inserts
new items.

Joins receiver and OBJECT and deletes OBJECT.

Joins OBJECT and receiver and deletes them. Inserts
new object.

Pass back the item's scribble.

Passes back the text string for the item.

Sets the text string for the item.

Item converts itself to a text item, passes back text
item.

Item converts itself to a scribble item.

Returns stsOK if receiver's path overlaps pArgs.

Calculates and sets the receiver's baseline.

The receiver calculates and sets its new bounds.

The receiver passes back the size of its "space"
character.

The receiver returns stsOK if it can be translated.

The receiver returns stsOK if it can be untranslated.

The receiver returns stsOK if the item has a string.

Subclasses should return stsOK of they can join
with OBJECT.

Sets the receiver's data (e.g. instance of clsNPData).

Sets the receiver's adjunct item.

The receiver marks itself and provides its mark token.

The receiver unmarks itself and passes back the mark
ID if applicable.

Passes back the mark ID of an item.

Part 10 /
Connectivity

~ Chapter 92 / Introduction 241 Receiving Connection State Notification 94.4.7 264

Layout of This Part 92.1 241
Setting a Service Owner 94.4.8 264

Other Sources of Information 92.2 242 J'r Chapter 95 / Serial I/O 265

" Chapter 93 / Concepts and Serial I/O Concepts 95.1 265

Terminology 243 Interrupt Driven 1/0 95.1.1 265

Principles of PenPoint Connectivity
Buffered Data 95.1.2 265

93.1 243
Flow Control 95.1.3 265

PenPoint Connectivity Strategies 93.2 244 Events 95.1.4 266
PenPoint Computer Connectivity 93.3 244 Concurrency Issues 95.1.5 266

PenPoint Connectivity 93.4 245 Using Serial Messages 95.2 267
MIL Services 93.4.1 245 Requesting and Releasing a Serial Handle 95.2.1 268
MIL Services and Other Services 93.4.2 246 Reinitializing the Serial Port 95.2.2 268
Services and Interfaces 93.4.3 249 Serial Port Configuration 95.2.3 268

The Service Manager 93.5 250 Reading and Writing with the Serial Port 95.2.4 271

PenPoint Facilities 93.6 250 Flow Control 95.2.5 272

Adding Network Protocols 93.7 251
Sending BREAK 95.2.6 272

Survey of the Remote Interfaces
Detecting Events 95.2.7 272

93.8 251
High-Speed Packet I/O Concepts Serial I/O 93.8.1 251

95.3 273

Parallel I/O 93.8.2 251
HSPKT on Serial Lines 95.3.1 273

High-Speed Packet I/O 93.8.3 252
Parallel Cable Connection Detection 95.3.2 274

File System 93.8.4 252
Protocol Variations 95.3.3 274

File Import Export 93.8.5 252
Notes 95.3.4 274

Modem Interface 93.8.6 253 ~ Chapter 96 / Parallel I/O
Networking Interface

275
93.8.7 253

Parallel Port Concepts 96.1 275

~ Chapter 94 / Using Services 255 Parallel Port Interrupts 96.1.1 275

Concepts 94.1 255 Parallel Port Messages 96.2 276

Installing Services 94.1.1 256 Using the Parallel Port 96.3 276

Service Managers 94.1.2 256 Requesting a Parallel Port Handle 96.3.1 276

Access Overview 94.1.3 257 Releasing the Parallel Port Object 96.3.2 277

Ownership 94.1.4 257 Parallel Port Configuration 96.3.3 277

Targeting 94.1.5 258 Initializing the Printer 96.3.4 277

Connections 94.1.6 258 Writing to the Parallel Port 96.3.5 278

Accessing Services 94.2 258 Getting Status 96.3.6 278

Predefined Service Managers 94.2.1 258 Cancelling Printing 96.3.7 278

Binding to a Service 94.2.2 259
~ Chapter 97 / Data Modem Opening a Service 94.2.3 259 Interface 279

The Service Manager Messages 94.3 260

Using the Service Manager 94.4 261
Concepts 97.1 279

Accessing a Service 94.4.1 261
Getting a Serial Port Handle 97.1.1 279

Finding a Service 94.4.2 261
Configuring the Serial Port 97.1.2 280

Binding to a Service 94.4.3 262 The clsModem API 97.2 281

Opening and Closing a Service 94.4.4 262 The clsModem Messages 97.3 281

Unbinding from a Service 94.4.5 263 Creating a clsModem Object 97.3.1 282

Finding a Handle 94.4.6 263 Configuring the Modem 97.3.2 283

Establishing a Connection with a Chapter 100 / The Address
Data Modem 97.3.3 287 Book 317
Dial String Modifiers 97.3.4 287

Concepts
Waiting for a Connection with

100.1 317

a Data Modem 97.3.5 289
Partici pants 100.1.1 318

Sending and Receiving Data 97.3.6 289
The Address Book Protocols 100.1.2 318

MNP Data Communication 97.3.7 289
Organization of Data 100.1.3 320

Direct Communication with the Data Modem 97.4 290
Groups 100.l.4 322

The Data Modem AT Command Set 97.4.1 290
The GO Address Book Application 100.2 323

Loading the GO Address Book 100.2.1 323

'" Chapter 98 / The Transport API 295 Using the GO Address Book 100.2.2 323

Transport Concepts 98.1 295
The Address Book Messages 100.3 324

Participants in Communication 98.l.1 295 Using an Address Book 100.4 325

Transport Service Types 98.1.2 296 Opening the Address Book 100.4.1 326

Agreeing on Conventions 98.1.3 297 Searching the Address Book 100.4.2 326

Asynchronous Communication 98.1.4 297 Changing Information 100.4.3 328

Using clsTransport 98.2 297
Adding a New Entry 100.4.4 328

< Accessing a Socket 98.2.1 298
Deleting an Entry 100.4.5 328

Closing a Socket Handle 98.2.2 299 Writing an Address Book 100.5 328

Sending Datagrams 98.2.3 299 Registering an Address Book 100.5.1 329

Receiving Datagrams 98.2.4 300 Unregistering an Address Book 100.5.2 329

Requesting a Transaction Service 98.2.5 300 Becoming the System Address Book 100.5.3 329

Responding to a Transaction Service 98.2.6 301 Deactivating the System Address Book 100.5.4 330

Binding to a Local Transport Address 98.2.7 301 Observing theAddressBookMgr 100.5.5 330

Using clsTransport for AppleTalk 98.3 301
Handling Option Sheet Protocol 100.5.6 330

Using the AppleTalk Protocol 98.3.1 301 Chapter 101 / The Sendable
AppleT alk Name and Zone Protocols 98.3.2 302 Services 331

Chapter 99 / In Box and The Sendable Services Protocol 10l.1 331

Out Box 305 Creating Address Descriptors 10l.1.1 331

Introduction to the In Box and Out Box 99.1 305
Displaying a User Interface 10l.1.2 332

General Device Concepts 99.2 306
The Sendable Services Messages 10l.2 333

Service Sections 99.2.l 306
Getting Address Descriptors 101'.2.1 333

Services and Devices 99.2.2 306
Creating and Filling Address Windows 10 l.2.2 333

Installing Devices and Services 99.2.3 307
Summarizing Address Information 1Ol.2.3 334

Targeting Communications Devices 99.2.4 307 List of Figures
Enabling and Disabling Services 99.2.5 307

Out Box Concepts
93-1 Applications and Ports 245

99.3 308

Out Box Operation 99.3.1 308
93-2 Applications, Drivers, and Devices 246

Out Box Protocol Messages 99.3.2 308 93-3 Layered Services 248

Documents in the Out Box 99.3.3 309 93-4 Devices and Interfaces 249

Writing Your Own Out Box Service 99.3.4 310 100-1 The GO Address Book 324

In Box Concepts 99.4 312

Passive and Active In Box Services 99.4.1 312

In Box Documents 99.4.2 313

In Box and Out Box Service Messages 99.5 313

JV List of Tables
94-1 cIsServiceMgr Messages 260

95-1 cIsMILAsyncSI 0 Device Messages 267

95-2 Event Mask Indicators 272

96-1 Parallel Port Messages 276

97-1 cIsModem Messages 281

97-2 Modem Reset Settings 283

97-3 Modem Connection Types 285

97-4 Summary of AT Command Set 291

98-1 cIs Transport Messages 297

98-2 NBP and ZIP Messages 301

99-1 cIsOBXService Messages 314

99-2 cIsINBXService Messages 315

99-3 cIslO BXService Messages 316

100-1 Attribute Identifiers 321

100-2 Address Book Gestures 323

100-3 cIsAddressBookApplication Messages 324

100-4 cIsABMgr Messages 325

101-1 Sendable Services Messages 333

Chapter 92 / Introduction

The PenPoint™ operating system allows applications to communicate with devices
and networks through device ports in the PenPoint computer.

For most operating systems, this level of connectivity is sufficient. However, other
operating systems expect connections to be always present, uninterrupted, and
require the user to reboot the machine between installing a new device driver and
using it.

The PenPoint approach to connectivity enables users to:

• Store data so that it will be sent only when the machine connected to the
correct network (deferred connectivity).

• Disconnect the machine from a network and reconnect without losing the
current data transfer (automatic connection detection).

• Install and deinstall new device drivers (or other non-application software)
without rebooting the machine (service architecture).

The PenPoint operating system also defines a protocol for applications or services
that contain addressing information. These applications or services are called
address books. By defining a common address book protocol, all service providers
can access a single resource for all addresses, phone numbers, and other such
information.

Layout of This Part
Part lOis organized into nine chapters.

Chapter 92, this chapter, presents a brief overview of the PenPoint remote
interface.

Chapter 93, Concepts, provides you with the fundamental concepts needed to
understand the PenPoint remote interface.

Each of the following chapters describes one remote interface.

Chapter 94, Using Services, describes the service manager and how to access
services through the service manager. Part 13: Writing PenPoint Services describes
how to implement a service.

Chapter 95, Serial I/O, describes the serial I/O interface.

Chapter 96, Parallel I/O, describes the parallel I/O interface.

Chapter 97, Data Modem Interface, describes the interface to the data modem.

Chapter 98, The Transport API, describes PenPoint support for local area network
communication using the Apple Talk protocol.

242 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Chapter 99, In Box and Out Box, 'describes support for delayed data transfer
through the In box and Out box.

Chapter 100, The Address Book, describes the address book protocol used to
query and modify the system address book.

Chapter 101, The Sendable Services, describes the protocol used by the address
book for communicating with services that provide Send capabilities, such as fax
and e-mail.

Other Sources of Information
For useful insights on the topics covered in this part, refer to these books:

• For further reading on data communication, see Computer Networks, 2nd.
Edition by Tannenbaum (Prentice Hall, 1989) .

• For an excellent summary of AppleTalk, see Inside AppleTalk by Gursharan S.
Sidhu, Richard F. Andrews, and Alan B. Oppenheimer (Addison Wesley,
1989).

If you are developing MIL devices (device drivers that interface to the PenPoint
machine interface layer), you may need to refer to the documentation in the
PenPoint HDK (hardware development kit). For more information on the HDK
and MIL Devices, please contact GO Developer Technical Support.

92.:2

Chapter 93 / Concepts and
Terminology

The PenPoint™ operating system has a flexible architecture that can accomodate
many forms of networking and connectivity.

This chapter presents the "big-picture" concepts that tie together all of the PenPoint
communications and networking software. This chapter covers these topics:

• The principles of Pen Point connectivity.

• The hardware ports.

• Software access to those ports.

• The service manager.

• A summary of the actual implementation of Pen Point connectivity.

• How to integrate other network protocols with PenPoint.

• A survey of the remote interface features.

Principles of PenPoint Connectivity
There are four recurrent principles of PenPoint connectivity:

1 Many different communication facilities can coexist in a running PenPoint
system.

2 All device drivers can be installed and deinstalled dynamically, unlike some
other operating systems, where device drivers must be configured as part of
the cold-boot process. To add a new device driver to these systems, you must
shut the system down, add the device driver, and reboot.

3 PenPoint expects that there might be a chain of device drivers that handle
communication between an application and a device (rather than just one
driver per device).

4 All devices can be dynamically connected and disconnected. The operating
system and the device drivers are prepared to handle disconnection and
reconnection events while accessing a device.

93.1

244 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

PenPoint Connectivity Strategies
PenPoint was designed to allow many connectivity options. The PenPoint
connectivity strategies include:

• A volume connectivity strategy that enables users to install and configure
volumes from many different file systems on the fly. Volumes include
internal disks, hard or floppy disk volumes, and volumes on remote file
systems. PenPoint detects when a volume is connected or disconnected and
manages volume connection.

• An adaptable file system designed to use multiple existing file systems
that allows PenPoint to offer data sharing capabilities with many file system
archi tectures.

• A device connectivity strategy enabling users to install and configure devices,
device drivers, and network protocol stacks on the fly. As with volumes,
PenPoint provides automatic connection detection and management.

• Basic hardware support, including a parallel port, serial port, high-speed
packet, and a SCSI interface. With these hardware interfaces, PenPoint
machines can connect (through adapters) to many networks and peripherals.

• Multiple network protocol stacks that can coexist concurrently. A protocol
stack is a layered set of protocols, each of which handles a specific com­
munication task, such as establishing and maintaining connections, trans­
porting data, or presenting the data to the application.

• A general-purpose document import and export architecture. The operating
system and its user interface makes it easy to exchange information between
PenPoint applications and other file formats.

• An In box and an Out box that allows deferred document 1/0 for printing,
faxing, e-mail, and so on. If the user makes an output request while the
machine is disconnected, the Out box queues the document. The document
is output automatically when the machine is reconnected. While the
machine is connected, input accumulates in the In box; the user can review
the input documents after the machine is disconnected.

PenPoint Computer Connectivity 93.3

It is up to the manufacturers ofPenPoint computers to determine what connectivity
their machine will offer. While some machines will not have any ports, most machines
will include at least one, if not several of these connectors:

Serial connectors

Parallel connectors

SCSI connectors

Apple Talk connectors

Modem connectors

Other communications connectors

CHAPTER 93 I CONCEPTS AND TERMINOLOGY 245

PenPoint Connectivity

If a machine doesn't implement a port, the user doesn't have to install the service
for that port. Applications can query service managers for available services. If
the service is not installed on a machine, the application that uses the service can
handle the situation by notifying the user or suggesting an alternate service.

Additionally, hardware manufacturers can easily create and distribute services that
support non-standard ports, or ports that are not supported by the PenPoint
operating system.

PenPoint Connectivity
The essential point of any connectivity architecture is to allow applications and
other programs to communicate with hardware devices. The problem is in
translating the applications needed to write and read bytes of data into device
instructions to perform those tasks.

figure 93~1
Applications and Ports

MIL Services

MIL services (PenPoint device drivers) provide an interface between programs
and devices. The MIL service can configure and initialize the device, buffer data
(if necessary), and inform the program when a device error has occurred. MIL
services are usually written by GO and other hardware vendors.

Although different devices might perform equivalent functions, they take different
instructions to perform those functions. For example, data can be written to a disk
volumes or to the serial port, but the instructions to control those devices are very
different. Thus, each device requires a separate MIL service.

93.4~ 1

246 PEN POINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

Most MIL services use the stream interface, you can use the same stream messages
to send and receive data from the MIL service. However, most MIL services also
provide control functions in their API; these control functions vary from device to
device. Your application should always be aware of the type of device with which it
is communicating.

MIL Services and Other Services

93<2
Applications, Drivers, and Devices

MIL services control physical ports, such as the serial port or the SCSI port. There
is a ftxed set of MIL services created at boot time for all of the available hardware
ports. Additional MIL services can be loaded after boot time for things like
networks or plug-in peripherals.

Each MIL service has a programmatic interface; MIL services that perform related
functions have similar interfaces. These interfaces can themselves be controlled by
another service, which has a more general interface or provides another layer of
functionality. Networks use services to implement the various network protocols.

In the PenPoint operating system a service is an instance of a particular service
class. A service class provides the interface to a particular type of device (for

CHAPTER 93 / CONCEPTS AND TERMINOLOGY 247

example, there is a service for Hewlett-Packard's LaserJet printers and there is a
service class for Microsoft MS-DOS disk drives).

Pen Point Connectivity

When the user attaches a device to a PenPoint computer and identifies it through
the device option sheet, PenPoint creates an instance of a service instance that
corresponds to that device. An instance of the LaserJet class might handle the
user's LaserJ et; an instance of the MS-DOS disk drive class handles the floppy disk
volume named DISKl. The service instance contains configuration information
(for example one paper tray or two), has a user-visible name, and can be bound
(directly or through another service) to a MIL service which represents an actual
hardware port.

Binding 93$4. 2~ 1

A service is joined to a port or another service in a process called binding. Binding
can be static or dynamic. Static binding is performed at compile time and is
permanent (such as binding a MIL service to a port). Dynamic binding is
performed when a service is installed, which allows the service to bind to a service
chosen by the user.

More than one service can be bound to a given service. For example, the serial
port could have two different services, such as a printer service and the modem
servIce.

Some services, such as networks or the SCSI device, have no problem with this
situation, because the peripherals connected to these devices are self-identifYing.
However, a device such as the serial port cannot be shared by peripherals; only one
thing can be connected to it at any time. Devices of this nature can be accessed by
only one service at a time.

To solve this problem, the user must identifY the application or service that owns
the service (the owner). A service keeps track of all the services that are bound to
it, but only allows communication with its owner. Services that can be shared by
peripherals can allow more than one owner.

Connection Management

MIL services can recognize when actual connections are made and broken. For
intelligent peripherals, the services are able to detect connection by monitoring
their hardware port. For dumb peripherals, those that aren't able to detect
connections, the user must tell the service which device is connected. For example,
the SCSI port can detect when SCSI devices come and go, but standard PC floppy
drives can't. Therefore, the user must triple tap on the Connections notebook for
it to recognize a new floppy.

When a service detects that a connection is made or broken, it sends object
notification messages to the services that are bound to it. In turn, a service can
relay the connection status message to any services that are bound to it. Any object
can add itself to the notification list to receive these connection status messages.
All MIL services support a common set of connection status messages.

248 PEN POINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Services also broadcast connection status. They observe the MIL service to which
they are bound and essentially pass the connection messages on to their own
observers.

Figure 93-3 illustrates the logical and MIL services.

CHAPTER 93 I CONCEPTS AND TERMINOLOGY 249
PenPoint Connectivity

Devices and

Services and Interfaces

Figure 93-4 shows the PenPoint networking and connectivity architecture. Each
interface in the figure (denoted by dotted lines) is a PenPoint class. Applications
can send messages to instances of these classes to control individual devices. Thus
an application might use the file system interface to communicate with a remote

93~4

250 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

computer, but it can also use the SoftTalk interface (available from Sitka
Corporation) to communicate with the remote computer.

The interface that an application uses depends on the level of control that the
application needs to exercise, offset by the amount of work the application wants
to perform itself. Usually in bypassing one of the upper-level interfaces, an
application takes on more work for itself.

The Service Manager
At the root of Pen Point connectivity architecture is the service manager class. A
service is any general, non-application DLL that enables PenPoint clients to
communicate with a device or to access a function, such as a database engine.

Related services are managed by an instance of the service manager class. A service
manager instance performs these tasks:

• Locates and accesses the service.

• Manages the connections between a client and a service (services may
themselves by clients of another service).

• Notifies its observers of additions and deletions.

• Monitors the state of each connection between a service and its target and
passes change notifications to its observers.

PenPoint Facilities
Using the principles and architecture described above, PenPoint provides these
facilities for networking and connectivity:

• A file system that works on top of MS-DOS disk organization.

• A Connections notebook, in which the user can view the available volumes
and printer queues.

• Basic Appletalk services at the ATP (Apple Talk Transport Protocol) level and
below. This does not include ASP (AppleTalk Session Protocol) and ADSP
(AppleTalk Data Stream Protocol).

• 19.2K asynchronous serial support, which allows a PenPoint computer 'to
communicate with a single IBM PC through the PC's standard serial port.

• Appletalk connections between a PenPoint computer with a modem and
another computer with a modem.

• High-speed serial (115 K) and parallel data connections.

• Printer services for 8- and 24-pin dot-matrix printers and the H-P LaserJet
printer.

93 .. 6

CHAPTER 93 I CONCEPTS AND TERMINOLOGY 251
Survey of the Remote Interfaces

Adding Network Protocols
PenPoint can support multiple protocol stacks and multiple remote volumes.

To allow users to connect a PenPoint computer directly to a network, you have to
obtain or write a network protocol stack, or supplement an existing one and write
support for another remote file system.

The service manager allows users to add new network protocol stacks dynamically;
they don't have to cold-boot the system to add a new protocol. To connect a
PenPoint computer to a new network device (provided the device uses SCSI or
AppleTalk connectors), all the user has to do is:

• Install the protocol stack for the new network.

• Connect the PenPoint computer to the device.

• Tell the connection manager which protocol stack to use with the device.

Survey of the Remote Interfaces
The rest of this chapter provides an overview of the remote interface APIs
provided by the PenPoint operating system. Most of these APIs are described in
full in the remaining chapters.

Most of the device interfaces described here descend from dsStream. To read from
and write to these devices, applications use the stream read and stream messages.
dsStream is described in Part 9: Utility Classes.

Serial 1/0
The serial 110 interface provides access to and control of a serial port. The serial
interface is managed by theSerialDevices service manager. When an application
gets a handle on a serial port from theSerialDevices, it can perform these tasks:

• Alter the serial port configuration, including baud rate, line control, and flow
control.

• Transmit and receive data on the serial port.

• Detect events on the serial port.

For more information on the serial port, see Chapter 95, Serial 110.

Parallel 1/0
The parallel 110 interface provides access to and control of a parallel port. The
parallel interface is managed by theParallelDevices service manager. When an
application gets a handle on a parallel port from theParallelDevices, it can:

• In~tialize a printer attached to the parallel port.

• Transmit and receive data on the parallel port.

• Change the auto-line-feed characteristics of a printer.

• Get and set the initialization and interrupt time-out intervals.

93.7

93.8

93.8.1

----_._-------

252 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

For more information on the parallel port, see Chapter 96, Parallel I/O.

High-Speed Packet I/O
The high-speed packet I/O interface (HSPKT) provides access to a protocol that
performs high-speed data transfers using either a serial or parallel port. The high­
speed packet interface is managed by theHighSpeedPacketHandlers service
manager.

High-speed packet I/O implements a builtin RTS/CTS type protocol by sending a
lead in character and expecting a data acknowledge character in return before
actually sending a packet of data.

High-speed packet I/O is also discussed in Chapter 96, Parallel 110.

File System
The PenPoint file system provides access to files and directories on a RAM
volume, local disk volumes, and remote volumes. The file system API provides
all standard file system control functions. In addition, it provides these capabilities:

• Reliable handling of disconnect and reconnect events for volumes.

• Memory-mapped files that allows you to open files with direct byte
addressing capability.

• A volume traversal mechanism that allows you to visit all file system nodes
that match a particular criterion.

The PenPoint file system currently is layered on the MS-DOS volume structure.
Implementations using other volume structures. (such as Apple's HFS) are possible
in the future.

For more on the PenPoint file system, see Part 7: File System.

File Import Export

The PenPoint operating system provides system-based support for importing and
exporting documents in different file formats; each application developer
determines which import and export formats to supply.

When the user moves or copIes a file into a PenPoint computer, PenPoint
examines the file to see if it is a PenPoint document. If not, PenPoint asks every
application that is currently installed whether it can import the file. Those
applications that can import the file are displayed in a dialog box. When the user
chooses an application, the import mechanism tells the application to translate the
file into a document of that application type.

To export a file, the export mechanism asks the application what file formats it can
write and displays the list of formats in a dialog box. The user selects a file format
and the export mechanism tells the application to write the file using that format.

An additional mechanism allows applications and file translators to communicate
with each other, allowing third parties to provide additional file translators.

CHAPTER 93 / CONCEPTS AND TERMINOLOGY 253
Survey of the Remote Interfaces

The text editor application, MiniT ext, that is bundled with PenPoint imports and
exports using three file formats:

• PenPoint internal text format.

• ASCII text.

• Microsoft's Rich Text Format (RTF).

For more information on the import/export mechanism see Chapter 81, File
Import and Export, in Part 9: Utility Classes.

Modem Interface

The modem interface provides access to modem control functions through a
high-level API, which allows you to configure the modem, dial out, and
auto-answer.

The modem interface handles all the low-level modem line functions for you.

To use the modem interface, you open the serial port, create a modem object
using the serial port handle, and then send messages to the modem object.

For more information on the modem manager, see Chapter 97, Data Modem
Interface.

Networking Interface

As described previously in this chapter, PenPoint includes support for networking
protocols. PenPoint provides these protocols:

• A transport protocol, which establishes communication with another
program that understands the same protocol and transports data between the
two programs.

• Several link protocols, which send and receive the data using various physical
media (parallel and serial lines) .

The session layer protocols are available from other vendors, such as Sitka
Corporation, who provides TOPS for PenPoint.

".~ Transport

The transport protocol establishes communication with a partner and handles
data exchange with the partner. Currently the only transport protocol supported
by the transport API is the AppleTalk transport protocol (ATP).

For more information on the Transport Protocol, see Chapter 98, Transport API.

".". Link
The link protocol provides communication on physical network devices
(LocaITalk). The interface to the link protocol is not described in this part. For
further information, please contact GO Developer Technical Support.

Chapter 94 / Using Services

PenPoint™ service classes provide installable, configurable system extensions.
To access a particular service instance, clients need to communicate with a service
manager. The service manager controls access to service instances and keeps track
of all clients that are interested in a particular service instance.

There are a number of service managers in PenPoint. Each service manager is
responsible for a particular category of services, 'such as the modems, the printing
devices, or the handwriting translators.

Some of these categories may actually overlap (such as the printing devices and
the parallel ports). A particular service instance can be managed by several service
managers.

This chapter describes some fundamental service concepts, but is primarily
concerned with the API for the service managers.

Chapter 94 covers these topics:

• Service concepts, including user installation and configuration of services,
service managers, binding and opening services, and chaining services.

• Messages for service managers.

• How to use the service manager messages.

This chapter does not describe how to write services; for that information, see
Part 13: Writing PenPoint Services.

Concepts
A service is a general, non-application DLL that provides an extension to the
system. Services can perform many types of work, including-but not limited
to-database engines, e-mail backends, and device drivers.

Each service is a class that inherits from clsService. For some services the service
writer provides a user interface so that the user can create instances of a service;
for other services, their instances are created automatically when the service is
installed.

The services architecture can be though of as being quite similar to the PenPoint
application framework. Services are similar to application classes; service instances
are similar to documents.

However, the key concept to services is not with the services themselves, but the
service manager architecture. Most clients of services deal far more with the service
managers and service manager messages than with the actual services.

94.1

256 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Installing Services

There are three ways to install services:

• The user can explicitly install a service through the services page of the
Connections notebook. This action may be initiated by the service developer
enabling service quick installation on a distribution disk.

• Applications or services can list a set of services in a SERVICE.lNI file. If the
service is not already installed in the system, PenPoint will install the service
(if it is already installed, PenPoint will increase its reference count).

• A program can explicitly install a service by sending msgIMInstall to
theInstalledServices (most applications will not do this).

You cannot list a service DLL file in any DLC file.

When an application requests a service in a SERVICE.lNI file, the application
is said to be dependent on the service. When someone attempts to deinstall the
service, any application that is dependent on the service can veto the deinstallation.

The user can deinstall services by the Connections notebook interface or
theInstalledServices. When the user deinstalls a service, the service manager
destroys the service handles and removes the service's code and all saved service
instances from PenPoint.

Clients that are bound to a service receive msgIMDeinstalled when the service
class is deinstalled. Clients can observe the service manager to find out when the
service is reinstalled.

A service cannot be deinstalled if it is marked as being in use when any instance of
the service is open. By default, services are marked in use when anyone has their
instances open.

Service Managers

A service manager provides a system-wide way of managing categories of services.

A service manager is an instance of clsServiceMgr. There is no single, central
service m~nager; rather, there are a number of service managers. For example, the
print services are managed by the print service manager; the serial ports are
managed by the serial port manager.

A service manager performs several functions:

• It maintains a list of service instances.

• It provides protocol that allow clients to access service instances.

• It controls access to service instances.

• It notifies all observers when service instances are added or removed from
its list.

However, when the client that initially loaded the service is deinstalled, the
dependent applications receive notification, but cannot veto the deinstallation.

Warning You cannot include a
service DLL file in any DLC file.

94~ 1,,2

CHAPTER 94 I USING SERVICES 257

A service can appear on more than one service manager list. For example,
theSerialDevices lists the available serial ports, but thePrinterDevices lists all the
devices that can support printers, including the serial ports. This frees clients from
having to search many lists to find the correct service; they just look for a service
listed on by the most likely service manager.

All services controlled by a particular service manager support the same minimal
set of functions.

Access Overview

The service manager provides access protocols that allow clients to:

• Find a particular service.

• Express an interest in a particular service instance (called binding).

• Open and close service instances.

• Acquire and release ownership of service instances.

Rather than perform these actions explicitly, the service manager also provides
access messages that perf or all of these actions.

For example, when a client needs to access a specific serial port driver, the client
performs the following tasks:

1 Sends a message to a service manager that manages the driver (such as
theSerialDevices), giving it the name of the serial port and asking it to find
the service for that device. theSerialDevices replies with a handle on the
servIce.

2 The client sends a message to theSerialDevices asking to bind with that
servICe.

3 When client needs to send or receive serial data, it sends an open message to
theSerialDevices.

4 When the client is done sending or receiving, it sends a close message to
theSerialDevices and eventually unbinds from the service.

A client should open a service only when it is ready to actually use the service.
Opening a service returns the service object. The client should close the service as
soon as it is done with the service.

Ownership

The service manager also works to control access to service instances.

Some services (such as those that communicate with ports) can only be used
by one client at a time. For example, if the fax service owns a serial port and a
fax/ data modem is connected to that port, you don't want an E-mail service to
be able to access the port.

A service manager can maintain an owner of a service instance and, if suitably
configured, will allow only the owner of a service instance to open that service.

Concepts

94.1.3

94.1 ~4

258 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Targeting
A service can have a target, which can be either a physical device or another
service. By using targeting, several services can be chained together, much like a
network protocol stacks.

Targeting is used to pass both data and control information up and down target
chains. (Here data is the actual information that a client is trying to transmit
through a device; control information is information about the other services in
the chain-such as connection information.)

Connections
Services can maintain connection status. Usually connection status is important to
services that control devices, but connection status is not limited to those services.

Changes in connection state are transmitted to observers of the service (in
addition to observers of the service manager in which the service is listed). By
default, a service's connection state follows that of it's target.

With targeting and connection information, PenPoint applications can easily
inform their users that a required device is available (or unavailable).

Accessing Services
To access a service, a client must observe the service protocol of binding to the
service when interested in it, opening the service when access is needed, closing
the service when done, and releasing the service when no longer interested in it.

Clients use messages defined by both dsInstallMgr and dsServiceMgr to
communicate with the service manager. For example, your application gets the
name of a service given its handle by sending msgIMGetName to the service
manager.

dsInstallMgr is described in Chapter 112, Installation Managers of Part 12:

Installation API

Predefined Service Managers
GO defines a number of service managers in UID.H.

theMILDevices

theParallelDevices

theAppleTalkDevices

theSerialDevices

thePrinterDevices

the Printers

theSendableServices

the TransportHandlers

theLinkHandlers

theHWXEngines

CHAPTER 94 / USING SERVICES 259
Accessing Services

theModems

theHighSpeedPacketHandlers

theFaxI OServices

The names of these service managers make them fairly self-explanatory.

Binding to a Service

A client binds to a service by sending msgSMBind to the service's manager. The
service manager then adds the client to the service's notification list. That way the
service can inform the client about its availability through notification messages.

These notification messages include messages defined by the service, plus the
following service manager messages:

msglMActiveChanged

msgIMDeinstalled

msgIMModifiedChanged

msgIMln UseChanged

msgIMCurrentChanged

msgSMConnectChanged

Opening a Service

Most services have service-specific arguments that the client must include in the
arguments to msgSMOpen. The structure and organization of these arguments is
described in the documentation for the specific service. Some services provide
their own defaults for their open arguments. To initialize the service specific
arguments to their default values and to allow the clsService to perform other
work for the service, the client must always call msgSMOpenDefaults before
calling msgSMOpen.

A client opens a service by sending msgSMOpen to the service's manager. If the
service has no other openers, or if the service can be shared, the service manager
passes back the UID of the service object. If the service manager refuses the open
request, it returns stsFailed.

Once the client has the UID of the service object, it can send service-specific
messages to the service.

The client should open a service just before it needs to use it, and should close the
service as soon as its use is completed. Services are a resource; many of them only
allow one client at a time. An open service cannot be deinstalled.

94.2.2

94.2.3

260 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

The Service Manager Messages
Most clsServiceMgr messages are sent by clients attempting to access a service;

they are sent to instances of the service manager.

Table 94-1 lists the clsServiceMgr messages.

nnsgI~(;etState

nnsgI~Set~odified

nnsgS~ccess

nnsgS~Release

nnsgS~Bind

nnsgS~Unbind

nnsgS~ccessDefaults

nnsgS~ OpenDefaults

nnsgS~Open

nnsgS~Close

nnsgS~ (;etState

nnsgS~FindHandle

nnsgS~ (;etOwner

nnsgS~SetOwner

nnsgS~SetOwner NoVeto

nnsgS~ Que ryLo ck

nnsgS~ Query

nnsgS~ QueryUnlock

nnsgS~Save

nnsgS~ (;etClass~etrics

nnsgS~RennoveReference

nnsgS~ Connected Changed

nnsgS~ OwnerChanged

P _I~_ (;ET _STATE

P _I~_SET _~ODIFIED

P _S~_ACCESS

P _S~_RELEASE

P_S~_BIND

P_S~_BIND

p _S~_ACCESS

P_S~_OPEN_CLOSE

P_S~_OPEN_CLOSE

P_S~_OPEN_CLOSE

P _S~_ (;ET _STATE

P _S~_FIND_HANDLE

P _S~_ (;ET _OWNER

P _S~_SET _OWNER

P _S~_SET _OWNER

P _S~_QUERY_LOCK

P _S~_QUERY_LOCK

P _S~_QUERY_UNLOCK

94,,1

clsServiceMgt" Messages

(;ets the state of a service nnanager.

Changes an itenn's nnodified setting.

Accesses a service instance, given its nanne.

Releases a service instance.

Binds to a service.

Unbinds fronn a service.

Sets pArgs defaults for nnsgS~ccess.

Initializes S~Open pArgs to default value.

Opens a service, given its handle.

Closes an open service.

(;ets the state of a service.

Finds a handle, given a service instance UID.

(;ets the current owner of a service.

Sets a new service owner.

Sets a new service owner without giving owners
veto power.

(;ets the UID of a service and locks out any opens.

(;ets the UID of a service.

Unlocks a service that was locked via
nnsgS~QueryLock.

Saves a service instance to a specified external
location.

P _S~_(;ET_CLASS_~ETRICS (;ets the service's class nnetrics.

Rennoves a service fronn a service nnanager without
destroying the service.

P _S~_CONNECTED_NOTIFY A service's connection state changed.

P _S~_OWNER_NOTIFY A service's owner has changed.

CHAPTER 94 I USING SERVICES 261
Using the Service Manager

Using the Service Manager
Whenever a client needs to access a service, it sends install manager and service
manager messages to a service manager. The service managers are always present in
a running system.

Accessing a Service
Your application can access the service in one of two ways:

• It can use the msgSMAccess to find, bind to, set owner, and then open a
servIce .

• It can explicitly find, bind to, set owner, and open the service.

This section discusses msgSMAccess. The following sections discuss msgIMFind,
msgSMBind, and msgSMOpen.

msgSMAccess provides a convenient way for clients to perform the most common
sequence of messages used to access a service. msgSMAccess takes a pointer to an
SM_ACCESS structure that contains:

pServiceName The name of the service that your application needs
to access.

caller The UID of the object making the call (usually self).

pArgs A pointer to a set of arguments, if required by the service.
If the service requires arguments, your application must send
msgSMAccessDefaults first.

If the message does not succeed, it can return these status values:

stsNoMatch The specified service instance wasn't found.

stsSvcLocked An exclusive-access service is locked by another client.

stsSvcNotOwner Your application is not the current owner of the service.

stsSvcAlreadyOpen An exclusive-open service is open by another client.

If the message does succeed, it passes back:

handle The handle on the service object.

service The UID of the service instance.

Applications 'should never store an device's object UID in their instance data.
While a document is saved and the application is terminated, the user could
deinstall the service, or reconfigure the service, rendering the UID invalid. Your
application should find and bind to a service when it receives msgApplnit or
msgAppRestore; it should unbind from the service when it receives msgFree.

Finding a Service
Before your application can bind to a service, it must get the name of the service
and a handle on the service.

To get the name of a service, your application can send msgIMGetList to a service
manager, which passes back a list of service instance UIDs. Your application can

94.4

94.4.1

Applications should never file a
device's object UID.

94.4.2

262 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

then use msgIMGetName to find the name of each service; the application then
displays display the names to the user and allows the user to choose one.

If your application knows the name of the service ahead of time, it can send
msgIMFind to the service manager for that type of service, specifying the name.
msgIMFind passes back the handle on the service.

This example gets a handle on parallel I/O port:

STATUS Si
IM FIND imfi
SM BIND smi
SM OPEN SOi
OBJECT sioUidi
imf.pName = PPortNamei II PPortNam~ is defined by the user.
ObjCallRet(msgIMFind, theParallelDevices, &imf, S)i

Binding to a Service

When your application binds to a service, the service manager adds your
application to the observer list for that service. Observers of a service receive
messages that relate to the status and availability of the service.

When your application has the handle on the service, it can send msgSMBind to
the handle. The message takes a pointer to an SM_BIND structure that contains:

handle The handle on the service.

caller The UID of the object sending the message. Usually caller is self.

When the message completes successfully, it returns stsOK. The message does not
send back anything. If the handle is not found, the message returns stsN oMatch.

This example continues from the example above. The caller binds to the option
slot serial I/O port:

sm. handle = imf.handlei
sm. caller = selfi
ObjCallRet(msgSMBind, theParallelDevices, &sm, S)i

Opening and Closing a Service

When your application is ready to use the service, your application can open it by
sending msgSMOpenDefaults and then msgSMOpen to the service manager for
the service. msgSMOpenDefaults allows the service class to provide defaults for
its arguments, and also allows clsService to initialize other internal data structures,
such as open service objects.

Clients should only open the service when they are ready to use it and should
leave the service open for as little time as possible.

Both messages take a pointer to an SM_OPEN_CLOSE structure that contains:

handle The handle on the service. This is the same handle that your
application sent with msgIMFind.

caller The UID of the object sending the message. Usually caller is self.

Open service objects are
described in Part 13: Writing
Pen Point Services.

CHAPTER 94 I USING SERVICES 263

Using the Service Manager

pArgs A pointer to service-specific arguments. Your application must check
the description of the service to see if it has any service-specific
arguments. Some services can initialize their pArgs structure to default
values; for these services, call msgSMOpenDefaults before calling
msgSMOpen.

If the message completes successfully, it returns stsOK and sends back the UID of
the service in the service field of the SM_OPEN_CLOSE structure.

If the service manager refuses the request, it returns stsRequestDenied. A
common reason for refusal is that only one client is allowed to open the service at
a time and the service is busy. See the documentation for individual services for
the exact reasons for returning stsRequestDenied.

This example continues from the previous two examples to show the client
opening the service:

so.handle = imf.handle;
so~caller = self;
ObjCallRet(msgSMOpen, theSerialParallel, &SO, s);
pportUid = so. service;

When your application has finished with a service, send msgSMClose to the
service manager for that service. The message takes a pointer to an
SM_OPEN_CLOSE structure that contains:

handle The handle of the service to close.

caller The UID of the object sending the message. Usually caller is self.

pArgs A pointer to service-specific arguments.

service The UID of the service to close.

Your application must specify both the handle on the service and the UID of the
servIce.

Unbinding from a Service
To remove yourself from a service's observer list, send msgSMUnbind to the
service manager for that service. If your application has the service open when it
send msgSMUnbind, the service manager also sends msgSMClose to close the
service. The message takes a pointer to an SM_BIND structure, which contains:

handle The handle on the service.

caller The UID of the object sending the message. Usually caller is self.

When the message completes successfully, it returns stsOK.

Finding a Handle
If your application has the UID of a service object, but don't have the handle, it
can send msgSMFindHandle to the service manager for the service. The message
takes a pointer to an SM_FIND_HANDLE structure that contains the service UID
(service).

264 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

When the message completes successfully, it sends back the handle on the service
in the handle field of the SM_FlND_HANDLE structure.

Receiving Connection State Notification

Most services support the notion of being connected. When the connection state
of a service changes, clients that are bound to that service receive
msgSMConnectedChanged, indicating that the connection state has changed.
The message pArgs point to an SM_CONNECTED_NOTIFY structure that contains:

manager The UID of the manager that sent the notification.

handle The handle of the service whose state changed.

connected A BOOLEAN value that indicates the new connection state.
When connected is TRUE, the service is connected .

. Setting a Service Owner

To set a new owner of a service, send msgSMSetOwner to a service manager.
The message takes a pointer to an SM_SET_OWNER structure that contains:

handle The handle of the service that your application is changing.

owner The UID of the new owner. To make yourself the new owner of a
service, owner should be self.

When your application sends this message to a service manager, the service
manager sends msgSvcOwnerReleaseRequested to the current owner and
msgSvcOwnerAcquireRequested to the new owner. The current owner and new
owner have the option to veto the change owner.

If the current and new owner do not veto, the service manager sends
msgSvcOwnerChangeRequested to the owned service, so that the service
has the opportunity to veto the change owner.

If the service doesn't veto the change owner, the service manager sends
msgSvcOwnerReleased to the current owner, msgSvcOwnerAcquired to the new
owner, and msgSMOwnerChanged to all clients that are bound to the service.

If the current or new owner, or the owned service vetoes the change, the message
returns any status value less than stsOK.

If your application sends msgSMSetOwnerNo Veto instead of msgSMSetOwner,
the service manager does not send msgSvcOwnerChangeRequested to the current
owner.

Chapter 95 / Serial I/O

This chapter presents clsMlLAsyncSIODevice, the serial port device driver
interface class. The class provides an object-oriented interface to the serial port and
supports the functionality necessary for a wide variety of serial applications.

To access a serial port, you send open and bind messages to the serial dev:ice
service manager (theSerialDevices), requesting the port by name. If that port is
available, the service manager gives you a handle on the port.

clsMlLAsyncSIODevice inherits from clsStream. Structures and :fI:defines used
by clsMlLAsyncSIODevice are in \GO\INC\SIO.H.

Serial I/O Concepls
The following sections discuss the concepts of serial I/O under the PenPoineM

operating system.

Interrupt Driven I/O

Serial communications can burden a system with a high volume of asynchronous
real-time events. The serial hardware generates interrupts in response to these
events. The serial driver takes full advantage of this interrupt capability to buffer
the data before passing it to its client.

BuHered Data

When data is received, the hardware generates a receive character interrupt. The
serial driver interrupt handler takes the received character and places it in the
input buffer. Thus, the client code avoids the responsibility of responding in real
time to each input character.

Output is similar. The client code does not wait around sending characters one by
one. Instead, the client places outgoing data in an output buffer and passes the
buffer to the serial driver. The serial driver moves the characters to the serial port
as the port becomes ready for them. When a character is loaded, the hardware
generates a send character interrupt.

The serial port client selects the size of the input and output buffers.

Flow Control

95.1

At high data rates, or when the system is busy with other tasks, it's possible for receive
data to arrive in the input buffer faster than the client task can remove it. To prevent
buffer overflow the serial driver utilizes two flow control protocols: XO N /XO FF flow
control and hardware RTS/CTS flow control. Of course, both sides of the serial
connection must be using the same protocol for proper operation.

266 PENPOINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

XON/XOFF flow control is limited to working with ASCII data, but has the
advantage of being independent of the serial hardware and cable. Two characters,
XON (usually Ctrl-Q) and XOFF (usually Ctrl-S), have special meaning. When
the input buffer is nearly full and in danger of overflowing the driver sends an
XO FF character to the remote serial port. When the remote serial port receives the
XOFF character it immediately suspends transmission. When there is enough
room in the input buffer the driver sends an XON character to the remote serial
port which can start transmitting again.

Hardware RTS/CTS flow control works with any data but requires a particular
hardware setup. It uses the serial port hardware input clear-to-send (CTS) and
output request-to-send (RTS) control lines; these lines must be connected to the
remote serial port. The CTS input enables data transmission to the remote serial
port. The RTS output disables transmission from the remote serial port.

Events

The serial driver includes an event mechanism that can notify you when an
interesting serial event happens. The event mechanism allows you to respond
quickly to serial events without polling loops, which drain batteries and waste
machine cycles. You can select which event messages you want to receive by
sending msgSioEventSet to the serial driver. When one of the events occurs, the
serial driver uses ObjectSend to send msgSioEventHappened and an event
indication to you.

The possible interesting serial events are:

• CTS input line has changed state.

• DSR input line has changed state.

• DCD input li,ne has changed state.

• RI input line has changed state.

• Input buffer is no longer empty.

• Break character has been received.

• Output buffer has become empty.

• Receive error condition has occured (parity, framing error, or overrun error).

Concurrency Issues

Only one client can access the serial port at a time. If you request a handle for a
port that is owned by another client, clsMlLAsyncSIODevice returns an error
status code stsSioPortln Use.

You can define a global handle for a serial port, however, the serial port has no
built-in access control mechanism. If you share a port with other clients, you must
create your own access control mechanism.

CHAPTER 95 / SERIAL I/O 267
Using Serial Messages

Using Serial Messages 95.2

Table 95-1 lists the messages defined by clsMlLAsyncSIODevice.

msgStreamRead

msgStream Write

msgStreamReadTimeOut

msgStream Write TimeOut

msgSioInit

msgSioBaudSet

msgSioLineControlSet

msgSioControlOutSet

msgSioControlInStatus

msgSioFlowControlCharSet

msgSioBreakSend

msgSioBreakStatus

msgSioInputBufferStatus

msgSioOutputBufferStatus

msgSioFlowControlSet

msgSioEventStatus

msgSioEventSet

msgSioEventGet

msgSioEventHappened

msgSioGetMetrics

msgSioSetMetrics

msgSioReceiveErrorsStatus

msgSioInputBufferFlush

msgSioOutputBufferFlush

msgSioSetReplaceCharProc

Table 95~'1

clsMILAsyncSIODevice me~55Cla\f~!*

P _STREAM_READ _ WRITE

P _STREAM_READ _WRITE

Reads data from stream.

Writes data to stream.

P _STREAM_READ _WRITE_TIMEOUT Reads data from stream with timeout.

P _STREAM_READ _WRITE_TIMEOUT Writes to the stream with timeout.

U32

Initializes the serial device to its default state.

Sets the serial port baud rate.

Sets serial port data bits per character, stop
bits, and parity.

Controls serial port output lines dtr and rts.

Reads the current state of the serial port in
put control lines.

P _SIO_FLOW _CONTROL_CHAR_SET Defines serial port XON/XOFF flow
control characters.

P _SIO_BREAK_SEND

P _SIO_BREAK_STATUS

P _SIO_INPUT_BUFFER_STATUS

P _SIO _OUTPUT _BUFFER_STATUS

P _SI ° _FLOW _CONTROL_SET

P _SIO_EVENT_STATUS

P _SIO .;...EVENT _SET

P _SIO _EVENT_SET

P _SIO _EVENT_HAPPENED

P _SIO_METRICS

P _SIO_METRICS

P _SIO _RECEIVE_ERRORS_STATUS

pNull

pNull

P _SIO_REPLACE_CHAR

Sends a break for the specified duration.

Sends back the number of breaks received
so far.

Provides input buffer status.

Provides output buffer status.

Selects flow control type.

Sends back current state of event word, and
then clears the event word.

Enables event notification.

Gets the current sio event setting.

Notifies client of event occurance.

Sends back the sio metrics.

Sets the sio metrics.

Sends back the number of receive errors and
the number of dropped bytes (due to buffer
overflows) .

Flushes the contents of the input buffer.

Flushes the contents of the output buffer.

Replaces the built in receive character
interrupt routine.

268 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Requesting and Releasing a Serial Handle

Before you can communicate through the serial port, you must request a handle
on the port from theSerialDevices service manager. To locate the port by name,
send msgIMFind to theSerialDevices, then. bind the port to your process by
sending msgSMBind to theSerialDevices. Finally, you open the port by sending
msgSMOpen to theSerialDevices.

This example shows how a client requests a handle on a serial port.

STATUS
IM FIND
SM BIND

s;
imf;
sm;

SM OPEN SO;

OBJECT sioUid;
imf.pName = userName; II The name was requested from the user earlier
ObjCallRet(msgIMFind, theSerialDevices, &imf, s);
sm. handle = imf.handle;
sm. caller = self;
ObjCallRet(msgSMBind, theSerialDevices, &sm, s);
so.handle = imf.handle;
so.caller = self;
ObjCallRet(msgSMOpen, theSerialDevices, &so, s);
sioUid = so.service;

The symbol sioUid now contains the UID of the serial port object. You can
communicate with the serial port by sending messages to this object.

When you have finished with the serial port, you should free the port by sending
msgSMClose to theSerialDevices. Do not send msgDestroy to the serial port object.

This example shows the correct way to free a port:

sioUid = so.service;

ObjCallRet(msgSMClose, theSerialDevices, wknKey);

Reinitializing the Serial Port

To reinitialize a serial port to its default state and change the buffer sizes, send
msgSioInit to the handle on the serial port. The message takes a pointer to an
SIO_INIT structure that contains:

inputSize A U16 value that specifies the size of the input buffer.

outputSize A U16 value that specifies the size of the output buffer.

, Serial Port Configuration

Before you communicate over the serial port, you must configure the port so that can
communicate with the device at the other end of the line. Both devices must be con­
figured identically, or communication will not occur. The configurable items are:

• Baud rate

• Number of bits per byte

CHAPTER 95 / SERIAL I/O 269
Using Serial Messages

• Parity

• Stop bits

• Flow control

• Flow control characters.

When you first create a handle on a serial port, it has these defaults:

• 8 bits

• No parity

• One stop bit

• XONIXOFF flow control

• Ctrl-Q and Ctrl-S are the XON and XOFF characters

• DTR and RTS are on.

SeHing the Baud Rate

You set the baud rate by sending msgSioBaudSet to the serial port handle. The
message takes a single argument, a U32 value that specifies the data rate in bits per
second. The maximum allowed setting is 115200; there is no default setting.

SeHing the Line Control

You set the number of data bits, the stop bits, and the parity by sending
msgSioLineControlSet to the serial port handle. msgSioLineControlSet takes a
pointer to an SIO_LINE_CONTROL_SET structure that specifies:

dataBits The number of bits in a byte. Three constants define the possible
byte sizes: sioSixBits, sioSevenBits, and sioEightBits.

stopBits The stop bits. Three constants define the possible stop bits:
sioOneStopBit, sioOneAndAHalfStopBits, and sio TwoStopBits.

parity The parity. Three constants define the possible parity settings:
sioNoParity, sioOddParity, and sioEvenParity.

Specifying the Flow Control

You specify the flow control for a serial port by sending msgSioFlowControlSet to
a serial port handle. The message takes a pointer to an SIO_FLOW_CONTROL_SET

structure. The structure contains a single member, flowControl, which indicates
whether the port will use XONIXOFF, CTS/RTS, or no flow control. The
constants defined by SIO_FLOW_TYPE are:

sioNoFlowControl No flow control.

sioXonXoffFlowControl Use XONIXOFF flow control. Use
msgSioFlowControlCharSet to change the control characters from their
defaults).

sioHardwareFlowControl Use the CTS and RTS lines for flow control.

270 PEN POINT ARCHITECTURAL REFERENCE

Part 10 I Connectivity

~, Changing the Flow Control Characters

If, for some reason, you cannot use Ctrl-Q (ASCII 17) as the XON character or
Ctrl-S (ASCII 19) as the XOFF character, you can to change the default flow
control character values by sending msgSioFlowControlCharSet to the serial port
handle. The message takes a pointer to an SIO_FLOW_CONTROL_CHAR_SET

structure that specifies:

xonChar A UB value for the XON character.

xoffChar A UB value for the XOFF character.

~" Controlling DTR and RTS For Output

If both the local and remote hardware support data-terminal-ready (DTR) and
request-to-send (RTS) lines, you can set the state of the output DTR and RTS
lines by sending msgSioControlOutSet to the serial port handle. The message
takes a pointer to an SIO_CONTROL_OUT_SET structure, which contains:

dtr A BOOLEAN value that specifies the state of the DTR line.

rts A BOOLEAN value that specifies the state of the RTS line.

In both BOOLEAN values, true activates the line.

~ Requesting the Input Line States

If the local and remote hardware supports DTR and RTS lines, you can request
the states of the input lines by sending msgSioControlInStatus to the serial port
handle. The message takes a pointer to an SIO_CONTROL_IN_STATUS structure,
which contains:

cts A BOOLEAN value that receives the state of the CTS line.

dsr A BOOLEAN value that receives the state of the DSR line.

rlsd A BOOLEAN value that receives the state of the RLSD line.

ri A BOOLEAN value that receives the state of the ring-indicator (RI) line.

In all BOOLEAN values, true means active.

~ Requesting All Serial Port SeHings

You can request all the serial port settings by sending msgSioGetMetrics to the
serial port handle. The message takes a pointer to an SIO_METRICS structure that
contains:

baud An SIO_BAUD_SET structure that receives the baud rate.

line An SIO_LINE_CONTROL_SET structure that receives the line control.

controlOut An SIO_CONTROL_OUT_SET structure that receives the serial
port output line settings.

flowChar An SIO_FLOW_CONTROL_CHAR_SET structure that receives the
flow control characters.

flowType An SIO_FLOW_CONTROL_SET structure that receives the flow
control settings.

95,,2.3.4

CHAPTER 95 / SERIAL I/O 271
Using Serial Messages

All of the structures here are described in the foregoing message descriptions.

You can use the same SIO_METRICS structure with msgSioSetMetrics to set all of
the current serial port settings.

Reading and Writing with the Serial Port
To read from or write to the serial port, send msgStreamRead or msgStream Write
to the serial port handle. Both messages take a pointer to a STREAM_READ_WRITE

structure that specifies:

numBytes The number of bytes to read or write.

pReadBuffer A pointer to a buffer that receives the data, or containing
data to be written. On msgStreamRead, the buffer must hold at least
numBytes of data.

To read or write with a timeout value, send msgStreamReadTimeout or
msgStreamWriteTimeout to the serial port handle. These messages require
a STREAM_READ_WRITE_TIMEOUT structure that contains numBytes and
pReadBuffer and a timeout value in milliseconds (timeOut).

For more information on reading or writing streams, see Chapter 79, Class Stream
in Part 9: Utility Classes.

Input and Output BuHer Status

95.2.4

95.2.4.1

To find out the number of characters in the input or output buffer and the amount of
room left in the buffer, send msgSiolnputBufferStatus or msgSioOutputBufferStatus
to the serial port handle. The msgSiolnputBufferStatus message takes a pointer to an
SIO_INPUT_BUFFER_SfATUS structure that contains:

bufferChars A location that receives the number of characters in the buffer.

buffer Room A location that receives amount of room left in the buffer.

The msgSioOutputBufferStatus message takes an SIO_OUTPUT_BUFFER_STATUS

structure that contains:

bufferChars A location that receives the number of characters in the buffer.

bufferRoom A location that receives amount of room left in the buffer.

transmitterFrozen A BOOLEAN value that indicates whether the transmitter
is frozen. This can happen when the serial port receives XO FF or the
RTS line is not active. For more information, see "Flow Control," below.

r,., Flushing the Input and Output BuHers

To flush (delete the contents of) the input or output buffers, send
msgSiolnputBufferFlush or msgSioOutputBufferFlush to the serial port handle.
The messages do not take any arguments.

95.2.4.2

272 PEN POINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

Flow Control

Now comes the moment when all the flow control information becomes useful. If
you are performing your own buffer management and detect that your buffer is in
danger of overflowing, you need to tell the device with which you are commun­
icating to stop sending data; usually you do this with CTS/RTS.

Sending BREAK

A more drastic way to signal your partner to stop transmission is. to send a BREAK

signal (a series of zeros). BREAK sends a series of zeros to the stream. Of course,
you can't use a stream write message, because you don't want the zeros buffered.
Instead, you send msgSioBreakSend to the serial port handle. The message takes a
pointer to an SIO_BREAK_SEND structure, which contains a single member,
milliseconds. milliseconds specifies the length of time that zeros should be sent on
the line, in milliseconds. A typical break duration is 200 to 400 milliseconds.

Detecting Events

The previous section discussed how to halt data transmission. This section
describes how to detect those signals.

The best way to detect the halt signals is to make yourself an observer of the serial
port manager. To do this, send msgSioEventSet to the serial port handle. The
message takes a pointer to an SIO_EVENT_SET structure that contains:

eventMask An event mask, which describes the events for which you want
to receive notification. Table 95-2 lists the event mask indicators.

client The UID of an object to inform when the event happens. This is
usually yourself.

9S~2

Event Mask hldicotors

sioEventCTS

sioEventDSR

sioEventDCD

sioEventRI

sioEventRxChar

sioEventRxBreak

sioEventTxBufferEmpty

sioEventRxError

The CTS line changed state.

The DSR line changed state.

The DCD line changed state.

The RI line changed state.

Your receive buffer is no longer empty.

Received a break condition.

The sender's transmission buffer is empty.

A parity, framing, or overrun error occurred.

If you send msgSioEventSet to the serial port handle and one of the specified
events occurs, the object named in the message receives msgSioEventHappened.
The argument for this message is a pointer to an SIO_EVENT_HAPPENED

structure, which contains:

CHAPTER 95 / SERIAL I/O 273
High-Speed Packet I/O Concepts

eventMask An SIO_EVENT_MASK structure that indicates the event
or events that occurred. When the serial port manager sends
msgSioEventHappened, it also clears its event mask.

self The UID of the object that generated this message.

Note that some eventMask indicators might be set for events that you are not
observing.

To get the current SIO_EVENT_SET structure, send msgSioEventGet to the handle
on the serial port. The message takes a pointer to an SIO_EVENT_SET structure
that will receive the event information.

Polling for Events 9S,2"~1', 1

An alternative method for detecting events is to poll the event word, by sending
msgSioEventStatus to the serial port handle. The message takes a pointer to an
SIO_EVENT_SfATUS structure that contains a location to receive the current state
of the event mask (eventMask).

When the serial port manager receives this message, it returns the event mask to
the requestor and clears the mask.

Checking BREAK Status

You can also poll the BREAK counter by sending msgSioBreakStatus to the serial
port handle. The message takes a pointer to an SIO_BREAK_STATUS structure,
which contains the location to receive the current break count (breaksReceived).

When the serial port manager receives the message, it sends back the number of
breaks received since the last time the counter was cleared and then clears the
counter.

High-Speed Packet I/O Concepts
The high-speed packet 110 interface (HSPKT) provides access to a protocol that
performs high-speed data transfers using either a serial or parallel port. The
~igh-speed packet interface is managed by theHighSpeedPacketHandlers service
manager.

High-speed packet 110 implements a builtin RTS/CTS type protocol by sending a
lead in character and expecting a data acknowledge character in return before
actually sending a packet of data.

HSPKT on Serial Lines

When running running on a parallel line, HSPKT uses a connection detection
protocol. When running on a serial line, DSR high signals that it is connected,
regardless of what the serial port is connected to.

Also when running on serial lines, the high-speed packet 110 can dynamically
negotiate the baud rate.

In case of send errors, baud rates are renegotiated with remote station automatically.

274 PEN POINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Parallel Cable Connection Detection

The parallel connection protocol involves sending a parallel connect character and
expecting to receive a connect acknowledge character back.

Protocol Variations

By setting leadInChar to 0, no lead in character is sent (and of course no
dataAckChar is expected).

By setting dataAckChar to 0, no acknowledge character is sent upon receiving the
lead in character, i.e. DVHSPKT goes on expecting data to arrive right after the
lead in character.

By setting parConnectChar to 0, DVHSPKT reports always connected, leaving it
up to users at a higher level to determine actual connection.

By setting parConnectAckChar to 0, no connect acknowledge character is sent
upon receiving the connect character.

Notes

As data is transmittedlreceived in parallel mode, DVHSPKT remains synchronized
with the other side during the entire data transfer. As a result, both transmissions and
receptions are subject to failure, making the use of a lead in/ack protocol not always a
necessity when communicating through the parallel port. The use of at least a lead in
character may however improve performance as fake interrupts w~uld be noticed early
(by DVHSPKT itself) saving the upper layer code the trouble of validating the
beginning of a packet.

Parallel transfer speeds depend on the speed of the machines transmitting/
receiving data.

In asynchronous serial mode, DVHSPKT synchronizes itself with the other side
only upon receiving the first byte (lead in) by sending a data ack character to
inform the other side. The absence of a lead in/ ack protocol might then cause
overruns on slower machines.

See MIL specifications for an explanation of the protocols used by this device.

Chapter 96 / Parallel I/O

This chapter presents both clsParallelPort, the parallel port device driver interface
class, and clsHighSpeedPacket, the high-speed packet I/O class (HSPKT).

Parallel Port Concepts
Usually application writers don't need to communicate directly with the parallel port.
Rather, applications (with the assistance of the PenPoint™ Application Framework)
communicate with a printer driver, the printer driver then communicates with the
parallel port. However, you can use the parallel port to communicate with devices
other than printers.

To access a parallel port, a printer driver sends open and bind messages to the
parallel device service manager (theParallelDevices), requesting the port by name.
If that port is available, the service manager gives the printer driver a handle on
the parallel port.

clsParallelPort inherits from clsMILService, which is a descendent of clsStream.
Structures and :/tdefines used by clsParallelPort are in \GO\INC\PPORT.H.

Parallel Port Interrupts

Because of a problem in the 8259 programmable interrupt controller (PIC) used
by most PCs, some machines can generate sporadic interrupt 7s under certain,
unpredictable conditions. The symptom is that yqu see several "Int wlo RB: 7"
messages at boot time. We have not seen this behavior on tablet hardware.

The PenPoint operating system attempts to avoid hanging conditions by disabling
interrupt 7 whenever too many bad interrupts occur, and the re-enabling interrupt
7 at a later time. This does not limit PenPoint's functionality.

Theoretically, parallel port I/O could become impossible, ifPenPoint were to
constantly disable and enable interrupt 7. However, we have not seen this
situation.

96.1

96.1. 1

276 PEN POINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

Parallel Port Messages
Table 96-1 lists the messages defined by clsParallelPort. These messages, their
structures, and :fI:defines are all defined in PPORT.H.

msgNew

msgNewDefaults

msgPPortStatus

msgPPortlnitialize

msgPPortAutoLineFeedOn

msgPPortAutoLineFeedOff

msgPPortGet TimeDelays

msgPPortSet TimeDelays

msgPPortCancelPrint

P_PPORT_NEW

P_PPORT_NEW

P _PPORT_STATUS

P_NULL

P_NULL

P_NULL

P _PPORT _TIME_DELAYS

P _PPORT _TIME_DELAYS

P_NULL

Using the Parallel Port

Table 96~1

Pat"aUel Port Messages

Creates a new pport object.

Initializes a structure cto create a new pport object.

Returns the current status of the printer.

Initializes the printer.

Inserts a line feed after each carriage return.

Disables inserting a line feed after each carriage return.

Gets the initialization and interrupt time-out intervals.

Sets the initialization and interrupt time:-out intervals.

Cancels the printing of the buffer currently being
printed.

Like other device drivers, the parallel driver is a service. To access a parallel port, you
must use the services protocol to find a parallel port service, bind to the service, and
then open it. The service manager for parallel ports, theParallelDevices, controls access

to the parallel ports.

Requesting a Parallel Port Handle

Before you can use a parallel port, you must request a handle on a port from
theParallelDevices service manager. To locate the port by name, send msgIMFind

to theParallelDevices. To bind the port to your process, send msgSMBind to
theParallelDevices. Finally, to open the port, send msgSMOpen to
theParallelDevices. This example demonstrates how to open a parallel port.

STATUS
IM FIND
SM BIND

s;
imf;
sm;

SM OPEN SO;
OBJECT pportUid;
imf.pName = userName; II The name was requested from the user earlier
ObjCallRet(msgIMFind, theParallelDevices, &imf, s);
sm. handle = imf.handle;
sm. caller = self;
ObjCallRet(msgSMBind, theParallelDevices, &sm, s);
so.handle = imf.handle;
so. caller = self;
ObjCallRet(msgSMOpen, theParallelDevices, &so, s);
pportUid = so. service;

CHAPTER 96 / PARALLEL I/O 277

Using the Parallel Port

The symbol pportUid now contains the UID of the parallel port object. You can
communicate with the parallel port by sending messages to this object.

Releasing the Parallel Port Obiect
When you have finished with the parallel port, you should release the port by
sending msgSMClose to theParallelDevices, as shown in the example below. Do
not send msgDestroy to the parallel port object.

pportUid = so.service;

ObjCallRet(rnsgSMClose, theParallelDevices, wknKey);

Parallel Port Configuration 9603.~~

When you have the UID of the parallel port object, you should configure the
parallel port for the printer that is attached to it. This involves setting the auto line
feed state and setting the initialization and interrup time-out intervals.

SeHing Auto Line Feed

Some printers allow you to specify whether the printer should do a line feed after
each carriage return. Mostly it is up to your application to determine whether it
should send a line feed or enable the printer to insert line feeds automatically.

To turn on auto line feed, send msgPPortAutoLineFeedOn to the parallel port
object. To turn off auto line feed, send msgPPortAutoLineFeedOff to the parallel
port object. Both messages take a pointer to NULL.

Get and Set Time Delays

The parallel port driver allows you to get and set two time values:

• The duration of the initialization pulse .

• The interval at which characters can be sent to the printer.

To get or set these values, send msgPPortGetTimeDelays or
msgPPortSetTimeDelays to the parallel port object. Both messages take a pointer
to a PPORT_TIME_DELAYS structure, which contains:

initDelay A U32 that specifies the duration of the initialization pulse (in
microseconds) .

interruptTimeOut A U32 that specifies the maximum amount of time to
wait for the printer to indicate it is ready to accept another character (in
milliseconds).

Initializing the Printer
Before printing, you should initialize the printer attached to the parallel port by
sending msgPPortlnitialize to the parallel port object. The message takes no
arguments.

278 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

msgPPortlnitialize sends the initialization signal for the amount of time specified
by the initDelay argument to msgPPortSetTimeDelays.

Writing to the Parallel Port

Your application sends data through the parallel port by sending msgStream Write
to the parallel port object. This is the only clsStream message that clsParallelPort
handles.

Getting Status

To get the current printer status, send msgPPortStatus to the printer. The message
takes a pointer to a PPORT_SfATUS structure that contains a single U16 value
(pportStatus), which contains one or more of the following values:

pportStsBusy The printer is busy.

pportStsAcknowledge The printer has accepted a character.

pportStsEndOfPaper The paper is out.

pportStsSelected The printer is on line.

pportStsIOError There was an I/O error on the printer.

pportStslnterruptHappened An interrupt occurred.

Cancelling Printing

To cancel printing, send msgPPortCancelPrint to the parallel port object. The
message takes a pointer to NULL.

Chapter 97 / Data Modem Interface

This section describes the modem interface implemented by clsModem.
clsModem provides device-independent access to a data modem attached to a
serial port and makes the data modem command sets transparent to clients.

Chapter 97 covers these topics:

• How to access the data modem.

• Sending modem commands and data.

• The data modem command set.

Concept.
The data modem plugs into an option slot on the PenPoint computer. Before you
communicate with the data modem, you need to establish communication with
the option slot serial port. You establish communication with the serial port by
sending bind and open messages to theSerialDevices.

When you have access to a serial port, there are two ways to communicate with
the data modem:

• Communicating through the modem interface.

• Sending commands and data directly through the serial port.

The modem interface is implemented by clsModem and provides a
device-independent, object-oriented interface to the modem. If you use the
modem interface, you let clsModem perform all of the management tasks
associated with establishing data modem communications. clsModem can also
auto-answer the modem.

Communicating directly with the modem through the serial port is not
recommended, but certain applications may need to do so. If you choose to
communicate with the modem through the serial port, your code will be
device-dependent. You must not initiate the modem driver (clsModem) when you
communicate with the modem directly. Additionally, you are responsible for
separating modem responses from data received by the modem.

GeHing a Serial Port Handle

The data modem connects to a serial port on a PenPoint computer. You access the
serial port by sending bind and open messages to theSerialDevices service
manager; the open message sends back a handle on the serial port, you send
commands and data to the port by sending serial 110 messages to the handle.

280 PEN POINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

To get a handle on the serial port, you must send msgSMBindand msgSMOpen
to theSerialDevices, specifying the name of the serial port. For example:

STATUS
IM FIND
SM BIND
SM OPEN
OBJECT

s;
imf;
sm;
SO;
serialHandle;

imf.pName = "Option Slot";
ObjCallRet(msgIMFind, theSerialDevices; &imf, s);
sm. handle = imf.handle;
sm. caller = self;
ObjCallRet(msgSMBind, theSerialDevices, &sm, s);
so.handle = imf.handle;
so. caller = self;
ObjCallRet(msgSMOpen, theSerialDevices, &SO, s);
serialHandle = so. service;

Configuring the Serial Port
You can change the configuration of the serial port before or after you create the modem
object. Typically you might want to set the baud rate, data bits, parity; stop bits to
match the configuration of the remote modem.

• 8 bits

• No parity

• One stop bit

• XONIXOFF flow control

• Ctrl-Q and Ctrl-S are the XON and XOFF characters

• DTR and RTS are on.

You can either use the get and set metrics messages for clsSio, or if you only need
to adjust one or two characteristics, you can send messages to configure those
characteristics independently.

In the following example, the application reconfigures the serial port to
communicate at 2400 baud with 7 bit bytes by sending msgSioBaudSet and
msgSioLineControlSet to the serial port handle opened in the previous example
(serialHandle) .

STATUS S;
SIO BAUD SET sioBaud;
SIO_LINE CONTROL SET sioLineControl;

sioBaud.baudRate = 2400;
s = ObjectCall(msgSioBaudSet,serialHandle,&sioBaud);
sioLineControl.dataBits = sioSevenBits;
sioLineControl.StopBits = sioOneStopBit;
sioLineControl.parity = sioNoParity;
s = ObjectCall(msgSioLineControlSet,serialHandle,&sioLineControl);

97.1 ~2

CHAPTER 97 / DATA MODEM INTERFACE 281

The clsModem Messages

The clsModem API
The modem interface provides an object-oriented interface for you to
communicate with a modem. The modem interface also provides two other
ca pab ili ties:

• Auto-answer and connection detection .

• Asynchronous event handling.

To use the modem interface, you must get a handle on the serial port to which the
modem is attached. When you have the serial port handle, you send msgNew to
clsModem, specifying the serial port handle. clsModem sends back a new handle,
to which you send all modem, serial, and stream messages until you destroy the
modem interface object.

Do not send modem commands directly to a serial port that is being used by a
modem interface object; you must send messages to the modem object. clsModem
expects the modem to be configured in a certain way. If you send an AT command
that changed the modem's responses, clsModem will produce unpredictable results.

The clsModem Messages
The clsModem messages are defined in the file MODEM.H. Table 97-1 lists the
clsModem messages.

msgNew

msgN ewDefaults

msgModemReset

msgModemOnline

msgModemSetDiaIT ype

msgModemHangUp

msgModemOffHook

msgModemSetSpeakerControl

msgModemSetAutoAnswer

msgModemSendCommand

msgModemSetDuplex

P _MODEM_NEW

P _MODEM_NEW

nothing

nothing

MODEM_DIAL_MODE

nothing

Creates a new instance of a modem service.

