
MIL-Lite
version 6.1

User Guide and Command Reference
Manual no. 10514-801-0610

March 1, 2000

Matrox® is a registered trademark of Matrox Electronic Systems Ltd.

Microsoft®, Windows®, and Windows NT® are registered trademarks of
Microsoft Corporation.

PC/104-Plus™ is a trademark of the PC/104 Consortium.

CompactPCI™ is a trademark of PCI Industrial Computer
Manufacturers’ Group.

Intel®, Pentium®, and Pentium II® are registered trademarks of Intel
Corporation.

Texas Instruments is a trademark of Texas Instruments Incorporated.

All other nationally and internationally recognized trademarks and
tradenames are hereby acknowledged.
© Copyright Matrox Electronic Systems Ltd., 2000. All rights reserved.

Disclaimer: Matrox Electronic Systems Ltd. reserves the right to make
changes in specifications at any time and without notice. The
information provided in this document is believed to be accurate and
reliable. However, no responsibility is assumed by Matrox Electronic
Systems Ltd. for its use; nor for any infringements of patents or other rights
of third parties resulting from its use. No license is granted under any
patents or patent rights of Matrox Electronic Systems Ltd.

PRINTED IN CANADA

 Contents
Chapter 1: Getting started . 13

The MIL-Lite package 14

MIL and the Intel MMX™/SSE™
technologies .16

System requirements 17

Getting started .18

Installation .19

Building an application20

Distributing your MIL application24

Chapter 2: Allocating an image buffer and grabbing
images . 27

Getting started .28

Allocating and displaying an image buffer29

Grabbing images. .32

Chapter 3: Specifying and managing your
data buffers . 35

Data buffers .36
Target system .37

Specifying the dimensions of a data buffer . . .37

Data type and depth .38

Attribute .38

Manipulating and controlling certain data
buffer areas .42

Child buffers .42

Copying specific buffer areas 43

Managing data buffers 44

Controlling how color image buffers
are stored. 46

RGB buffers . 47

Binary buffers . 49

YUV buffers . 49

YUV16 Packed . 50

YUV9 Planar . 51

YUV12 Planar . 51

YUV16 Planar . 52

YUV24 Planar . 53

Child YUV buffers 53

Accessing a MIL buffer directly 54

Mapping a data buffer to user-allocated
memory . 55

Pixel conventions . 58

Chapter 4: Lookup tables . 59

Lookup tables . 60

LUTs and data buffers 61

Loading and generating data into LUTs 61
Generating data directly into the
LUT buffer . 61

Loading LUTs with precalculated data 62

Using LUTs . 63

Displaying using LUTs 63

LUTs and digitizers 64

Chapter 5: Displaying an image 65

Displaying an image .66

Display configuration 67

Single-screen configuration.67

Dual-screen configuration.67

Multi-head display configuration.68

Display modes and the display window69

Displaying in windowed-mode.69

Displaying in non-windowed mode69

Display size and depth70

Displaying buffers of different data
depths .70

Removing a buffer from the display71

Displaying multiple buffers72

Panning, scrolling, and zooming 75

Annotating the displayed image
non-destructively .76

Using GDI annotations78

Displaying an image in a user-defined

window .81

Using the MdispSelectWindow() function. . .81

LUTs and changing the displayed colors or
gray levels .85

Changing the default LUT values 86

Different display architectures in windowed
mode . 88

Underlay display architecture 89

Overlay/regular display architecture 90

DirectDraw underlay-surface display
architecture. 91

Advanced controls for windowed mode 92

Display types in windowed mode 92

Zoom types in windowed mode. 93

Controlling how the LUT buffer is loaded
into the Windows palette 94

Controlling how the logical palette is loaded
into the physical output LUTs 94

Chapter 6: Generating graphics 97

MIL and graphics . 98

Preparing for graphics 98

Drawing graphics . 100

Writing text . 102

Chapter 7: Grabbing with your digitizer 103
Cameras and input devices 104

The data format . 105

The digitizer number 106

Multiple cameras . 106

Number of frames or fields 107

Grabbing to the display 108

Live and pseudo-live continuous grabs. . . 108

Live transfer to the display. 109

Pseudo-live transfers to the display 109

Window occlusion111

Reference levels, lookup tables, and scaling. .113

Black and white reference levels113

Color image reference levels 114

Mapping grabbed data through a LUT . . .114

Scaling .115

Optimizing application performance when
grabbing .116

Grab mode .116

Double buffering.117

Multiple buffering119

Grabbing a sequence of frames in
real-time. .120

Grabbing with triggers and exposures120

Asynchronous reset mode.121

Triggers and exposures.122

Software triggers.125

Chapter 8: Color .127

Dealing with color .128
Grabbing. .128

Displaying. .130

Saving and loading color images131

How to manage your color buffer.131

Chapter 9: JPEG compression 135

Introduction. 136

General steps . 137

Controlling a JPEG compression 138

JPEG lossless . 138

JPEG lossy . 139

Using your own table 140

Restart markers . 141

Chapter 10: Data manipulation with multiple
systems . 143

Data manipulation with multiple systems. . . 144

Chapter 11: Using MIL with multi-processing and
under multi-thread systems . 145

Multi-processing . 146

Multi-threading . 147

MIL and multi-threading 148

Chapter 12: Using MIL with Native Mode Functions . 157
Integrating native functions with MIL code . . 158

Portability . 158

Signaling MIL about Native Mode use. . . . 158

A native mode example. 159

Chapter 13: Programming with MIL 165

A MIL overview .166

Starting your MIL application 167

Header file and libraries168

MIL object manipulation concepts.168

Error handling .169

Tracing an application 170

A quick command reference 171

The application allocation and control
module .171

The buffer allocation and access
module .172

The digitizer allocation and control
module .174

The display allocation and control
module .175

The basic data generation module.176

The basic graphics module176

The system allocation and inquiry
module .177
Chapter 14: The command reference
descriptions .179

The reference description notes180

Appendix A: The default setup configuration file . . .385

The default setup configuration file386

When you do not want to use defaults390

 Appendix B: The MIL Function Developer’s
Toolkit . 393

The MIL Function Developer’s Toolkit 394

An example using the
Function Developer’s Toolkit 394

MIL Function Developer’s Toolkit
Command Reference 397

Appendix C: Troubleshooting . 423

Error reporting. 424

Error messages explained. 425

Driver error messages explained. 437

Index

Product Support

MIL-Lite

Part I:

Using
To gain portable keys to...

image acquisition

image display

Chapter 1: Getting started

This chapter presents the MIL-Lite package features. It also
explains the installation process and how to run a MIL-Lite
application program.

14 Chapter 1: Getting started

The MIL-Lite package

MIL-Lite is a subset of MIL, the Matrox Imaging Library
package. It includes all the MIL features for acquisition, data
manipulation, graphics, and display control. Since all MIL-Lite
features are identical to those in MIL, we use the word "MIL"
to represent "MIL-Lite" throughout this manual.

The MIL package is a hardware-independent modular 32-bit
imaging library. In general, MIL can manipulate either binary,
grayscale, or color images.

The package has been designed for fast application
development and ease of use. It has a completely transparent
management system and entails virtual, rather than physical,
data object manipulation, allowing for platform-independent
applications. This means that a MIL application can run on any
VESA-compatible VGA board or Matrox imaging board under
different environments (that is, Windows 98/NT/2000). MIL
uses the notion of systems to identify boards, and more than
one board can be controlled by a single application program.
MIL is capable of running solely with the Host CPU, but can
take advantage of specialized accelerated Matrox hardware if
it is available and is more efficient.

Image acquisition Images can be loaded from disk or acquired from the wide range
of supported input devices (if hardware permits) and can be
stored in your platform’s storage area. Sequences of images can

also be loaded and saved in .avi format.

Graphics capabilities You can annotate or alter images using the basic graphics tools
in MIL. MIL has commands to write text, as well as commands
to draw rectangles, arcs, lines, and dots.

The MIL-Lite package 15

Creating your own MIL
functions

If the available MIL operations do not provide the required
functionality or do not make use of some board-specific feature,
you can use the MIL Developer’s Toolkit to directly access your
target system’s driver functions through native mode and/or to
create your own pseudo-MIL functions. Note, although entering
native mode can be useful, you should be aware that the
resulting application will not be portable to other Matrox
platforms supported by the MIL package. The MIL Developer's
Toolkit is described in the Appendices of this manual.

MIL objects MIL handles physical objects (systems, digitizers, displays, and
data buffers) as virtual objects. These virtual objects must be
allocated before you can manipulate them and must be released
when they are no longer required. For simple applications, you
seldom need to allocate these objects individually, since those
set up by default (MappAllocDefault()) generally meet your
application needs.

Image pixel depth The MIL package can:

■ Grab up to 16-bit grayscale images, or color images

■ Display 1, 8, or 16-bit grayscale or color images (if the
platform supports it).

MIL documentation’s
word usage

All the MIL documentation uses the words function and
command interchangeably, since most of the commands in MIL
are C functions. Digitizer and frame grabber are also used
interchangeably. Finally, in general, Host refers to the principal

CPU in one’s computer while system refers to your Matrox
imaging board and its associated resources.

Command descriptions Descriptions of the individual commands are found in the
Command Reference part of this manual.

16 Chapter 1: Getting started

MIL and the Intel MMX™/SSE™
technologies

MIL has been optimized, in assembly language, to take
advantage of Intel MMX™ acceleration and Streaming SIMD
Extensions (SSE).

MMX™ Intel MMX™ Technology, an extension to the Intel architecture,
is designed specifically to accelerate multimedia (and
multimedia-like) applications. Intel MMX™ Technology is built
to handle computation-intensive algorithms that perform
repetitive operations on small data types (such as 8-bit pixels).
The technology covers several areas, such as basic arithmetic
operations, logical operations, shift operations, comparison
operations, and data transfer instructions. These instructions
use a SIMD model that allows the processor to perform a single
calculation simultaneously on 2, 4, or 8 data elements by
packing multiple operands (8-bit, 16-bit, or 32-bit values) into
a single 64-bit register and performing processing functions on
them in parallel. On a x86 compatible processor with Intel
MMX™ Technology, MIL operations can execute, typically, 4
times faster than on a regular x86 processor. Some operations
benefit even more from the MMX™ acceleration.

SSE Streaming SIMD extensions accelerate performance of floating
point operations and include additional integer and
cacheability instructions that significantly enhance

performance.

System requirements 17

System requirements

The library MIL is available as a set of DLLs under Windows NT/98/2000.

The following system requirements should be respected in
order to ensure that MIL operates properly:

■ Computer with an x86 compatible processor.

■ Windows 98, Windows NT 4.0, or Windows 2000.

■ Minimum of 32 Mbytes RAM.

■ Minimum of 100 Mbytes free hard disk space.

■ Display adaptor (optional).

■ Matrox frame grabber (optional).

Supported compilers

The MIL CD includes MIL libraries that support the Microsoft
Visual C++ 6.0 (service pack 3) compiler under Windows NT 4.0
(service pack 6), Windows 98 SE, and Windows 2000. The CD
also includes ActiveMIL-Lite ActiveX controls for Microsoft
Visual Basic 6.0 (service pack 3) and Microsoft Visual C++ 6.0
(service pack 3) RAD tools. The service pack indicated in
parantheses denotes the actual platform used for testing.

18 Chapter 1: Getting started

Getting started

Getting started You are probably anxious to start using MIL. However, before
you start, we recommend that you follow these steps:

■ Fill out and mail in your registration card. This ensures that
you are on our mailing list and will receive any information
on product updates and promotions.

■ Install MIL on your hard disk using the installation details
in the next section. Upon completion, the readme.txt file, in
the \MIL (or user-specified) directory, specifies the location
of all MIL files and how to compile the MIL program
examples. See the \MIL\DOC directory for additional
documentation.

■ Compile and run our sample program mstart.exe, in the
examples directory, to test the installation.

■ Review the milsetup.h file to make sure that the default setup
configuration matches your system configuration.