Initializes the MODEM_NEW structure to
default values.

Resets the modem firmware, I/O port, and
service state.

Forces the modem online into data mode.

Establishes the mode for dialing telephone
numbers.

Hang-ups and disconnects to terminate a
connection.

nothing Picks up the phone line.

MODEM_SPEAKER_CONTROL Enables, disables and controls modem speaker
behavior.

P_MODEM_SET_AUTO_ANSWER Disables or enables the modem auto-answer

P _MODEM_SEND_COMMAND

MODEM_DUPLEX_MODE

feature.

Sends a specified command to the modem.

Sets the duplex mode for inter-modem­
communications while on-line.

282 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

msgModemDial
Description

Performs dialing and attempts to establish a
connection.

comsgModemSetResponseBehavior P _MODEM_RESPONSE_BEHAVIOR Set the modem response mode, and comand­
to-response time-out values.

msgModemGetResponseBehavior P _MODEM_RESPONSE_BEHAVIOR Passes back the current modem response mode
and the current command-to-response time­
out values.

msgModemGetConnectionInfo P _MODEM_CONNECTION_INFO Passes back information about the current

msgModemSetAnswerMode

msgModemAnswer

msgModemSetSignallingModes

msgModemSet ToneDetection

msgModemSetSpeakerVolume

msgModemSetCommandState

msgSvcGetlvfeLric~

msgSvcSetMetrics

msgSvcCharactersticsRequested

connection.

MODEM_ANSWE~MODE Filters the type of calls to answer and
connection reporting.

nothing Immediately answers a telephone call.

P _MODEM_SIGNALLING_MODES Restricts the modem to use specific signalling
modes or standards.

MODEM_TONE_DETECTION Enables or disables busy tone or dial tone
detection.

MODEM_SPEAKER_ VOLUME Sets the volume of the modem speaker.

nothing Sets the modem into command mode.

P _SVC_ GET _SET _METRICS Passes back the current modem metrics.

P_SVC_GET~SET_METRICS Set current modem metrics, and re-initialize
modem with specified metrics.

P _SVC_CHARACTERISTICS Passes back the characteristics of the modem
servICe.

msgModemSetMNPMode MODEM_MNP _MODE Sets the MNP mode of operation.

msgModemSetMNPCompression MODEM_MNP _COMPRESSION

msgModemSetMNPBreakType MODEM_MNP _BREAK_TYPE

msgModemSetMNPFlowControl MODEM_MNP _FLOW_CONTROL

msgModemConnected

msgModemDisconnected

msgModemRingDetected

msgModemErrorDetected

msgModem TransmissionError

nothing

nothing

nothing

nothing

nothing

Creating a clsModem Obiect

Sets MNP class 5 compression on or off.

Specifies how a break is handled in MNP
mode.

Specifies the flow control to use in MNP
mode.

The modem has connected with a remote
node modem.

The current connection has been terminated.

A ring indication has been received from the
modem.

An unexpected error indication has been
received from the modem.

An error has been detected during data
transmission.

97~3" 1

To create the dsModem object, you first get a handle on the serial port to which
the modem is connected. You then send msgNewDefaults and msgNew to

CHAPTER 97 / DATA MODEM INTERFACE 283

The clsModem Messages

clsModem. The messages take a pointer to a MODEM_NEW structure that
contains an OBJECT_NEW_ONLY structure (object) and a MODEM_NEW_ONLY

structure (modem). The MODEM_NEW_ONLY structure contains:

modem. client The UID of the client that will use the modem object. This
is usually self.

modem.sioPort The UID of the serial port handle.

When the message completes, the object.uid field of the MODEM_NEW structure
contains the UID of the new modem object.

Configuring the Modem 9/7 .3.2

When you get the modem object, the first thing you should do is reset the modem
to its default settings; that way you know the state of the modem before
continuing. To reset the modem, send msgModemReset to the modem object.
The message has no arguments. When the message completes successfully, it
returns stsO K.

Table 97-2 lists the default settings established by msgModemReset. clsModem
requires certain settings so that it can interpret responses from the modem and
pass its interpretation on to the client. Because you are using clsModem, you
shouldn't have any reason for setting these values. The required settings are:

• EO Echo mode must be off.

• QO Return result codes.

• VI result codes must be whole words.

Bell or CCITT protocol
Duplex
5peaker
Dialing mode
Result code range
Long space disconnect
Carrier detect (CD)
DTR off action
Pulse dial ratio
Guard tones
RDL test
Auto-answer mode
Escape character
Carriage return
CD timeout
Response to carrier
Lost carrier hang-up
Touch tone spacing
Escape code guard time
Test timer
DTR detect delay

Bl
Fl
Ml
T
X4
YO
&Cl
&D2
&PO
&GO
&T4
50=000
52=043
53=013
57=30
59=6
510=14
511=95
512=50
518=0
525=5

Use Bell protocol.
Use full duplex.
5peaker on until carrier.
Use touch tone dialing.
Wait for dial tone, detect busy signal.
Disabled.
On in presence of carrier.
Hang up, no auto-answer.
Ratio is 39/61 (U5A).
No guard tones.
Grant RDL test request.
Auto-answer disabled.
Escape character is +.
Carriage return is 13.
Wait 30 seconds for CD.
Respond to CD after .6 seconds.
Wait 1.4 seconds after loss of carrier before hang-up.
Wait 70 ms between tones.
Wait 1 second before sensing escape characters.
Test timer is O.
Wait .05 seconds for DTR.

------.-~--------~~

284 PENPOINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

clsModem provides messages that allow you to set the following modem
characteristics:

• Dial type

• Autoanswer mode

• Carrier state

• Speaker mode

• Command/data mode

• Duplex mode

• MNPmode.

~ SeHing the Dial Type

The modem can dial in either pulse or touch-tone mode. To set the dialing type of
the modem, send msgModemDialTypeSet to the modem object. The message
takes a pointer to a MODEM_DIAL_TYPE_SET structure that contains a single
element, a MODEM_DIAL_TYPE value (dType) that specifies pulseDialing or
touchtoneDialing.

SeHing the Auto-Answer Mode

You can configure the modem so that it automatically answers the phone after a
specified number of rings. To set the modem's auto-answer mode, send
msgModemAutoAnswerSet to the modem object. The message takes a pointer to
a MODEM_AUTO_ANSWER_SET structure that contains:

answerType An AUTO_ANSWER_TYPE value that specifies the answer
mode. Possible values are:

autoAnswerOff Do not answer the phone.

dataModemAnswer Answer the phone in data mode.

rings The number of rings after which to answer the phone. This value can
be between ° and 255. If the value is 0, or is not specified, the modem
answers after one ring; if the value is greater than 255, clsModem uses 255.

SeHing the Carrier State

When you have a connection with another modem, you can enable or disable the
carrier state by sending msgModemCarrierStateSet to the modem object. The
message takes a pointer to a MODEM_CARRIER_STATE_SET structure that contains
a single element, a MODEM_CARRIE~STATE value (carrierS tate) that specifies
either enable Carrier or disableCarrier.

Controlling the Speaker

You can turn the modem speaker on and off. When the speaker is on, you can choose
to turn it off when the carrier is detected or you can keep it on all the time. Most
applications turn the speaker on and then turn it off when the carrier is detected. This

CHAPTER 97 / DATA MODEM INTERFACE 285

The clsModem Messages

provides the user with an audible signal when the connection is made (a tone, followed
by a higher tone, and then a burst of noise indicates that a carrier was detected).

To set the speaker, send msgModemSpeakerControlSet to the modem object. The
message takes a pointer to a MODEM_SPEAKER_STATE_SET structure that contains
a single element, a SPEAKER_STATE value that can specifY:

speakerOff Turn the speaker off

speakerOnConnectOff Turn the speaker on, but turn it off when the
carrier is detected.

speakerOn Turn the speaker on.

SeHing Command a~d Data Modes 4;)7,,3,,~~.5

When the modem is in command mode, it can receive the AT commands. In data
mode, the modem sends data to and receives data from the modem to which it is
connected.

To put the modem in command mode, send msgModemCommandModeSet to
the modem object. The message takes no arguments.

To put the modem in data mode, send msgModemOnline to the modem object.
The message takes a pointer to a MODEM_ONLINE structure that contains a single
object, a pointer to a MODEM_CONN_ TYPE value. When the message completes
successfully, it sends back the connection type in the MODEM_CONN_TYPE value.
Table 97-3 lists the modem connection types and their meanings.

If the modem connects successfully, the message returns stsOK. If the modem
does not connect within a reasonable amount of time, the message returns
stsTimeOut. Otherwise, the message returns stsModemUnexpectedResponse.

When the modem detects a carrier, it automatically goes to data mode.

Symbol Menning

noConnection No connection.

connect300 Data connection at 300 baud.

connect600 Data connection at 600 baud.

connect 1200 Data connection at 1200 baud.

connect2400 Data connection at 2400 baud.

connect4800 Data connection at 4800 baud.

connect9600 Data connection at 9600 baud.

connect 19200 Data connection at 19200 baud.

connectMNP 1200 MNP connection at 1200 baud.

connectMNP2400 MNP connection at 2400 baud.

connectLAPM 1200 Lap M connection at 1200 baud.

connectLAPM2400 Lap M connection at 2400 baud.

es

286 PENPOINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

SeHing Duplex Mode

The modem allows you to choose either duplex or half duplex mode. In duplex
mode, the modem echoes characters as they are sent; in half duplex mode, the
modem does not echo the characters.

To set the duplex mode, send msgModemDuplexSet to the modem object. The
message takes a pointer to a MODEM_DUPLEX_SET value that contains a single
element, a DUPLEX_TYPE value that can be either halfDuplex or fullDuplex.

SeHing MNP Mode

The Microcom Network Protocol (MNP) provides date compression and
enhanced error checking. If both modems in a connection implement MNP, the
modems communicate using MNP.

The MNP mode specifies how the modem will act when it connects to another
modem that does or does not support MNP. To set the MNP mode, send
msgModemMNPModeSet to the modem object. The message takes a pointer to a
MODEM_MNP _MODE_SET structure that contains a single element, a
MNP _MODE value that specifies:

mnpAutoReliableMode Attempt to connect using MNP at the baud rate
specified in msgModemDial or msgModemOnline. If not successful,
drop the baud rate back until you get an MNP connection. If you still
don't get a connection, attempt a connection at the highest baud rate
without MNP. If not successful at that baud rate, drop the baud rate back
until you get a connection.

mnpReliableMode Attempt to connect using MNP at the baud rate
specified in msgModemDial or msgModemOnline. If not successful,
drop the baud rate back llntil you get an MNP connection. If you still
don't get a connection, give up.

mnpDirectMode Communicate directly with no error checking or
compression, that is, without MNP.

mnpLapMMode Use Link Access Protocol for Modems (LAP-M) Mode.
LAP-M is the CCITTV.42 error correcting code. LAP-M also includes
support for MNP levels 2 through 4.

Further messages that affect the MNP protocol are described in the section titled
"MNP Data Communication."

Sending Your Own AT Commands

If you need to send specific commands to the modem through the modem interface,
you can send msgModemSendCommand to the modem object. However, this message
does not work with all modem commands. Do not use msgModemSendCommand to
send dial commands or to set the echo mode (En), quiet mode (Qn), and result code
style (Vn); dsModem will fail if these values are modified.

CHAPTER 97 / DATA MODEM INTERFACE 287
The clsModem Messages

msgModemSendCommand takes a pointer to a MODEM_SEND_COMMAND

structure that contains:

pCmd A pointer to the command string.

response Timeout A timeout value for a response from the modem.

When the message completes, it sends back the response from the modem in the
response field of the MODEM_SEND_COMMAND structure.

Establishing a Connection with a Data Modem
To establish a connection, you can use clsModem commands to dial or connect
directly with another modem.

To dial another modem, make sure the dial type matches your phone equipment
(it is usually touch-tone) and send msgModemDial to the modem object. The
message takes a pointer to a MODEM_DIAL structure that contains:

pPhoneNumber A pointer to the phone number to dial in ASCII.

pCType A pointer to the MODEM_CONN_TYPE value that will receive the
connection type.

The phone number usually contains the number to dial. It can also contain a
number of dial string modifiers defined by the AT command set. These dial
string modifiers are described in the following section Dial String Modifiers.

When the other modem answers, clsModem waits for the connection to be estab­
lished, then sends back the connection type in the value indicated by pCType.

When msgModemDial successfully completes, it establishes a connection and
send back the connection type. If you go back to command mode (by sending
msgModemCommandModeSet to the modem object) to change the modem
configuration, you can return to data mode by sending msgModemOnline to the
modem object.

When you have finished with a connection by either telephone or direct wiring,
send msgModemHangup to the modem object. The message takes no arguments.

The message terminates the connection and, if you are connected by telephone,
hangs up the phone.

Dial String Modifiers
The phone number in pPhoneNumber usually contains the number to dial. It can
also contain a number of dial string modifiers defined by the AT command set.
These dial string modifiers can:

• Pause dialing (useful when waiting for an outside line or using alternative
long distance companies) .

• Wait for silence (waiting through a prerecorded message).

288 PEN POINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

• Switch between pulse and tone dialing (useful when dealing with
hetrogenous phone systems).

• Flash the switch hook.

The phone number can contain these characters:

• The numbers 0 through 9, the alphabetic characters ABC D, and the
special characters * and #.

• The alphabetic characters: P TRW

• The special characters: comma (,), semicolon (;), at sign (@), exclamation
point (!), and slash (I).

• The string S=n.

The characters 0-9, A, B, C, D, *, and #, are the same as the keys on a touch-tone
phone. The characters ABC D, and the symbols * and #, can be used only during
tone dialing; they are typically used to access newer features of modern telephone
systems.

The character P directs the modem to pulse dial the digits that follow it. The
character T directs the modem to tone dial the digits that follow it. These
modifiers are useful when you dial into systems that require a mix of tone and
oulse .I\ip-n~ I" J. - - - -0-------

The character R forces the modem to use answer mode frequencies after dialing
the number. This allows you to dial up an originate-only modem. This character
must only be at the end of the dialing string.

The character W causes the modem to wait a specified amount of time for a dial
tone before proceeding. The default is 30 seconds.

The semicolon character (;) causes the modem to go back into the command state
after dialing, which allows you to enter other commands while online.

The comma (,) causes the modem to pause. The default time for the pause is two
seconds, and can be changed by modifying register 58.

The at sign (@) causes the modem to wait for a 5 second period of quiet before
proceeding. It will wait up to 30 seconds until the period of quiet begins. This is
often used to detect the end of a prerecorded message. The default wait time is 30
seconds.

The exclamation point (0 causes a "hookflash." This simulates hanging up for 0.5
second and then reconnecting. It is typically used for transferring calls.

A slash (I) causes the modem to wait for 0.125 second before proceeding with the
rest of command line.

The S=n dial string modifier causes the modem to dial one of the four phone
numbers previously stored in the modem's non-volatile memory. You store
numbers with the &Zn=number command.

- .. ---- ... _--- -----. ---------

CHAPTER 97 I DATA MODEM INTERFACE 289
The clsModem Messages

Waiting for a Connection with a Data Modem

You can tell the modem object to automatically answer the phone, or you can
answer the phone yourself (with clsModem messages).

To instruct the modem to answer the phone automatically, send
msgModemAutoAnswerSet to the modem object, specifying dataModemAnswer.
When another modem dials your number and the phone rings, clsModem picks the
phone up, determines the type of connection, and sends you msgModemConnected,
which indicates the type of connection and the baud rate.

To answer the phone yourself, send msgModemAutoAnswerSet to your modem
object, specifying autoAnswerOff.

When the phone rings, the modem object sends you msgModemRingDetected. The
message has no arguments. You answer ~he phone by sending msgModemOffHook
to the modem object (the message takes no arguments).

You then send msgModemOnline to the modem object. The message takes
a pointer to a MODEM_ONLINE structure that contains a pointer to a
MODEM_CONN_TYPE. When the message returns, it sends back the connection
type in the MODEM_CONN_TYPE value. The connection types are listed above
in Table 97-3.

It is up to you to examine the connection type and determine if you want that
connection or not.

Sending and Receiving Data

To send data to the other modem, send msgStreamWriteTimeout to the modem
object. To receive data from a modem, send msgStreamReadTimeout to the
modem object.

If the connection is lost at any time, you will receive msgModemDisconnected.

MNP Data Communication

.fu mentioned earlier, MNP performs additional error checking and data com­
pression when two MNP-capable modems have a connection. To set MNP mode,
send msgModemMNPModeSet to the modem object. This message is described
above in "Setting MNP Mode."

97.3.6

97.3.7

To turn MNP compression on or off, send msgModemMNPCompressionSet to the
modem object. This message takes a pointer to a MODEM_MNP _COMPRESSION_SET

structure that contains a single MNP _COMPRESSION_TYPE value (mnpCompression),
which specifies mnpNoDataCompression or mnpDataCompression.

If you use MNp, you can specify when clsModem will send break messages to the
other modem. Sometimes you want to send break immediately, at other times you
want to wait until the send buffer is empty. To set the break type, send
msgModemMNPBreakTypeSet to the modem object. The message takes a

290 PEN POINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

pointer to a MODEM_MNP _BREAICTYPE_SET structure that contains a single
element, an MNP _BREAK_TYPE value that specifies:

mnpSendNoBreak Do not send breaks.

mnpEmptyBuffers ThenBreak Send breaks when the buffer is empty.

mnpImmediatelySendBreak Send breaks immediately.

mnpSendBreakInSequence Send breaks in the sequence that they are
received.

When using MNP, you can direct it to use different types of flow control, or not
to use flow control at all. To set the MNP flow control, send
msgModemMNPFlowControlSet to the modem object. The message takes a
pointer to a MODEM_MNP _FLOW _CONTROL_SET structure that contains a single
element, an MNP _FLOW_CONTROL value (mnpFlowControl), which specifies:

mnpDisableFlowControl Do not use flow control.

mnpXonXoffFlowControl Use XON/XOFF flow control.

mnpCtsRtsFlowControl Use the hardware CTS/RTS flow control.

Direct Communication with the Data Modem 91.4

If you do not want to use clsModem to interpret the modem's responses and
handle asynchronous events, you can communicate directly with the modem.

Mter configuring the serial port to which the modem is attached, use clsStream
messages to send information to and receive information from the modem.

If you write an application that communicates directly with the modem, your
application will not be device-independent. Additionally, you cannot commun­
icate directly with the modem and use the modem interface at the same time.

You send the following instructions to the modem:

• Commands to control and configure your modem.

• Data to be transmitted to another modem.

You receive the following information back from the modem:

• Responses from your modem (about your modem commands).

• Data transmitted by another modem.

The Data Modem AT Command Set

You use the AT command set to control the modem switch-hook operations, baud
rate, and other standard functions.

This section contains a brief summary of the AT command set.

The AT commands have the following syntax:

AT command [arg] [=n] [command ...]

Important!

CHAPTER 97 / DATA MODEM INTERFACE 291
Direct Communication with the Data Modem

The only commands that do not follow this syntax are the Nand +++ commands.
All commands can be in either upper or lowercase. Mter the initial AT you can
append a number of AT commands on the same command line, however the total
length of the line cannot exceed 40 characters.

If you omit a parameter, its value is assumed to be O.

+++

A

N

Bn

Cn

Dn .. n

DTn .. n

DTn .. n

En

Fn

Hn

In

Ln

Mn

On

p

Qn

Sr?

Sr=n

T

Vn

Xn

Yn

Zn

&Cn

MeIYniog

Escape from modem data mode.

Answers a call, regardless the of SO setting.

Re-executes the last command.

Selects Bell (BO) or CCITT (BI) protocols. Ignored at 2400 baud.

Turns the carrier signal on and off. CO turns the carrier off; CI turns the carrier on.

Dials a phone number using most recently used dialing method (pulse or tone).

Dials a phone number using pulse dialing.

Dials a phone number using tone dialing.

Sets echo mode. EO turns echo mode off; E 1 turns echo mode on.

Sets Halfduplex (FO) or Fullduplex (Fl).

Operates the switch hook. HO is on, switch hook (hang up); HI is off switch hook
(pick up).

Asks the modem to identify itself. 10 returns the product identification code; II
returns the firmware ROM checksum; 12 computes the firmware ROM checksum
and returns either OK or ERROR.

Sets speaker volume. Values for n are between 0 and 3; LO is lowest volume, L3 is
highest volume.

Turns speaker on and off. MO means speaker is always off, MI means speaker is on until
carrier is detected, M2 means speaker is always on, and M3 means the speaker goes on
after the last digit is dialed and goes off after carrier is detected.

Returns modem to data state. 00 returns without breaking connection; 01 returns after
an equalizer retrain sequence.

Sets dial mode to pulse.

Sets quiet mode. QO reports result codes; QI remains quiet.

Returns t~e current value of register r. r is between 0 and 27.

Sets the value of register r. r is between 0 and 27; n is between 0 and 255.

Sets dial mode to tone.

Sets reports to either textual or numeric result codes. VO returns numeric result codes;
VI returns textual result codes.

Sets extended result code reporting. See the data modem documentation for details.

Enables and disables long space disconnect mode. YO disables the mode; YI enables it.

Resets the modem to one of two stored profiles. ZO resets the modem to stored profile
0; ZI resets it to profile 1.

Sets how the modem controls the CD signal. &CO forces CD on; &C 1 sets CD on
when there is a valid carrier signal.

292 PENPOINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

&Dn

&F

\Vn

\Y

&Gn

&Pn

&Rn

&Sn

&Tn

&V

&Wn

&Yn

&Zn=x

%Cn

\Kn

\Nn

\0

\Qn

\U

97-4

Mezmin9

Sets how the modem reponds to a DTR OFF signal. &DO ignores DTR; &D 1 causes
the modem to enter command state when DTR goes off; &D2 causes the modem to
hang up, disable auto-answer, and enter command state when DTR goes off; &D3
causes the modem to reset and use the stored profile set with the &Y n command.

Replaces the active profile with the factory standard profile stored in ROM.

Enables or disables MNP and Y.42 result codes. When QO is set, \ VO disables MNP and
Y.42 result codes and \Vl enables MNP and Y.42 result codes.

Switch from MNP direct mode to MNP reliable mode.

Selects which guard tones to generate (not used in the United States). &GO sets no
guard tone; &G 1 sets 550Hz guard tone; &G2 sets 1800Hz guard tone.

Sets the pulse dialing switch hook interval. &PO sets a 39%:61 % make:break ratio
(United States); &Pl sets a 33%:67% make:break ratio (United Kingdom and
Hong Kong).

Sets CTS state. Both &RO and &Rl set CTS on.

Sets DSR state. Both &SO and &S 1 set DSR on.

Controls the test mode. See the Data Modem documentation for details.

Displays the currently active configuration profile, both stored configuration profiles,
and any stored telephone numbers. This command cannot be accompanied by any
other commands.

Stores the currently active configuration profile in one of two non-volatile memory
locations (&WO or &WI).

Sets the default configuration profile. &YO sets the default to the profile stored by &WO;
&Yl sets the default to the &Wl profile.

Stores the phone number, x, in the non-volatile storage location n. n is between 0 and 3.

Enables of disables data compression in MNP mode. %CO disables compression; %C 1
enables MNP data compression.

Sends a specific break. \KO does not send break; \Kl empties data buffers and sends
break; \K2 sends a break immediately; \K3 sends a break in sequence with data.

Sets the MNP operating mode for the modem. \NO and \Nl set direct mode; \N2 sets
reliable mode; \N3 sets auto-reliable mode; \N4 sets Y.42 (LAP-M) mode.

Force modem to initiate an MNP reliable link.

Sets the flow control. \QO disables MNP flow control; \Ql enables XONIXOFF flow
control; \Q2 enables RTS/CTS flow control.

Accepts an MNP reliable link.

CHAPTER 97 I DATA MODEM INTERFACE 293
Direct Communication with the Data Modem

In the following example, the application sends the commands to set the result
codes to numeric and then dials a phone number, using tone dialing:

STREAM_READ_WRITE srw;
U8 setnum[] = IATVO\n";
U8 dialnum[] = IATDT5551234\n";

II Send va command to set status repdrts to numeric
srw.numBytes = strlen(setnum);

srw.pReadBuffer = setnumi
s = ObjectCall(msgStreamWrite, pInst->ModemHandle, &srw);

II Check returned status report for OK (0)
srw.numBytes = 256;
s = ObjectCall(msgStreamRead, pInst->ModemHandle, &srw);
if (srw.pReadBuffer != '0') II If not OK, handle error

goto Error1;

II Send dial instructions to modem
srw.numBytes = strlen(dialnum);
srw.pReadBuffer = dialnum;
s = ObjectCall(msgStreamWrite, pInst->ModemHandle, &srw);

Chapter 98 / The Transport API

This section addresses how to communicate through a local area network (LAN)
with programs running on other computers.

The Transport API provides a number of features for communicating through a
local area network. If you are writing an application that communicates through
the network with another program, GO recommends that you read this section
for background information, but encourages you to consider using the TOPS
SoftTalk API, provided by Sitka Corporation. TOPS SoftTalk provides
session-layer protocols, which are much easier to use.

Chapter 98 covers these topics:

• Transport concepts, including transport service types and conventions.

• Using clsTransport, including how to access a socket, sending and receiving
datagrams, requesting and responding to transaction services, and binding to
local transport addresses.

• Using clsTransport for AppleTalk, including AppleTalk protocol and
AppleT alk name and zone protocols.

Transport Concepts
The aim of data communications is to move information from one device,
through a network, to another device.

The PenPoint™ operating system transport API provides end-to-end services
between the PenPoint computer and other computers. You can use Transport API
services to send information to and receive information from a program running
on another computer. The same services that are available to you are available to
the other program. This set of common services and their encoding is called a
protocol.

There are many different protocols for transporting information. The PenPoint
Transport API provides a general set of capabilities, which can be used by a
number of different transport protocols. Currently PenPoint supports only the
AppleTalk transport protocol (ATP).

Participants in Communication
When you communicate, you exchange data with a remote server. A remote
server is a program or device on another computer that can communicate over the
network.

To access the network, you must access a socket, through which you send and
receive transport messages. A socket is a communication endpoint. The remote

II'"'

296 PENPOINT ARCHITECTURAL REFERENCE

Part 10 I Connectivity

server also accesses the network through its own socket. A connection is an
association between two sockets.

Each socket is assigned a transport address. When other programs (usually on
other computers) want to establish communication with your program, they
search for your socket's transport address. A transport address consists of
identifiers for these network components:

• Network

• Node (or computer)

• Socket.

The socket identifier is also known as a protocol port or port. There are two
types of ports: well-known ports that have pre-assigned, specific uses, and
dynamic ports that are assigned when they are requested.

Transport Service Types

There are two types of transport services: connection-oriented and connectionless
communication.

In connection-oriented communication, you establish a connection with
another socket, exchange data, and then break the connection.
Connection-oriented communication is useful when the connection will last a
long time. Currently the PenPoint Transport API does not support
connection-oriented communication.

In connectionless communication, data is transferred from one socket to another
without explicitly establishing a connection. The data transfer is accomplished at
the transport layer-the layer that knows the location of each socket. This method
of communication is also called datagram delivery. In each datagram you specify
the transport address of the other socket.

There is no guarantee that the datagram will be delivered to the receiving socket;
nor is there a guarantee that several datagrams will be delivered in the order that
they were sent.

However, the advantage of datagram delivery is that on a fast, highly reliable
medium, such as aLAN, datagrams are an efficient way of communicating
information.

There are two types of datagram delivery. At-least-once delivery guarantees that
the datagrams are delivered to their destination at least once. Exactly-once delivery
guarantees that the datagrams are delivered to their destination exactly once.

Datagram delivery also provides transaction services. The transaction services
send a datagram to another socket and expect the receiver to reply to it with
another datagram.

CHAPTER 98 I THE TRANSPORT API 297

Agreeing on Conventions

Communication is based on agreement. When you design and write data
communication applications, you must either create conventions that both you
and your communications partner agree on or use established conventions
(especially if your partner was written separately and has already specified how
communication is to take place).

When creating conventions, you must make these specifications:

• Communication protocol and the layer you will use.

• Type of communication (connection-oriented or connectionless).

• Service type (transaction or datagram).

• Order in which you will send or receive data, including establishing who
sends first.

A good source of information on conventions for communicating information is
Computer Networks by Tannenbaum (see Chapter 92 for publishing details).

Asynchronous Communication

When you send a clsTransport I/O message, you must wait until the message
returns (the I/O operation succeeds or fails) - it's communication is totally
synchronous. If you need to communicate asynchronously, you must create
another task with OSSubtaskCreate. The subtask sends the I/O message for you
and returns the received data and some completion status when it is done.

You can read more about creating tasks and OSSubtaskCreateO in Part 8: System
Services.

Using clsTransporl
clsTransport provides a set of messages that allow you to communicate with
remote processes. clsT ransport can support a variety of transport protocols. This
means that you can potentially connect the PenPoint computer to a variety of
different networks. Currently AppleTalk (ATP/DDP) is the only protocol
supported by GO.

The clsTransport messages are defined in the file TP.H. Table 98-1 lists the
clsT ransport messages.

Using clsTransport

msgTPBind

msg TPRecvFrom

msgTPSendTo

P_TP_BIND

P _ TP _RECVFROM

P_TP_SENDTO

Binds a socket to an address.

Receives a datagram.

Sends a datagram.

msg TPSendRecvTo P _ TP _SENDRECVTO Sends a request, wait for a response.

298 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Accessing a Socket
Each socket is a service instance maintained by the theTransportHandlers service
manager. When the user configures ATp, the Connections notebook creates a
service instance for a socket.

To establish transport-level communication with another socket, you must locate,
bind to, and open a local socket by:

• Sending msgIMFind to theTransportHandlers to locate a socket service
handle.

• Sending msgSMBind to the socket service handle.

• Sending msgSMOpenDefaults to the socket service handle.

• Sending msgSM Open to the socket service handle, which passes back the
UID for the socket.

Both msgSMOpenDefaults and msgSMOpen take a standard SM_OPEN_CLOSE

structure. pArgs in SM_OPEN_CLOSE contains a pointer to a TP _NEW structure
that contains an OSO_NEW structure (oso) and a TP _NEW_ONLY structure (tp).
The OSO_NEW (open service object) structure is used internally by clsTransport.
For more information on open service objects, see Part 13: Writing PenPoint
Services. The TP_NEW_ONLY structure contains:

pArgs.tp.service A TP _SERVICE value that specifies the service type. The
possible service types are:

tpReliableService

tpDatagramService

1p T ransactionService

When the message completes successfully, clsT ransport passes back the UID
of the service in the service field of the SM_OPEN_CLOSE structure as in the
following example:

For example:

STATUS PASCAL OpenTransportHandle(
P TP NEW pTPnew,
P OBJECT pTPhandle,
OBJECT self)

SM OPEN CLOSE
STATUS

smOpen;
s;

smOpen.caller = self;
smOpen.handle = targetServiceHandle;
smOpen.pArgs = (P_ARGS) pTPnew;
s = ObjectCall(msgSMOpenDefaults, theTransportHandlers, &smOpen);

s = ObjectCall(msgSMOpen, theTransportHandlers, &smOpen);
*pTPhandle = smOpen.service;
return(stsOK);

CHAPTER 98 / THE TRANSPORT API 299

Using clsTransport

Closing a Socket Handle

To dose a socket handle, send msgSMClose to theTransportHanders. You must
specify both the handle of the ATP service and the UID of the service that you
received from msgSMOpen, as shown in the following example:

STATUS PASCAL CloseTransportHandle(
OBJECT tpHandle,
OBJECT self)

SM OPEN CLOSE - -
STATUS

smClose;
s;

smClose.caller = self;
smClose.handle = targetServiceHandle;
smClose.service = tpHandle;
smClose.pArgs = pNull;

Oebugf("Closing socket handle %lx. pArgs=%lx, %lx", tpHandle, &smClose, smClose.pArgs);

s = ObjectCall(msgSMClose, theTransportHandlers, &smClose);
if (s != stsOK) {

//Oebugf("msgSMClose failed %lx.", s);
return (s);

//Oebugf("Closed socket handle.");

return (stsOK);

. Sending Datagrams

To send a datagram, send msgTPSendTo to the socket handle. The message takes
a TP _SENDTO structure that specifies:

pBuffer A pointer to the buffer of data. A datagram can contain up to 586
bytes of data.

count The length of the data.

pOptions A pointer to a transport options block. This block varies,
depending on the transport protocol. The AppleTalk options are
described in "Using clsTransport for AppleTalk."

pAddress A pointer to a buffer that contains the transport address of the
destination socket.

When the message completes successfully, it returns stsOK. If you attempt to send
more than 586 bytes you will receive the status message stsTPlength from
ObjectCall.

98.2.3

300 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Receiving Datagrams

When you are ready to receive a datagram, send msg TPRecvFrom to the socket
handle. The message takes a TP _RECVFROM structure that contains:

pBuffer A pointer to the buffer that will receive the data . .,
length The size of the buffer.

count A location that receives the actual number of bytes written to pBuffer.

pAddress A pointer to the buffer that receives the transport address of the
sending socket.

pOptions A pointer to a transport options block. This block varies
depending on the transport protocol. The AppleTalk options are
described below "Using clsTransport for AppleTalk."

When the message completes successfully, it returns stsOK and sends back the
TP _RECVFROM structure in which:

• The buffer indicated by pBuffer contains the data received.

• count contains the length of data in pBuffer.

• The buffer indicated by pAddress contains the transport address of the
socket that sent the data.

Requesting a Transaction Service

Frequently you will send a datagram to a socket and expect the socket to send you
a datagram in return. You could use both msgTPSendTo and msgTPRecvFrom
messages, or you can use msgTPSendRecvTo. To send msgTPSendRecvTo, you
must specify tpT ransactionService in the service field of TP _NEW when you create
your socket handle.

msgTPSendRecvTo takes a TP_SENDRECVTO structure that contains:

pSendBuffer A pointer to the buffer of data to send.

sendCount The length of the data be sent.

pRecvBuffer A pointer to the buffer that receives data.

recvLength The size of the receive buffer.

recvCount A location that receives the actual number of bytes written to
pRecvBuffer.

pAddress A pointer to a buffer that contains the transport address of the
destination socket.

pOptions A pointer to a transport options block. This block varies,
depending on the transport protocol. The Apple Talk options are
described below "UsinS clsT ransport for AppleT alk."

When the message completes successfully, it returns stsOK and sends back the
TP _SENDRECVTO structure in which:

• The buffer indicated by pRecvBuffer contains the data received.

• recvCount contains the length of data in pBuffer.

CHAPTER 98 I THE TRANSPORT API 301
Using clsTransport for AppleTalk

Responding to a Transaction Service 98.2.6

When you use transaction services, both your application and the server must
agree on certain conventions. Among these conventions are the types of com­
munication (connection-oriented or connectionless) and the service type
(transaction or datagram). If you have agreed to transaction services and you
receive an unsolicited message from the remote server, then it is implied that
you must respond to the message.

Binding to a Local Transport Address 98.2.1

Before a server can locate your socket, you must bind your socket to a local
transport address.

To bind your socket, send msgTPBind to the socket handle. The message requires
a TP _BIND structure that contains a pointer to the buffer that receives the address
(pAddress) .

Using clsTransport for AppleTalk
This section describes how to use clsTransport to communicate on an AppleTalk
network. If you need information on AppleTalk concepts and protocols, see Inside
AppkTalk by Gursharan S. Sidhu (see Chapter 92 for publishing details).

Table 98-2 lists the messages that are defined in the file ATALK.H.

98m 2

NBP and ZIP Messages
Mess@g8

msgA TPRespPktSize

msgNBPRegister

msgNBPRemove

msgNBPLookup

msgNBPConfirm

msgZIPGetZoneList

msgZIPGetMyZone

P _ATP _RESPPKTSIZE

P _NBP _REGISTER

P_NBP_REMOVE

P _NBP _LOOKUP

P _NBP _CONFIRM

P _~IP _ GETZONES

P _ZIP _GETZONES

Using the AppleTalk Protocol

AppleTalk Protocol Options

Descriptl{}l't

Sets the size of the response packets.

Registers a name with NBP.

Removes a name from NBP.

Looks up a name in NBP.

Confirms address and name.

Gets list of zones.

Gets my zone name.

98.3.1

One of the arguments to the transport API messages msg TPSendTo, msg TPRecvFrom,
and msgTPSendRecvTo is a pointer to a block of protocol options. When the
Transport API builds its transport packets, is uses these options.

Protocol options for AppieTalk are contained in the ATP_OPTIONS structure
(defined in ATALK.H). The AppleTalk options contained in the structure are:

ddpType A specifier for the type of ddp traffic.

flags A set of flags that specify ATP options. The flags are defined in
ATP _FLAGS and specify:

---_._---'--------

302 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

ATP _XO _Flag Whether datagrams should be sent exactly once or at
least once.

ATP _Checksum_Flag Whether datagrams should be send with a check­
sum. Checksums are used only for messages that will be sent through a
bridge or a router (internet messages).

ATP ~ON oResponse_Flag Tells ATP not to expect a response to the
datagram.

transactionID A transaction ID. When you reply to a datagram, you use
the transaction ID to specify which datagram you are replying to.

interval The interval between send retries.

retries The number of retries to attempt. If the transport API exceeds the
number of retries, it returns stsTPfailed in the message's completion
code argument.

minRespPackets The minimum number of response packets that the
transport API must use to send a response. This number can be in the
range 0 through 8. Usually minRespPackets indicates the number of sets
of userBytes in this array.

userBytes An array of up to eight sets of user bytes. Each set of user bytes is
four bytes long. userBytes are used for communicating additional,
encoded information.

Changing the Size of ATP Packets

For each AppleTalk request, a server can return up to eight AppleTalk Protocol
(A TP) packets.

When you use AppleTalk for transaction services, the AppleTalk protocol specifies
that the Transport API can create only one ATP packet for each request. Usually
theATP packets contain 578 bytes of data (586-byte datagram, minus an 8-byte
header). Responses can contain up to eight ATP packets, or 4624 (578 * 8) bytes
of data.

Some protocols, such as PAP (the printer access protocol), require a smaller
response packet size.

You can change the size of ATP packets, by sending msgATPRespPktSize to the
socket. The message takes a pointer to an ATP _RESPPKTSIZE structure that
contains a single element, a 016 value that specifies the new size for ATP packets
(size). The maximum size for an ATP packet is 578 bytes.

AppleTalk Name and Zone Protocols
AppleTalk defines messages that you can use to manipulate the names of the
sockets on the network. The name binding protocol (NBP) messages allow you to
search for, add, and delete names from the NBP tables.

Each station maintains its own NBP table. When you add a name, NBP adds it to your
table. When you search for a name, NBP searches all NBP tables in the network.

CHAPTER 98 / THE TRANSPORT API 303

Using clsTransport for AppleTalk

NBP messages can accept wildcard characters, but they are valid only within a
user-specified zone. A network is divided into two or more zones when it is joined by a
bridge. A bridge is a computer or other sm.art device that can link two networks and
route traffic from one zone to another.

The zone information protocol (ZIP) messages allow you to get a list of zone
names, or get the name of your zone.

The following sections describe how to use NBP and ZIP messages. If you need to
cancel any of these NBP requests, send msgNBPCancel to the socket.

Registering a Name 98.3.2. 1

When you create a server on the network, you will want others to know where to
find it. When your server starts, create a socket and send msgNBPRegister to it.
The message requires an NBP _REGISTER structure that contains a pointer to the
buffer that contains the name (pName).

The names have the format:

name:object@zone

where:

name Is the name of the actual server.

object Is the object type (such as TOPSServer, LaserWriter, and so on).

zone Is the name of the zone.

If you register a name that is already bound to a local transport address, the
Transport API stores both the name and address in the NBP table. If the name is
not bound to a local transport address, the Transport API creates a transport
address and binds it to the name, then stores them in the NBPtable.

Removing a Name

When your server is removed, you must remove its name from NBP by sending
msgNBPRemove to the socket. The message requires an NBP _REMOVE structure
that contains a pointer to the buffer that contains the name to delete (pName).

~ Looking for a Name

To look for a server name, send msgNBPLookup to the socket. The message
requires a NBP _LOOKUP structure that contains:

pName A pointer to a buffer containing the name of the server you want to
find. The name can contain wildcard characters, described at the end of
this list.

pBuffer A pointer to the buffer that receives the names that match pName.

length The number of bytes in pBuffer.

numMatches A location that receives the number of matches.

The server name can contain the equal sign (=) as a wildcard in any field. An asterisk (*)
in the zone field means the current zone. For example, =: Printer@Marketing would

304 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

find all printers in the zone Marketing; MyServe : TOP2Server@=would find all
TOPS servers with the name MyServe in all zones.

If more names match pName than will fit in the buffer, the message stores as
many as it can in the buffer and returns stsTPNoRoom.

You cannot search for a server registered on a PenPoint computer from that same
PenPoint computer.

~ Confirming an Address

Because the user might disconnect the PenPoint computer from the network and
reconnect it at a later time, your application might want to confirm that a server is
still associated with the same transport address. If your application hasn't commun­
icated with a server for a long time, it might also be a good idea to confirm the address.

To confirm the network address associated with a name send msgNBPConfirm to
the socket handle. The message requires an NBP _CONFIRM structure that specifies
pointers to two buffers containing:

pName The name

pAddress The address.

~~ Listing the Zone Names

To get a list of the zone names, send msgZIPGetZoneList to the socket. The
message takes a pointer to a ZIP _GETZONES structure that contains:

pBuffer A pointer to the buffer that will receive the list of zone names. You
must allocate the buffer.

length A U16 value that specifies the length of the buffer. Iflength is less
than the space required for the list of zone names, the message passes
back only those zone names that will fit in the available space (it does not
return partial zone names). Iflength is less than the first zone name, it
will not pass back any zone names.

When the message completes successfully, it returns stsOK and stores the zone
names in pBuffer. Each zone name is stored as a Pascal string (that is, a length
byte followed by that number of characters).

The message also passes back:

length The total size of all zone names passed back in pBuffer.

numZones A U16 value that contains the number of zone names passed
back in pBuffer.

~ GeHing Your Zone Name

To get the name of your own zone, send msgZIPGetMyZone to your socket. The
message takes a pointer to a ZIP _GETZONES structure, as described in the
preceeding section.

Chapter 99 / In Box and Out Box

This chapter describes the In box and Out box services, how to insert or retrieve
documents from the queues, and how you subclass the service classes for the In
box and Out box (to create queues for new types of output devices).

Chapter 99 covers these topics:

• General device concepts.

• Out box service concepts.

• In box service concepts.

• In box and Out box service messages.

Introduction to the In Box and Out Box
One of the unique features of the PenPoint™ operating system is its capability for
deferred input and output. Deferred input and output means that the user doesn't
have to connect the renPoint computer to an input or output device before
beginning an input or output operation. The actual input or output process is
deferred until the input or output device becomes ready.

For example, if a printer is not connected when the user prints a document,
PenPoint places the document into an output queue associated with the printer.
When a printer is connected, PenPoint prints documents that have been queued
for that printer.

The PenPoint user interface presents the deferred input and output queues as
sections within the In box and Out box notebooks. The user can open the
notebook and look at a particular section to see documents in the queue.

In PenPoint, deferred input operations are handled by a special class of services
known as In box services; deferred output operations are handled by Out box
services. Input services are subclasses of clsINBXService; output services are
subclasses of clsOBXService. Both clsINBXService and clsOBXService inherit
from clsIOBXService. clsIOBXService creates the service sections and provides
the queuing mechanism for the In box and Out box.

All three service classes, clsINBXService, clsOBXService, and clsIOBXService
define many messages that must be implemented by subclasses.

If you are writing a service for deferred input or output, you must subclass one of
these three services and implement methods to handle their input or output
messages.

99.1

306 PENPOINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

Before reading this section, you should be familiar with PenPoint services, which
are described in Chapter 94. If you are going to write an In box or Out box
service, you must also read Part 13: Writing PenPoint Services.

General Device Concepts
The PenPoint operating system expects that the PenPoint computer will not
always be attached to most input and output devices. Therefore it must:

• Defer output until the output services are available.

• Gather input from input services to a central location when the services
become available.

Service Sections
When the user creates an instance of an In box or Out box service class, the
service class creates a corresponding section in the In box or Out box.

The service sections are different from normal sections because:

• Service sections must restrict what the user can do to documents in the
service section. Usually the user cannot move or copy documents between
service sections (because each service section can support a different type of
document), nor can the user move documents directly into a service section.

• Each service section is bound to an instance of a specific service. For
example, if the user has installed two printers named First Floor and Second
Floor, there are two corresponding Out box sections, also named First Floor
and Second Floor. The First Floor service section is bound to an instance of
the printer service named First Floor; the Second Floor service section is
bound to an instance of the printer service named Second Floor.

• Each Out box service section is related to the queue for the service to which
it is bound. The user can change ordering of documents in a queue by
moving the documents within the service section.

Services and Devices
Chapter 93, Concepts and Terminology, described how services, such as logical
and physical device drivers enabled applications to communicate directly with
devices. Chapter 94, Using Services, described how applications acquire access to
particular services through the service managers.

Usually a PenPoint computer is not attached to any peripheral device1, such as
printers, LAN servers, and the like. For this reason, PenPoint must be able to defer
input and output operations until the user connects the appropriate peripheral
device.

Each service section in the In box and Out box is associated with an instance of a
service class. Each service instance is associated with a specific device-possible
through a series of logical device drivers.

99,,2

CHAPTER 99 I IN BOX AND OUT BOX 307

General Device Concepts

For example, the Out box service section for "Marketing Printer" might be
associated with an instance of the HP LaserJet printer service. That instance of the
LaserJet printer service owns and is connected to the parallel port service instance
that controls a parallel port in the PenPoint computer .

.A5 another example, the In box service section for fax might be associated with an
instance of a fax receiver. The fax receiver owns and is connected to the serial port
service instance that controls a serial port in the PenPoint computer.

Installing Devices and Services

Installing In box and Out box services is no different from installing any other
service. Once the service is installed, the service must provide its own user
interface by which the user creates new instances of the service. (Although users
create new instances of printer services through the Connections notebook, there
is no plan to add an extensible interface to the Connections notebook.)

When creating the service instance, the user:

• Names the specific device (such as "Accounting Printer: 4th Floor").

• Specifies the type of device (such as HP LaserJet II).

• Specifies the communication port used by the service (such as the parallel
port).

Targeting Communications Devices

PenPoint communicates with its peripheral devices through its communciation
devices (such as serial ports, parallel ports, data or fax modems, and LAN servers).
The software that controls each of these communication devices is implemented as
a PenPoint service .

.A5 mentioned before, deferred input and output operations are handled by In box
and Out box services. An In box or Out box service targets a communication
service so that it will be notified whenever the physical communication device
becomes connected or disconnected. See Chapter 94 for more information on
targeting services.

Enabling and Disabling Services

An Out box service must be enabled before its output process can begin. This
enabled state is represented by a checkbox in the Enabled column of the Out box
notebook. Typically, a communications device permits only exclusive access. If
multiple Out box services are connected to the same output device, only one can
be enabled at a time. Enabling an Out box service causes it to become the owner
of its target service. The service remains enabled until either:

• The user disables it (by unchecking the Enabled box).

• The service willingly releases ownership of the communications device so
that another service can become the new owner.

308 PEN POINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

Service ownership is discussed in more detail in Chapter 94.

Enabling or disabling an In box or Out box service also provides a convenient
mechanism for managing communications devices that can't automatically
determine when they become connected or disconnected. Because these devices
cannot inform the Out box service when they are connected or disconnected,
their status will always remain connected, regardless of the connection status of
the physical device. Such services can be explicitly disabled to prevent documents
from being sent to a device that is not ready for output.

Out Box Concepts
Each instance of an Out box service has a corresponding section in the system Out
box notebook. The name of the service and the name of the section are the same.
For example, the user can create two instances of a printer Out box service class.
The instances are named "Engineering Printer" and "Marketing Printer." Each
instance of the printer Out box service class has its own output queue. These
output queues appear as sections in the Out box named "Engineering Printer" and
"Marketing Printer."

Documents are placed in the Out box service sections by an output service
manager. There are two output service managers, thePrintManager and
theSendManager. thePrintManager is responsible for placing documents in the
appropriate printer service sections. theSendManager supports the other service
sections, including fax and e-mail. If you write a new output service, you can
integrate it into theSendManger.

Out Box Operation
When the user gives a Print or Send command, PenPoint invokes the appropriate
output manager (thePrintManager or theSendManager). These output managers
are provided by GO, but have no API.

The output manager responds by performing these tasks:

• Prompts the user for the destination device.

• Prompts the user for the options that are related to that output manager.

• Adds the document to the queue for the device.

For thePrintManager, the output service is a printer service that is associated with
a destination printer.

For theSendManager, the output service provides e-mail, fax, deferred file transfers,
and so on. theSendManager is an open-ended mechanism, which allows it to handle
any services that are installed and active.

Out Box Protocol Messages
The primary function of an Out box service is to manage the output queue for
each service instance. This function is implemented by a standard Out box
protocol consisting of eight interrelated messages.

CHAPTER 99 / IN BOX AND OUT BOX 309

1 The client of an Out box service sends msgOBXSvcMovelnDoc or
msgOBXS~cCopylnDoc to the Out box service instance, telling the Out
box to add an existing PenPoint document to its output queue.

2 Once a document is added to the Out box, msgOBXSvcPollDocuments
informs an Out box service that it should check to see if conditions are right
to start an output process.

Other events may also cause the Out box service or the client to send
msgOBXSvcPollDocument to the Out box service. For example, an Out
box service will selfsend this message when the service has just been enabled.

3 If the service is enabled and the output device is connected, the service sends
msgOBXSvcNextDocument to self to locate the next document ready for
output.

4 If a document exists in the output queue but is not ready for output, the
service self sends msgOBXSvcScheduleDocument to reschedule output at a
later time.

S If a document is ready for output, the service will lock the document with
msgOBXSvcLockDocument, and kick off the output process with
msgOBXSvcOutputStart.

6 At the end of the output process, the document being sent will send
msgOBXDocOutputDone to the Out box service.

7 Finally, if the output finished normally, the service self sends msgOBXSvc­
PollDocuments again to see if anything else is ready for output.

Out Box Concepts

If the output didn't finish normally, the service self sends msgOBXSvcUnlockDocument
to restore the document to its preoutput state.

Documents in the Out Box

The primary focus of an Out box service is to manage its output queue. An
output queue is essentially a collection of documents located in an Out box
section. The primary focus of a document in the Out box is to manage a single
output job.

An Out box document can be any PenPoint document, that is, an instance of an
application inheriting from clsApp. The document can be created, opened, and
closed just like a regular page in the notebook. There are two ways to implement
Out box documents:

• The application that created the document knows how to respond to Out
box messages. For example, an electronic mail application might also respond
to Out box messages so that it can send its own documents to an electronic
mail service. The document in the Out box would contain destination
information for the document.

99.3.3

310 PEN POINT ARCHITECTURAL REFERENCE

Part 10 I Connectivity

• The Out box document is a wrapper, which contains (embeds) the
document being output. The wrapper document responds to the Out box
messages and other PenPoint Application Framework messages. In response
to these messages, the wrapper document controls how the embedded
document is output. Printing in PenPoint is implemented in this way.

An Out box document is also responsible for interacting with the Out box service
and controlling the output process, such as sending out an electronic mail message
through a communication device. Thus, in addition to responding to elsApp
messages, an Out box document also understand the following elsO BXService
messages:

msgOBXDocOutputStartOK

msgOBXDocOutputStart

msgOBXDocOutputCancel

msgOBXDocOutputDone

msgOBXDocStatusChanged

. Writing Your Own Out Box Service

elsOBXService is an abstract class. If you are writing an Out box service, you must
create a subclass of elsOBXService. (elsOBXService manages the output queue
only, it does not actually cause the output to happen.) Typically, your Out box
service inherits its output queue management behavior from elsOBXService. You
must add any servicespecific behaviors for the communication protocol or devices
you need to handle.

By default, clsOBXService provides a simple first-in-first-out queue. If your Out
box service requires sophisticated scheduling algorithms, you must replace the
default behaviors with your own. In this case, your service might need to handle
these messages:

msgO BXSvcMovelnDoc

msgOBXSvcCopylnDoc

msgO BXSvcN extDocument

msgOBXSvcLockDocument

msgO BXSvcU nlockDocument

msgO BXSvcScheduleDocument

msgOBXSvcOutputStart

Another example would be msgOBXSvcLockDocument and msgOBXSvcU nlock­
Document. Their default behavior is to mark the document so that gestures over the
document icon will not be processed while output is in progress (in fact they cause an
error note to appear). A msgOBXSvcUnlockDocument typically indicates that the
output has been aborted for some reason. You may wish to add to the default behavior,
such as notifying your observers that some error has just occurred.

CHAPTER 99 I IN BOX AND OUT BOX 311

Out Box Concepts

Working with Existing Out Box Services

All output operations should be performed through an Out box service in order to
take advantage of Pen Point's deferred output feature. An application or a service
can bypass the Out box protocol only if the output device is always present or is
rarely detached from the PenPoint computer.

The key to working with an existing Out box service is to conceptually break up
the output process into two distinct phases:

• The first phase is either adding an existing PenPoint document to the output
queue, or creating a special document of some sort in temporary storage and
and then move it into the output queue.

• The second phase is the actual output process, during which a devicespecific
data stream is sent out through some communication device.

clsOBXService provides a framework for managing the transition from one phase
to another.

The separation of these two phases of output operation has an additional benefit.
In many cases, an application developer can avoid writing a new Out box service
in order to handle application-specific output functions. It is often sufficient to
handle only one of the two phases of the output operation. There are several
options:

• One inexpensive solution is to have the application export the data into a
format that is easier to output under an existing Out box service. For
example, a database document can generate a report as an ASCII file or a
word processor document and move it into a printer, fax or e-mail Out box
section. Similarly, a spreadsheet document can export its pie chart into a
popular drawing program document and move it to the Out box for output.

• Another approach is to allow the database or spreadsheet document itself to
be moved or copied into the output queue. When the document receives
msgOBXSvcOutputStart, it knows that the output device is ready. It then
proceeds to perform the output operation the old-fashioned way. Such
applications already have sophisticated output capabiliti~s, and we only need
to ensure not to start the output process until the device is ready. The
obvious disadvantage of this approach is that it requires additional memory if
we have to make a copy of the document in order to put it into the Out box.

• A third approach represents a compromise between the two. During the first
phase of the output operation, a "surrogate" document, rather than the real
one, is copied into the output queue. This surrogate document not only
understands the Out box output protocol, but also knows how to
communicate with the original document. It is effectively a "pointer" back to
the original document. When the output process begins, the surrogate
document communicates with the original one to cause the device-specific
data stream to be sent to the correct output port.

99.3.4.1

312 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Services that Handle Input or Output

clsOBXService deals only with output operations; clsINBXService deals only with
input operations. If a service wants to handle both input and output (for example, an
electronic mail service), it can use clsIOBXService, which is another abstract class (and
the ancestor of both clsINBXService andclsOBXService). clsIOBXService associates
the service with both an input queue and an output queue. The service, the In box
section, and the Out box section all have the same name.

In Box Concepls
Although the In box contains service sections that are associated with queues and
services, the similarity between the In box and Out box stops there. The Out box
must schedule documents for output when the communication devices become
available; the output service drives the output.

The In box on the other hand must handle incoming data and convert it into a
PenPoint document, whenever possible.

Some services convert incoming data streams into PenPoint documents. Other
services do not know what type of data they are receiving and must create a data file.

Passive and Active In Box Services

There are two type of In box services: passive and active. A passive In box service
waits for an input event to happen. An active In box service initiates the com­
munication process. For example, a fax input service may wish to periodically poll
a store-and-forward facility (to receive a fax image).

Typically, when a user enables a passive In box service, the service becomes the owner
of its communication device. While the In box service owns the 110 device, no other
services can transmit or receive data through the same device; A simple fax In box
service, for example, becomes the owner of the fax modem (and the serial port) and
sets it up to start receiving fax images whenever a phone call comes in.

Some In box services may want to activly solicit input from a remote agent. For
example, a service that queries a remote database will have to establish the
communication link between the PenPoint computer and the remote database
server. For these active In box services, clsINBXService provides default behaviors
to manage three things:

• The state of the device (connected or disconnected).

• The protocol to initiate input operation (whether the service is enabled
or disabled).

• Automatic polling behavior similar to that of an Out box service.

Thus, the user can defer the input operation until it becomes possible to establish
a communication link with a remote agent. Note, however, that to enable such
behavior for an In box service, the polling flag (iobxsvc.in.autoPoll) must be true
when the service is created.

99.4

CHAPTER 99 I IN BOX AND OUT BOX 313

In Box and Out Box Service Messages

Mter a remote agent initiates the input operation, the In box service detects the
input event and then receives the incoming data stream.

In Box Documents

Normally, an input event results in a PenPoint document being created in an In
box section. For example, a fax In box section can create a document containing
the fax images received by the fax modem. Such documents are normal PenPoint
documents. Their contents have nothing to do with the input device or where the
document came from.

Sometimes an In box document contains not only data, but also some control
information about the input operation to be performed. For example, the user
may construct a specific query statement for an online database and put it into the
appropriate In box section before the PenPoint machine is connected to the remote
database. When the input service becomes ready, the query statement is sent to the
remote database, and the result is put into either another document or the same
document containing the query statements. This type of In box document is very
similar to the Out box document that controls the actual output operation.

Note that the deferred 110 protocol implemented by elsINBXService assumes that
an input operation is controlled by an In box document. This assumption may be too
cumbersome and confusing for many services. If this is the case, an In box service can
simply store the input control information (such as a database query statement) with
the service itself. When the service receives msgINBXSvcPollDocuments, it simply
handles the input operation directly and bypasses the rest of the protocol.

In Box and Out Box Service Messages
The following three tables list the messages defined by elsO BXService,
elsINBXService, and elsIOBXService. For rnore detailed description of these
messages, see Part 10: Connectivity in the PenPoint API Reference, or read the
header files (OBXSVC.H, INBXSVC.H, and IOBXSVC.H).

314 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

M€Hi>Sage Tukes

msgOBXSvcMovelnDoc P _ OBXSVC_MOVE_ COPY_DOC

msgOBXSvcCopyInDoc P _0 BXSVC_MOVE_COPY_DOC

msgOBXSvcPollDocuments nothing

msgOBXSvcNextDocument P _OBXSVC_DOCUMENT

msgOBXSvcScheduleDocument P _OBXSVC_DOCUMENT

msgOBXSvcLockDocument P _0 BXSVC_DOCUMENT

msgOBXSvcUnlockDocument P _OBXSVC_DOCUMENT

msgOBXSvcOutputStart P _OBXSVC_DOCUMENT

msgOBXDocOutputDone P _OBX_DOC_OUTPUT_DONE

msgO BXSvcSwitchIcon nothing

msgO BXSvcGet TempDir

msgO BXSvcOutputCancel

msgO BXSvcOutputClean Up

msgO BXSvcStateChanged

msgO BXSvcQueryState

msgO BXSvcGetEnabled

msgO BXSvcSetEnabled

msgO BXDocGetService

msgO BXDoclnOutbox

msgO BXDocOutputStartO K

msgO BXDocOutputStart

msgO BXDocOutputCancel

msgO BXDocStatusChanged

P_OBJECT

nothing

P _OBX_DOC_OUTPUT_DONE

OBJECT

P _0 BXSVC_QUERY_STATE

P_BOOLEAN

BOOLEAN

P_O BX_DO C_GET_SERVICE

P _OBX_DOC_IN_OUTBOX

nothing

nothing

nothing

Descriptiorl

Move a document into the Out box section.

Copy a document into the Out box section.

Poll all documents in an output queue and
output those that are ready.

Pass back the next document ready for output.

Schedule a document that is not ready for output.

Lock the document in preparation for output.

Unlock a document that was previously locked.

Start the output process for a document in the
output queue.

Tell the Out box service that output is finished.

Toggle the Out box icon (to empty or filled) if
neccessary.

Pass back a handle for a temporary directory.

Cancel the output process.

Clean up after the current output is done.

Tell observers that the service state just changed.

Pass back the state of the service.

Get the enabled state of the service.

Set the enabled state of the service.

Get the service name.

Check if a document is in a section in the
Out box.

Ask the Out box document ifit is OK to start
the output process.

Tell an Out box document to start the output
process.

Tell an Out box document to cancel the output
process.

Tell the Out box service that the document
status is changed.

msgINBXSvcSwitchIcon

msgINBXDocGetService

msgINBXDocInInbox

msgINBXSvcMoveInDoc

msgINBXSvcCopyInDoc

msgINBXSvcGetTempDir

msgINBXSvcPollDocuments

msgINBXSvcN extDocument

msgINBXSvcLockDocument

msgINBXSvcU nlockDocument

CHAPTER 99 I IN BOX AND OUT BOX 315

In Box and Out Box Service Messages

T©kcs

nothing

P _INBX_DOC_ GET_SERVICE

P _INBX_DOC_IN_INBOX

P _INBXSVC_MOVE_COPY_DOC

P _INBXSVC_MOVE_COPY_DOC

P_OBJECT

nothing

P _INBXSVC_DOCUMENT

P _INBXSVC_DOCUMENT

P _INBXSVC_DOCUMENT

Toggle the In box icon (to empty or filled) if
neccessary.

Get the service name.

Check if a document is in a section in the
In box.

Move a document into the In box section.

Copy a document into the In box section.

Pass back a handle for a temporary directory.

Poll all documents in an input queue and input
those that are ready.

msgINBXSvcScheduleDocument P _INBXSVC_DOCUMENT

Pass back the next document ready for input.

Lock the document in preparation for input.

Unlock a document that was previously locked.

Schedule a document that is not ready for input.

Start the input process for a document in the msgINBXSvcInputStart

msgINBXSvcInputCancel

msgINBXSvcInputClean Up

msgINBXSvcS tate Changed

msgINBXSvcQueryState

msgINBXSvcGetEnabled

msgINBXSvcSetEnabled

msgINBXDocInputStartO K

msgINBXDocInputStart

msgINBXDocInputDone

msgINBXDocInputCancel

msgINBXDocStatusChanged

nothing

P _INBX_DOC_INPUT _DONE

OBJECT

P _IN BXSVC_QUERY_ST ATE

P_BOOLEAN

BOOLEAN

nothing

nothing

P _INBX_DOC_INPUT _DONE

nothing

input queue.

Cancel the input process.

Clean up after the current input is done.

Tell observers that the service state just changed.

Pass back the state of the service.

Get the enabled state of the service.

Set the enabled state of the service.

Ask the In box document if it is OK to start the
input process.

Tell an In box document to start the input
process.

Tell the In box service that input is finished.

Tell an In box document to cancel the input
process.

P _INBX_DOC_STATUS_CHANGED Tell the In box service that the document status
is changed.

316 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Messase

msgIOBXSvcSwitchIcon

Takes Descripti()fl

msgIOBXDocGetService

msgIO BXDocInIO Box

msgIOBXSvcMoveInDoc

msgIOBXSvcCopylnDoc

nothing Toggle the In box or Out box icon (to empty
or filled) if necessary.

P_I 0 BX_D 0 C_GET_S ERVI CE Get the service name.

P _IOBX_DOC_IN_IOBOX Check if a document is in a section in the
In box or Out box notebook.

P _10 BXSVC_MOVE_COPY_DOC Move a document into the Out box section.

P _10 BXSVC_MOVE_COPY_DOC Copy a document into the In box or Out box
section.

msgIOBXSvcGetTempDir P _OBJECT Pass back a handle for a temporary directory.

Poll all documents waiting for input/output.

Pass back the next document ready for input!

msgIOBXSvcPollDocuments nothing

msgIOBXSvcNextDocument P _IOBXSVC_DOCUMENT

msgIOBXSvcLockDocument P _IOBXSVC_DOCUMENT

msgIOBXSvcUnlockDocument P _IOBXSVC_DOCUMENT

msgIOBXSvcScheduleDocument P _IOBXSVC_DOCUMENT

msgIOBXSvcIOStart

msgI o BXSvcI OCancel

msgIOBXSvcIOCleanU p

msgIOBXSvcStateChanged

msgIOBXSvcQueryState

msgIOBXSvcGetEnabled

msgI 0 BXSvcSetEnabled

msgI OBXDocI OStartO K

msgIOBXDocIOStart

msgIOBXDocIODone

msgIOBXDocIOCancel

nothing

P _IOBX_DOC_ OUTPUT_DONE

OBJECT

P _I 0 BXSVC_QUERY_STATE

P_BOOLEAN

BOOLEAN

nothing

nothing

nothing

output.

Lock the document in preparation for input/
output.

Unlock a document that was previously locked.

Schedule a document that is not ready for
input/output.

Start the input/output process for a document
in the input/output queue.

Cancel the input! output process.

Clean up after the current input/output is done.

Tell observers that the service state just changed.

Pass back the state of the service.

Get the enabled state of the service.

Set the enabled state of the service.

Ask the In box or Out box document ifit is OK
to start the input/output process.

Tell an In box or Out box document to start the
input/output process.

Tell the In box or Out box service that input/
output is fin~shed.

Tell an In box or Out box document to cancel
the input/output process.

msgIOBXDocStatusChanged P _10 BX_DOC_STATUS_CHANGED Tell the In box or Out box service that the
document status is changed.

Chapter 100 / The Address Book

The PenPoint™ operating system address book protocol allows you to write an
application or service that responds to requests from services or other applications
for address information. The addresses can be, but are not limited to, street
addresses, voice phone numbers, phone numbers for data communication devices
(such as fax machines, e-mail routers, and so on).

An address book application should be a subclass of clsAddressBookApplication.
Although it doesn't have to, a subclass of clsAddressBookApplication inherits
some additional address book behavior.

This chapter covers these topics:

• Concepts of the address book, including the address book and address book
manager classes, organization of data, and groups.

• How to install and use the GO address book application.

• Using the address book messages to add, delete, set, and get address book
entries and their service data.

The PenPoint SDK provides a simple address book (described later in this
chapter) with a user interface that allows you to test your services and applications
that access an address book.

The information in this chapter is not exhaustive. Please refer to the header files
ADDRBOOK.H and ABMGR.H for more information.

Concepts
When you try to communicate with someone, you have to consider which
communication method you want to use before you can make contact. If you
phone someone, you have to find their phone number. If you send a fax to
someone, you have to find their fax number. If you want to send electronic mail to
someone, you need to find the phone number of the mail service - then you
need to find the e-mail address for that person.

Services on PenPoint computers are faced with much the same problem. Anyone
person might have several different addresses for several different communications
methods.

In traditional operating systems, it is up to each application to provide an address
book through which the application can find a person's address. This means that
the user has to enter names and phone numbers in a separate address book for
each application.

To avoid this duplication and scattering of information, PenPoint defines a
protocol for address books. An address book is an application or a service that

318 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

responds to the address book protocol. All clients that need to access the address
book use· the same protocol. The protocol specifies particular messages that get
and set information in an address book; the protocol also specifies the types of
information to be stored in address books and the structures that store this
information.

All clients that want to access an address book do it by sending messages to the
system object, theAddressBookMgr, which then forwards the message to the
system address book. While ·there can be many address books running in
PenPoint, the system address book is identified as the address book that is
currently receiving messages through theAddressBookMgr. All address books
must register with theAddressBookMgr, but only one address book can be the
system address book.

The address book protocols allow an application to activate an address book, that
is, to make it the system address book. The user chooses which address book to
make the system address book through a a user interface provided by an address
book, or·by any application that chooses to do so. theAddressBookMgr provides
a way for applications to provide this user interface through option sheets. All the
application needs to do is forward msgOptionAddCards to theAddressBookMgr
after the application has handled the message.

The user interface for a particular service or application can access an address book
(through theAddressBookMgr) and allow the user to modify information in the
system address book.

Participants

There are three principal participants in any address book operation:

• The client is any service or application that requests an address book
operation.

• theAddressBookMgr is a well-known object, through which all address book
requests are channeled.

• An address book is an application or a service that is registered with
theAddressBookMgr and is made current by theAddressBookMgr. The
address book is responsible for storing and retrieving address information.

An address book announces its availability by registering with theAddressBookMgr.
Any number of address books can register with theAddressBookMgr.

The Address Book Protocols

There are three protocols used to communicate with the address book:

The address book protocol Enables clients to communicate with address
books. This protocol is defined in the file ADDRBOOK.H.

The address book manager protocol Enables address books to register them­
selves with theAddressBookMgr and to get information about other

CHAPTER 100 I THE ADDRESS BOOK 319

registered address books. This protocol is defined in ABMGR.H. The class
for theAddressBookMgr is private.

The sendable services protocol Enables address books to request addressing
information from a service that is accessed through theSendableServices
service manager. This protocol is defined by clsSendableService in the
file SENDSERY.H. The whole topic of sendable services is discussed in
Chapter 101. .

The Address Book Protocol

The address book protocol, defined in ADDRBOOK.H, allows clients to com­
municate with the system address book. The protocol allows the client to:

• Get information.

• Set information.

• Delete information.

• Get address book metrics.

• Search for information.

Remember that the address book is not a file; it is an application or service that
responds to the clsAddressBook messages. Thus, it is better to think of an address
book as a server; the client sends requests to the server and it responds with
addresses.

Your client sends all address book requests to theAddressBookMgr. Before requesting
information from theAddressBookMgr, your client must declare that it wants to use
the system address book by sending msgABMgrOpen to theAddressBookMgr. If the
system address book is an application, theAddressBookMgr activates t~e application;
if the system address book is a service, theAddressBookMgr binds to the service.

When your client needs information from the address book, it sends a message to
theAddressBookMgr. theAddressBookMgr forwards the message to the system
address book (with ObjectSendO). Because theAddressBookMgr uses ObjectSendO
(rather than ObjectCallO), your client must use shared memory to allocate buffers
that it will use to send or retrieve information from the address book.

All address book requests that deal with a specific entry in the address book
require a key to the address book. The key is not an index to the address book
entries, rather it contains information that is used by the address book to locate an
entry.

To get a key, send msgAddrBookSearch to theAddressBookMgr. If you are simply
interested in retrieving the the information contained at that location, your search
arguments can specify what information you need; msgAddrBookSearch returns
the information when it finds the entry. (You can also cache the key passed back
by msgAddrBookAdd.)

Concepts

320 PENPOINT ARCHITECTURAL REFERENCE

Part 10 / Connectivity

The Address Book Manager Protocol

The address book manager (theAddressBookMgr) keeps track of the system
address book. When a client needs information from the address book, it uses
ObjectCallO to pass a message to theAddressBookMgr. theAddressBookMgr then
forwards the message to the system address book using ObjectSendO.

Although any application or client can be an address book, an address book must
register itself with theAddressBookMgr. The protocol for registering address
books is defined in ABMGR.H. The protocol allows address books to:

• Register an address book.

• U nregister an address book.

• List the registered address books.

• Activate an address book (make it the system addresss book).

• Deactivate an address book.

If an address book is an application that inherits from clsAddrBookApplication,
an instance of application is automatically registered with theAddressBookMgr
when it is created; the application is automatically unregistered when it is
destroyed. clsAddrBookApplication provides no other special behavior.

Organization of Data

The address book is organized by entries. An individual entry contains:

• Attributes, which contain individual information for the entry such as
names, phone numbers, a street address, and so on.

• Service addresses, which contain service-related information such as e-mail
addresses and so on.

For each entry in the address book there can be many addresses.

Entry Attributes

Within each entry, there are one or more attributes, which are used to store the
information commonly thought of as "address book information." An attribute is
described by the ADDR_BOO~ATTR structure. Each attribute contains:

• An attribute identifier, which indicates what the data is used for (for example
given name, surname, street, company, and so on). Table 100-1 lists the
minimum set of attribute identifiers that all address books must implement.

• An attribute type, which indicates the type of data contained in this
attribute. The possible types are:

abNumber A 32-bit number.

abString A null-terminated string.

abPhoneNumber A phone number, as defined by clsDialEnv.

abOther An encoded byte array.