Note, the defaults are not automatically loaded into your
system; a call to MappAllocDefault() initializes the system
with these defaults. For simplicity, most examples use the
default system and default display buffer. Upon installation,
the default image buffer is monochrome if the input device is
monochrome and color if the input device is color. Most
examples expect the default image buffer to be monochrome.

As you progress in the manual, you are shown how to set up
your own buffers and select other system configurations. You
can then return to a given example and replace portions of
the code to meet your requirements.

Installation 19

Installation

To install your MIL software, place the installation CD in an
appropriate drive. The setup.exe program will run
automatically.

During installation, you will be asked a number of questions,
such as:

■ The drive and directory on which to install the program.

■ Your target operating system and compiler.

■ The type of Matrox hardware installed in your computer (for
example, Matrox Corona).

■ The digitizer and display format to load into the default setup
file, milsetup.h.

■ The amount of DMA linear non-paged memory to reserve for
grab buffers. The amount of reserved DMA memory also
establishes the amount of remaining RAM available to your
operating system.

After installation, read the readme.txt file in the \MIL directory
to determine where MIL files are located and how to compile
and run the MIL examples. Note that the installation program
also installs Matrox Intellicam (your digitizer configuration
program) and the MIL Configuration utility.

MIL Configuration utility The MIL Configuration utility, located in your Matrox

Imaging\MILConfig directory, provides licensing, DMA
configuration, and system information tools. For example, if
you need to change the amount of reserved memory or if you
change the amount of physical memory in your computer, you
can change the amount of DMA memory assigned or RAM
available to your system at any time by running the MIL
Configuration utility (alternatively, you can adjust the memory
by uninstalling and reinstalling MIL). Should you require
technical support, use the MIL Configuration’s System Info
property page to generate a .txt file that contains all the
necessary system information required for basic
troubleshooting; this file can then be forwarded to your Matrox
technical support representative.

20 Chapter 1: Getting started

Building an application

Initialization At the beginning of each application, you must:

1. Allocate your MIL application. This creates a control and
execution environment for your imaging application.

2. Allocate your systems. This opens communication channels
and initializes the systems (or hardware resources). Once
Host communication has been established with a system,
you can allocate its memory resources, display, and input
capabilities.

Note, systems can have many data buffers, displays and

digitizers.

If the required system is the one specified in the milsetup.h file,
you can use the MappAllocDefault() macro (also specified in
milsetup.h) to allocate the default application, system, image
buffer, display, and digitizer. Use MappFreeDefault() to free the
application, devices, and memory resources that were allocated
with MappAllocDefault(), when they are no longer required.

Building an application 21

Alternatively, you can use MappAlloc(), MsysAlloc(),
MbufAllocColor(), MdispAlloc(), and MdigAlloc() to perform the
above-mentioned operations, respectively. In this case, when
allocated memory resources, displays, and digitizers are no
longer required, free them using MbufFree(), MdispFree(), and
MdigFree(), respectively. At the end of each application, free the
system using MsysFree(), then free the application using
MappFree().

❖ Note, for information about functionality and hardware
limitations specific to your target system, refer to the
MIL/MIL-Lite Board-specific notes manual.

Multiple systems Note, you can allocate more than one system and then use their
identifiers to access their devices and memory resources. Any
operation involving more than one system will be performed by
the most appropriate one. By default, if none of these systems
is more appropriate than the Host, then the Host is used to
perform the operation.

The default image
buffer

If a color digitizer configuration format (DCF) was specified
upon installation, the default image buffer is defined as a color
buffer (RGB) in the milsetup.h file. Note, most examples in this
manual assume that the default image buffer is a monochrome
buffer. You will have to modify the examples appropriately in
order to run them with color defaults. For more details on
dealing with color, see Chapter 8.

When allocating the default buffer and the default display, the

image buffer is given a displayable attribute and set to the same
size as the allocated display (in single-screen mode, the default
display is the same as that of the image capture-size specified
in the DCF). This buffer is then cleared and displayed.

Error reporting You can enable or disable error reporting to the Host screen,
using MappControl(). By default, error reporting is enabled. If
you disable error reporting, you can still determine the success
of a particular command or a sequence of commands, using
MappGetError(). In addition, you can assign a user-defined
function to handle the event of a MIL error using
MappHookFunction().

22 Chapter 1: Getting started

Compiling and linking To compile a MIL application program, you must include the
mil.h header file, in addition to the required standard C include
files. After you have compiled your application program, you
will have to link it with the appropriate libraries or import
libraries for your operating system, compiler, and target board.
The MIL libraries are located in the MATROX IMAGING (OR
USER-SPECIFIED)\MIL\LIBRARY\WINNT\MSC\DLL directory.

MIL Libraries Board Libraries

Library Description Library Description

mil.lib Core library mil1394.lib Matrox
Meteor-II/1394
library.

milvga.lib VGA library. milgen.lib Matrox Genesis
library.

milmet2.lib Matrox
Meteor-II/Stan-
dard/MultiChannel
library.

milmet2D.lib Matrox
Meteor-II/Digitizer

milorion.lib Matrox Orion
library.

milpul.lib Matrox Pulsar
library.
For more details, refer to
the readme.txt file in the
\MIL\EXAMPLES (or
user-specified)
directory.Testing
installation

We have provided a sample program, mstart.c, that allows you
to test the installation process and become familiar with
running a MIL application. This test program allocates the
application, opens communication with the default target
system, displays a welcoming message, pauses, and frees the
system resources.

Building an application 23

Communicating
properly?

During application development, you can use mstart.c to ensure
that the software is communicating properly with the target
system. To make sure your frame grabber is working properly
with your camera, use Intellicam.

���(KNG�PCOG��OUVCTV��E
���5[PQRUKU���6JKU�RTQITCO�FKURNC[U�C�YGNEQOKPI�OGUUCIG�VQ�VJG�WUGT�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

XQKF�OCKP
XQKF�
]
��/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����

����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
�������������������/A07..���/KN+OCIG��

����2TKPV�C�UVTKPI�KP�VJG�KOCIG�DWHHGT����
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.��������������������������
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.����9GNEQOG�VQ�/+.��������
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.��������������������������

����2TKPV�C�OGUUCIG�QP�VJG�*QUV�UETGGP����
��RTKPVH
�>P���
��RTKPVH
�>�9GNEQOG�VQ�/+.����>��YCU�RTKPVGF�>P>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

����(TGG�FGHCWNVU����
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

Examples in general Throughout this manual, examples have been provided to
simplify concepts and get you started quickly. The source listing
of these examples can be found on disk. Refer to the readme file
in the \MIL\EXAMPLES (or user-specified) directory to
determine how to compile these examples.

In addition, some systems cannot run some of the examples
because they don’t have the hardware capability or enough
memory. You should skip these examples or modify them.

24 Chapter 1: Getting started

Distributing your MIL application

To distribute your MIL application, you will have to distribute
MIL run-time DLL files with your application.

If the target computers (on which you want to install the MIL
run-time DLLs) are immediately accessible, you can install the
run-time DLLs directly from the MIL CD. To do so, run the MIL
setup program and choose the redistribution option.

Alternatively, to distribute your MIL run-time DLLs, you can
have your setup program call MIL’s redistribution setup
program. There are two ways to distribute the MIL run-time
DLLs along with your application:

■ Normal distribution

■ Silent distribution

Normal distribution A normal distribution prompts the user with MIL dialog boxes
for setup information. To distribute MIL run-time DLL files
with your software using this method:

1. Copy the \REDIST directory from the MIL CD to the path
from which you will burn your software CD.

2. Adjust your installation program so that it calls the
\REDIST\MATROX\SETUP.EXE file with the parameter,
REDISTRIBUTION.

The setup.exe file installs the required run-time MIL DLL files

on your client’s system.

Silent distribution A silent distribution does not prompt the user for any
information; instead, it uses a response file to provide the
necessary setup parameters for the intended computer. A silent
distribution is often wanted when including MIL within your
application and you do not wish to have any Matrox Imaging
setup dialog boxes appear.

Distributing your MIL application 25

To distribute the MIL run-time DLLs using a silent
distribution:

1. Follow the steps for a normal MIL redistribution of your
application.

2. Create a response file that provides the setup questions
with all the answers necessary to install MIL according to
the target computers. The response file’s format parameters
and error codes can be found in the Redist.txt file.

3. Call the redist.exe program with the additional
’RESPONSEFILE = "<filename>" -s’ parameter to specify
the name and the location of your resonse file. For example:

&�>4GFKUV>/CVTQZ>TGFKUV�GZG�4'&+564+$76+10�4'52105'(+.'��&�>4GFKUV>/CVTQZ>TGURQPUG�VZV���U

26 Chapter 1: Getting started

Chapter 2: Allocating an
image buffer and grabbing
images

This chapter shows you how to allocate an image buffer
and the basics to start grabbing images.

28 Chapter 2: Allocating an image buffer and grabbing images

Getting started

After having run the mstart.c program to ensure that you have
installed MIL properly, you are ready to grab and display an
image. This chapter covers how to allocate and display a
monochrome image buffer and the basics to start grabbing.

Note, most of our examples that grab data assume that the
system has a monochrome digitizer. They also assume that the
input device (camera) is monochrome and is connected to the
default input channel of this digitizer (defaults are defined in
the milsetup.h file).

In addition, the examples assume that the default image buffer
is monochrome.

If you have specified a color digitizer input format upon
installation, the default digitizer and image buffer will be set
to color accordingly (a color image buffer is an image buffer with
multiple color bands rather than a monochrome buffer), and
therefore will not be appropriate for most examples. To run the
examples using the color defaults, you will have to modify some
examples appropriately.

Later in this manual, we discuss changing the current input
channel, how to specify a different digitizer format, and how to
allocate different types of image buffer. With that knowledge,
you can return to this chapter and modify the examples.
Chapter 8 discusses dealing with color in detail.

Allocating and displaying an image buffer 29

Allocating and displaying an image buffer

Allocating an image
buffer

Image buffers are storage areas that can hold image data so
that it can be displayed, manipulated, grabbed, and/or
analyzed. For simple operations, you will find it sufficient to
use the default image buffer that can be allocated during
application initialization with the MappAllocDefault() macro.
However, for some operations, you will need to allocate another
buffer. For example, if you require that the image data
resulting from an operation does not overwrite the source data,
you will need two separate image buffers.

You allocate a monochrome image buffer, using MbufAlloc2d().
This command requires that you specify:

■ The system on which to allocate the buffer.

■ The image buffer’s size in x and y dimensions.

■ The depth of the buffer: 1-, 8-, 16-, or 32-bit buffers.

■ The image buffer’s data type. Signed, unsigned, and
floating-point buffers are all supported by MIL.

■ The image buffer’s intended use. You can allocate an image
buffer to have a combination of uses. It can be used as the
source or destination buffer for a processing operation
(M_PROC), a buffer in which to store acquired data (M_GRAB),
and/or a displayable buffer (M_DISP). This type of
information determines where the buffer is allocated in

physical memory.

Displaying an image
buffer

Especially during application development, it is useful to
display the image buffer that you are manipulating. You must
first allocate a MIL display on the target system, using
MdispAlloc() (or MappAllocDefault()). If you have allocated a
displayable buffer (M_DISP), display it in this display, using
MdispSelect() and stop displaying it using MdispDeselect().
Note, however, that the image buffer and the display must be
allocated on the same system.

30 Chapter 2: Allocating an image buffer and grabbing images

The following example shows you how to allocate and display
an image buffer. Upon completion, it leaves the buffer contents
on the display so that you can analyze it. You can modify the
example and remove it from the display upon exit by calling
MdispDeselect() before freeing the image buffer.

���(KNG�PCOG��OFKURNC[�E
���5[PQRUKU��6JKU�RTQITCO�CNNQECVGU�C�FKURNC[CDNG�KOCIG�DWHHGT��ENGCTU�KVU�
�������������EQPVGPVU��FTCYU�C�HKNNGF�EKTENG��CPF�VJGP�FKURNC[U�VJG�DWHHGT�
�������������+V�CNUQ�EJGEMU�YJGVJGT�VJG�CNNQECVKQP�YCU�UWEEGUUHWN��WUKPI
�������������VJG�/+.�GTTQT�TGRQTVKPI�OGEJCPKUO�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J �

�FGHKPG�+/#)'A&'26*���.

XQKF�OCKP
XQKF�
]�
��/+.A+&��/KN#RRNKECVKQP������#RRNKECVKQP�KFGPVKHKGT������
����������/KN5[UVGO�����������5[UVGO�KFGPVKHKGT�����������
����������/KN&KURNC[����������&KURNC[�KFGPVKHKGT����������
����������/KN+OCIG������������+OCIG�DWHHGT�KFGPVKHKGT�����
��NQPI����'TTQT%QFG�����������'TTQT�EQFG�XCNWG������������

����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
����������������������������������/A07..��/A07..��

����#NNQECVG�C�VYQ�FKOGPUKQPCN�KOCIG�DWHHGT�YKVJ�VJG�UCOG�FKOGPUKQPU�CU�VJG
�����FKURNC[CDNG�UETGGP��KP�YJKEJ�VQ�RGTHQTO�ITCRJKE�QRGTCVKQPU��
����
��/DWH#NNQE�F
/KN5[UVGO��/A&'(A+/#)'A5+<'A:A/+0�/A&'(A+/#)'A5+<'A;A/+0��
�������������������������/A&'(A+/#)'A6;2'��/A+/#)'
/A&+52���/KN+OCIG���
���
EQPV������

Allocating and displaying an image buffer 31

In this example, we also showed how to determine the success
of a buffer allocation. Subsequent examples will not perform

�����%JGEM�VJG�GTTQT�UVCVWU�EQFG�UGV�D[�VJG�CNNQECVKQP�EQOOCPF��+H�VJGTG�
�����YCU�PQ�GTTQT��FTCY�CPF�FKURNC[�C�EKTENG��QVJGTYKUG�RTKPV�CP�GTTQT
�����OGUUCIG�CPF�GZKV��
�����
���/CRR)GV'TTQT
/A%744'06���'TTQT%QFG��
���KH�
'TTQT%QFG����/A07..�
���]
���������%NGCT�DWHHGT�CPF�FTCY�C�EKTENG�����
�������/DWH%NGCT
/KN+OCIG���.��
�������/ITC%QNQT
/A&'(#7.6�����.��
�������/ITC#TE(KNN
/A&'(#7.6��/KN+OCIG�����.�����.�����.�����.��������������

���������&KURNC[�VJG�KOCIG�DWHHGT����
�������/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

���������2TKPV�C�OGUUCIG����
�������RTKPVH
�#�EKTENG�YCU�FTCYP�KP�VJG�FKURNC[GF�KOCIG�DWHHGT�>P���
�������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�������IGVEJCT
��

���������4GNGCUG�KOCIG�DWHHGT����
�������/DWH(TGG
/KN+OCIG��
���_
���GNUG
���]
���������2TKPV�CP�GTTQT�OGUUCIG����
�������RTKPVH
�'TTQT��+OCIG�DWHHGT�CNNQECVKQP�HCKNGF�>P���
�������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�������IGVEJCT
��
���_
��
�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

explicit error checking; instead, errors will be returned
automatically to the screen.

Note, if you allocated the default buffer (MappAllocDefault()),
this buffer would be cleared and displayed by default.

Displaying multiple
buffers

With MIL, you can also display multiple buffers. This is
discussed later in the manual, in Chapter 5: Displaying an
image.

32 Chapter 2: Allocating an image buffer and grabbing images

Grabbing images

Grabbing an image Many applications depend on the ability to grab an image for
later analysis or inspection. With MIL, you use an allocated
digitizer to grab from an input device (typically a video camera).
To allocate your digitizer, use MdigAlloc() or
MappAllocDefault(). This configures the camera interface on
the digitizer so it can accept input from the input device. With
a call to MdigGrab(), you can then grab into a grab image buffer
(M_GRAB).

The following example shows you how to grab an image from
the default camera.

���(KNG�PCOG��OITCD�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�HTQO�VJG�ECOGTC�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
���/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�������
�����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT������������
�����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT�����������
�����������/KN&KIKVK\GT���������&KIKVK\GT�KFGPVKHKGT���������
�����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT������

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
���������������������/KN&KIKVK\GT���/KN+OCIG��
�����)TCD�CP�KOCIG�����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG��

�����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
���RTKPVH
�#P�KOCIG�JCU�DGGP�ITCDDGF�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN&KIKVK\GT�
�������������������/KN+OCIG��
���������������������������������
_

Grabbing images 33

Allocate the grab image buffer on the same system, and of the
same data format type, as the digitizer. For color input devices,
use color image buffers (see Chapter 8: Color).

By default, when MdigGrab() is issued, it grabs a complete
frame of data. Use MdigControl() to control the number of
frames or fields grabbed by MdigGrab(). To control the digitizer,
see Chapter 7: Input devices and digitizers.

Continuous grabbing
and adjusting your
camera

When adjusting and focusing your camera, grabbing a single
frame at a time can be tedious. MIL features a continuous grab
function, MdigGrabContinuous(), that grabs image frames into
the specified buffer until you issue MdigHalt().

This is discussed in greater detail in Chapter 7: Input devices
and digitizers. The following example is of adjusting a camera
using a continuous grab.

���(KNG�PCOG��OHQEWU�E�
���5[PQRUKU���6JKU�RTQITCO�CNNQYU�[QW�VQ�CFLWUV�[QWT�ECOGTC�D[�ITCDDKPI
��������������EQPVKPWQWUN[�WPVKN�C�MG[�KU�RTGUUGF�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
���/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT������
�����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�����������
�����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT����������
�����������/KN&KIKVK\GT���������&KIKVK\GT�KFGPVKHKGT��������
�����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�����
�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
���������������������/KN&KIKVK\GT���/KN+OCIG��

�����)TCD�EQPVKPWQWUN[����
���/FKI)TCD%QPVKPWQWU
/KN&KIKVK\GT��/KN+OCIG��

���
EQPV������

34 Chapter 2: Allocating an image buffer and grabbing images

���9JGP�C�MG[�KU�RTGUUGF��JCNV����
���RTKPVH
�%QPVKPWQWU�ITCD�KP�RTQITGUU��#FLWUV�[QWT�ECOGTC�CPF>P���
���RTKPVH
�RTGUU��'PVGT �VQ�UVQR�ITCDDKPI�>P���
���IGVEJCT
��
����
�����5VQR�EQPVKPWQWU�ITCD����
���/FKI*CNV
/KN&KIKVK\GT��

�����2CWUG�VQ�UJQY�VJG�TGUWNV����
���RTKPVH
�>P&KURNC[KPI�VJG�NCUV�ITCDDGF�KOCIG�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[�
���������������������������������/KN&KIKVK\GT��/KN+OCIG��
_

Chapter 3: Specifying and
managing your data buffers

This chapter discusses data buffers in detail. It shows you
how to allocate and manage data buffers, and how to
restrict an operation to a portion of a data buffer by using
child buffers. It shows you how YUV buffers are stored, how
to create a user-defined buffer, and how MIL defines the
pixel reference position.

36 Chapter 3: Specifying and managing your data buffers

Data buffers

Data buffers In this manual, the term data buffer is used loosely to refer to
the most general type of data buffer (storage area) that is
allocated by the MIL package and operated on by most MIL
functions. For example, a data buffer can be a buffer for image
data or one for lookup table (LUT) data. Besides data buffers,
there are also other buffers (for example, result buffers), which
are specific to a particular group of functions. These types of
buffers are discussed in the chapters describing their related
functions.

Allocating data buffers All data buffers must be allocated before a function can access
them. You can allocate a monochrome buffer using
MbufAlloc1d(), MbufAlloc2d(), or MbufAllocColor(). You
allocate a color buffer using MbufAllocColor().

When allocating a data buffer, you must specify its:

■ Target system.

■ Dimensions.

■ Data type and depth.

■ Attribute.

Controlling specific
parts

You can manipulate or control specific parts of data buffers
by allocating and using child buffers. A child buffer is a subset
of the parent buffer (a specific area of the parent buffer).

Although any change made to the child buffer data affects the
parent buffer, the buffer is considered a data buffer in its own
right; wherever the parent buffer can be used, you can use the
child buffer instead to affect only a part of the buffer. All results
are returned relative to the child buffer coordinates rather than
the parent buffer.

Target system 37

Target system

A data buffer is allocated on the specified system. If the
M_DEFAULT_HOST system is specified, the default Host system
of the current MIL application will be used. If M_DEFAULT is
specified, MIL will select the most appropriate system on which
to allocate the data buffer (it can be the default Host system or
any currently allocated system).

In addition, any operation involving one or more buffers will be
performed by the most appropriate system that is associated
with one of the buffers. By default, if none of these systems is
more appropriate than the Host, the Host is used to perform
the operation.

Specifying the dimensions of a data buffer

Data buffers can have up to three dimensions: an x, y, and color
band dimension. Most data buffers have an x dimension (for
example, LUT buffers) or an x and y dimension (for example,
monochrome image buffers). The color-band dimension has
been provided to allow you to store data for each color
component used to represent an image; when allocating color
buffers, each band will be of the same data depth and type.

Once you finish using a data buffer, you should release its
memory space, using MbufFree().
Color band 0
Color band 1

Color band 2

RGB
image buffer

38 Chapter 3: Specifying and managing your data buffers

Certain MIL functions support manipulating multi-band image
buffers. See Chapter 21: Color 8 for details on handling color
image buffers.

Data type and depth

Data type and
depth

The data depth of a buffer indicates the number of bits per band
in the buffer (1, 8, 16, 32). The data type of a buffer indicates
how its data is internally represented (that is, whether the data
is considered signed, unsigned, or floating-point). Supported
combinations are: 1-bit packed binary; 8-, 16-, and 32-bit
integer (signed and unsigned); and 32-bit floating-point. If a
function can only operate on data buffers of certain depths, this
is explicitly stated in the command’s description, otherwise the
function can be used with any combination of data buffers (the
The MIL-Lite User Guide and Command Reference manual).

Packed binary buffers The packed binary data format represents each pixel by a single
bit, in a state of 0 or 1. Therefore, 8 pixels can be packed in a
single byte (known as an 8-bit data unit); that is, in a format
eight times smaller than an 8-bit image.

Integer and
floating-point buffers

In general, the fewer bits per pixel in a buffer, the faster an
operation can be performed on the buffer. Packed binary buffers
are the fastest to process. When you need to use integer buffers,
use 8 bits per pixel when possible, 16 bits if necessary, and 32
bits as a last resort. When you need non-integer values, extra

precision, or a greater dynamic range, you can use
floating-point data buffers.

Attribute

Buffer type and
usage

The data buffer attribute indicates the buffer type and its
intended usage. MIL uses this information to determine the
most appropriate location in physical memory in which to
allocate the buffer, and how to handle the buffer. A data buffer
can be one of the following types:

■ M_IMAGE (image buffer).

■ M_LUT (lookup table buffer).

Attribute 39

■ M_KERNEL (kernel buffer for convolution functions).

■ M_STRUCT_ELEMENT (structuring element buffer for
morphology functions).

Allocating an image
buffer

When allocating an image buffer (M_IMAGE), you must give
more information about its intended usage. An image buffer
can be any combination of the following:

■ A buffer that can be displayed (M_DISP).

■ A buffer in which data can be grabbed (M_GRAB).

■ A buffer in which data is stored in a compressed format
(M_COMPRESS).

For example, to allocate an image buffer that can be displayed
and used for processing, its attribute should be given as:

 M_IMAGE + M_DISP + M_GRAB

In general, buffers are allocated in Host memory instead of
on-board memory by default. This is because on-board memory
is limited in size and Host memory can be accessed much faster
than on-board memory. However, if the system has an on-board
processor, the buffer is allocated on-board by default. These
defaults can be overridden by using the MbufAlloc...()
M_ON_BOARD and M_OFF_BOARD attributes.