100.1.3

CHAPTER 100 / THE ADDRESS BOOK 321

• The actual value.

• A label that can be used when displaying the attribute value.

The address book protocol defines a minimum set of attribute identifiers and
attribute types that all address books must implement. If you know of an identifier
or type that is commonly used, but not represented in this set of attributes, please
contact GO Developer Technical Support.

Concepts

Table 100~1
Attribute

Identifier Type Meaning

AddrBookGroupNameld abString Name of a group.

AddrBookGivenNameld abString A person's given name.

AddrBookSurN ameld abString A person's surname (family name).

AddrBookHomePhoneld abPhoneN umber Home phone number.

AddrBookBussPhoneld abPhoneN umber Work phone number.

AddrBookBussPhone2Id abPhoneN umber Second work phone number.

AddrBookCountryld abString Country in postal address.

AddrBookStateld abString State or prefecture.

AddrBookZipld abString Zip code or post code.

AddrBookCityld abString City.

Addr BookDistrictld abString District within a city.

AddrBookStreetId abString Street, building, apartment, and so on.

AddrBookCompanyld abString Company name.

Addr Book Titleld abString A person's title.

AddrBookPositionld abString A person's position.

Addr BookNickNameld abString A person's nickname.

AddrBookFaxld abPhoneN umber A fax phone number.

AddrBookSvcNameld abString The name of a service.

Addr BookSvcN oteld abString User define nickname for service.

The identifier AddrBookStreetld can contain number, street, building, apartment
number, suite, floor, or any other addressing information. If the actual address
contains several lines when written, you can use the character \012 (LF in ASCII)
to separate the lines. For example, an address might contain:

919 East Hillsdale Blvd,
Suite 400

You could store this information as:

"919 East Hillsdale Blvd,\012Suite 400"

But it is up to the address book how to display such information.

When requesting information from an address book, one of the fields in the
ADDR_BOOK_ENTRY structure specifies the number of entry attributes for which
you expect information (numAttrs). To specify all attributes, set numAttrs to

t: :;
j:

~

322 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

AddrBookAll. The address book will allocate the necessary storage for the
information. It is up to the client to free these buffers.

~ Service Addresses
When first created, an address book contains the minimum set of information as
described by the attribute identifiers (listed above). However, it has no address
descriptors for service information. To gather the address descriptors, the address
book queries the sendable services for the type of addressing information they
require. The address book can then add the descriptors to its attributes. The
sendable service protocol is described further in Chapter 101.

Within each entry there can be one or more service addresses. Each service address
contains:

• A key for a service instance.

• An address descriptor that contains a series of attributes that pertain to the
specific service. For instance, an e-mail address would contain both a string
attribute for the e-mail address and a phone number attribute for the dial-up
access line to the e-mail service.

Typically the service attributes use AddrBookSvcNameld to identify the service
and AddrBookSvcNoteld for a user-specified nickname.

When requesting information from an address book, one of the fields in the
ADDR_BOOK_ENTRY structure specifies the number of services for which you
expect information (numServices). You can use this field to specify different
combinations of services and their attributes.

• If you want all service attributes for all services, set numServices to
AddrBookAll.

• If you want selected attributes for all services, set numServices to
AddrBookAllSvcSelectAttrs. You must provide an additional attributes
structure that specifies these attributes.

• If you want all attributes for selected services, set numServices to
AddrBookSelectSvcAllAttrs. You must provide an addition services structure
that specifies these services.

• If you want selected attributes for selected services, set numServices to
AddrBookSelectSvcSelectAttrs. You must provide both additional attribute
and service structures that specify these attributes and services.

The address book will usually allocate the necessary storage for the information.
It is up to the client to free these buffers.

Groups

If num5ervic;ea is 0, no
information is returned.

The address book protocol can enable address books to collect entries into groups, The protocol for groups is still

which are accessed through a single entry. A group consists of a group identifier, which under design.

contains the name for the group, and an array of keys to the members of the group.

CHAPTER 100 I THE ADDRESS BOOK 323
The GO Address Book Application

". The GO Address Book Application 100.2

The PenPoint SDK includes an address book (in \PENPOINT\SDK\APP\AB.EXE) that
both serves as an address book and provides a user interface to its information.
Although it is possible for an address book to both hold information and provide a user
interface, usually an address book will simply contain the address information; other
services and applications will access the address book and provide a user interface.

The GO Address Book allows you to test your services and applications that access
an address book. You must have a separate license from GO Corporation to distri­
bute the GO Address Book application with your software.

Loading the GO Address Book

You can load the GO Address Book by adding this line to your APP.INI file in
\PENPOINT\BOOT:

\\boot\penpoint\sdk\app\Address Book

To create an address book, make a caret A in the Notebook's table of contents and
tap Y on Address Book in the stationery menu. Tap on the address book icon to
turn to the Address Book.

Using the GO Address Book
The screen in Figure 100-1 shows the GO Address Book.

The Address Book is initially empty. You add new entries by tapping on the Add
Entry ... menu item and filling out information. Initially you add name and postal
address information. To add information related to sendable services, select an
entry, then tap on Add Service ... in the Edit menu.

You can use many of the core gestures in the GO Address Book. This table lists
the gestures that are specific to the GO Address Book. For quick help on the
available gestures, make a Quick Help gesture? on the Address Book.

Important You need a separate
license from GO Corporation to
distribute the GO Address Book
(AB.EXE).

100~2

Address Book Gestures
Gesture

y Tap
'I Double tap ..
.. y Triple tap

0 Circle

A Caret

I Caret tap

7 Delete

·1 Tap press

1 Press

Select~ the field.

Selects the current line .

Selects the entire entry.

Displays an edit pad for a selection.

Displays a new entry page; adds new lines to postal address information.

Displays a pop-up list to add a new service to the selected entry.

Deletes the selected information.

Selects the entire entry and starts a copy operation.

Selects the entire entry and starts a move operation.

324 PEN POINT ARCHITECTURAL REFERENCE

Part 10 I Connectivity

The Address Book Messages

100~1

The GO Address Book

100.3

. Table 100-3 summarizes the clsAddressBookApplication messages. Following it,

Table 100-4 summarizes the clsABMgr messages. Please see the header files
ADDRBOOK.H and ABMGR.H for more detail on these messages.

msgAddr BookGet

msgAddr BookSet

msgAddr BookAdd

msgAddr BookDelete

clsAddressBoo
100*3

plication Messages

P _ADDR_BOOK_ENTRY

P _ADD~BOOK_ENTRY

P _ADD R_B 00 K_ENTRY

Fills in the specified entry field data, given an
address book key for the entry.

Sets the specified entry and service data.

Adds the specified entry and service data.

Deletes the specified entry or serVice data.

(ontinued

Message

msgAddr BookSearch

msgAddrBookCount

msgAddr BookGetMetrics

msgAddr BookGetServiceDesc

msgAddrBookAddAttr

Tokes

P _AD D R...B OaK_SEARCH

P _ADDR_BOOK_METRICS

P _ADDR_BOOK_SERVICES

CHAPTER 100 / THE ADDRESS BOOK 325
Using an Address Book

Table 100-3 IrnrltinllPril

Description

Searches for the entry that matches the search
spec.

Finds the number of entries that match the
search spec.

Passes back the metrics for the address book.

Gets the service address description from the
address book.

Adds a new attribute to the active address book.

msgAddrBookEntryChanged P _ADDR_BOOK_ENTRY_CHANGE Sent to observers when an entry has been
changed, added or deleted.

Me5sClge T@kes

msgABMgr Register P_AB_MGR_ID

msgABMgrU nregister P -.AB_MGR_ID

msgABMgrOpen nothing

msgABMgrClose nothing

msgABMgrList P_LIST

msgABMgrActivate P _AB_MGR_ID

msgABMgrDeactivate P _AB_MGR_ID

msgABMgrIsActive P -.AB_MGR_ID

msgABMgrChanged P _AB_MGR_LIST

Using an Address Book
The rest of this chapter covers two topics:

• Developing an address book client .

• Developing an address book.

Table 100~4

elsA

Registers an application or a service as an address
book instance.

Unregisters an application or a service as an address
book instance.

Used by address book clients to begin access to
address books.

Used by address book clients to end access to
address books.

Creates a list of currently registered address book
in pArgs.

Make a registered address book the system address
book.

Deactivates the current system address book.

Passes back the UID of the system address book.

Sent to observers of theAddressBookMgr when the
system address book changes.

This section discusses the messages that an address book client sends. The section
"Writing an Address Book" discusses the messages that an address book sends and
receIves.

326 PENPOINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

Opening the Address Book
Before you can access the system address book, you must send msgABMgrOpen
to theAddressBookMgr.

When you are done with the address book, you must send msgABMgrClose to
theAddressBookMgr.

Searching the Address Book
The root behind most address books operations is in finding a specific entry. You
use msgAddrBookSearch to find an entry and to return information from the
found entry.

msgAddrBookSearch enables you to make fairly sophisticated searches. You can
specify:

• A search specification that can contain one or more comparisons.

• A sort order for the entries matched by the search specification.

• A number of matching entries to skip.

• A direction for the search.

When you search the address book, you must always specify a key (key in
ADDR_BOO~SEARCH). When you are performing a series of searches, you start
the next search with the key passed back by the previous search. For the first
search, you should specify a null key; the direction field specifies whether the
search begins at the first or last entry in the sort order.

You can specify a sort order by specifying an attribute identifier in the sort field.
Attribute identifiers are described above.

To specify a search direction, set the dir field to abEnumNext to search forward
and abEnumPrevious to search backwards. When key is null, abEnumNext begins
the search at the first element, abEnumPrevious begins the search at the last element.

To specify the nth entry (from the current location) that matches the search
specification, specify a non-zero value for the nth argument. If nth is 1, the search
gets the next entry that matches the search.

~~ The Search Query

A search query can contain a number of different comparisons. The query
argument points to an ADDR_BOOK_QUERY structure that lists the number of
comparisons (numAttrs) and contains a pointer to the first in a list of
ADDR_BOOICQUERY_ATTR structures (attrs), each of which specifies a separate
comparison.

The ADDR_BOOK_QUERY_ATTR structure specifies:

id The attribute identifier of the attribute being compared.

length The length of an encoded byte array (used only if attribute type is
abOther).

100.4.1

CHAPTER 100 I THE ADDRESS BOOK 327

Using an Address Book

valueOp The comparison operator; the comparison operators are:

abEqual Tests if the attribute is equal to value.

abNotEqual Tests if the attribute is not equal to value.

abGreater Tests if the attribute is greater than value.

abLess Tests if the attribute is less than value.

abGreaterEqual Tests if the attribute is greater than or equal to value.

abLessEqual Tests if the attribute is less than or equal to value.

abMatchBeginning Tests if the string specified in value is a substring of
the attribute, starting at the beginning.

abMatchEnd Tests if the string specified in value is a substring of the at­
tribute, starting at the end.

abMatchPartial Tests if the string specified in value is a substring of the
attribute (not anchored to the beginning or end).

value The value against which the attribute of the current entry is
compared.

attrOp The operator that specifies the relationship between this attribute
structure and the following attribute structure (if there is one). The last
attribute in the list does not need to specify an attrOp. The possible
values are:

abAnd Both the current attr structure and the next attr structure must
be true for the comparison to succeed.

abOr Either the current attr structure or the next attr structure can be
true for the comparison to succeed.

For example, if a client wants to specify a query that says match an entry whose
last name is Smith and whose zip code is greater than or equal to 95000, the query
would contain two attr structures:

pArgs->query
fsp

id length value valueOp attrOp

attr[O]
attr[l]

AddrBookSurNameld
AddrBookZipld

The Search Result

n/a "Smith" abEqual abAnd
n/a 95000 abGreaterEqual n/a

When msgAddrBookSearch successfully matches an entry, it passes back the
information you specified in an ADDR_BOOK_ENTRY structure (result). The
ADDR_BOOK_ENTRY structure contains one or more ADDR_BOOK_ATTR

structures (described above) that specifies the actual attributes that you need.

Because theAddressBookMgr uses ObjectSendO to relay messages to address Important The ADDR_BOOK_ENTRY

books, the ADDR_BOOK_ENTRY structure must be allocated from shared memory. structure must be allocated
from shared memory.

Getting More Information

To get more information from an entry, send msgAddrBookGet to
theAddressBookMgr, specifying the key returned by msgAddrBookSearch.

328 PEN POINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

You specify the information you want from the address book entry in the
same way that you specify the search result in msgAddrBookSearch.

For example, you might use msgAddrBookSearch to find an entry that meets
particular criteria. The message passes back the fundamental information that you
need. You then compare that information against some other set of information
and, if you have a match, you can then send msgAddrBookGet, using the same
key to retrieve further information about the entry.

Changing Information

To change information in an address book entry, send msgAddrBookSet to
theAddressBookMgr. The message takes a pointer to an ADDR_BOOK_ENTRY

that contains the changed information for the entry.

Because theAddressBookMgr uses ObjectSendO to relay messages to address Important The ADDR_BOOK_ENTRY

books, the ADDR_BOOK_ENTRY structure must be allocated from shared memory. structure must be allocated
from shared memory.

Adding a New Entry

To add a new entry to an address book, send msgAddrBookAdd to
theAddressBookMgr. The message takes a pointer to an ADDR_BOOK_ENTRY

that contains the new information for the entry.

As above, the ADDR_BOOK_ENTRY structure must be allocated from shared memory.

Deleting an Entry

To delete an entire entry from an address book (or to delete services from an
entry), send msgAddrBookDelete to theAddressBookMgr. The message takes a
pointer to an ADDR_BOOK_ENTRY that identifies the contains the changed
information for the entry. The key field identifies the entry to delete.

To delete an entire entry with services, the numServices field must be o.
When deleting services, the numServices field specifies the number of services to
delete. The services field points to the first in an array of ADDR_BOOK_SERVICE

structures that contain the service IDs of the services to delete.

Writing an Address Book
When you write an address book, it must be prepared to receive all address book
messages defined in ADDRBOOK.H.

In addition, your address book needs to send a number of address book manager
messages, which are defined in ABMGR.H. Particularly, your address book must be
able to:

• Register itself as an address book instance.

• Unregister itself when it is deleted.

• Give up the role as system address book, when appropriate.

To clear information within an
entry, use m6gAddrBook5et
to set the specific field to null.

CHAPTER 100 I THE ADDRESS BOOK 329
Writing an Address Book

The fundamental structure used in the address book manager messages is the
AB_MGR_ID. This structure contains:

name A string that contains the name of the address book.

type An AB_MGR_ID_TYPE that indicates that the address book is an
application (abMgrApplication) or a service or data object
(abMgrObject) .

value A union that contains a UID or a UUID, depending on whether the
address book is a service or an application.

uid Is an OBJECT that contains the UID of the service.

uuid Is a UUID that contains the UUID of the application's working'
directory.

Registering an Address Book

When an instance of your address book is created, it should register itself by
sending msgABMgrRegister to theAddressBookMgr. The message takes a pointer
to an AB_MGR_ID structure that identifies the address book.

Only when an address book is registered with theAddressBookMgr can it later be
selected as the system address book.

If your address book inherits from clsAddrBookApplication, it is registered
automatically when it is created.

Unregistering an Address Book

When your address book is terminated (if an application, when it is deleted; if a
service, when deinstalled), it should send msgABMgrUnregister to
theAddressBookMgr. The message takes a pointer to an AB_MGR_ID structure
that identifies the address book.

If your address book inherits from clsAddrBookApplication, it is unregistered
automatically when it is deleted.

Becoming the System Address Book

When your address book needs to become the system address book, it sends
msgABMgrActivate to theAddressBookMgr. The message takes a pointer to an
AB_MGR_ID structure that identifies the address book.

In the current implementation of the address book manager, only one address
book can be the system address book at one time.

If there is currently a system address book, theAddressBookMgr deactivates that
address book first.

There are two important status values that you should note when sending
msgABMgrActivate:

stsABMgrAddrBookOpen The current system address book is currently
open, and therefore cannot be deactivated.

330 PEN POINT ARCHITECTURAL REFERENCE
Part 10 / Connectivity

stsABMgrAddrBookNotRegistered The specified address book is not a
registered address book.

Deactivating the System Address Book

To deactivate the system address book, send msgABMgrDeactivate to
theAddressBookMgr. The message takes a pointer to an AB_MGR_ID structure.

Observing theAddressBookMgr

When an address book is activated or deactivated as the system address book,
theAddressBookMgr sends msgABMgrChanged to its observers (which includes
all registered address books). The messages passes a pointer to an
AB_MGR_NOTIFY structure, which contains:

type An AB_MGR_CHANGE_TYPE value that indicates the type of change.
Possible values are:

abMgrRegister An address book was registered.

abMgrUnregister An address book was unregistered.

abMgrActivated An address book was activated.

abMgrDeactivated An address book was deactivated.

abMgrOpened An address book was opened.

abMgrClosed An address book was closed.

addressBook An AB_MGR_ID structure that indicates the address book that
changed.

Handling Option Sheet Protocol

To provide users with a common -way of selecting the system address book, an
address book or other applications that want to provide this facility must be
prepared to handle msgOptionSheetAddCards. When it receives this message, the
address book can add cards to the option sheet, if it needs. the address book must
then forward the message to theAddressBookMgr.

When theAddressBookMgr receives the message, it creates a card that allows the
user to select the current address book. Subsequent option card related messages
are sent directly to theAddressBookMgr.

100.5.4

100.5.5

Chapter 101 / The Sendable Services

A sendable service is a service that provides some form of deferred data transmission,

such as e-mail or fax. Before sending data, the user must be able to address the fax or
e-mail to a particular recipient. The sendable service protocol allows address books

to query sendable services for the type of addressing information they require; the
protocol also allows address books to request a sendable service to present a user
interface, through which the user can update address information in the current
address book.

Sendable services inherit from the abstract superclass clsSendableService, which
defines the sendable service protocol. All sendable services are managed by

theSendableServices service manager.

The Sendable Services Protocol
The PenPoint™ operating system has two general categories of data transfer
mechanisms:

• Printing, which is assumed to be accessible from any PenPoint computer,
and which has a simple addressing mechanism: the name of the printer.

• Other forms of data transfer, which the user could install separately, and
which has any number of transmission mechanisms and addressing
complexities.

This division is reflected in the Document menu in the PenPoint Application
Framework's standard application menus: it contains a Print button and a Send
button. The Print button is specific to a single action (printing a document).
However, the Send button provides access to all other deferred data transfer
mechanisms. In other words, it provides access to the sendable services.

The Address Book uses the sendable services protocol at two different times:

• Gathering address descriptors from sendable services.

• Requesting the sendable service to display a user interface through which
the user can add, modifY, or delete address data for that service.

Creating Address Descriptors

As described in Chapter 100, all address books contain a fixed set of attributes for
usual addressing information, such as names, postal addresses, voice-phone numbers,

and so on. In addition to this fixed set, the address book can maintain addressing
information for services. Some services (such as fax) just need a phone number;
others (such as e-mail) need a phone number for the e-mail provider and one or
more strings for the actual mail address.

10LLl

332 PEN POINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

However, until the address book and all the sendable services are installed, the
address book does not know the addressing attributes that are required by each
servIce.

The address book requests an attribute descriptor from a sendable service by
sending msgSendServGetAddrDesc to the sendable service. In response to the
message, the sendable service creates an address descriptor and passes it back to the
address book. The address book then adds the descriptor to its attrihutes.

There are two times when an address book should send msgSendServGetAddrDesc:

• When a new instance of the address book is created, the address book should
enumerate all the services that belong to theSendableServices service
manager. It should then send msgSendServGetAddrDesc to each of the
sendable services.

• When the user installs a new sendable service, theSendableServices notifies
the address book that a new service is available (by sending msgIMInstalled).
The address book should then send msgSendServGetAddrDesc to the new
service. An address book should always observe theSendableServices.

Displaying a User Interface

When you, or anyone else, writes an application that presents the user interface to
an address book, the application must allow additions or changes to all the
required attribut~s (name, postal address, and so on). It is easy to know what is
expected, by simply examining the list of attributes and ensuring that you have
implemented them all.

Unfortunately, you can't plan an address book user interface for modifying service
information, because the amount and types of information maintained for service
addresses is entirely up to each service. The solution is to provide a message
whereby the address book requests the service to present a user interface for its
own addressing information.

When an address book sends msgSendServCreateAddrWin to a sendable"service,
the sendable service should create a window in which the user can add or modify
address information for the service.

When the address book sends msgSendServFillAddrWin to a sendable service, the
sendable service should fill or clear its window depending on the address
information passed in by the address book.

The address book can send msg$endServGetAddrSummary to a sendable service
to request a string that contains an address summary.

10LL2

CHAPTER 101 I THE SENDABLE SERVICES 333
The Sendable Services Messages

The Sendable Services Messages 101 .. 2

The sendable services messages are defined in SENDSERY.H. These messages are
listed in Table 101-1.

MessClge

msgSendServGetAddrDesc

Table H)1~l

Messages
Tokes Des;criptsQt1

P _ADDR_BOOK_SVC_DESC Responsibility of a sendable service to return its
service attribute-value pairs that describe its service
address.

msgSendServCreateAddrWin P _SEND_SERV _ADDR_ WIN Converts address data into a window displaying
the data. t:

:>
msgSendServFillAddrWin P _SEND_SERV _ADDR_ WIN Refreshes pArgs->win with information in ;:::

~oU~8_1U pArgs->attrs.

msgSendServGetAddrSummary P _SEND_SERV _ADDR_ WIN Given pArgs->attrs, set pArgs->addrSummary to be
a displayable string that sums up the the address.

GeHing Address Descriptors

When an address book needs to get the address descriptor from a sendable service,
it sends msgSendServGetAddrDesc to the service. The message takes a pointer to
a P _ADDR_BOOK_SVC_DESC structure, which contains an uninitialized pointer
for an array of address attributes (attrs).

The sendable service allocates storage for the attribute-value pairs and stores the
addresss in attrs. The sendable service also sets the numAttrs field to the number
of attributes used by the service. .

Creating and Filling Address Windows

When an address book needs to present a user interface that gathers information
about a sendable service, the address book sends msgSendServCreateAddrWin to
request the sendable service to create an empty window for this information.

The address book then sends msgSendServFillAddrWin to the sendable service to
request it to fill in or update the window using the data passed in by the message.

Both messages take a pointer to a SEND_SERV_ADDR_WIN structure, which
contains a pointer to an array of address attributes (addrAttr) and the number of
attributes in the array (numAttrs).

When the sendable service receives msgSendServCreateAddrWin, it should create
a window suitable for containing its addressing information. The type of window
it creates and whether the window is inserted in the window hierarchy or not is
dependent on the implementation of the address book. For example, the GO
address book actually uses the option sheet protocol; when it requests the sendable
service to create an address window, the address book adds the new window to the
list of option cards.

334 PENPOINT ARCHITECTURAL REFERENCE
Part 10 I Connectivity

The sendable service should not fill information in the window when it creates it.
Instead it should wait for the address book to send msgSendServFillAddrWin.
When it receives msgSendServFillAddrWin, the sendable service should display
its addressing information in the window with proper formatting and labels. If
numAttrs is 0, the sendable service should display empty fields, presumably for
the user to fill in information.

Summarizing Address Information

The user interface for an address book might simply display a summary of an
address (or a series of addresses) to the user, rather than displaying all the
addressing information. For instance an address book might want to present the
e-mail names for recipients, but doesn't need to present things like the phone
number used to access the e-mail system.

An address book can send msgSendServGetAddrSummary to a sendable service to
request summary of addressing information. The message takes a pointer to a
SEND_SERV_ADDR_ WIN structure, which lists all the service attributes.

It is up to the sendable service to determine which attributes it can use and to
create a summary string, which it passes back in the addrSummary field of the
SEND_SERV_ADDR_ WIN structure.

Part 11 /
Resources

Pv Chapter 102 / Introduction 337 Pv Chapter I 06 / Compiling
Overview Resources 359 102.1 337

Developer's Quick Start 102.2 337 Running the Resource Compiler 106.1 359

Layout of This Part 102.3 338 The RESAPPND Utility 106.2 360

Other Sources of Information 102.4 339 The RESDUMP Utility 106.3 360

Pv Chapter I 03 / Concepts and Pv Chapter 107 / System
Terminology 341 Preferences 361

Object Resources 103.1 341 Concepts 107.1 361
Once and Many Modes for The System Preferences 107.2 362
Object Resources 103.1.1 342 System and User Fonts 107.2.1 363

Data Resources 103.2 342 Screen Orientation 107.2.2 363
Resource Files 103.3 342 Hand Preference 107.2.3 363

Identifying Resources 103.4 342
Writing Style 107.2.4 364
Handwriting Timeout 107.2.5 364 Resource Types 103.4.1 343
Press-Hold Timeout 107.2.6 364 Well-Known Resource IDs 103.4.2 343

Dynamic Resource IDs Gesture Timeout 107.2.7 364 103.4.3 343
Power Management 107.2.8 364 Well-Known List Resource IDs 103.4.4 344
Auto Suspend 107.2.9 364 Using Resource IDs 103.5 344 Auto Shutdown 107.2.10 365 Resource Agents 103.6 345 Floating Allowed 107.2.11 365

Resource Lists 103.7 345 Zooming Allowed 107.2.12 365
Bell 107.2.13 365 Pv Chapter I 04 / Using clsResFile 347 Scroll Margin Style 107.2.14 365

clsResFile Messages 104.1 347 Input Pad Style 107.2.15 366

Creating a Resource File Handle 104.2 348
Character Box Width 107.2.16 366
Character Box Height 107.2.17 366 Locating a Resource 104.3 349
Line Height 107.2.18 366 Reading a Data Resource 104.4 349 Pen Cursor 107.2.19 366

Writing and Updating Data Resources 104.5 349 Time and Date 107.2.20 366
Reading an Object Resource 104.6 350 Date Format 107.2.21 367
Writing an Object Resource 104.7 351 Time Format 107.2.22 367

Enumerating Resources 104.8 351
Display Seconds 107.2.23 367
Primary Input Device 107.2.24 367 Deleting a Resource 104.9 352 Unrecognized Character 107.2.25 368 Compacting and Flushing Resource Files 104.10 353 Preference Change Notification 107.3 368 Resource Agents 104.11 353

Reading and Writing Data Resources 104.11.1 353 Pv List of Tables
Writing Your Own Agents 104.11.2 354 104-1 clsResFile Messages 347

~w Chapter 105 / Defining 107-1 System Preferences and Resource IDs 362

Resources with the C Language 355
~ List of Examples

Resource Source File Organization 105.1 355 105-1 A Tiny Resource Definition File 355 Resource Definitions 105.2 356 105-2 Defining Quick Help Resources 356 Example 105.3 356

Chapter 102 / Introduction

Resources provide a mechanism for storing objects and data in a file for later
retrieval. You can use resource files to store and retrieve application objects in
response to msgSave and msgRestore, to manage document configuration
information such as user preferences, and to store application-specific data such as
user interface text strings.

Overview
A resource is an object or collection of data stored in a file. A resource file can
contain several resources, each with a resource ID that is unique for the resource
file. Resource files respond to messages for locating, reading, writing, updating,
and deleting individual resources.

You can search for resources in an ordered list of resource files called a resource
list. The PenPoint™ Application Framework provides every document with a
default resource list that allows the document to override application resources, an
application to override user preference resources, and user preference resources to
override system defaults.

Th~ PenPoint operating system has built-in support for object resources-filed
representations of objects-as well as three kinds of data resource:

• Byte array resources are filed byte streams. These are-the simplest kind of
data resource, and your application must interpret the meaning of the bytes.

• String resources are filed, null-terminated text strings.

• String array resources are filed, indexed lists of text strings.

You can write resource agents to support additional semantics for the bytes of a
resource.

To make it easier for you to create data resources, the PenPoint SDK includes a
header file that lets you define the data resources in a C language source file and
compile the source into a resource file with a resource compiler utility included
with the PenPoint SDK.

Developer's Quick Start
As an application writer, you use resources to save and restore application instance
data and to create objects and data from resources stored in a resource file.

If you need to access a replaceable resource, you need to know the resource ID of
the resource and the resource file in which it is stored. It is the responsibility of
resource creators to publish their resource IDs in a header file.

338 PEN POINT ARCHITECTURAL REFERENCE

Part 11 I Resources

Once you have the file handle and the resource ID, you can send
msgResReadData (for data resources) or msgResReadObject (for object resources)
to read the resource.

In the following example, we want to create a menu from a resource. We know
that the resource file MyResources contains the object, and that it's well-known
resource ID is defined by the symbol tagMyMenu.

The first step is to generate a handle on the resourc;:e file as shown in the example
below:

STATUS status;
RES_FILE_NEW resNew;
FILE_HANDLE resFile;

status = ObjectCall(msgNewDefaults, clsFileHandle, &resNew);
resNew.fs.locator.pPath = "MyResources";
status = ObjectCall(msgNew, clsFileHandle, &resNew);
resFile= fsNew.object.uid;

Once you have created the resource file handle (and thereby opened the resource
file), you can use msgResReadObject to read the specific object from the resource
file as shown in the example below:

RES_READ_OBJECT rro;
STATUS status;
OBJECT myMenu;

rro.mode = resReadObjectMany; II let other procs have their own copy
rro.resld = tagMyMenu; II resource ID of target
ObjectCallRet(msgNewDefaults, clsObject, &rro.objectNew, status)
status = ObjectCallWarn(msgResReadObject, resFile, &rro);
myMenu = rro.objectNew.uid; II the UID of the retrieved object

Layout of This Part 102$3

Chapter 102, Introduction (this chapter) briefly introduces PenPoint resources.

Chapter 103, Concepts and Terminology, gives a more detailed overview of the
concepts and terminology of Pen Point resources.

Chapter 104, Using clsResFile, describes the API for clsResFile, the resource
file class.

Chapter 105, Defining Resources with the C Language, describes the resource
language used to create generic resources.

Chapter 106, Compiling Resources, describes the DOS utility that converts the
resource language files into resource files.

Chapter 107, System Preferences, describes the system preferences stored in the
system resource file. This chapter also describes notification messages sent to
observers when system preferences change.

CHAPTER 102 I INTRODUCTION 339

Other Sources of Information

". Other Sources of Information
Part 7: File System describes the organization of the PenPoint file system and the
messages used to access files. Resource files inherit characteristics (such as file
handles) from ordinary files, so you should be familiar with ordinary files before
programming with resource files.

Part 2: PenPoint Application Framework describes the message protocol involved in
saving and restoring application instance data. Handling the PenPoint Application
Framework save and restore messages is the most common reason for using object
resources.

102.4

Chapter 103 / Concepts and
Terminology

Resource files are used throughout the PenPoineM operating system to store and
recreate objects and data. Generally, you use resource files in the following ways:

• To file your application's objects in response to msgSave, or to un file them in
response to msgRestore.

• To read and modify configuration information, such as user preferences,
from a list of resource files.

• To store application-specific objects or data.

Obiec. Resources
An object resource contains information required for creating or restoring a
PenPoint object. Object resources are used to file object instance data as well as
store replaceable object resources.

Clients save and restore object instance data in response to the PenPoint
Application Framework messages msgSave and msgRestore. The PenPoint
Application Framework maintains one document resource file for each document.

When a document receives msgSave, it saves its state and sends msgResPutObject
once for each of its child windows. By default, the child windows handle this by
saving their state and sending msgResPutObject for each of their children, and so
on, until the document has saved all of its state. When the document receives
msgRestore, it simply reads the window objects from the document resource file
rather than create the entire window tree from scratch.

Replaceable object resources are used to store information to create a specific
object, such as a button, a menu, or a dialog box. You can improve code efficiency
by storing a complex object.to a resource file before run time (at install time, for
example). At run time, rather than take the time to build the complex object while
the user waits, you can simply read the object from the resource file.

If your application creates a number of objects that are the same, you can reduce
the size of your executable file by storing one copy of the object in a resource file.
At run time, you read the resource several times to create the multiple objects. You
can also use this technique for objects that are not identical but are largely similar,
using the resource to create most of the object and writing only the code necessary
to modify each copy after reading it.

342 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

Once and Many.Modes for Obiect Resources

When you read or write an object resource, you must specify either once mode,
in which only one copy of the object exists in memory and only one copy of the
resource exists in the file, or many mode. In many mode, any reader of the file
can restore the object resource, creating its own copy of the object resource in
memory (replacing the prior copy, if any); and any writer can replace the filed
resource with an object resource of its creation. The only time you normally use
once mode is when handling msgSave and msgRestore. For most other uses of
resource files, you use many mode.

Data Resources
A data resource is an array of bytes stored in a resource file. You can write a
resource agent to interpret the byte array in a meaningful way. For example, the
PenPoint operating system provides resource agents for text string data resources
and for string list data resources.

Later versions of Pen Point will provide specific support for multiple-language
applications.

Data resources are useful for storing static data that the user might update or
replace. For example, you can make it easier to port your application to a second
language by using a resource file to store the all of the text strings your application
displays. When you want to support a second language from your application, you
can change the language of your application without writing new code, by simply
providing the user with a resource file containing the text strings in the new
language.

Resource Files
Resource files begin with a resource file header that contains general information
about the file. Each resource in the file has its own resource header. The resource
header contains the resource class, resource ID, and a resource type .

. When you have created a resource file, you can write resources to it programmatically
by sending messages to the file. There are separate sets of filing messages for the two
types of resources. You can read and write object resources only with the object
resource filing messages, and data resources only with the data resource filing messages.
A single resource file can contain both object and data resources.

You can create data resources (but not object resources) by editing a resource
definition file, which you then compile into a resource file with the C compiler.

Identifying Resources
Each resource is tagged with a unique resource ID-a 32-bit TAG that appli­
cations use to locate the resource. Each resource in a file has a resource ID that is
unique within the file. As with most TAGs, the low 21 bits of a resource ID is the
administered portion and scope of the ID. The next two bits identify the resource
type of resource-well-known, dynamic, or well-known list. The remaining nine

CHAPTER 103 / CONCEPTS AND TERMINOLOGY 343

bits include eight bits to identity the unique tag number (tagNum) of the

resource. The high bit has a special meaning, explained below.

Resource Types

Identifying Resources

There are three types of resource ID: well-known resource IDs, dynamic resource
IDs, and well-known list resource IDs. The flags of the resource ID TAG indicate

which type of resource the ID identifies.

• A well-known resource ID (flags == 0) identifies a resource that any client
can use.

• A dynamic resource ID (flags == 1) generally identifies an object that is
nested within another object. For example, when you store an option sheet

as an object resource, it can store its child windows in the same file using

dynamic resource IDs.

• A well-known list resource ID (flags == 2) identifies a list resource such
as an array of strings. "List Resources" later in this chapter describes list

resources in more detail.

The high bit of the resource ID, when set, indicates that the object being

identified is a well-known object, and that the remainder of the resource ID is the

well-known UID of the object. You should take care not to modity the high bit

yourself, as its special meaning is maintained by the application.

The file RESFILE.H defines macros and functions that you can use to create

resource IDs of various types, and to extract individual values (such as flags) from

a resource ID.

Well-Known Resource IDs

Well-known resource IDs are defined in the header file of the class that defines the

resource, so any client of the class can access the identified resource. You use the

same administered portion used in defining the class, and assign a unique tagNum
, value for each well-known resource ID that uses the same administered portion.

Use the MakeWknResIdO macro to create a well-known resource ID when you

compile your application. The macro has the following syntax:

MakeWknRes1d(wkn, tagNum)

For example:

RES_1D myButton1Di II create the resource 1D

myButton1D = MakeWknRes1d(clsButton,l);

Dynamic Resource IDs

You normally send msgResPutObject in response to the PenPoint's Application

Framework msgSave. msgResPutObject generates dynamic resource IDs for
storing application objects that are not well-known objects. Dynamic resource IDs

344 PENPOINT ARCHIT.ECTURAL REFERENCE
Part 11 / Resources

are 29-bit numbers composed of the 21 bits normally used for the administered
portion and the 8 bits normally used for the tagNum value.

If you want to store dynamic items without using msgResPutObject, you can
create your own dynamic resource ID by sending msgResNextDynResId to a
resource file handle. The message takes a pointer to a RES_ID value that will
receive the dynamic resource ID.

If the message is successful, it returns stsOK and stores the newly generated
resource ID in the specified RES_ID. In the example below:

RES ID myDataResourcei
OBJECT resFilei
STATUS Si

II create the dynamic resource ID
ObjCallJmp(msgResNextDynResId,resFile,&myDataResource,s,error)i

Be aware that dynamic resource ID values are not recycled. Once a file uses up its
29 bits worth of dynamic resource IDs, msgResNextDynResID returns stsFailed.

Well-Known List Resource IDs

A well-known list resource ID identifies a list of indexed resources such as an
array of text strings. For list resource IDs, the eight bits normally used for the
tagNum value is used to indicate a six-bit list group and a two-bit list number
within that group. The list group identifies the type of list, while the list number
identifies one of up to four lists of that type in the resource file.

• List groups numbered from ° to IF hex are available for your use.

• List group 20 hex is reserved for arrays of strings for toolkit tables.

• List group 21 hex is reserved for arrays of strings for standard message text.

• List group 22 hex is reserved for arrays of strings for Quick Help text.

• List groups numbered from 23 to 3F hexadecimal are reserved for system use.

The data of a list resource includes a pseudo-resource ID index for each of the
elements of the list. These index IDs look like resource IDs, except that the 8 bits
normally used for the tagNum value instead indicate the item's index in its list
resource, while the flags indicate which list. This allows each list to include up to
256 entries. Since each list group can have 4 lists per group, this yields up 1,024
items per list group for each unique administered portion. To access a list resource
item, you must have the resource ID as well as the index within the list. You can
generate the resource ID and index from the group number and list resource ID.

Using Resource IDs
RESFILE.H defines several macros that let you determine the type of resource ID
returned by a message. The macros are:

WknltemResId(resID) True if the reso~rce ID is a well-known resource ID.

WknListResId(resId) True if the resource ID is a well-known list resource ID.

CHAPTER 103 / CONCEPTS AND TERMINOLOGY 345

WknResld(resld) True if the resource ID is a well-known resource or
resource list ID.

DynResld(resld) True if the resource ID is a dynamic resource ID.

WknObjResld(resld) True if the resource ID is for a well-known object
(high bit is set).

Resource Agen's
Resource agents enhance the default reading and writing behavior of data
resources, interpreting the resource data in special ways. The simplest resource
agent is the default resource agent, which treats data resources as a stream of bytes.
However, data isn't always just a byte stream; often the sequence of bytes has
meaning. The data might be a null-terminated string, a series of unsigned 32-bit
values, or a series of 8-byte floating point values. Agents work for you by
interpreting the formats of the data they read from the data resource file, and
converting data to a stream of bytes to write to the data file.

The PenPoint operating system comes with three resource agents:

• resDefaultResAgent is the default resource agent. This agent treats data
resources as a stream of bytes.

"
• resStringResAgent handles data resources that are NULL-terminated strings.

• resStringArrayResAgent handles data resources that are arrays of
NULL-terminated strings. The array of strings must be terminated by a pNull
string pointer.

Chapter 104, Using clsResFile, explains how to write your own agents to handle
other types of data resources.

Resource Lis.s
A resource list is an instance of clsResList, which inherits from clsList. The entries in
a resource file are resource file handles, other resource file lists, or null entries. When
you send a read or find message to a resource file list object, it sends the message to
each of its entries in turn (skipping null entries) until the message returns stsOK
(msgResEnum, which enumerates the items in each file, is a special case).

Each application class maintains a default resource list object in its class metrics.
The default application installation process creates this list with four initial
elements:

• The document resource file, DOC.RES.

• The application resource file, APP.RES.

• The system preferences resource file.

• The PenPoint system resource file.

Resource Lists

Agents do not read or write
object resources.

346 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

The system resource file has the well-known file handle theSystemResFile; the
system preferences resource file has the well-known file handle
theSystemPreferences. Even though these resource file handles are well-known,
they are on the default resource list for easier resource searching.

The application resource file is stored in the directory for the corresponding
application (under \PENPOINT\SYS\APp). You should add dynamic resources to the
application resource file when you install the application (that is, when running
instance 0 of the application). For more information about adding dynamic
resources during installation, see Part 12: Installation API

You can create a resource list in addition to the default application resource list by
sending msgNewDefaults and msgNew to clsResList. Instances of clsResList pass
all other messages to clsList. For more information on clsList messages see the
description of clsList in Part 9: Utility Classes.

Chapter 104 / Using clsResFile

The resource file class, clsResFile, inherits from clsFileHandle. This chapter
presents the data structures used by clsResFile messages and discusses the messages
as well. For more information on using clsResFile, see the RESFILE.H header file
shipped with the PenPoint™ SDK.

clsResFile Messages
Table 104-1 summarizes the messages that clsResFile defines.

msgNew

msgN ewDefaults

msgResReadData

msgResWriteData

msgRes U pdateData

msgResReadObject

msgRes W riteObject

msgResGetObject

msgResPutObject

msgResReadObjectWithFlags

msgRes W riteObject WithFlags

msgResDeleteResource

msgResGetInfo

msgResEnumResources

msgResN extDynResId

P _RES_FILE_NEW

P _RES_FILE_NEW

P_RES_WRITE_DATA

P _RES_ WRITE_DATA

P _RES_ WRITE_OBJECT

P_OBJECT

OBJECT

P _RES_READ_OBJECT

P _RES_ WRITE_OBJECT

104~ 1

Table 104~1

clsResFile Messa es

Creates a resource file object.

Initializes the RES_FILE_NEW structure to

default values.

Reads resource data from a resource file or resource
list.

Writes resource data to a file.

Updates existing data resource data.

Reads a resource object from a resource file or
resource list.

Writes a resource object to a file.

Reads the filed object resource from the current file
position. For use only during msgRestore.

Writes the object as a filed object resource to the
current file position. For use only during msgSave.

Reads a resource object, passing the supplied flags.

Writes a resource object, passing the supplied flags.

Marks as deleted the resource identified by RES_ID.

Gets information on a data or object resource in a
resource file or a resource list.

Enumerates resources in a resource file or resource
list.

Gets the next available dynamic resource 10 from
the file.

348 PEN POINT ARCHITECTURAL REFERENCE

Part 11 I Resources

msgResCompact void Compacts the resource file, actually deleting the
resources marked as deleted.

msgResFlush

msgResAgent

void Flushes the index of resources read from the file.

Message sent by resource file to resource agent
when forwarding messages.

Crealing a Resource File Handle
To create a resource file handle, send msgNewDefaults and msgNew to
clsResFile. When msgNew completes, the object.uid field of the RES_NEW

structure contains the UID of the resource file handle.

msgNewand msgNewDefaults both take a pointer to a RES_FILE_NEW structure
as their argument. The RES_FILE_NEW structure includes all the fields that
clsFileHandle's FS_NEW structure includes. This is how clsResFile inherits from
clsFileHandle. In addition to the FS_NEW fields, RES_FILE_NEW includes the
following fields (the data type of each field is shown in parentheses following its
name):

mode (RES_NEW _MODE) A set of flags that controls various attributes of
the resource file handle. The flags can include any combination of the
following:

resSharedResFile (default: false) More than one client can use this file
handle concurrently. This does not mean that more than one client can
open a file handle on the file, just that multiple clients can safely share
the one file handle.

resCompactOnClose (default: true) Send msgCompact to file when­
ever the resource file is closed.

resCompactAuto (default: false) Send msgCompact to file when ratio
of deleted to non-deleted resources in the file reaches compactRatio.

resVerifyVersions (default: true) Check that current system version is at
least the minimum supported version for each resource.

compactMinimum (U16) The minimum number of resources required in
the file before automatic compaction occurs.

compactRatio (U16) A percentage representing the minimum ratio of
deleted resources marked to undeleted resources required before
automatic compaction occurs.

When you delete a resource from a file, the resource is marked as deleted but is
not deleted until the file is compacted. If resCompactOnClose is set, the file is
compacted every time the controlling document closes. If resCompactAuto is set,
the file is compacted automatically if there are more than compactMinimum
resources in the file and a deletion causes the ratio of deleted resources to

104.2

CHAPTER 104 / USING CLSRESFILE 349
Writing and Updating Data Resources

un deleted resources to exceed compactRatio. For example, if compactRatio is 30,
the file is compacted when the ratio of deleted resources to undeleted resources
reaches 300/0.

Locating a Resource
To search for and get information about a resource, send msgResGetlnfo to a
resource file handle or resource file list. msgResGetlnfo takes a pointer to a
RES_INFO structure as its argument. You pass in resld, and msgResGetlnfo passes
back information about the identified resource. RES_INFO includes the following

fields (the data type of each field is shown in parentheses following its name):

resld (RES_I D) The ID of the resource to find.

file (RES_FILE) The file where the identified resource resides. This is mainly

useful when you send msgResGetlnfo to a resource list, so that you
know which of the files in the list contains the resource.

agent (UID) The agent that saved the resource.

objClass (UID) If an object resource, the class of the object.

offset (U32) The offset in bytes from the start of the file to the first byte of

the resource. Use only with caution.

size (U32) The size of the resource in bytes. Use only with caution.

minSysVersion (UI6) The minimum system version with which the
resource is compatible.

Reading a Data Resource
To search for and read a data resource, send msgResReadData to either a resource
file handle or a resource file list. msgResReadData takes a pointer to a
RES_READ_DATA structure as its argument. RES_READ_DATA includes the

following fields (the data type of each field is shown in parentheses following its
name):

resld (RES_I D) The resource ID of the resource to read.

pData (p _UNKNOWN) The retrieved resource data.

heap (OS_HEAP _ID) A heap from which to allocate memory for storing the
retrieved resource data. Set to Nil (OS_HEAP _ID) if pData points to an

. allocated buffer.

length (U32) The length of the resource data.

pAgentData (p _UNKNOWN) Agent-specific data, such as the index into a

list resource.

Writing and Updating Data Resources
To write a data resource to a resource file, send msgResWriteData to a resource
file handle. To update a data resource, send msgResUpdateData to a resource file

handle. U pda-ting a data resource is like writing a data resource, except that the

104 .. 5

350 PEN POINT ARCHITECTURAL REFERENCE

Part 11 / Resources

update operation reads the resource file to determine the correct agent to use. You

cannot send write or update messages to a resource file list, only to a resource file.

msgResWriteData and msgResUpdateData both take a pointer to a
RES_WRlTE_DATA.structure as their argument. RES_WRITE_DATA includes the

following fields (the data type of each field is shown in parentheses following its
name):

resld (RES_I D) The resource ID with which to write the resource.

pData (p _UNKNOWN) The data to be written.

length (U32) The length of the data (agent might compute this value).

agent (UID) The agent to use in writing the data. Not used for

msgResUpdateData.

pAgentData (p _UNKNOWN) Agent-specific data, such as the index into a

list resource.

Reading an Obiec. Resource
There are two messages that you can use to read object resources:
msgResReadObject and msgResReadObjectWithFlags. Both messages search for
and read an object resource from either a resource file handle or a resource file list.

The difference is that msgResReadObjectWithFlags takes additional flags
arguments, which it passes in msgRestore to the new object.

msgResReadObject and msgResReadObjectWithFlags both take a pointer to a
RES_READ_OBJECT structure as their argument. RES_READ_OBJECT includes the

following fields (the data type of each field is shown in parentheses following its
name):

mode (RES_READ_OBJ_MODE) Whether to read the object in once mode
(don't read the object from file if already read) or many mode (allow each

read to create its own copy of the object). Possible values are:

resReadObjectOnce Read once mode.

resReadObjectMany Read many mode.

resld (RES_I D) The resource ID of the object resource to be read.

objectN ew (OBJECT_NEW) Before reading the object resource, this field
must be initialized with a msgNewDefaults to clsObject. After reading

the object resource, the object UID will be objectNew.uid.

sysFlags (RES_SA VE_RESTORE_FlAGS) System-defined flags for

msgResReadObjectWithFlags.

appFlags (UI6) Application-defined flags for msgResReadObjectWithFlags.

When the message returns successfully, the RES_READ~OBJECT structure contains
the UID of the newly created object in objectNew.uid. If you specified
resReadObjectOnce and the object existed already, objectNew.uid contains the
UID of the object created when the resourc~ was first read, but the message does
not result in a second copy of the object.

CHAPTER 104 / USING CLSRESFILE 351

Enumerating Resources

When you use msgResReadObjectWithFlags, you must be very careful in
specifying the sysFlags and appFlags values. The values for sysFlags are specific to
PenPoint, and are currently used only on copy operations. You can define specific
appFlags for a class, but you must be careful that you only send the flags defined
for a specific class when restoring objects of that class.

Writing an Obiect Resource
There are two messages that you can use to write object resources:
msgResWriteObject and msgResWriteObjectWithFlags. Both messages write an
object resource to a resource file; you cannot send these messages to a resource file
list. The difference between the messages is that msgResW riteObjectWithFlags
takes additional flags arguments, which it passes in msgSave to the object being
written.

msgResWriteObject and msgResWriteObjectWithFlags both take a pointer to a
RES_WRITE_OBJECT structure as their argument. RES_WRITE_OBJECT includes
the following fields (the data type of each field is shown in parentheses following
its name):

mode (RES_ WRITE_OBJ_MODE) Whether to write the object in once mode
or many mode. Possible values are:

resWriteObjectOnce Write once mode. Don't write the object resource
to the file if it has already been written.

resWriteObjectMany Write many mode. Write the object reseource to
the file, creating it if it isn't already in the file, or overwriting the old ver­
sion if it is already in the file.

resld (RES_I D) The resource ID with which to write the object resource.

object (UID) The UID of the object to be written.

sysFlags (RES_SA VE_RESTORE_FLAGS) System-defined flags for
msgResWriteObjectWithFlags.

appFlags (U16) Application-defined flags for msgResWriteObjectWithFlags.

When you use msgResWriteObjectWithFlags, you must be very careful in
specifying the sysFlags and appFlags values. The values for sysFlags are specific to
PenPoint, and are currently only used on copy operations. You can define specific
appFlags for a class, but you must be careful that you send only the flags defined
for a specific class when restoring objects of that class (the flags are passed along
with recursive writes, which may end up at objects of a different class than the
top-level object; use msgResWriteObjectWithFlags with care.

Enumerating Resources
To create an array of all resource IDs in a resource file or resource file list that
match a particular selection criteria, send msgResEnumResources to a resource
file handle or a resource file list.

104.8

352 PEN POINT ARCHITECTURAL REFERENCE
Part 11 / Resources

msgResEnumResources takes a pointer to a RES_ENUM structure as its argument.

RES_ENUM includes the following fields (the data type of each field is shown in

parentheses following its name):

match (UID) The search key, for example an agent or class.

mode (RES_ENUM_MODE) How to filter the search. This can be one of the

following values:

resEnumAlI (the default) Find next resource in file.

resEnumByResIdClass Find next resource in file whose resource ID ad­

ministrated part matches match.

resEnumByObjectClass Find next resource in file whose object class

matches match.

resEnumByObjectUID Find next resource in file whose object UID
matches match.

resEnumByAgent Find next resource in file whose agent matches match.

pResId (p _RES_I D) A pointer to the array of enumerated resource IDs.

pResFile (p _RES_FILE) A pointer to the array of file handles corresponding

to each entry of pResId.

max (UI6) Maximum number of entries allocated for pResId and pResFile

arrays.

count (UI6) The number of entries in the arrays. When passed in with a

message, count specifies the number of entries requested. When passed

back out, count specifies the number of entries actually retrieved.

When the message completes, pResId[] contains the resource IDs that match the

criterion, and pResFile[] contains the resource file handles for the corresponding

entries in pResId[]. If the final count is larger than max, the resource manager

allocates heap to accomodate the additional resource IDs and resource file handles.

You can tell that heap was allocated when the arrays indicated by pResId and

pResFile are different from their original values when the message returns. If the

resource manager allocated heap, you must free the heap when you are done.

If you are concerned about memory requirements, you can request the message to

return only a few resource IDs at a time. To do so, you keep the pResId and pResFile

arrays small and specify a small count value on the first call to msgResEnumResources.

On subsequent calls, you specify small count values, and you must OR in
resEnumNext in the mode field and repeat the data returned in cache.

Deleting a Resource
To mark a resource as deleted, send msgResDeleteResource to a resource file
handle. msgResDeleteResource takes as its argument a pointer to the RES_ID that

identifies the resource to be marked.

msgResDeleteResource marks a resource as deleted. Resources marked as deleted
are not actually removed from the resource file until the resource file compacts in

response to msgResCompact. You can send msgResCompact yourself to force a

104~9

CHAPTER 104 / USING CLSRESFILE 353

resource file to compact, or it may compact automatically depending on the mode
settings at msgNew time (see "Creating a Resource File Handle" earlier in this
chapter).

Compacting and Flushing Resource Files
To explicitly compact a resource file, send msgResCompact to the resource file
handle. This deletes all resources in the resource file that are marked as deleted.
msgResCompact doesn't take any arguments.

Flushing the resource file has the effect of clearing the internal table maintained by
the resource manager for the file. To do this, send msgResFlush to the resource file
handle. The message doesn't require any arguments. This internal table keeps track of
the resource IDs, the UIDs associated with object resources, and maintains the flags
that indicate when an object resource has been written.

In addition to clearing the internal table associated with a resource file,
msgResFlush flushes any buffered file output to disk.

Essentially, a flush restores the resource file to the state it was in when you
opened it. This is particularly important if you are reading an object resource
with resReadObjectOnce mode, because the resource manager uses the table to
determine whether it has read the object before.

If you want to flush buffered output without flushing the resource file table, you
can send the clsFileHandle message msgFSFlush.

Resource Agents
As mentioned in Chapter 103, data resources are usually managed by agents that
interpret the bytes of a data resource in a special way. PenPoint comes with three
data resource agents: one that interprets the bytes simply as bytes, a second that
interprets them as NULL-terminated strings, and a third that interprets them as
arrays of NULL-terminated strings. This section explains how the resource manager
interacts with resource agents and how to write your own agents to handle special
types of data resource.

Reading and Writing Data Resources

When you send msgResWriteData to a resource file handle, you specify the agent
that will write the data. The resource manager finds a suitable .location to store the
resource and writes the header information and the agent's UID in the resource
file at that location. The resource manager then sends msgResAgent to the agent,
and the agent handles the rest of the write.

When you send msgResReadData or msgResUpdateData to a resource file handle
or resource file list, the message determines the correct agent to use by looking at
what msgResWriteData stored in the file. The resource manager then sends
msgResAgent to the agent, and the agent handles the rest of the read or update.

Resource Agents

104.10

354 PENPOINT ARCHITECTURAL REFERENCE
Part 11 / Resources

Writing Your Own Agents

A resource agent is a well-known object that responds to msgResAgent. The
easiest way to create your own agent is to create a single instance of the agent class
and make the DID of that instance well-known.

The agent needs to handle just one message: msgResAgent. As discussed above,
the resource manager will send msgResAgent to the agent during any
msgResReadData, msgResWriteData, or msgResUpdateData that specifies the
agent. msgResAgent takes a pointer to a RES_AGENT structure as its argument.
RES_AGENT includes the following fields (the data type of each field is shown in
parentheses following its name):

file (RES_FILE) The file containing the resource.

length (U32) Length of the resource entry, in bytes.

msg (MESSAGE) The original message (msgResReadData,
msgResWriteData, or msgResU pdateData).

pArgs (p _UNKNOWN) The argument passed with the original message.

sysVersion (016) The minimum system version compatible with the
resource, to record during write operations.

When you handle msgResAgent, you must examine msg to determine what
action you will take. You must use dsStream messages to read and write data. Do
not use the stdio library functions. dsStream messages update the file pointer
maintained by dsResFile. If the file pointer is not positioned where the resource
manager expects, unpredictable results occur, potentially including loss of data.
On the same note, do not send seek or rewind messages to the file handle, as these
also alter the file pointer.

The arguments to msgResReadData and msgResUpdateData include a pointer to
other data (pAgentData). You can use this information to locate specific
information within a resource. For example, if your agent stores a number of
variable length values, you can allow clients to specify an index to one of the
values in pAgentData. When you receive msgResAgent, you can use the
pAgentData to locate the specific value that the client wants.

Chapter 105 / Defining Resources
with the C Language

You can define data resources in the C language. This section describes the specific
format of static data declarations that you use to define resources. At the end of
this chapter is a short example of a resource source file.

Resource definition files contain C code that define the data resource. To compile
the code into a resource file, you follow these steps:

1 Include a special header file (RESCMPLR.H) into your code.

2 Define each data resource as an RC_INPUT data structure.

3 Define an array of pointers (reslnput) to the data resources.

4 Use the RC command, described in Chapter 106 to compile the C code into
a resource file.

Resource Source File Organization
Every resource definition file has pretty much the same structure, varying mainly
in the number of resources and the data they contain. Example 105-1 shows the
source for a resource file that contains a single NULL-terminated string resource.

This example shows the source for a resource definition file that defines a single resource, a NULL-terminated string reading
"Hello, World." More complex resource definitions would simply include more RC_INPUT definitions and a larger
resInput[] array to hold them. RESCMPLR.H provides examples for data types other than strings.

#ifndef RESCMPLR_INCLUDED
#include <rescmplr.h>
#endif
#include mydefine.h II defines myResId to MakeWknResId(clsExample, 1)
static RC INPUT myResource = {

myRe sId , II Resource ID for the resource
"Hello, World.", II Pointer to the resource data
0, II Data length; a means let compiler figure it out
resStringAgent, II Resource agent for the resource
}

P_RC_INPUT resInput[] = {

&myResource,
pNul1

} ;

The first non-comment lines must contain an #include <rescmplr. h>
statement. You should also include any other header files that your resource
definitions require, such as the header file that defines the resource IDs.

356 PENPOINT ARCHITECTURAL REFERENCE
Part 11 I Resources

Follow the #def ine statements with the resource definitions. Each resource
definition is a static struct for which you specify the elements. The elements of the
struct depend on the resource data type. The structs and the resource data types
are described in the next section.

Finally, you define an array named reslnput that contains pointers to each of the
static struct resource definitions. reslnput is an exported variable that is expected
by the resource compiler. The array ends with a null entry.

Resource Definitions
The definition for each resource in the source file has the following common
structure:

resource-label = {

II the resource 10 (RES 10)
static RC INPUT

resId;
pData;
dataLen;

II points to the resource data (P UNKNOWN)
II length of the resource data, in bytes (U16)

agent; II the resource agent, usually resDefaultResAgent (OBJECT)
minSysVersion; II min sys version for resource (U16)
objectData; II false means the resource is a data resource (BOOLEAN)
pAgentWriteProc; II pNull, unless supplying routine (P AGENT WRITE)
pAgentWriteData; II usually pNull (P_UNKNOWN) --

} ;

All of the fields after agent default to zero, which is normally a correct value, so
you shouldn't have to set them explicitly.

Example
Example 105-2, taken from TTTQHELP.RC in the \PENPOINT\SDK\SAMPLE\TTT

directory of the PenPoint SDK distribution, shows the definition of four Quick
Help resources. Quick Help resources determine the text that appears in the
Quick Help window when you tap the pen on a window. Quick Help is described
in more detail in Part 9: Utility Classes.

Note that in ANSI C, two consecutive quoted strings are treated as a single quoted
string. This lets you break a long string into several parts, and this technique is
used in the following example.

#ifndef RESCMPLR INCLUDED
#include <rescmplr.h>
#endif
#ifndef QHELP_INCLUDED
#include <qhelp.h>
#endif
#ifndef TTTVIEW INCLUDED
#include "tttview.h"
#endif

Defining Quick

CHAPTER 105 I DEFINING RESOURCES WITH THE C LANGUAGE 357
Example

Example 1 05~ 2 (continued)

II
II Quick Help string for ttt's option card.
II
static CHAR tttOptionString[] = {

} i

II

II Title for the quick help window
"TTT Card I I "
II Quick help text
"Use this option card to change the thickness of the lines "
"on the Tic-Tac-Toe board."

II Quick Help string for the line thickness control in ttt's option card.
II
static CHAR tttLineThicknessString[] =

II Title for the quick help window
"Line Thickness I I"

} i

II

II Quick help text
"Change the line thickness by writing in a number from 1-9."

II Quick Help string for the view.
II
static CHAR tttViewString[] = {

} i

II Title for the quick help window
"Tic-Tac-Toe II"
II Quick help text
"The Tic-Tac-Toe window lets you to make X's and D's in a Tic-Tac-Toe "
"grid. You can write X's and O's and make move, copy"
"and pigtail delete gestures.\n\n"
"It does not recognize a completed game, either tied or won.\n\n"
"To clear the game and start again, tap Select All in the Edit menu, "
"then tap Delete."

II Define the quick help resource for the view.
static P RC TAGGED STRING tttViewQHelpStrings[]

} i

tagCardLineThickness, tttOptionString,
tagTttQHelpForLineCtrl, tttLineThicknessString,
tagTttQHelpForView, tttViewString,
pNul1

static RC_INPUT tttViewHelp =
MakeListResld(clsTttView, resGrpQhelp, D),
tttViewQHelpStrings, II Name of the string array
D,
resTaggedStringArrayResAgent II Use string array resource agent

} i

1**
The glue that ties everything together -- reslnput.

**1
II reslnput is an exported variable that the resource compiler expects.
II Each element is a pointer to a structure describing the next resource.
II The list is terminated with a null pointer.
P RC INPUT reslnput [] = {

} i

&tttViewHelp, II this is the one defined in this example
II any other resource pointers would go here
pNull

Chapter 106 / CoMpiling Resources

When you have created the resource source file, you must compile it with the resource
compiler to create the resource file. The resource compiler performs four tasks:

1 Creates a C file that #includes your resource definition file.

2 Uses the C compiler to compile your resource source file.

3 Links the resulting object file with RESCMPLR.LIB.

4 Runs the resulting executable file to produce a resource file.

S Deletes its intermediate files.

Running the Resource Compiler
The resource compiler is the MS-DOS executable file RC.EXE. RC has the
following syntax:

RC reslnputFile [resOutputFile] [Iv] [/0]

The reslnputFile specifies the input source file. The input file can be either a
resource source file (with the extension .C or .RC) or a previously compiled object
file (with the extension .OBJ). If you omit the extension from the file name, RC

looks for files with .C and .RC extensions.

The optional resOutputFile specifies the name of the final resource file. If you
omit resOutputFile, RC creates a file with the same name as the reslnputFile, but
with a .RES extension.

The optional /v flag directs RC to give verbose status messages. The verbose
messages:

• Tell you the commands that RC executes.

• Report all of its steps.

• Give you information about the resources that it compiled.

The optional /0 flag directs RC to report when its spawned processes complete or
fail. The /0 flag also turns on verbose status messages and prevents RC from
deleting intermediate files.

RC creates a resource file (either using the name of the source file or using the
output name specified). If the resource file already exists, RC appends the new
resources to the resource file. If the resources already exist in the file, RC marks
those resources as deleted and appends the new resources. To remove deleted
resources from a resource file, use the RESAPPND utility described below.

To review the contents of a resource file, use the RES DUMP utility, also described
below.

106.1

Chapter 4, Defining Resources
with the C Language, describes
how to create the source file.

----~----------------

360 PEN POINT ARCHITECTURAL REFERENCE

Part II/Resources

RC cleans up after itself by deleting any intermediate files that it created (.OBJ and
.EXE). However, if the input file is an object file, RC does not delete that .OBJ file.

The RESAPPND Utility
The RESAPPND utility allows you to append all the resources from one resource
file to another resource file. This allows you to create and compile a number of
small resources and append those resources to one large resource file.

The syntax for RESAPPND is:

RESAPPND sourceResFile destResFile

The sourceResFile is the resource file that contains the resources that will be
appended. The destResFile is the file to which the source resources will be
appended.

While appending resources, RESAPPND ignores any resources that are marked as
deleted. Thus, you can use RESAPPND to remove resources marked as deleted from
a resource file. To do this, use RESAPPND to append the resources in a file to a
new, temporary file. Then rename the temporary file to the name of the original
resource file.

For example:

C : > REM myres. res contains deleted resources
C : > resappnd myres.res temp.res

C : > copy temp. res myres. res
1 File(s) Copied

C : > del temp. res

The RESDUMP Utility
The RES DUMP utility allows you to display the contents of a resource file. The
information displayed by RESDUMP includes:

• The file header, which 'describes the class and resource file version
information.

• The resource ID for each resource.

• The length of the data in each resource.

• The data in each resource.

The syntax for RESDUMP is:

RESDUMP resourceFile

resourceFile is the name of the resource file to be dumped.

If any of the resources are marked as deleted, RES DUMP identifies them as marked
as deleted.

106.2

106.3

Chapter 107 / System Preferences

The system preferences are stored as resources in the preferences resource file. This
chapter describes system preference resources and the notification messages that
observers receive when the system preferences change.

Topics covered in this chapter include:

• System preference concepts, including their storage location and typical uses.

• The system preferences and what they do.

• Observing system preferences.

Concepls
On a new PenPoint installation, the preferences resource HIe is \PENPOINT\SYS\

PREF\GENERIC, but the user can change which preferences resource file is current.
No matter what the current preferences resource file, the PenPoineM operating
system maintains theSystemPreferences as a handle on the current preferences
resource file.

System preferences describe system settings, such as the current system font, screen
orientation, left- or right-handed operation, and so on. Usually a user modifies the
system preferences from the Settings notebook. However, if an application needs
to examine or, more rarely, modify system preferences, it can access the system
preferences in the preferences resource file.

The system preference resources are identified by well-known resource IDs. The
preferences and their resource IDs are listed in the next section. The class used in
the administered portion of the system preference resource IDs is clsPreferences. If
you add resources for other preferences, the class should be the class that created
the preference.

Any request to read or write a preference forces a read or write to a preference
resource file. This minimizes the amount of space required to store preferences.

Clients can get and set the preferences resources by sending msgResReadData,
msgResWriteData, and msgResUpdateData to the well-known object
theSystemPreferences (which is an instance of clsPreferences). When users want
to change the system preferences, they open the Preferences section of the Settings
notebook, which then communicates with theSystemPreferences to alter the
system preferences.

The preferences resource file is stored in a well-known directory, managed by
theInstalledPreferences. If necessary, a client can supply an entirely new system
preferences file, containing a different set of preferences.

362 PEN POINT ARCHITECTURAL REFERENCE
Pa rt 11 I Resou rees

When PenPoint is cold- or warm-booted, theSystemPreferences contains the
set of preferences associated with the current preference set managed by
thelnstalledPreferences. If there is no current set of preferences at boot time,
theSystemPreferences copies a generic set of preferences from \PENPOINT\SYS\

PREF\GENERIC and makes that the system preferences file.

The System Preferences
The following sections describe the standard system preferences, defined in
PREFS.H. In each section, the preference is described along with its resource ID
and the symbols that identify possible states for that preference.

Table 107-1 summarizes the standard preferences and their resource IDs. These
preferences are defined in the header file PREFS.H.

107.2

l~able 1 01·~ 1

System Prefererlces and Resource IDs

System font

User font

Screen orientation

Hand preference

Writing style

Handwriting timeout

Press-hold timeout

Gesture timeout

Power management

Auto suspend timeout

Auto shutdown timeout

Floating allowed

Zooming allowed

Bell

Scroll margins

Input pad style

Character box width

Character box height

Line height

Pen cursor

Time and date

Date format

Time format

Display seconds

Primary input device

Unrecognized character

prSystemFont

prUserFont

prOrientation

pr HandPreference

prWritingStyle

prHWXTimeout

prPenHoldTimeout

prGestureTimeout

prPowerManagement

tagPrAutoS uspend

tagPrAutoShutdown

pr DocFloating

prDocZooming

prBell

prScrollMargins

prInputPadStyle

prCharBoxWidth

prCharBoxHeight

prLineHeight

prPenCursor

prTime

prDateFormat

prTimeFormat

pr TimeSeconds

prPrimaryInput

pr UnrecCharacter

CHAPTER 107 / SYSTEM PREFERENCES 363

The System Preferences

System and User Fonts

prSystemFont is the resource ID for the system font. prUserFont is the resource
ID for the field or user font. Both of these resources affect the returned value from
PrefsSysFontlnfoO.

Changing either of these resources with msgResWriteData will cause the entire system
to layout after notification of observers, which degrades system performance. As a
result, clsPreferences will compare this resource to its previous value to prevent layout
and observer notification if the write did not change the value.

Both of these resources contain a PREF_SYSTEM_FONT_INFO structure that
includes the following fields:

scale A DB representing the font size in points.

sysFontld A DI6 that identifies the font family (Courier, for example) of
the system font.

userFontld A DI6 that identifies the font family used to render translated
user input.

See Part 3: Windows and Graphics of volume I for more information about font
rendering under the ImagePoint™ imaging model.

Screen Orientation

prOrientation is the resource ID for the screen orientation preference. Changing this
resource with msgResWriteData will cause the system to layout after notification of
observers, expensive in terms of system performance. As a result, clsPreferences will
compare this resource to the previous value to prevent layout and observer notification
if the write did not change the value.

The screen orientation preference is a P _DB that can have one of the following values:

prPortrait The long edge of the screen is vertical.

prLandscape The long edge of the screen is horizontal.

prPortraitReversed Similar to prPortrait, but rotated 180 degrees.

prLandscapeReversed Similar to prLandscape, but rotated 180 degrees.

Hand Preference

prHandPreference is the resource ID for the preference that indicates whether the
user is left-handed or right-handed. This affects aspects of the screen layout such
as whether scroll margins appear along the right or left sides of windows.

Changing this resource with msgResWriteData will cause the system to layout after
notification of observers, degrades system performance. As a result, clsPreferences will
compare this resource to the previous value to prevent layout and observer notification
if the write did not change the value. Reads and writes of this ID use a P _DB which can
have one of two values:

prLeftHanded User is left-handed.

prRightHanded User is right handed.

364 PENPOINT ARCHITECTURAL REFERENCE

Part 11 / Resources

Writing Style

prWritingStyle is the resource ID for the handwriting preference style. This
preference indicates whether the user prefers to write in all capital letters or to
use mixed upper and lower case. Reads and writes of this ID use a P _UB, whose
possible values are:

prMixedCase Mixed case writer.

prCapsOnly All caps writer.

Handwriting Timeout

prHWXTimeout is the resource ID indicating the handwriting timeout, and is
measured in 0.01 second increments. Reads and writes of this ID use a P _U16

indicating the number ofD.OI-second increments from the time the pen stops
moving to the time the handwriting translator begins to translate the strokes.

Press-Hold Timeout

prPenHoldTimeout is the resource ID for the press-hold timeout, and is
measured in 0.01 second increments. Reads and writes of this ID use a P _U16

indicating the number of O.OI-second increments from the time the pen touches
the screen to the time the gesture translator recognizes the gesture as a press-hold.

Gesture Timeout

prGesture Timeout is the resource ID for the gesture timeout, and is measured in
0.01 second increments. Reads and writes of this ID use a P _U16 indicating the
number of 0.0 I-second increments from the time the pen stops moving to the
time the gesture translator captures and begins to translate the strokes.

Power Management

prPowerManagement is the resource ID that indicates whether the system should
attempt to limit the computer's power consumption by turning off inactive
devices. prPowerManagement is a P _UB that can have one of two values:

prPowerManagementOff No power management attempted.

prPowerManagementOn Power management attempted.

Auto Suspend

tagPrAutoSuspend is the resource ID for automatic suspend timeout (the amount
of idle time allowed before the machine goes into a power-saving suspended
mode). Reads and writes of this ID use a P _U16, whose units are minutes. If
tagPrAutoSuspend is 0, the machine will not automatically suspend itself.
Machines that do not support automatic suspend do not use the auto shutdown
preference value. Instead, they use the auto suspend preference value as an auto
shutdown timeout.

107.2.4

101.2.5

101.2.6

101.2.7

101,,2.9

CHAPTER 107 I SYSTEM PREFERENCES 365

The System Preferences

Auto Shutdown

tagPrAutoShutdown is the resource 10 for automatic shutdown timeout (the
amount of idle time before the system automacally shuts itself down). Reads and
writes of this 10 use a P _UI6, whose units are hundredths of hours. If the value is
0, the machine will not shut itself down automatically.

Machines that do not support auto suspend use the automatic suspend timeout
preference as the automatic shutdown timeout.

Floating Allowed

prDocFloating is the resource 10 that indicates whether documents in notebooks
can be floated (displayed in their own window, independent of the notebook
frame). Reads and writes of this 10 use a P _us which can have one of two values:

prDocFloatingOff Document floating not allowed.

prDocFloatingOn Document floating allowed.

Zooming Allowed '~07~2~12

prDocZooming is the resource 10 that indicates whether floating documents can
be zoomed (expanded to fill most of the display). Reads and writes of this ID use a
P _us which can have one of two values:

Bell

prDocZoomingOff Document zooming not allowed.

prDocZoomingOn Document zooming allowed.

prBell is the resource 10 for the preference that indicates whether to sound the
warning bell to gain the user's attention. It reads and writes a P _us, whose possible
values are:

prBellOn Sound the bell to indicate a warning condition.

prBellOff Don't sound the bell under any circumstances.

Scroll Margin Style

prScrollMargins is the resource 10 that determines whether scrolling windows use
"full" or "light" scroll bars.

Changing this resource with msgResWriteData will cause the system to layout
after notification of observers, which degrades system performance. As a result,
clsPreferences will compare this resource to the previous value to prevent layout
and observer notification if the write did not change the value.

Reads and writes of this 10 use a P _us which can have one of two values:

prScrollMarginsFull Use full scroll margins.

prScrollMarginsLight Use light scroll margins.

366 PEN POINT ARCHITECTURAL REFERENCE
Part 11 I Resources

Input Pad Style

pdnputPadStyle is the resource ID indicating the preferred style of handwriting
pads. Reads and writes of this ID use a P _V8, which can have one of three values:

prInputPadStyleBoxed Input pads are boxed.

prInputPadStyleRuled Input pads are ruled.

prInputPadStyleRuledAndBoxed Input pads start ruled, then go to boxed
for eqiting.

This preference affects only input pads created after the preference is changed.

Character Box Width

prCharBoxWidth is the resource ID indicating the width of character boxes for
boxed writing fields. Reads and writes of this ID use a P _V8, which indicates the

. width of the box in points (a point is 1172 inch). This preference affects only
character boxes created after the preference is changed.

Character Box Height

prCharBoxHeight is the resource ID indicating the height of character boxes for
boxed writing fields. Reads and writes of this ID use a P _V8, which indicates the
width of the box in points (a point is 1172 inch). This preference affects only
character boxes created after the preference is changed.

Line Height

prLineHeight is the resource ID for the height of lines in ruled edit pads. Reads
and writes of this ID use a P_U16, indicating 0.01 inch increments. Changing this
preference only affects subsequently created ruled pads.

Pen Cursor

prPenCursor is the resource ID that determines whether the system displays a pen
cursor (mainly useful for public demonstrations where an image of the screen in
projected). Reads and writes of this ID use a P _V8 which can have one of two
values:

prPenCursorOff Do not display pen cursor.

prPenCursorOn Display pen cursor.

Time and Date

prTime is the resource ID for the ~ystem time (including the date). Reads and
writes of this ID use a P _PREF_TIME_INFO containing the current time
information. The PREF_TIME_INFO structure includes the following fields:

date Time An OS_DATE_TIME containing the date and time (see OS.H for a
more detailed description of the OS_DATE_TIME structure).

mode A PREF_TIME_MODE determining which parts of dateTime to write.

101.2.16

101.2. Ul

1 (l1.2.20

CHAPTER 107 I SYSTEM PREFERENCES 367
The System Preferences

Date Format
prDateFormat is the resource ID for the date format. This preference will affect
the format of the string returned from PrefsDateToStringO. Reads and writes use
a P _U8, whose possible values are:

prDateMDYFull Example: January 15, 1990

prDateMDYAbbre Example: Jan. 15, 1990

prDateMDYSlash Example: 1/15/90

prDateMDYHyphe Example: 11590

prDateMDYDot Example: 1.15.90

prDateDMYFull Example: 15 January 1990

prDateDMYAbbre Example: 15 Jan. 1990

prDateDMYSlash Example: 15/1/90

prDateDMYHyphe Example: 15190

prDateDMYDot Example: 15.1.90.

Time Format 107.2.22

prTimeFormat is the resource ID for the preferred time format (military, 24-hour
time or civilian, 12-hour time). This preference will affect the returned string from
PrefsTimeToStringO. Reads and writes of this ID use a P _U8, which can have one
of two values:

prTime12Hour Display time in 12-hour format, including an A.M. or
P.M. indicator.

prTime24Hour Display time in 24-hour format.

Display Seconds
pr TimeSeconds is the resource ID indicating whether to show seconds in clock
displays. This preference will affect the returned string from PrefsTimeToStringO.
Reads and writes of this ID use a P _ U8, which can have one of two meanings:

prTimeSecondsDisplay Show seconds in time displays.

prTimeSecondsOff Don't show seconds in time displays.

Primary Input Device
prPrimarylnput is the resource ID defining the primary input device (pen or
keyboard). Reads and writes of this ID use a P _U8 which can have one of two
values:

prPrimarylnputPen The pen is the primary input device.

prPrimarylnputKbd The keyboard is the primary input device.

368 PEN POINT ARCHITECTURAL REFERENCE

Part 11 I Resources

Unrecognized Character

prUnrecCharacter is the resource ID used for the unrecognized character glyph
(the glyph shown in place of a handwritten character that the handwriting
translation algorithm did not recognize). Reads and writes of this ID use a P _VB

which can have one of two values:

prUnrecCharacterQuestion Use a circled question mark to represent
unrecognized characters.

prUnrecCharacterUnder Use an underscore character to represent
unrecognized characters.

Preference Change Notification
You can make yourself an observer of the system preferences by sending
msgAddObserver to theSystemPreferences. All applications observe the system
preferences by default.

When the system preferences change, all observers of the system preferences
receive msgPrefsPreferenceChanged. When you receive
msgPrefsPreferenceChanged, the message sends you a point~r to a
PREF_CHANGED structure. The structure contains:

manager The UID of the object that sent the notification. This is usually
theSystemPrefere~ces.

preflD The resource ID of the preference that changed.

If you need to know the details of the change, you can send msgResReadData to
theSystemPreferences to get the new value for preflD.

101.2.25

Part 12 /
Installation API

~. Chapter 108 / Introduction 373 ~. Chapter 111 / Dynamic Link

Overview 108.1
Libraries 399

373

Organization of This Part 108.2 373 References to D LL Files 111.1 399

Other Sources of Information 108.3 374 D LL File Issues 111.2 400

Identifying DLLs 111.3 400

~ Chapter 109 / Installation DLC Files 111.4 401
Concepts 375

Sharing DLL Files 111.5 401

Installation Managers 109.1 375 Versions 111.6 402

Installation Process 109.2 376 D LL Processes 111.7 402

Installing Applications 109.3 377 Operating System DLL Files and Versions 111.8 403

Installing Fonts and Handwriting Prototypes 109.4 378 DLL Files and MAKE Files 111.9 403

Service Installation 109.5 378

The Installation Classes lO9.6 379 ,.,. Chapter 112 / Installation

The Installation Managers lO9.6.1 379 Managers 405

The Application Monitor 109.6.2 380 Installer Concepts 112.1 405

Auxiliary Notebooks 109.6.3 380 Installers 112.1.1 406

Installed Item Database 112.1.2 406
~ Chapter 110 / PenPoint File Controlling Items 112.1.3 406

Organization 381
Observing Installation Managers 112.2 407

Reasons for a Required Organization 110.1 381 Handling msgIMNameChanged 112.2.1 408

PenPoint Directory Concepts 110.2 382 Handling msgIM CurrentChanged 112.2.2 408

Other Directories 110.2.1 382 Handling msgIMInUseChanged 112.2.3 408

The Organization 110.3 382 Handling msgIMModifiedChanged 112.2.4 408

General Structure 110.3.1 384 Handling msgIMInstalled 112.2.5 409

The PenPoint Directory 110.3.2 384 Handling msgIMDeinstalled 112.2.6 409

System Distribution 110.3.3 385 Using clsInstallMgr Messages 112.3 409

Installable Entities 110.3.4 386 Managing Installable-Item Managers 112.3.1 410

Installable Applications 110.3.5 386 Managing Installable Items 112.3.2 411

Installable Services 110.3.6 387 Altering Installable Item Attributes 112.3.3 412

The Run-Time System 110.3.7 387 Getting Information About an

SDK Distribution 110.3.8 389 Installable Item 112.3.4 413

Your Own Internal Development 110.4 389 Advanced clsInstallMgr Topics 112.4 414

Organization of Distribution Volumes 110.5 390 Using the Semaphore 112.4.1 414

PENPOINT.DIR Files 110.5.1 390 Code Installation Manager 112.5 414

A Quick Look at Sf AMP 110.5.2 390 Installing an Application or Service 112.5.1 415

Application Directories 110.5.3 391 Application Installation Manager 112.5.2 415

Service Directories 110.5.4 395 Service Installation Manager 112.5.3 416

The Quick Installer 110.5.5 397 Font Installation Manager 112.6 416

Multiple Applications and Multiple Volumes 110.5:6 398 Font Identification 112.6.1 416

Upgrading 110.5.7 398 clsFontlnstallMgr Messages 112.6.2 417

Getting and Setting a Font's ID 112.6.3 418

Finding a Font Handle 112.6.4 418

Getting a Font Name 112.6.5 418

Getting a List of Installed Fonts 112.6.6 418

Chapter 113 / The Auxiliary List of Figures
Notebook Manager 421 110-1 PenPoint Volume Structure 383

Auxiliary Notebook Concepts 113.1 421 110-2 Creating a Quick Install Disk 397

The Auxiliary Notebooks 113.1.1 421

Auxiliary Notebooks and the File System 113.1.2 422 List of Tables
Back Up Considerations 113.1.3 422 112-1 clsInstallMgr Notification Messages 408

Auxiliary Notebook Manager Messages 113.2 423 112-2 clsInstallMgr Messages 409

Generalized Auxiliary Notebook 112-3 clsCodeInstallMgr Messages 415
Manager Messages 113.3 423 112-4 clsAppInstallMgr Messages 415

Opening an Auxiliary Notebook 113.3.1 423
112-5 clsServicelnstallMgr Messages 416

Getting the Path to an Auxiliary Notebook 113.3.2 423

Specialized Auxiliary Notebook
112-6 clsFontInstallMgr Messages 417

Manager Messages 113.4 424 113-1 Auxiliary Notebooks 422

Creating Auxiliary Notebook Sections 113.4.1 424 113-2 Auxiliary Notebook Manager Messages 423

Creating Auxiliary Notebook Documents 113.4.2 425 114-1 Boot Sequence Symbols 429
Moving and Copying Documents to an 114-2 File System Path Constants 430
Auxiliary Notebook 113.4.3 425

Deleting an Auxiliary Notebook Section
114-3 clsSystem Messages 431

or Document 113.4.4 426

Modifying the Stationery Menu 113.5 426

Adding a Document to the Stationery
Menu 113.5.1 426

Removing a Document to the Stationery
Menu 113.5.2 427

Chapter 1 14 / The System Class 429

Concepts 114.1 429

Booting Sequence 114.1.1 429

File System Paths 114.1.2 430

The System Messages 114.2 431

Boot Progress Messages 114.2.1 431

System Directory Messages 114.2.2 432

Chapter 108 / Introduction

This part describes the APIs used to install software in the PenPoint™ operating
system. In describing the installation API, we also describe the organization of the
files under PenPoint, the relationship of executable and DLL files, and the
initialization files.

Overview
Most of the work that an application developer has to do is to" make sure that the
application directory is structured correctly and that the .DLC file is correct. If these
things are attended to, the application installer takes care of the rest of the work.

The people who are interested in anything in this part beyond PenPoint directory
organization and DLL file information are OEMs who want to turn off
configuration, stationery, and installation; and people who create device drivers
and other installable entities, in addition to fonts, handwriting prototypes, and
applications. These people will have to understand how the auxiliary notebook
manager works, in addition to the install manager.

Organization of This Part
This chapter introduces the topic of installation and describes the organization of
the part.

Chapter 109, Installation Concepts, introduces the concepts needed to
understand the rest of the part, including a brief overview of installation from the
user's perspective and an internal description of installation.

Chapter 110, PenPoint File Organization, describes the directory structure used in
PenPoint volumes and describes how to create application or service distribution
volumes.

Chapter 111, Dynamic Link Libraries, describes the dynamic link library (DLL)
files used by PenPoint and how application installation handles issues such as
shared DLL files and version control.

Chapter 112, Installation Managers, describes the installation manager
(clsInstallMgr), the application installation manager (clsAppInstallMgr), the font
installation manager (clsFontlnstallMgr), and other installation managers.

Chapter 113, The Auxiliary Notebook Manager, describes clsAuxNotebookMgr
and its descendents.

Chapter 114, The System Class, describes clsSystem, which provides information
about booting and other system-wide information.

108.1

374 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

Other Sources of Information
For a description of the application monitor class (clsAppMon), see Part 2:
PenPoint Application Framework.

108.3

Chapter 109 / Installation Concepts

This chapter describes concepts related to installation. After describing the
application installation process from the user's perspective, we describe how
application installation works internally. This discussion leads to a description of
the classes used in installation.

The installation process is essentially similar for applications, fonts, handwriting
prototypes, device drivers and other objects.

When you distribute an application to users, you ship it on application
distribution diskettes. The file structure on these diskettes is similar to the
PenPoineM volume structure in the boot volume and in your application
development system. (The file structure is explained in Chapter 110, PenPoint
File Organization.)

Installation Managers
An installable item is a collection of data that represents a specific object or group
of objects used by PenPoint applications. Typical examples of installable items are
applications, services, fonts, handwriting prototypes, device drivers, and
dictionaries. As a rule, an installable item isn't vital to the operation the PenPoint
operating system, but adds capabilities to it. Installable items are grouped into sets
of similar installable items.

Installation Managers provide applications with the facilities needed to manage
installable items. All installation managers are subclasses of clslnstallMgr.

An insta1lable manager is an instance of clslnstallMgr that manages a set of
similar items. Usually an installable manager is a well-known global object (called
theInstalled Thin~, so that all applications can easily access the set of installable
items.

Each installable item managed by an install manager has these traits:

• A name.

• An attribute that indicates whether it has been modified.

• An attribute that indicates whether it is the current item.

The name of an installable item can be between 1 and 31 characters. Any char­
acter is valid in the component name except backslash (\) and null (ASCII 0).
These are the same naming conventions that apply to node names in the PenPoint
file system.

The installable manager can identifY one item as the current item. By identifYing a
current item, the installable manager can quickly return a specific item to clients

376 PENPOINT ARCHITECTURAL REFERENCE

Part 12 I Installation API

that request it. Additionally, the clients do not have to keep track of which is the
current item.

In managing a set of installable items, instances of clslnstallMgr can:

• List all items in a set of items.

• Install a item.

• Deinstall a item.

• Get and set the current item.

The installable manager uses the PenPoint file system to implement much of its
behavior. An instance of clsInstallMgr indicates a item directory in the RAM
volume where a set of items is stored. clsInstallMgr creates a file handle or
directory handle for each of the items in the item directory. If the item is a file, the
file system uses a file node; if the item is a directory, the file system uses a directory
node. The file or directory has the same name as the item it contains.

When a client requests a list of items, the item manager returns a list of all handles
in the item directory.

The attributes (in use, modified, current, deinstalled) are saved as file system
attributes. To modify these attributes, you should use the clsInstallMgr messages,
rather than the file system attribute messages. The main reason for this is that it
allows the item to send notifications to observers when it changes.

If you subclass clsInstallMgr, you can modify the contents of these attributes, or
you can add other attributes.

clsInstallMgr monitors the item directory and sends notification whenever a
change occurs in the item directory. Notification messages indicate when an
installable item is added, installed, deinstalled, updated, modified, or becomes
current. Most notification messages end in "ed" (such as msgIMAdded,
msgIM CurrentChanged, and so on).

Installation Process
If you have used PenPoint 1.0 for any length of time, the mechanics of installation
will not be new to you. This is just a brief review. The most common installation
you perform is application installation. Remember, however, that installation
applies to any installable item.

Installation can be initiated in one of three ways:

• If the distribution diskette was marked for quick install, PenPoint invokes the
appropriate quick-installer automatically when the user inserts the diskette.

• The user opens the Connections notebook to the disks page, selects the view
for a particular type of installable item, and then taps on the InstalL. menu
item.

• The user opens the settings notebook to ot;le of the installed software pages
and then taps on the InstalL. menu item.

109.2

CHAPTER 109 / INSTALLATION CONCEPTS 377
Installing Applications

The user selects an item and taps on the installed checkbox for that item.

If this is the first time the user has installed the item, the item being installed can
present an option sheet that allows the user to specify the configuration for the
item. The user can choose whether to load stationery and any option modules,
such as help or accessories. An example of an accessory might be a report
generator. When the user has chosen the configuration, the installer installs the
item and all other relevant pieces.

If this isn't the first time the user has installed the item, the installer locates the
configuration for the item and installs the item and other relevant pieces.

Installing Applications
In brief, the file structure on the distribution volume and the PenPoint volume
divides the installable item into pieces that are installed and managed by various
system facilities. This is particularly true in the case of applications.

In addition to the application executable file, an application can include help
templates, stationery documents, tools documents, and other miscellaneous files.
The application installer must install all these items.

The stationery documents are created by either you or the user and already
contain some information (such as a letterhead, margins, predrawn figures and so
on). The application installer loads the stationery documents into the Stationery
notebook. The accessories documents are similar to stationery documents, except
the installer loads the documents into Accessories.

How Application Installation Works

When the user selects an application and taps on the install checkbox, the
application installer starts the installation process. The application installation
manager is a system application. There is only one instance of the application
installation manager (clsApplnstalIMgr) in the system; it has the well-known
iden tifier thelnstalledApps.

The application installation manager starts installation by:

1 Creating an application directory for the selected application.

2 Copying the application resource file from the distribution diskette to the
new application directory.

3 Creating an attribute in the directory that specifies the application class.

4 Invoking OSProgramlnstallO to start instance 0 of the application and the
application monitor.

OSProgramlnstallO copies the executable and DLL files into the loader database
and starts the application. Chapter 111, DLL Files, describes how the installer
locates DLL files.

Instance 0 of an application contains an application manager instance. The first thing
that instance 0 of the application does is to call AppMonitorMainO, which fires up the

378 PEN POINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

application monitor, an instance of clsAppMonitor. AppMonitorMainO
is a part of Pen Point.

The application monitor drives the rest of the installation process. The application
monitor:

1 Receives msgAppInit sent by AppMonitorMainO.

2 If this is the first time the application has been installed, the application
monitor puts up the property sheet so the user can specify the configuration.
The results from the property sheet are stored in the application's resource
file. PenPoint defines a default property sheet; the application can override
the defaults.

3 If it isn't the first time, the application monitor searches for the application's
resource file in the application distribution disk.

4 The application monitor uses the resource file to drive the rest of the
installation.

S Using the resource file, the application monitor loads all other portions of.
the application, such as help and any miscellaneous resources.

When the application monitor finishes its work and returns from msgAppInit, the
installation process is complete; OSProgramInstallO completes and the
application is installed and ready to create instances.

The application monitor does not go away, however. The application monitor
maintains the identity of its application class. When requested, the application
monitor can perform actions such as deinstalling the application.

The application monitor is
present for the life of the
application's instance O.

Installing Fonts and Handwriting Prototypes 109.4

Installing fonts and handwriting prototypes is similar to installing applications.
The main difference is, of course, that fonts and handwriting prototypes have no
instance 0, or related processes.

Both can be installed from either the disk view of the Connections notebook or
the installed software section of the Settings notebook.

Font installation is controlled by theInstalledFonts, a unique instance of
clsFontlnstallMgr. Handwriting prototype installation is controlled by
theInstalledHWX, a unique instance of clsHWXInstallMgr.

Service Installation
Service installation is similar to application installation, however, the services are
D LLs-there are no EXEs to load.

The service installer starts installation by:

1 Creating a service directory for the selected service.

2 Creating an attribute in the directory that specifies the service class.

3 Invoking OS Program Install 0 to start instance ° of the service class.

109.5

CHAPTER 109 I INSTALLATION CONCEPTS 379

The Installation Classes

OSProgramlnstallO copies the service DLL files into the loader database and
starts the service class by invoking DLLMainO. DLLMainO is the service's
external entry point.

The first thing that a service's DLLMainO should do is invoke InitServiceO, a
function defined by clsService, that initializes the service class and searches the
service INST directory for service nodes.

A service node is a service state file or a directory that contains a service state file
and other information required by the service. If the autoCreate flag is specified,
InitServiceO creates instances for each of the service nodes.

The Installation Classes
The PenPoint operating system defines a number of installation classes that assist
users in installing applications, fonts, and so on. You can often use these classes as
they are; you only need to subclass when you are defining a new installable entity
or removing functionality from users. The classes are:

clslnstallMgr The installation manager, subclasses of which control the
overall aspects of installing applications, fonts, services, and so on.

clsApplnstallMgr An instance of handles application installation.

clsFontinstallMgr An instance of handles font installation.

clsCodelnstallMgr The code installation manager, which controls the
particular details of installing applications and services.

clsAppMonitor The application monitor, instances of which run in the
process 0 of each application. The application monitor handles installing
and deinstalling applications.

clsAuxNotebookMgr The auxiliary notebook manager, which creates and
maintains the sections in the auxiliary notebooks and moves, copies, and
deletes documents within those notebooks.

clslniFileHandler The initialization file handler, which reads and processes
APP.INI and SERVICE.INI files. These files contain the paths to
applications and services that are required to run another application
or servIce.

The classes described here are described in much greater detail in chapters 112 and
113.

The Installation Managers

The installation managers are all descendents of clslnstallMgr. Each installation
manager has only one instance, which is created at boot time, and is called
thelnstalledXxxx (such as thelnstalledApps and thelnstalledFonts). clslnstallMgr
defines the common tasks that the installation managers perform.

The application installation manager is an instance of clsApplnstallMgr. It is
responsible for starting application installation. The application installation

i:
<C
Z
o
5

[

380 PENPOINT ARCHITECTURAL REFERENCE
Part 12 I Installation API

manager creates the application directory and directs PenPoint to create instance 0
of the application.

The font installation manager is an instance of clsFontlnstallMgr. It is responsible
for locating and installing fonts.

The Application Monitor
The application monitor drives application installation. It locates or prompts the
user for the configuration of the application and copies the necessary files into the
boot volume of a running PenPoint computer.

Again, most application developers will have to subclass the application monitor
for the particular requirements of your application. If you conform to the file
organization specified in Chapter 110, the application monitor can locate and
copy all necessary files.

Auxiliary Notebooks

All auxiliary notebooks are managed by theAuxNotebookMgr, which is defined
by clsAuxNotebookMgr. This class defines the types of auxiliary notebooks that
are available to the system. It performs the tasks required to create sections and
documents in the notebooks and to move, copy, and delete documents within
the notebooks.

The Configuration notebook, Stationery notebook, and the Help notebook are
all auxiliary notebooks and, hence, are managed by theAuxNotebookMgr. Their
APIs are through clsAuxNotebookMgr.

If you create another type of installable entity, you must use theAuxNotebookMgr
to create a page for your entity in the configuration notebook.

Chapter"O / PenPoint File
Organization

This document describes the organization of files and directories on all PenPoint™
operating system volumes and how to organize application or service distribution
volumes. These volumes include software distribution diskettes (for both appli­
cations and system software), hard disks, solid-state disks, and the PenPoint RAM
file system.

If you intend to use the PenPoint-provided installer, your application distribution
diskettes must conform to this organization.

Reasons for a Required Organization
The required organization is necessary to:

• Make a clean separation between the operating system and installable entities
such as applications.

• Make a separation between the operating system files required at boot time
and those used at run time.

• Provide an orderly development environment for application developers.

• Set up an environment where advanced filing facilities such as multiple
notebooks can exist.

• Break out PenPoint's private, internal development facilities from what we
deliver to the outside world.

When volumes are organized in a well-known structure, the PenPoint Application
Framework, the installer, and many other tools and utilities can easily locate
specific files and directories.

PenPoint volumes are used for these six purposes; the organization of files and
directories allows PenPoint to accomodate all six uses:

• Volumes used to distribute PenPoint operating system software to end users.

• A volume that contains a running PenPoint system.

• Volumes used to distribute other installable resources such as fonts and
dictionaries.

• Volumes used to distribute installable application software to end users.

• Volumes used to distribute PenPoint development software to applications
developers (SDK).

• Volumes that contains GO's internal development environment.

382 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

PenPoint Directory Concepts
There are two basic areas on a PenPoint disk volume; the area administered by
PenPoint (the \PENPOINT directory) and the area not administered by PenPoint.
The \PENPOINT directory has a strict set of structural rules. GO discourages
end-users from directly manipulating this area; it is meant for you-PenPoint
application developers-and GO engineers.

The \PENPOINT directory includes subdirectories that can contain one or more of:

• The boot files for the PenPoint operating system.

• Files in use by an active PenPoint system.

• Installable items (applications, services, fonts, and so on).

• The PenPoint SDK software.

It is important to note that not all PenPoint volumes will have all the files and
directories listed in this chapter. The following sections describes the union of all
possible files and directories that can exist on a PenPoint volume.

For example, an application distribution diskette will contain a \PENPOINT\APP

directory that contains an application directory. A PenPoint system distribution
diskette will contain a \PENPOINT\BOOT directory for files loaded at boot time,
and a \PENPOINT\SYS directory for the active system.

On the other hand, a PenPoint SDK distribution diskette probably won't have a
\PENPOINT\APP, \PENPOINT\BOOT, or \PENPOINT\SYS directory, but will have a
\PENPOINT\SDK directory.

Other Directories

Any other directories on a PenPoint disk, outside of the \PENPOINT directory,
have no structural rules. You can use these other directories to maintain your
application development environment or store whatever data you choose. End­
users can also use other directories to keep data. No PenPoint system software
depends on structure in any other directory outside of the \PENPOINT directory.

Internally, GO uses another directory on PenPoint volumes, which allows us to
maintain development efforts outside of the \PENPOINT directory. We will
describe the organization of this \GO directory in later sections as a suggestion as
to how you might organize a similar development environment.

The Organization
Figure 110-1 shows the overall organization of the PenPoint directory. Subsequent
figures depict details of this organization. In all figures uppercase letters are used
for directory names (such as \PENPOINT), lowercase letters are used for file names
(such as penpoint.exe), and italic letters are used as place holders for file or direc­
tory names that are application or user dependent (such as A Volume Name).

Volume Name
\ ENPOINT

\ OOT (These files are loaded at boot time)
\penpoint.os
\ppboot.exe (PC only)
\boot.dlc
\environ.ini
\sysaJ;>p.ini
\aJ;>p.l.ni
\ml.l.ini (PC only)
\service.ini
\syscopy.ini

\~L\system dll files
\-DLL(PC only)

L- \debug system dll files
\APP

~
\NBAPP
\NBTOC
\A System Application
\A System Application

\DB (PC only)
L- \DB.INI \tC

\HELP
\NOTEBOOK

\qinstall
\PREFS (Installable preferences)
\FONT (Installable fonts)
\HWXPROT (Installable handwriting samples)
\~P (Installable applications)

'-- \An Application
\app.res
\ .dll files
\ .dlc file
\ .exe files
\STATNRY

L- \Stationery Docs
\ACCESSRY

C \ Tools Docs
\~LP

\Help Docs
\MISC

\SERVICE (Installable services)
L- \A Service

E
\.dll files
\.dlc file
\service.res \tST

\Service State Node
\Service State Node

\ YS (PenPoint run-time files)
\penpoint.res
\penpoint.idx
\ HWXP ROT
\FONT
\PREFS
\APP

C. \An

t
App's Runtime
\app.res
\MISC

\~R\~Elnstalled Service

\~S~service State Node
\~C

\ALBookshelf
\tNotebook

L \A Section
\ALSection

\A Document
L \tcstate. res

\doc.res
\doc.lnk

\~K (SDK distribution)
\INC
\LIB
\DLL
\ SAMPLE

\EIL \MAKE
\ TAG
\DOS

\Your Company (Your own internal development)

E
\yourLIB
\yourINC
\A Project
\A Project

CHAPTER 110 I PENPOINT FILE ORGANIZATION 383
The Organization

384 PENPOINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

General Structure

PenPoint volumes have this general structure:

\\A Volume Name
~ \PENPOINT ...
L \Your Company ...

As described above, the \PENPOINT directory contains files and directories for the
PenPoint run-time system and the files and directories used to distribute software.
It can also contain the files and directories of a running PenPoint system. Both GO
and other application developers use the \PENPOINT directory to ship software to
end users. Directories under \PENPOINT contain resource files, executable and DLL
files, fonts, preferences, and handwriting prototypes.

The \ Your Company directory contains the files and directories you use for your
own internal development. It can include directories for each project. This
directory is included in this chapter to point out a possible way to organize your
own PenPoint development. The actual placement and organization of your own
development directories is almost entirely up to you. However, we recommend
that you do not store sources for your own development within the \PENPOINT

directory (but you certainly will store your resulting applications in the
\PENPOINT directory).

The PenPoint Directory

The \PENPOINT directory contains the files and directories used for software
distribution and run-time system files. The \PENPOINT directory has the following
structure. The directories with trailing ellipses (...) are described in detail in later
sections.

\\ALVOl ume Name
\ ENPOINT

\BOOT ...
\qinstall
\PREFS
\FONT
\HWXPROT
\APP ...
\SERVICE ...
\SYS .. .
\SDK .. .

The BOOT directory contains the system files used when cold-loading the
PenPoint computer.

The following four directories: FONT, HWXPROT, APP, and SERVICE all contain
installable items. These directories are used in distribution volumes.

The FONT directory cont~ins installable fonts.

The HWXPROT directory contains installable handwriting prototypes.

The APP directory contains a series of installable applications. Each application is
stored in a directory that contains the files needed to install an application.

The SERVICE directory contains the installable services. Each service is stored in a
directory that contains the files needed to install the service.

CHAPTER 110 I PEN POINT FILE ORGANIZATION 385

The SYS directory contains the run-time system files used in the RAM volume.

The SDK directory contains all Software Developer's Kit (SDK) components that
third-party developers and GO developers need to build an application. It
includes the INC, LIB, SAMPLE, DLL, and UTIL directories.

System Distribution

The \PENPOINT\BOOT directory contains files and directories used to distribute
and cold-load the PenPoint operating system. BOOT has this structure:

\ OOT (These files are loaded at boot time)
\penpoint.os
\ppboot.exe (PC only)
\boot.dlc
\environ.ini
\sysaI;>p.ini
\aI;>p.l.ni
\ml.l.ini (PC only)
\service.ini
\syscopy.ini

\~L\system dll files
_DLL (PC only)

\~L-P~;;:i~ system dll files

\A System Application
\A System Application

\~ ~~.i~IY) \tC
\HELP
\NOTEBOOK

PENPOINT.OS is the actual operating system.

BOOT.DLC describes the system DLL and executable files .. DLC files are described
in Chapter Ill, Dynamic Link Libraries. The ENVIRON.INI file contains
perferences and environment variables for running PenPoint.

SYSAPP.INI is a list of system application directories to be loaded at boot time.
APP.INI is an additional list of application directories to be loaded when the
PenPoint computer is bootstrapped. Application developers and OEMs shouldn't
have to alter the directories listed in SYSAPP.INI, unless you are removing system
applications.

If you want to make an application available at boot time, you should add its
directory to AW.INI. When developing applications it is a good idea to add the
application to APP.INI, rather than have to go through the installer each time you
boot the PenPoint computer.

SERVICE.INI contains a list of service directories from which to load services at
boot time.

SYSCOPY.INI lists the files and directories to copy into the running system at boot
time. This includes both source and destination specifications.

The DLL directory contains syste~ DLL files.

The Organization

-----.. --~-------~~~

a:: c
z o
5

[

386 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

The APP directory contains system application directories, which contain .EXE files
for system applications. These directories include DTAPP, which contains the
desktop application, and BROWSER, which contains the brower application.

Installable Entities

Installable (and deinstallable) entities are contained in three directories under
\PENPOINT. The installer knows to look in these directories for the installable
entities: fonts, handwriting prototypes, and applications. A basic version of these
directories is shipped with the standard operating system distribution diskette.
Additional resources (such as new fonts) can be distributed seperately.

\~NPOINT \qinstall
\PREFS (Installable preferences)
\FONT (Installable fonts)
\HWXPROT (Installable handwriting samples) .
\~P (Installable applications)

\An Application ...
\~RVICE (Installable services)

\A Service . ..

The QINST ALL file is only present in installation volumes. It is an optional file that
directs the installer to pop up an quick installer sheet when the user connects a
volume containing QINSTALL to the PenPoint computer. QINSTALL is described in
greater detail later in this chapter in the section titled "Quick Install."

The PREFS directory contains installable system preferences. It always includes the
standard set of preferences in the file named GENERIC.

The FONT directory contains installable fonts.

The HWXPROT directory contains handwriting prototypes. The handwriting
prototypes shipped with PenPoint have been gathered from many people. End-users
add further information to the HWXPROT directory when they run the Handwriting
Training application; the application stores handwriting prototypes in this area.

The APP directory contains directories for installable applications and is described
in the following section.

The SERVICE directory contains directories for installable services and is described
after the section on installable applications.

Installable Applications

110.3.4

110.3.5

The \PENPOINT\APP directory contains directories for installable applications. Each
application is in its own directory, named with the user-visible name of the application.

\APP
~ \An Application

\app.res
\ .dll files
\.dlc file
\.exe files
\t::ATNRY

\Stationery Docs
\ACCESSRY

L \ Tools Docs

\~L\HelP Docs
\MISC

CHAPTER 110 / PENPOINT FILE ORGANIZATION 387

Each application directory contains:

• The application resource file (APP.RES).

• AW.INI and SERVICE.INI files that list all the other applications and services
that must be loaded to run this application. When the installer finds that one
of the required applications or services is not installed, it prompts the user to
insert the correct distribution disk and installs that application or service.

• All the .DLL, .EXE, and .DLC files that an application will use (and that are
not part of the base operating system).

• Subdirectories for stationery templates (STATNRY), help templates (HELP),

and miscellaneous application files (MISC). The MISC subdirectory can
contain files and directories common to all instances of an application, such
as a common graphics logo.

Installable Services

The \PENPOINT\SERVICE directory contains directories for installable services.
Each service is in its own directory, named with the user-visible name of the
servIce.

\~RVICE (Installable services)
\A Service

~
\. dll files
\.dlc file
\service.res
\fNST t= \Service State Node

\Service State Node

Each service directory contains:

• A SERVICE. RES file that contains resources required for this service.

• The .DLL and .DLC files that a service needs that are not part of the base
operating system.

• An IN IT subdirectory that contains service state nodes. These state nodes can
be either:

• Files containing preconfigured instances of the service.

• Directories containing preconfigured instances of the service and other
resource or data files.

• A MISC suhdirectory that contains other information used by the service.

The Run-Time System

The operating system makes use of the file system at run time to maintain the
dynamic state of the system. The run-time file system is also a safe storage for data
across a warm boot. All run-time files are stored in \PENPOINT\SYS.

The Organization

----_._-- -----

388 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

\ YS
\penpoint.res
\penpoint.idx
\HWXPROT
\FONT
\PREFS
\APP

C \An

E
App's Runtime
\app.res
\MISe

\~R\~Elnstalled Service

\~S~service State Node
\~e

\ALBookshelf
\"lNotebook

L \A Section
\'lsection

\A Document
L \tcstate.res

\doc.res
\doc.lnk

PENPOINT.RES is a resource file that contains resources for the running system.

The HWXPROT, FONT, PREFS, APP~ and SERVICE directories contain the currenly
installed handwriting prototypes, fonts, preferences, applications, and services.

Each installed application has a directory under the APP directory, which contains
the application resource file and any other global application data. The application's
instance 0 runs out of this directory.

Each installed service has a directory (under the SERVICE directory), which
contains an INIT directory. The INIT directory for a particular service contains
state files for the service and directories as required by the service.

Clients can get lists of these installed resources by sending a message to the well­
known UIDs: theInstalledFonts, theInstalledHWXProtos, theInstalledApps, and
theInstalledServices.

The DOC directory contains the current notebook (NOTEBOOK, or whatever the
user names it) and its sections. A directory that contains a notebook is organized
into sections; each section is a directory in the notebook directory. Each section
directory contains directories for each of the documents in that section (these
directories are created by clsAppDir).

Each document directory always contains three files (in addition to any files
created by the document's application). The three files are:

• DOC.RES, which is the document's copy of the application resource file.

• DOCSTATE.RES, which is the file to which the application files the
document's instance data.

• DOC.LNK, which contains a list ofUUIDs used to keep track of links to
other documents (such as GoTo Buttons, embedded applications,
bookmarks, and so on). This file is explained in Chapter 14, The Application
Class, of Part 2: Application Framework.

CHAPTER 110 / PEN POINT FILE ORGANIZATION 389
Your Own Internal Development

SDK Distribution

The \PENPOINT\SDK directory contains the libraries and include files needed to
develop PenPoint applications. All of the SDK-specific information is in
\PENPOINT\SDK. It has the following organization:

\PENP01NT
L- \§K (SDK distribution)

\1NC .
\L1B
\DLL
\ SAMPLE

\EIL \MAKE
\ TAG
\DOS

The \PENPOINT\SDK\INC directory contains all of the header files distributed by
GO in the SDK.

The \PENPOINT\SDK\LIB directory contains all the .LIB files distributed by GO in
the SDK.

The \PENPOINT\SDK\DLL directory contains DLL files that are not part of the
operating system, but which application developers can optionally include with
their applications. For example, the NotePaper API, which is not part of the base
operating system, is stored in the \PENPOINT\SDK\DLL directory.

The \PENPOINT\SDK\SAMPLE directory contains sample PenPoint applications.

The \PENPOINT\SDK\UTIL directory contains utilities to aid application
developers. The MAKE subdirectory contains template make files for compiling
and linking applications. The TAGS subdirectory contains tools that allow
developers using the Brief, vi or emacs editors to locate typedefs quickly .

. Your Own Internal Development
When you develop your own PenPoint application, you will probably want
to maintain your files in some proximity to the \PENPOINT directories. This
discussion grows from PenPoint development practices used at GO Corporation.

The organization allows you to keep your development separate from the
\PENPOINT\SDK directories that you use during development and the other
\PENPOINT directories that you use during testing and debugging. It also allows
you to keep your applications close enough to the PENPOINT directories that
you can build your applications such that your executables and DLL files can be
stored directly into the \PENPOINT\APP directory.

While you do not have to structure your development in any particular way, this
works well.

The \ Your Company directory has the following organization:

\ \'l Vol ume Name \fur Company
\yourLIB
\yourINC
\A Project
\A Project

110.3.8

110.4

390 PENPOINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

The yourLIB and yourINC subdirectories contain private .LIB and .H files used for
your own components and applications that you use to develop system software
and applications.

The individual project directories contain the files needed to build individual parts
ofPenPoint and applications.

Organization of Distribution Volumes 110.5

To make installation consistent and as simple as possible for end-users, PenPoint
provides an application installer that performs application installation, deinstallation,
deactivation, and a number of other tasks. The PenPoint Installer can automatically
present an application or service for installation by reading an automatic install control
file in the distribution volume.

If you use the PenPoint Installer, the files in your distribution volume must
be organized according to the directories described in this chapter. This section
supplements the general discussion of file organization by describing the contents
of the distribution directories.

PENPOINT.DIR Files

File and directory names under PenPoint can be up to 32 upper and lowercase
characters long and can include many special characters. However, DOS file and
directory names are limited to eight uppercase characters plus a three character
extension; the filename and extension can use a handful of special characters. In
order to create the complex PenPoint names on DOS volumes, PenPoint stores
extended information about files and directories in a file named PENPOINT.DIR.

The PENPOINT.DIR file also contains file and directory attributes, which are used
by PenPoint and applications.

There is one PENPOINT.DIR file per directory; each PENPOINT.DIR file contains
information about the files and directories stored in that directory.

A Quick Look at STAMP

The STAMP utility allows you to mark a DOS file or directory with a PenPoint
name. You also use STAMP to assign attributes to files or directories (you must
STAMP all your application executable and DLLfiles to identify them as
applications) .

When you create long names or assign attributes to a file or directory, the PenPoint file
system creates a PENPOINT.DIR file in the directory that contains the file or directory
that you modified. PENPOINT.DIR contains an entry for each file that has a long name
or other attributes. You can use the GDIR command (in \PENPOINT\SDK\UTIL\DOS) to
examine the contents of the PENPOINT.DIR file.

STAMP adds or modifies information in a PENPOINT.DIR file. If the PENPOINT.DIR file
does not exist, STAMP creates a new one; if an entry for the file or directory being
stamped doesn't exist, STAMP creates a new entry.

CHAPTER 110 / PENPOINT FILE ORGANIZATION 391
Organization of Distribution Volumes

The STAMP utility (and other utilities that you can use to maninpulate
PENPOINT.DIR files) is documented in "DOS Utilities User's Guide" in the
PenPoint Development Tools volume. The PENPOINT.DIR file is described in detail
in Part 7: File System in this volume.

Application Directories

To create an application distribution volume, create a \PENPOINT directory in the
root of a volume. Under the PENPOINT directory, create an APP directory. Under
\PENPOINT\APP, create a directory for your application.

The name of this directory is the name of your application that the user sees on
the screen. The directory name must be unique in the entire world of PenPoint
applications. The directory name can be a PenPoint name; use the STAMP utility
to name it. However, the name or an application directory cannot be longer than
28 characters; the reason for this limit is explained below.,

Thus, a distribution volume for an application named "Time Management" on a
volume named "Time Management Dist" would have the following structure:

\\Time Management Dist
L \PENPOINT

L \APP
~ \Time Management

We will use this example through the rest of the discussion of application
directories.

Files in the Application Directory

The application directory contains:

• An APP.RES file, which contains the icons and any other resources used by
your applications.

• A .DLC file (if your application uses DLLs).

• .EXE and .DLL files for your application.

When the Installer finds your application directory it first looks for a .DLC file.
A .DLC file should have the same PenPoint name as the ~pplication directory, but
with the extension .DLC. You need a .DLC file only when your application requires
DLLs in addition to its executable file.

If the Installer doesn't find a .DLC file, it looks for an executable file. The executable
file should have the same name as the application directory, but with a .EXE extension.

The maximum size of a PenPoint file or directory name is 32 characters. Because
these extensions (.DLC or .EXE) add four characters to the application name, the
maximum size of an application name is 28 characters.

110.5.3.1

392 PEN POINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

With the files in the application directory, the PENPOINT directory has this
organization:

\~NPOINT

\~P\§.me Management
\app.res
\database engine.dll
\alarm clock.dll
\Time Management.exe
\Time Management.dlc

The TIME MANAGEMENT.DLC file contains:

TiManagementlnc-Time Management_exe-Vl(O)
TiManagementlnc-database_engine_dll-Vl(O)
TiManagementlnc-alarm_clock_dll-Vl(O)

Time Management.exe
database engine.dll
alarm clock.dll

All of the required executable and DLL files are in the application directory.

~ Stationery

To provide users with preconfigured stationery, create a directory named STATNRY

under your application directory. For each stationery document that you provide,
create a subdirectory in the STATNRY directory. The subdirectory should contain
the file or files required by your application to store a document.

It is up to your application to understand the contents of the document
subdirectory. Usually a document subdirectory contains a single APP.RES file,
which contains the filed instance data for a document.

When installing your application, the installer creates a section for your
application in the Stationery notebook. If your application directory contains a
STATNRY directory, the installer copies the document directories and their files to
your application's section in the Stationery notebook. Each document directory
copied by the installer is marked with the well-known UID of your application.

If your application directory does not contain a STATNRY directory, the installer
creates a section for your application in the Stationery notebook. If the stationery
bit is set in the application manager metrics flags, the installer creates an empty
document from your application in that directory. (For more information on
application manager metrics, see Part 2: Application Framework.

The name of each document subdirectory in the STATNRY directory becomes the
name of a document in the Stationery notebook.

Use the STAMP utility to:

• Give a PenPoint name to the document subdirectories.

• Set the stationery menu attributes of the stationery document (whether the
stationery appears in the stationery menu).

• Set the NoLoad attribute for the stationery document. IfNoLoad is true, the
installer will not load the stationery document into the Stationery notebook.

CHAPTER 110 / PENPOINT FILE ORGANIZATION 393
Organization of Distribution Volumes

When we add the STATNRY directory, the PENPOINT directory on our application
distribution volume has this organization:

\PENPOINT
L \APP

C \~.me Management
\app.res
\database engine.dll
\alarm clock.dll
\Time Management.exe
\Time Management.dlc
\ [ATNRY

\t:rsonal Scheduler
\app.res

\~rkGroup Scheduler
\app.res

When the user opens the Stationery notebook, it contains two documents
belonging to the Time Management application: Personal Scheduler and
WorkGroup Scheduler.

Accessories

An accessory is similar to a piece of stationery. An accessory is simply an instance
of an application. Accessories appear in the Accessory notebook.

To provide accessories, create a directory named ACCESSRY under your application
directory. For each accessory that you provide, create a subdirectory in the
ACCESSRY directory. The subdirectory should contain the file or files required by
your application to store a document.

It is up to your application to understand the contents of the document
subdirectory. Usually a document subdirectory contains a single DOCSTATE.RES

file, which contains the filed instance data for a document.

When installing your application, the installer creates a section for your
application in the Accessory notebook. If your application directory contains an
ACCESSRY directory, the installer copies the document directories and their files to
your application's section in the Accessory notebook. Each document directory
copied by the installer is marked with the well-known UID of your application.

If the accessory bit is set in the application manager metrics flags, the installer
creates a directory for your application in the ACCESSRY directory and creates an
empty document from your application in that directory. (For more information
on application manager metrics, see Part 2: Application Framework.

The name of each document subdirectory in the ACCESSRY directory becomes the
name of an accessory.

Help

To provide users with help tutorials for your application, create a directory named
HELP under your application directory. For each help document that you provide,
create a subdirectory in the help directory. If the installer finds a HELP directory, it
creates a section for your application in the Help notebook and loads the contents
of each subdirectory as documents in that section. The name of each subdirectory
in the HELP directory becomes the name of a help topic in the Help notebook.

394 PENPOINT ARCHITECTURAL REFERENCE

Part 12 I Installation API

Each subdirectory can contain either:

• An APP.RES file for a PenPoint application .

• A single, specially named text file file that contains plain ASCII text or
RTF text.

If the subdirectory contains a APP.RES file, it assumes that an application that can
read the file will be available to PenPoint. Usually the application is MiniText, but
you can provide a more sophisticated help application and store its documents in
this form.

If the subdirectory contains a text file, MiniText will import the text. However,
the file must have one of these two names:

HELP.TXT This file contains plain ASCII text.

HELP.RTF This file contains RTF-format text.

When MiniText finds a HELP ... file, it displays the file in "help" mode (that is, no
menu bar, different point size, and other minor changes).

When we add the HELP directory, the PENPOINT directory on our application
distribution volume has this organization:

\PENPOINT
L \APP

~ \ ime Management
\app.res
\database engine.dll
\alarm clock.dll
\Time Management.exe
\Time Management.dlc

\Personal Scheduler \ [ATNRY
L \app.res

\~rkGroup Scheduler
\app.res

\~ddress Book Help \eLP

L- \address book. rtf
\Scheduler Help

L \ scheduler . rtf

When the user opens the Help notebook, it contains two documents belonging to
the Time Management application: Address Book Help and Scheduler Help.

~ Application Global Data

If your application has non-resource data that it needs to access, you should create
a MIse directory.

When the installer finds a MIse directory in the application distribution directory,
it creates a MIse directory in your application's run-time directory, where it copies
the files.

Your application should be able to determine the location of its application directory
(by sending msgAppMgrGetMetrics to your application class). From the application
directory, you can create a path to the MIse directory.

Some types of data do not fit easily into the resource model, especially those that
consume a large amount of space.

The name of each subdirectory in
the HELP directory becomes the
name of a help topiC in the Help
notebook.

110.5.3.5

CHAPTER 110 I PEN POINT FILE ORGANIZATION 395
Organization of Distribution Volumes

When an application reads a resource, it gets a copy of the data. If the amount
data is large, the application might have problems finding room to store the data.

The alternative is to store the data in a file in the MISC directory; when your
application needs to access the data, you create a memory-mapped handle on the
file. That way the only memory cost is in the file handle

Good examples of data you might want to put in the MISC directory is a zip code
directory, a tax table, or other fixed data you want to distribute to your users. A
zip code directory would be far to large and unwieldy to store as a resource, but
when it is stored as a file all documents can create memory-mapped handles on
the file and access the data.

When we add the MISC directory, the PENPOINT directory on our application
distribution volume has this organization:

\PENPOINT
L \APP

~ \ ime Management
\app.res
\database engine.dll
\alarm clock.dll
\Time Management.exe
\Time Management.dlc

\Personal Scheduler \ [ATNRY
L \app.res

\~rkGrOup Scheduler
\app.res

\~ddress Book Help \eLP

L- \address book. rtf
\Scheduler Help

L \scheduler. rtf
\MISC

C \Zip Codes

All time management documents can access the zip codes stored in the MISC

directory.

Service Directories

A service directory is quite similar to an application directory. To create a service
distribution volume, create a \PENPOINT directory in the root of a volume (if one
doesn't exist already). Under the PENPOINT directory, create a SERVICE directory.
Under \PENPOINT\SERVICE, create a directory for your service.

The name of the service directory is the name of your service that PenPoint shows
to your users. The directory name must be unique in the entire world ofPenPoint
services. The directory name can be a PenPoint name of up to 28 characters.

Thus, a distribution volume for an service named "CD Driver" on a volume
named "CD Driver Dist" would have the following structure:

\\CD Driver Dist
L \PENPOINT

L \~RVICE
\CD Driver

396 PEN POINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

Files in the Service Directory

The service directory contains:

• A SERVICE.RES file.

• A .DLC file.

• DLL files for your service.

• An optional INST subdirectory.

• An optional MIse subdirectory.

110.5.4. 1

When the installer finds a service directory it looks for a .DLC file. The .DLC file should
have the same PenPoint name as the service directory, but with the extension .DLC.

With the files in the application directory, the PENPOINT directory has this
organization:

\~NPOINT

\~R\[IgE Driver
\CD-AUDIO.dll

\CD Driver.dle

The CD DRIVER.DLC file contains:

TiManagementlnc-CD_AUDIO_dll-Vl(O) CD-AUDIO.dll
TiManagementlnc-CD_ROM_dll-Vl(O) CD-ROM.dll

All of the required executable and DLL files are in the service directory.

The INST Directory

In applications, you can provide users with preconfigured documents in the form
of stationery. For services, you can provide users with preconfigured services in the
form of service state nodes. These state nodes can be either:

• Files containing preconfigured instances of the service.

• Directories containing preconfigured instances of the service and other
resource or data files.

To provide preconfigured services, create an INST directory in your service
directory. The INST direc;tory can contain any number of service state nodes.

When the installer finds an INST directory, it copies the contents of the directory
into an INST directory for the installed service.

When we add the INST directory, the PENPOINT directory on our service
distribution volume has this organization:

\~NPOINT

\~R\~IgE Driver
\CD-AUDIO.dll
\CD-ROM.dll
\CD Driver.dle \tST

\Maeintosh Format
\MS-DOS Format

CHAPTER 110 I PENPOINT FILE ORGANIZATION 397
Organization of Distribution Volumes

The Quick Installer

You can configure a disk volume so that PenPoint pops up an installation sheet
automatically when the volume becomes available (usually when the user inserts
the volume in a floppy drive).

To enable quick installation, open the Connections notebook to the disks sheet
and open the disk (if it isn't open already). Tap on Disk ... in the Options menu for
the disk you want to modifY ..

Change Quick Installer? to yes, then select the Initial View, which specifies which
installer is first displayed by the quick installer (Directory, Applications, Services,
Handwriting, and so on).

In Figure 110-2 the disk TIM GMT is open in the Connections notebook and the
user has tapped on Initial View.

Creating a

11(t5.S

398 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

Multiple Applications and Multiple Volumes
A distribution volume can contain a mixture of applications and services
(provided they will all fit on a single volume).

The PenPoint Installer does not currently support applications or services that
span more than one volume. If you have such an application, you must control
installation yourself from the application monitor (instance 0 of your application).

Upgrading
Currently users upgrade applications or services by deinstalling the old version and
installing the new version.

110.5.6

110.5.1

Chapter 111 / Dynamic Link Libraries

A linker joins together a number of object modules to form a single executable
file. This allows you to incorporate object files from many sources. It also allows
you to maintain a single, shared copy of the object file, which all applications link
with. However, each executable file that you create by linking object modules
contains a copy of the object code; if 10 applications link with the same object
file, there are 10 copies of that object file in the resulting 10 executable files. In
the PenPoint computer, where memory is at a premium, this replication is
wasteful and undesireable.

The solution is to create an executable file that can access a single, shared object
code module only when it is required. PenPoint provides this solution by using
Dynamic Link Library files (DLL files).

You create a DLL file by compling a source file with options that create a DLL file
rather than an object file.

You reference a D LL file by calling a routine or referencing a class that is external
to your object file. Before you link your object file, you define all DLL routines
and classes in a DLL.DEF file.

For more information on the DLL.DEF file, see the PenPoint Application Writers
Guide and the Microsoft Operating Systeml2 Programmers Toolkit manual.

References to DLL Files
Clients can refer to DLL files in two ways:

• A client makes a reference to a routine in the DLL file (explicit referencing) .

• A client makes a reference to a class in the DLL file (implicit referencing).

A client can reference a DLL file either from within its own executable file or from
within another DLL file.

Explicit references cause the linker to make a dynamic link entry in the
referencing executable or DLL file. There can be circular explicit references. An
explicitly referenced DLL file must be loaded when the linker entry is processed.

Implicit references must be determined by the developer, because the linker
cannot make entries for them. Most of the DLL file dependencies in PenPoint are
due to implicit references.

An implicitly referenced DLL file must be loaded before an object of the
referenced class is created.

400 PENPOINT ARCHITECTURAL REFERENCE
Part 12 I Installation API

DLL File Issues
The PenPoint Application Monitor ensures that only one copy of a particular
DLL file is loaded on the PenPoint computer. This is not as simple as you might
expect because:

• PenPoint has to know which applications require which DLL files.

• If more than one version of a DLL file exists, PenPoint must determine
which version or versions can be loaded.

• PenPoint must know when it can unload a DLL file because the applications
that referred to it are no longer present.

In order to determine which DLL files are loaded (and avoid duplicating DLL files
in memory), PenPoint needs to reliably identifY DLL files. When unloading DLL
files, PenPoint needs to determine whether any applications still refer to the DLL
file; if the DLL file is still referenced, it should't be unloaded. You cannot
guarantee that the application that caused PenPoint to load a DLL file is the only
application that refers to that DLL file.

Finally, PenPoint must have a scheme that deals with different versions of the DLL
files that make up both our system software and applications. This scheme needs
to take versioning of classes into account as well.

This chapter discusses the mechanisms used by PenPoint to ensure that the correct
DLL files are loaded. This chapter is essential to application installation because
you, the application developer, are responsible for providing PenPoint with the
correct information in the correct places. Without correct information, the
PenPoint application installation software will not be able to install your
application properly.

Identifying DLLs
Each application has its own set of DLL files, which live in the application's
directory on disk. This directory must contain all non-operating system DLL files
that an application needs (including third-party DLL files and company DLL files
that are common to a suite of applications).

Although the application directories on disk might contain duplicate DLL files,
PenPoint ensures that only one copy of a particular DLL file is installed in
PenPoint computer memory (where it is shared by all applications that need it).

Each DLL file has a unique dll-id name. A DLL file is named by the developer
that created it. Executable files are also named in this manner. The dll-id is given
in the LIBRARY field of the DLL.DEF file that was used to build the module. The
dll-id is a text string (up to 32 characters) of the form:

companyName-moduleName-majorVersion(minorVersion)

The dashes and parentheses are part of the syntax and are required; string parsing
depends on them. The fields can contain letters, numbers, and the underscore
character (_).

111.2

111.3

CHAPTER 111 I DYNAMIC LINK LIBRARIES 401

companyName is the name of the company that created the DLL or executable
file. For example, the company name for GO Corporation is GO.

moduleName is the name of the DLL or executable file. Be sure that DLL files
and executable files have different moduleNames. GO recommends that you call
the executable file moduleName_exe and the DLL file moduleName_dll.

majorVersion is the version number of the DLL file. minorVersion is an optional
minor version number; it is ignored by the operating system when it determines
whether a DLL is already loaded in the PenPoint computer.

DLC Files
A .DLC file lists all the explicit and implicit DLL file references made by the
application executable file; the .DLC file also names the application executable file
itself. The .DLC file allows the operating system to preload implicit references and
to locate explicit references.

Application developers must create a .DLC control file for each application that
uses DLL files. If an applications has a single executable file that has the same
name as the application directory, the application does not need a .DLC file.

The .DLC file must have the same name as the application directory and the
executable file. For example, an application with the PenPoint name Graph It
Right would be stored in the directory \PENPOINT\APP\Graph It Right; the
executable file would be called Graph It Right.EXE and the .DLC file would be called
Graph It Right.DLC.

Each line in a .DLC file contains a pair or names: a dll-id and a file system path to
the corresponding D LL file or executable file. All paths are relative to the
application's directory. For example, grapher might have the following format:

GO-forms_dll-Vl(2) forms.dll
GO-Grapher_exe-Vl grapher.exe

The operating system reads the .DLC file when it loads an application; it ensures
that all the DLL files in the .DLC file are loaded before it brings in the executable
file.

The operating system will use the dll-id to determine if a D LL file is already
loaded, and not load the new DLL file if so. This rule also applies to executable
files, but there will be very few cases where an executable file is already loaded.

Applications can also load optional DLL files if desired. These are DLL files that
aren't part of a executable file load, such as a database engine. The developer must
create a .DLC file for optional DLL files if they reference other DLL files.

Sharing DLL Files
When the application monitor loads a new application, it checks the dll-ids in the
.DLC file against the list of currently loaded dll-ids. The comparison includes the
company name, the DLL name, and the major version number. (It is too

Sharing DLL Files

a::
c(

z o
~

~

402 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

dangerous to automatically run an application with a DLL file that has a different
major version number.)

The application monitor does not compare minor version numbers. Different
minor version numbers must be guaranteed to be compatible by the developer.

If the dll-ids match, the DLL has been loaded already; the operating system does
not load the DLL but increments a reference count for the dll-id.

If the dll-ids do not match, the application monitor loads the DLL from the path
specified in the .DLC file.

This scheme guarantees that an application that was written to run with a
particular DLL file will always run with that DLL file.

When an application is deinstalled, the application monitor again opens the
corresponding .DLC file and compares its dll-ids against the currently loaded
dll-ids. If the Application Monitor finds a match, it decrements the dll-id
reference counter. If the reference counter becomes zero, the application monitor
can deinstall the DLL file.

Versions
An already loaded D LL file is used only if there is an match between dll-ids
through the major version number.

From a developer's perspective, when you add new functionality to a DLL file, you
should revise the dll-id's major version number.

• If the new functionality is backwards compatible, you should upgrade the
version number in the class UID.

• If the new functionality is not backwards compatible, you must create a new
class ID.

DLL Processes
A DLL file can optionally contain a DLLMainO routine, which usually contains
code to install the DLLS classes. When a DLL file is loaded, PenPoint creates a
process and transfers control to the DLLMainO. These classes (and any other
memory that the DLL file creates) are owned by the DLL file's process. A DLL
process will dispatch messages, so a DLL file can also create well-known objects at
init time.

The process, all memory associated with the DLL file, and all classes owned by the
DLL file are destroyed when the DLL file's reference count goes to zero and it is
deinstalled.

However, this utility comes at some expense; a process uses approximately 37K
bytes of memory. If you structure your application so that it uses several
distributed DLLs, each of which creates its own process, you can run short of
memory fairly quickly.

111.6

CHAPTER 111 / DYNAMIC LINK LIBRARIES 403

DLL files and MAKE Files

When you create a D LL file, you have three options:

• Create a DLL file that doesn't have a DLLMainO, contains code for one or
more classes, and which exports initialization functions for one or more
classes. When your application needs a class, it calls the exported function to
initialize the class. Your application uses a private well-known UID to
identify the class.

• Create a DLL file that has a DLLMainO and contains code for more than
one class. All of the classes use global well-known UIDs to identify the
classes. All the classes share the same memory and process.

• Create a DLL file that has a DLLMainO and code for only one class. The
class is identified with a global well-known UID.

Operating System DLL Files and Versions
The operating system is somewhat different from applications. The operating
system is defined as those DLL files and executable files that are loaded into the
machine at boot time and are always present. There can only by one version of the

. operating system in the machine at any time, and upgrading the operating system
is done by a cold boot. Applications should be able to run on many different
operating system versions. Most importantly, applications written for earlier
versions of the operating system should run on later versions.

Operating system DLL files also have dll-ids, but these dll-ids have no major or
minor version numbers. This is so explict references that show up in application
executable or DLL files will not be affected by operating system upgrades.

The version number for operating system classes can be incremented when new
functionality is introduced. However, operating system classes must be strictly
backwards compatible. A new class number must be used when backwards
compatibility is broken. The class manager will always search for an exact match
when a class is referenced, but will accept a higher-versioned class if it can't find an
exact match.

Applications can query class version on a per-class basis. We will also provide an
overall version number for the operating system in the system resource file. An
application can specify the minimum operating system version it will run under at
installation time.

DLL Files and MAKE Files
All PenPoint DLL files that are not part of the system that is loaded at boot time
(in BOOT.DLC) are distributed in \PENPOINT\SDK\DLL. The DLL_ TYPE,

DISTRIBUTED, builds a project into \PENPOINT\SDK\DLL. For example, if project
Grafpapr specifies

DLL TYPE = DISTRIBUTED

in its makefile, MAKE creates the file \PENPOINT\SDK\DLL\ GRAFPAPR\

GRAFPAPR.DLL.

A:
<C
Z o
~

lL

404 PENPOINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

Applications that dependend on a distributed .DLL file should include a
DISTRIBUTED DLLS = line in their makefile. This line should contain all the
distributed DLL files that should be included with the app. For example:

DISTRIBUTED_DLLS = grafpapr\grafpapr.dll atp\flap.dll

If an application needs a .DLC file, the .DLC file should be part of the application
project directory. The default name for a .DLC file is PROJECT _NAME.DLC. The
.DLC file is copied into the application directory when the application is built.

Chapter 112 / Installation Managers

clslnstallMgr provides applications with the facilities to manage installable items.
An item can be any sort of resource. Each type of installable item has its own
installer.

An installer is an instance of clslnstallMgr, or a instance of a subclass of
clslnstallMgr. The installer handles all common operations used to maintain
installable items.

The installer application uses installers to install and deinstall several sets of items,
such as applications and fonts. Fonts are a straight-forward use of the installable
item manager. Applications require a much more complex use of the installable
item manager.

Installer Concepts
The install manager class (clslnstalIMgr) describes messages used by installers to
install, deinstall, and maintain installable items.

Unless you are writing your own installer, you probably don't need to send or
handle most clslnstallMgr messages. However, there is a core set of clslnstallMgr
messages that are used by many applications. These messages are:

msgIMlnstall

msgIMDeinstall

msgIM GetlnstalledList

msgIMGetState

msgIMSetCurrent

msgIMGetCurrent

msgIMGe~ame

msgIMFind

Additionally, if your application needs to keep track of installed items, you can
observe an installation manager.

clslnstallMgr also serves as the superclass for a number of specialized installers.
Some types of installable items require their own installer class. These classes are
subclasses of clslnstallMgr:

• clsApplnstallMgr maintains applications.

• clsFontInstallMgr maintains fonts.

• clsServicelnstallMgr maintains services.

Each of these services and their messages are described at the end of this chapter.

112.1

406 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

Installers

For each of the installer classes, there is a well-known instance of that class. That
instance is the installer for that type of item.

The instance of clsAppInstallMgr is theInstalledApps; the instance of
clsServiceInstallMgr is theInstalledServices; the instance of clsFontlnstallMgr is
theInstalledFonts.

Other types of items do not require specialized messages for installation. The
installers for these groups are simply instances of clsInstallMgr. These installers are:

• theInstalledHWXProtos, which maintains the handwriting samples.

• theInstalledPDicts, which maintains the spelling dictionaries.

• theInstalledPrefs, which maintains the user preferences.

Additionally, the class clsInstallMgr also serves as a central repository of
information about all installed items. If you use a subclass to maintain
information about an installed item, the same information is also maintained by
clsInstallMgr.

Installed Item Database

clsInstallMgr and its subclasses use the file system to keep a database of the in­
stalled items. Each item is represented by a handle on a file or directory. When
PenPoint installs an installable item, it creates a directory or file in the appropriate
\PENPOINT subdirectory. Application directories are stored in \PENPOINT\APP;

font files are stored in \PENPOINT\FONT, and so on. The handle is the mechanism
by which the install manager keeps track of the installed items.

Representing installed items with files or directories is a big win for items that are
files or directories. When the item is a file or directory, the install manager's handle is
a handle on that actual item. However, if an installable item is not a file, there must be
an extra level of indirection.

The installers use the attributes in the file system node to store information about
the item, such as the item's identifier. An item's identifier has different meanings
for different items. For applications, the identifier is the application class's
well-known UID; for fonts the identifier is the font ID number.

Usually the installer creates an initial set of item handles from the contents of its
directory. You can override this behavior by setting the create Initial style bit to
false; when createInitial is false, the installer will not creates item handles from its
directory.

Controlling Items

clsInstallMgr provides several attributes that pertain to items, and an API for
getting and setting these items.

112.1.1

112.1.2

CHAPTER 112 / INSTALLATION MANAGERS 407
Observing Installation Managers

clslnstallMgr provides an optional API to make an item current, and an API for
getting and setting that attribute. An item can also be marked as being in use. The
current item is considered to be in use. Items that are in use cannot be deinstalled.

A notion of whether a item differs from when it was installed is also provided.
Clients should mark items as modified when they change them by sending
msgIMSetModified. The installer will remember the time and date that the item
was modified.

Clients access installable managers by an ObjectCallO interface. clslnstallMgr can
accommodate simultaneous access by multiple clients if the shared style bit is set
true (the default). This causes it to use the semaphore for all of its operations. This
semaphore is available to subclasses through msgIMGetSema, and should be used
to protect all subclass messages if multiple clients will be accommodated.
dslnstallMgr also sets objCapCall on by default.

Observing Inslallalion Managers 112~2

Usually most application developers do not need to use clslnstallMgr messages.
However, if you want to monitor the coming and going of things such as fonts or
handwriting samples, you can observe an installer.

clslnstallMgr monitors the item directory and sends notification whenever an
installable item is added, removed, or when a different item becomes current.
dslnstallMgr first sends observer messages to self, which allows subclasses to
intercept them. If the send to self returns stsO K, clslnstallMgr sends the messages
to observers.

A subclass of dslnstallMgr can prevent notification of observers by returning
stsIMNoNotify. A subclass can turn notification generation off entirely by
sending msgIMSetNotify to its ancestor. msgIMSetNotify takes a BOOLEAN

value as its argument. If the value is true, it turns notification ofE

A client can request the current notification state by sending msgIMGetNotify to
self. The message takes a pointer to the BOOLEAN value that will receive the
current notification state.

Clients can make themselves observers of a installation manager by sending
msgAddObserver to that installation manager. For instance, to observe the
handwriting installation manager, you would send msgAddObserver to
thelnstalledHWX.

408 PEN POINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

Table 112-1 lists the notification messages described by dsInstallMgr.

Me$s@~e l@Ke$ Description

112~1

Notification ,.,u~~~,ag!e~

msgIMN ameChanged P _1M_NOTIFY The name of an item has changed.

msgIMCurrentChanged

msgIMIn UseChanged

msgIMModifiedChanged

msgIMInstalled

msgIMDeinstalled

P _IM_ CURRENT_NOTIFY The current item has changed.

P _IM_INUSE_NOTIFY An item's inUse attribute has changed.

P _1M_MODIFIED_NOTIFY An item's modified attribute has changed.

P _1M_NOTIFY A new item was installed.

P _IM_DEINST ALL_NOTIFY An item has been deinstalled.

Handling msglMNameChanged
Observers receive msgIMNameChanged when the name of a item has changed.
The message passes a pointer to an 1M_NOTIFY structure that contains:

manager The UID of the manager that sent the notification.

handle The handle on the item that changed.

Handling msglMCurrentChanged
Observers receive msgIMCurrentChanged when another item becomes the
current item. The message passes a pointer to an IM_CURRENT_NOTIFY structure
that contains:

manager The UID of the manager that sent the notification.

newHandle The handle of the new current item.

oldHandle The handle of the old item.

Handling msglMlnUseChanged
Observers receive msgIMInUseChanged when a item's inUse attribute has
changed. The message passes a pointer to an IM_INUSE_NOTIFY structure that
contains:

manager The UID of the manager that sent the notification.

handle The handle on the item that changed.

inUse A BOOLEAN value that indicates the item's new inUse state.

Handling msglMModifiedChanged
Observers receive msgIMModifiedChanged when an item's modified attribute has
changed. The message passes a pointer to an 1M_MODIFIED_NOTIFY structure
that contains:

manager The UID of the manager that sent the notification.

handle The handle on the item that changed.

modified A BOOLEAN value that indicates the item's new modified state.

CHAPTER 112 I INSTALLATION MANAGERS 409
Using clslnstallMgr Messages

Handling msglMlnstalied

Observers receive msgIMlnstalled when an installable item has been installed or a
deactivated item was reinstalled. The message passes a pointer to an 1M_NOTIFY

structure, as described above in "Handling msgIMNameChanged."

Handling msglMDeinstalied

Observers receive msgIMDeinstalled when an installable item has been
deinstalled. The message passes a pointer to an IM_DEINSfALL_NOTIFY structure.

Using clslnstallMgr Messages
The messages defined by clslnstallMgr are used by installers to manipulate
installed items and to get information about the installation managers. These
messages are defined in INSTLMGR.H.

Table 112-2 lists the messages defined by clslnstallMgr.

Table 11 :2@:2

clslnsta r Messages
-----------~--==~----,--

msgNew

msgN ewDefaults

msglM GetStyle

msglMSetStyle

msglMGetCurrent

msglMSetCurrent

msglMSetln Use

msglMSetModified

msglMGetName

msglMSetName

msglM Get Version

msglM GetList

msglMGetState

msglMGetSize

msglMlnstall

msglMDeinstall

msglMDup

P_IM_NEW

P_IM_NEW

P_IM_STYLE

P_IM_STYLE

P _1M_HANDLE

1M_HANDLE

P _1M_SET _INUSE

P _1M_SET _MODIFIED

P _1M_GET _SET_NAME

P _1M_GET _SET_NAME

P _IM_GET_ VERSION

P_LIST

P _1M_GET _STATE

P _1M_GET _SIZE

P _1M_INSTALL

P _IM_DEINST ALL

P_IM_DUP

Creates a new install manager.

Initializes the 1M_NEW structure to default
values.

Passes back the current style settings.

Sets the current style.

Passes back the current item's handle.

Sets the current item.

Changes an item's in use setting.

Changes an item's modified setting.

Gets the name of a item.

Sets the name of a item.

Gets the version string for this item.

Passes back a list of all the items on this install
manager.

Gets the state of a item.

Returns the size of an item.

Installs a new item.

Deinstalls an item.

Creates a new item that is a duplicate of an
existing one.