Grab buffers Buffers with an attribute of M_GRAB are allocated in DMA
memory, which is physically contiguous and always present.
This is also known as non-paged memory. An advantage to

non-paged memory is that a bus mastering device can write to
it without the help of the CPU.

If a system does not support grab buffers (for example,
M_HOST_SYSTEM), you could still allocate a buffer on such a
system in physically contiguous and always present memory by
giving it an M_NON_PAGED attribute instead.

40 Chapter 3: Specifying and managing your data buffers

Displayable buffers When a displayable buffer is allocated and selected for display
(MbufAlloc...() with M_DISP, and then MdispSelect()), two
buffers are maintained internally: one in Host memory for
processing purposes, the other in a frame buffer surface
(maintained directly or through a DIB) for display purposes
(not necessarily the same size). When the Host buffer is
modified, its associated buffer in the frame buffer surface is
automatically updated. When displaying a buffer, both the
buffer and the display must have been allocated on the same
system.

When grabbing a single frame into a displayable buffer, MIL
grabs into the Host memory version of the buffer and then
updates the display of the buffer. When grabbing continuously,
the grab is made directly to the frame buffer surface and then
at the end of the grab, the Host buffer is updated.

Overriding the default
allocation sequence

On boards with a display section, you can override the default
buffer allocation sequence and force allocation only in the frame
buffer surface using the MbufAlloc...() M_ON_BOARD attribute.
In general, the buffer is allocated in the non-displayable area
of the frame buffer surface. If you are in a non-windowed mode
and the M_DISP attribute is specified, the buffer will be in the
displayable area. Note you can allocate only one
M_DISP+M_ON_BOARD buffer and one M_OVR+M_ON_BOARD
buffer unless stated in the MIL/MIL-Lite Board Specific Notes
manual.

Overriding the default allocation sequence is useful when

allocating a displayable buffer under any non-windowed mode.
If you are not using the displayable buffer for processing or are

Attribute 41

only using it as a destination, storing the buffer on-board will
avoid the extra copy operation to the display without the
penalty of slowing down processing.

Even if it is not in the displayed area of the frame buffer, the
image buffer depth and display depth must be the same.

Internal format of the
buffer

It is also possible to force the internal representation of a data
buffer using internal storage format specifiers, such as
M_PACKED or M_PLANAR, which force the data buffer to be in
a packed or planar format, respectively. Refer to
MbufAllocColor() for a complete list of internal format
specifiers.

Insufficient memory If there is insufficient memory of the appropriate type to

Host memory

Src
Buf A

Dest
Buf B

BUF B+

Host memory

Src
Buf A

ON-BOARD
Dest
Buf B
allocate a buffer with the specified attributes, the function
generates an error and does not allocate the buffer.

Inappropriate data
buffer usage

If you try to use a data buffer in a situation that is not
appropriate for its allocated attribute, an error message is
generated and the operation is not performed. For example, if
you try to display a buffer without an M_DISP attribute with
MdispSelect(), an error message will be generated.

42 Chapter 3: Specifying and managing your data buffers

Manipulating and controlling certain data
buffer areas

You can manipulate or control specific parts of a data buffer by
creating a child buffer within it or by copying specific parts of
it to another buffer.

Child buffers

Child buffers are
subsets of parent
buffers

A child buffer is a subset (or region of interest) of a given data
buffer (known as the parent buffer). Child buffers occupy a
specific area of the parent buffer. Since this area is part of the
same physical space as the parent buffer, changes made to the
child buffer affect the parent buffer and vice versa.

Allocating child
buffers

The child buffer is considered a data buffer in its own right.
Like its parent buffer, a child buffer must be allocated so that
it can be associated with an identifier and recognized as an
entity by the MIL package. Allocate a monochrome child buffer
using MbufChild1d() or MbufChild2d(). To allocate a child
buffer consisting of only one of the color bands of a multi-band
image buffer, use MbufChildColor() or MbufChildColor2d().
Note, as a subset of the parent buffer, a child buffer cannot
exceed the bounds of its parent in any dimension. For example,
a color buffer cannot be created from a monochrome parent
buffer.

A child buffer takes on the same attributes and type as the

parent buffer. In general, any operation that can be performed
on the parent buffer can also be performed on the child buffer.

Allocate a child buffer by specifying its size and offset with
respect to each of the parent buffer dimensions. After, when
using the child image buffer, any specified or returned
coordinates are relative to the child’s top-left corner.

As with any MIL data buffer, once you have finished using a
child data buffer, you must delete it, using MbufFree().

Manipulating and controlling certain data buffer areas 43

One major benefit of the child buffer is being able to handle
several buffers simultaneously, in contexts where normally
only one buffer can be handled. For example, when using MIL
in non-windowed mode, you can only display one buffer at a
time. However, you might want to display the source and
destination buffer of an operation simultaneously. You can get
around this situation by allocating a displayable image buffer
as large as the display, then allocating two child buffers from
this buffer. You can then use one as the source data buffer and
one as the destination. When the parent buffer is selected on
the display (MdispSelect()), both the source and the destination
child buffers can be seen.

Copying specific buffer areas

As an alternative to using a child buffer, you can restrict
operations to specific areas or bits of a buffer (child or parent)
by copying the required portions to another buffer. You can copy
data from any type of data buffer to another using any of the
following functions. For example:

■ Copy an image buffer to another buffer at the specified offset,
using MbufCopyClip(). Data that falls outside of the
destination buffer will be automatically clipped.

■ Copy specific non-sequential areas to another buffer based
on a conditional buffer, using MbufCopyCond(). Source buffer
data is copied to the destination buffer if corresponding data
in the specified conditional buffer satisfies the copy condition.
Other data in the destination buffer is left unaffected.
■ Copy specific non-consecutive bits to another buffer based on
a mask, using MbufCopyMask(). Only destination bits that
correspond to non-zero bits in the mask are modified with
source bits.

■ Copy a single band of a multi-color band buffer to or from a
single-band buffer, using MbufCopyColor() or
MbufCopyColor2d(). This allows you to operate on a single
color band of a buffer.

44 Chapter 3: Specifying and managing your data buffers

If the source buffer depth is greater than that of the destination,
the most significant bits are truncated when the data is copied
into the destination. If the source and destination buffers are
signed and the destination depth is greater than that of the
source, the source data is sign-extended when it is copied into
the destination.

MbufCopy() copies the entire buffer into another buffer, while
the other commands copy only portions of a buffer.

Managing data buffers

Besides the copy functions discussed in the previous section,
MIL provides several other data buffer management functions.
These allow you to transfer data between an array and a buffer,
load data into a buffer (or a sequence of buffers), and save a
buffer (or a sequence of buffers) to disk.

Putting and retrieving
data

You can put data from an array into a data buffer, using
MbufPut(), MbufPut1d(), MbufPut2d(), MbufPutColor(), or
MbufPutColor2d(). MbufPut() puts data in the entire buffer,
while MbufPutColor() or MbufPutColor2d() put data into one
or all color bands of a multi-band buffer. The other two
commands allow you to put data in a selected area of a
monochrome buffer, respectively.

In addition, you can retrieve data from a data buffer and place
it into an array, using MbufGet(), MbufGet1d(), MbufGet2d(),
MbufGetColor(), or MbufGetColor2d(). MbufGet() gets data

from the entire buffer, while MbufGetColor() or
MbufGetColor2d() get data from one or all bands of a
multi-band buffer. The other two commands, like their ‘put in
buffer’ counterparts, allow you to get data from a selected area
of a monochrome, respectively.

❖ Note that you can also access the contents of a MIL buffer
from an array by using MbufInquire(). Inquire the Host
address of the buffer, and then using a pointer access the
buffer as an array. This is discussed in more detail later.

Managing data buffers 45

Loading a data buffer You can load data, using one of two methods:

■ Load data into an automatically allocated MIL data buffer,
using MbufImport() with M_RESTORE, or using
MbufRestore().

■ Load data into a previously allocated MIL data buffer, using
MbufImport() with M_LOAD or using MbufLoad().

These commands internally handle the opening and closing of
the file. With MbufImport(), you can specify the file’s format.
MbufLoad() and MbufRestore() will read the data in the file to
determine the format, therefore they might take more time to
return a result.

Saving a data buffer You can save a data buffer to disk, using MbufExport() or
MbufSave(). MbufExport() is the most general of these
commands and can save data in any MIL-supported file format.
MbufSave() can only save data in an M_MIL file format.

These functions internally handle opening and closing the file.
If the given file name already exists, the file will be overwritten.

Loading and saving a
sequence of data
buffers

You can import or export a sequence of image buffers to a file
using MbufImportSequence() or MbufExportSequence(),
respectively. The available file formats are: standard AVI DIB
format, MJPEG format, and proprietary AVI MIL format.

46 Chapter 3: Specifying and managing your data buffers

Controlling how color image buffers are
stored

A color image buffer’s internal representation can be either in
a planar or packed format. When allocating the buffer, if its
attribute is also set to M_PLANAR, the pixels are stored in
planes (for example, RRR GGG BBB). When allocating the
buffer, if its attribute is set to M_PACKED, each pixel is stored
as one unit containing all its components (for example, RGB
RGB RGB).

MIL automatically selects the most appropriate format,
according to the specified intended usage attribute. If an image
buffer is allocated in one format, and a general processing
function requiring another format is called, the function will
automatically convert the data to the required format and
re-convert it back to its original format upon completion. To
change a buffer’s default internal storage format, change the
internal storage part of the attribute parameter for
MbufAllocColor(). Note that it might be slower to process
buffers with M_PACKED attributes.

In general, packed formats are mostly used for display
purposes; when selecting a buffer’s attribute as M_DISP, the
default internal representation is usually packed. This
configuration allows for faster transfers to display sections that
handle packed data (for example, VGA). However, if the display
section of your board has dedicated red, green, and blue frame

buffer planes, the buffer is allocated in planar format.

Planar formats are generally preferred for processing. Here,
the buffer stores each pixel as three component planes (for
example, RRR, GGG, BBB). Processing is done on each of the
components separately.

When allocating an image buffer with more than one attribute,
for example, M_DISP and M_PROC, the buffer’s internal
storage requirements for the display will take precedence over
other attributes.

See the MIL/MIL-Lite Board-Specific Notes manual to
determine which formats are supported on your board.

RGB buffers 47

RGB buffers

By default, MIL allocates color image buffers in an RGB color
format. The pixels are internally stored in little-endian order,
that is, they are stored in memory from their least-significant
to the most significant bytes. The definitions of the RGB
formats that are available are shown here. The corresponding
MIL constant is shown in brackets beside the common format
name.

RGB data formats BGR24 packed (M_BGR24+M_PACKED) is a format whereby
each pixel is internally stored as three consecutive bytes in
little-endian order, that is:

BGR32 packed (M_BGR32+M_PACKED) is a format whereby
each pixel is internally stored as four consecutive bytes, in
little-endian order. The most-significant byte is a "don’t care"
byte, as shown below:

Byte 0

Byte 1

Byte 2 R

G

B

Byte 3

Byte 4

Byte 5 R

G

B

.

.

.

.

.

.

R

G

B

x

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

R

G

B

x
.
.
.

.

.

.

48 Chapter 3: Specifying and managing your data buffers

RGB15 packed (M_RGB15+M_PACKED) is a format whereby
each pixel is internally stored as a 16-bit word with a 5-bit blue
value (least significant), a 5-bit green value, a 5-bit red value,
and a "don’t care" bit (most significant), in little-endian order,
as shown below. Note that when accessing an
M_RGB15+M_PACKED buffer as a 3-band 8-bit buffer, the least
significant bits of each band are set to 0.

RGB16 packed (M_RGB16+M_PACKED) is a format whereby
each pixel is internally stored as a 16-bit word with a 5-bit blue
value (least significant), a 6-bit green value, and a 5-bit red
value (most significant), in little-endian order, as shown below.
Note that when accessing an M_RGB16+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits of each band are
set to 0.

R G Bx

16-bit word

R G Bx

word 0

word 1

.

.

.

.

R G B

16-bit word

word 0
RGB planar are formats whereby the color components of all
the pixels are stored contiguously: (RRR...., BBB..., GGG...).

R G B word 1

.

.

.

.

Binary buffers 49

Binary buffers

Binary buffers have a different internal storage format than
other types of buffers: eight pixels are stored in one byte. The
leftmost pixel of an image is the least significant bit that is
stored in memory.

YUV buffers

YUV is a compressed format in which Y is the grayscale
component (luminance) and U and V are the color components.
MIL supports grabbing, loading, or saving images in a YUV
color format.

Although any general processing operation can be performed
on YUV buffers, allocating them for processing purposes is not
recommended because MIL is configured to process RGB color
data only. However, MIL will automatically convert YUV buffer
data to RGB for all general processing operations (including
conversion for display), and re-convert it to YUV upon
completion.

All YUV formats are supported even on the Host system.
However, only some systems support grabbing into YUV
buffers. See the MIL/MIL-Lite Board-Specific Notes manual to
determine if grabbing into YUV buffers is supported on your
system.
YUV buffers must be allocated as 3-band 8-bit buffers, however,
the actual number of bits per pixel will differ depending on the
YUV format selected.

The supported YUV formats are:

■ YUV16 Packed

■ YUV9 Planar

■ YUV12 Planar

■ YUV16 Planar

50 Chapter 3: Specifying and managing your data buffers

YUV16 Packed
YUV16 Packed or YUV 4:2:2 (M_YUV16+M_PACKED) is an
interleaved data format. Although each pixel has a
corresponding one byte Y (luminance component), each pair of
pixels share the same one byte U (chrominance U) and the same
one byte V (chrominance V). Since a pair (two pixels) is
represented by 4 bytes, each pixel has an average of 16 bits per
pixel.

The YUV16 packed data format has two available formats:
YUYV and UYVY. The only difference between these two YUV
formats is the ordering of data in the buffer. Certain digitizer
boards grab data in exclusively YUYV or UYVY packed data
format. In addition, certain display adapters are optimized to
handle YUYV format (or can only handle the YUYV format in
their underlay).

When you allocate an M_YUV16+M_PACKED buffer, MIL
allocates the buffer in the format that is most suitable for the
selected platform and the specified buffer attributes. You can,
however, force a format using the M_YUV16_YUYV or
M_YUV16_UYVY control types. When the buffer has an
M_GRAB attribute, forcing an inappropriate format generates
an error. When the buffer has an M_DISP attribute, if you force
the buffer in the other YUV format, then CPU intervention is
required to perform the automatic conversion. See the
MIL/MIL-Lite Board Specific Notes for supported data
formats.
YUYV

YUV buffers 51

UYVY

YUV9 Planar
YUV9 Planar (M_YUV9+M_PLANAR) is a planar format whose
components have a depth of one byte but are not of the same
size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 16 pixels share the same
one byte of U (chrominance U) and the same one byte of V
(chrominance V). Since the 16 pixels are represented by
18 bytes, each pixel has an average 9 bits. For example, a block
of 16 pixels has the following: 16 bytes Y and 1 byte each of U
and V.

Y Y Y Y Y Y Y Y7 6 5 4 3 2 1 0

U U U U U U U U7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y Y7 6 5 4 3 2 1 0

V V V V V V V V7 6 5 4 3 2 1 0

Byte 0

Byte 1

Byte 2

Byte 3

Y plane U plane V plane

1 1
YUV12 Planar
YUV12 Planar (M_YUV12+M_PLANAR) is a planar format
whose components have a depth of one byte but are not of the
same size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 4 pixels share the same
one byte of U (chrominance U) and the same one byte of V

4 x 4 bytes

byte byte

52 Chapter 3: Specifying and managing your data buffers

(chrominance V). Since the 16 pixels are represented by
24 bytes, each pixel has an average of 12 bits. For example, a
block of 16 pixels has the following: 16 bytes Y and 4 bytes each
of U and V.

YUV16 Planar

YUV16 Planar (M_YUV16+M_PLANAR) is a planar format
whose components have a depth of one byte but are not of the
same size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 2 pixels share the same
1 byte of U (chrominance U) and the same 1 byte of V
(chrominance V). Since the 16 pixels are represented by
32 bytes, each pixel has an average 16 bits. For example, a block
of 16 pixels has the following: 16 bytes Y and 8 bytes each of U
and V.

Y plane U plane

4 x 4 bytes

2 x 2
bytes

V plane

2 x 2
bytes

Y plane U plane V plane
4 x 4 bytes 2 x 4
bytes

2 x 4
bytes

YUV buffers 53

YUV24 Planar

YUV24 Planar (M_YUV24+M_PLANAR) is an uncompressed
planar format whose components have a depth of one byte and
are of equal size. Each pixel has a corresponding 1 byte Y
(luminance) component, 1 byte U component (chrominance U),
and 1 byte V component (chrominance V). Since the 16 pixels
are represented by 48 bytes, each pixel has an average 24 bits.
For example, a block of 16 pixels has the following: 16 bytes Y
and 16 bytes each of U and V.

Child YUV buffers

You can create child buffers from YUV buffers in the same way
as RGB child buffers. When creating YUV child buffers, MIL
will keep the proportions of the U and V bands with respect to
the Y band. For example, if your YUV9 Planar Y band is a size
of 256 x 256 pixels, the U and V bands will be 1/4 the size of the
Y band in each dimension (width and height): 64 x 64 pixels,

Y plane U plane V plane

4 x 4 bytes 4 x 4 bytes4 x 4 bytes
which is 1/16 the size of the Y band. If a child buffer is 16 x 16
pixels, then the U and V bands will be 4 x 4 pixels. In other
words, the 4 x 4 U and V bands (16 pixels) is 1/16 the size of the
Y band (256 pixels).

54 Chapter 3: Specifying and managing your data buffers

Accessing a MIL buffer directly

If needed, a MIL buffer’s contents can be accessed directly. For
instance, if you want to calculate the average value of the pixels
of your image, you could create a custom algorithm. The
algorithm could be applied directly to the buffer without having
to copy the contents of the MIL buffer into a user-allocated
array (MbufAlloc()) by using MbufGet() and MbufPut(). To do
so would be more efficient and might improve the performance
of the custom algorithm.

In order to access the MIL buffer directly, the buffer’s address
and pitch must be known. Once you know this, you will be able
to access them directly for optimum performance.

Mapping a data buffer to user-allocated memory 55

Address The address of a parent or child buffer can be returned using
MbufInquire(). Selecting M_HOST_ADDRESS will return a
logical address, while M_PHYSICAL_ADDRESS will return a
physical address. In either case, the first address of the buffer
you are specifying will be the top left-most pixel in the image.
Knowing the pitch and the depth of the buffer will tell you the
address of the following row.

Pitch The pitch of a buffer is the number of units between the
beginnings of any two adjacent lines of the buffer’s data and
can be measured in pixels or bytes. Note that in some instances,
the pitch in bytes will be more accurate than in pixels. If the
last pixel falls outside of a 32-bit boundary (required by
Windows), the start of the next row will be located at the
beginning of the next 32-bit boundary; this process is called
internal padding. When measuring the pitch in pixels, the
padding can be counted as "extra" pixels, depending on the
depth of the pixels. This will result in an inaccurate pitch.

Mapping a data buffer to user-allocated
memory

Instead of allocating new memory to a buffer using
MbufAlloc...(), you can create a buffer from the memory at a
specified location, using MbufCreate2d() to create a
monochrome data buffer and MbufCreateColor() to create a
color data buffer. In these cases, MIL does not allocate any

memory; it uses the memory that you provide.

When creating a buffer with MbufCreateColor(), you must pass
an array of pointers to the addresses of the data. For packed
color buffers, you must pass an array of one pointer; for planar
buffers, you must pass an array with the same number of
pointers as the number of bands in the buffer. When creating a
buffer with MbufCreate2d(), you must pass the address of the
data. The address(es) can be either logical or physical. If you
want to use the buffer for grabbing, the address(es) must be
physical (grab buffers must be allocated in physically
contiguous and always present memory, that is, non-paged).
The MbufCreate...() functions must be used with caution
because, when using physical addresses, these functions

56 Chapter 3: Specifying and managing your data buffers

provide direct manipulation of any of your PC’s memory
mapped devices; when using logical addresses, memory
protection errors could result.

You can use MbufInquire() with the M_HOST_ADDRESS or
M_PHYSICAL_ADDRESS control type to determine the Host’s
logical address or the physical address of a buffer’s data,
respectively. Note that the physical address is not necessarily
an address in Host memory. It could be an address in on-board
memory. If an on-board buffer is mapped to the Host, you can
use the MbufInquire() function with the M_HOST_ADDRESS
control type to determine the Host address to which it is
mapped.

There are several instances when memory mapping is useful.
A particularly useful instance is when processing and
displaying an interlaced grab in a time critical application. In
this case, you could use a displayable buffer to store and display
the grabbed data. Then, to process each field as it is grabbed,
you could use a buffer that is mapped to the odd field of the
displayable buffer (Buffer 1) and a buffer that is mapped to the
even field (Buffer 2).

Create Buffers 1 and 2 as follows:

ODD

EVEN

ODD

EVEN
480

A
B

Original buffer
■ Buffer 1: (Odd field)

❐ Size = 640 x 240 (i.e., half height)

❐ Pitch = 1280 (i.e., to skip to the next field)

❐ Address = Address A (i.e., first pixel of the first row)

640

240

ODD

ODD

ODD

640

EVEN

EVEN

EVEN

640

240

A

B
Buffer 1 Buffer 2

Mapping a data buffer to user-allocated memory 57

■ Buffer 2: (Even field)

❐ Size = 640 x 240 (i.e., half height)

❐ Pitch = 1280 (i.e., to skip to the next field)

❐ Address = Address B (i.e., first pixel of the second row)

In general, MIL automatically issues a display update after a
displayed buffer has been modified. However, if a buffer
selected on the display is modified using a mapped buffer, its
display is not updated until you notify it of the change using
MbufControl(...M_MODIFIED...).

See with multiple systems for another instance where creating
buffers is useful.

Buffer A
Buffer B

Buffer A

58 Chapter 3: Specifying and managing your data buffers

Pixel conventions

The center of a pixel is important for all MIL functions which
return positional results with subpixel accuracy. The reference
position of a pixel is its center, and the resulting subpixel
coordinates are with respect to the pixel’s center.

With this in mind, the coordinates of the center of an image can
always be found using the following formula:

For example, the following image contains 4 pixels. If the
formula is applied, the center of the image is found at (1.5, 0).

Width -1

2

Height -1

2

,()

0 1 2 3

(1.5, 0.0)

Chapter 4: Lookup tables

This chapter describes lookup tables (LUTs). It shows you
how to generate and modify them and briefly discusses
how to use them.

60 Chapter 4: Lookup tables

Lookup tables

Lookup tables (LUTs) are collections of memory locations that
are used to map data to pre-calculated values. They can easily
reduce a multi-step or complex operation to a single-step LUT
mapping.

0
0

0
0
0

0

1

1 1

1

1

1 12
2 3 2

1

2
3

LUT index

0
84

170
255

LUT values

Original
8-bit image

Resulting
8-bit image

0
0
0
0

0
84 84

84
84

84 84170
170255170

84
If the hardware system permits, you can use LUTs to
precondition input data at acquisition time, before it is stored
in an image buffer. LUTs can also be used (hardware system
permitting) to adjust the color contrast and intensity of an
image upon display, without affecting the actual data.

LUTs and data buffers 61

LUTs and data buffers

LUT buffers The MIL package represents LUTs as LUT data buffers. As
with any other data buffer, LUT buffers must be allocated
before they are used. A LUT buffer can be loaded, stored, or
copied to another buffer (not necessarily to another LUT buffer)
or to disk. You can also allocate child LUT buffers. When a LUT
buffer is no longer required, you should free its memory space,
using MbufFree().