410 PENPOINT ARCHITECTURAL REFERENCE
Part 12 I Installation API

M(;1ss©g®

msgIMUIInstall

msgIMUIDeinstall

msgIMUIDup

msgIMFind

msgIMe;etSema

msgIMe;etDir

P _IM_ UI_INSf ALL

P _IM_ UI_DEINSf ALL

P _IM_ UI_DUP

P_IM_FIND

P _OS_FAST _SEMA

P_OBJECT

msgIMe;etInstallerName P _STRINe;

msgIM e;etInstallerSingularN arne P _STRINe;

msgIMe;etInstallPath P _STRINe;

msgIM e;et Verifier P _ OBJECT

msgIMSet Verifier

msgIMV erify

msgIMExists

msgIM e;etNotify

msgIMSetNotify

OBJECT

OBJECT

P _1M_EXISTS'

P_BOOLEAN

BOOLEAN

Managing Installable-Item Managers

112-2

i)(;1scription

Installs a new item with a user interface.

Deinstalls an item with a user interface.

Duplicates and item with a UI.

Finds a item's handle, given its name.

e;ets the concurrency protection semaphore.

Passes back a directory handle on the install
manager's directory.

Passes back the install manager's name.

Passes back the install manager's singular name.

Passes back the install base path.

Passes back the current verifier object.

Sets the current verifier object.

Verify the validity of an item that is being installed.

Verify the existance of an item that is being installed.

Returns notification generation state.

Turns notification generation on or off

The following sections describe how to create and alter installable managers
(instances of clsInstalIMgr). .

Creating an Installable-Item Manager

To create an installable manager, send msgNewDefaults and msgNew to
clsInstallMgr. The message takes a pointer to an 1M_NEW structure that contains
an OBJECT_NEW_ONLY structure and:

style Style specifiers for the installable manager. Currently the only style is
shared, which specifies whether the installable manager will be accessed
by multiple clients. If shared is true (the default) clsInstallMgr creates a
semaphore for the manager. However, semaphores are an expensive
system resource; if you know that no other clients will access the
installable manager, you can specify false, which does not create a
semaphore.

locator A file system locator that indicates the directory that contains
the items. The directory must exist before you create the installable
manager object.

CHAPTER 112 / INSTALLATION MANAGERS 411

Using clslnstallMgr Messages

GeHing and SeHing the Style of an Installable-Item Manager

When you create an instance of clslnstallMgr, you can specify the installable
item's style. Currently, the style only indicates whether the installable item is
accessed by one or many clients. By default, the installable manager is shared,
however, you can get and set the style by sending msgIMGetStyle and
msgIMSetStyle to an instance of clslnstallMgr.

Both messages require an 1M_STYLE structure that contains a single member: a
BOOLEAN value (shared) that indicates whether the item is shared or not. If
shared is true, the installable manager can be shared by more than one client.

As described earlier, when an installable manager is shared, it must create a
semaphore. When you set shared to false, the semaphore is released, freeing
system resources.

GeHing the Item Directory

To get a directory handle of the directory observed by an installable manager, send
msgIMGetDir to the installable manager. The only argument for the message is a
pointer to the location that receives the handle.

112.3.1.2

Managing Installable Items 11 ~2,,3$2

The following sections discuss how to install, deactivate, reactivate, copy, update,
and delete installable items.

Installing an Installable Item

To add an installable item from an external volume to a item directory, send
msgIMlnstall to the appropriate installable manager. The message takes a pointer
to an 1M_INSTALL structure that contains:

locator A locator that specifies where the installable item is stored.

updateO K An IM_INST ALL_EXIST value that specifies what to do if the
installable item exists already. The possible 1M_INSTALL_EXIST values are:

imExistUpdate Copy a new item over an existing item.

imExistReactivate Deactivate the existing item, and activate the
new item.

imExistGenError Return stslMAlreadylnstalled.

imExistGenUnique Generate a different name for the new item.

imExistincRefCount Increment the reference count of the existing item.

listAttrLabel An FS_ATTR_IABEL structure that describes the attribute list
for the handle on the new item. This field is used internally by PenPoint,
and should always be null.

listHandle A file system handle that will get the attributes. This field is used
internally by PenPoint, and should always be null.

If the message is successful, it returns a handle on the installed item (handle).

412 PENPOINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

~~ Duplicating an Installed Item

To duplicate an installable item, send msgIMDup to the installable manager. The
message takes an IM_OUP structure that specifies:

handle The handle of the item to duplicate.

pName The name of the new item. If pName is NULL, dsInstallMgr
creates a unique name. If pName is not NULL, it must be a valid
item name.

When the message completes, the structure returns the handle of the new item
(newHandle).

If a item with pName exists already, the message returns stsIMAlreadyInstalled.

"., Deleting an Installable Item

To delete an installable item, send msgIMDeinstall to the installable manager.
The item cannot be the current item. The message takes a pointer to an
IM_OEINSTALL structure that specifies:

handle The UID of the item to delete.

You must use msgIMDelete to delete an installable item from the file system. The
handle on the item node and the installable manager protect items from any other
form of destruction. Messages that attempt to delete a file system node that is used
by the installable manager return stsFSNodeBusy.

Altering Installable Item AHributes
The following sections describe messages that alter the attributes of individual
installable items.

GeHing and SeHing the Current Installable Item

To make an installable item the current item, send msgIMSetCurrent to the
installable manager. The only argument to the message is the UID of the item to
make current. To clear the current item (so that no item in the item directory is
current) use objNull as the object UID.

To get the handle of the current item, send msgIMGetCurrent to the installable
manager. The only argument for the message is a pointer to the OBJECT location
that receives the UID of the current object. If there is no current object, the
message returns objNull.

Changing an Installable Item's Name

To change the name of an installed item, send msgIMSetName to the installable
manager. The message takes an 1M_SET _NAME structure that contains:

handle The handle of the item to be changed.

pName The new name for the item. The name must be a valid item name.

To get the current name for a item, use msgIMGetState.

112.3.3.1

CHAPTER 112 I INSTALLATION MANAGERS 413
Using dslnstallMgr Messages

GeHing Information About an Installable Item

The messages in the following sections get information about installable items.

Finding an Installable Item by Name

If you know the name of an installable item but don't know its handle (its UID),
you can send msgIMFind to the appropriate installable manager. The message
takes a pointer to a 1M_FIND structure that specifies the name of the item to look
up (pName).

If the item is found, the 1M_FIND structure returns the UID of the item handle
(handle).

If the item is not found, the message returns stsNoMatch.

GeHing a List of Items

To get a list of items (installed and deactivated) in a item directory, send
msgIMGetList to the installable manager. The only argument for the message is a
pointer to a LIST that receives the item handles. The message obtains space for the
list from your default process heap. It is your responsibility to free the LIST object.

GeHing the AHributes of an Installable Item 112$3*4.3

To find out the name and attribute state of an installable item, send msgIMGetState
to the installable manager. The message takes a pointer to an IM_GET_SfATE structure
that specifies:

handle The handle of the item to get information on.

pName A pointer to the string that receives the name of the item. If you
specify pNull in pName, the message will not return the item name.

The message uses the 1M_GET _STATE structure to return:

current A BOOLEAN value that receives the indication whether the item is
the current item.

modified A BOOLEAN value that receives the indication whether the item
has been modified or not.

GeHing the Size of an Installable Item

Before installing an item, it is a good idea to know its size so that you can deter­
mine whether there is enough room in the PenPoint computer for the item. To get
the size of the item, send msgIMGetSize to the installable manager. The message
takes a pointer to an IM_GET_SIZE structure, which contains the handle of the
item (handle).

When the message returns, the IM_GET_SIZE structure contains the size of the
item in the size field.

a::
c(

z
o
S

~

414 PENPOINT ARCHITECTURAL REFERENCE

Part 12 I Installation API

Advanced clslnslallMgr Topics
The following messages should only be used by clients that subclass clsInstallMgr.

Using the Semaphore

When an installable manager object is created with shared set to true, it uses a
semaphore to synchronize client access. If you subclass clsInstallMgr, you will
need to use the same semaphore to synchronize your access to a item directory.

Send msgIMGetSema to a specific installable manager to get the manager's
semaphore identifier. The message takes a pointer to an OS_FAST_SEMA value that
receives the semaphore identifier. Note that this is only the identifier of the
semaphore; not access to the item directory.

clsInstallMgr uses the semaphore whenever it receives a message that concerns the
item directory (such as msgIMInstall). clsInstallMgr requests the semaphore
before it first accesses the item directory and clears it only after the last tim~ it
accesses the item directory.

When a subclass of clsInstallMgr must access the item directory, it should get the
semaphore identifier from the installable manager. The subclass must use the
OSFastSemaReques~ to request access to the item directory and
OSFastvSemaClear to release the semaphore.

At some time, the subclass might need to call ancestor (clsInstalIMgr) while it
holds the semaphore. When invoked by a call ancestor, clsInstallMgr can request
the same semaphore. PenPoint grants the semaphore because the request came
from the same task that is currently holding the semaphore. PenPoint maintains a
count of the number of semaphore requests from the same task. When PenPoint
receives OSSemaClear, it decrements the' count.

Code Inslallalion Manager
The code installation manager, clsCodeInstallMgr, is a subclass of clsInstallMgr
that performs installation tasks common to both applications and services. The
capabilities added by clsCodeInstallMgr are that it can:

• Install an application or service.

• Return a li~t of the classes of all the currently installed applications or services.

• Get the application or service class of an item handle.

• Find the item handle for a specific application or service class.

The clsCodeInstallMgr messages are defined in CODEMGR.H. Table 112-3 lists
the messages defined by clsCodeInstallMgr ..

112.4

112.4.1

Message

msgCIM GetClassList

msgCIMGetClass

msgCIMF indClass

Takes

P _ CIM_ GET_CLASS

P _ CIM_FIND _CLASS

CHAPTER 112 / INSTALLATION MANAGERS 415
Code Installation Manager

Description

Passes back a list of the classes of the installed
applications or services.

Given a handle, passes back the class.

Returns the handle which references the specified
class.

Finds a item's handle, given its program name. msgCIMFindProgram

msgCIM Get TerminateStatus P _CIM_TERMINATE_ VETOED Gets termination status of last item deinstalled.

msgCIMLoad

msgCI~erminateOf(

msgCI~ erminate

msgCI~ erminateVetoed

P_CIM_LOAD

P _ CIM_ TERMINATE_Of(

P _ CIM_ TERMINATE

P _ CIM_ TERMINATE

Installing an Application or Service

Installs code for the item specified.

Is this item willing to be terminated?

Unconditionally terminate this item.

Somebody vetoed the termination sequence.

To install an application, send msgCIMLoad to thelnstalledApps or
thelnstalledServices. This message must be sent with the ObjectSendO macro,
not ObjectCall0 . The message takes a pointer to an elM_LOAD structure, which
contains a file handle on the item to load.

clsCodelnstallMgr does not handle msgCIMLoad; it is up to the classes that
inherit from clsCodelnstallMgr (clsApplnstallMgr and clsServicelnstallMgr)
to handle msgCIMLoad.

Application Installation Manager

clsApplnstallMgr is a subclass of clsCodelnstallMgr used to install applications.
clsApplnstallMgr adds the ability to get or set the mask class. The mask class
enables the PenPoint notebook to prompt the user when they attempt to turn to
a document for which the application is no longer installed.

The clsApplnstallMgr messages are defined in APPIMGR.H. Table 112-4 lists the
messages defined by clsApplnstallMgr.

Message

msgAIM GetMaskClass

msgAIMSetMaskClass

P_CLASS

CLASS

112~4

c!sApphlstaUMgr Messages
Description

Passes back the mask class.

Sets the mask class.

a::
<C
Z
o

~

416 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

If the user deinstalls an application while there are documents for that application
in the PenPoint computer, the installer substitutes a mask application class in place
of the application class for each document. By default, PenPoint uses the place­
holder application (defined by clsMaskApp) as the mask application. The
placeholder's only function is to respond to Application Framework activation
messages by displaying a page that informs the user that the application has been
deinstalled.

For more information about clsMaskApp, see Part 2: Application Framework.

PenPoint allows you to substitute your own mask application in place of the
placeholder application.

Service Installation Manager

The service installation manager, thelnstalledServices, maintains the installed
and deinstalled services in PenPoint. thelnstalledServices is an instance of
clsServicelnstallMgr; clsServicelnstallMgr is a subclass of clslnstallMgr. The
service installation manager differs from clslnstallMgr in that it must handle
metrics for the service classes.

The clsServicelnstallMgr messages are defined in SERVIMGR.H. Table 112-5
lists the messages defined by clsServicelnstallMgr.

msgSIM GetMetrics Gets the specified service class's metrics.

Font Installation Manager
The font installation manager, thelnstalledFonts, maintains the installed and
deinstalled fonts in PenPoint. thelnstalledFonts is an instance of
clsFontinstallMgr; clsFontinstallMgr is a subclass of clslnstallMgr. The font
installation manager differs from clslnstallMgr in that it must identify fonts and
maintains the notion of the system font.

Font Identification

Fonts are identified in four ways:

• A font file handle.

• The name of a font file.

• A short font id.

• A string (or long) font id.

A font file handle is a file handle on to the actual font file. Most of the font
installation manager interface uses these handles.

CHAPTER 112 I INSTALLATION MANAGERS 417
Font Installation Manager

The font file name is the user-visible name for the font. You can get the font file
name with the messages msgIMGetName (which uses a handle) and
msgFIM GetN ameFromld (which uses an ID).

A short font ID is a pre-defined, 16-bit value that identifies a specific font. It is
a compact, specific reference for a particular font that appears in the window
system API.

A string font ID is a 4-character version of a short font ID.

You can get a list of all the font handles in the system by sending the superclass
message msgIMGetList to thelnstalledFonts. This list includes fonts which are
deactivated. You can use the superclass message msgIMGetActiveList to get a list
of the active fonts.

To get a pruned list of the active fonts that is appropriate for end-user display,
send msgFIMGetlnstalledIDList to thelnstalledFonts.

clsFontlnstallMgr can:

• Get a list of the short IDs of all the installed fonts.

• Get a font's short and long IDs.

• Set the font's file ID.

• Find a font handle, given a short ID.

• Return a font name, given a short ID.

clsFontlnstallMgr Messages

The clsFontlnstallMgr messages are defined in FONTMGR.H. Table 112-6 lists the
messages defined by clsFontlnstallMgr.

msgFIMGetld

msgFIMSetld

msgFIMFindld

msgFIM GetNameF romld

msgFIM GetlnstalledldList

P _FIM_ GET_SET _ID

P _FIM_FIND _ID

Gets the short and long font IDs, given a
handle.

Set the font file's ID.

Finds a font handle given a short ID.

P _FIM_GET_NAME_FROM_ID Passes back font name given an short ID.

P _FIM_GET_INSfALLED_ID_LIST Passes back a list of the short IDs of all
installed fonts.

clsFontlnstallMgr does not understand these superclass messages:

msgIMGetCurrent

msgIMSetCurrent

msgIMDup

clsFontlnstallMgr does not send msgIMCurrentChanged.

a::
c:r:
z
o
S

[

-----.---.. --.--------."-~--.-~.-.

418 PENPOINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

Getting and SeHing a Font's ID

If you have a font handle and want the font's short and long IDs, send
msgFIMGetld to thelnstalledFonts. The message takes pointer to a
FIM_GET_SET_ID structure that contains the handle on the font file (handle).

When the message completes successfully, it returns stsOK, and passes back:

id An FIM_SHORT_ID value that contains the short ID.

longld An FIM_LONG_ID value that contains the long ID.

Usually you do not need to change a font's ID. This message allows third parties
to create tools that edits font IDs.

To assign an ID to a font file, send rnsgFIMSetld to thelnstalledFonts. The
message takes a pointer to an FIM_GET_SET_ID structure that contains:

handle The handle of the font file to which you want to assign the new IDs.

id An FIM_SHORT_ID value that contains the new short ID. If id is 0, the
value in the long ID is used.

longld An FIM_LONG_ID value that contains the new long ID.

Finding a Font Handle

If you have a font's short ID and need to know the handle on the font file, send
rnsgFIMFindld to thelnstalledFonts. The message takes a pointer to an
FIM_FIND _ID structure, which contains an FIM_SHORT _ID value that specifies the
font's ID (ID).

If the message completes successfully, it returns stsOK.

If the font ID is not found, it returns stsNoMatch.

GeHing a Font Name

To get a font's name, given its short ID, send msgFIMGetNameFromld to
thelnstalledFonts. The message takes a pointer to an FIM_GET_NAME_FROM_ID

structure, which contains:

id An FIM_SHORT_ID value that contains the font's short ID.

pName A pointer to the string that will receive the font's name.

If the message completes successfully, it returns stsOK and copies the name to the
array specified by pN arne.

GeHing a List of Installed Fonts

To get a list of the installed fonts, send msgFIMGetlnstalledldList to thelnstalledFonts.
The message takes a pointer to an FIM_GET_INSfALLED_ID_LIST structure that
contains:

prune An FIM_PRUNE_CONTROL value that describes how' the list should
be pruned. The prune value specifies:

fimNoPruning Don't prune the list.

CHAPTER 112 / INSTALLATION MANAGERS 419

fimPruneDupFamilies Remove duplicates from font families.

fimPruneSymbolFonts Remove symbol fonts.

Font Insta lIation Ma nager

When the message completes successfully, it returns stsOK and passes back a list
object. The list contains the short IDs of all the installed fonts. The list is pruned,
according to the prune field, so that it is useable as a user pick list. For example, if
the client specified fimPruneDupFamilies and both Helvetica and Helvetica Bold
are in the system, only Helvetica is on this list.

You must destroy the list object when you are finished using it.

You can use the superclass message msgIMGetList to get a list of all the font file
handles. There are handles for both installed and deactivated fonts.

Chapter 113 / The Auxiliary Notebook
Manager

The auxiliary notebooks are separate notebooks defined by PenPoineM that
provide system functions. The auxiliary notebooks include the In box and Out
box notebooks, the Help notebook, the Stationery notebook, the Connections
notebook, the Settings notebook, and also include the keyboard and the clock.

The auxiliary notebook manager allows clients to open auxiliary notebooks and to
perform other management tasks.

Topics covered in this chapter:

• The auxiliary notebooks used by the PenPoint operating system.

• The messages used to control auxiliary notebooks.

• Creating sections and documents in auxiliary notebooks.

• Deleting sections and documents from auxiliary notebooks.

• Modifying the stationery menu.

Auxiliary Notebook Concepts
There are two types of items on the PenPoint bookshelf:

• Data items, such as notebooks and documents.

• System items, such as the Settings notebook, the In box, Out box, and so on.

All system items on the Bookshelf (the auxiliary notebooks) are controlled
through the auxiliary notebook manager (theAuxNotebookMgr), which is the
only instance of clsAuxNotebookMgr.

The Auxiliary Notebooks

While using PenPoint, you have probably encountered these items at one time or
another. The file AUXNBMGR.H defines tags for each of these auxiliary notebooks.
Table 113-1 lists these tags and their purpose.

422 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

anmSettingsN otebook

anmHelpNotebook

anmStationeryNotebook

anmInboxNotebook

anmOutboxNotebook

anmAccessories

Auxmory NtlfCb©©k

113w l

Auxiliary Notebooks

The Settings UI. Used to configure PenPoint settings.

The Help notebook. Used to access help on topics.

The Stationery notebook. Used to store stationery.

The In box notebook. Used to import and store arriving documents.

The Out box notebook. Used to queue and output documents.

The accessories. Used for central storage of accessories and other documents.

Some of these" auxiliary notebooks" are not notebooks at all. They actually are
instances of specialized applications. The auxiliary notebooks that actually behave
like notebooks are: the In box, Out box, Stationery, and Help notebooks.

Auxiliary Notebooks and the File System

For each auxiliary notebook, there is a directory in \PENPOINT\SYS\OOC that
contains the documents (and, if supported, sections) in that notebook. For
example, the Help notebook contains directories for each installed application.
When the user installs an application, the installer:

1 Creates a directory for that application in the Help notebook directory.

2 Uses clsAuxNotebookMgr messages to create a section in the Help notebook.

3 Copies the help templates from the HELP directory to the new section.

While it is important to understand the relationship between the auxiliary notebooks
and the file system, clients should not access the auxiliary notebooks through the file
system. Rather, clients should send messages to theAuxNotebookMgr to manipulate
the auxiliary notebooks. This allows PenPoint to change the file-system name or
location of these notebooks at any time in the future.

Back Up Considerations

Auxiliary notebooks contain documents that are maintained by PenPoint system
software. These notebooks provide their own mechanisms to back up their data. If
you are writing a backup program for PenPoint, do not back up documents in the
auxiliary notebooks.

CHAPTER 113 I THE AUXILIARY NOTEBOOK MANAGER 423
Generalized Auxiliary Notebook Manager Messages

Auxiliary Notebook Manager Messages
The messages and defines for clsAuxNotebookMgr are defined in the file

AUXNBMGR.H. Table 113-2 lists the messages defined by clsAuxNotebookMgr.

msgANMOpenNotebook

msgANMGetNotebookPath

msgANMCreateSect

msgANMCreateOoc

msgANMMoveInOoc

msgANMCopylnOoc

msgANMOelete

msgANMOeleteAlI

msgANMGetNotebookUUIO

P _ANM_OPEN_NOTEBOOK Activate and optionally open an auxiliary
notebook.

P _ANM_GET_NOTEBOOK_PATH Returns the base path of one of the auxiliary
notebooks.

P _ANM_MOVE_COPY_OOC

P _ANM_MOVE_COPY_OOC

P _ANM_OELETE

P _ANM_OELETE_ALL

P _AN M_G ET _NOTEBOOK_UUIO

Create a section in one of the auxiliary
notebooks.

Create a document in one of the auxiliary
notebooks.

Move a document into an auxiliary notebook.

Copy a document into an auxiliary notebook.

Delete a section or document in one of the
auxiliary notebooks.

Delete all the nodes that are identified by '10'.

Returns the UUIO of one of the auxiliary
notebooks.

Generalized Auxiliary Notebook Manager
Messages
Clients can use the following three messages (msgANMOpenNotebook,

msgANMGetNotebookPath, and msgANMSystemlnited) with all auxiliary

notebooks.

Opening an Auxiliary Notebook

When you open an auxiliary notebook, it is displayed on the screen-much like

opening a document causes it to be displayed on screen.

To open an auxiliary notebook send msgANMOpenNotebook to theAuxNotebook­

Mgr. The only argument for the message is an ANM_AUX_NOTEBOOK value that

specifies the notebook to open.

GeHing the Path to an Auxiliary Notebook

All auxiliary notebooks are stored in the directory \PENPOINT\SYS\DTMGR. To get

the complete path to an auxiliary notebook, send msgANMGetNotebookPath to

theAuxNotebookMgr. ThemessagetakeapointertoanANM_GET_NOTEBOOK_PATH

structure that contains:

424 PENPOINT ARCHITECTURAL REFERENCE

Part 12 / Installation API

notebook An ANM_AUX_NOTEBOOK value that specifies the notebook for
which you want the path.

pLocator A pointer to the buffer to receive the path name. If the notebook
does not exist, the message pLocator is set to pN ull and the message
returns stsO K.

Specialized Auxiliary Notebook Manager
Messages
The messages described here apply only to the Help notebook, In box, Out box,
and the accessories.

Creating Auxiliary Notebook Sections

To create a section in the Help notebook or In box and Out box notebooks, send
msgANMCreateSect to theAuxNotebookMgr. The message takes a pointer to an
ANM_CREATE_SECT structure, which contains:

notebook An ANM_AUX_NOTEBOOK value that specifies the notebook in
which to create the section.

sectClass The class of the section.

pPath A pointer to a path that indicates the location of the new section in
the auxiliary notebook. You can get the path to an auxiliary notebook by
sending msgANMCetNotebookPath to theAuxNotebookMgr. If the
pointer is null, the message creates the section in the top level of the
notebook.

pName A pointer to a string that contains the name of the new section.

sequence A sequence number that identifies where to insert the section.
The new section is inserted in front of the document originally identified
by the sequence number.

pBookmarkLabel A pointer to a string that contains the bookmark label for
the section. If the pointer is null, no book mark is created.

exist An ANM_EXIST_BEHAVIOR value that specifies what to do if the
section exists or doesn't exist.

pDestPath A pointer to the string that receives the path to the created
section. If this pointer is null, the message won't return the path.

id A V32 value used to identify contents of the section. When the installer
deinstalls an application, it uses this identifier to locate and remove all
related entries in the Stationery notebook, Help notebook, and so on.

If the message completes successfully, it returns stsOK.

You cannot send msgANMCreateSect to accessories.

113.4

113.4.1

CHAPTER 113 / THE AUXILIARY NOTEBOOK MANAGER 425
Specialized Auxiliary Notebook Manager Messages

Creating Auxiliary Notebook Documents

To create a document in the Help notebook, In box, Out box, or accessories, send
msgANMCreateDoc to theAuxNotebookMgr. The message takes a pointer to an
ANM_CREATE_DOC structure, which contains:

notebook An ANM_AUX_NOTEBOOK value that specifies the notebook in
which to create the document.

docClass The class of the document.

pPath A pointer to a path that indicates the location of the new document
in the auxiliary notebook. You can get the path to an auxiliary notebook
by sending msgANMGetN otebookPath to theAuxNotebookMgr. If the
pointer is null, the message creates the document in the top level of the
notebook.

pName A pointer to a string that contains the name of the new document.

sequence A sequence number that identifies where to insert the section.
The new document is inserted in front of the document originally
identified by the sequence number.

pBookmarkLabel A pointer to a string that contains the bookmark label for
the document. If the pointer is null, no book mark is created.

exist An ANM_EXIST_BEHAVIOR value that specifies what to do if the
document exists or doesn't exist.

putinMenu A BOOLEAN value that specifies whether a stationery
document should be listed in the stationery menu.

pDestPath A pointer to the string that receives the path to the document.
If this pointer is null, the message won't return the path.

id A V32 value used to identify contents of the document. When the
installer deinstalls an application, it uses this identifier to locate and
remove all related entries in the Stationery notebook, Help notebook,
and so on.

If the message completes successfully, it returns stsOK.

Moving and Copying Documents to an
Auxiliary Notebook

To move or copy documents into the Help notebook, In box, Out box, or accessories,
send msgANMMovelnDoc or msgANMCopylnDoc to theAuxNotebookMgr. Both
messages take a pointer to an ANM_MOVE_COPY_DOC structure that contains:

notebook An ANM_AUX_NOTEBOOK value that specifies the notebook that
will contain the document.

source A locator to the document that will be moved or copied.

pPath A path to the destination of the document within the auxiliary
notebook. The path is relative to the auxiliary notebook's directory
(which is a subdirectory of\PENPOINT\SYS\DTMGR). If you specify
pNull, the document is moved or copied to the top level of the notebook.

--.--.-.. -.... ~------

426 PEN POINT ARCHITECTURAL REFERENCE

Part 12 I Installation API

defaultClass A class UID for the document if it isn't already stamped with a
class.

sequence A sequence number that identifies where to insert the document.
The document is inserted in front of the document originally identified
by the sequence number.

pBookmarkLabel A pointer to a string that contains the bookmark label for
the document. If the pointer is null, no book mark is created.

exist An ANM_EXIST _BEHAVIOR value that specifies what to do if the
document exists or doesn't exist.

forceInMenu A BOOLEAN value that specifies whether a stationery
document should be listed in the stationery menu, regardless of any local
attributes.

pDestPath A pointer to the string that receives the path to the created
document. If this pointer is null, the message won't return the path.

id A U32 value used to identify contents of the document. When the
installer deinstalls an application, it uses this identifier to locate and
remove all related entries in the Stationery notebook, Help notebook,
and so on.

Deleting an Auxiliary Notebook Section or Document
To delete a section or document from the Help notebook, In box, Out box, or
accessories, send msgANMDelete to theAuxNotebookMgr. The message takes a
pointer to an ANM_DELETE structure that contains:

notebook An ANM_AUX_NOTEBOOK value that specifies the notebook that
contains the section or document to delete.

pPath The path to the section or document to delete.

To delete all nodes that have a specific application ID, send msgANMDeleteAlI to
theAuxNotebookMgr. The message takes a pointer to an ANM_DELETE_ALL

structure that contains:

notebook An ANM_AUX_NOTEBOOK value that specifies the notebook that
contains the documents to be deleted.

id A U32 value that identifies the application.

Modifying the Stationery Menu
clsAuxNotebookMgr defines two messages that clients can use to add and remove
documents from the stationery menu.

Adding a Document to the Stationery Menu
To add a document that is in the Stationery notebook to the stationery menu,
send msgANMAddToStationeryMenu to theAuxNotebookMgr. The message
takes a pointer to an ANM_MENU_ADD_REMOVE structure that contains' the
directory index of document to add to the menu (document).

113.4.4

113.5

113.5.1

CHAPTER 113 I THE AUXILIARY NOTEBOOK MANAGER 427

Modifying the Stationery Menu

Removing a Document to the Stationery Menu

To remove a document from the stationery menu, send msgANMRemoveFrom­
StationeryMenu to theAuxNotebookMgr. The message takes a pointer to an
ANM_MENV_ADD_REMOVE structure, as described above in

msgANMAddToStationeryMenu.

Chapter 1 14 / The System Class

The system class, clsSystem, provides information about the running PenPoineM

operating system. This chapter discusses these topics:

• The PenPoint booting sequence.

• The file system paths.

• The system messages.

Concepts
clsSystem manages PenPoint booting. There is only one instance of clsSystem,
which has the well-known identifier theSystem. All clients send clsSystem
messages to theSystem.

Booting Sequence

Mter the PenPoint machine interface layer (MIL) is loaded, clsSystem manages
booting the PenPoint operating system. The SYS_BOOT_PROGRESS enum defines
symbols for completion of each of the major steps in the boot sequence. Table
114-1 lists these enums in the correct boot sequence.

Table 114~ 1

Boot :leaUierllCe :l'*1iro/mS)OiiS

5yrnb0!

sysKernelComplete

sysSystemDllsComplete

sysSystemAppsInstalled

sysIni tialApp Installed

sysBookshelfItemsCreated

sysServicesInstalled

sysAppsInstalled

sysInitialAppRunning

sysBootComplete

The PenPoint kernel is loaded.

The system D LLs listed in BOOT.D LC are loaded.

The system applications listed in SYSAfP .INI are loaded.

The initial application (the Bookshelf) is installed.

The items on the Bookshelf notebooks are created.

The services listed in SERVICE.INI are installed.

The applications listed in APP.INI are installed.

The initial application is running.

Booting is complete.

The initial application is the bookshelf application. Note that the items that
appear on the bookshelf are not placed in the bookshelf until the bookshelf
application is running (sysInitialAppRunning).

Your application or service might want to perform specific actions as soon as it is
installed. However, ifit depends on another component that is loaded later in the boot
sequence, it can use the System to find out when booting has reached a particular step.

430 PEN POINT ARCHITECTURAL REFERENCE
Part 12 I Installation API

File System Paths

As part of managing booting, clsSystem defines a number of constants for file
system paths to frequently used locations. Rather than adding your own string
literals to your applications, you should use these constants.

For example, if you want to create a string that identifies where PenPoint
applications live, do not use:

strcpy(pFoo, "PENPOINT\\APP");

Instead, you should use:

strcpy(pFoo, sysBaseDir "\\" syslnstallableAppDir);

Table 114-2 lists the file system path constants and their meanings.

114. L2

'rabl~~ 114~:2

'%.'U'ilW\ChW\¥t! Patll Constants

sysBaseDir

sysInstallableFontDir

syslnstallablePrefDir

sysInstallableHWXProtDir

sysInstallableGestureD ir

sysInstallablePDictDir

sysInstallableAppDir

sysInstallableServiceDir

sysBootDir

sysQuickInstall

sysRuntimeRootDir

sysSysAppFile

sysAppFile

sysSysServiceF ile

sysServiceF ile

sysCopyFile

sys ResF ile

sysMILResFile

sysLiveRoot

sysLoaderDir

sysDefaul tlni tialApp

PENPOINT

FONT

PREFS

HWXPROT

GESTURE

PDICT

APP

SERVICE

BOOT

QINSTALL

SYS

SYSAW.lNI

AW.lNI

SYSSERY.INI

SERVICE.INI

SYSCOPY.lNI

PENPOINT.RES

MIL. RES

Bookshelf

LOADER

Bookshelf

PENPOIN1\SOOT\APP)

CHAPTER 114 I THE SYSTEM CLASS 431

The System Messages

Just as a reminder, you can use theBootVolume to identify the volume from which
the PenPoint operating system was booted. You can use theSelectedVolume to
identify the volume that contains the PenPoint run-time information .

. The SysteM Messages
Table 114-3 lists the messages defined by dsSystem in the file SYSTEM.H.

msgSysGetBootState Passes back the current booting stage.

msgSysGetRun timeRoot P_OBJECT Passes back a dir handle onto the root of the
Penpoint runtime area.

msgSysGetLiveRoot Passes back an appDir handle onto the root of a
volume's live document area.

msgSysIsHandleLive P _SYS_IS_HANDLE_LIVE Determines if a filesystem handle is within the
live document area.

msgSysCreateLiveRoot P _SYS_CRFATE_LIVE_ROOT Create a new live root on a volume.

msgSysGetVersion

msgSysGetSecurityO bject

P _U16 Passes back the system version number.

P _OBJECT Gets the current security object.

msgSysSetSecurityObject P _SYS_SET _SECURITY_OBJECT Sets the current security object.

msgSysGetCorrectiveServiceLevel P _STRING Gets the corrective service level.

msgSysSetCorrectiveServiceLevel P _STRING Sets the corrective service level.

msgSysBootStateChanged The system has reached another stage of booting.

Boot Progress Messages

There are two ways your application can find out the progress of system booting:

• It can make itself an observer of theSystem. When the boot state changes, it
will receive msgBootStateChanged .

• It can send msgSysGetBootState to theSystem to find out the current stage.

Both messages pass a pointer to a SYS_BOOT_STATE structure, which contains:

booted A BOOLEAN value that indicates whether booting has completed
(true) or not (false).

progress A SYS_BOOT_PROGRESS value (described above) that indicates
the current boot stage.

type A SYS_BOOT _TYPE value that indicates the boot type. There are
two types of boots: cold-boot (sysColdBoot) and warm-boot
(sysWarmBoot). When booting on a PC, the boot type will be

114.2.1

432 PENPOINT ARCHITECTURAL REFERENCE
Part 12 / Installation API

sysColdBoot; when booting tablet hardware, the boot type will always be

sysWarmBoot.

initialAppClass A DID that indicates the class of the initial application.

System Directory Messages

As described in Chapter 110, PenPoint defines specific directories for many of its
system files. clsSystem defines several messages that allow you to access these files

and directories.

You can send msgSysGetRuntimeRoot to theSystem to get a directory handle on
the root of the PenPoint runtime area.

If a PenPoint volume has a bookshelf (in \PENPOINT\SYS\DOC), this is said to be

the "live" area for documents on the volume. You can use msgSysGetLiveRoot to

access the live area on a volume. The live area can be on any PenPoint volume. To
find out if a handle is on a file or directory within the live area, send

msgSysIsHandleLive to theSystem.

Pari 13 /
Wriling PenPoini Services

pr Chapter 115 / Introduction 435 Deinstalling Services 117.5 456

Intended Audience 115.1 435 Messages Sent to Your Service Class 117.6 456

Layout of This Manual 115.2 435
Handling msgN ewDefaults 117.6.1 457
Handling msgN ew 117.6.2 457 Other Sources of Information 115.3 435 Handling msgSvcClassTerminateOK 117.6.3 457

pr Chapter 116/ Service Concepts 437
Handling msgSvcClass Terminate Vetoed 117.6.4 458
Handling msgSvcClass Terminate 117.6.5 458

Service Manager Architecture 116.1 437 Handling msgF ree 117.6.6 458
Applications, Components, and Services 116.2 438 Handling msgSvcClassLoadInstance 117.6.7 458

Applications 116.2.1 438 Messages Sent by Service Managers 117.7 459
Components 116.2.2 438 Service Manager Requests for Information 117.7.1 459
Services 116.2.3 438 Messages from Service Managers 117.7.2 461

Services in PenPoint 116.3 438 Change Ownership Protocol Messages 117.7.3 467
MIL Services 116.3.1 439 Messages Handled By clsService 117.7.4 469
Other Services 116.3.2 439 Messages Sent to Open Services 117.8 470

Classes Used by Services 116.4 439 Open Service Objects 117.9 470
The Service Class and Service Instances 116.4.1 439 clsService Does Most of the Work 117.9.1 471
The Service Manager Class 116.4.2 440 What clsOpenServiceObject Does 117.9.2 471
The Service Installation Manager Class 116.4.3 441 Subclassing clsOpenServiceObject 117.9.3 471
Open Service Object Class 116.4.4 441

Service Overview: Installation to Use 116.5 441 pr Chapter 118 / Distributing
Installing a Service Class 116.5.1 441 Your Service 473

Creating Service Instances 116.5.2 442 What You Must Do 118.1 473
Using a Service Instance 116.5.3 442 Providing Preconfigured Instances 118.1.1 473
Responding to Service Messages 116.5.4 443 Providing Demo Apps 118.1.2 473

Services and the File System 116.6 443 What the User Must Do 118.2 474
Services on Distribution or Boot Disks 116.6.1 444
Services in theSelectedV olume 116.6.2 445 pr Chapter 119 / Test Service
Services in File System at Run Time 116.6.3 445 Examples 475

Exclusive and Multiple Access Services 116.7 445 TESTSVC 476
Exclusive Access Services 116.7.1 445 BASICSVC 485
Multiple Access Services 116.7.2 446

MILSVC 487
Targeting and Chaining Services 116.8 446

Service Connection 116.9 446 pr List of Figures
116-1 Services and a Service Manager 440 ~ Chapter 117 / Programming

Services 449 ~ List of Tables
Object -Oriented Architecture 117.1 449 117-1 clsService Information Messages 459
Design Decisions 117.2 449 117-2 clsService Notification Messages 461
Using the Template Services 117.3 449 117-3 clsService Responsibility Messages 469
Service Installation 117.4 450

Calling Your Service Initialization Routines 117.4.1 451
Calling Other Class Initialization Routines 117.4.2 452
Calling InitService 117.4.3 452
Static and Dynamic Service Instances 117.4.4 453
Creating Service Instances 117.4.5 454
Services and Tasks 117.4.6 455

Chapter 115 / Introduction

This manual describes how to write services for the PenPoint™ operating system.
PenPoint services are separately installable, non-application DLLs that provide
system extensions such as database engines, e-mail backends, and PenPoint
device drivers.

Intended Audience
This manual is written for people who are designing and implementing PenPoint
servIces.

Writing a service requires a good knowledge ofPenPoint, its object-oriented
design, and its message passing mechanism.

We expect that you are familiar with the PenPoint operating system and object­
oriented programming concepts, proficient in the C programming language,
and-if you are writing a device drive-that you have some familiarity with
hardware interfaces or data communications protocols.

Layout of This Manual
This chapter, Chapter 115, provides an overview to services, describes the intended
audience for this manual, describes the organization of the manual, and provides
pointers to other sources of information.

Chapter 116, Service Concepts, describes the concepts that you need to know
before writing a service, but doesn't describe how to implement these concepts.

Chapter 117, Programming Services, describes the actions that your service must
take in response to a message.

Chapter 118, Distributing Your Service, describes how to organize your service so
that it works correctly with the installer architecture.

Chapter 119, Test Service Examples, provides listings of the sample services that
are distributed in \PENPOINT\SDK\SAMPLE.

Other Sources of Information
Chapter 94, Using Services, in Part 10: Connectivity describes services from the
client's point of view. To write an application that uses or tests your service, you
will need to understand this information.

If you are writing a device driver, you will need documentation for the device with
which you intend to communicate.

115.1

Chapter 1 16 / Service Concepts

This section discusses the concepts that you need to know before writing a service.
Chapter 117 describes how to implement these concepts.

Service Manager Architecture
The PenPoint service architecture enables the PenPoint™ operating system to
manage installable and deinstallable non-application facilities. The need for a
service manager architecture was dictated by two conflicting needs in the PenPoint
operating system:

• PenPoint does not depend on a disk being available, so memory is usually
limited.

• PenPoint machines are portable and may require device drivers for several
different devices (for example, different locations might have different printers).

If memory is tight, users probably only want to load the services that they need.
If the user goes to an office that has a different printer, the PenPoint service
architecture allows the user to deinstall the current printer driver and load the
printer driver for the new device.

The service manager:

• Manages non-application facilities.

• Allows arbitrary categories of services.

• Manages finding, binding, and opening services.

• Provides notification for addition, removal, connection, and disconnection
of services.

• Gracefully handles the case where a requested service is not available.

Generally, services:

• Provide installable and deinstallable, non-application system extensions.

• Can target other services to form chains.

• Do not require their target to be present when they are created (delayed
binding).

• Can have owners.

438 PENPOINT ARCHITECTURAL REFERENCE
Part 13 I Writing Pen Point Services

Applications, Components, and Services
There are three types of programs that you might write for the PenPoint operating
system: applications, components, and services.

Applications

Application are PenPoint classes that inherit from clsApp. Generally, applications:

• Provide the interface through which users interact with the system.

• Provide some computational work.

• Use services and components to perform more sophisticated tasks.

• Respond to the PenPoint Application Framework messages.

Components

Components are DLLs that provide specific application capabilities. Components
can be seen as building blocks that developers can use to add functionality to their
application.

Components can provide a user interface (but don't have to). Components do not
inherit from clsApp. Typical examples of components are:

• clsT extView

• clsMiniNote.

Services

PenPoint services are installable, non-application DLLs that provide system
extensions. Services inherit from clsService. While components can be used by
any number of users, most services require controlled access; the access to services
is controlled by the service managers.

The philosophy behind the services architecture is that no part of PenPoint should
expect any particular hardware to be present. Other system extensions provided by
servIces are:

• Database engines

• E-mail backends

• Installable file systems.

Not all services provide a user interface. Services also do not respond to the
PenPoint Application Framework messages .

. Services in PenPoint
PenPoint uses services to provide system extensions. This section outlines the
various services provided by PenPoint. You can use these services and their
organization to model how your services relate to PenPoint. You can also use
these services to model how your services present their user interface (do they
have an option card? do they require a configuration accessory?).

116.2

116.3

CHAPTER 116 I SERVICE CONCEPTS 439
Classes Used by Services

".. MIL Services
PenPoint MIL services perform the functions usually performed by device drivers
in other operating systems. The MIL services handle requests to communicate
directly with ports. (Not all services are directly connected to devices; services can
be chained to act like a protocol stack.)

The MIL services that communicate directly with device ports are usually loaded
at boot time (depending on the configuration of the machine). Two examples of
port MIL services are:

Serial Port Controls the serial port or ports.

Parallel Port Controls the parallel port or ports.

Other services and MIL services that communicate directly with optional devices can
be loaded at boot time or can be installed by the user. Two examples of non-port
servIces are:

DotMatrix Handles dot-matrix printer requests from a printer window
device and communicates printer commands through a parallel port.

Modem Handles modem requests from applications and communicates AT
commands through the serial port.

Other Services
Other types of services in PenPoint are the DOS and Macintosh file systems and
the replaceable shape matcher.

Classes Used by Services
When developing a service, you must know about three classes:

clsService The service class.

clslnstallMgr The install manager class.

clsServiceManager The service manager class, which inherits from
clslnstallMgr.

The Service Class and Service Instances

A service class implements the functions for a particular type of device or
function. For each device or function configured in a running PenPoint system,
there is an instance of a service class.

An instance of a service can be created:

• By the service's DLLMain at install time.

• By the service installer at install time from pre-configured instance state data.

• Dynamically at the user's request (through a user interface, such as the
Printers).

Each service class is a subclass of clsService and is implemented as a separate DLL.

116 .. 3.1

440 PEN POINT ARCHITECTURAL REFERENCE
Part 13 I Writing PenPoint Services

A service instance receives messages from its service manager and, when opened,
from its opener. Most of the messages sent by the service manager are defined by
clsService. The service instance does little work with these messages, but passes
them up to its superclass, clsService.

The service instance does most of its work when receiving requests from its
openers. A service instance usually interracts with its openers by handling
messages from the openers. However, the service can also tell its openers the entry
points to specific procedural interfaces (if any). This allows openers to access
time-critical services without the overhead of object calls.

The Service Manager Class

A service manager maintains a list of instances that share the same minimum API.
There can be instances of different serice subclasses on the same service managers.
Each service instance must belong to at least one service manager; service instances
can be listed on more than one service manager.

When a client wants to use a service, the client communicates with the service
manager that has the needed service on its list. Service instances can be on more
than one service manager list.

Service managers are instances of clsServiceManager. Most service managers are
created by the PenPoint operating system at boot time.

Figure 116-1 shows a service manager and its service instances.

We will refer many times to the
superclass; unless otherwise
noted, it means cl55ervice.

116.4.2

116* 1
""fuAIlt"V!H."'Q'iIE and a Se~'Vi(e Marlager

When writing a client that uses services, you use the messages defined by
clsServiceManager to find, express interest in, and open a service instance. Clients
can observe individual services, or can observe a service manager.

CHAPTER 116 / SERVICE CONCEPTS 441

Service Overview: Installation to Use

The Service Installation Manager Class

The service installation manager handles installation and deinstallation of service
classes. For each installed service, the service installation manager creates and
manages a service directory in the RAM file system.

There is only one service installation manager in the system, theInstalledServices,
which is an instance of clsServiceInstallMgr.

When getting information about installed services, you use messages defined by
clsServiceInstallMgr and its ancestor, clsInstallMgr.

Open Service Obiect Class

When a client opens a service, the service manager passes back a service instance
UID to the client. The client then communicates with the service by sending
messages to the UID.

While most services allow only one opener per service instance, some services
allow more than one client to access the same service instance. When designing
multiple-access services, you (the service developer) must decide whether the
service should give the UID of the service instance to each opener or if the service
should give a separate, placeholder UID to each opener.

But where do you get these UIDs? PenPoint provides a class, the open service
object class (clsOpenServiceObject), that you can subclass. When a client opens
your service, you create an instance of the subclass and give the UID of the
subclass back to the client. clsOpenServiceObject inherits from clsStream.

The advantage of giving separate UIDs to each opener is that your service can use the
open service object subclass to maintain the state of each of the openers individually .

... Service Overview: Inslallalion 10 Use
There are four parts to the life cycle of a service:

• Installing the service class.

• Creating a service instance.

• Accessing the service instance.

• Responding to service messages.

This section presents an overview of a service, beginning with service installation
to the service responding to client messages.

Installing a Service Class

There are three ways that service classes can be installed:

• Bya cold-boot of an SDK version of Pen Point (the service is listed in the
SERVICE.INI file).

• By the quick installer (the volume specifies quick install from the services;
requires some user interaction).

442 PENPOINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

• By the user (the user installs a service from the Connections notebook or the
Settings notebook).

When installation is initiated, thelnstalledServices finds the service on disk, copies
the service DLL files into the loader data base, and copies non-executable files to
the RAM file system.

thelnstalledServices then calls the service's DLLMainO routine, which creates the
service class by subclassing clsService. The DLLMainO routine also creates any
other classes required by the service.

Creating Service Instances
Once the DLLMain routine creates the service class, a client can send msgNew to
the service class to create a service instance. The arguments to msgNew for a
service include a list of service managers that will manage this service instance and
a target for the service instance (if any).

Usually the service class does little with msgNew, but passes it to its superclass.
clsService creates the new service instance and adds the instance to the lists
maintained by the specified service managers.

Depending on the service flags, clsService can also bind the service instance to its
target when it is created.

If a service has a fixed number of service instances, the service can create its own
instances from its DLLMainO routine. Otherwise, the service should provide
some application or accessory through which users can create and destroy
instances of a service, rename service instances, or specify or change the target of a
service. (Service targets are explained later in this chapter.)

Using a Service Instance
When the service instance appears on one or more service manager lists, a client
can locate, bind to, and then open the service instance:

1 The client finds the service instance by sending msgIMFind to the
appropriate service manager, specifying the name of the service instance.
msgIMFind passes back a handle on the service instance.

2 The client binds to the service handle by sending msgSMBind to the service
manager. This makes the client an observer of the service instance.

3 The client sends msgSMSetOwner to the service manager. This allows the
client to access exclusive-access services.

4 The client sends msgSMOpenDefaults to the service manager, so that the
service instance can provide default values for the open pArgs (if any).

5 The client opens the service instance by sending msgSMOpen to the service
manager. If the open is successful, the service manager passes back the UID
of the service instance or the open service handle. A client should open a
service instance only when it is ready to send or receive data.

116.5.3

CHAPTER 116 I SERVICE CONCEPTS 443

Services and the File System

6 The client uses the service instance to perform some action. Usually this
consists of sending msgStreamRead or msgStream Write to the service
instance.

7 The client should close the service instance (by sending msgSMClose to
the service manager) as soon as it has finished sending or receiving data.

8 Finally, the client unbinds from the service instance by sending
msgSMUnbind to the service manager. The client must close the service
before unbinding from it.

Chapter 94, Using Services, in Part 10: Connectivity describes these steps in much
greater detail.

Responding to Service Messages
For some messages that a client sends to a service manager, the service ,manager
sends a corresponding message to the appropriate service instance. Most of these
messages inform the service instance that a request was made and allow the service
instance (or its superclass) to veto the request or provide some information.

When the client sends msgSMBind to the service manager, the service manager
sends msgSvcBindRequested to the service instance; when the client sends
msgSMOpen to the service manager, the service manager sends
msgSvcOpenRequested to the service instance, and so on.

When the service instance receives msgSvcOpenRequested, it must allow clsService
to handle the message, then, if the service instance allows multiple openers, it creates
an instance of its open handle class and passes that UID to the client.

When a client has opened a service instance, it sends messages directly to the
service instance to perform some work. The service class can define methods for
messages created by its ancestors (such as msgStreamRead and msgStreamWrite)
or it can define methods for its own messages.

Services and the File System
Each service has its own directory. The name of the service directory is the name
of the service. In installation volumes, service directories are in the \PENPOINT\

SERVICE directory. In a running system, service directories are in the \PENPOINT\

SYS\SERVICE directory.

Each service instance is represented by a file system node. The node is usually a
file, but can be a directory if the service desires. A service uses its file system node
to save its state information. For example, a service that uses the serial port can
save the baud rate and other serial communication parameters.

When a service is installed and instances of the service are created, its service
manager creates a file system handle on the node for the service. Each service
manager maintains a list of open file system handles for the service nodes it is
responsible for.

Much of the file system
information is similar to
that described in Part 12:
Installation API.

---_ ------

444 PENPOINT ARCHITECTURAL REFERENCE

Part 13 / Writing Pen Point Services

The service instance nodes live in a subdirectory of the \PENPOINT\SYS\

SERVICE\INST.

Services on Distribution or Boot Disks

In a distribution or boot volume, service directories are in the \PENPOINT\SERVICE

directory. A service directory can contain the following files, as shown in the
directory hierarchy below:

• One or more service DLL files.

• A .DLC file (if there is more than one DLL file) that lists the DLLs required
by this service.

• An optional INIT.DLL file that is loaded, run, and unloaded during service
installation.

• An optional service resource file, SERVICE.RES, which is similar to an
application's APP.RES file.

• An optional MISC directory (similar to an application's MISC directory),
which can contain static data files that are common to all service instances.

• An optional INST directory, which contains one or more service state nodes
(a node is either a file or a directory) containing instance data for saved
service instances. The service install manager uses this data to create
pre-configured service instances when the service is installed.

• An optional SERVICE.INI file that specifies additional services that must be
installed when this service is installed.

• An optional APP.INI file that specifies applications that must be installed
when this service is installed.
\\Distribution Volume

L \PENPOINT
L \ ERVICE

\ ervice Directory
\ .dll files
\. dlc file
\init .dll
\service.res
\MISC

c= \Static Data Files \tST
\Service State Node
\Service State Node

\APP.INI
\SERVICE.INI

\Service Directory

If there is only one DLL file and no .DLC file, the DLL file must have the same
name as the service (with a .DLL extension). For example, the FLAP service
directory contains FLAP.DLL.

If there is more than one DLL file, the .DLC file must have the same name as the
service (with a .DLC extension). For example, the PCL service directory contains
PCL.DLC (along with PCL.DLL, OBXSERY.DLL, CLSBND.DLL, and CLSPRN.DLL).

The service directory must
contain at least one .DLL or
.DLC file.

CHAPTER 116 / SERVICE CONCEPTS 445
Exclusive and Multiple Access Services

Services in theSelectedVolume

When a service is installed, its service directory is created in \PENPOINT\SYS\

SERVICE. The service directory contains:

• An INST directory that contains one or more service state nodes (a rtode is
either a file or a directory). Each service state node contains instance data for
a specific service instance.

• An optional MISC directory that contains static data files common to all
instances of the service.

• The optional SERVICE.RES file that contains the service's UI components,
quick help resources, and other read-only resources.
\\theSelectedVolume

L \PENPOINT
L \SYS

L \ ERVICE
\~rVice Directory \tST

\Service State Node
\Service State Node

\MISC
~ \Static Data Files

\SERVICE.RES
\Service Directory

Services in File System at Run Time

When clsService creates a new instance of a service class, it creates a service state
node (either a file or a directory) in the \INST directory of the service's directory
(that is, in \PENPOINT\SYS\SERVICE\MyService\INST). The service instance uses this
state node to store any state that needs to survive a warm boot. There is no explicit
save and restore sequence for services. A service must update its state node
whenever its state changes.

Exclusive and Multiple Access Services
Exclusive access services allow only one client to access their instances at a time;
multiple access services can be accessed by more than one client at a time. Exclusive
access services usually represent a physical device, such as a serial port or a printer.
Multiple access services usually represent an abstract entity that allows simultaneous
access, such as a network or a database.

Exclusive Access Services

There are two ways of specifying that a service instance has exclusive access:

• A service instance can allow only one opener at a time (specified by a flag).

• A service instance can be opened only by its owner.

Each service instance has an owner field. This field can be NULL, meaning the
service has no owner. Each service instance also has a flag that, when true,
specifies that only the owner can open the service.

When a client wants to become the owner of a service instance (or when a third­
party wants to change the owner of a service), it sends msgSMSetOwner to a
service manager for the service instance. The service manager then negotiates with

446 PEN POINT ARCHITECTURAL REFERENCE

Part 13 / Writing PenPoint Services

the current owner, the new owner, and the service itself to ensure that all are
prepared to change ownership. The protocol for changing ownership is explained
in Chapter 117.

Multiple Access Services'
There are two different types of multiple access services:

• Shared services, where each opener of a service instance receives the UID of
the service instance; all openers send requests to the same UID .

• Multiuser services, where each opener of a service instance receives the UID
of a unique open service object; each opener sends its requests to the UID of
its own open service object.

Any client that has the UID of a shared service can send messages to the service
instance at any time, even while the service is handling another request. You must
use semaphores to protect access, where necessary.

Multiuser services provide a convenient place to store caller-specific state. When a
client opens a multiuser service, clsService sends msgNew to a a subclass of
clsOpenServiceObject (the subclass was created by the service class when it was
installed). When a client closes a multi-user service, clsService sends msgDestroy
to the open service object.

Targeting and Chaining Services
Service instances can bind and open other service instances or targets.

When the service instance is first created, the default behavior is to attempt to
bind to its target.

When a client opens a service, a style bit in the service's metrics can tell the service
to automatically open its target.

When a service becomes a client to its target all client observer notifications and
ownership messages from the target are also sent to the client service. Information
about ownership is also propogated down the target chain.

Services that communicate directly with the hardware do not have a target.

Service Connection
Services support the notion of knowing whether they are connected or not. When
a device is connected to a port, the service can communicate with the device. Each
service has a state bit that indicates whether itis connected or not.

Some services are able to detect when a connection is made or is broken; other
services cannot detect connections. The service writer specifies whether a service
can detect connections when creating a service instance. As a third alternative the
service writer can tell the service to take on the connection state of its target.
Usually services that deal directly with a hardware interface specify auto-:detect or
non-auto-detect; all other services follow their target's connection state.

116.7.2

116.9

CHAPTER 116 / SERVICE CONCEPTS 447

The connection state is important to services that have been enabled. To relieve the
user of having to turn to the Out box notebook and check Enabled every time the
PenPoint computer is attached to a printer, the user can leave Enabled checked all

Service Connection

the time for an auto-detecting device. A good example is a printer on a TOPS network:
when the PenPoint computer is connected to the TOPS network, the service detects
that a connection has been made and starts to send data to the port.

Similarly, if connection is broken, an auto-detecting service will be able to stop its
current action and prompt the user to reestablish the connection or cancel the
operation.

Most hardware services can detect whether their hardware is connected or
disconnected. Each service has a state bit which says whether it is connected or
not. When the hardware changes connection state, the service sends a notification
message to itself. This notification message then notifies all clients that are bound
to that service.

Non-hardware services automatically change their connection state when their
targets change connection state. Thus, connection state propagates up from the
hardware to all services that are bound to that hardware.

A hardware service can also decide that it cannot detect hardware connect. In this
case the service is always marked connected.

•

Chapter 117 / Programming Services

This chapter describes the code that you must write to implement a service.

Obi~ct.Oriented Architecture
Before you write a PenPoint™ service, you must be familiar with the object oriented

design of Pen Point. It would help if you have written an application or component for
PenPoint already, particularly one that uses the service manager to access a service.

The object oriented design of Pen Point requires a service to be a subclass of clsService.
clsService provides methods for most messages that your service will receive from a

service manager. Your service handles many clsService messages by calling ancestor.

A client uses a service manager to bind to and open an instance of your service.
Once the client has opened your service instance the client sends messages directly

to your service, and your service begins to perform its work.

Design Decisions
Chapter 116 described the concepts of services and their organization. In describing
the service concepts, the chapter presented many options that are available with

PenPoint services. When you design your service, you must answer these questions:

• Is the service an exclusive or multiple access service?

• If the service allows multiple accessors, is the service shared (all clients use the
same UID) or is it multiuser (clients use an instance of an open service object
class)?

• Is the service targeted? If not, is it a hardware service?

• What kind of state data will the server need? Should the state node be a file
or should it be a directory?

• What does the user need to do to create instances of your service?

• Which service manager will manage your service, or do you need to create
a new service manager?

Using the Template Services
To make the job of writing a service easier, GO provides two template services,
clsTestSvc and clsMilSvc, which you can modify to implement your own service.
The files used to implement clsTestSvc are in the directory \PENPOINT\SDK\

SAMPLE\TESTSVC; the files for clsMilSvc are in \PENPOINT\SDK\SAMPLE\MILSVC.

111.1

111.2

450 PEN POINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

If you are writing a multiple access, multi-user service, GO also provides a
template open service object class, clsTestOpenObject, which is a subclass of
clsOpenServiceObject. The files for this class (OPENOBJ.H and OPENOBJ.C)

are in the \PENPOINT\SDK\SAMPLE\TESTSVC directory.

The rest of this chapter uses the sample service files for many of its examples; you
should have them available to you while you read. If you do not have the sample
service files, please contact GO Developer Technical Support.

Service Installation
When your service is installed, the service installer locates your service's directory
and looks in the directory for a DLL or .DLC file with the same name.

To create your DLLMainO, you start with the INIT.C file in TESTSVC.
STATUS EXPORTED DIIMain(void)
{

TEST SVC NEW
STATUS

testSvcNew;
S;

II Install classes.
StsRet(TstsvcSymbolsInit(), s);
StsRet(ClsTestServiceInit(), s);

. StsRet(ClsTestOpenObjectInit(), s); II Only needed if multi-user.
II Let system know about our service and set global service
II characteristics. THIS IS REQUIRED!
StsRet (InitService (pNull, II Always pNull.

clsTestService, II Service class.

117.4

An application class runs in
the process 0 for that appli­
cation; a service class runs in
the DLLMainO for that service.

false, II Autocreate instances? Set to false
II if all instances are statically
II created in DLLMain();

0, II Global service type. This would be
II set to a tag if you are using type
II categorization (ie. printers, e-mail)

svcPopupOptions, II Flags. Or-in options.
0, II Reserved. Always set to O.
0), s); II Reserved. Always set to O.

II Create any static service instances. YOU MUST SET autoCreate in
II InitService() TO FALSE IF YOU DO THIS! If you know exactly how many
II service instances there will be, this is where you should create them.
II Alternatively, they can be dynamically created elsewhere, after
II DLLMain() runs. Beware of process ownership issues if you create
II services dynamically. You must ensure that the process which owns
II the dynamically created service instance will be around for the
II lifetime of the service instance!
ObjCaIIWarn(msgNewDefaults, clsTestService, &testSvcNew);
testSvcNew.svc.pServiceName = "Testing, testing ... "; II Name of this instance
testSvcNew.svc.target.svc.manager = theTransportHandlers; II Target svc manager
strcpy(testSvcNew.svc.target.svc.pName, "Netware"); II Target name
ObjCaIIRet(msgNew, clsTestService, &testSvcNew, s);
return stsOK;

II DIIMain

The following sections describe issues to consider while coding your DLLMainO
function.

CHAPTER 117 / PROGRAMMING SERVICES 451

". Calling Your Service Initialization Routines
The first step ofDLLMainO is to install your service class and any other classes
required by your service.

II Install classes.
StsRet(TstsvcSymbolsInit(), s);
StsRet(CIsTestServiceInit(), s);

Service Installation

117.4.1

StsRet(CIsTestOpenObjectInit(), s); II Only needed if multi-user.

The template service calls two initialization routines:

ClsTestServicelnitO Initializes and installs your service class.

ClsTestOpenObjectInitO (optional) Initializes and installs your class for
open service objects.

You can add other initialization routines for other classes that you require. The
following sections describe the routines for the service class and the open service
object class in detail.

Initializing Your Service Class

k with an application or component, you must create your class by sending
msgNew to clsClass.

1**
CIsTestServiceInit

Install our class.
**1
STATUS FAR PASCAL CIsTestServiceInit(void)
{

STATUS
CLASS NEW

s;
new;

II Create the service class.
ObjCaIIWarn(msgNewDefaults, clsClass, &new);
new.object.uid clsTestServicei
new.cls.pMsg clsTestServiceTable;
new.cls.ancestor clsService;
new.cls.size SizeOf(INSTANCE_DATA);
new.cls.newArgsSize SizeOf(TEST_SVC_NEW);
ObjCaIIRet(msgNew, clsClass, &new, s);

return S;

II CIsTestServiceInit

The ClsTestServicelnit function:

• Sends msgNewDefaults to clsClass.

• Sets the service's well-known UID, message table UID, ancestor, and size
of data.

• Sends msgN ew to clsClass.

If necessary, the ClsTestServicelnitO function could also initialize any data used
by the service.

452 PENPOINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

Initializing an Open Service Obiect Class

If a service allows multiple openers, there are two ways to give clients an identifier
for the service, by giving all openers the same UID (called a shared service) or by
giving each opener an instance of an open service object class (called a multi-user
service).

Multiuser services provide a convenient place to store caller-specific state.

If you implement a multiuser service, you must create your own open service
object class by sub classing clsOpenServiceObject. The template service creates its
open service object class by calling ClsTestOpenObjectlnitO, which is defined in
OPENOB].C.

1**
CIsTestOpenObjectlnit

Install our class.
**1
STATUS FAR PASCAL CIsTestOpenObjectlnit(void)
{

STATUS
CLASS NEW

s;
new;

II Create the service class.
ObjCaIIWarn(rnsgNewDefaults, clsClass, &new);
new.object.uid clsTestOpenObject;
new.cls.pMsg clsTestOpenObjectTable;
new.cls.ancestor clsOpenServiceObject;
new.cls.size SizeOf(INSTANCE_DATA);
new.cls.newArgsSize SizeOf(TEST_OPEN_OBJECT_NEW);
ObjCaIIRet(rnsgNew, clsClass, &new, s);

return s;

II CIsTestOpenObjectlnit

Calling Other Class Initialization Routines

If your application requires private classes in addition to the service class itself, you
should call their initialization routines soon after creating your service class (to
make your initialization procedure orderly, if for no other reason).

Calling InitService

InitService informs theInstalledServices about the service and sets global service
characteristics. Other than creating the service class, sending
msgSvcClassInitService is one of the most important functions in a service's
DLLMainO. msgSvcClassInitService takes a pointer to an SVC_INIT_SERVICE

structure that contains:

autoCreate A BOOLEAN value that specifies whether the service manager
should automatically create an instance for each state node at installation
and warm boots. If this parameter is true, InitService locates the service
state nodes in the service's INST directory and creates instances'of the
service from the nodes.

CHAPTER 117 / PROGRAMMING SERVICES 453
Service Installation

serviceType A U32 that contains the service type (defined in SVCTYPES.H).

This is usually O.

initServiceFlags A set of flags that specify how the installer should treat this
service. You can specify more than one flag by ORing flags. The flags are:

svcNoShow Don't show this service in the installer. If this flag is set, the
user can't configure or deinstall the service.

svcPopupOptions Automatically pop up the global service option card
when this service is installed. If the service is being reactivated, the option
card will not be displayed.

svcNoLoadlnstances When the service is installed, don't copy in the
state files from the INST directory.

svcCreatePrivateServiceMgr Create a private service manager for in­
stances of this class. All instances of this class will automatically be added
to the private service manager. See SVC_CLASS_METRICS for UID of the
private service manager.

svcFullEnvironment Generate a complete process environment in the
DLLMainO process. In PenPoint 1.0, this means creating theProcess­
ResList. Also, a service resource file handle will be created even if the
service resource file is empty. A complete process environment takes up
significant memory. Only turn this bit on if you need it.

This is the InitService call from INIT.C for the template service.

STATUS EXPORTED DLLMain(void)
{

SVC INIT SERVICE - -
STATUS

initServicei
Si

StsRet(ClsTestServiceInit(), S)i

memset(initService.spare, 0, sizeof(initService.spare»;
initService.autoCreate = true;
initService.serviceType = 0;
initService.initServiceFlags = 0;
ObjCallRet(msgSvcClassInitService, clsTestService, &initService, s);
return stsOK;

II DllMain

Static and Dynamic Service Instances
If you know exactly how many service instances there will be, you should create
them soon after calling InitService (by sending msgNewDefaults and msgNew
to your service class, described below). If you create static service instances, the
InitService flag auto Create must be false.

Alternatively, you can create service instances dynamically after DLLMainO runs.
However, you must beware of process ownership issues if you create services
dynamically. You must ensure that the process that owns the dynamically created
service instance will be around for the lifetime of the service instance.

454 PENPOINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

This is the template service code for creating a static service instance:

ObjCallWarn(msgNewDefaults, clsTestService, &testSvcNeW)i
testSvcNew.svc.pServiceName = "Testing, testing ... "; II Name of this instance
testSvcNew.svc.target.svc.manager = theTransportHandlersi II Target svc manager
strcpy (testSvcNew.svc.target. svc.pName, "Netware")i II Target name
ObjCallRet(msgNew, clsTestService, &testSvcNew, S)i

If you don't know how many instances of your service will be created, you must
create them dynamically. You must ensure that the process owner of the service
instance, remains alive for the life of the service instance; if the process owner is
destroyed, the service instance is also destroyed.

Creating Service Instances

You create new instances of your service by sending msgNewDefaults and
msgNew (or msgObjectNew) to your service class. Because your service class
inherits from clsService, the _NEW structure that your service class takes must
include the SVC_NEW_ONLY structure, which is defined by clsService.
SVC_NEW_ONLY contains eight arguments:

target An SVC_TARGET structure that specifies the initial target instance for
this service instance. The SVC_TARGET structure contains:

target. manager The UID of the target's manager object. If the service is
a MIL service for a hardware device, set this field to objNull.

target.pName A pointer to a string that contains the name of the target
service instance.

pServiceName The name of this service instance. This is the name of the
service state node for this instance and is the name that the user sees.

style A SVC_STYLE structure that specifies the attributes of the service
instance. The possible values for style are:

waitForTarget Specifies that the service will wait until its target appears.
When the target appears the service will attempt to bind to it. If you do
not specify waitForTarget and the specified target doesn't exist, msgNew
will fail.

exclusiveOpen Specifies that only one client is allowed to open the ser­
vice instance at a time.

autoOwnTarget Specifies that the service instance should attempt to
set itself as the owner of its target when it receives msgSvcChangeOwner­
Requested.

autoOpen Sp~cifies that the service instance should open and close its
target when the service instance is opened and closed.

autoMsgPass Specifies that all messages not used by the service should
be passed to its target.

checkOwner Specifies that a client must own this service instance be­
fore it can open it.

CHAPTER 117 / PROGRAMMING SERVICES 455

auto Option Specifies that clsService should forward all option sheet
messages to the target of this service instance.

Service Installation

connectStyle Specifies whether the service instance can detect hardware
connections (svcAutoDetect) or cannot detect connections
(svcNoAutoDetect), or whether it should follow the connection state of
its target (svcFollowTarget).

openClass Specifies the open service object class for multiple access,
multi-user services that pass back a UID from msgSMOpen. If there is
no open service object class, you must specify objNull.

handleClass The handle class used to access the service state node. If the
service state node is a file, you should specify clsFileHandle; if the service
state node is a directory, you should specify clsDirHandle.

fsNew An FS_NEW structure that contains msgNew arguments for the
handle class specified in handleClass. The structure must be initialized
if the handleClass is anything other than clsFileHandle.

fsNewExtra An array of 25 U32 values that you can use to pass extra fsNew
data.

pManagerList A pointer to an array of service manager UIDs that will
administer this service instance. clsService adds the service instance to
each service manager. A service instance can be administered by more
than one service manager.

numManagers The number of managers in the pManagerList array.

Services and Tasks
Just like any other object, a service instance is owned by some task. However,
because objCapCall is always true for service instances, all service instances must
be callable from outside the owning task. This affects two aspects of services:

• Where the service instance stores its data.

• Which task owns the service instance.

Service Data

Service instances must never store data in a local heap; they should either store
data in their instance data or in global heaps. (See the PenPoint Architectural
Reference, Part 1: Class Manager for more information on instance data and
storage.)

Owning Task

The service's owning task must remain active for the life of the service instance.

If you create service instances in DLLMainO (either static service instance or
dynamically from saved state nodes), the service instance is owned by the task
executing the DLLMainO (the main task of the service). A service's main task
remains active until the service is deactivated or deinstalled.

456 PENPOINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

However, if a service instance is created by a transient user interface task such as a
document or a tool, the service instance will become invalid when the user turns
away from the document or closes the tool. You have two alternatives:

• Keep the creating task around for the lifetime of the service instance .

• Use msgObjectNew, rather than msgNew, to create the service instance.

msgObjectNew creates an object in the context of the object to which the message
is sent. You must use ObjectSendO, not ObjectCallO, to send msgObjectNew
and any pointers in the pArgs for msgObjectNew must point to global memory.

We suggest that you send msgObjectNew to the resource file handle for the service
class (because the resource file handle is owned by the service's main task). Your
creating task can find the resource file handle by sending msgSIMGetMetrics to
theInstalledServices, specifying the service class in its pArgs. The message passes
back the handle in metrics.resFile. Send msgObjectNew to this handle.

Deinstalling Services
Deinstallation of services is a two-phase process.

In the first phase, the installer sends msgSvcClassTerminateOK to the service class
being deinstalled. The service class immediately passes the message to its
superclass, which sends msgSvcDeinstallRequested to all instances of the service.
To approve the deinstallation, a service instance returns stsOK; any return value
other than stsO K is a veto. If the call ancestor returns stsO K, the service class
determines whether it can allow the termination. Again, to veto the termination,
the service class returns a value other than stsOK.

You can't send msgObjectNew
to the service class object
itself, because the class
object is owned by clsClass.

If any instances veto the termination, the installer sends msgSvcClassTerminateVetoed
to the service class. The service class passes the message to its superclass, which sends
msgSvcDeinstallVetoed to all instances of the service. This message lets them know
that the termination will not happen.

If all service instances and the service class approved the termination, the installer
sends msgSvcClassTerminate to the service class. Again, the service class passes the
message to its superclass, which sends msgDestroy to all instances of the service.