Allocating LUT buffers LUT buffers are typically one-dimensional data buffers created
with MbufAlloc1d() (single row). However, you can allocate a
color RGB LUT, using MbufAllocColor(). In this case, set the
number of bands to 3 (for RGB), the y-dimension to 1, and the
x-dimension to have enough entries to represent the full range
of possible values of the image buffer.

Loading and generating data into LUTs

With MIL, you can generate data directly into a LUT buffer or
calculate the data and then load it in a LUT buffer.

Generating data directly into the LUT buffer

Direct LUT data
generation

You can generate general data directly into a LUT buffer, using
MgenLutRamp() or MgenLutFunction().

The MgenLutRamp() command generates a value for each LUT

index within the specified index range. The index range
together with the start and end values determine the
increment.

The increment If the increment is positive, MgenLutRamp() generates a ramp.
If the increment is negative, the command generates an inverse
ramp. If the increment is equal to zero, it loads the entire LUT
range with the given start value.

62 Chapter 4: Lookup tables

The MgenLutFunction() command generates data within the
specified LUT buffer area according to a specified function. The
functions available are: M_LOG, M_EXP, M_SIN, M_COS, M_TAN,
and M_QUAD. The LUT index and the start x value are used as
the x value in the equation.

The MimHistogramEqualize() command can be used to create
a LUT for intensity correction.

Color LUTs When generating data in a color LUT buffer, each row of each
color band is loaded with the same data. For example, for an
RGB LUT, the red, green, and blue bands of the LUT are loaded
with the same data.

To load each color band with different data, you would have to
generate the data into three separate one-dimensional LUT
buffers, then copy each buffer to the appropriate color band of
the color LUT buffer, using MbufCopyColor().

Loading LUTs with precalculated data

More complex LUTs There are several ways to generate more complex LUTs. Most
of these, however, involve pre-calculating the data, then loading
it into the LUT buffer:

■ Calculate data, using your Host system, and then load it into
the LUT, using MbufPut(), MbufPut1d(), or MbufPutColor().

■ Generate data into another data buffer, using MIL
commands other than MgenLutRamp(), then copy the data

to the LUT buffer, using MbufCopy() or MbufCopyColor().

■ Load previously saved LUT data from disk to the LUT buffer
(MbufLoad()). Note, when loading data from disk, there
should be enough data for each dimension of the LUT buffer.

■ Restore a previously saved LUT, using MbufRestore(). Note,
this command actually performs the LUT buffer allocation.

Using LUTs 63

Using LUTs

In MIL, LUTs can be used in different circumstances:

■ when displaying data (if supported by hardware)

■ when acquiring data from a digitizer (if supported by
hardware)

In each of these cases, if you want only a certain portion or
palette of the LUT to be used, allocate the palette as a child
buffer, and then specify the child LUT buffer identifier instead
of its parent.

Refer to the documentation accompanying your target system
device to determine under what circumstances it supports
LUTs.

Displaying using LUTs
When you want to map a displayable image buffer through a
LUT prior to displaying it, you need to associate the LUT buffer
with the display, using MdispLut(). If this feature is supported
by the hardware, it allows you to adjust the color contrast and
intensity upon display without affecting the actual image data
in memory.

The LUT buffer must match the pixel depth, and should either
have the same number of color bands as the display or have a
single color band. In the case of a single band, the same data is

loaded into each of the display color LUTs.

Monochromatic
effect

If you associate a one-band LUT buffer with a display, the same
data is loaded in each output channel LUT, and the same data
is routed to each output channel LUT. This produces a
monochromatic effect when displaying a single-band image.

Pseudo-color effect If you associate a three-band color LUT buffer (RGB) with a
display, each LUT buffer color band is loaded in the
corresponding output channel LUT. When displaying a
single-band image, the same data is sent to each LUT. This
produces a pseudo-color effect on the display .

64 Chapter 4: Lookup tables

True color effect As mentioned above, if you associate a one-band LUT buffer
with a display, the same LUT buffer data is loaded in each of
the available output channel LUTs upon display. Although the
same LUT values are used, you obtain a true color effect upon
display of a color image because, typically, each image color
band does not contain the same data. You generally want this
image and LUT configuration when performing gamma
correction to compensate for your monitor.

Finally, as is expected, associating a three-band color LUT with
a display creates a true-color effect upon display of a color
image.

Displaying image buffers with an associated LUT is further
discussed in Chapter 5: Displaying an image.

LUTs and digitizers

Associating a LUT to
a digitizer

Using MIL, you can map data from a digitizer through LUTs
during image acquisition (if the device supports a LUT) . This
requires that you associate the LUT to the digitizer, using
MdigLut(). The LUT buffer must match the pixel depth of the
device. In addition, it should either have the same number of
color bands as the digitizer or have a single color band.

Chapter 5: Displaying an
image

This chapter discusses the display of image buffers, in
detail. It shows you how to display several images
simultaneously, and discusses some of the special effects
that can be applied to a displayable image buffer.

66 Chapter 5: Displaying an image

Displaying an image

MIL is platform independent. If your system is not using an
imaging board with a display section, MIL will use your VGA
for display purposes.

Displayable image
buffers

To display an image buffer, the buffer must have been allocated
with a displayable attribute (M_DISP). In addition, a display
must have been allocated, using MdispAlloc() or
MappAllocDefault(). Both the buffer and the display must have
been allocated on the same system.

Selecting a buffer for
display

Once the buffer and the display have been allocated, use
MdispSelect() to select the image buffer for display. The buffer
is displayed at the top-left corner of the screen or in a dedicated
window. If the specified image buffer is smaller in size than the
display, the border outside the buffer is blanked out. If the
specified image buffer is larger in size than the display, the
right and bottom part of the buffer, the part that exceeds the
display size, is not displayed.
If you want to display only one band of a three-band color buffer,
you must first allocate a two-dimensional displayable image
buffer and copy the required band into it using
MbufCopyColor(). You can then display this buffer.

Frame buffers This manual uses the term frame buffer to refer to display
memory. The number of available frame buffer surfaces
depends on the system you are using. Matrox imaging boards
that have a display section typically have two frame buffer
surfaces: a dedicated or dynamically allocated main (underlay)

Display configuration 67

surface and an overlay (VGA) surface. Separate VGA boards
typically have only one frame buffer surface, a VGA frame
buffer.

Display configuration

MIL supports various display configurations which use
combinations of imaging boards with display sections, separate
VGAs, and multiple screens. Some of these configurations
might not be supported on your system, therefore it is
important that you are aware of your system’s hardware
restrictions when allocating a display in MIL.

Single-screen configuration

The single-screen configuration is a display configuration in
which a single board is used both as a VGA to display the user
interface (for example, the Windows desktop) and for the
display of images. Both the user interface and images are
viewed on a single screen. When using an imaging board with
a display section in this configuration, the VGA controls the
overlay (VGA) frame buffer.

This configuration is supported on systems using an imaging
board with a display section and those which use a separate
VGA. In other words, this configuration is supported on all
systems.

Dual-screen configuration

The dual-screen configuration is a display configuration that
consists of a separate VGA board for main user-interface
display (for example, the Windows desktop) and a Matrox
imaging board for image display. This configuration is only
supported on systems using an imaging board with a display
section.

In this configuration, you can override the default and have
images displayed on the same screen as your Windows desktop,
so that the display is essentially running in a single-screen
configuration. To do so, set the initialization flag for
MdispAlloc() to M_WINDOWED; this operation is discussed
later.

68 Chapter 5: Displaying an image

❖ To configure your Matrox imaging board with a display
section in dual-screen mode, see the installation manual of
your board to install the board appropriately.

Multi-head display configuration

If you are running Windows NT, you can run in a multi-head
display configuration. This configuration is a multi-board
configuration that uses a combination of Matrox imaging
boards and/or Matrox MGA boards (up to 4 boards). A
multi-head display configuration creates one large Windows
desktop across multiple screens, in a horizontal, vertical, or
tiled fashion.

To run a multi-head display, click on List All Modes... in your
Windows Display utility (Control Panel) and choose a
dual-sized desktop area (for example, 3200x1200) from the list
of available resolutions. Note that in a multi-head display

A Matrox imaging board
+ two MGA boards

A Matrox imaging board
+ four MGA boards

horizontal:
3200 x 1200

vertical:
1600 x 2400

tiled:
3200 x 2400
configuration, your monitor settings should be compatible with
your least-capable monitor.

Display modes and the display window 69

Display modes and the display window

There are two display modes available, depending on your
system’s configuration:

■ Windowed mode (M_WINDOWED).

■ Non-windowed mode (M_NON_WINDOWED).

You must select one of these modes when allocating a display
with MdispAlloc(). These modes are described below.

Displaying in windowed-mode

A windowed-mode display (M_WINDOWED) is displayed in its
own window. The window is tracked and updated with the
image buffer selected on the display; that is, if the window
moves or is occluded, the window is updated with the image
buffer accordingly.

In windowed mode, multiple windowed-mode displays can be
allocated and selected for display; therefore, the display device
number should always be set to M_DEFAULT.

This mode is the default allocation mode in a single-screen
configuration (M_DEFAULT). If your board has a display
section and you are using it in a dual-screen configuration, you
can still choose not to use it, and display an image, even a live
grabbed image, in windowed mode. In this case, the display is
on your Windows desktop.
In windowed-mode, MIL does not communicate directly with
the VGA, but uses the normal Windows mechanisms (Windows
API functions and extensions) to display images. In other
words, it allocates image buffers in a Windows Device
Independent BITMAP (DIB or DirectDraw surface) and loads
LUT buffers into Windows logical palettes (refer to the
Microsoft SDK Programming Guide for information on
Windows DIBs, DirectDraw surface, and logical palettes).

Displaying in non-windowed mode
A non-windowed mode (M_NON_WINDOWED) display has no
window associated with it. You are responsible for moving and
tracking this type of display, if required.

70 Chapter 5: Displaying an image

The buffer, selected on the display, is displayed at the top-left
corner of the screen. On boards with two dedicated frame
buffers, this buffer is actually displayed from the main
(underlay) frame buffer surface, and is only visible wherever
the overlay (VGA) is set to the keying color (by default, 0).

In this mode, only one MIL display can be allocated and selected
for display. This is the default configuration in dual-screen
mode.

Display size and depth

In a single-screen configuration, you determine the display
format (size and depth) of the overlay frame buffers using the
Windows Display utility (Control Panel); in this case, the
display format of the MIL display has no effect and should be
set to M_DEFAULT. In dual-screen configuration, the display
format or video configuration format (VCF) of the selected
display determines the display format of the frame buffers.

If the display section has two dedicated frame buffers, a main
(underlay) frame buffer and an overlay (VGA) frame buffer,
both surfaces are configured to the same size.

In windowed mode, when you select a buffer to a display,
Windows will create a display of the same size as the buffer,
unless such a display cannot fit in the Windows desktop.

In non-windowed mode, MIL will create a display of the same
size as the display format of the frame buffers.
Displaying buffers of different data depths

Displayable buffers usually have a depth of 8 bits (or 3-band
8 bits in the case of color images). If you are in windowed mode,
you can display images of other depths (for example, 1-bit or
16-bit images). By using MdispControl() with the
M_VIEW_MODE control type, you can control the way such
buffers are actually being displayed.

The M_VIEW_MODE control type provides three modes of
displaying non 8-bit images:

■ The M_BIT_SHIFT setting will bit shift the pixel values of the
image by the specified number of bits upon updating the
display.

Removing a buffer from the display 71

■ The M_AUTO_SCALE setting remaps the pixel values to the
display such that the minimum and maximum values in the
image (not the full range of the buffer) are set to 0 and 255,
respectively. If the image buffer contains a single value, its
corresponding displayed value is determined by linearly
re-mapping the full range of the buffer (for example, 0 to 64K)
to 0 through 255.

■ The M_MULTI_BYTES setting is primarily useful when
grabbing from a multi-tap camera. This setting displays each
byte of the image in separate display pixels. For instance,
each pixel of a 16-bit image will occupy two consecutive
display pixels; each pixel of a 32-bit image will occupy four
consecutive display pixels.

The default display mode (M_DEFAULT) will automatically
select the appropriate mode, depending on the image depth.

Removing a buffer from the display

After displaying an image buffer, you can remove it from the
display and close the associated window (in windowed mode) or
leave the display blank (in non-windowed mode), using
MdispDeselect(). To display a different image buffer, you are not
required to remove the current buffer from the display;
selecting another buffer for display automatically updates the
display with the new buffer.

You can only remove the entire image buffer from the display.

That is, when displaying a parent buffer, you cannot remove
one of its child buffers from the display.

Once you have finished using a display, you should free it, using
MdispFree(). If a displayed buffer is freed, the buffer is either
automatically removed from the display (in windowed mode) or
is left blank (in non-windowed mode).

72 Chapter 5: Displaying an image

Displaying multiple buffers

MdispSelect() only allows you to view one buffer at a time in a
display. However, in windowed mode, you can use many
displays to view more than one buffer at a time. In
non-windowed mode, you can view more than one buffer at a
time using child buffers. For example, you can display the
source and destination buffers of an operation, using the
following steps:

1. Allocate a large displayable buffer (MbufAlloc2d() or
MbufAllocColor()). This buffer will be known as the parent
buffer.

2. Allocate two non-overlapping child buffers within it
(MbufChild2d() or MbufChildColor()).

3. Select the parent buffer for display (MdispSelect()).

4. Use one of the child buffers as the source image buffer and
the other as a destination image buffer of the operation.

An example... The following portion of MIL code shows how to display
multiple buffers in a single display. The required portion of the
cell image, cell.mim, is loaded into a child of a displayable buffer
and then text is written into it. The result is stored in another
child of the same displayable buffer.

Displaying multiple buffers 73

���(KNG�PCOG��OOWNVFKU�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�FKURNC[�OQTG�VJCP�QPG��KOCIG�DWHHGT�CV�
��������������C�VKOG��+V�CNNQECVGU�C�FKURNC[CDNG�KOCIG�DWHHGT��CNNQECVGU�VYQ
��������������EJKNF�DWHHGTU�HTQO�KV��CPF�VJGP�WUGU�VJGUG�EJKNF�DWHHGTU�CU�VJG
��������������UQWTEG�CPF�FGUVKPCVKQP�QH�C�EQR[�QRGTCVKQP�+V�VJGP�YTKVGU�VGZV
��������������KP�GCEJ�QH�VJG�EJKNF�DWHHGTU�
��
��������������6JG�FKURNC[�YKNN�DG�\QQOGF�KH�VJG�U[UVGO	U�FKURNC[�UWRRQTVU�KV�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J
�KPENWFG��OKN�J

���/+.�KOCIG�HKNG�PCOG����
�FGHKPG�+/#)'A(+.'��������������EGNN�OKO��

���/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A9+&6*���������������.
�FGHKPG�+/#)'A*'+)*6��������������.
�FGHKPG�+/#)'A6;2'��������������.
/A705+)0'&
�FGHKPG�<11/A8#.7'��������������.

XQKF�OCKP
XQKF�
]
���/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����������������
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������������������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������������������
����������/KN2CTGPV+OCIG�������+OCIG�DWHHGT�KFGPVKHKGT����������������
����������/KN5TE5WD+OCIG�������5QWTEG�KOCIG�DWHHGT�KFGPVKHKGT���������
����������/KN&UV5WD+OCIG�������&GUVKPCVKQP�KOCIG�DWHHGT�KFGPVKHKGT����

�����#NNQECVG�VJG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
��������������������/A07..��/A07..��

�����#NNQECVG�C�FKURNC[�KOCIG�DWHHGT����
���/DWH#NNQE�F
/KN5[UVGO��+/#)'A9+&6*����+/#)'A*'+)*6��+/#)'A6;2'��
���������������/A+/#)'
/A&+52
/A241%���/KN2CTGPV+OCIG��

�����#NNQECVG�VYQ�EJKNF�DWHHGTU�HTQO�VJG�FKURNC[CDNG�RCTGPV�DWHHGT����
���/DWH%JKNF�F
/KN2CTGPV+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5TE5WD+OCIG���
���/DWH%JKNF�F
/KN2CTGPV+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN&UV5WD+OCIG��
���
EQPV�����

74 Chapter 5: Displaying an image

�����%NGCT�VJG�RCTGPV�DWHHGT����
���/DWH%NGCT
/KN2CTGPV+OCIG���.��

�����&KURNC[�VJG�RCTGPV�DWHHGT����
���/FKUR5GNGEV
/KN&KURNC[��/KN2CTGPV+OCIG��

�����.QCF�VJG�GPVKTG�UQWTEG�KOCIG�KPVQ�VJG�UQWTEG�UWD�KOCIG�DWHHGT�����
���/DWH.QCF
+/#)'A(+.'��/KN5TE5WD+OCIG��

�����%QR[�VJG�UQWTEG�UWD�KOCIG�KPVQ�VJG�FGUVKPCVKQP�UWD�KOCIG���
���/DWH%QR[
/KN5TE5WD+OCIG�/KN&UV5WD+OCIG��

�����9TKVG�VGZV�KP�DQVJ�UWD�KOCIGU���
���/ITC6GZV
/A&'(#7.6��/KN5TE5WD+OCIG��+/#)'A9+&6*���+/#)'A*'+)*6���
�������������5QWTEG���
���/ITC6GZV
/A&'(#7.6��/KN&UV5WD+OCIG��+/#)'A9+&6*���+/#)'A*'+)*6���
�������������&GUVKPCVKQP����

�����4GRQTV�QP�VJG�*QUV�UETGGP�YJCV�KU�DGKPI�FKURNC[GF����
���RTKPVH
�#�EQR[�YCU�RGTHQTOGF�DGVYGGP�VJG�UWD�KOCIG�QP�VJG>P���
���RTKPVH
�NGHV�UKFG�QH�VJG�UETGGP�CPF�VJG�UWD�KOCIG�QP�VJG�TKIJV�UKFG>P���
���RTKPVH
�QH�VJG�UETGGP�CPF�VGZV�YCU�YTKVVGP�KPVQ�GCEJ�QH�VJGO�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P>P���
���IGVEJCT
��

�����4GRQTV�QP�VJG�*QUV�UETGGP�YJCV�KU�DGKPI�FKURNC[GF����
���RTKPVH
�&KURNC[�\QQOGF�D[��NF�KP�:�CPF�;�
KH�UWRRQTVGF��>P���<11/A8#.7'��

�����<QQO�DQVJ�UWD�KOCIGU�D[�\QQOKPI�VJG�FKURNC[����
���/FKUR<QQO
/KN&KURNC[��<11/A8#.7'��<11/A8#.7'��

�����9CKV�HQT�C�MG[���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��
��
�����%NQUG�VJG�FKURNC[����
��/FKUR&GUGNGEV
/KN&KURNC[��/KN2CTGPV+OCIG��
������
�����(TGG�CNN�CNNQECVKQPU����

��/DWH(TGG
/KN&UV5WD+OCIG��
��/DWH(TGG
/KN5TE5WD+OCIG��
��/DWH(TGG
/KN2CTGPV+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

Panning, scrolling, and zooming 75

Panning, scrolling, and zooming

At times, your image buffer might be larger than the display,
or have details that are too fine or too small to see. Display
effects can be associated with the display to view specific parts
of the image. These effects are panning, scrolling, and zooming.
Note that these are only display effects; they do not affect the
content of the image buffer.

Panning and scrolling Panning and scrolling displace an image horizontally or
vertically, respectively, on the display. You can pan and scroll
your image to display the appropriate location at the top-left
corner of the window (in windowed mode) or screen (in
non-windowed mode), using MdispPan(). Note, in
non-windowed mode, to display the image at another location
on the display, you must create a large displayable image buffer,
display it, and then allocate and use a child buffer at the
required location on the display.

Zooming Zooming is the horizontal and/or vertical replication of each
pixel by the given integer factor. You can zoom the display by
an integer factor using MdispZoom(). Note that zooming by a
large factor might cause a "blocky" effect. In windowed mode,
you can also reduce the size of an image on the display. To do
so, pass a negative zoom factor to MdispZoom(); this
functionality is not supported in non-windowed mode.

In the mmultdis.c example, the source and destination image

buffer dimensions are rather small, so the parent buffer is
zoomed by a factor of 2. This is achieved with the line following
the binarizing operation:

MdispZoom(MilDisplay, ZOOM_VALUE, ZOOM_VALUE);

76 Chapter 5: Displaying an image

Annotating the displayed image
non-destructively

In windowed mode In windowed mode, you can annotate the displayed image
non-destructively using MIL’s overlay-display mechanism.

To make use of this functionality in windowed mode, do the
following:

1. Enable the overlay-display mechanism, using the following
function call:

/FKUR%QPVTQN
&KURNC[+&��/A9+0&19A184A94+6'��/A'0#$.'�

2. Select a buffer to the display:

/FKUR5GNGEV
&KURNC[+&��+OCIG$WH+F�

Since the overlay-display mechanism is enabled, this will
not only display the selected image, but it will associate a
temporary overlay buffer with the display. This overlay
buffer will annotate the underlying image with an effect
called keying, which makes portions of the overlay buffer
transparent so that underlying areas of the displayed image
show through. Therefore, anything that you draw in this
buffer will annotate the image selected to the display. Note
that when you select another image to the display, another
temporary overlay buffer is created.

3. To access the overlay buffer, use the following call to

determine the identifier of the buffer:

/FKUR+PSWKTG
&KURNC[+&��/A9+0&19A184A$7(A+&���1XGTNC[$WHHGT+&�

This overlay buffer will have the same number of bands as
the buffer selected to the display.

4. Draw into the display’s overlay buffer with the appropriate
graphics function (Mgra...()). For example, to write text in
the overlay buffer, use MgraText().

In non-windowed
mode

To make use of this functionality in non-windowed mode, follow
the same steps. However, in this mode, when the
overlay-display mechanism is enabled, the display is associated
with a temporary overlay buffer immediately. This overlay

Annotating the displayed image non-destructively 77

buffer is also the same size as the display. When selecting
another buffer to the display, the overlay buffer remains the
same.

Using the overlay If available, whenever it is most efficient, both the underlay
and overlay frame buffer surfaces are used to annotate the
displayed image.

If your board does not have two frame buffer surfaces, a
simulated version of the overlay effect is produced. This means
that the display update will be slower and a continuous grab
operation will appear only in pseudo-live, due to the additional
operation needed to combine the grabbed image with the
overlay buffer. However combined, the actual buffer selected on
the display is not overwritten by the content of the overlay
buffer.

Keying When allocating a display (MdispAlloc()), keying is
automatically enabled, if required, and the keying color is
automatically set to a default color (generally appropriate).

If required, select another keying color with
MdispOverlayKey(). If you are using an 8-bit display resolution
(256 colors), you can set the color to a value between 0 and 255.
If you are using a non 8-bit display resolution (15-bit, 16-bit,
24-bit, or 32-bit), call the macro M_RGB888 and specify the RGB
value, for example, as follows:

/FKUR1XGTNC[-G[
���� /A4)$���
����������������
When the overlay buffer is created, it is cleared to the effective
keying color. If the keying color is changed after the overlay
buffer is created, it will not be cleared.

The following portion of MIL code shows the enabling of the
overlay on the display, the inquiring of the overlay buffer
identifier, and the display of text in the overlay (see also,
mdispovr.c). It assumes that an image has been selected to the
display.

78 Chapter 5: Displaying an image

Forcing the display in
the overlay

Although not commonly done, if using an imaging board that
has a display section, you can allocate a MIL display that is
only in the overlay (VGA) frame buffer surface, if the display is
allocated with the M_OVR attribute. When in non-windowed
mode and using an imaging board with a display section, your
buffer must be allocated with an M_IMAGE+M_OVR+... attribute
before it can be selected to an M_OVR display.