Finally, when the call ancestor for msgSvcClass Terminate returns, the service
installer destroys the service class .

. Messages Sent to Your Service Class
This section describes the messages that your service class must handle. In
addition tomsgNewDefaults and msgNew, clsService defines a number of class
messages that relate to termination negotiation, service home information, and
loading service instances. Usually a service will pass these messages to its superclass
without any further action.

CHAPTER 117 / PROGRAMMING SERVICES 457
Messages Sent to Your Service Class

Handling msgNewDefaults

When a client sends msgNewDefaults to your service class, you should first route
the message to your ancestor, clsService (usually this is done in the method table,
see METHOD.TBL in the TESTSVC directory). This code fragment shows how
clsService handles msgNewDefaults:

pArgs->svc.style.waitForTarget = true;
pArgs->svc.style.exclusiveOpen = false;
pArgs->svc.style.autoOwnTarget = true;
pArgs->svc.style.autoOpen = false;
pArgs->svc.style.autoMsgPass = false;
pArgs->svc.style.checkOwner = false;

pArgs->svc.style.autoOption = false;

II Almost always true.
II Exclusive open service?
II Usually true if exclusive open.
II Usually true if exclusive open.
II Usually false.
II True if exclusive open and you
II want clients to use owner stuff.
II Usually true if your service
II does option sheets.

pArgs->svc.style.connectStyle = svcFollowTarget; II Only change this if you
II don't have a target.

pArgs->svc.handleClass = clsFileHandle; II Change this if you want your
II state handl~ to be something
II other than a file handle.

The defaults provided by clsService are general; when your service handles
msgNewDefaults you should specify the style flags and the service manager or
managers for the service.

If a subclass wants to change the handleClass, fsNew, or fsNewExtra parameters,
it must also send msgNewDefaults to the handle class after it sends
msgNewDefaults to its ancestor (most services will not need to do this):

ObjCallWarn(msgNewDefaults, pArgs->svc.handleClass, &(pArgs->svc.fsNew));
pArgs->svc.fsNew.fs.exist = fsExistOpen I fsNoExistCreate;

Handling msgNew

As with msgNewDefaults, you should route msgNew to your ancestor
(clsService). If you look at METHOD.TBL in the TESTSVC directory, you will see
that the method table for clsTestService doesn't even list msgNew. Because there
is no entry for msgNew, the class manager automatically routes the message to the
class's ancestor.

Handling msgSvcClassTerminateOK

When the installer deinstalls a service, it sends msgSvcClassTerminateOK to
the service instances class. The service class must call ancestor first, which allows
clsService to send msgSvcDeinstallRequested to all service instances.

If all of the service instances return stsOK, the call ancestor returns stsOK to the
service class. Then it is up to the service class to approve the termination. If any of
the instances return a value other than stsO K, the call ancestor returns that status
value and the service class should return with that status value.

msgSvcClassTerminateOK passes a pointer to an OBJECT. This value contains
nothing, but if a service instance vetoes the termination, the superclass will return

458 PENPOINT ARCHITECTURAL REFERENCE
Part 13 / Writing Pen Point Services

the DID of the instance in the OBJECT. Typically, if your service class vetoes the
termination, it should store its own DID in this location.

Handling msgSvcClassTerminateVetoed

When a service instance or the service class vetoes the termination, the installer
sends msgSvcClassTerminateVetoed to the service class. The service class immed­
iately passes the message to its superclass. clsService sends msgSvcDeinstallVetoed
to all instances of the service class.

The message passes a pointer to an SYC_ TERMINATE_VETOED structure, which
contains two arguments:

vetoer Specifies the object that vetoed the deinstallation.

status Specifies the status value that the vetoer used.

Handling msgSvcClassTerminate

If the request to deinstall the service was not vetoed, the installer sends msgSvcClass­

Terminate to the service class. The service class passes the message to its superclass.
clsService then sends msgDestroy to all instances of the service class.

There are no arguments for this message.

Handling msgFree

When you receive msgFree, you should save any stateful objects, free all objects that
you created, then call ancestor. The method table defined in TESTSYC\METHOD.TBL

specifies objCallAncestorAfter for msgFree.

You shouldn't delete the service instance state node as part of msgFree. If you
received msgFree as part of a service deactivation, the service instance should be
able to restore itself from its state node.

This is a code fragment from TESTSYC.C:

111.6.4

117.6.6

1**
TestSvcFree
Free any resources that this service created. Don't delete the state file
or free the state file handle!

**1
MsgHandlerWithTypes(TestSvcFree, P_ARGS, P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;
return stsOK;

II TestSvcFree

Handling msgSvcClassLoadlnstance

If an application needs to load a service state instance at a time other than initialization
or warm-boot, it can send msgSvcClassLoadlnstance to the service class.

The message passes a pointer to an SYC_LOAD_INSTANCE structure, containing an
FS_LOCATOR (source), which indicates the location of the service state node.

CHAPTER 117 / PROGRAMMING SERVICES 459
Messages Sent by Service Managers

clsService copies the state node specified by source to the INST directory for the
service and starts an instance of the service stored in the state node (much like
warm-boot or service installation). If a service instance with the name of the state
node exists already, clsService first removes the existing service instance.

Usually subclasses of clsService do not process this message, unless they need to
change the behavior when the service instance exists already.

Messages Sen. by Service Managers
Before a client opens a service instance and has direct access to the service, the client
must communicate with the service instance through its service managers. The client

uses messages defined in clsSvcManager to get service information about the service,
attempt to change owner, or attempt to change the target of the service.

When the service manager receives one of the clsSvcManager messages, it sends a

corresponding clsService message to the service instance.

The next three sections describe the clsService messages and how you handle them.
The first section describes messages for which you perform some action and then
pass to clsService. The second section describes messages that clsService uses to either
inform your service of an event or ask for confirmation. The third section lists the

messages that you do not need to handle; you just allow clsService to handle these
messages.

Service Manager Requests for Information

Although clsService does most of the work, you must be prepared to do some
work for the messages listed in Table 117-1.

msgFree

msgSvcGetF unctions

msgSvcGetMetrics

msgSvcSetMetrics

OBJECT

P _SVC_ GET_FUNCTIONS

P _SVC_ GET _SET_METRICS

P _SVC_GET _SET_METRICS

. Handling msgSvcGetMetrics

117~ 1

CU~~E!r"~Ce Infornlotion %VTh~Ge:'$:i)gl!kJ~::'$
!)$scriptlcm

Frees the service instance.

Passes back a pointer to a table of function entry
points.

Passes back the current configuration metrics.

Sets the configuration metrics.

Clients use msgSvcGetMetrics to get metrics from your service instance.
msgSvcGetMetrics passes a pointer to an SVC_GET_SET_METRICS structure,

which the service instance uses to send back metrics information. The structure
contains two arguments:

pMetrics A pointer to a buffer intended to hold the metrics for this service
instance.

len A U16 value that specifies the size of the buffer specified in pMetrics.

460 PEN POINT ARCHITECTURAL REFERENCE
Part 13 I Writing PenPoint Services

Clients usually send msgSvcGetMetrics twice. The first time, the client specifies a
zero length for the size of the metrics buffer (len); the service instance passes back
only the size of its metrics. The client then sends msgSvcGetMetrics again, this
time specifying the len value that it received in the first call. The service instance
writes its metric information to the buffer specified by the client.

If your service has metrics that clients can access, it must be prepared to handle
msgSvcGetMetrics. Because clients might file this information, you should also
incorporate some form of version identification into your metrics.

This example shows how a typical service responds to msgSvcGetMetrics:

/**
SvcDemoGetMetrics

Get service's metrics.
**/
STATUS LOCAL SvcDemoGetMetrics(

OBJECT self,
P ARGS pArgs,
P INSTANCE DATA pInst)

P SVC GET SET METRICS pSvcMetrics;
pSvcMetrics = (P_SVC_GET_SET_METRICS)pArgs;
if (pSvcMetrics->len == 0)
{

else
{

pSvcMetrics->len sizeof(DEMO_METRICS);
return stsOK;

if (pSvcMetrics->len < sizeof(DEMO_METRICS))
{

return stsFailed;

*((P_DEMO_METRICS) (pSvcMetrics->pMetrics)) = pInst->demoMetrics;
return stsOK;

Handling msgSvcSetMetrics

Clients use msgSvcSetMetrics to set your service instance's metrics. msgSvcSetMetrics
passes a pointer to an SVC_GET_SET_METRICS structure, which contains two
arguments:

pMetrics A pointer to a buffer that contains the new metrics data.

len A U16 value that specifies the size of the buffer specified in pMetrics.

If your service has client-writable instance data, you must respond to this message.
Because clients might attempt to restore data that has been filed for a time, you
must have some form of version checking.

CHAPTER 117 I PROGRAMMING SERVICES 461

Messages Sent by Service Managers

This example shows how a service can respond to msgSvcSetMetrics:

/**
SvcModemSetMetrics

Set modems metrics.
**/
STATUS LOCAL SvcModemSetMetrics(

OBJECT self,
P ARGS pArgs,
P INSTANCE DATA pInst)

P MODEM METRICS - -
P SVC GET SET METRICS
STATUS

pMdmMetrics;
pSvcMetrics;
s;

pSvcMetrics = (P_SVC_GET_SET_METRICS)pArgs;
pMdmMetrics = (P_MODEM_METRICS)pSvcMetrics->pMetrics;
if (pSvcMetrics->len < sizeof(MODEM_METRICS))
{

return stsFailed;

StsRet(ModemRestoreModem(pIrist, self), s);
pInst->modemMetrics.mdmFAXResolution = pMdmMetrics->mdmFAXResolution;
pInst->modemMetrics.mdmFAXEncoding = pMdmMetrics->mdmFAXEncoding;
pInst->modemMetrics.mdmFAXLineWidth = pMdmMetrics->mdmFAXLineWidth;
pInst->modemMetrics.mdmFAXMaxBaudRate = pMdmMetrics->mdmFAXMaxBaudRate;
return stsOK;

Messages from Service Managers 117,,1¢2

The service instance receives the messages listed in Table 117-2 from the service
manager when it has received a request from a client. Usually the messages ask the
service instance for permission to continue.

When you receive most of these messages, you must pass the message to
clsService; if clsService doesn't veto the request, you can determine if you should
allow the request.

Messoge TaKes

msgSvcBindRequested P _SVC_BIND

msgSvcUnbindRequested P _SVC_BIND

msgSvcOpenDefaultsRequested P _SVC_OPEN_CLOSE

msgSvcOpenRequested P _SVC_OPEN_CLOSE

msgSvcCloseRequested P _SVC_OPEN_CLOSE

msgSvcQueryLockRequested pNull

msgSvcQueryUnlockRequested pNull

Table 117~2

cisService Notification Messages
!,)esuipl10ri

Client asked to bind to this service.

Client asked to unbind from this service.

~lient wants open pArgs initialized.

Client asked to open this service.

Client asked to close this service.

Client asked to QueryLock this service.

Client asked to QueryUnlock this service.

msgSvcDeinstallRequested

msgSvcDeinstallVetoed

msgSvcSaveRequested

pNull Client asked to destroy this service instance.

P _SVC_DEINSTALL_ VETOED Deinstallation process was vetoed.

Client asked to save this instance to external media.

462 PEN POINT ARCHITECTURAL REFERENCE
Part 13 I Writing PenPoint Services

Descriptio¥'!

Tobie 111-2

MeS!H'Jg®

msgSvcOwnerReleaseReq uested P _SVC_ OWNED _NOTIFY

P _SVC_ OWNED _NOTIFY

P _SVC_ OWNED _NOTIFY

P _SVC_ OWNED _NOTIFY

P _SVC_ OWNED_NOTIFY

OBJECT

Is it OK to remove you as the owner of a service?

msgSvcOwnerAcquireRequested

msgSvcOwnerAcquired

msgSvcOwnerReleased

msgSvcChangeOwnerRequested

msgSvcClientDestroyedEarly

Is it OK to make you the new owner of a service?

You are now the new owner of a service.

You are no longer the owner of a service.

Owner change request message.

An client was destroyed while it had a service open.

~ Handling msgSvcBindRequested

When the service manager receives msgSMBind from a client, it sends
msgSvcBindRequested to the specified service instance. This offers the service
instance the chance to veto the bind request.

The message passes a pointer to an SVC_BIND structure, which contains two
arguments:

caller The UID of the object making the request.

manager The UID of the service manager through which the caller is
making the request.

You must always pass this message to clsService. By default, clsService returns
stsOK.

When clsService returns the message, you can do one of two actions:

• Refuse the bind by returning stsFailed .

• Accept the bind by returning stsOK.

If you return stsOK, the service manager adds the client to the observer list for
your service's handle.

Handling msgSvcUnbindRequested

When a client sends msgSMUnbind to the service manager, the service manager
notifies the specified service instance by sending it msgSvcU nbindRequested. This
offers the service instance the opportunity to veto the request.

The message passes the service a pointer to an SVC_BIND structure, described
above in msgSvcBindRequested.

You must always pass this message to clsService. Usually you do not need to do
any further handling for this message, simply return the status returned by
clsService.

If you return stsOK, the service manager removes the client from the observer list
for your service instance.

117.7.2.1

111.7.2.2

CHAPTER 117 I PROGRAMMING SERVICES 463
Messages Sent by Service Managers

Handling msgSvcOpenRequested

When a client sends msgSMOpen to the service manager, the service manager
sends msgSvcOpenRequested to the specified service instance. The message passes
a pointer to an SVC_OPEN_CLOSE structure, which contains four arguments:

caller The UID of the client that made the request.

manager The UID of the service manager that took the request.

pArgs A pointer to a buffer that contains service-specific open arguments.
If your service requires additional arguments, the client can pass its argu­
ments using this structure. The client can also ask your service to provide
defaults for these arguments by sending msgSMOpenDefaults to the
service manager, which then sends msgSvcOpenDefaultsRequested to
your service instance.

service An OBJECT element in which you can store the UID of an open
service object, if any.

You must pass this message to dsService. dsService handles most of the checks
specified by the service flags:

• Is the service locked?

• If checkOwner is TRUE, is the opener the owner?

• If exdusiveOpen is TRUE, does any other client have this service open?

dsService also determines whether the service class is currently being deinstalled.
If openClass is not null, dsService creates a new instance of the open class. If
auto Open is true, dsService opens the service's target.

If your service instance needs to refuse the open request, it can return stsFailed.

If your service instance accepts the open request, it should return stsOK. If you
return stsOK, the service manager adds the client to the list of clients that have
your service instance open. You or other clients can get the list of openers on a
service by sending msgSMOpenList to the service manager.

~ Handling msgSvcOpenDefaultsRequested

Before a client sends msgSMOpen to a service manager, it must request the
default pArgs for msgSMOpen by sending msgSMOpenDefaults to the service
manager, specifying the service instance. When the service manager receives
msgSMOpenDefaults, it sends msgSvcOpenDefaultsRequested to your service
instance. The message passes a pointer to an P _SVC_OPEN_CLOSE structure, as
described in msgSvcOpenRequested.

If your service instance can provide defaults for any of its open arguments, it
should add its defaults to the structure indicated by pArgs.

If your service is a multiple access, multi-user service, you do not have to do
anything more for this message other than send it to your superclass. dsService
which sends msgNewDefaults to your open service object class (indicated by
metrics.openClass). (The METHOD.TBL file in the TESTSVC directory does not

111.7.2.3

---~--------.- -----

464 PEN POINT ARCHITECTURAL REFERENCE

Part 13 / Writing PenPdint Services

specify an ancestor call for msgSvcOpenDefaultsRequested; if you use an open
service object class, you must remember to modify its method table entry.)

If your service is a single access service, provide the defaults and return; clsService does
not have a method for this message, so your service does not have to call its ancestor.

1**
TestSvcOpenDefaultsRequested

A client wants to get the defaults for the pArgs field of his open
structure.

The client sent msgSMOpenDefaults to a service manager.
**1
MSG_HANDLER TestSvcOpenDefaultsRequested(

const MESSAGE msg,
const OBJECT self,
const P SVC OPEN CLOSE pArgs,
const CONTEXT context,
const P INSTANCE DATA pInst)

msg; self; pArgs; context; pInst;

II If you are a multi-user service (openClass <> objNull) then
II you probably don't need to handle this message. Superclass behavior
II is to send msgNewDefaults to your openClass.
II Single-user services that support the concept of a defaulted open
II pArgs should initialize pArgs->pArgs here.

return stsOK;

II TestSvcOpenDefaultsRequested

Handling msgSvcCloseRequested

When a client sends msgSMClosed to a service manager, the service manager sends

msgSvcCloseRequested to the specified service instance. The message passes a pointer
to an SVC_OPEN_CLOSE structure, as described above in msgSvcOpenRequested.

This message informs the service that a particular object no longer has it open. The

service manager removes the service instance from its open list before sending this

message.

The service instance cannot veto this request, however, it should perform any

necessary cleanup and then pass the message to its superclass.

1**
TestSvcCloseRequested
A client is finished interacting with the service.
The client sent msgSMClose to a service manager.

**1
MSG_HANDLER TestSvcCloseRequested(

const MESSAGE
const OBJECT
const P SVC OPEN CLOSE
const CONTEXT
const P INSTANCE DATA

msg,
self,
pArgs,
context,
pInst)

msg; self; pArgs; context; pInst;

CHAPTER" 1 7 I PROGRAMMING SERVICES 465
Messages Sent by Service Managers

II If this is a multi-user service then clsService will automatically
II send msgDestroy the openClass instance created at open time.
II pArgs->pArgs becomes the pArgs for the msgDestroy.

II If this is a single-user service you might need to update instance
II data state at this time.

return stsOK;

II TestSvcCloseRequested

Handling msgSvcQueryLockRequested

So that clients can access a service without opening it, clients can send
msgSMQueryLock to a service manager, specifying a service instance to lock.
When a client sends msgSMQueryLock to a service manager, the service manager
sends msgSvcQueryLockRequested to the specified service instance. The message
has no arguments.

If your service instance receives msgSvcQueryLockRequested, it must pass the
message to its superclass.

A client cannot read and write data using a service instance while it has a query
lock; the client must open the service to do so.

Query locking is for advanced
users only.

If exclusiveOpen is true, a query lock counts as an open. If a client has a service
instance open and exclusiveOpen is true, another client cannot access the service
instance. If a client has a query lock on the service instance and exclusiveOpen is
true, it has exclusive access to that service instance.

Handling msgSvcQueryUnlockRequested

To release a query lock, a client sends msgSMQueryUnlock to the service
manager. The service manager then sends msgSvcQueryU nlockRequested to the
specified service instance. The message has no arguments.

If your service instance receives msgSvcQueryUnlockRequested, it must pass the
message to its superclass.

Handling msgSvcDeinstaliRequested

When thelnstalledServices deinstalls a service or when a service application needs
to destroy a service instance, it sends msgIMDeinstall to a service manager for
each instance of the service. The service manager checks whether the service
instance is in use. If the service instance is in use, the service manager refuses the
message with stsFailed.

If the service instance is not in use, the service manager sends msgSvcDeinstallRequested
to the specified service instance. The message has no arguments.

If your service instance receives msgSvcDeinstallRequested, it should perform any
clean up that it needs and returns stsOK. A service instance does not have to pass
this message to the superclass, but if it does pass msgSvcDeinstallRequested, it
must also pass msgSvcDeinstallVetoed to the superclass.

466 PENPOINT ARCHITECTURAL REFIRENCE
Part 13 / Writing PenPoint Services

If all instances of the service return stsOK, theInstalledServices sends msgFree to
each instance. A service instance cannot veto msgFree. msgFree causes the service
instance to be removed from all service managers. Between returning stsOK and
receiving msgFree, the service instance mu'st not accept any new clients.

Handling msgSvcDeinstaliVetoed

If any instance vetos the deinstallation, theInstalledServices sends msgSvcDeinstall­
Vetoed to each service that received msgSvcDeinstallRequested. The message passes
no arguments.

When your service instance receives msgSvcDeinstallVetoed, it can accept new
clients.

If you passed msgSvcDeinstallRequested to the superclass, you must also pass
msgSvcDeinstallVetoed to the superclass.

Handling msgSvcSaveRequested

When a client sends msgSMSave to a service manager and specifies this service,
or when the entire service is being saved to home, the service manager sends
msgSvcSaveRequested to your service instance. The message passes a pointer to
an FS_FlAT_LOCATOR structure, which specifies the parent directory in which this
service instance should be saved. -

Your service instance should make sure that your state file is up to date and then
send this message to the superclass. clsService saves the state file and the current
target. If a node with the same name as the service instance already exists,
clsService overwrites the destination. If the pArgs is pNull, the service instance is
saved to its home. The service instance's home is in the INST directory in the
home directory of the service class.

Alternatively, your service instance could save its state data and anything else, and
not pass the message to the superclass.

Handling msgSvcClientDestroyedEarly

If a client terminates while it is bound to a service instance, has a service instance
open, or owns a service instance, msgSvcClientDestroyedEarly is sent to the
service instance. Service instances that maintain per-client state must handle this
message and perform their own cleanup.

The message passes the UID of the client that was destroyed.

You must pass this message to your superclass. clsService cleans up the service
instance by sending msgSMU nbind, msgSM Close and msgSMSetOwner to self
as appropriate.

CHAPTER 117 / PROGRAMMING SERVICES 467
Messages Sent by Service Managers

Change Ownership Protocol Messages
When a client sends msgSMChangeOwner to a service manager, the service
manager negotiates with the current owner of the service instance, the new owner
of the service instance, and the service instance itself. Note that the client that
sends msgSMChangeOwner does not have to be one of the owners; it can be a
separate application, such as Printers, which tells the current owners of a device to
change.

The negotiation occurs in this sequence:

1 The service manager sends msgSvcOwnerAcquireRequested to the new
owner. The new owner can veto the change by returning anything other
than stsOK or stsNotUnderstood. If the new owner vetoes the change,
msgSMChangeOwner returns with a failure status.

2 The service manager sends msgSvcOwnerReleaseRequested to the current
owner. The old owner can veto the change by returning anything other than
stsOK or stsNotUnderstood. If the old owner vetoes the change,
msgSMChangeOwner returns with a failure status.

3 If the current owner approves the change and it has the service instance
open, it must close the service instance before returning stsOK.

4 The service manager checks to see if the service instance is still open. If it is,
the service manager abandons the change owner operation by returning
stsSvclnUse.

5 The service manager sends msgSvcChangeOwnerRequested to the service
instance. This informs the service instance that its owner is about to change,
and allows the service instance to veto the change (by returning a status other
than stsOK or stsNotUnderstood). If the service instance vetoes the change,
msgSMChangeOwner returns with a failure status.

6 The service manager sends msgSMOwnerChanged to all clients that are
bound to the service instance and to all clients that are observing the service
manager that lists this service.

7 The service manager sends msgSvcOwnerReleased to the old owner.

S The service manager sends msgSvcOwnerAcquired to the new owner.

Clients can also use msgSMSetOwnerNo Veto, which is like msgSMSetOwner, but
it does give the current and new owners the chance to veto the change (it doesn't send
msgSvcReleaseRequested to the current owner and ~sgSvcAcquireRequested to the
new owner).

Handling msgSvcOwnerReleaseRequested

When a service manager receives a msgSMChangeOwner, it sends a msgSvc­
OwnerReleaseRequested to the client that currently owns the service instance.
The messageasks the client ifit is willing to relinquish ownership of a specific service

111.7.3.1

468 PENPOINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

instance. The message passes a pointer to an SVC_OWNED_NOTIFY structure, which
contains:

ownedService The UID of the service instance whose owner is changing.

oldOwner The UID of the current owner.

newOwner The UID of the new owner.

When you receive this message, you must pass it to your superclass. If dsService
vetoes the request (by returning a status other than stsOK or stsNotUnderstood),
you should return with that status.

If you want to release ownership of the service instance, return stsOK. If you need
to remain the owner of the service instance, return any status other than stsOK or
stsN otU nderstood.

~,- Handling msgSvcOwnerAcquireRequested

If the current owner of the service instance does not veto msgSvcOwnerRelease­
Requested, the service manager sends msgSvcOwnerAcquireRequested to the
client that is proposed as the new owner. This message asks the client if it is
willing to take ownership of the service instance. The message passes a pointer
to an SVC_ OWNED_NOTIFY structure, as described above in msgSvcOwner­
ReleaseRequested.

When you receive this message, you must pass it to your superclass. If dsService
vetoes the request (by returning a status other than stsOK or stsNotUnderstood),
you should return with that status. .

If you want to take ownership of the service instance, return stsOK. If you don't
want to become the owner of the service instance, return any status other than
stsOK or stsNotUnderstood.

~. Handling msgSvcChangeOwnerRequested

If the owner of the service instance does not veto msgSvcOwnerAcquireRequested,
the service manager sends msgSvcChangeOwnerRequested to the service instance.
This message informs the service instance you that its owner owner is about to change
and allows it to veto the change. The message takes a pointer to an
SVC_OWNED_NOTIFIED structure, which contains three arguments:

ownedService. The UID of the service instance whose owner is changing ..
This should be self.

oldOwner The UID of the current owner.

newOwner The UID of the new owner.

If you want to allow the ownership change, return stsOK. If you don't want
to allow the change, return any status other than stsOK or stsNotUnderstood.

If you don't Veto the request, you must pass this message to your superclass.
If dsService vetos the request (by returning a status other than stsOK or
stsNotUnderstood), you should return with that status.

111.7.3.2

111.7.3.3

CHAPTER 117 I PROGRAMMING SERVICES 469
Messages Sent by Service Managers

Handling msgSvcOwnerReleased

When a client is no longer the owner of a service instance, a service manager
sends msgSvcOwnerReleased to the client. The message takes a pointer to an
SVC_OWNED_NOTIFY structure, as described above in msgSvcChange­
OwnerRequested.

You must send this message to your superclass.

If you need to preserve any owned state information for the service instance while
you own it, you should get it now (with msgSvcGetMetrics) and save it in your
state file.

You can manipulate the service as its owner until you return; the ownership
change actually takes place when you return from this message.

Handling msgSvcOwnerAcquired

When a client becomes the owner of a service instance, a service manager
sends msgSvcOwnerAcquired to the client. The message takes a pointer
to an SVC_OWNED_NOTIFY structure, as described above in
msgSvcChangeOwner-Requested.

You must send this message to your superclass.

You can manipulate the service as its owner as soon as you receive this message.

If you need to restore any saved state information for the service instance, you
should do it here (usually with msgSvcSetMetrics).

Messages Handled By clsService

Your service instance should not handle the messages listed in Table 117-3; they
should be handled by clsService only.

117.7,,3.4

l'able 'n7~3

msgSvcGetStyle P _SVC_STYLE

msgSvcSetStyle P _SVC_STYLE

msgSvcAutoDetectingHardware P _BOOLEAN

msgSvcGetHandle P _OBJECT

msgSvcOpenTarget P _SVC_ OPEN_TARGET

c~s~erVjjce Responsibi
DescriptlOll

Returns current style settings.

Changes style settings.

Is the hardware that this service ultimately talks
to auto-detecting?

Returns a handle to the service's state node.

Attain access to the target service for data
transfer.

Give up data transfer access to the target service. msgSvcClose Target

msgSvcGetTarget

msgSvcSetTarget

msgSvcAddToManager

msgSvcRemoveF rom Manager

P _SVC_GET_TARGET Returns current target.

P _SVC_SET _TARGET Change the target.

P _SVC_ADD_TO_MANAGER Add this service instance to a service manager.

P_SVC_REMOVE_FROM_MANAGER Removes this service instance from a service
manager.

msgSvcGetConnected Gets the connected state of this service.

470 PEN POINT ARCHITECTURAL REFERENCE
Part 13 / Writing Pen Point Services

Mess©ge

msgSvcSetConnected

msgSvcGetModified

msgSvcSetModified

msgSvcGetMyOwner

msgSvcGetOwned

msgSvcGetN arne

msgSvcGetClassMetrics

msgSvcPropagateMsg

msgSvcGetBindList

msgSvcGetOpenList

msgSvcGetOpenObjectList

msgSvcGetManagerList

P _SVC_ GET_SET _CONNECTED

P _SVC_ GET _SET_MODIFIED

P _SVC_GET_SET_MODIFIED

P_OBJECT

P_OBJECT

P _SVC_ GET_NAME

P _SVC_ CLASS_METRICS

P _OBJ_NOTIFY_OBSERVERS

P _SVC_ GET_LIST

msgSvcGetManagerHandleList P _SVC_GET _LIST

msgSvcGetDependentAppList P _SVC_ GET_LIST

msgSvcGetDependentServiceList P _SVC_ GET_LIST

Messages Sent to Open Services

117~3

Description

Sets connection state of self.

Gets the modified state of this service.

Sets modified state of self.

Gets the current owner of this service, if any.

Gets the service that is owned by this service,
if any.

Gets the name of this service instance.

Gets metrics for the service class that controls
this instance.

Propagates a service-specific message.

Gets a list of all the callers that have bound to

this service.

Gets a list of all the callers that have opened
this service.

Gets a list of the open objects which were
returned for each open.

Gets a list of all the service managers that this
servIce IS on.

Gets a list of the svc mgr handles that this
service is represented by.

Gets a list of thelnstalledApps handles for all
dependent apps.

Gets a list of thelnstalledServices handles for
all dependent services.

117.8

Once a client has opened a service, the client sends messages directly to the service
instance. These messages tell the service to perform its functions.

Some services require clients to use the clsStream messages to send or receive data
from the service (remember that clsService inherits from clsStream). Other
services cannot use the clsStream messages. These services must define their own
messages in their header file and METHOD.TBL file.

In either case, the service class must define methods for the messages from clients.

Open Service Obiects
If you are writing a multiple access, multi-user service, you must create a class that
can provide UIDs to each of the service openers. You must do this by creating a
subclass of clsOpenServiceObject when you initialize your service class. When
you create your service instances, the arguments to msgNew specify the open
service object class that your service uses.

CHAPTER 117 I PROGRAMMING SERVICES 471
Open Service Objects

The section "Initializing an Open Service Object Class" describes how to initialize
the open service object class and gives an example showing how to subclass
clsOpenServiceObject.

To the client, the behavior of exclusive- and multiple-access services is no
different. The client sends msgSMOpen to a service manager; if the service is
available, the service manager passes back a service DID in the service field of the
SM_OPEN_CLOSE structure. The client does not know whether the service is
multiple access or exclusive access, nor should it have to know.

clsService Does Most of the Work
When you use a subclass of dsOpenServiceObject in a service, clsService actually
performs most of the work for you.

When your service passes msgSvcOpenDefaultsRequested to your superclass,
clsService determines that you have a open service object class, allocates a _NEW

structure for the class, and initializes the _NEW structure by sending
msgNewDefaults to the open service object class.

Later, when your service passes msgSvcOpenRequested to your superclass,
clsService creates an instance of your open service object class by sending it
msgNew. dsService then passes back the DID of the new open service object to
the opener.

Because clsService creates the open service object in response to a client opening a
specific service instance, the open service object is said to be associated with a
service instance.

What clsOpenServiceObiect Does
Like dsService, dsOpenServiceObject is a subclass of clsStream. Openers of the
service send messages to the open service object. The open service object performs
some local handling, and forwards all dsService messages to the service instance
with which it is associated.

clsOpenServiceObject defines a single message, msgOSOGetServicelnstance,
which allows its subclasses to get the DID of the service instance with which the
open service object is associated.

Subclassing clsOpenServiceObiect
Your open service object class performs front end work for your service and
·maintains per-client state for the service. For instance, an open service object class
might maintain the client's current position in a database service; another open
service object class might maintain the client's session information for a network
service.

It is hard to specify exactly where to draw the line between what the open service
object class does, and what the service does. You must determine what is most
efficient for your particular service.

472 PEN POI NT ARCHITECTURAL REFERENCE
Part 13 / Writing Pen Point Services

When clsService creates the open service object, it creates it in the context of the
opener's process. The open service object is local to the client; only the client can
call the open service object. If performance is not an issue, the service can use
ObjectSend to pass messages to the open service object; if performance is an issue,
the open service object can make itself callable by the service.

Because the open service object is local to the client, it can use OSProcessHeapO
to allocate its data structures. On the other hand, services must never use
OSProcessHeapO to allocate data structures.

Chapter "8 / Distributing Your Services

This chapter describes what you must do to make your service available to the user
to install. It also describes what the user must do to install your service.

What You Must Do
So that a user can install your service correctly, you must use the PenPoint file
organization correctly.

The PenPoint file organization for services was described in Chapter 116. As a
review, your distribution disk should have this structure:

\\Distribution Volume
L \PENPOINT

L \~RVICE
\ ervice Directory

\ .dll files
\. dlc file
\INIT.DLL
\SERVICE.RES \reSC

\Static Data Files
\fNST t= \Service State Node

\Service State Node
\APP.INI
\SERVICE.INI

Providing Preconfigured Instances

Where appropriate, you should provide preconfigured instances of your service.

The best way to save a preconfigured instance is to run PenPoint with the B 800
debugger flag set. This flag allows you to view the file system for the running
PenPoint system in the Connections notebook.

Create the instance, then open the system disk to \PENPOINT\SYS\SERVICE\Your

Service\INST and copy the appropriate service state node to \PENPOINT\SERVICE\

Your Service\INST.

Providing Demo Apps

If your service will be used programmatically, provide a demo application that
shows how to access your service.

It is probably not a good idea to place the demo application source files in the
\PENPOINT directory. Rather, create a directory in the root of your distribution
volume, and store the source files there.

What ever you do, make sure you tell your potential clients where to find the
source.

474 PEN POINT ARCHITECTURAL REFERENCE
Part 13 / Writing PenPoint Services

What the User Must Do
When users obtain your service, they need to know the following information:

• How to install your service.

• How to use your service.

• What additional files (such as utilities or service instances) you shipped with
your servIce.

Of course, the best way to provide this information is to document it. Tech Note
#8 from GO Developer Technical Support recommends some procedures for
documenting PenPoint applications. Most of this information will be directly
applicable to services.

118.2

Chapter 119 / Test Service Examples

This chapter describes the example services in TESTSVC, BASICSVC, and MILSVC.

• TESTSVC is a general service that you can use it as a template from which to
build most services.

• BASICSVC is a simple service that performs the minimum work that a service
needs to do.

• MILSVC is provides the foundations for a device driver service that uses the
PenPoint machine interface layer (MIL).

TESTsve

The following sections list the files used to build TESTSVC. These files are also in

the directory \PENPOINT\SDK\SAMPLE\TESTSVC. The sections are:

METHOD.TBL

TESTSVC.H

TESTSVC.C

OPENOBJ.H

OPENOBJ.C

METHOD.TBL

/**
File: method.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.19 $
$Date: 31 Jan 1992 08:40:34 $

Contains the method tables for the Test Service.

Note: The method table for clsTestService has two handlers for each
of these four methods: msgOptionAddCards, msgOptionProvideCardWin,
msgOptionRefreshCard, and msgOptionApplyCard. One handler is what we
typically think of as a message handler -- it handles messages sent to
instances of a class. The other one is slightly different. It handles
messages sent to the class itself.

You specify that a handler is for messages sent to a class by OR'ing in
objClassMessage with objCallAncestorBefore, After, and so on.

You declare a class's message handler in the normal way. However, remember
that self is a class, and that plnst does not point to the instance data
of any of its instances. Instead, it points to some random chunk of
memory. So, do not look at the instance data in a class's message handler.

With services, the msgOption< ... > messages are sent to the service class
if the user draws a check mark over the service in the Installer, and
when the user initially installs the service if svcPopupOptions is
or-ed in to the InitService() flags. For more information, please see
the comment titled "5. Advanced Features" in the service.h public include
file.

***/
#include <option.h>
#include <testsvc.h>
#include <openobj.h>

MSG_INFO clsTestServiceMethods [] = {
msgNewDefaults, "TestSvcNewDefaults", objCallAncestorBefore,
msglnit, "TestSvcNew", objCallAncestorBefore,
msgFree, "TestSvcFree", objCallAncestorAfter,
msgSvcGetMetrics, "TestSvcGetMetrics", 0,
msgSvcSetMetrics, "TestSvcSetMetrics", 0,
msgSvcOpenRequested, "TestSvcOpenRequested", objCallAncestorBefore,
msgSvcOpenDefaultsRequested, "TestSvcOpenDefaultsRequested",

objCallAncestorBefore,

};

msgSvcCloseRequested, "TestSvcCloseRequested",objCaIIAncestorBefore,
msgOptionAddCards, "TestSvcAddCards", objCallAncestorAfter,
msgOptionProvideCardWin,"TestSvcProvideCardWin",objCalIAncestorAfter,
msgOptionRefreshCard, "TestSvcRefreshCard", objCallAncestorAfter,
msgOptionApplyCard, "TestSvcApplyCard", objCallAncestorAfter,
msgOptionAddCards, "TestSvcClassAddCards", objClassMessage,
msgOptionProvideCardWin,"TestSvcClassProvideCardWin", objClassMessage,
msgOptionRefreshCard, "TestSvcClassRefreshCard", objClassMessage,
msgOptionApplyCard, "TestSvcClassApplyCard", objClassMessage,
msgSvcClassTerminate, "TestSvcTerminate",

objClassMessage I objCallAncestorAfter,
o

MSG_INFO clsTestOpenObjectMethods [] = {
msgNewDefaults, "TestOpenObjectNewDefaults",objCaIIAncestorBefore,
msglnit, "TestOpenObjectNew", objCallAncestorBefore,
msgFree, "TestOpenObjectFree", objCallAncestorAfter,

o
} ;

CLASS_INFO classlnfo[] = {

};

"clsTestServiceTable", clsTestServiceMethods, 0,
"clsTestOpenObjectTable", clsTestOpenObjectMethods, 0,
o

..
"" o

TESTSYC.H

1**
File: testsvc.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Date:

1.18 $
31 Jan 1992 08:40:20 $

This file contains the API definition for clsTestService.
clsTestService inherits from clsService.

**1
#ifndef TEST_SERVICE_INCLUDED
*define TEST_SERVICE_INCLUDED

#ifndef SERVICE_INCLUDED
*include <service.h>
#endif

1*

* Common #defines and typedefs *
* *1

1****
#define
#define

Class Option Tags ****1
tagTestSvcOptionCard
tagTestSvcGlobalOptionCard

1**** Quick Help Tags ****1
*define hlpTestSvcOptionCard
#define hlpTestSvcGlobalOptionCard

MakeTag(clsTestService, 10)
MakeTag(clsTestService, 11)

MakeTag(clsTestService, 20)
MakeTag(clsTestService, 21)

1*

* Messages *
* *1

1**
msgNew takes P_TEST_SVC_NEW, returns STATUS

category: class message
Creates a new test service instance.

*1

typedef struct TEST_SVC_NEW_ONLY {
U32 unused1i
U32 unused2i
U32 unused3i

TEST SVC NEW ONLY, *P_TEST_SVC_NEW_ONLY;

*define testServiceNewFields \
serviceNewFields \
TEST_SVC_NEW_ONLY testSvc;

typedef struct TEST_SVC_NEW
testServiceNewFields

TEST_SVC_NEW, *P_TEST_SVC_NEWi

1**
msgNewDefaults

*1

category: class message
Set defaults:

takes P_TEST_SVC_NEW, returns STATUS

1* Your messages here! *1

*endif II TEST_SERVICE_INCLUDED

TESTSYC.C

1**
File: testsvc.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Date:

1.22 $
31 Jan 1992 08:40:14 $

This file contains the class definition and methods for clsTestService.

This is a cannonical service, designed to give service writers a head
start. Stubs for the messages that are typically subclassed by a service

TESTSVC

113 I SERVICES

...

are provided. Note that not every subclass-responsibility message is
given; only those that are most often used. For example, a handler for
msgSvcBindRequested isn't provided since it is very rarely subclassed.

Notes:

Remember that service instances have capCal1 turned on. This means that
they can be called from a process besides their owning process. If it is
possible for more than one caller to access the same service instance
simultaneously, think through the concurrency issues! You might have to
use semaphores to protect areas which can't handle being called
simultaneously by multiple folks.

**1
iinclude <string.h>
iinclude <stdlib.h>
iinclude <debug.h>
iinclude <list.h>
hnclude <fs.h>
hnclude <os.h>
finclude <osheap.h>
finclude <opttable.h>
finclude <option.h>
finclude <servmgr.h>
'include <method.h>

'include <testsvc.h>

II TKTables for instance and class option cards.
static TK _TABLE_ENTRY optionCard [] = {

};

{"Instance Optionl:",O, 0, 0, 0, 0, O}, to, 0, 0, 0, 0, clsButton},
{"Instance Option2:",0, 0, 0, 0, 0, O}, {O, 0, 0, 0, 0, clsButton},
{pNull}

static TK_TABLE_ENTRYglobaIOptionCard[] = {

} ;

{"Global Optionl:", 0, 0, 0, 0, 0, O}, {O, 0, 0, 0, 0, clsButton},
{"Global Option2:", 0, 0, 0, 0, 0, O}, {O, 0, 0, 0, 0, clsButton},
{pNull}

II The service manager(s} we should be put on.
static UID managers = {thePrinterDevices};

typedef struct INSTANCE_DATA {
U32 unusedl;
U32 unused2;

INSTANCE_DATA, *P_INSTANCE_DATA;

1**
TestSvcNewDefaults

Set defaults. This is where the service characterstics that are common
to all instances of your service subclasses are specified.

**1
MsgHandlerWithTypes(TestSvcNewDefaults, P_TEST_SVC_NEW, P_INSTANCE_DATA}
{

MsgHandlerParametersNoWarning;

II These are the default values from clsService.
pArgs->svc.style.exclusiveOpen = false; II Exclusive open service?
pArgs->svc.style.autoOption = false; II Set to true to pass option

~
~ •

II sheet messages to your target.

pArgs->svc.handleClass clsFileHandle; II Change this if you want your
II state handle to be something
II other than a file handle.

II The next two lines are on~y needed if you change svc.handleClass.
ObjCaIIWarn(msgNewDefaults, pArgs->svc.handleClass, &(pArgs->svc.fsNew});
pArgs->svc.fsNew.fs.exist = fsExistOpen I fsNoExistCreate;

II Service managers that this instance should go on. Often statically
II defined, as in this example. See managers definition above.
pArgs->svc.pManagerList = &managers;
pArgs->svc.numManagers = 1;

II The setting of openClass determines whether the service instance
II object is passed back on open (openClass = objNull), or a new
II instance of the openClass is created and passed
II back (openClass = clsYourOpenObject). openObject classes should
II be subclasses of clsOpenServiceObject.
pArgs->svc.style.openClass = objNull;

return stsOK;

} II TestSvcNewDefaults

1**
TestSvcNew

Create a new Test Service.

1. Set up-your instance data.
2. Deal with your state file. Your state file will either contain stuff

(if you are being recreated due to a warm boot or having been copied
in from disk) or be empty (if this is the first time). You must call
ancestor before dealing with your state file.

Notes:

If autoCreate in msgSvcClassInitService was true then the system will
send msgNewDefaults and msgNew for each state file it finds.

**1
MsgHandlerWithTypes(TestSvcNew, P_TEST_SVC_NEW, P_INSTANCE_DATA)
(

INSTANCE DATA
OBJECT
STATUS

MsgHandlerParametersNoWarning;

inst.unusedl 0;
inst.unused2 0;

II Get my state file.

inst;
stateHandle;
s;

ObjCallJmp(msgSvcGetHandle, self, &stateHandle, s, objectWrite);

II Is it empty? Initialize it. Is it full? Update instance data if
II appropriate.

s stsOK;

objectWrite:
StsWarn(ObjectWrite(self, ctx, &inst»;

return Si

} II TestSvcNew

1**
TestSvcFree

Free any resources that this service created. Don't delete the state file
or free the state file handle!

**1
MsgHandlerWithTypes(TestSvcFree, P_ARGS, P_INSTANCE_DATA)
(

MsgHandlerParametersNoWarning;

return stsOK;

II TestSvcFree

1**
TestSvcGetMetrics

113 I SERVICES

If this service supports client accessable metrics then this message
must be handled. Be sure to include some form of version identification
with the metrics.

**1
MsgHandlerWithTypes(TestSvcGetMetrics, P_SVC_GET_SET_METRICS, P_INSTANCE_DATA)
{

II

MsgHandlerParametersNoWarning;

if (pArgs->len == 0) {
pArgs->len = myMetricsLength;

else (
II Copy out my metrics to pArgs->pMetrics.

return stsOK;

II TestSvcGetMetrics

1**
TestSvcSetMetrics

If this service supports client accessable metrics then this message
must be handled. Be able to handle old versions of the metrics ...

**1
MsgHandlerWithTypes(TestSvcSetMetrics, P_SVC_GET_SET_METRICS, P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;

return stsOK;

} II TestSvcSetMetrics

1**
TestSvcOpenDefaultsRequested

A client wants to get the defaults for the pArgs field of his open
structure.

The client sent msgSMOpenDefaults to a service manager.
**1
MsgHandlerWithTypes{TestSvcOpenDefaultsRequested, P_SVC_OPEN_CLOSE,
P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;

II If you are a multi-user service (openClass <> objNull) then
II you probably don't need to handle this message. Superclass behavior
II is to send msgNewDefaults to your openClass.

II Single-user services that support the concept of a defaulted open
II pArgs should initialize pArgs->pArgs here.

TESTSVC
..
""I
10

return stsOK;

} II TestSvcOpenDefaultsRequested

1**
TestSvcOpenRequested

A client wants interact directly with the service, typically to move data.

The client sent msgSMOpen to a service manager.
**1
MsgHandlerWithTypes(TestSvcOpenRequested, P_SVC_OPEN_CLOSE, P_INSTANCE_DATA)
{
II
II
II

II
II

II

II

SVC_OPEN_CLOSE_TARGET
SVC GET TARGET
STATUS

openTarget;
get Target;
s;

MsgHandlerPararnetersNoWarning;

II If this is a multi-user service then clsService will automatically
II create an instance of the openClass you specified in
II msgNewDefaults. You might want to specify or modify the open
II request's pArgs (pArgs->pArgs). These become the pArgs for the msgNew
II to your openClass, and is how you can communicate with your
II openClass.

II If this is a single-user service you might need to update instance
// data state at this time. Note that you don't have handle checking for
II exclusive access; clsService does this all for you.

II If auto-open is false, this service will probably want to open its
/1 target.
openTarget.pArgs =
ObjCalIRet(msgSvcOpenTarget, self, &openTarget, s);

II Get the actual target object.
ObjCalIRet{msgSvcGetTarget, self, &getTarget, s);

II Send some messages to my target.
ObjCaIIRet(msgBlahBlah, getTarget.targetService, &blah, s);

return stsOK;

} II TestSvcOpenRequested

1**
TestSvcCloseRequested

A client is finished interacting with the service.

The client sent msgSMClose to a service manager.
**1
MsgHandlerWithTypes(TestSvcCloseRequested, P_SVC_OPEN_CLOSE, P_INSTANCE_DATA)
{
II
II

II
II

SVC OPEN CLOSE TARGET - - - closeTarget;
STATUS s;

MsgHandlerPararnetersNoWarning;

II If this is a multi-user service then clsService will automatically
II send msgDestroy the openClass instance created at open time.
II pArgs->pArgs becomes the pArgs for the msgDestroy.

II If this is a single-user service you might need to update instance
II data state at this time.

II If auto-open is false, this service will probably want to close its
II target.
closeTarget.pArgs - ... ,
ObjCaIIRet(msgSvcCloseTarget, self, &closeTarget, s);

return stsOK;

} II TestSvcCloseRequested

1**
TestSvcAddCards

Add service instance option cards. This routine should be used if this
service provides options cards for its instances.

**1
MsgHandlerWithTypes(TestSvcAddCards, P_OPTION_TAG, P_INSTANCE_DATA)
{

OPTION_CARD
STATUS

MsgHandlerPararnetersNoWarning;

opt Card;
s;

optCard.tag = tagTestSvcOptionCard;
optCard.pName = "Testing, testing, testing ... ";
optCard.win = objNull;
optCard.client = self;
ObjCaIIRet(msgOptionAddCard, pArgs->option, &optCard, s);

return stsOK;

II TestSvcAddCards

1**
TestSvcProvideCardWin

II • o

Provide service instance option cards. This routine should be used if this
service provides options cards for its instances.

**1
MsgHandlerWithTypes(TestSvcProvideCardWin, P_OPTION_CARD, P_INSTANCE_DATA)
{

OPTION TABLE NEW - -
STATUS

MsgHandlerParametersNoWarningi

optTablei
Si

if (pArgs->tag == tagTestSvcOptionCard)
ObjCallWarn(rnsgNewDefaults, clsOptionTable, &optTable)i
optTable.win.flags.style 1= wsShrinkWrapWidth 1 wsShrinkWrapHeighti
optTable.gWin.helpId = hlpTestSvcOptionCardi
optTable.tkTable.pEntries = optionCard;
ObjCallRet(rnsgNew, clsOptionTable, &optTable, S)i

pArgs->win = optTable.object.uidi

return stsOK;

II TestSvcProvideCardWin

1**
TestSvcRefreshCard

Refresh the instance option cards.
**1
MsgHandlerWithTypes(TestSvcRefreshCard, P_OPTION_CARD, P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;

if (pArgs->tag != tagTestSvcOptionCard)
return stsOK;

II Refresh our card(s) here.

return stsOK;

II TestSvcRefreshCard

1**
TestSvcApplyCard

Apply the instance option cards.
**1
MsgHandlerWithTypes(TestSvcApplyCard, P_OPTION_CARD, P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;

if (pArgs->tag != tagTestSvcOptionCard) {
return stsOK;

II Apply our card(s) here.

return stsOK;

II TestSvcApplyCard

1***************************** Class Messages ******************************1

1**
TestSvcTerrninate

Perform any operations required when the entire service is being
deinstalled. Note that all instances have already been destroyed.

**1
MsgHandlerArgType(TestSvcTerminate, P_ARGS)
{

MsgHandlerParametersNoWarning;

return stsOKi

II TestSvcTerrninate

I***************************w************************* ***********************
TestSvcClassAddCards

Add global service option cards. These cards are popped up when the user
checks on this service in the installer, and when the user initially
installs the service if svcPopupOptions is or-ed in to the InitService()
flags.

**1
MsgHandlerArgType(TestSvcClassAddCards, P_OPTION_CARD)
{

OPTION CARD
STATUS

MsgHandlerParametersNoWarning;

opt Card;
s;

optCard.tag = tagTestSvcGlobalOptionCard;
optCard.pName = "Global Options";
optCard.win = objNull;
optCard.client = self;
ObjCallRet(rnsgOptionAddCard, pArgs->option, &optCard, s);

return stsOK;

TESTSVC

I 13 I SERVICES

... • ..

II TestSvcClassAddCards

1**
TestSvcClassProvideCardWin

Provide the win for our cards.
**1
MsgHandlerArgType(TestSvcClassProvideCardWin, P_OPTION_CARD)
{

OPTION TABLE NEW - - opt Table;
STATUS s;

MsgHandlerParametersNoWarning;

if (pArgs->tag == tagTestSvcGlobalOptionCard)
ObjCaIIWarn(msgNewDefaults, clsOptionTable, &optTable);
optTable.win.flags.style 1= wsShrinkWrapWidth 1 wsShrinkWrapHeight;
optTable.gWin.helpId = hlpTestSvcGlobalOptionCard;
optTable.tkTable.pEntries = globalOptionCard;
ObjCaIIRet(msgNew, clsOptionTable, &optTable, s);
pArgs->win = optTable.object.uid;

return stsOK;

II TestSvcClassProvideCardWin

1**
TestSvcClassRefreshCard

Refresh the global option cards.
**********-**1
MsgHandlerArgType(TestSvcClassRefreshCard, P_OPTION_CARD)
{

MsgHandlerParametersNoWarning;

if (pArgs->tag != tagTestSvcGlobalOptionCard)
return stsOK;

II Refresh our global option card(s) here ...

return stsOK;

II TestSvcClassRefreshCard

1**
TestSvcClassApplyCard

Apply the global option cards.
**1
MsgHandlerArgType(TestSvcClassApplyCard, P_OPTIO~_CARD)

{
MsgHandlerParametersNoWarning;

if (pArgs->tag != tagTestSvcGlobalOptionCard)
return stsOK;

II Apply our global option cards here ...

return stsOK;

II TestSvcClassApplyCard

1**
CIsTestServiceInit

Install our class.
**1
STATUS PASCAL CIsTestServiceInit(void)
{

STATUS
CLASS NEW

s;
new;

II Create the service class.
ObjCaIIWarn(msgNewDefaults, clsClass, &new);
new.object.uid clsTestService;
new.cls.pMsg clsTestServiceTable;
new.cls.ancestor clsService;
new.cls.size SizeOf(INSTANCE_DATA);
new.cls.newArgsSize SizeOf(TEST_SVC_NEW);
ObjCallRet(msgNew, clsClass, &new, s);

return S;

} II ClsTestServiceInit

II STATUS PASCAL ClsTestOpenObjectInit(void); II Only needed if multi-user.

1**
DLLMain()

Install our service. This routine is called once when the service is
first installed on PenPoint.

**1
STATUS EXPORTED DLLMain(void)
{

SVC INIT SERVICE initService;

..
CD
~

II

SVC NEW
STATUS

svcNew;
s;

II Install classes.
StsRet(ClsTestServicelnit(), s);
StsRet(ClsTestOpenObjectlnit(), s); II Only needed if multi-user service.

II Let system know about our service and set global service
II characteristics. THIS IS REQUIRED!
memset(initService.spare, 0, sizeof(initService.spare»;
initService.autoCreate = false;
initService.serviceType = 0;
initService.initServiceFlags = svcPopupOptions; II Flags. Or-in options.
ObjCaIIRet(msgSvcClasslnitService, clsTestService, &initService, s);

II Create any static service instances. Set autoCreate above to false
II if you do this. If you know exactly how many service instances
II there will be, this is where you should create them.
II Alternatively, they can be dynamically created elsewhere, after
II DLLMain() runs. Beware of process ownership issues if you create
II services dynamically. You must ensure that the process which owns
II the dynamically created service instance will be around for the
II lifetime of the service instance!
ObjCaIIWarn(msgNewDefaults, clsTestService, &svcNew);
svcNew.svc.pServiceName = "Test Instance"; II Name of this instance
svcNew.svc.target.manager = theTransportHandlers; II Target svc manager
strcpy(svcNew.svc.target.pName, "Netware"); II Target name
ObjCaIIRet(msgNew, clsTestService, &svcNew, s);

return stsOK;

} II DllMain

OPENOBJ.H

1**
File: openobj.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Date:

1.19 $
31 Jan 1992 12:20:16 $

113 I SERVICES

This file contains the API definition for clsTestOpenObject.
clsTestOpenObject inherits from clsOpenServiceObject.
Provides a template for a multi-user service's open object class.

**1
#ifndef OPENOBJ_INCLUDED
#define OPENOBJ_INCLUDED

#ifndef OPENSERV INCLUDED
#include <openserv.h>
#endif

1* * *
*

*
Common 'defines and typedefs *

* *1

1*

* Messages *
* *1

1**
msgNew takes P_TEST_OPEN_OBJECT_NEW, returns STATUS

category: class message
Creates a new test open object instance.

*1

typedef struct TEST_OPEN_OBJECT_NEW_ONLY
U32 unused1;
U32 unused2;
U32 unused3;

TEST_OPEN_OBJECT_NEW_ONLY, *P_TEST_OPEN_OBJECT_NEW_ONLY;

#define testOpenObjectNewFields \
openServiceObjectNewFields \

TEST_OPEN_OBJECT_NEW_ONLY testOpenObject;

typedef struct TEST OPEN OBJECT NEW
testOpenObjectN~wFieids' -

TEST_OPEN_OBJECT_NEW, *P_TEST_OPEN_OBJECT_NEW;

1**
msgNewDefaults takes P_TEST_OPEN_OBJECT_NEW, returns STATUS

category: class message
Set defaults:

*1

1* Your messages here! *1

#endif II OPENOBJ INCLUDED

TESTSVC
.. • U

OPENOBJ.C

1**
File: openobj.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Date:

1.18 $

31 Jan 1992 08:40:30 $

This file contains the class definition and methods for clsTestOpenObject.

This is a stub for and open service Object class. This class is only used
for mult-user services that wish to pass a new uid to each opener.

Notes:

There's really not a whole lot to the default behavior for this class.
Basically just put your stuff here.

**1
finclude <string.h>
finclude <stdlib.h>
finclude <debug.h>
linclude <list.h>
linclude <fs.h>
finclude <os.h>
finclude <osheap.h>
finclude <servrngr.h>
finclude <method.h>

finclude <openobj.h>

typedef struct INSTANCE_DATA {
U32 unused1;
U32 unused2;

INSTANCE_DATA, *P_INSTANCE_DATA;

1**
TestOpenObjectNewDefaults

**1

MsgHandlerWithTypes(TestOpenObjectNewDefaults, P_TEST_OPEN_OBJECT_NEW,
P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;

return stsOK;

} II TestOpenObjectNewDefaults

1**
TestOpenObjectNew

**1
MsgHandlerWithTypes(TestOpenObjectNew, P_TEST_OPEN_OBJECT_NEW,
P_INSTANCE_DATA)
{

INSTANCE DATA
STATUS

MsgHandlerParametersNoWarning;

s = stsOK;

inst;
S;

StsWarn(ObjectWrite(self, ctx, &inst));

return s;

} II TestOpenObjectNew

1**
TestOpenObjectFree

**1
MsgHandlerWithTypes(TestOpenObjectFree, P_ARGS, P_INSTANCE_DATA)
{

MsgHandlerParametersNoWarning;

return stsOK;

II TestOpenObjectFree

1**
ClsTestOpenObjectlnit

Install our class.
**1
STATUS PASCAL ClsTestOpenObjectlnit(void)
{

STATUS s;

.. • ..

CLASS NEW new;

II Create the service class.
ObjCaIIWarn(msgNewDefaults, clsClass, &new);
new.object.uid clsTestOpenObject;
new.cls.pMsg clsTestOpenObjectTable;
new.cls.ancestor clsOpenServiceObject;
new.cls.size SizeOf(INSTANCE_DATA);
new.cls.newArgsSize SizeOf(TEST_OPEN_OBJECT_NEW)i
ObjCaIIRet(msgNew, clsClass, &new, s);

return s;

} II CIsTestOpenObjectlnit

BASICSVC

The following sections list the files used to build BASICSVC. These files are also in

the directory \PENPOINT\SDK\SAMPLE\BASICSVC. The sections are:

METHOD.TBL

BAS I CSVc. H

BASICSVC.C

METHOD.TBL

1**
File: method.tbl

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision: 1.3 $
$Date: 31 Jan 1992 08:05:22 $

Contains the method tables for clsBasicService.
***1
*include <service.h>

MSG_INFO clsBasicServiceMethods []
msgNewDefaults, "BasicSvcNewDefaults", objCallAncestorBefore,

o
};

CLASS_INFO classlnfo[] = {

} ;

"clsBasicServiceTable", clsBasicServiceMethods, 0,
o

BAS.CSYC.H

1**
File: basicsvc.h

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

$Revision:
$Date:

1.3 $
31 Jan 1992 08:05:18 $

This file contains sample code for a mi~mal service, clsBasicService.

This is the absolute minimum required to make a service. Add your methods
to this framework.

**1
*ifndef BASICSVC_INCLUDED
*define BASICSVC INCLUDED

*ifndef SERVICE_INCLUDED
*include <service.h>
*endif

1*
* Messages *
* * * * * * ~ *1

1* Your messages here! *1

*endif II BASICSVC INCLUDED

BASICSVC

113 I SERVICES

.-­• UI

BASICSYC.C

1**
File: basicsvc.c

(C) Copyright 1992 by GO Corporation, All Rights Reserved.

You may use this Sample Code any way you please provided you
do not resell the code and that this notice (including the above
copyright notice) is reproduced on all copies. THIS SAMPLE CODE
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THIS SAMPLE CODE.

1.3 $ $Revision:
$Date: 31 Jan 1992 08:05:24 $

This file contains sample code for a minimal service, clsBasicService.

This is the absolute minimum required to make a service. Add your methods
to this framework.

**1
tinclude <string.h>
tinclude <stdlib.h>
tinclude <debug.h>
tinclude <method.h>

tifndef BASICSVC_INCLUDED
tinclude <basicsvc.h>
tendif

II Service managers to put instances on. SUBSTITUTE YOUR SERVICE MGR HERE!
static UID managers = {theSeriaIDevices};

STATUS PASCAL CIsBasicServicelnit(void);

STATUS EXPORTED DIIMain(void)
{

SVC_INIT_SERVICE
SVC NEW
STATUS

initService;
svcNew;
s;

II Install class.
StsRet(CIsBasicServicelnit(), s);

II Let the system know about our service.
memset(initService.spare, 0, sizeof(initService.spare»;
initService.autoCreate = false;
initService.serviceType = 0;

initService.initServiyeFlags = 0; II Flags. Or-in options.
OojCaIIRet(msgSvcClasslnitService, clsBasicService, &initService, s);

II Create an instance.
ObjCaIIWarn(msgNewDefaults, clsBasicService, &svcNew);
svcNew.svc.pServiceName = "Basic Instance"; II Name of this instance.
ObjCaIIRet(msgNew, clsBasicService, &svcNew, s);

return stsOK;

} I I DllMain

/**
BasicSvcNewDefaults

Set defaults. This is where the service characterstics that are common
to all instances of your service subclasses are specified.

**1
MsgHandlerWithTypes(BasicSvcNewDefaults, P_SVC_NEW, P_IDATA)
{

MsgHandlerParametersNoWarning;

II What service manager(s) should instances go on?
pArgs->svc.nurnManagers = 1;
pArgs->svc.pManagerList = &managers;

II What are the exclusivity requirements for this service?
pArgs->svc.style.exclusiveOpen = true;

return stsOK;

} II BasicSvcNewDefaults

1**
CIsBasicServicelnit

Install our class.
**1
STATUS PASCAL CIsBasicServicelnit(void)
{

STATUS
CLASS NEW

Si

newi

II Create the service class.
ObjCaIIWarn(msgNewDefaults, clsClass, &new)i

.. • o

new.object.uid clsBasicService; II SUBSTITUTE YOUR CLASS HERE!
new.cls.pMsg clsBasicServiceTablei
new.cls.ancestor clsService;
new.cls.size
new.cls.newArgsSize

0;
SizeOf(SVC_NEW)i

ObjCallRet(msgNew, clsClass, &new, S)i

return Si

} II CIsBasicServicelnit

MILSVC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The following sections list the files used to build MILSVC. These files are also in 
the directory \PENPOINT\SDK\SAMPLE\MILSVC. The sections are: 

METHOD.TBL 

MILSVC.H 

MILSVC.C 

MILSVCO.H 

MILSVCO.C 

METHOD.TBL 

1**************************************************************************** 
File: method.tbl 

(C) Copyright 1992 by GO Corporation, All Rights Reserved. 

You may use this Sample Code any way you please provided you 
do not resell the code and that this notice (including the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 
$Date: 

1.16 $ 

13 Mar 1992 16:37:10 $ 

method.tbl contain the method tables for class clsTestMILService. 
*****************************************************************************1 

II 
II 
II 

Include files 

#include <clsmgr.h> 
#include <stream.h> 

#include <milserv.h> 
#include <milsvc.h> 
#include <milsvcO.h> 

MSG_INFO clsTestMILSvcServiceMethods[] 
{ 

}i 

msgNewDefaults, 

msglnit, 
msgFree, 

msgSvcGetMetrics, 
msgSvcSetMetrics, 

msgSvcOpenRequested, 
msgSvcQueryLockRequested, 
msgSvcCloseRequested, 
msgSvcQueryUnlockRequested, 

msgTestMILSvclnitialize, 
msgTestMILSvcStatus, 
msgTestMILSvcAutoLineFeedOn, 
msgTestMILSvcAutoLineFeedOff, 
msgTestMILSvcGetTimeDelays, 
msgTestMILSvcSetTimeDelays, 
msgTestMILSvcCancelPrint, 
msgFSFlush, 
msgStreamWrite, 
msgMILSvcAreYouConnected, 

"TestMILSvcNewDefaults", 
objCallAncestorBefore, 

"TestMILSvcNew" , 
"TestMILSvcFree" , 

objCallAncestorBefore, 
objCallAncestorAfter, 

"TestMILSvcGetSvcMetrics" , 
"TestMILSvcSetSvcMetrics" , 

0, 
0, 

"TestMILSvcOpen" , 
"TestMILSvcOpen" , 
"TestMILSvcClose", 
"TestMILSvcClose", 

objCallAncestorBefore, 
objCallAncestorBefore, 
objCallAncestorBefore, 
objCallAncestorBefore, 

"TestMILSvcHWlnitialize" , 0, 
"TestMILSvcGetHWStatus" , 0, 
"TestMILSvcAutoLineFeedOn", 0, 
"TestMILSvcAutoLineFeedOff" , 0, 
"TestMILSvcGetTimeDelays" , 0, 
"TestMILSvcSetTimeDelays", 0, 
"TestMILSvcCanceIPrintBuffer", 0, 
"TestMILSvcFlush", 0, 
"TestMILSvcPrintBuffer", 0, 
"TestMILSvcAreYouConnected", 0, 

msgMILSvcConnectionStateResolved, 
"TestMILSvcConnectionStateResolved", 

objCallAncestorAfter, 

msgMILSvcStartConnectionProcessing, 
"TestMILSvcPenpointBooted" , 

msgMILSvcPowerOff, 
msgTestMILSvcDoConnection, 
o 

"TestMILSvcPowerOff", 
"TestMILSvcDoConnection" , 

0, 

0, 
0, 

CLASS_INFO classlnfo[] 
( 

}i 

"clsTestMILSvcServiceTable", 
o 

clsTestMILSvcServiceMethods, 0, 

MILSVC 
... 
CD 
..... 

13 / SERVICES 



MILSYC.H 

1**************************************************************************** 
File: milsvc. h 

(C) Copyright 1992 by GO Corporation, All Rights Reserved. 

You may use this Sample Code any way you please provided you 
do not resell the code and that this notice (including the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 
$Date: 

1.16 $ 
12 Mar 1992 12:32:32 $ 

This file contains the API definition for clsTestMILService. 
clsTestMILService inherits from clsMILService. 

This mil service provides the interface between the parallel printer 
mil device and the rest of Penpoint. This interface allows for the 
configuring of the parallel printer mil device and for printing using 
the parallel printer mil device. The pport mil service will typically 
only be accessed by printer drivers since they are responsible for 
rendering an image for printing. 

You access this mil service by using the standard service access techniques. 
These techniques are discribed in servrngr.h. 
The pport mil service is a member of the 'theParalleIDevices' and 
'thePrinterDevices' service managers. 

****************************************************************************1 

fifndef MILSVC_INCLUDED 
fdefine MILSVC_INCLUDED 

fifndef GO_INCLUDED 
*include <go.h> 
fendif 

fifndef CLSMGR_INCLUDED 
finclude <clsmgr.h> 
fendif 

fifndef MIL_SERVICE_INCLUDED 
finclude <milserv.h> 
fendif 

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* Common fdefines and typedefs * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1 

typedef OBJECT TEST_MIL_SVC, *P_TEST_MIL_SVCi 

fdefine stsTestMILSvcBusy 
fdefine stsTestMILSvcOutOfPaper 
tdefine stsTestMILSvcOffLine 
fdefine stsTestMILSvcNoPrinter 
fdefine stsTestMILSvcPrinterErr 

MakeStatus(clsTestMILService, 1) 
MakeStatus(clsTestMILService, 2) 
MakeStatus(clsTestMILService, 3) 
MakeStatus(clsTestMILService, 4) 
MakeStatus(clsTestMILService, 5) 

typedef struct TEST_MIL_SVC_METRICS 
{ 

U16 
U16 
U16 
U32 

U32 

versioni 
devFlagsi 
unitFlagsi 
initDelaYi 

interruptTimeOuti 

II version number of test mil service 
II device flags (none defined) 
II unit flags (see dvparall.h) 
II time in microSeconds init signal 
II is applied to printer 
II the printer should be ready to accept 
II another character within this time 
II period (in milliseconds) 

TEST_MIL_SVC_METRICS, *P_TEST_MIL_SVC_METRICSi 

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* Parallel Port Class Messages * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1 

1**************************************************************************** 
msgTestMILSvcStatus takes P_TEST_MIL_SVC_STATUS, returns STATUS 

returns the current hardware status of the printer. 

'testMILSvcStatus' is the contents of the parallel port status register. 

*1 

tdefine msgTestMILSvcStatus MakeMsg(clsTestMILService, 3) 

tdefine testMILSvcStsBusy flag? II printer is busy 
fdefine testMILSvcStsAcknowledge flag6 II printer acknowledged char. 
tdefine testMILSvcStsEndOfPaper flagS II printer out of paper 
tdefine testMILSvcStsSelected flag4 II printer on line 
fdefine testMIISvcStsIOError flag3 II printer error occurred 
tdefine testMILSvcStslnterruptHappened flag2 II printer interrupt occurred 

typedef struct TEST_MIL_SVC_STATUS 
{ 

U16 testMILSvcStatusi 

... 
CD 
CD 



TEST_MIL_SVC_STATUS, *P_TEST_MIL_SVC_STATUSi 

1**************************************************************************** 
msgTestMILSvcInitialize takes P_NULL, returns STATUS 

initializes the printer. 

The printer is initialized by asserting the control 
line "Initialize" to the printer for initDelay microseconds. 

*1 

*define msgTestMILSvcInitialize MakeMsg(clsTestMILService, 4) 

1**************************************************************************** 
msgTestMILSvcAutoLineFeedOn takes P_NULL, returns STATUS 

inserts a line feed after each carriage return. 

The auto line feed signal to the printer is set active. 

*1 

*define msgTestMILSvcAutoLineFeedOn MakeMsg(clsTestMILService, 5) 

1**************************************************************************** 
msgTestMILSvcAutoLineFeedOfftakes P_NULL, returns STATUS 

disables inserting a line feed after each carriage return. 

The auto line feed signal to the printer is set inactive. 

*1 

*define msgTestMILSvcAutoLineFeedOff MakeMsg(clsTestMILService, 6) 

1**************************************************************************** 
msgTestMILSvcGetTimeDelays takes P_TEST_MIL_SVC_TIME_DELAYS, returns STATUS 

gets the initialization and interrupt time out intervals. 

*1 

The initialization time period is the time the initialization pulse 
is asserted to the printer in microseconds. The interrupt time out 
interval is the maximum time the printer will assert busy before being 
ready to accept another character in milliseconds. 

*define msgTestMILSvcGetTimeDelays MakeMsg(clsTestMILService, 7) 

typedef struct TEST_MIL_SVC_TIME_DELAYS 
{ 

113 I SERVICES 

U32 initDelaYi 
U32 interruptTimeOuti 

II initialization delay 
II interrupt time out 

TEST_MIL_SVC_TIME_DELAYS, *P_TEST_MIL_SVC_TIME_DELAYSi 

1**************************************************************************** 
msgTestMILSvcSetTimeDelays takes P_TEST_MIL_SVC_TIME_DELAYS, returns STATUS 

sets the initialization and interrupt time out intervals. 

*1 

Neither value can be zero. It's best to get the present 
values before changing the time intervals. 

*define msgTestMILSvcSetTimeDelays MakeMsg(clsTestMILService, 8) 

1**************************************************************************** 
msgTestMILSvcCancelPrinttakes P_NULL, returns STATUS 

cancels the printing of the buffer currently being printed. 

*1 

#define msgTestMILSvcCancelPrint MakeMsg(clsTestMILService, 9) 

1**************************************************************************** 
msgNew takes P_TEST_MIL_SVC_NEW, returns STATUS 

creates a new test mil service object. 

*1 

#define testMILSvcNewFields 
milServiceNewFields 

\ 

typedef struct TEST_MIL_SVC_NEW 
testMILSvcNewFields 

TEST_MIL_SVC_NEW, *p TEST MIL_SVC NEWi 

STATUS EXPORTED ClsTestMILSvcInit(void)i 

*endif II MILSVC INCLUDED 

MILSYC.C 

1**************************************************************************** 
File: milsvc.c 

(C) Copyright 1992 by GO Corporation, All Rights Reserved. 

MILSVC 
.. • o 



$Revision: 
$Date: 

1.21 $ 
30 Mar 1992 15:07:36 $ 

You may use this Sample Code any way you please provided you 
do not resell the code and that this notice (including the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

This file contains the class definition and methods for clsTestMILService. 
****************************************************************************/ 

hnclude <go.h> 
tinclude <clsmgr.h> 
#include <system.h> 
hnclude <os.h> 
tinclude <ospriv.h> 
tinclude <debug.h> 
tinclude <milserv.h> 
tinclude <stream.h> 
tinclude <string.h> 
tinclude <list.h> 
#include <servmgr.h> 

tinclude <dvparall.h> 

tinclude <method.h> 
#include <milsvc.h> 
#include <milsvcO.h> 

/**************************************************************************** 
This service is to be placed on the service managers listed. 

****************************************************************************/ 

static const UID logicaIParalleIPorts[] theParallelDevices, 
thePrinterDevices }; 

/**************************************************************************** 
The following routines provide the entry points to the ring 0 
portion of test mil service. First a prototype of the ring 0 
function is given then the actual transition occurs by calling 
OSSupervisorCal1 using the function in the prototype as the 
function to call in the ring 0 code. In the ring 0 linker 
definition file the function defined with a leading 'X' is 
aliased with the actual function in the ring 0 code without 
the 'X' . 

****************************************************************************/ 

STATUS EXPORTED XTestMILSvcGetReqBlocks(P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcGetReqBlocks(P_INSTANCE_DATA plnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvcGetReqBlocks, &plnst, 1»; 

STATUS EXPORTED XTestMILSvclnitialize(P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvclnitialize(P_INSTANCE_DATA plnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvclnitialize, &plnst, 1»; 

STATUS EXPORTED XTestMILSvcGetMetrics(P_TEST_MIL_SVC_METRICS pMetrics, 
P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcGetMetrics(P_TEST_MIL_SVC_METRICS pMetrics, 
P_INSTANCE_DATA plnst) 

Unused(plnst); 
return (STATUS) (OSSupervisorCall(XTestMILSvcGetMetrics, &pMetrics, 2»; 

STATUS EXPORTED XTestMILSvcSetMetrics(P_TEST_MIL_SVC_METRICS pMetrics, 
P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcSetMetrics(P_TEST_MIL_SVC_METRICS pMetrics, 
P_INSTANCE_DATA plnst) 

Unused(plnst); 
return (STATUS) (OSSupervisorCall(XTestMILSvcSetMetrics, &pMetrics, 2»; 

STATUS EXPORTED XTestMILSvcPrint(P_STREAM_READ_WRITE pSt ream, 
P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcPrint(P_STREAM_READ_WRITE pSt ream, 
P_INSTANCE_DATA plnst) 

Unused(plnst); 
return (STATUS) (OSSupervisorCall(XTestMILSvcPrint, &pStream, 2»; 

STATUS EXPORTED XTestMILSvcGetStatus(P_TEST_MIL_SVC_STATUS pTestMILSvcStatus, 
P_INSTANCE_DATA plnst); 

.. • o 



STATUS EXPORTED TestMILSvcGetStatus(p_TEST_MIL_SVC_STATUS pTestMILSvcStatus, 
P_INSTANCE_DATA plnst) 

Unused(plnst); 
return (STATUS) (OSSupervisorCall(XTestMILSvcGetStatus, 

&pTestMILSvcStatus, 
2)) ; 

STATUS EXPORTED XTestMILSvcSetlnterrupt(p_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcSetlnterrupt(P_INSTANCE_DATAplnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvcSetlnterrupt, 
&plnst, 
1)); 

STATUS EXPORTED XTestMILSvcODestroy(P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcODestroy(P_INSTANCE_DATA plnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvcODestroy, &plnst, 1)); 

STATUS EXPORTED XTestMILSvcCancelPrint(P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcCancelPrint(P_INSTANCE_DATA plnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvcCancelPrint, &plnst, 1)); 

STATUS EXPORTED XTestMILSvcStartConnectionDetection(P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcStartConnectionDetection(P_INSTANCE_DATA plnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvcStartConnectionDetection, 
&plnst, 
1)) ; 

STATUS EXPORTED XTestMILSvcStopConnectionDetection(P_INSTANCE_DATA plnst); 

STATUS EXPORTED TestMILSvcStopConnectionDetection(P_INSTANCE_DATA plnst) 
{ 

return (STATUS) (OSSupervisorCall(XTestMILSvcStopConnectionDetection, 
&plnst, 

1)) ; 

1**************************************************************************** 
void LOCAL TestMILSvcSwitchForConnection(P_INSTANCE_DATA plnst) 

This routine sends the message msgTestMILSvcDoConnection, a private 
message, to self in process context. See msgTestMILSvcDoConnection 
for more details. 

****************************************************************************1 

void LOCAL TestMILSvcSwitchForConnectionDetection(P_INSTANCE_DATA plnst) 

OS TASK ID taskld; 

ObjectCall(msgOwner, plnst->self, &taskld); 
ObjectSendTask(msgTestMILSvcDoConnection, 

plnst->self, 
&taskld, 
SizeOf(OS_TASK_ID), 
taskld) ; 

II TestMILSvcSwitchForConnectionDetection 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcDoConnection, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcDoConnection, a private 
message. This message was self sent to change process to testMILSvc's 
original process context. This process keeps the continuous mil 
request from terminating when the process whose context the service 
set connected message was sent. We don't know if a sub-task will be 
created for the continuous request. We don't need to do this for 
terminating connection detection. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcDoConnection, P_ARGS, P_INSTANCE_DATA) 
{ 

P_INSTANCE_DATA plnst; 

MsgHandlerParametersNoWarning; 

plnst = * (P_INSTANCE_DATA *)pData; 
return TestMILSvcStartConnectionDetection(plnst); 

} II TestMILSvcDoConnection 

MILSVC 

113 I SERVICES 

.. 
'0 .. 



/**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcPenpointBooted, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgMILSvcConnectionProcessing. 
This message is received when the PenPoint operating system is fully 
booted. We wait to start connection processing until the system is 
booted and all services are running. When a connection is detected, 
all services will have a chance to respond to the queries of the 
conflict group manager. 

****************************************************************************/ 

MsgHandlerWithTypes(TestMILSvcPenpointBooted, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA pInst; - -

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

// Start connection detection if we have auto detecting hardware 
if (pInst->connectStyle == svcAutoDetect) 
( 

pInst->connected = false; 
/* Start connection detection */ 
TestMILSvcSwitchForConnectionDetection(pInst); 

return stsOK; 

/* TestMILSvcPenpointBooted */ 

/**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcNewDefaults, 

P_TEST_MIL_SVC_NEW, 
P_INSTANCE_DATA) 

This routine handles the message msgNewDefaults. The routine sets 
default parameters for msgNew. All style bits for mil service are 
set/cleared. Some may be default values. 

*****************************************************************************/ 

MsgHandlerWithTypes(TestMILSvcNewDefaults, P_TEST_MIL_SVC_NEW, 
P_INSTANCE_DATA) 
( 

MsgHandlerParametersNoWarning; 

/* 
* Since a mil service targets a mil device not another 
* service, any style bit dealing with a target should be 

* false. These bits are 'waitForTarget', 'autoOwnTarget', 
* 'autoOpen', 'autoMsgPass', and 'autoOption'. 

* 
* Since our mil service can only be openned by one client, 
* 'exclusiveOpen' and 'checkOwner' style bits should be true. 
*/ 

pArgs->svc.style.waitForTarget 
pArgs->svc.style.exclusiveOpen 

pArgs->svc.style.autoOwnTarget 
pArgs->svc.style.autoOpen 

pArgs->svc.style.autoMsgPass 
pArgs->svc.style.checkOwner 
pArgs->svc.style.autoOption 
pArgs->svc.style.openClass 

/* 

false; 
true; 

false; 
false; 

false; 
true; 
false; 
objNull; 

* Indicate which service managers we're to be placed on 
*/ 

pArgs->svc.numManagers 

pArgs->svc.pManagerList 

return stsOK; 

SizeOf(logicaIParalleIPorts) / 
SizeOf (UID) ; 

logicalParallelPorts; 

/* TestMILSvcNewDefaults */ 

/**************************************************************************** 
BOOLEAN LOCAL IsAnybodyConnected(P_INSTANCE_DATA pInst) 

This routine scans the conflict group we're in checking if a 
mil service in the conflict group is connected. 

****************************************************************************/ 

BOOLEAN LOCAL IsAnybodyConnected(P_INSTANCE_DATA pInst) 
( 

LIST ENTRY 
OBJECT 
U16 
SM_QUERY_LOCK 
STATUS 
SVC GET SET CONNECTED - - -

Ie; 
list; 
n; 
query; 
s; 
serviceConnected; 

// Create a list of mil services in our conflict group 
ObjCaIIRet(msgIMGetList, pInst->conflictGroup, &list, s); 

// Get the number of mil services in our conflict group 
ObjectCall(msgListNumItems, list, &n); 

// Query each mil service in our group 
for (le.position = 0; le.position < n; le.position++) 

... 
10 
~ 



II Get the next mil service in our group 
ObjCallWarn(msgListGetItem, list, &le); 
query.handle = (OBJECT) Ie. item; 
ObjCallWarn(msgSMQuery, pInst->conflictGroup, &query); 

II Get the connected state of the mil service 
ObjCallWarn(msgSvcGetConnected, query. service, &serviceConnected); 
if (serviceConnected.connected != false) 
{ 

} 

II if connected - we're done 
break; 

II Destroy list 
ObjCallWarn(msgDestroy, list, pNull); 

II return connected state 
return serviceConnected.connected; 

1* IsAnybodyConnected *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcNew, P_TEST_MIL_SVC_NEW, P_INSTANCE_DATA) 

This routine handles the message msgInit. This routine creates a 
new testMILSvc object. 'msgMILSvcGetDevice' is called to obtain the 
mil device we are to use for printing. Connection detection is 
not started until the PenPoint is booted. A check is provided 
here in case we're loaded after the system is booted. In which 
case, we start connection detection only if no other mil service 
in our conflict group is in the connected state. It's normal for 
all mil services other than the mil service being connected to 
terminate their connection detection functions when the service 
is connected. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcNew, P_TEST_MIL_SVC_NEW, P_INSTANCE_DATA) 
{ 

MIL SVC DEVICE 
OBJECT 
P INSTANCE DATA - -
TESTJMIL_SVC_TIME_DELAYS 
STATUS 
SYS BOOT STATE 

device; 
myself; 
pInst; 
timeDelays; 
s; 
sysBootState; 

MsgHandlerParametersNoWarning; 

1* Create self. *1 

113 I SERVICES 

II Save who we are 
myself = pArgs->object.uid; 

II Get mil device we are to use 
ObjCallRet(msgMILSvcGetDevice, myself, &device, s); 

Dbg(Debugf("TEST_MIL_SVC: creating instance for logicalld %d: unit %d", 
device.logicalId, device.unit);) 

II Allocate our instance data 
StsRet(OSHeapBlockAlloc(osProcessSharedHeapId, 

SizeOf(INSTANCE_DATA) , 
&pInst), s); 

II Store pointer to our instance data 
ObjectWrite(myself, ctx, &pInst); 

II Initialize our instance data 
memset(pInst, 0, SizeOf(INSTANCE_DATA»; 

II Save who we are and who our mil device is 
pInst->self = myself; 
pInst->logicalId = device.logicalId; 
pInst->conflictGroup = device.conflictGroup; 
pInst->unit = device. unit; 

II Get whether we can detect connection 
pInst->connectStyle = pArgs->svc.style.conn~ctStyle; 

II Initialize print in progress, connected and open flag 
pInst->printInProgress = false; 
pInst->connected = false; 
pInst->open = false; 

II Allocate necessary ring ° memory 
StsRet(TestMILSvcGetReqBlocks(pInst), s); 

II Enable interrupt 
StsRet(TestMILSvcSetInterrupt(pInst), s); 

II Initialize parallel printer device timeouts 
timeDelays.initDelay = 500000; 
timeDelays.interruptTimeOut = 30000; 
ObjCallRet(msgTestMILSvcSetTimeDelays, self, &timeDelays, s); 
StsRet (TestMILSvcGetMetrics (& (pInst->testMILSvcMetrics ), pInst), s); 

II Get the booted state of the system 
ObjCallRet(msgSysGetBootState, theSystem, &sysBootState, s); 

II Don't start if we don't have auto connecting hardware 
if (pInst->connectStyle == svcAutoDetect) 
{ 

MILSVC • o w 



II If the system is booted and no other mil service is connected 
II start connection detection 
if (sysBootState.booted != false && IsAnybodyConnected(pInst) == false) 
{ 

TestMILSvcSwitchForConnectionDetection(pInst); 

return s; 

1* TestMILSvcNew *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcFree, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgFree. This routine destroys 
a testMILSvc object. We destroy ourself by terminating connection 
detection and freeing all system resources we've allocated. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcFree, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - -
STATUS 

pInst; 
s; 

MsgHandlerPararnetersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

if (pInst != 0) 
{ 

StsRet(TestMILSvcStopConnectionDetection(pInst), s); 
StsRet(TestMILSvcODestroy(pInst), s); 
StsRet(OSHeapBlockFree(pInst), s); 

return stsOK; 

1* TestMILSvcFree *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcGetSvcMetrics, 

P_SVC_GET_SET_METRICS, 
P_INSTANCE_DATA) 

This routine handles the message msgSvcGetMetrics. This routine 
gets the parallel printer port metrics. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcGetSvcMetrics, 
P_SVC_GET_SET_METRICS, 

P_INSTANCE_DATA) 

P_INSTANCE_DATA pInst; 

MsgHandlerPararnetersNoWarning; 

II Get pointer to our instance data 
pInst = *(P_INSTANCE_DATA *)pData; 

1* 
* If the len field of the metrics structure passed in is zero 
* return the size of data area needed to store the metrics; 
* otherwise, if the length field equals the size of the 
* metrics, return the metrics. 
*1 

if (pArgs->len == 0) 

return pArgs->len SizeOf(TEST_MIL_SVC_METRICS); 

else if (pArgs->len != SizeOf(TEST_MIL_SVC_METRICS» 
{ 

else 
( 

return stsBadPararn; 

memcpy(pArgs->pMetrics, 
&(pInst->testMILSvcMetrics), 
SizeOf(TEST_MIL_SVC_METRICS»; 

1* TestMILSvcGetMetrics *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcSetSvcMetrics, 

P_SVC_GET_SET_METRICS, 
p_INSTANCE_DATA) 

This routine handles the message msgSvcSetMetrics. This routine 
sets the parallel printer port metrics. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcSetSvcMetrics, 
P_SVC_GET_SET_METRICS, 
P_INSTANCE_DATA) 

P INSTANCE DATA - - pInst; 

MsgHandlerPararnetersNoWarning; 

pInst *(P_INSTANCE_DATA *)pData; 

.. • .. 



II Only set the metrics if the size of the data area is correct 
if (pArgs->len != SizeOf(TEST_MIL_SVC_METRICS» 
{ 

return stsBadParam; 
} 
II Call the ring 0 code to set the mil device metrics 
return TestMILSvcSetMetrics(pArgs->pMetrics, pInst); 

1* TestMILSvcSetMetrics *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcOpen, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgSvcOpenRequestedl 
msgQueryLockRequested. Either of these messages is received when 
a client wishes to open our mil service. We save our open state 
since when we receive messages from our client they don't go through 
the service open checks. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcOpen, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst *(P_INSTANCE_DATA *)pData; 

pInst->open true; 

return stsOK; 

1* TestMILSvcOpen *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcClose, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgSvcCloseRequestedl 
msgSvcQueryUnlockRequested. Either of these messages is received 
when a client wishes to close our mil service. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcClose, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

pInst->open false; 

return stsOK; 

1* TestMILSvcClose *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcHWInitialize, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcHWInitialize. This routine 
initializes the printer attached by toggling the initialize signal to 
the printer. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcHWInitialize, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA pInst; 

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

II Ignore if printer is not connected or we are not open 
if (pInst->connected false I I pInst->open == false) 
{ 

return stsFailed; 
} 
II Must call the mil device from ring 0 
return TestMILSvcInitialize(pInst); 

1* TestMILSvcHWInitialize *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcGetHWStatus, P_TEST_MIL_SVC_STATUS, 

P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcGetStatus. The routine 
gets the contents of the parallel port status register. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcGetHWStatus, P_TEST_MIL_SVC_STATUS, 
P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

MILSVC 

113 I SERVICES 

iii 
10 
VI 



II Must call the mil device from ring 0 
return TestMILSvcGetStatus(pArgs, pInst); 

1* TestMILSvcGetHWStatus *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcAutoLineFeedOn, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcAutoLineFeedOn. The routine 
sets the auto line feed signal to the printer active. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcAutoLineFeedOn, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA pInst; 

MsgHandlerParametersNoWarning; 

pInst *(P_INSTANCE_DATA *)pData; 

II Set the auto line feed flag in our metrics 
pInst->testMILSvcMetrics.unitFlags 1= parallelAutoLineFeed; 

II Set the auto line feed flag in the mil devices parameters 
return TestMILSvcSetMetrics(&(pInst->testMILSvcMetrics), pInst); 

1* TestMILSvcAutoLineFeedOn *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcAutoLineFeedOff, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcAutoLineFeedOn. The routine 
sets the auto line feed signal to the printer active. 

****************************************************************************1 

MsgHandlerWithType~(TestMILSvcAutoLineFeedOff, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

II Clear the auto line feed flag in our metrics 
pInst->testMILSvcMetrics.unitFlags &= -paralleIAutoLineFeed; 

II Clear the auto line feed flag in the mil devices parameters 
return TestMILSvcSetMetrics(&(pInst->testMILSvcMetrics), pInst); 

1* TestMILSvcAutoLineFeedOff *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcGetTimeDelays, 

P_TEST_MIL_SVC_TIME_DELAYS, 
P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcGetTimeDelays. This routine 
gets the time delays used by the mil device. 'initDelay' is the width 
in microseconds of the initialization pulse used to hardware initialize 
the printer. 'interruptTimeOut' is the time in milliseconds to wait 
for an interrupt to occur after writing a character to the printer. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcGetTimeDelays, P_TEST_MIL_SVC_TIME_DELAYS, 
P_INSTANCE_DATA) 
{ 

P_INSTANCE_DATA pInst; 

MsgHandlerParametersNoWarning; 

pInst *(P_INSTANCE_DATA *)pData; 

II Return the time periods from our metrics 
pArgs->initDelay = pInst->testMILSvcMetrics.initDelay; 
pArgs->interruptTimeOut = pInst->testMILSvcMetrics.interruptTimeOut; 

return stsOK; 

1* TestMILSvcGetTimeDelays *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcSetTimeDelays, 

P_TEST_MIL_SVC_TIME_DELAYS, 
P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcSetTimeDelays. This routine 
sets the time delays used by the mil device. 'initDelay' is the width 
in microseconds of the initialization pulse used to hardware initialize 
the printer. 'interruptTimeOut' is the time in milliseconds to wait 
for an interrupt to occur after writing a character to the printer. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcSetTimeDelays, P_TEST_MIL_SVC_TIME_DELAYS, 
P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

.. 
-0 
o 



pInst *{P_INSTANCE_DATA *)pData; 

II Neither time period can be zero 
if {pArgs->initDelay == 0 I I pArgs->interruptTimeOut 
( 

return stsBadParam; 

else 

II Set our metrics to the new values 

0) 

pInst->testMILSvcMetrics.initDelay = pArgs->initDelay; 
pInst->testMILSvcMetrics.interruptTimeOut = pArgs->interruptTimeOut; 

II Tell the mil device of the new values 
return TestMILSvcSetMetrics{&(pInst->testMILSvcMetrics), pInst); 

1* TestMILSvcSetTimeDelays *1 

1**************************************************************************** 
MsgHandlerWithTypes{TestMILSvcCancelPrintBuffer, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgTestMILSvcCancelPrintBuffer. The 
routine cancels the printing of the buffer currently being printed. 

****************************************************************************1 

MsgHandlerWithTypes{TestMILSvcCancelPrintBuffer, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

II Transition to ring 0 to do the work 
return TestMILSvcCanceIPrint{pInst); 

1* TestMILSvcCancelPrintBuffer *1 

1**************************************************************************** 
MsgHandlerWithTypes{TestMILSvcFlush, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgFSFlush. This routine allows 
a client to send a flush to our mil service without causing an error. 

****************************************************************************1 

MsgHandlerWithTypes{TestMILSvcFlush, P_ARGS, P_INSTANCE_DATA) 
{ 

MsgHandlerParametersNoWarning; 

II So stdio can use this without warnings being generated 
return stsOK; 

1* TestMILSvcFlush *1 

1**************************************************************************** 
MsgHandlerWithTypes{TestMILSvcPrintBuffer, P_ARGS, P_INSTANCE_DATA) 

This routine handles the message msgStreamWrite. The routine causes 
a clients buffer to be sent to the printer connected. An error is 
returned and the buffer is not printed if we are not open and no 
printer is connected. 

****************************************************************************1 

MsgHandlerWithTypes{TestMILSvcPrintBuffer, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst *{P_INSTANCE_DATA *)pData; 

II Return error if not connected or openned 
if {pInst->connected == false I I pInst->open 
{ 

return stsFailed; 

II Must call mil device from ring 0 

false) 

return TestMILSvcPrint{{P_STREAM_READ_WRITE)pArgs, pInst); 

1* TestMILSvcPrintBuffer *1 

1**************************************************************************** 
MsgHandlerWithTypes{TestMILSvCAreYouConnected, 

P_MIL_SVC_ARE_YOU_CONNECTED, 
P_INSTANCE_DATA) 

This routine handles the message msgMILSvcAreYouConnected. The 
message is sent by our conflict group manager when a mil service 
in our conflict group reports connected. More than one mil 
service can report connected. The valid responses are msYES, 
msMaybe, or msNO. 'msYES' indicates we are certain our device is 
connected. 'msMaybe' indicates something is connected, but we are 
not sure if it is our device. 'msMaybe' can also indicate we don't 
know if anything is connected. 'msNO' indicates our device is not 
connected. The mil device for the printer can determine absolutely 
if a printer is connected. 

****************************************************************************1 

MILSVC 

13 I SERVICES 

~ 
o 
-... 



MsgHandlerWithTypes(TestMILSvcAreYouConnected, 
P_MIL_SVC_ARE_YOU_CONNECTED, 
P_INSTANCE_DATA) 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst * (P_INSTANCE_DATA *)pData; 

/* 
* Answer maybe if we can't determine 
* if anything is connected. If only one 
* other mil service indicates it is connected 
* with msYes, then that mil service will get 
* the connection. If more than one mil service 
* indicates it is connected with msYes or msMaybe, 
* then a dialog box will be displayed with all the 
* mil services indicating connected. Tne user 
* then selects which mil service will actually be 
* connected. If we're the only mil service indicating 
* connected with msMaybe, then we will be connected by 
* default. 
*/ 

if (pInst->connectStyle 
( 

svcNoAutoDetect) 

*pArgs msMaybe; 

else if (pInst->connected == false) 

else 

Dbg(Debugf("TEST_MIL_SVC: responding to 'msgMILSvcAreConnected'" 
II with msNo");) 

*pArgs = msNo; 

Dbg (Debugf (IITEST_MIL_SVC: responding to 'msgMILSvcAreConnected'" 
II with msYes");) 

*pArgs = msYes; 

return stsOK; 

/* TestMILSvcAreYouConnected */ 

/**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcConnectionStateResolved, P_ARGS, 

P_INSTANCE_DATA) 

This routine handles the messge msgMILSvcConnectionStateResolved. 

This message is sent by our conflict manager when a mil service's 
connection state changes. This message indicates which mil service 
on the conflict group is being set connected. The logical id 
of the corresponding mil device is used to indicate who received the 
connection. A logical id of maxU16 indicates a mil service was 
disconnected. When another mil service receives connection, we 
should terminate our connection detection function to prevent our 
connection function from interferring with the operation of the 
other mil service and mil device. We restart our connection 
detection function when the other mil service is disconnected. 

****************************************************************************/ 

MsgHandlerWithTypes(TestMILSvcConnectionStateResolved, P_ARGS, 
P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst *(P_INSTANCE_DATA *)pData; 

/* 
* Start our connection detection function if 
* no other mil service is connected, if our 
* mil device can detect connection, and if 
* our connection detection function is not 
* already started. 

* 
* Terminate our connection detection function 
* if another mil service in our conflict group 
* is connected and if we have a connection 
* detection function started. 

* 
* Otherwise if we are connected, perform any 
* initialization operations. 
*/ 

if «U16)pArgs == maxU16) 
{ 

if (pInst->connectStyle svcAutoDetect && pInst->pRBConnect 
( 

TestMILSvcSwitchForConnectionDetection(pInst); 

else if «U16)pArgs != pInst->logicaIId) 
{ 

0) 

if (pInst->connectStyle svcAutoDetect && pInst->pRBConnect != 0) 
( 

TestMILSvcStopConnectionDetection(pInst); 
pInst->pRBConnect = 0; 

.. • • 



else if «U16)pArgs 
{ 

} 

return stsOK; 

pInst->logicaIId) 

1* TestMILSvcConnectionStateResolved *1 

1**************************************************************************** 
MsgHandlerWithTypes(TestMILSvcPowerOff, P_ARGS, P_INSTANCE_DATA) 

This message handles the message msgMILSvcPowerOff. This messge 
is received when the power to the tablet is about to be shut off. 
We perform any clean up operations here. There is a corresponding 
message, msgMILSvcPowerOn, which can be handled when power is 
applied. At which time, we can perform any operations necessary 
when power is applied. When power is shut off we want to cancel 
printing if a buffer is currently being printed. 

****************************************************************************1 

MsgHandlerWithTypes(TestMILSvcPowerOff, P_ARGS, P_INSTANCE_DATA) 
{ 

P INSTANCE DATA - - pInst; 

MsgHandlerParametersNoWarning; 

pInst = * (P_INSTANCE_DATA *)pData; 
return TestMILSvcCanceIPrint(pInst); 

1* TestMILSvcPowerOff *1 

1**************************************************************************** 
CIsTestMILServiceInit(void) 

Install the class. 
****************************************************************************1 
STATUS EXPORTED CIsTestMILServiceInit(void) 
{ 

CLASS NEW 
STATUS 

classNew; 
s; 

1* Create the class. *1 

ObjCaIIWarn(msgNewDefaults, clsClass, &classNew); 

classNew.object.cap 
classNew.object.uid 

1= objCapCall; 
clsMILParallelPortDevice; 

classNew.cls.pMsg 
classNew.cls.ancestor 
classNew.cls.size 
classNew.cls.newArgsSize 

clsTestMILSvcServiceTable; 
clsMILService; 
SizeOf(INSTANCE_DATA); 
SizeOf(TEST_MIL_SVC_NEW); 

ObjCaIIRet(msgNew, clsClass, &classNew, s); 

return (stsOK); 

1* CIsTestMILServiceInit *1 

1**************************************************************************** 
DLLMain 

Initialize milsvc.dll 

****************************************************************************1 

STATUS EXPORTED DLLMain(void) 
{ 

STATUS 
SVC INIT SERVICE 

s; 
initService; 

II Install classes 
StsRet(CIsTestMILServiceInit(), s); 

II Let system know about our service 
II and set global service characteristics 
memset(initService.spare, 0, sizeof(initService.spare»; 
initService.autoCreate = true; 
initService.serviceType = 0; 
initService.initServiceFlags = svcNoShow; 
ObjCaIIRet(msgSvcClassInitService, 

clsMILParallelPortDevice, 
&initService, 
s) ; 

return stsOK; 

1* DLLMain *1 

MILSYCO.H 

1**************************************************************************** 
File: milsvcO.h 

(C) Copyright 1992 by GO Corporation, All Rights Reserved. 

You may use this Sample Code any way you please provided you 
do not resell the code and that this notice (including the above 

MILSVC 

113 I SERVICES 

.. o 
o 



copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 
$Date: 

1.1 $ 
13 Mar 1992 16:37:18 $ 

This file contains the private interface definition for clsTestMILService. 
clsTestMILService is a subclass of clsMILService. 

****************************************************************************1 
*ifndef MILSVCO_INCLUDED 
*define MILSVCO_INCLUDED 

*ifndef GO_INCLUDED 
*include <go.h> 
*endif 

*ifndef MILSVC_INCLUDED 
*include <milsvc.h> 
*endif 

1* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* Private Parallel Port Class Messages 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *1 

1**************************************************************************** 
msgTestMILSvcStatus takes P_NULL, returns STATUS 

*1 

starts connection detection. 

We switch to our process context to start connection detection. 
We don't need to do this when connection detection is terminated. 

*define msgTestMILSvcDoConnection MakeMsg(clsTestMILService, 100) 

* 

UID conflictGroup; 
U16 connectStyle; 

II Our state information 
TEST_MIL_SVC_METRICS 
BOOLEAN 
BOOLEAN 
BOOLEAN 

II Request blocks 
P_MIL_REQUEST_BLOCK 
P_MIL_REQUEST_BLOCK 
P_MIL_REQUEST_BLOCK 

testMILSvcMetrics; 
open; 
connected; 
printlnProgress; 

pRBMisc; 
pRBPrint; 
pRBConnect; 

II Pointer to ring 0 buffer for printing 
P_U8 printBuffer; 

INSTANCE_DATA, *P_INSTANCE_DATA; 

*endif 

MILSYCO.C 

II conflict group we're on 
II is connection detection 
II supported 

II our metrics 
II are we open for business 
II are we connected 
II are we in mil printing 

II used for single stage req. 
II used for printing 
II used for connection 

1**************************************************************************** 
File: milsvcO. c 

(C) Copyright 1992 by GO Corporation, All Rights Reserved. 

You may use this Sample Code any way you please provided you 
do not resell the code and that this notice (including the above 
copyright notice) is reproduced on all copies. THIS SAMPLE CODE 
IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, AND GO CORPORATION 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES, INCLUDING BUT NOT 
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE. IN NO EVENT WILL GO CORPORATION BE LIABLE TO YOU 
FOR ANY CONSEQUENTIAL,INCIDENTAL,OR INDIRECT DAMAGES ARISING OUT OF 
THE USE OR INABILITY TO USE THIS SAMPLE CODE. 

$Revision: 
$Date: 

1.0 $ 
12 Mar 1992 12:33:00 $ 

This file contains the ring 0 code for clsTestMILService. 
1* ****************************************************************************1 
* Instance Data 
*1 

typedef struct INSTANCE_DATA 
{ 

II Who we are 
OBJECT 
U16 
U16 

self; 
logicalId; 
unit; 

*include <clsmgr.h> 
*include <debug.h> 
*include <list.h> 
*include <servrngr.h> 
*include <service.h> 

II our instance *include <stream.h> 
II mil device logical id *include <drvrnil.h> 
II mil device unit number *include <os.h> 

UI 
0 
0 



tinclude <string.h> 
tinclude <dvparall.h> 
tinclude <milsvc.h> 
tinclude <milsvcO.h> 

1**************************************************************************** 
pRBInit, pRBPrn, pRBSet, pRBStatus, and pRBAttach 

Shorthand version of corresponding variable on right 

pRBInit used in printer initialization routine 
pRBPrn used in print routine 
pRBSet used in get/set device parameters routines 
pRBStatus used in the get printer status routine 
pRBAttach used in the printer attachment routines 

****************************************************************************1 

tdefine pRBInit «P_MIL_RB_PUB_PARALLEL_INIT_PRINTER) (pInst->pRBMisc» 
tdefine pRBPrn «P_MIL_RB_PUB_PARALLEL_WRITE) (pInst->pRBPrint» 
tdefine pRBSet «P_MIL_RB_PUB_PARALLEL_DEVICE_PARAMETERS) (pInst->pRBMisc» 
tdefine pRBStatus «P_MIL_RB_PUB_PARALLEL_DEVICE_PARAMETERS) (pInst->pRBMisc» 
tdefine pRBAttach «P_MIL_RB_PUB_BASE_ATTACHMENT_CONT) (pInst->pRBConnect» 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcGetReqBlocks(P_INSTANCE_DATA pInst) 

Allocates ringO system resources. 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcGetReqBlocks(P_INSTANCE_DATA pInst) 
{ 

STATUS S; 

1* 
* Our instance data is used by the attachment callback 
* procedure. Locking it in memory insures that it will 
* be in memory when we need it. We aren't required to do 
* this since the attachment routine is a timed not an interrupt 
* function. Otherwise page faults can occur to bring pages 
* swapped to disk back into memory. 
*1 

OSMernLock(pInst, SizeOf(INSTANCE_DATA»; 

II Allocate a request block for all the single stage mil requests 
StsRet(DrvMILRequestBlockCreate(pInst->logicaIId, 

(PP_UNKNOWN) (&(pInst->pRBMisc»), s); 

II Allocate a request to perform printing 
StsRet(DrvMILRequestBlockCreate(pInst->logicaIId, 

113 I SERVICES 

(PP_UNKNOWN) (&(pInst->pRBPrint»), s); 

II 

II Initialize the unit field in the request block to our unit number 
pInst->pRBPrint->unit = pInst->unit; 
pInst->pRBMisc->unit = pInst->unit; 

1* 
* Allocate a 512 byte buffer (size arbitrary) . 
* This buffer must be allocated/locked such that it 
* in memory at all times. The printing mil request 
* is a stage on interrupt function; therefore, the 
* buffer to be printed must be in memory at all times. 
* A page fault to bring in a non-memory resident page 
* cannot occur within an interrupt routine. 
*1 

StsRet(OSHeapBlockAlloc(osProcessSharedHeapId, 512, 
&(pInst->printBuffer», s); 

OSMemLock(pInst->printBuffer, 512); 

return stsOK; 

II TestMILSvcGetReqBlocks 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcODestroy(P_INSTANCE_DATA pInst) 

Free all ring 0 resources used by this service 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcODestroy(P_INSTANCE_DATA 
{ 

pInst) 

II 

BOOLEAN 
LIST 
STATUS 
U16 

enable; 
conflictGroupItems; 
S; 
nurnConflictItems; 

II Unlock memory used by this service 
OSMemUnlock(pInst, SizeOf(INSTANCE_DATA»; 

II Free request blocks 
StsRet(DrvMILRequestBlockFree«P_UNKNOWN) (pInst->pRBMisc», S)i 

StsRet(DrvMILRequestBlockFree«P_UNKNOWN) (pInst->pRBPrint», s); 

II Free our print buffer 
if (pInst->printBuffer != 0) 
{ 

OSMemUnlock(pInst->printBuffer, 512); 
StsRet(OSHeapBlockFree(pInst->printBuffer), s); 

II If we are the last mil service on our 

MILSVC 
UI 
o .. 



II conflict group, disable our interrupt. 
ObjCaIIRet(msgIMGetList, pInst->conflictGroup, &conflictGroupItems, s); 
ObjCaIIRet(msgListNumItems, conflictGroupItems, &numConflictItems, s); 
if (numConflictItems == 1) 
{ 

enable = false; 
OSIntMask(pInst->pRBMisc->logicaIId, &enable); 

return ObjectCall(msgDestroy, conflictGroupItems, pNull); 

1* TestMILSvcODestroy *1 

1**************************************************************************** 
STATUS EXPORTED TestMILSvcSetInterrupt(P_INSTANCE_DATA pInst) 

Enables parallel port interrupt 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcSetInterrupt(P_INSTANCE_DATA pInst) 
{ 

BOOLEAN enable; 

enable = true; 
return OSIntMask(pInst->pRBMisc->logicaIId, &enable); 

1* TestMILSvcSetInterrupt *1 

1**************************************************************************** 
void EXPORTEDO TestMILSvcAttachmentCaIIBack(P_MIL_COMMON_DATA pCommonData, 

P_MIL_RB_PUB_BASE_ATTACHMENT_CONT pRB) 

The connection detection call back routine. This routine is called 
by the mil connection detection function whenever a printer is 
attached or detached. 

****************************************************************************1 

void EXPORTEDO TestMILSvcAttachmentCaIIBack(P_MIL_COMMON_DATA pCommonData, 

P INSTANCE DATA - -
SVC GET SET CONNECTED - - -

Unused(pCommonData); 

P_MIL_RB_PUB_BASE_ATTACHMENT_CONT pRB) 

pInst; 
svcGetSetConnected; 

II Get our instance data pointer from the request block 
pInst = (P_INSTANCE_DATA) (pRB->callerDataU32A); 

if (pRB->event == milDevAttachedEvent) 

II We're attached 
pInst->connected = true; 

UI o 
~ 

Dbg (Debugf ("TEST_MIL_SVCO: printer connected to device %d", pRB->logicalId) 

else if (pRB->event == milDevDetachedEvent} 
{ 

II We're detached 
pInst->connected = false; 
Dbg (Debugf ("TEST_MIL_SVCO: printer not connected to device %d", 

pRB->logicaIId);) 
} 

II Send message to ourself indicating new connection state 
svcGetSetConnected.connected = pInst->connected; 
ObjectPost(msgSvcSetConnected, pInst->self, &svcGetSetConnected, 

SizeOf(SVC_GET_SET_CONNECTED»; 

1* TestMILSvcAttachmentCallBack *1 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcStartConnectionDetection(P_INSTANCE_DATA pInst) 

Start the parallel mil devices connection function. The connection 
function is a continuous staged on time function. When the connection 
function runs, it checks for a printer connected to the parallel port. 
When a printer is attached or detached, the attachment call back 
procedure is called with the attachment state. 

****************************************************************************1 

STATUS EXPORTEDO TestMILSvcStartConnectionDetection(P_INSTANCE_DATAplnst) 
{ 

STATUS s; 

II Initially indicate we are disconnected 
pInst->connected = false; 

1* 
* Allocate a request block for the attachment function 
* We allocate the request block here since the cancel 
* request frees the request block 
*1 

StsRet(DrvMILRequestBlockCreate(pInst->logicaIId, 
(PP_UNKNOWN) (&(pInst->pRBConnect»), s); 

1* Fill in the appropriate fields of the request block 
* our unit number 
* function code for attachment 
* user data (our instance data) 
* the call back function to use 
*1 



pRBAttach->unit = pInst->unit; 
pRBAttach->functionCode = milBaseAttachmentCont; 
pRBAttach->callerDataU32A = (U32)pInst; 
pRBAttach->pAsyncEventFunc = 

(P_MIL_ASYNC_EVENT_FUNC) TestMILSvcAttachmentCallBack; 

II Start the attachment function 
return DrvMILRequest(pInst->pRBConnect); 

1* TestMILSvcStartConnectionDetection *1 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcStopConnectionDetection(P_INSTANCE_DATA pInst) 

Terminates the connection detection mil request. 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcStopConnectionDetection(P_INSTANCE_DATA pInst) 
{ 

return DrvMILCanceIRequest(pInst->pRBConnect); 

1* TestMILSvcStopConnectionDetection *1 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvCGetMetrics(P_TEST_MIL_SVC_METRICS pArgs, 

P_INSTANCE_DATA pInst) 

Get the mil device parameters portion of testMILSvc metrics 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcGetMetrics(P_TEST_MIL_SVC_METRICS pArgs, 
P_INSTANCE_DATA pInst) 

STATUS S; 

1* 
* You must reset the request block before 
* reusing an existing request block. 
*1 

DrvMILRequestBlockReset(pInst->pRBMisc); 

II Request the device parameters from the parallel port mil device 
pRBSet->functionCode = milParallelGetDevParameters; 
StsRet(DrvMILRequest(pInst->pRBMisc), s); 

II Copy parameters to metrics structure 
pArgs->devFlags = pRBSet->paralleIDevParms.paralleIDevFlags; 
pArgs->unitFlags = pRBSet->paralleIUnitParms.paralleIUnitFlags; 
pArgs->initDelay = pRBSet->paralleITimelntervals.initDelay; 
pArgs->interruptTimeOut = pRBSet->paralleITimeIntervals.interruptTimeOut; 

return stsOK; 

1* TestMILSvcGetMetrics *1 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcSetMetrics(P_TEST_MIL_SVC_METRICS pArgs, 

P_INSTANCE_DATA pInst) 

Set the mil device parameters from the testMILSvc metrics 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcSetMetrics(P_TEST_MIL_SVC_METRICS pArgs, 
P_INSTANCE_DATA pInst) 

STATUS s; 

II interrupt time out and init delay cannot be zero 
if (pArgs->interruptTimeOut == 0 I I pArgs->initDelay 
{ 

0) 

else 
{ 

return stsBadParam; 

1* 
* You must reset the request block before 
* reusing an existing request block. 
*1 

DrvMILRequestBlockReset(pInst->pRBMisc); 

II Fill in the proper fields in the request block 
pRBSet->functionCode = milParallelSetDevParameters; 
pRBSet->paralleIDevParms.paralleIDevFlags = pArgs->devFlags; 
pRBSet->paralleIUnitParms.paralleIUnitFlags = pArgs->unitFlags; 
pRBSet->paralleITimeIntervals.initDelay = pArgs->initDelay; 
pRBSet->paralleITimeIntervals.interruptTimeOut = 

pArgs->interruptTimeOut; 

II Perform the request to set the parameters 
if ((s = DrvMILRequest(pInst->pRBMisc)) == stsOK) 
{ 

II If successful copy new metrics to instance data 
memcpy(&(pInst->testMILSvcMetrics), pArgs, 

SizeOf(TEST_MIL_SVC_METRICS)); 

else 

II Otherwise get old metrics from mil device 
TestMILSvcGetMetrics(&(pInst->testMILSvcMetrics), pInst); 

return S; 

MILSVC 
VI 
o 

113 I SERVICES " 



} 
1* TestMILSvcSetMetrics *1 

I************************************************w**** *********************** 
STATUS EXPORTED TestMILSvcInitialize(P_INSTANCE_DATA pInst) 

Have the parallel printer mil device initialize the printer by 
asserting the initialize hardware signal to the printer. The 
initialize signal is asserted for initDelay microseconds. 

****************************************************************************1 

STATUS EXPORTEDO TestMILSvcInitialize(P_INSTANCE_DATA pInst) 
{ 

1* 
* You must reset the request block before 
* reusing an existing request block. 
*1 

DrvMILRequestBlockReset(pInst->pRBMisc); 

II Indicate what function is requested and call the mil 
pRBInit->functionCode = milParallelInitPrinter; 
DrvMILRequest(pInst->pRBMisc); 

return (pInst->pRBMisc)->status; 

1* TestMILSvcInitialize *1 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcGetStatus(P_TEST_MIL_SVC_STATUS portStatus, 

P_INSTANCE_DATA pInst) 

Get the status of the printer connected to the parallel port. All 
parallel printer functions return the printer status. We use the 
get device function since it gets the status without affecting 
the printer. The get printer status returns the contents of the 
parallel port status register. 

****************************************************************************1 

STATUS EXPORTEDO TestMILSvcGetStatus(P_TEST_MIL_SVC_STATUS 
P_INSTANCE_DATA pInst) 

STATUS S; 

1* 
* You must reset the request block before 
* reusing an existing request block. 
*1 

DrvMILRequestBlockReset(pInst->pRBMisc); 

II Indicate what function is requested and call the mil 

portStatus, 

pRBStatus->functionCode = milParallelGetDevParameters; 
StsRet(DrvMILRequest(pInst->pRBMisc), s); 

VI 
o 
II 

II Get the printer status from the request block 
portStatus->testMILSvcStatus = pRBStatus->paralleIUnitParms.paralleIStatus; 
return stsOK; 

1* TestMILSvcGetStatus *1 

hfdef DEBUG 

1**************************************************************************** 
The following functions are not necessary for printing. They are 
included to display the buffer contents when the buffer is not 
printed. Only present in debug version. 

****************************************************************************1 

U8 LOCAL HexToAscii(U8 num) 
{ 

U8 ascii; 

ascii = num + '0'; 
if (ascii> '9') 
{ 

ascii (num - 10) + 'a'; 

return ascii; 

1* HexToAscii *1 

*define HighU4(x) 
*define LowU4(x) 

« (x) » 4) & OxOf) 
«x) & OxOf) 

void LOCAL DisplayBuffer(P_U8 pBuffer, U16 bufferSize) 

U16 count; 
U16 i; 
U8 outbuf[81]; 

for (count 0, i 
( 

outbuf[i++] 
outbuf[i++] 
outbuf[i++] 
if (i > 77) 
( 

0; count < bufferSize; count++) 

HexToAscii(HighU4(pBuffer[count]»; 
HexToAscii(LowU4(pBuffer[count]»; 
, '; 

outbuf[i] = '\0'; 
Debugf(outbuf); 
i = 0; 



if (i) 
{ 

outbuf[i] = '\0'; 
Debugf(outbuf); 

1* DisplayBuffer *1 

#endif 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcPrint(P_STREAM_READ_WRITE pStream, 

P_INSTANCE DATA pInst) 

Sends the contents of the buffer specified in the pStream structure 
to the printer to be printed. The buffer is copied to our local 
buffer before printing. It is copied to our buffer to insure that 
the data is available when the interrupt routine is executed. 

****************************************************************************1 

STATUS EXPORTEDO TestMILSvcPrint(P_STREAM_READ_WRITE pSt ream, 
P_INSTANCE_DATA pInst) 

U16 count; 
U16 i, j; 

Dbg (Debugf ("TEST_MIL _ SVCO: Printing");) 

II initialize the count we have printed variable to zero 
count = 0; 
do 
{ 

1* 
* copy 512 bytes of the client buffer 
* or the entire client buffer to our 
* local buffer 
*1 

j = count; 
for (i = 0; i < 512 && j < pStream->nurnBytes; i++, j++) 
{ 

pInst->printBuffer[i] = ((P_U8) (pStream->pBuf» [j]; 

1* 
* You must reset the request block before 
* reusing an existing request block. 
*1 

DrvMILRequestBlockReset(pInst->pRBPrint); 

113 I SERVICES 

1* 
* Initialize request block parameters 
* function to perform 
* pointer to our buffer 
* indicate we are giving 
* the mil device a pointer 
* to a buffer 

* the size of the buffer 
*1 

pRBPrn->functionCode = milParallelWrite; 
pRBPrn->data.pBuffer = pInst->printBuffer; 
pRBPrn->dataIsBuffer = false; 
pRBPrn->bufferSize = i; 

II indicate we are inside the mil request 
pInst->printInProgress = true; 

I I call the mil 
StsWarn(DrvMILRequest(pInst->pRBPrint»; 

II has the printing been cancelled? 
if (pInst->printInProgress == false) 
{ 

II yes - exit 
break; 

II indicate we are not in the mil 
pInst->printInProgress = false; 

II update count of total characters printed 
count += pRBPrn->countPrinted; 

II continue until an error or the entire buffer is printed 
while (pRBPrn->countPrinted == pRBPrn->bufferSize && 

count < pStream->nurnBytes); 

II indicate number of characters printed 
pStream->count = count; 

hfdef DEBUG 
II if an error occurred display buffer being printed 
if (pRBPrn->status != stsOK) 
{ 

Debugf("count printed is %d -- count requested %d", 
pRBPrn->countPrinted, 
pRBPrn->bufferSize); 

Dbg(DisplayBuffer(pInst->printBuffer, pRBPrn->bufferSize);) 

Debugf("pStream->count is %d -- pStream->numBytes is %d", 
pStream->count, 

MILSVC 
UI 
o 
UI 



pStream->numBytes); 

tendif 

return pRBPrn->status; 

1* TestMILSvcPrint *1 

1**************************************************************************** 
STATUS EXPORTEDO TestMILSvcCanceIPrint(P_INSTANCE_DATA pInst) 

Cancel print request. 
****************************************************************************1 

STATUS EXPORTEDO TestMILSvcCanceIPrint(P_INSTANCE_DATA pInst) 
{ 

STATUS s; 

II If print mil reques in progress, cancel request 
if (pInst->printInProgress != false) 
{ 

II call mil with request block to be cancelled 
StsRet(DrvMILCanceIRequest(pInst->pRBPrint), s); 

II indicate request has been cancelled 
pInst->printInProgress = false; 

return stsOK; 

1* TestMILSvcCancelPrint *1 

UI 
o 
o 



16-bit character 
string functions, 111-114 

composition, 114 
support, 110-114 

features, 110 
types, 111 

8259 programmable interrupt controller 
(PIC),275 

80386 
protected mode, 102 
ring structure, 103 

AB_MGR_ID structure, 329 

AB_MGR_NOTIFY structure, 330 

Access 
intentions, 62 
protocols, 257 

Accessing services, 258-259 
binding to a service, 259 
opening service, 259 
service managers, 261 

predefined, 258-259 
see also Services 

Accessories, 393 
documents, 377 

ACCESSRY directory, 393 

Active In box service, 312 

Adding 
address book entry, 328 
document to stationary menu, 426 
items to transaction, 203 
list items, 129 
network protocols, 251 
rows to tables, 222-223 
transfer types, 173 
see also Installing 

ADDR_BOOK_ATTR structure, 320-321 

ADDR_BOOK_ENTRY structure, 322, 327 
allocation of, 328 

ADDR_BOOK_QUERY_ATTR 

structure, 326-327 

AddrBookStreetld, address book 
identifier, 321 

Address book, 241, 317-330 
changing information in, 328 
closing,326 
concepts, 317 
defined,317-318 
entry 

adding,328 
attribute identifiers, 321 
attributes, 320-322 
deleting,328 
groups, 322 
organization, 320 
service addresses, 322 

GO, application, 323-324 
messages, 324-325 
msgSendServGetAddrDesc and, 332 
opening, 326 
operation participants, 318 
organization, 320-322 
protocols, 318-320 
registering, 329 
searching, 326-328 
sendable services protocol uses, 331 
system, 329-330 

deactivating,330 
defined,318 

theAddressBookMgr and, 318 
unregistering,329 
using, 325-328 
writing, 328-330 

Address book manager protocol, 320 
function, 318-319 

Address book protocol, 319 
function, 318 

Address descriptors, 331-332 
getting, 333 

Address window, 332 
creating,333 
filling, 333-334 

Agents, resource, 345 

Alarm services, 103 

ANM_CREATE_DOC structure, 425 

ANM_CREATE_SECT structure, 424 

ANM_DELETE_ALL structure, 426 

ANM_DELETE structure, 426 

ANM_GET_NOTEBOOK 

structure, 423-424 

ANM_MOVE_COPY_DOC 

structure, 425-426 

appAttrClass, 148 

APP directory, 384, 386 
contents, 386 
directory contents, 386-387 

APP.INI file, 387 
service directory and, 444 

AppleTalk 
protocol, 301-302 

changing size of ATP packets 
and,302 

name, 302-304 
options, 301-302 
zone, 304 

services, 250 

Apple Talk transport protocol 
(ATP), 253, 297 

changing packet size, 302 

Application directories, 391-395 
accessories, 393 

creating, 391 
files in, 391-392 
global data, 394-395 
help, 393-394 
stationary, 392-393 
see also Applications 

ABplication distribution cassette, 375 

Application global data, 394-395 

Application installation 
manager, 415-416 

Application monitor, 378, 380 
checking dll-ids, 401-402 
D LL files and, 400 
multiple volumes and, 398 

Applications, 438 
drivers/ devices and, 246 
installable, 386-387 
installing, 377-378,415 
multiple volumes and, 398 
ports and, 245 
upgrading, 398 

AppMonitorMainO,377-378 

ASCII 
metries transfer, 175 
text file creation, 180 

AT command, modem, 286-287 
set, 290-293 

At-Ieast-once-delivery, datagram, 296 

Atom identifier, 15 

Atoms, 37-38 
defined,37 
for nil string, 37 
predefined,38 

ATP_OPTIONS structure, 301-302 

Attributes, 7-9 
address book entry, 320-322 

identifiers, 321 
arguments, 16-18 
changing, 8, 19-20 
character, 8-9, 16-17 
clearing, 20 
default,7 
file system, 55, 77 

client defined, 77-78 
getting and setting, 76-80 
getting values, 78 
length of values, 79 
lists of, 76-77 
setting values, 79 
zero value, 77 

getting and setting, 16-20 
initializing, 19 
installable item, 412 
label macros, 77-78 

------- ----------



508 INDEX 

local, 7 
modifying, 19-20 
node, 54-55 

client-defined, 54 
file-system, 55 
flags, 79-80 

paragraph, 9, 17-18 
value types, 76 

Auto-answer mode, modem, 284 

Auto shutdown preference, 365 

Auto suspend preference, 364 

Auxiliary notebook manager, 421-427 
messages, 423 

generalized, 423-424 
specialized, 424-426 

Auxiliary notebooks, 380, 421-422 
back up considerations, 422 
concepts, 421-422 
creating, documents, 425 
creating, sections, 424 
deleting section/document, 426 
file system and, 422 
getting paths to, 423-424 
list of, 422 
moving/ copying documents 

to, 425-426 
opening, 423 
tags, 421-422 
see also Notebook 

Backslashes, in path names, 66 

BASICSVC service, 485-487 
BASICSVC.H,485-487 
defined,475 
METHOD.TBL, 485 

Baud rate, setting, 269 

Bell preference, 365 

Binding, 247 
to local transport address, 301 
to service, 259 

Block,7 

Blocking protocol, 168-169 
deadlocks, 169 
defined, 168 

Boolean operators, table, 225 

Boot 
disks, services on, 444 
progress messages, 431-432 
sequence, 429 

symbols, 429 
volume, 43 

BOOT directory, 384 
structure, 385 

BREAK signal, 272 

Browser, 124 
changing, client, 144 
class, 137-145 

concepts, 137-138 
creating, 138 

object, 140 
defined, 137 
examples, 137 
expanding and collapsing sections 

with,143 
file export mechanism, 147 
file import mechanism, 147 
getting and setting, metrics, 143-144 
integrating, into application, 138 
menu bar, 138 
menu messages, 145 
navigating with, 144 
notification messages, 145 
reading and writing, state, 143 
refreshing, data, 142 
selection, 140-141 
table of contents and, 137-138 
TOC, 148 
user columns, 145-146 

BROWSER_CREATE_DOC 
structure, 141-142 

BROWSE~METRICS structure, 144 

BROWSEICNEW structure, 140 

Buffered data, 265 

Buffers 
fl ushing, 85 

input and output, 271 
input, 265 

status, 271 
output, 265 

status, 271 

Busy clock, 193 
delay and reference count, 194 

Busy manager, 193-194 
function, 124 

BYfEBUF _DATA structure, 208 

Byte buffer 
data, 207, 208 
objects, 207-209 

concepts, 207 
creating, 208 
notification of observers, 209 
resetting,208-209 

BYfEBUF_NEW_ONLY structure, 208 

Byte position 
file handle, 61 
setting current, 135-136 

Carrier state, modem, 284 

CHAR8,111 

CHARI6,111 

CHAR,111 

Character box height preference, 366 

Character box width preference, 366 

Characters 
16-bit, 11 0-114 
attributes of, 8-9, 16-17 
deleting, 11 
font masks, 17 
getting range of, 14 
getting single, 14 
inserting, 12 
reading, in text data objects, 14 
scanning ranges of, 15-16 
types of, 111 

C language, for defining resources, 
355-357 

Classes 
file system, 62 

sub classing, 67 
installation, 379-380 
mask,415-416 
open service object, 441 
service, 255-264, 439-441 

installation, 441 
service manager, 440 
Text subsystem, 7 
that respond to search messages, 198 
writing, that can be searched, 196 
see also specific classes 

Clien t -defined 
attributes, 54, 77-78 
transfer protocols, 170 

Closing 
address book, 326 
files, 46, 74-75 

sample code, 46 
parallel port, 277 
serial port, 268 
service, 262-263 
socket handle, 299 
see also Opening 

clsABMgr, messages, 325 

clsAddrBookApplication, 320 

clsAddressBook, 319 

clsAddressBookApplication, 317 
messages, 324-325 

clsApp, 148,438 
search and replace and, 195, 196 

clsAppDir, 67 

clsAppInstallMgr, 405, 415 
instance of, 406 
messages, 415 

clsAppMask, 416 

clsAppMonitor, 379 

clsAuxNotebookMgr, 379, 380 
messages, 423 

stationary menu, 426-427 

clsBrowser, 137 
creating instance of, 137 
function, 137 
messages, 138-140 



for changing displayed 
information, 142 

for changing sort order, 142 
class, 138 
instance, 138-140 
menu, 145 
notification, 145 

user columns and, 145-146 
using, 138-144 

cls Byte Buf, 124, 207 
messages, 208 
notification of observers and, 209 
resetting byte buffer object and, 209 

clsCodelnstallMgr, 379,414 
in installing applications or 

services, 415 
messages, 415 

clsCommandBar, 138 

clsDirHandle, 58 
messages, 64 

clsEmbeddedWin, 157 
handles selection messages, 161 

clsExport, 150 
messages, 152 

clsFileHandle, 58 
clsStream and, 134 
in creating resource file handle, 348 
messages, 64 

clsFileSystem, 58, 124 
messages, 62-63 

clsFontInstallMgr, 378, 380, 405 
functions, 417 
instance of, 406 
messages, 417 

clsGWin 
Quick Help, 181-182 

messages and, 187 

clsHWXInstallMgr, 378 

clsImport, 150 
messages, 150 

clsINBXService, 305 
default behaviors, 312 
110 protocol, 313 
messages, 315 

clsIniF ileHandler, 379 

clsInstallMgr, 258, 375, 379 
advanced topics, 414 
controlling items and, 406-407 
installed item database and, 406 
instance of, 376, 406 
messages, 405 

class, 409 
instance, 409-410 
notification, 408 
subclass, 410 
using, 409-413 

observing installation mangers 
and,407 

semaphore use, 414 
subclasses of, 405 

clsIOBXService, 305 
handling input/output and, 312 
messages, 316 

clsList, 127 
function, 124 
messages, 128 

functions, 127 

clsMark, 196 

clsMILAsyncSIODevice, 265 
concurrency and, 266 
messages, 267 
structures, 265 

clsMilSvc, 449 

clsModem, 279 
API,281 
bypassing,290 
commands for establishing 

connection, 287 
creating, object, 282-283 
messages, 281-282 
waiting for connection and, 289 

clsNotePaper, 124,229 
coordinate system, 229 
messages, 231 
metrics, 230 
view, 229 

clsNPData, 124, 229 
messages, 233-234 
note paper data and, 232 

clsNPltem, 124, 229 
instances, 234 
messages, 234-235 
note paper data and, 232 

clsNPScribbleltem, 234 

clsNPT extItem, 234 

clsOBXService, 305 
default behaviors, 310 
existing Out box services and, 311 
messages, 310, 314 . 

Out box document response 
to, 310 

writing own Out box service and, 310 

clsOpenServiceObject, 441, 450, 452 
clsService and, 471 
function, 471 
subclassing,471-472 

clsParallelPort, 275 
messages, 276 
structures, 275 

clsPreferences, 361 

clsQuickHelp, 182 
messages, 187 

using, 187-188 

clsResFile, 67 
messages, 347-348 
using,347-354 

INDEX 509 

clsResList, 345 
in creating resource list, 346 

clsSelection, 155 
instance, 155 
message categories, 156 
messages, 157-158 

from clients to theSelectionManager, 
158-159 

clsSendableService, 319, 331 

clsService, 255 
handling msgNewDefaults, 457 
handling of msgN ew, 457 
messages 

change ownership protocol, 
467-469 

information, 459 
notification, 461-462 
responsibility,469-470 

msgSvcClassLoadInstance and, 459 
msgSvcOpenRequested and, 463 
object-oriented architecture and, 449 
service instances and, 439-440 
service manager messages and, 459 

clsServicelnstallMgr, 405, 416, 441 
instance of, 406 
messages, 416 

clsServiceMgr, 258, 260 
concepts, 440 
messages, 260 
opening and closing service and, 262 

clsSio, 124, 280 

clsStream, 133 

function, 124 ~ 
messages, 133 

services and, 470 ~ 
writing agents and, 354 ! 

stream transfers and, 168 
subclassing, 133 

clsString, 124,211 
messages, 212 
object, 211 

clsSvcManager, 459 

clsSystem, 429 
messages, 431 
paths for file system constants, 430 

clsTable, 213 
creating table object and, 216 
data files and, 214 
function, 124 
library support routines, 213 
messages, 217-218 

information, 226 
requesting new position from, 215 
semaphore and, 217 

clsTestOpenObject, 450 

ClsTestOpenObjectInit routine, 451, 452 

CIs T estServicelnit routine, 451 

clsTestService method table, 457 



510 INDEX 

dsTestSvc, 449 

dsText, 198 
embedded objects and, 20 
Il1:essages, 12-13 

for changing attributes, 7 
observer, 21 

Text subsystem and, 3 

dsTexteditApp, 180 

dsTextIP,33 
messages, 33 

dsTextView,3 
creating object of, 35 
defined,9 
in insertion pad creation, 26 
messages, 23-24 
msgNewDefaults for, 24-25 

clsTimer, 104 

dsTransport, 295 
messages, 297 

NBP and ZIP, 301 
transport protocols and, 297 
using,297-301 

for AppleTalk, 301-305 

ds Undo messages, 202 
using, 202-206 

dsXfer, 165, 166 
in establishing transfer type, 171 
functions, 170 
stream transfer protocols 

and, 168-169 
transfer types, 166 

clsXferList, 171 

clsXferStream, 168-169 
messages, 171 

CMPSTEXT.H, 114 
Code, installation manger, 414-416 

Columns, table, 213 
data types, 219 
descriptors, 213 

contents, 214 
finding number, 226 
getting description of, 227 
getting number of, 227 
see also Tables 

Command mode, modem, 285 

Communication 
asynchronous, 297 
connectionless, 296 
connection-oriented, 296 
conventions, 297 
targeting, devices, 307 

Compiling, resources, 359-360 

Components, 438 

ComposeText functions, 114 

Concurrency considerations, 66-67 
file location, 67 
protecting file data, 66-67 

serial 110, 266 
volume protection, 67 

Configuration 
data modem, 283-287 
parallel port, 277 
serial port, 268-271 

data modem, 280 

Connecting, volumes, 50 

Connection 
service, 258, 446-447 
socket, 296 

Connectionless communication, 296 
see also Datagram, delivery 

Connection-oriented communication, 
296 

Connections notebook, 250 
installing services through, 256 
quick installation and, 397 
socket instance and, 298 
see also Auxiliary notebooks 

Connectivity, 245-250 
adding network protocols and, 251 
additional information on, 242 
computer, 244-245 
facilities, 250 
introduction to, 241 
MIL services, 245-246 

other services and, 246-249 
principles of, 243 
remote interfaces and, 251-253 
service manager and, 250 
services and interfaces, 249-250 
strategies, 244 

Copy gesture, 165-166 

Copying 
beginning, operation, 160-161 
documents to Auxiliary notebook, 

425-426 
nodes, 80-81 
see also Moving 

Counting 
changes, 37 
list items, 130 

createlnitial style bit, 406 

Creating 
address descriptors, 331-332 
address windows, 333-334 
application distribution volume, 391 
Auxiliary notebook 

documents, 425 
sections, 424 

browser, 138 
object, 140 

byte buffer object, 208 
dsModem object, 282-283 
directories, 69-74 

browser and, 141 
indexes, 80 

directory handles, 58, 60, 71 
DLLMain, 450 
document with browser, 141 
file handles, 71-73 
files, 69-74 
handles, 69-70 
help text, 180 
installable-item managers, 410 
lists, 129 
mark,196 
nodes, 43 
Quick Install disk, 397 
receiver's stream, 176-177 
resource file handle, 348-349 
resource lists, 346 
sender's stream, 177 
service instances, 442, 454-455 
stream objects, 134 
string object, 212 
table object, 220 
tables, 221 
temporary files and, 65 
text data object, 7, 13 
text insertion pads, 33 
text views, 9, 24-26 
see also Deleting; Removing 

C run-time library, 109-114 
16-bit character support, 110-114 
ANSI standard C routines, 109 
files, 109 
time and date preferences, 110 

CTYPE.H, 112 

Current selection, 155 
getting, text view, 30-31 

Writing Paper application, 31 

Data 
application global, 394-395 
buffered,265 
reading,45 
resource, 337, 342, 353 

C language definition, 355 
reading, 349 
writing and updating, 349-350 

sending and receiving via modem, 289 
service, storage, 455 
table 

files, 214 
getting, 223-224 
setting, 223 

transaction, 201 
transfer type, 166 

tags, 166-167 
writing,44-45 
see also Data modem, interface; Text 

data object 

Database 
installed item, 406 
using tables in, 217 



Datagram 
delivery, 296 

transaction services, 296 
types of, 296 

receiving, 300 
sending, 299 

Data modem 
AT command set, 290-293 
characteristics, 284 
configuring,283-287 

auto-answer mode, 284 
carrier state, 284 
command and data modes, 285 
dial type, 284 
duplex mode, 286 
MNP mode, 286 
sending own AT commands, 

286-287 
speaker, 284-285 

connection types, 285 
direct communication with, 290-293 
establishing connection with, 287 
interface, 279-293 

clsModemAPI, 281 
clsModem messages, 281-290 
concepts, 279-280 
configuration, 280 
direct communication 

with, 290-293 
MNP data communication 

and,289-290 
reset settings, 283 
sending and receiving data with, 289 
waiting for connection with, 289 

Data mode, modem, 285 

Datasheets,95 

Date format preference, 367 

Date/time services 
alarm services, 103 
current time, 104 
object-oriented timer interface, 

104-105 
timer routines, 103 
see also Time 

Default attributes 
changing,8 
text data objects, 7 

Deinstalling, services, 256,456 

Deleting 
address book entry, 328 
Auxiliary notebook section/ 

document, 426 
directories, 75 

with browser, 141 
forcing,75-76 

files, 75 
with browser, 141 
forcing,75-76 

many characters, 11 
resources, 352-353 

table rows, 224 
see also Removing 

Destroying 
lists, 131 
text insertion pads, 33 

Device 
applications, drivers and, 246 
connectivity strategy, 244 
drivers. see MIL services 
interface and, 249 
object UID, 261 
option sheet, 247 
SCSI,247 
services and, 306-307 

installing, 307 
targeting communications, 307 

Dial string modifiers, 287-288 
defined, 287 
function, 287-288 

Dial type, modem, 284 

Directories, 43 
application, 391-395 
concepts, 382 
creating, 69-74 

browser and, 141 
defined, 52, 54 
deleting, 75 

with browser, 141 
directory entries and, 54 
forcing deletion of, 75-76 
Help NoteBook, 179-180 
item, 376 
locating, 56 
mode flags, 71 
names of, 70-71 
renaming, 141 
root, 52 

handle, 60-61 
service, 395-396 
target, 59 

changing,86 
see also PenPoint directory; specific 

directories 

Directory entries, 54 
reading,87-89 

all,88 
sorting,88-89 

Directory handles, 43, 59-61 
creating, 58, 60, 71 
directory nodes and, 59 
instance messages, 64 
locators and, 59 
observing, 60 
RAM,61 
target directory and, 59 
using,60 
volume root, 60-61 
well-known, 60 
working,61 
see also Directories 

INDEX 511 

Directory index, 56, 67 
creating and using, 80-81 

DIRENT.H, 114 

Disconnecting, volumes, 50 

Disk formats, 51 

Display seconds preference, 367 

Distributing, service, 473-474 

Distribution disks, services on, 444 

Distribution volumes, organization, 
390-398 

application directories, 391-395 
multiple applications and 

volumes, 398 
PENPOINT.DIR files, 390 
quick installation, 397 
service directories, 396-396 
STAMP utility, 390-391 
upgrading, 398 
see also Volumes 

D LC files, 401 
services and, 444 
see also D LL files 

DLL directory, 385 

DLL files, 399 
creation options, 402-403 
D LC files and, 401 
DLLMainO routine and, 402-403 
issues, 400 
MAKE files and, 403-404 
operating system, 403 
references to, 399 
service, 444 
sharing, 401-402 
unloading, 400 
versions and, 402· 
see also D LC files 

dll-id name, 400 
application monitor and, 401-402 
operating system DLL files, 403 
sharing DLL files and, 401-402 

DLLMainO, 379 
creating,450 
DLL processes and, 402-403 
owning task and, 455 
service instance creation and, 442 

DLLs, 399-404 
identifying, 400-401 
processes, 402-403 
table class component, 213 
see also D LL files 

DLL_ TYPE_DISTRIBUTED, 403 

DOC directory, 388 
contents, 388 

Document 
accessory, 377 
creating with browser, 141 
In box, 313 
Out box, 309-310 



512 INDEX 

stationary, 377 
wrapper, 310 

Document menu (standard 
application), 331 

DOS file system, 439 

DotMatrix service, 439 

DTR (data-terminal-ready) lines, 270 

Duplex mode, modem, 286 

DVHSPKT,274 

Dynamic Link Libraries. see DLLs 

Dynamic ports, 296 

Dynamic resource IDs, 343...:....344 
defined, 343 

DynResIdO macro, 345 

Embedded objects 
in views, 26-27 
window, 161 

Embedding objects, 20 

Enumerating 
list items, 130-131 
resources, 351-352 

Events 
serial,266 

break status, 273 
detecting,272-273 
mask indicators, 272 
polling for, 273 

Exactly-once, datagram delivery, 296 

Exclusive access services, 445-446 
defined,445 

Explicit locators, 56 

EXPORT_DOC structure, 154 

EXPORT_FORMAT structure, 153, 154 

Exporting files, 147 
application responsibilities, 150 
clsExport messages, 152-154 

msgExport, 154 
msgExportGetFormats, 152-153 
msgExportName, 153 

export dialog, 149 
export overview, 148-149 
file export mechanism, 147 
how export happens, 152 
see also Importing files 

EXPORT_LIST structure, 153 

Facilities, for networking and 
connectivity, 250 

FCNTL.H, 114 

File attribute arguments, 76 

File handles, 43, 61-62 
access intentions, 62 
byte position and, 61 

creating,71-73 
file access control and, 62 
instance messages, 64 
locators and, 59 
translating file pointer into, 66 

File import and export, 147-154 
clsExport messages and, 152-154 
clsImport messages and, 150-152 
concepts, 147-150 
functions, 124 
interface, 252-253 
mechanisms, 147 
see also File System 

File pointer, 66 

Files, 43 
access control, 62 
closing, 46, 74-75 

with stdio, 66 
creating,69-74 
defined, 55 
deleting, 75 

with browser, 141 
DLC, 401 
DLL,399 

creation options, 402-403 
D LC files and, 401 
DLLMainO routine and, 402-403 
issues, 400 
MAKE files and, 403-404 
operating system, 403 
references to, 403 
sharing, 401-402 
unloading, 400 
versions and, 402 

forcing deletion of, 75-76 
locations of, 67 
MAKE, 403-404 
memory-mapped, 55 
mode flags, 72 
names, checking, 70-71 
opening,46 

with stdio, 66 
organization of, 381-398 
position and size of, 84-85 
protecting data, 66-67 
reading,83 
registering types of, 151 
renaming, 141 
resource, 337, 342 

compacting and flushing, 353 
definition, 355 
organization, 355-356 
viewing contents of, 359, 360 

table data, 214 
temporary, using handles with, 65 
writing,83 
see also File Handles 

File system 
accessing, 57-68 

with stdio, 65-66 
attributes, 54-55, 77 

auxiliary notebooks and, 422 
browser, 124 
classes, 58 

subclassing,67 
common, operations, 47 
concurrency considerations and, 

66-67 
connectivity and, 244 
developer's quick start, 44-46 
directories, 54 
files, 55 
functions, 43-44 
handles, 43, 57-62 

directory, 59-61 
file, 61-62 
functions, 57 
locators and, 58-59 
using with temporary files, 65 

interface, 252 
locators, 55-56 
making, changes, 141-142 
messages, 62-64 
nodes, 52-54 

accessing, 57 
names, 53-54 
service instance, 443 

Notebook use of, 68 
overview, 43-44 
paths, 430-431 

constants, 430 
Penpoint comparison with other 

systems, 46-47 
PENPOINT.DIR file and, 68 
performing, operations, 43 
principles and organization, 49-56 
programmic interface provisions, 57 
services and, 443-445 
structure, 43 
using,69-91 

changing target directory, 86 
closing files, 74-75 
comparing handles, 86-87 
copying and moving nodes, 80-81 
creating directories and files, 69-74 
deleting files and directories, 75 
ejecting floppies, 91 
file position and size, 84-85 
flushing buffers, 85 
forcing deletion of files/directories, 

75-76 
getting and setting attributes, 

76-80 
getting path handle, 85-86 
getting volume information, 90-91 
handle mode flags, 87 
making native node, 89-90 
node existence determination, 83 
observing changes, 89 
reading and writing files, 83 
reading directory entries, 87-89 
renaming nodes, 83 
setting/ changing volume name, 91 



traversing nodes, 81-82 
volume specific messages, 91 

volumes, 49-52 
see also File import and export 

FIM_ GET _INSTALLED _10 _LIST 
structure, 418-419 

FIM_GET_NAME_FROM_ID structure, 418 

FIM_GET_SET_ID structure, 418 

FIXED numbers, 115 

Fixed-point 
calculations, 115 
functions, 116-117 
numbers, 115 

Flags 
directory mode, 71 
existence, 70 
file mode, 72 
FS_SEEK,84 
handle mode, 87 
node attributes, 79-80 
transaction item, 203-204 
TV_STYLE, 25-26 

Floating allowed preference, 365 

Floppies, ejecting, 91 

Flow control, 265-266 
characters, 270 
protocols, 265 
specifying, 269 
using,272 

Flushing 
buffered output, 353 
buffers, 85 

input and output, 271 
resource files, 353 
streams, 136 

FONT directory, 384, 386 

Font installation manager, 416-419 

Fonts 
Gesture, 188-190 
handle, 416 

finding, 418 
identification, 416-417 
IDs, getting and setting, 418 
installing, 378 
list of installed, 418-419 
name, 418 
system, 363 
user, 363 

FS_CHANGE_INFO structure, 89 

fsDirNewDefaultMode, 71 

FS_DIR_NEW_MODE,71 

FS_EXIST constants, 70 

fsExistGenUnique flag, 70 

fsFileNewDefaultMode,73 

FS_FILE_NEW _MODE constants, 72 

FS_FLAT_LOCATOR structure, 140, 141 

FS_FORCE_DELETE structure, 75 

FS_GET_PATH structure, 85-86 

FS_GET_SET_ATTR structure, 76-77 
getting values and, 78 
setting values and, 79 

FS_GET_VOL_METRICS structure, 90 

FS.H,69 
attribute label macros, 77-78 

FS_LOCATOR structure, 86 

FS_MAKE_NATIVE structure, 90 

FS_MOVE_COPY structure, 80 

FSNameValidO function, 53, 70 

FS_NEW structure, 69-70, 71 

FS_NODE_EXISTS structure, 83 

FS_NODE_FLAGS structure, 79 

fsNoExistCreateUnique flag~ 70 

FS_READ_DIR structure, 88 

FS_SEEK structure, 84 
flags, 84 

FS_SET _HANDLE_MODE structure, 87 

fsSharedMemoryMap, 73 

fsTempFile,65 

FS_ TRAVERSE structure, 81 

FS_ VOL_METRICS structure, 61 

FxMakeFixedO routine, 115 

GDIR command, 390 

Gesture, font, 188-190 

Gestures 
adding, to help text, 190 
adding, to Quick Help strings, 191 
GO Address book, 323 

Gesture timeout preference, 364 

GO Address book, 323-324 
gestures, 323 
illustrated, 324 
loading,323 
using,323 
see also Address book 

Graphics subsystem, 5 

Handle mode flags, 87 

Handles 
comparing,86-87 
creating, 69-70 
file system, 57-62 

directory handles, 69-61 
file handles, 61-62 
locators and, 58-59 
using with temporary files, 65 

finding,263-264 
freeing, 74-75 
getting path of, 85 
objects, 57 

creating,58 

INDEX 513 

on parallel port, 251 
on serial port, 251 
parallel port, 276-277 
serial, 268 

data modem, 279-280 

Hand preference, 363 

Handwriting timeout preference, 364 

Hardware RTS/CTS flow control, 
265,266 

see also Flow control 

Header files, 95 

Heaps, 101-102 
defined, 101 
management, 101 
size and characteristics of, 102 

Help,179-191 
advanced topics, 187-191 
concepts, 179-182 
directory, 393-394 
Gesture font and, 188-190 
Help Notebook, 179-180 
icon, 179 
Quick Help, 181-182 

resources, 183-187 
templates, 387 
text, 180 

adding gestures to, 190 
creating, 180 

HELP directory, 387, 393-394 

Help Notebook, 179-180, 393 
contents, 394 
creating help text and, 180 
defined,179 
directories, 179-180 
see also Auxiliary notebooks 

High-speed packet I/O 
interface, 252, 273-274 

notes, 274 
on serial lines, 273 
parallel cable connection 

detection, 274 
protocol variations, 274 

HWXPROT directory, 384, 386 

Identifying, DLLs, 400-401 

IM_CURRENT_NOTIFY structure, 408 

IM_DEINSTALL structure, 412 

IM_DUP structure, 412 

1M_GET _STATE structure, 413 

1M_INSTALL structure, 411 

IM_INUSE_NOTIFY structure, 408 

1M_MODIFIED_NOTIFY structure, 408 

1M_NEW structure, 410 

1M_NOTIFY structure, 408 

Implicit locators, 56 

IMPORT_DOC structure, 151-152 



514 INDEX 

Importing files, 147 
application responsibilities, 150 
clsImport messages, 150-152 

msgImport,151-152 
msgImportQuery,150-151 

file import mechanism, 147 
overview, 148 
TOC browser and, 148 
see also Exporting files 

IMPORT_QUERY structure, 150-151 

1M_SET _NAME structure, 412 

In box, 305 
concepts, 312-313 
connectivity and, 244 
documents, 313 
general device concepts, 306-308 
introduction, 305-306 
service, 312 

active, 312-313 
communication target, 307 
enabling and disabling, 307-308 
installing, 307 
messages, 313-316 
passive, 312-313 
sections, 306-307 

see also Out box 

Inbox Notebook. see Auxiliary notebooks 

Index 
directory, 56, 67 

creating and using, 80 
list object, 127 
resource ID, 344 
text, 27-29 

Initialization routines, 451 
class, 452 
service, 451-452 

InitService, 379, 452-453 
call for template service, 453 

INIT subdirectory, 387 

Input buffer, 265 
flushing, 271 
status, 271 
see also Buffers 

Input line status, 270 

Input pad style preference, 366 

Input subsystem, 27-29 

Inserting 
character, 12 
text view in scroll window, 30 

Insertion pads 
text, 9 

creating, 33 
destroying, 33 
embedding objects and, 26 
messages, 33 
using, 33 

Inside Apple Talk, 301 

Installable applications, 386-387 

Installable entities, 386 

Installable items, 411-412 
altering, attributes, 412 
changing, name, 412 
deleting, 412 
duplicating, 412 
finding, 413 
getting and setting current, 412 
getting attributes of, 413 
getting information about, 413 
getting list of, 413 
installing, 411 
manager, 410-411 
size of, 413 

Installable services, 387 

Installation 
classes, 379-380 
initiation, 376 
process, 376-377 
service, 378-379, 450-456 

Installation API's 
concepts, 375-380 
overview, 373 

Installation managers, 375-376, 
379-380,405-419 

advanced clsInstallMgr topics and, 414 
application, 415-416 
code, 414-416 
font, 416-419 
installer concepts and, 405-407 
observing, 407-409 
service, 416 
using clsInstallMgr messages 

and, 409-413 

Installers, 405 
concepts, 405-407 
defined, 406 

Installing 
applications, 377-378, 415 
devices, 307 
fonts and handwriting prototypes, 378 
service class, 441-442 
s<:;rvices, 307, 415 
see also Adding 

INST directory, 396 
service directory and, 444, 445 

Interfaces 
connectivity and, 244 
data modem, 279-293 
devices and, 249 
file import/export, 252-253 
file system, 252 
high-speed packet I/O, 252 
modem, 253 
networking, 253 
parallel I/O, 251-252, 275-278 
serial I/O, 251, 265-274 

services and, 249-250 
SoftTalk,250 
stream, 246 

Intertask communication, 100-101 
messages, 100-101 
semaphores, 101 

Intertask messages, 100-101 
Class Manager messages and, 100 
modes, 100 
processing order, 100 

INTL.H file, 111 

Item directory, 376 

Items 
controlling, 406-407 
installable, 411-412 

altering, attributes, 412 
changing, name, 412 
deleting, 412 
duplicating, 412 
finding, 413 
getting and setting current, 412 
getting attributes of, 413 
getting information about, 413 
getting list of, 413 
installing, 411 
managers, 410-411 
size of, 413 

installed, database, 406 
installing, 376-377 
list 

adding, 129 
counting, 130 
enumerating, 130-131 
getting, 129 
removing, 130 
removing all, 130 
replacing, 130 

NotePaper data, 234-235 
transaction data, 201 

contents, 201 
flags, 203-204 

Kernel, 97 
functions, 105-107 

date and timer routines, 106 
debugger entry routines, 106 
display/screen device routines, 107 
heap routines, 107 
intertask communications 

routines, 106 
keyboard routines, 107 
memory information routines, 106 
miscellaneous routines, 107 
task manager routines, 105-106 
tone routines, 107 

layer, 98 
overview, 97-107 
semaphores and, 101 



services of, 97 
summary,105-107 
task scheduler and, 99 

Laser Jet, 247 

Line control, 269 

Line height preference, 366 

Link protocols, 253 

List 
accessing end of, 130 
class, 127-131 
concepts, 127 
creating, 129 
defined, 127 
destroying, 131 
items 

adding, 129-130 
counting, 130 
enumerating, 130-131 
getting, 129-130 
removing, 129-130 
removing all, 130 
replacing, 129-130 

object index, 127 
positioning within, 129 
resource, 337, 345-346 
using, messages, 128 

LIST_ENTRY structure, 129 

LIST _ENUM structure, 130 

LIST_FREE structure, 131 

LIST_NEW structure, 129 

Loading, GO Address book, 323 

Local area network (LAN), 295 

Local attributes 
changing,8 
text data objects, 7 

Local disk volumes, 51 

LocalTalk,253 

Locators, 55-56 
explicit, 56 
handles and, 58-59 
implicit, 56 

Machine Interface Layer (MIL), 98 
see also MIL services 

Macintosh file system, 439 

MakeDynUUID,80 

MAKE files, -403-404 

MakeTagO macro, 167 

Make WknResIdO macro, 343 

Mapping, file to memory, 73-74 

Mark, creating, 196 

MarkHandlerForClassO function, 197 

Mask 
class, 415-416. 
in node attribute flags, 79 
text attribute messages, 16 

Math run-time library, 115-117 
programmatic interface, 115-117 

Measurement, units of, 10 

Memory 
freeing, 88, 95 
management, 101-103 

80386 protected mode, 102 
heaps, 101-102 
privilege levels, 103 
rings, 103 

map size, 73 
RAM,52 

Memory-mapped files, 55 
function, 73 
life cycle, 73-74 
sharing,73 

Memory-resident volumes, 52 

Menu bar, browser, 138 

Messages 
auxiliary notebook manager, 423 

generalized, 423-424 
specialized, 424-426 

boot progress, 431-432 
clsABMgr, 325 
clsAddressBookApplication, 324-325 
clsAppInstallMgr, 415 
clsBrowser, 138-140 

for displayed information, 142 
menu, 145 
notification, 145 
for sort order, 142 

clsByteBuf, 208 
clsCodeinstallMgr, 415 
clsDirHandle, 64 
clsExport, 152 
clsFileHandle,64 
clsFileSystem, 62-63 
clsFontlnstallMgr, 417 
clsImport, 150 
clsINBXService, 315 
clsInstallMgr, 405 

class, 409 
instance, 409-410 
notification, 408 
subclass, 410 
using, 409-413 

clsI 0 BXService, 316 
clsList, 128 

functions, 127 
clsMILAsyncSIODevice, 267 
clsModem, 281-282 
clsNotePaper, 231 
clsNPData, 233-234 
clsNPltem, 234-235 

INDEX 515 

clsOBXService, 310, 314 
clsParallelPort, 276 
clsQuickHelp, 187 

using, 187-188 
clsResFile, 347-348 
clsSelection, 157-158 
clsService 

change ownership protocol, 
467-469 

information messages, 459 
notification messages, 461-462 
responsibility, 469-470 

clsServiceinstallMgr, 416 
clsServiceMgr, 260 
clsStream, 133 
clsS tring, 212 
clsSystem, 431 
clsTable, 217-218 

information, 226 
clsTextlP,33 
clsTransport, 297 

NBP and ZIP, 301 
clsUndo, 202 
clsXferStream, 171 
connection status, 247 
file system, 62-64 
in tertask, 100-101 
Out box 

protocol, 308-309 
response to, 310 

search and replace, 198 
classes that respond to, 198 

to selection owners, 159-161 
sendable services, 333-334 
sent by service managers, 459-470 
sent to open services, 470 
sent to service class, 456-459 
system directory, 432 
text data, 12-13 

observer, 21 
text insertion pad, 33 
text view, 23-24 
theBusyManager, 193 
to theSelectionManager, 161-162 
theTimer, 104 
volume specific, 91 
see also specific messages 

Methods, handling search and replace 
functions, 197 

Metrics 
ASCII, transfer, 175 
browser, 143-144 
embedded window object, 161 
NotePaper, 230 
serial port settings and, 270-271 
text, 14 
transaction, 205 
volume, 49-50 

Microcom Network Protocol 
(MNP),286 

-------------_._-------



516 INDEX 

MIL services, 98, 439 
binding, 247 
connection management, 247-248 
connection status messages, 247 
connectivity, 245-246 

other services and, 246-249 
functions, 245 
ports and, 246 
programmatic interface, 246 
stream interface and, 246 
see also Parallel port; Serial port 

MILSVC service, 487-506 
defined,475 
METHOD.TBL,487-489 
MILSVC.C, 489-499 
MILSVCO.C, 500-506 
MILSVCO.H, 499-500 

MiniText, 394 
file import/export, 253 

MISC directory, 387, 394-395 
data examples, 395 
service directory and, 387, 444, 445 

Miscellaneous application files, 387 

MNP mode, modem, 286 
data communication, 289-290 

Modem 
interface, 253 
service, 439 
see also Data modem 

MODEM_AUTO_ANSWER_SET 
structure, 284 

MODEM_DIAL structure, 287 

MODEM_MNP _BltEAIC TYPE_SET 
structure, 290 

MODEM_MNP _FLOW _CONTROL_SET 
structure, 290 

MODEM_MNP _MODE_SET structure, 286 

MODEM_NEW_ONLY structure, 283 

MODEM_SEND_COMMAND structure, 287 

MODEM_SPEAKE~STATE_SET 

structure, 285 

Modifying, attributes, 19-20 

Move gesture, 165-166 

Moving 
beginning, operation, 160-161 
documents to Auxiliary notebooks, 

425-426 
nodes, 80-81 
see also Copying 

MS-DOS 
disk drive class, 247 
FAT disk format, 51 

creating PENPOINT.DIR and, 68 
volume name, 51 

msgABMgrActivate, 329 
status values, 329-330 

msgABMgrChanged,330 

msgABMgrClose, 326 

msgABMgrDeactivate, 330 

msgABMgrOpen, 326 

msgABMgrRegister, 329 

msgABMgrUnregister, 329 

msgAddObserver,49 
observing installation managers 

and,407 
observing tables and, 220 
system preferences and, 368 

msgAddrBookAdd, 328 

msgAddrBookDelete, 328 

msgAddrBookGet, 327-328 

msgAddrBookSearch, 326, 327 

msgAddrBookSet, 328 

msgANMAddT oStationaryMenu, 426 

msgANMCopylnDoc, 425 

msgANMCreateDoc, 425 

msgANM CreateSect, 424 

msgANMDelete, 426 

msgANMDeleteAlI, 426 

msgANMGetNotebookPath, 423 

msgANMMovelnDoc, 425 

msgANMOpenNotebook, 423 

msgANMRemoveFromStationaryMenu, 
427 

msgANMSystemInited,423 

msgAppInit, 261, 378 

msgAppMgrActivate, 148, 152 

msgAppMgrGetMetrics, 394 

msgAppRestore, 261 

msgAppSearch, 195, 196 

msgAppUndo, 206 

msgA TPRespPktSize, 302 

msgBootStateChanged, 431 

msgBrowserBookmark, 145 

msgBrowserBy messages, 142 

msgBrowserCollapse, 143 

msgBrowserCreateDir, 141 

msgBrowserCreateDoc, 141 

msgBrowserDelete, 141 

msgBrowserExpand,143 

msgBrowserGetBrowWin, 137 
getting internal display window 

and, 144-145 

msgBrowserGetMetrics, 144 

msgBrowserGetSelection, 143 

msgBrowserGoto, 144 

msgBrowserReadState, 143 

msgBrowserRefresh, 142 

msgBrowserRename, 141 

msgBrowserSelection, 140 

msgBrowserSelectionDir, 140 

msgBrowserSelectionN arne, 141 

msgBrowserSelectionOff, 145 

msgBrowserSelectionOn, 145 

msgBrowserSelectionPath, 145 

msgBrowserSelection UUID, 141 

msgBrowserSetClient, 144 

,msgBrowserSetMetrics, 143-144 

msgBrowserSetSaveFile, 143 

msgBrowserSetSelection, 141 

msgBrowserShow messages, 142 
setting metrics and, 144 

msgBrowserUserColumnQueryState, 146 

msgBrowserWriteState, 143 

msgBusyDisplay, 193 
in busy clock delay and reference 

count, 194 

msgBusySetXY, 193 

msgByteBufChanged, 209 

msgByteBufGetBuf, 208 

msgByteBufSetBuf, 208 

msgCIMLoad, 415 

msgDestroy 
for closing memory-mapped file, 74 
in closing multi-user service, 446 
in destroying insertion pad object, 33 
in destroying lists, 131 
in freeing handle, 74-75 
in freeing table, 228 

msgExport, 149 
responding to, 154 

msgExportGetFormats, 148 
responding to, 152-153 

msgExportName, 153-154 

msgFIMFindId,418 

msgFIMGetld,418 

msgFIMGetlnstalledID List, 417, 418 

msgFIM GetN ameF romld, 417, 418 

msgFIMSetld, 418 

msgFree, 67 
in closing file, 46 
in forced deletion, 75-76 
in freeing stream, 177 
in freeing table, 228 
handling, 458 
service instance and, 466 
in unbinding application from 

service, 261 

msgFSChanged,89 

msgFSCopy, 80 

msgFSDelete, 65, 75 

msgFSEjectMedia,91 

msgFSFlush, 74, 353 
in flushing buffers, 85 



msgFSForceDelete, 66, 67, 75 

msgFSGetAttr,59 
for attribute manipulation, 76 
for getting attribute value length, 79 
getting values and, 78 

msgFSGetHandleMode, 71, 73 
handle mode flags and, 87 

msgFSGetlnstalledVolumes, 60 
for list of volume objects, 90 

msgFsGetPath,59 

msgFSGetSize, 85 

msgFSGetVolMetrics, 49, 60 
call example, 91 
duplicate volume names and, 50 
for getting volume information, 90 

msgFSMakeNative, 89-90 
call example, 90 

msgFSMemoryMap, 73 

msgFSMemoryMapFree, 74 

msgFSMemoryMapGetSize,74 

msgFSMemoryMapSetSize, 73, 74 

msgFSMove,80 

msgFSNodeExists, 83 

msgFSReadDir, 87-88 

msgFSReadDirFull, 88 

msgFSSame, 86 
example, 87 

msgFSSeek,59 
in getting file position, 84-85 

msgFSSetAttr, 78 
for attribute manipulation, 76 
for creating directory index, 80 
for renaming nodes, 83 
setting values and, 79 

msgFSSetHandleMode, 65, 71, 73 
handle mode flags and, 87 

msgFSSetSize, 85 

msgFSSetTarget, 59,67, 76 
call example, 86 
in changing target directory, 86 
directory position and, 88 

msgFSSetVolName,91 

msgFSTraverse, 67, 81-82 
in call back routine, 82 
function of, 81 

msgFSVolSpecific,91 

msgGetlnstalledVolumes, 49 

msgGetPath, 85 
example of, 86 

msgIMCurrentChanged,408 

msgIMDeinstalled, 256, 409 
in deinstalling service, 465 
in deleting installable item, 412 

msgIMDelete, 412 

msgIMDup, 412 

msgIMFind, 261, 262, 413 
in locating parallel port, 276 
in locating serial port, 268 
in locating service, 442 
in locating socket service handle, 298 

msgIM GetCurrent, 412 

msgIMGetDir, 411 

msgIM GetList, 261, 413, 417 

msgIMGetName, 258, 262, 417 

msgIMGetNotify,407 

msgIM GetSema, 407, 414 

msgIMGetSize, 413 

msgIMGetState, 412, 413 

msgIMGetStyle, 411 

msgIMInstall, 254, 411 

msgIMInstalled, 409 

msgIMInUseChanged,408 

msgIMModifiedChanged, 408 

msgIMNameChanged,408 

msgImport, 151-152 

msgImportQuery, 148 
responding to, 150-151 

msgIMSetCurrent, 412 

msgIMSetModified, 407 

msgIMSetN arne, 412 

msgIMSetNotify, 407 

msgIMSetStyle, 411 

msgINBXSvcPollDocuments, 313 

msgListAddltem, 173 

msgListAddI temAt, 129 

msgListEnumItems, 130 

msgListFindltem, 129 

msgListF ree, 131 

msgListGetl tern, 129 

msgListNumItems, 127 
in counting items, 130 

msgListRemovel temAt, 129-130 

msgListRemoveltems, 130 

msgListReplaceltem, 129-130 

msgMarkCreate Token, 196 

msgMarkPositionAtSelection, 196 

msgMarkSelect Target, 198 

msgMarkShowTarget, 198 

msgModemAutoAnswerSet, 284, 289 

msgModemCarrierStateSet, 284 

msgModemCommandModeSet, 285, 287 

msgModemConnected,289 

msgModemDial, 287 

msgModemDialTypeSet, 284 

msgModemDisconnected,289 

msgModemDuplexSet, 286 

INDEX 51., 

msgModemHangup, 287 

msgModemMNPBreak TypeSet, 289 

msgModemMNPCompressionSet, 289 

msgModemMNPFlowControlSet, 290 

msgModemMNPModeSet, 286, 289 

msgModemOffHook, 289 

msgModemOnline, 285, 287, 289 

msgModemReset, 283 

msgModemRingDetected,289 

msgModemSendCommand, 286-287 

msgModemSpeakerControlSet, 285 

msgNBPCancel, 303 

msgNBPConfirm, 304 

msgNBPLookup, 303 

msgNBPRegister, 303 

msgNBPRemove, 303 

msgNew 
clsService handling of, 457 
creating browser and, 140 
creating byte buffer object and, 208 
creating clsModem object and, 

282-283 
creating directory handle and, 58, 71 
creating directory index and, 80 . 
creating file handle and, 72 
creating handles and, 69 
creating installable-item manager 

and,410 
creating lists and, 129 
creating resource file handle and, 348 
creating resource list and, 346 
creating service instances and, 

442,454 
creating stream object and, 134 
creating string object and, 212 
creating table object and, 220 
creating temporary file and, 65 
creating text data objects and, 7, 13 
creating text insertion pad and, 33 
creating text view object and, 5, 24 
limiting file access with, 67 
in opening file, 46 
opening multi-user service and, 446 
in specifying serial port handle, 281 
table data files and, 214 
temporary file flag with, 75 

msgNewDefaults 
clsService handling of, 457 
for clsTextView, 24-25 
creating browser and, 140 
creating byte buffer object and, 208 
creating clsModem object 

and,282-283 
creating directory handles and, 71 
creating handles and, 69-70 
creating installable-item manager 

and,410 
creating resource file handle and, 348 



518 INDEX 

creating resource list and, 346 
creating service instances and, 454 
creating stream object and, 134 
creating string object and, 212 
creating table object and, 220 
creating text data objects and, 7, 13 
creating text insertion pad and, 33 
in creating text view object and, 5, 24 
in opening file, 46 

msgNotUnderstood, 159 

msgObjectNew, 456 

msgOBXDocOutputDone, 309 

msgOBXSvcCopyInDoc, 309 

msgOBXSvcLockDocument, 309,310 

msgOBXSvcMoveInDoc, 309 

msgOBXSvcNextDocument, 309 

msgOBXSvcOutputStart, 311 

msgO BXSvcPollDocuments, 309 

msgOBXSvcUnlockDocument, 309,310 

msgOptionAddCards, 318 

msgOptionSheetAddCards, 330 

msgOSOGetServiceInstance, 471 

msgPPortAutoLineFeedOn/Off, 277 

msgPPortCancelPrint, 278 

msgPPortGet TimeDelays, 277 

msgPPortlnitialize, 277-278 

msgPPortSetTimeDelays, 277, 278 

msgPPortStatus, 278 

msgPrefsPreferenceChanged, 368 

msgQuickHelpOpen, 188 

msgQuickHelpShow, 181 
in displaying Quick Help text, 187 

msgRemoveObserver, 220 

msgResAgent, 353-354 

msgResCompact, 352, 353 

msgResDeleteResource, 352 

msgResEnumResources, 351-352 

msgResFlush, 353 

msgResGetlnfo, 349 

msgResGetObject, 45 

msgResNextDynResID, 344 

msgResPutObject, 44, 207, 341 
dynamic resource IDs and, 343~344 

msgResReadData, 338, 349, 353 
preferences resources and, 361 
writing agents and, 354 

msgResReadObject, 338, 350 

msgResReadObjectWithFlags, 350-351 

msgRestore,45 
message handler response to, 45 
object resources and, 341, 342 

msgResUpdateData, 349-350, 353 
preferences resources and, 361 

msgResWriteData, 349-350, 353 
changing hand preference with, 363 
changing screen orientation preference 

with,363 
changing scroll margin style 

preference with, 365 
changing system and user fonts 

preference with, 363 
preferences resources and, 361 
writing agents and, 354 

msgResWriteObject, 351 

msgResWriteObjectWithFlags, 351 

msgSave, 44-45 
object resources and, 341 
writing objects/data and, 44 

msgSelBeginCopy, 159, 160 

msgSelBeginMove, 159, 160 

msgSelChangedOwners, 162, 163 
restoring selection owners and, 162 

msgSelDelete, 159 
handling, 160 

msgSelDemote, 159 
handling, 160 
preserving owner selection and, 162 

msgSelIsSelected, 159 

msgSelOptions, 159 
handling, 160 

msgSelOptionTagOK,160 

msgSelOwner, 31 
finding selection owners and, 161-162 
selection transitions and, 157 

msgSelPromote, 159 
handling, 160 
restoring selection owner and, 162 

msgSelPromotedOwner, 163 

msgSelSelect, 161 

msgSelSetOwner, 157, 159, 162 
clsEmbeddedWin and, 161 
promoting/demoting and, 160 

msgSelSetOwnerPreserve, 159, 162 
clsEmbeddedWin and, 161 
restoring selection owner and, 162 

msgSelYield, 157, 159 
handling, 160 
restoring selection owner and, 162 

msgSendServCreateAddrWin, 332, 333 

msgSendServFillAddrWin, 332, 333-334 

msgSendServGetAddrDesc, 332, 333 

msgSendServGetAddrSummary, 332, 334 

msgSetAttr,66 

msgSIMGetMetrics, 456 

msgSioBaudSet, 269 
data modem and, 280 

msgSioBreakSend,272 

msgSioBreakStatus, 273 

msgSioControlInStatus, 270 

msgSioControlOutSet, 270 

msgSioEventGet, 273 

msgSioEventHappened, 266, 272 

msgSioEventSet, 266, 272 

msgSioEventStatus, 273 

msgSioFlowControlCharSet, 270 

msgSioFlowControlSet, 269 

msgSioGetMetrics, 270-271 

msgSioInputBufferFlush, 271 

msgSioInputBufferStatus, 271 

msgSioLineControlSet, 269 
data modem and, 280 

msgSioOutputBufferFlush,271 

msgSioOutputBufferStatus, 271 

msgSMAccess, 261 

msgSMBind, 259, 261, 262 
in binding parallel port, 276 
in binding serial port, 268 
in binding socket service handle, 298 
data modem serial port, 280 
service manager and, 462 

msgSMChangeOwner, 467 

msgSMClose, 263 
in closing serial port, 268 
in closing service instance, 443 
in closing socket handle, 299 

msgSM Closed, 464 

msgSMConnectedChanged,264 

msgSMFindHandle, 263 

msgSMOpen, 261, 262,263 
data modem serial port, 280 
in opening parallel port, 276 
in opening serial port, 268 
in opening service instance, 442 
in opening socket service handle, 298 
open service objects and, 471 
service manager and, 463 

msgSMOpenDefaults, 262, 263, 463 
socket service handle and, 298 

msgSMOpenList, 463 

msgSMOwnerChanged, 467 

msgSMQueryLock,465 

msgSMQueryUnlock,465 

msgSMSave, 466 

msgSMSetOwner, 264, 442, 467 
service instance owner and, 445 

msgSMSetOwnerNoVeto, 264, 467 

msgSMUnbind,263 
in unbinding from service instance, 

443 

msgSRGetChars, 197 

msgSRNextChars, 197 

msgSRPositionChars, 197 



msgSRReplace, 198 

msgStreamFlush, 136 

msgStreamRead, 44, 45 
blocking protocol and, 168-169 
example of using,83 
producer protocol and, 169 
in reading files, 83 
in reading streams, 134 
in reading with serial port, 271 
service instance and, 443 
to store state, 136 
stream transfers and, 168 

msgStreamReadTimeOut, 134-135 
data modem and, 289 
reading with serial port and, 271 

msgStreamSeek, 135 
passing back current position, 136 
setting current position, 136 

msgStreamWrite, 44, 59 
blocking protocol and, 168-169 
example of using, 83 
producer protocol and, 169 
to save state, 136 
service instance and, 443 
stream transfers and, 168 
in writing files, 83 
in writing streams, 134 
in writing to parallel port, 278 
in writing with serial port, 271 

msgStreamWriteTimeOut, 134-135 
data modem and, 289 
writing with serial port and, 271 

msgStrObjChanged,212 

msgStrObjGetStr, 212 

msgStrObjSetStr, 212 

msgSvcBindRequested, 443 
handling,463 

msgSvcChangeOwner Requested, 467 
handling,468 

msgSvcClasslnitService, 452 

msgSvcClassLoadlnstance, 458-459 

msgSvcClassTerminate, 456 
handling,458 

msgSvcClassTerminateOK,456 
handling,457-458 

msgSvcClassTerminateVetoed,456 
handling, 458 

msgSvcClientDestroyedEarly, 466 

msgSvcCloseRequested, 464-465 

msgSvcDeinstallRequested, 456, 457 
msgSvcDeinstallVetoed and, 466 

msgSvcDeinstallVetoed, 456, 458 
handling, 466 
msgSvcDeinstallRequested and, 466 

msgSvcGetMetrics, 459-460 
owned state information and, 469 
service response to, 460 

msgSvcOpenDefaultsRequested,463-464 

msgSvcOpenRequested, 443 

msgSvcOwnerAcquired,467 
handling,469 

msgSvcOwnerAcquiredRequested, 468 

msgSvcOwner messages, 264 

msgSvcOwnerReleased,467 
handling,469 

msgSvcOwnerReleaseRequested,467 
handling,467-468 

msgSvcOwnerRequested,467 . 

msgSvcQueryLockRequested,465 

msgSvcQueryUnlockRequested,465-466 

msgSvcSaveRequested, 466 

msgSvcSetMetrics, 460-461 
saved state information and, 469 
service response to, 461 

msgSvcUnbindRequested,462 

msgSysGetBootState, 431 

msgSysGetLiveRoot, 432 

msgSysGetRuntimeRoot, 432 

msgTBLAddRow, 222 

msgTBLBeginAccess, 214, 221 
observing tables and, 220 

msg TBLCoiGetData, 223, 227 

msg TBLCoiSetData, 223 

msg TBLCompact, 224 

msg TBLDeleteRow, 224 

msg TBLEndAccess, 214, 228 
observing tables and, 220 

msgTBLFindColNum, 226 

msg TBLFindFirst, 224, 226 

msgTBLFindNext, 224, 226 

msgTBLGetColCount, 227 

msgTBLGetColDesc, 223-224, 227 

msgTBLGetlnfo, 227 

msgTBLGetRowCount, 227 

msgTBLGetRowLength,227 

msgTBLGetState, 215, 227 

msg TBLRowGetData, 223-224 

msg TBLRowNum ToRowPos, 226 

msg TBLRowSetData, 223 

msgTBLSemaClear, 222 

msg TBLSemaRequest, 217, 222 

msg T extAffected, 21 

msg T extChangeAttrs, 19, 35 

msgTextChangeCount,37 

msg TextClearAttrs, 19, 20 

msg T extEmbedObject, 20 

msg T extEnumEmbeddedObjects, 20 

msg TextExtractObject, 20 

msg T extGet, 14 

INDEX 519 

msgTextGetAttrs, 18,35 

msgTextGetBuffer, 14 

msg T extlni tAttrs, 19 

msg TextLength, 14 

msgTextModify,15 
counting changes and, 37 

msg TextReplaced, 21 

msgTextSpan, 15 

msgTextViewAddIP, 26-27, 33 
circle-line gesture and, 26 
overriding behavior of, 27 

msgTextViewCheck,32 

msg TextViewEmbed, 26 

msgTextViewGetStyle,32 

msgTextViewResolveXY,27-28 

msgTextViewScroll,29 

msgTextViewSetStyle, 32 

msg TimerAlarmN otify, 104 

msgTimerNotify, 104 

msgTPBind,301 

msgTPRecvFrom, 300 

msgTPSendRecvTo, 300 

msgTPSendTo, 299, 300 

msgUndoAbort, 204-205 

msgUndoAddltem, 203-204 
to aborting transaction, 204-205 

msgUndoBegin, 202-203 

msgU ndoCurrent, 206 

msgUndoEnd, 203, 204 

msgUndoFreeitem, 206 

msgUndoFreeltemData, 203 

msgUndoGetMetrics, 205 

msgUndoltem, 206 

msgUndoLimit, 205 

msgViewGetDataObject,26 

msgViewSetDataObject, 26 

msgXferGet, 31 
in ASCII metrics transfers, 175 
in one-shot transfers, 167-168, 173 
in replying to one-shot transfers, 176 

msgXfer List, 171 
to list transfer types, 172-173 

msgXferStreamConnect, 178 

msgXferStreamFreed, 170, 177 

msgXferStreamlnit, 178 

msgXferStreamSetAuxData, 170, 177 

msgXferStreamWrite, 169 

msgZIPGetMyZone, 304 

msgZIPGetZoneList, 304 

Multiple access services, 446 
defined, 445 



520 INDEX 

Name binding protocol (NBP), 302-303 

Names 
AppleTalk protocol, 302-304 

looking, 303-304 
registering, 303 
removing,303 
zone, 304 

duplicate volume, 50 
local disk volume, 51 
memory-resident volume, 52 
node, 53-54 
remote volume, 51 

NBP _CONFIRM structure, 304 

NBP _LOOKUP structure, 303 

NBP _REGISTER structure, 303 

Networking 
facilities, 250 
interfaces, 253 

Network protocols, adding, 251 

Nodes, 43, 52-54 
accessing, 57 
attributes, 54-55 
behavior of, 67 
copying, 80-81 
creating,43 
determining existence of, 83 
flags, 68 
locators and, 55-56 
making, native, 89-90 
moving, 80-81 
names of, 53 
paths, 55-56 
renaming,83 
service state, 396, 444, 445 
traversing, 81-82 

call back routine, 82 
order of traversal and, 82 
quicksort routine, 82 

types of, 52 

Notebook 
file system usage, 68 
organization, 44 
see also specific types of notebooks 

NotePaper component, 229-235 
clsNotePaper view, 229 
data, 232-234 
data items, 234-235 
defined,229 
messages, 231-232 
metrics, 230 

NOTEPAPER_METRICS data structure, 230 

Notification 
messages, clsInstallMgr, 408 
observer, 163 

byte buffer object, 209 
string object, 212 

preference change, 368 
receiving connection state, 264 

NULL-terminated strings, 355 
resource agents and, 353 

ObjectCallO 
address book and, 320 
installable manager access and, 407 
theSelectionManager and, 156 

Object-oriented architecture, 449 

ObjectPostO function, 187 

Object resources, 337, 341-342 
once and many modes for, 342 
reading, 350-351 
replaceable, 341 
writing,351 

Objects 
byte buffer, 207-209 
embedded in views, 26-27 
embedding text data object, 20 
open service, 441, 470-472 
reading,45 
selection ownership, 155 
stream, 134 
string,211-212 
text data, 7-21 
text view, 5 
writing,44-45 

ObjectSendO,266 
address book and, 320 
in installing applications and 

services, 415 
intertask messages and, 100 
for msgObjectNew, 456 
open service objects and, 472 

Observer messages, text data, 21 

Observer notification, 163 
byte buffer object, 209 
string object, 212 

Observing 
changes, 89 
installation managers, 407-409 
tables, 215, 220-221 

One-shot transfer. see Transfer, one-shot 

Opening 
address book, 326 
Auxiliary notebooks, 423 
files, 46 

sample code, 46 
parallel port, 276 
serial port, 268 
service, 262-263 

example, 263 
socket handle, 298 
see also Closing 

Open service 
messages sent to, 470 
objects, 441, 470-472 

clsOpenServiceObject and, 471 
clsService and, 471 

sub classing clsOpenServiceObject 
and,471-472 

see also Services 

Operating system, D LL files and 
versions, 403 

Organization 
distribution volumes, 390-398 
file, 381-398 
Pen Point, 382-389 
required, 381 

OS_DATE_TIME structure, 110 

OSErrorBeepO, 105 

OSFastSemaRequest, 414 

OSFastvSemaClear, 414 

OS Get Time routine, 110 

OS.H,105 
functions, 105-107 

OSHeapBlockAllocO, 95, 175 

.OSHeapBlockFree, 88, 95 

OSHEAP.H,105 
functions, 107 

OSITMsg prefix, 100 

OSProcessHeap,472 

osProcessHeapId handle, 102 

OSProgramInstallO, 377, 378-379 

OSSharedMemAllocO, 175 

OSSubtaskCreateO,297 

OSSupervisorCallO function, 103 

OSToneO, 105 

Out box, 305 
connectivity and, 244 
documents in, 309-310 
general device concepts, 306-308 
introduction, 305-306 
notebook, 308 
operation, 308 
protocol messages, 308-309 
service 

communication target, 307 
enabling and disabling, 307-308 
handling input and, 312 
installing, 307 
sections, 306 
working with existing, 311 
writing own, 310 

service messages, 313-316 
see also In box 

Outbox Notebook. see Auxiliary 
notebooks 

Output buffer, 265 
flushing,271 
status, 271 
see also Buffers 

Output manager. see thePrintManager; 
theSendManager 

Output, operation phases, 311 



Ownership 
service, 257 

setting, 264 

Paragraph attributes, 9, 17-18 
changing, 20 
tab, 18 

changing, 20 

Parallel connection protocol, 274 

Parallel 110 interface, 251-252, 275-278 

Parallel port, 275 
accessing,275 
cancelling printing and, 278 
concepts, 275 
configuration, 277 

auto line feed, 277 
time delays, 277 

getting status and, 278 
handle, 276-277 
initializing printer and, 277-278 
interrupts, 275 
messages, 276 
object, 277 
using, 276-278 
writing to, 278 
see also Ports; Serial port 

Passive In box service, 312 

Paths 
to Auxiliary notebooks, 423-424 
in determining node existence, 83 
file system, 430-431 

constants, 430 
function, 67 
handle, 85-86 
locator, 55-56 
stdio and, 66 

Pen cursor preference, 366 

PenPoint 
Application Monitor, 400 
facilities, 250 
file organization, 381-398 

distribution volumes and, 390-398 
general structure, 384 
installable applications, 386-387 
installable entities, 386 
installable services, 387 
internal development, 389-390 
PenPoint directory, 384-385 
run-time services, 387-388 
SDK distribution, 389 
system distribution, 385-386 

Gesture font, 188-190 
services, 438-439 
system architecture, 97 
volume structure, 383 

PENPOINT.DIR, 51 
contents, 54 
creating, 68 
files, 390 

saving memory in, 77 
STAMP utility and, 390-391 
structure, 68 

\PENPOINT directory, 384-385 

PenPoint directory, 384-385 
concepts, 382 
organization, 382-383 

PenPoint Installer, 390 

PENPOINT.RES, 388 

P_FS_TRAVERSE_CALL_BACK,82 

Ports 
applications and, 245 
computer, 245 
MIL services and, 246 
parallel, 275-278 

configuration, 277 
protocol,296 
SCSI, 246, 247 
serial, 246, 268-271 

configuration, 268-271 
data modem and, 279-280 

Power management preference, 364 

PPORT_STATUS structure, 278 

PPORT_TIME_DELAY structure, 277 

prBell, 365 

prCharBoxHeight, 366 

prCharBoxWidth,366 

prDateFormat, 367 

prDocFloating,365 

prDocZooming,365 

PREF _CHANGED structure, 368 

Preferences 
change notification, 368 
time and date, 110 
see also System preferences 

PrefsDate T oStringO, 367 

PREFS directory, 386 

PrefsSysFontlnfoO, 363 

PrefsTimeToStringO, 367 

PREF _SYSTEM_FONT _INFO structure, 363 

PREF _TIME_INFO structure, 366 

Press-hold timeout preference, 364 

prGestureTimeout, 364 

prHandPreference, 363 

prHWXTimeout, 364 

Primary input device preference, 367 

prlnputPadStyle, 366 

Print command, 308 

Printer 
In and Out boxes and, 305 
initialization, 277-278 
services, 250 
status, 278 

Printing, cancelling, 278 

Priority levels, 99 

Privilege levels, 103 

prLineHeight, 366 

Process, 98 

INDEX 521 

subtask ownership and, 99 
task scheduler and, 99 

Producer protocol, 169-170 
defined, 168 

Programming services, 449-472 
deinstalling,456 
design decisions, 449 
installation, 450-456 
messages sent by service managers, 

459-470 
messages sent to open services, 470 
messages sent to service class, 456-459 
object-oriented architecture, 449 
open service objects, 470-472 
using template services and, 449-450 

prOrientation, 363 

Protocol port, 296 

Protocols 
address book, 318-320 
Apple Talk, 301-304 
blocking, 168-169 
flow control, 265 
link,253 
network, 150-151 
producer, 168, 169 
remote file access, 52 
RTS/CTS, 252 
search and replace, 196 
stream, 168 
transfer, 167-170 

client-defined, 170 
transport, 253, 295 

prPenCursor, 366 

prPenHoldTimeout, 364 

prPowerManagement, 364 

prPrimaryInput, 367 

prScrollMargins, 365 

prSystemFont, 363 

prTime, 366 

prTimeFormat, 367 

prTimeSeconds, 367 

prUnrecCharacter, 368 

prWritingStyle, 364 

QINST ALL file, 386 

Queues, intertask message, 100 

QUICK_DATA structure, 187 

Quick Help, 181-182 
adding gestures to, strings, 191 
adding, to object, 181 
API function, 124 



522 INDEX 

clsGWin and, 182 
concepts, 181-182 
defined, 179 
defining, resources, 356-357 
displaying, text, 187 
Gesture font and, 188-190 
gestures, 182 
ID, 181 
messages, 187 

using, 187-188 
resources, 181-182 

defining, 183-187 
defining example, 184-185 
definition format, 183 
storing ID in gesture window, 186 
strings, 181-182 

string array, 183-186 
window, 181 

example, 186 
opening, 188 

without clsGWin, 182 
see also Help 

Quick installer, 397 

Quicksort routine 
for sorting directory entries, 88-89 
traverse, 82 

Quickstart, developers 
file system, 44-46 

opening and closing files, 46 
reading objects and data, 45 
writing objects and data, 44-45 

resources, 337-338 
text subsystem, 5 

RAM 
item directory, 376 
memory-resident volume, 52 
volume handler, 61 

RC command, 359-360 

Reading 
browser state, 143 
data resource, 349 

resource agents and, 353 
directory entries, 87-89 
files, 83 
object resources, 350-351 
objects and data, 45 
with serial port, 271 
streams, 134 

with timeout, 134-135 
see also Writing 

Receiver, 166 

Registering, address book, 329 

Remote file 
access protocol, 52 
server, 52 

Remote server, 295 

Remote volumes, 51-52 

Removing 
all list items, 130 
document to stationary menu, 427 
list items, 130 
see also Deleting 

Renaming 
directories, 141 
files, 141 

Replaceable shape matcher, 439 

Replacing 
characters, 198 
list items, 130 

Required organization, 381 

RES_AGENT structure, 354 

RESAPPND utility, 360 

RES DUMP utility, 360 

RES_ENUM structure, 352 

RESFILE.H, 343 
macros, 344-345 

RES_FILE_NEW structure, 348 

RES_ID value, 344 

RES_INFO structure, 349 

resInput array, 356 

. resInputFile, 359 

Resource agents, 345, 353-354 
reading and writing data resources 

and,353 
writing own, 356 

Resource compiler, 359-360 

Resource definitions, 356 
example, 356-357 
structure, 356 

Resource files, 337, 342 
compacting, 353 
definition, 355 
deleting resource from, 348-349 
flushing,353 
handle, 348-349 
header, 342 
organization, 355-356 
viewing contents of, 359, 360 
see also Resources 

Resource IDs, 337, 338 
dynamic, 343-344 
system preferences and, 362 
using, 344-345 
well-known, 343 

list, 344 

Resource lists, 337, 345-346 
creating, 346 

Resources, 337-368 
C language definition, 355-357 
compiling, 359-360 

RESAPPND utility, 360 
RESDUMP utility, 360 
running source compiler, 359-360 

data, 337, 342, 353 
C language definition, 355 

reading,349 
writing and updating, 349-350 

defining Quick Help, 356-357 
deleting,352-353 
developer's quick start, 337-338 
enumerating,351-352 
identifying, 342-344 
locating,349 
object, 337, 341-342 

once and many modes for, 342 
reading, 350-351 
replaceable, 341 
writing,351 

overview, 337 
system preferences, 361 
types, 343 

resOutputFile, 359 

RES_READ_DATA structure, 349 

RES_READ_OBJECT structure, 350 

RES_ WRITE_DATA structure, 350 

RES_ WRITE_OBJECT structure, 351 

Rings, 103 

Root directory, 52 
handle, 60-61 

Rows, table, 213 
adding,222-223 

example, 223 
converting number to position, 226 
deleting, 224 
getting length of, 227 
getting number of, 227 
see also Tables 

RTF 
documents, 188 
files, 180 
strings, 191 

RTS/CTS protocol, 252 

RTS (request-to-send) lines, 270 

Run-time system, 387-388 

Screen orientation preference, 363 

Scrolling 
text view, 29 
window, inserting text view in, 30 

Scroll margin style preference, 365 

SDK directory, 385, 389 
contents, 389 

Search and replace, 195-198 
API function, 124 
concepts, 195 
highlighting text and, 198 
messages, 198 
protocol, 196 
replacing characters and, 198 
searching text and, 197 
setting initial search position, 196 
writing class and, 196-198 



Searching 
address book, 326-328 

more information, 327-328 
search query, 326-327 
search result, 327 

tables, 224-226 

Selection 
classes that handle, 157 
current, 155 
determination, 157 
owners, 156 

finding, 161-162 
messages sent to, 159-161 
preserving, 162 
restoring, 162 
setting, 159, 162 

preserving, 156 
transitions, 157 

Selection manager, 155-163 
client messages, 158-159 
concepts, 155-157 
determining selection, 157 
function, 124 
messages passes to, 161-162 
messages sent to selection owners, 

159-161 
observer notification and, 163 
preserving selection and, 156 
selection classes, 157 

messages, 157-158 
selection ownership and, 156 
selection transitions and, 157 

SEL_OWNERS structure, 161-162, 163 

Semaphores, 101 
clslnstallMgr and, 414 
counting, 101 
locked, 101 
table 

example, 222 
shared, 217 
using, 222 

Sendable services, 331-334 
defined, 331 
messages, 333-334 
protocol, 331-332 

function, 319 

Send command, 308 

Sender, 166 

Serial driver, 265 

Serial handle 
defaults, 269 
requesting and releasing, 268 

Serial I/O interface, 251, 265-274 
buffered data, 265 
concepts, 265-266 
concurrency issues, 266 
events, 266 
flow control, 265-266 

high-speed packet 110 concepts, 
273-274 

interrupt driven 110, 265 
messages, using, 267-273 

detecting events, 272-273 
flow control, 272 
reading/writing with serial 

port, 271 
reinitializing serial port, 268 
requesting/ releasing serial 

handle, 268 
sending BREAK, 272 
serial port configuration, 268-271 

Serial port, 246 
closing, 268 
configuration, 268-271 

baud rate, 269 
data modem, 280 
DTRlRTS output, 270 
flow control, 269 
flow control characters, 270 
input line status, 270 
line control, 269 
requesting settings, 270-271 

data modem and, 279-280 
configuring, 280 
getting handle, 279-280 

opening, 268 
reading and writing with, 271 
reinitializing, 268 
requesting all settings, 270-271 
see also Parallel port; Ports 

Service addresses, 322 

SERVICE directory, 384, 386, 395 
contents, 387 
files in, 396 
INST directory and, 396 

SERVICE.INI file, 256, 385, 387 
service directory and, 444 

Service installation manager, 416 
class, 441 

Service instances, 439-440 
creating, 442, 454-455 
dynamic, 453-454 
file system node, 443 
msgSvcSaveRequested and, 466 
preconfigured,473 
saving state data and, 466 
static, 453-454 
using, 442-443 

Service manager, 250, 251, 256-257 
accessing service and, 261 
architecture, 437 
binding to service and, 262 
class, 440 
defined, 256 
finding handle and, 263-264 
finding service and, 261-262 
function, 255, 256, 437 

INDEX 523 

messages, 260 
change ownership protocol, 

467-469 
from, 461-466 
handled by clsService, 469-470 
notification, 259, 260 
sent by, 459-470 

opening and closing service 
and,262-263 

predefined, 258-259 
receiving state notification and, 264 
request for information, 459-461 
services and, 440 
setting service owner and, 264 
unbinding from service and, 263 
using, 261-264 

Service messages, 443 

SERVICE. RES file, 387 
service directory and, 444, 445 

Services, 438, 438-439 
accessing, 258-259 

overview, 257 
service manager and, 261 

binding to, 259 
broken connection and, 247 
chaining, 446 
classes, 255-264, 439-441 

initializing, 451, 452 
closing, 263 
clsStream messages and, 470 
connections, 258, 446-447 
connection status, 248, 447 
data storage, 455 

defined, 250, 255 ~ 
deinstalling, 256, 456 ~~ 
design decisions, 449 -
directory contents, 444 
distributing, 473-474 

documentation and, 474 
providing demo application, 473 
providing preconfigured 

instances, 473 
DLL and DLe files and, 256 
exclusive access, 445-446 
file system and, 443-445 
in file system at run time, 445 
In box and Out box, 305 

devices and, 306-307 
enabling and disabling, 307-308 
installing devices and, 307 
passive and active, 312-313 
sections, 306 

installable, 387 
installation, 378-379, 450-456 

calling initialization 
routines, 451-452 

calling InitService, 452-453 
calling other class initialization 

routines, 452 
creating service instances, 454-455 



524 INDEX 

static and dynamic service 
instances, 453-454 

tasks and, 455-456 
installation to use overview, 441-443 
installing, 256 
interfaces and, 249-250 
layered, 248 
messages sent to open, 470 
~IL,246-249,439 

see also Parallel port; Serial port 
msgSvcGet~etrics response, 460 
msgSvcSet~etrics response, 461 
multiple access, 445, 446 
multiple volumes and, 398 
multi-user, 446 

msgSvcOpenDefaultsRequested 
and,463 

multiple openers and, 452 
non-port, 439 
on distribution/boot disks, 444 
opening,257,259,262-263 
owner, 247 

setting, 264 
ownership, 257 

task, 455-456 
preconfigured,396 
printer, 250 
programming, 449-472 
service manager and, 440 
shared,446 
targeting, 258, 446 
test examples, 475-506 

BASICSVC, 485-487 
~ILSVC, 487-506 
TESTSVC, 476-485 

in theSelectedVolume, 445 
transaction, 296 

requesting,300 
responding to, 301 

unbinding,263 
upgrading,398 
writing, 435-472 
see also Open service 

Service sections, 306 

Service State Nodes, 396, 444, 445 

setbufO system service, 65 

Settings notebook. see Auxiliary 
notebooks 

SIO_CONTROL_IN_STATUS structure, 270 

SIO_CONTROL_OUT_SET structure, 270 

SIO _EVENT _HAPPENED structure, 
272-273 

SIO_EVENT_SET structure, 272 
getting current, 273 

SIO_FLOW_CONTROL_CHAR_SET 
structure, 270 

SIO_FLOW_TYPE structure, 269 

SIO_INIT structure, 268 

SIO _INPUT _BUFFER_STATUS 
structure, 271 

SIO_LINE_CONTROL_SET structure, 269 

SIO_METRICS structure, 270-271 

SIO_OUTPUT_BUFFER_STATUS 
structure, 271 

SM_ACCESS structure, 261 

SM_BIND structure, 262 
in unbinding from service, 263 

SM_CLOSE structure, 263 

SM_CONNECTED_NOTIFY structure, 264 

SM_FIND _HANDLE structure, 263-264 

SM_OPEN_CLOSE structure, 262-263 
accessing socket and, 298 

SM_SET _OWNER structure, 264 

Socket, 295-296 
accessing,298 
closing, handle, 299 
connection, 296 
identifier, 296 
transport address, 296 

SoftTalk interface, 250, 295 

Sorting, directory entries, 88-89 

Sound routine, 105 

Speaker, modem, 284-285 

SR_ GET_CHARS structure, 197 

SR_REPLACE_CHARS structure, 198 

ST~P utility, 390-391 
stationary and, 392 

Starting point, locator, 55 

State 
browser, 143 
connection, notification, 264 

Stationary 
application, 392-393 
documents, 377 

removing document to, 427 
menu 

adding document to, 426 
modifying, 426-427 

templates, 387 

Stationary Notebook, 393 
see also Auxiliary notebooks 

STATNRY directory, 387, 392-393 

Status values, in accessing service, 261 

stdio calls, 65 

STDIO.H,113 

stdio run-time package 
accessing file system with, 65-66 
for node creation, 43 
paths and, 66 
the WorkingDir and, 61 
translating between handles and FILE. 

pointers, 65-66 
using,66 

StdioStreamBindO system service, 65 

STDLIB.H, 113 

Stream buffer, 168 

Stream class, 133-136 
overview, 133-134 

Stream protocols, 168 

STREAM_READ_ WRITE structure, 83 
serial port and, 271 
for streams, 134 

STREAM_READ_ WRITE_TIMEOUT 
structure, 135 

Streams 
accessing, auxiliary data, 177 
connecting, to producer, 178 
creating 

objects, 134 
receiver, 176-177 
sender, 177 

flushing, 136 
freeing, 177 
initializing, 178 
objects, 134 
operations, 133 
reading, 134 

with timeout, 134-135 
writing, 134 

with timeout, 134-135 

STREAM_SEEK structure, 135 

Stream transfers, 168-170 
blocking protocol, 168-169 
producer protocol, 168, 169 

STRING.H, 111-112 

String objects, 211-212 
concepts, 211 
creating,212 
getting, 212 
messages, 212 
notification of observers, 212 
resetting, 212 

Strings 
16-bit function, 111-114 
composition functions, 114 
date and time, 110 

STROBLNEW_ONLY structure, 212 

Subclassing 
clsOpenServiceObject, 471-472 
clsStream, 133 
file system classes, 67 

Sub tasks, 98-99 
characteristics, 99 
sibling,99 
see also Tasks 

SVC_BIND structure, 462 

SVC_ GET _SET _METRICS structure 
msgSvcGet~etrics and, 459-460 
msgSvcSet~etrics and, 460 

SVC_INIT _SERVICE structure, 452-453 



SVC_NEW_ONLY structure, 454-455 

SVC_OPEN_CLOSE structure, 463 

SVC_ OWNED _NOTIFY structure, 468 

SVC_TERMINATE_ VETOED structure, 458 

SYSAPP.INI, 385 

SYS_BOOT_STATE structure, 431-432 

SYSCOPY.INI,385 

SYS directory, 385 
run-time files and, 387 

System 
address book, 329-330 
directory messages, 432 
distribution, 385-386 
user fonts preference and, 363 

System class, 429-432 
concepts, 429-431 
messages, 431-432 

System preferences, 361-368 
auto shutdown, 365 
auto suspend, 364 
bell,365 
character box height, 366 
character box width, 366 
concepts, 361-362 
date format, 367 
display seconds, 367 
floating allowed, 365 
gesture timeout, 364 
hand preference, 363 
handwriting timeout, 364 
input pad style, 366 
line height, 366 
list of, 362 
observer of, 368 
pen cursor, 366 
power management, 364 
press-hold timeout, 364 
primary input device, 367 
resource IDs and, 362 
resources, 361 
screen orientation, 363 
scroll margin style, 365 
system and user fonts, 363 
time and data, 366 
time format, 367 
unrecognized character, 368 
writing style, 364 
zooming allowed, 365 

Table class, 213-228 
concepts, 213-215 
distributed DLL, 213 
messages, 217-218 

Table data 
files, 214 
getting,223-224 
setting, 223 

Table object 
access concurrency characteristics, 216 
accessing, 216 
creating, 220 
current state, 215 
observing, 215 

Table of contents 
bookmark check box, 145 
browser and, 137-138 
creating, 138 

Tables, 213 
accessing, 214 

beginning, 221 
ending,228 

adding rows to, 222-223 
Boolean operators for, 225 
creating, 221 
defined,213 
defining, 218-219 
describing,213-214 
files, 214 
freeing, 228 
locating records in, 215 
messages for, 217-218 

information, 226 
observing, 215, 220-221 
positioning in, 215 
searching,224-226 
semaphores and, 222 
shared, 215-217 

access 'to table object, 216 
concurrency, 216-217 
ownership, 216 

state, 227 
using, in database, 217 
see also Columns, table; Rows, table 

TA_ CHAR_ATTRS structure, 16-17 

TA_ CHAR_MASK structure, 16-17 

Tag argument, 16 
atomChar,16 
atomPara, 17 
atomPara Tabs, 18 

tagPrAutoShutdown, 365 

tagPrAutoSuspend, 364 

Tags, for data transfer types, 166-167 

TAGS subdirectory, 389 

TA_MANY_TABS structure, 18 

TA_P ARA_A TTRS structure, 17 

TA_PARA_MASK structure, 17. 

Target 
directory, 59 

changing, 86 
service, 258 

Targeting 
communication devices, 307 
services, 446 

Task management, 98-99 
priority level, 99 

INDEX 525 

processes, 98 
software task scheduler, 99 
subtasks, 98-99 

Tasks,98 
80386 protected mode and, 102 
family, 99 
priority level, 99 
privilege level, 103 
services and, 455-456 
software, scheduler, 99 
see also Subtasks 

TBL_BEGIN_ACCESS structure, 220, 221 

TBL_BOOL_OP, 225 

TBL_COL_DESC structure, 218-219 

TBL_ COL_GET _SET _DATA structure 
getting data and, 223 
setting data and, 223 

TBL_ CONVERT_ROW _NUM structure, 226 

TBL_ CREATE structure, 218 

TBL_FIND _ROW structure, 224-225 

TBL_FREE_BEHA VE values, 220 

TBL_ GET _SET _ROW structure 
getting data and, 224 
setting data and, 223 

TBL_GET_STATE structure, 227-228 

TBL_NEW structure, 220 

TBL_ROW _POS value, 215 

TBL_STRING structure 
getting data and, 224 
setting data and, 223 

TBL_ TYPES, 219 

TO_METRICS structure, 14 

TO_NEW structure, 13 

Template services, 449-450 

TESTSVC service, 476-485 
defined, 475 
METHOD.TBL, 476 
OPENOB}.H, 483-485 
TESTSVC.C, 477-483 
TESTSVC.H, 477 

Text 
character encoding, 8 
insertion pads, 9 

creating,33 
destroying,33 
messages, 33 
using,33 

length, 14 
metrics, 14 
style, getting and setting, 32 
see also Text subsystem; Text views 

Text attribute arguments, 16-20 
character attributes, 16-17 
paragraph attributes, 17-18 
paragraph tabs, 18 

TEXT_BUFFER structure, 14, 15 

TEXT_CHANGE_ATTRS structure, 19-20 



526 INDEX 

Text class 
hierarchies, 4 
see also cls Text 

TextCreateTextScrollWin function, 9, 30 

Text data object, 7-9 
altering, 15 
attributes, 7-9 
creating, 7, 13 
embedding objects, 20 
functions, 11-12 
getting and setting attributes, 16-20 
getting and setting text metric, 14 
messages, 12-13 
observer messages, 21 
organization of, 8 
reading characters in, 14 
scanning ranges of characters in, 

15-16 
text length and, 14 
using, 11-21 

T extDeleteMany function, 11 

Text editor, help text and, 180 

TEXT_EMBED_OB]ECT structure, 20 

TEXT_GET _ATTRS structure, 18-19 

Text index, 27-29 

TEXT_INDEX type variables, 8 

TextlnsertOne function, 12 

TEXT_SPAN_AFFECTED structure, 21 

TEXT_SPAN structure, 15-16 

Text subsystem 
atoms, 37-38 
classes, 7 
comparison with graphics subsystem, 5 
for creating object of clsTextView, 35 
developer's quickstart, 5 
features, 4-5 
interaction with Input subsystem, 

27-29 
obtaining text index, 27-29 
processing input Xlist/gesture, 29 

overview, 3-4 
paragraph attributes, 9 
sample code, 35-36 
text data object and, 7-9 
text insertion pads, 9 
text views, 9 
units of measurement, 10 
see also Text 

Text views, 9 
checking consistency of, 32 
creating, 9, 24-26 
embedding objects in, 26-27 
getting and setting text style and, 32 
getting current selection and, 30-31 
getting viewed object's DID, 26 
inserting in scroll window, 30 
interacting with Input subsystem, 

27-29 

messages, 23-24 
scrolling, 29 
using, 23-32 
xRegions, 29 

illustrated, 28 
yRegions, 28 

illustrated, 28 
see also Text 

theAddressBookMgr, 318 
address book manager protocol 

and,320 
address book protocol and, 319 
changing information and, 328 
getting more information and, 327 
observing,330 
option sheet protocol and, 330 
system address book and, 329-330 

theAuxNotebookMgr, 380, 421 
file system and, 422 

theBootVolume, 431 

theBusyManager, 193 
in busy clock delay and reference 

count, 194 
example, 193 
messages, 193 
using, 193-194 

theFileSystem,49 
observer, 89 

theHighSpeedPacketHandlers, 252, 273 

thelnstalledApps, 377, 388,406 

thelnstalledFonts, 388, 406 
function, 416 

thelnstalledHWX, 378 

thelnstalledHWXProtos, 388, 406 

thelnstalledPDicts, 406 

thelnstalledPreferences, 361-362 

thelnstalledPrefs, 406 

thelnstalledServices, 256, 388, 406 
function, 416 
in service deinstallation, 465 
in service installation, 442 

theParallelDevices, 251, 275 
in closing port, 277 
function, 276 
in opening port, 276 

thePrinterDevices, 257 

thePrintManager, 308 
output service, 308 

theQuickHelp, 181 
advanced topics, 187 
object, 182 

theSearchManager, 196 
creating mark and, 196 
replacing characters and, 198 
searching text and, 197 

theSelectedVolume, 431 
services in, 445 

theSelectionManager, 31, 155 
messages from clients to, 158-159 
messages passed, 161-162 
messages sent to selection owners, 

159-161 
observer notification and, 163 
ownership and, 155-156 
preserving selection and, 156 
promoting/demoting and, 160 
responsibilities, 155 
setting owner and, 159 

theSendableServices, 319, 331 

theSendManager, 308 
output service, 308 

theSerialDevices, 251, 257, 265 
data modem and, 279-280 
in requesting handle, 268 

theSystem, 429 

theSystemPreferences, 110,361 
at boot time, 362 
preference change notification 

and,368 

theSystemResFile, 346 

theTimer, 103, 104 
messages, 104 

theTransportHandlers, 298 

theUndoManager, 200 
aborting transaction and, 204 
adding items and, 203 
beginning transaction and, 202-203 
ending transaction and, 204 
messages, 202 
transaction history size and, 205 
transaction metrics and, 205 

theWorkingDir,61 
paths and stdio and, 66 
stdio operations and, 65 

Time 
current, 104 
formats, 110 
strings, 110 
system, 110 
see also Dateltime services 

Time and date preference, 366 

Time format preference, 367 

TIME.H,114 

Time Management application, 391-392 

Timer 
interface, 104-105 
routines, 103 

TOC browser, 148 
exporting and, 152 
importing and, 148 

TOPS SoftTalk (Sitka), 253, 295 

TP_NEW_ONLY structure, 298 

TP _RECVFROM structure, 300 

TP _SENDRECVTO structure, 300 



TP _SENDTO structure, 299 

Transaction, 199 
aborting, 204-205 
adding items to, 203-204 
beginning,202-203 
data, 201 
ending,204 
history, changing size of, 205 
metrics, getting, 205 
services, 296 

requesting, 300 
responding to, 301 

undoing, 206 

Transfer 
ASCII metrics, 175 
buffer 

fixed-length, 174 
structures, 167 
types, 173-174 
variable-length, 174-175 

client-defined, 170 
defined, 167 

functions and messages, 170-171 
one-shot, 167-168 

defined, 167 
performing, 173-174 
replying to, 176 

protocols, 167-170 
stream, 168-170 

defined, 167 
performing,176-178 

types, 166 
adding to list, 172-173 
establishing, 171-173 
listing, 172 
requesting, 172 
searching list, 173 

Transfer class, 165-178 
concepts, 165-167 
es~ablishing transfer type, 171-173 
functions, 124 

messages and, 170-171 
performing one-shot transfers 

and, 173-176 
performing stream transfers 

and, 176-178 
transfer protocols, 167-170 

Transport 
address, 296 

binding to, 301 
protocols, 253 
service types, 296 

Transport API, 295-304 
concepts, 295-297 
using clsTransport, 297-301 

for AppleTalk, 301-304 

Traverse 
call back routine, 82 
ordering of, 82 
quicksort routine, 82 

tsAlignEdge,29 

TV _EMBED_METRICS structure, 26 

TV_NEW structure, 9, 25 
inserting text view in scrolling 

window and, 30 
style flag, 30 

TV_RESOLVE structure, 27 

TV_SCROLL structure, 29 

TV_STYLE flags, 25-26 

Twips,10 

UID 
getting viewed object and, 26 
open service object class and, 441 

Undo 
command, 199 
history, 201 
items, 199,201 

deallocating buffer and, 201 

UNDO_ITEM structure, 203, 

Undo manager, 199-206 
concepts, 199-201 
deallocating buffer and, 201 
function, 124 
instance, 200 
messages, 202 

using,202-206 

UNDO_METRICS structure, 205 

UNISTD.H, 114 
Unrecognized character preference, 368 

User column, browser, 145-146 

User interface, displaying, 332 

Utility classes, 123 
features, 124 
see also specific classes 

Values 
attribute, 78 

getting length of, 79 
setting,79 
types of, 76 
zero, 77 

Versions, DLL file, 402 
operating system, 403 

Volume connectivity strategy, 244 

Volumes, 43, 49-52 
concepts, 49 
connecting and disconnecting, 50 
defined,49 
directory structure on, 53 
distribution, 390-398 
general structure, 384 
getting information about, 90-91 
list of, 49 
messages specific to, 91 

INDEX 527 

metrics, 49-50 
information for, 90 

multiple, 398 
names, 51 

duplicate, 50 
local disk, 51 
memory-resident, 52 
remote, 51 
setting/changing, 91 

protection of, 67 
traversing, 82 
types, 50-52 

local disk, 51 
memory-resident, 52 
remote, 51-52 

uses of, 381 

Volume structure, 383 

WATCOM C run-time library. see 
C run-time library 

Well-known list resource IDs, 344 
defined,343 
index, 344 

Well-known ports, 296 

Well-known resource IDs, 343 
defined, 343 

Window 
address, 332 

creating,333 
filling,333-334 

Quick Help, 181 
example, 186 
opening, 188 

WknltemResIdO macro, 344 

WknListResIdO macro, 344 

WknObjResIdO macro, 345 

WknResIdO macro, 345 

Wrapper document, 310 

Writing 
address book, 328-330 
agents, own, 354 
browser state, 143 
data resource, 349-350 

resource agents and, 353 
files, 83 
object resource, 351 
objects and data, 44-45 
to parallel port, 278 
with serial port, 271 
services, 435-472 
streams, 134 

with timeout, 134-135 
see also Reading 

Writing Paper application, 31 

Writing style preference, 364 



528 INDEX 

XferAddIdsO function, 171-172 
to add transfer type to list, 172 
parameters, 173 
prototype for, 172-173 

XFER_ASCICMETRICS structure, 31 
in transfer, 175 

XFE~BUF structure, 174-175 

XFER_CONNECT structure, 178 

XFER_FIXED_BUF structure, 174 

XFER.H, 173-174 

XferListSearchO function, 171 
parameters, 173 
prototype, 173 
in searching transfer type list, 173 

XferMatchO, 171 
to list transfer types, 172 
parameters to, 172 
prototype for, 172 

Xfer mechanism, 30-31 

XferStreamAccept, 177 

XferStreamConnectO function, 176 
arguments, 176 
function, 176-177 

XON/XOFF flow control, 265-266 
see also Flow control 

\ Your Company directory, 384 
organization, 389 
subdirectories, 390 

ZIP _GETZONES structure, 304 

Zone protocol, AppleTalk, 304 

Zooming allowed preference, 365 



Your comments on our software documentation are important to us. Is this manual 

useful to you? Does it meet your needs? If not, how can we make it better? Is there 

something we're doing right and you want to see more of? 

Make a copy of this form and let us know how you feel. You can also send us marked 

up pages. Along with your comments, please specify the name of the book and the page 

numbers of any specific comments. 

Please indicate your previous programming experience: 

OMS-DOS o Mainframe o Minicomputer 

o Macintosh o None o Other _________ _ 

Please rate your answers to the following questions on a scale of 1 to 5: 

1 2 3 .4 
POlor Averoge 

How useful was this book? 0 0 D 0 D 
Was information easy to find? D 0 0 D D 
Was the organization dear? 0 0 0 0 D 
Was the book technically accurate? D 0 D 0 D 
Were topics covered in enough detail? D D 0 0 D 

Additional comments: 

Your name and address: 

Name 

Company 

Address _____________________________ _ 

City _____________ State ______ _ 

Mail this form to: 

Team Manager, Developer Documentation 
GO Corporation 
919 E. Hillsdale Blvd., Suite 400 
Foster City, CA 94404-2128 

Or fax it to: (415) 345-9833 

Zip ______ _ 





Padl.age Design Letter 

C/a:!.rnenl Edit Op:tonS View Insert Case 

Can 'fOJ desi~ a liibtweiibt. recyclable, 8 oz. i' 
plastic bdrle lhat wm'tb~k under mo.ierate 
implct7 I' ll be tra~llingnextweek.bJtyoJ 
can fax me suggested JXcpc6als at2131 
SSS·Sl!33, 

Suggeslion 

Cl_u 
I'----------J I 
~~-----.------~ 

9 780201 608601 

ISBN 0-201-60860-X 
60860 