Using GDI annotations
If the display has been selected, you can also annotate the
displayed buffer using Windows GDI annotations. Use one of
the following methods:

■ Allocate a Windows display device context (DC) for drawing

���'PCDNG�QXGTNC[�GHHGEVU�QP�VQR�QH�VJG�FKURNC[�DWHHGT����
�/FKUR%QPVTQN
/KN&KURNC[��/A9+0&19A184A94+6'��/A'0#$.'��

���+PSWKTG�VJG�KFGPVKHKGT�QH�VJG�QXGTNC[�DWHHGT�CUUQEKCVGF�YKVJ�VJG
���FKURNC[GF�DWHHGT�
���
�/FKUR+PSWKTG
/KN&KURNC[��/A184A$7(A+&���/KN1XGTNC[+OCIG��

���2TKPV�C�UVTKPI�KP�VJG�QXGTNC[�DWHHGT�VQ�CRRGCT�QXGT�VJG�FKURNC[GF
���KOCIG�DWHHGT��
���
�/ITC6GZV
/A&'(#7.6��/KN1XGTNC[+OCIG������������/+.�1XGTNC[�6GZV������
in the displayed image buffer. To do so, use MbufControl()
with M_WINDOW_DC_ALLOC. Inquire the identifier of this
context using MbufInquire() with M_WINDOW_DC. Then, use
this DC with Windows GDI function calls.

The buffer which you are annotating must be internally
stored in M_DIB or M_DDRAW format, and cannot be a child
buffer.

You can create a DC for either the image buffer or the overlay
buffer of the display. Note that if you create a DC for the
image buffer and then draw using this DC, drawing will be
destructive (that is, the data of the image buffer is actually
changed).

Annotating the displayed image non-destructively 79

When either buffer is changed, signal MIL by calling
MbufControl(..., M_MODIFIED,...).

This method avoids a flickering display when drawing.

■ Inquire the display’s window handle using MdispInquire()
with M_WINDOW_HANDLE. Pass the window handle to the
Windows GetDC() function to get a Windows display device
context (DC). Then, paint the annotations with GDI functions
from a function hooked to the display update event
(MdispHookFunction()), that is, paint each time the MIL
display is modified.

Note that drawing using this method is non-destructive (that
is, the actual data of the image buffer is not changed).

The following portion of MIL code shows the creation of the
device context of the overlay buffer, the inquiring of the device
context, and the drawing and writing in the overlay buffer (see
also, mdispovr.c).

80 Chapter 5: Displaying an image

�*&%���J%WUVQO&%�
�*2'0��JRGP��JRGP1NF�
�EJCT��EJ6GZV=��?�

���%TGCVG�C�FGXKEG�EQPVGZV�VQ�FTCY�KP�VJG�QXGTNC[�DWHHGT�YKVJ�)&+����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A9+0&19A&%A#..1%��/A&'(#7.6��

���+PSWKTG�VJG�FGXKEG�EQPVGZV����
�J%WUVQO&%���

*&%�/DWH+PSWKTG
/KN1XGTNC[+OCIG��/A9+0&19A&%��/A07..���
�KH�
J%WUVQO&%�
�]
�������%TGCVG�C�DNWG�RGP����
�����JRGP�%TGCVG2GP
25A51.+&�����4)$
�������������
�����JRGP1NF���5GNGEV1DLGEV
J%WUVQO&%�JRGP��
���������
�������&TCY�C�ETQUU�KP�VJG�QXGTNC[�DWHHGT����
�����/QXG6Q'Z
J%WUVQO&%���+OCIG*GKIJV���07..��
�����.KPG6Q
J%WUVQO&%�+OCIG9KFVJ�+OCIG*GKIJV����
�����/QXG6Q'Z
J%WUVQO&%�+OCIG9KFVJ�����07..��
�����.KPG6Q
J%WUVQO&%�+OCIG9KFVJ���+OCIG*GKIJV��
���������
�������9TKVG�VGZV�KP�VJG�QXGTNC[�DWHHGT����
�����UVTER[
EJ6GZV���)&+�1XGTNC[�6GZV����
�����5GV6GZV%QNQT
J%WUVQO&%�4)$
������������
�����6GZV1WV
J%WUVQO&%�+OCIG9KFVJ������+OCIG*GKIJV������EJ6GZV�
�������UVTNGP
EJ6GZV���
�����5GV6GZV%QNQT
J%WUVQO&%�4)$
������������
�����6GZV1WV
J%WUVQO&%�+OCIG9KFVJ�������+OCIG*GKIJV������EJ6GZV�
�������UVTNGP
EJ6GZV���������

�������&GUGNGEV�CPF�FGUVTQ[�VJG�DNWG�RGP����
�����5GNGEV1DLGEV
J%WUVQO&%�JRGP1NF��
�����&GNGVG1DLGEV
JRGP��
�_
����
���&GNGVG�ETGCVGF�FGXKEG�EQPVGZV����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A9+0&19A&%A(4''��/A&'(#7.6��

������
���5KIPCN�/+.�VJCV�VJG�QXGTNC[�DWHHGT�YCU�OQFKHKGF����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A/1&+(+'&��/A&'(#7.6��

Displaying an image in a user-defined window 81

Displaying an image in a user-defined
window

Selecting a buffer into a
specific display window

Under Windows, you can display a specific image buffer
in a user-defined window, using MdispSelectWindow(). For best
results, the display must have the same resolution as the image
buffer depth. The window must be created with the Windows
API functions. If the defined window is of different dimension
than the image buffer, any excess window area will be left
untouched or any excess image area will be cropped.

By default, under Windows, images are displayed in the default
window, using MdispSelect(). This function dynamically creates
a window in the Windows desktop for the specified display, if
the display is not already selected. The created window respects
any window control that has been associated with the display
using an Mdisp...() function.

Using the MdispSelectWindow() function
The MdispSelectWindow() function is similar to MdispSelect(),
except that it allows you to specify a handle to a user-defined
window, rather than displaying into a MIL created window.
This window is automatically refreshed when the display is
modified (for example, when the image data is modified). You
can use MdispDeselect() to deselect the image from the display.

82 Chapter 5: Displaying an image

An example... The following portion of MIL code from the mwindisp.c example
shows you how to display an image in a user-defined window,
grab into such a window, and remove the image from the
display.

���(KNG�PCOG��OYKPFKUR�E
��
���5[PQRUKU���6JKU�RTQITCO�FKURNC[U�C�YGNEQOKPI�OGUUCIG�KP�C�WUGT�
��������������FGHKPGF�YKPFQY�CPF�ITCDU�KPVQ�KV�
KH�UWRRQTVGF���+V�WUGU�
��������������VJG�/+.�U[UVGO�CPF�VJG�/FKUR5GNGEV9KPFQY
��HWPEVKQP�
��������������VQ�FKURNC[�VJG�/+.�DWHHGT�KP�C�WUGT�ETGCVGF�ENKGPV�YKPFQY��
��
��������������7UG�/FKUR&GUGNGEV
��VQ�TGOQXG�VJG�UGNGEVGF�KOCIG�DWHHGT�
��������������HTQO�VJG�FKURNC[�
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCNNQE�J
�KPENWFG��YKPFQYU�J
�KPENWFG��OKN�J
�KPENWFG��OYKPOKN�J
�KPENWFG��YKPIFK�J

�FGHKPG�$7(('45+<':�����������
�FGHKPG�$7(('45+<';�����������
�FGHKPG�$7(('45+<'$#0&������
�FGHKPG�/#:A2#6*A0#/'A.'0�����

���2TQVQV[RGU���
XQKF�/KN#RRNKECVKQP
*90&�7UGT9KPFQY*CPFNG��
XQKF�/KN#RRNKECVKQP2CKPV
*90&�7UGT9KPFQY*CPFNG��
���
���
��0COG����������/KN#RRNKECVKQP
�
�
��U[PQRUKU������6JKU�HWPEVKQP�KU�VJG�EQTG�QH�VJG�/+.�CRRNKECVKQP�VJCV
�

����������������YKNN�DG�GZGEWVGF�YJGP�VJG��5VCTV��OGPW�KVGO�QH�VJKU
����������������9KPFQYU�RTQITCO�YKNN�DG�UGNGEVGF��5GG�9KP/CKP
��DGNQY
����������������HQT�VJG�RTQITCO�GPVT[�RQKPV�
�
����������������+V�YKNN�WUG�/+.�VQ�FKURNC[�C�YGNEQOKPI�OGUUCIG�KP�VJG�
����������������URGEKHKGF�WUGT�YKPFQY�CPF�VQ�ITCD�KP�KV�KH�KV�KU�UWRRQTVGF�
����������������D[�VJG�VCTIGV�U[UVGO�
����������������
��

���
EQPV����

Displaying an image in a user-defined window 83

XQKF�/KN#RRNKECVKQP
*90&�7UGT9KPFQY*CPFNG�
]
������/+.�XCTKCDNGU���
����/+.A+&�/KN#RRNKECVKQP������/+.�#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO�����������/+.�5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[����������/+.�&KURNC[�KFGPVKHKGT���������
����������/KN&KIKVK\GT��������/+.�&KIKVK\GT�KFGPVKHKGT�������
����������/KN+OCIG������������/+.�+OCIG�DWHHGT�KFGPVKHKGT����
����������
����NQPI�$WH5K\G:�
����NQPI�$WH5K\G;�
����NQPI�$WH5K\G$CPF�

������#NNQECVG�C�/+.�CRRNKECVKQP����
����/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��

������#NNQECVG�C�/+.�U[UVGO����
����/U[U#NNQE
/A&'(A5;56'/A6;2'��/A&'8���/A&'(#7.6���/KN5[UVGO��

������#NNQECVG�C�/+.�FKURNC[����
����/FKUR#NNQE
/KN5[UVGO��/A&'8���/A&'(A&+52.#;A(14/#6��/A&'(#7.6
�����/KN&KURNC[��

������#NNQECVG�C�/+.�FKIKVK\GT�KH�UWRRQTVGF�CPF�UGVU�VJG�VCTIGV�KOCIG�UK\G���
����KH�
/U[U+PSWKTG
/KN5[UVGO��/A&+)+6+<'4A07/��/A07..�� ���
����]
������/FKI#NNQE
/KN5[UVGO��/A&'8���/A&'(A&+)+6+<'4A(14/#6��/A&'(#7.6�
��������/KN&KIKVK\GT��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:������$WH5K\G:��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;������$WH5K\G;��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A$#0&���$WH5K\G$CPF��
����_
����GNUG
����]
������/KN&KIKVK\GT���/A07..�
������$WH5K\G:�������$7(('45+<':�
������$WH5K\G;�������$7(('45+<';�
������$WH5K\G$CPF����$7(('45+<'$#0&�
����_

������
������&Q�PQV�CNNQY�GZCORNG�VQ�TWP�KP�FWCN�UETGGP�OQFG����������������
������KH�
/FKUR+PSWKTG
/KN&KURNC[��/A&+52.#;A/1&'��/A07..�����/A9+0&19'&��������������
����]
������/GUUCIG$QZ
�����6JKU�GZCORNG�FQGU�PQV�TWP�KP�FWCN�UETGGP�OQFG���
��������������������/+.�CRRNKECVKQP�GZCORNG��
�������������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���
������IQVQ�GPF�
����_

��
EQPV����

84 Chapter 5: Displaying an image

������#NNQECVG�C�/+.�DWHHGT����
����/DWH#NNQE%QNQT
/KN5[UVGO��$WH5K\G$CPF��$WH5K\G:��$WH5K\G;���
/A705+)0'&�
����
/KN&KIKVK\GT!�/A+/#)'
/A&+52
/A)4#$���/A+/#)'
/A&+52����/KN+OCIG��

������%NGCT�VJG�DWHHGT���
����/DWH%NGCT
/KN+OCIG����

������5GNGEV�VJG�/+.�DWHHGT�VQ�DG�FKURNC[GF�KP�VJG�WUGT�URGEKHKGF�YKPFQY���
����/FKUR5GNGEV9KPFQY
/KN&KURNC[��/KN+OCIG��7UGT9KPFQY*CPFNG��

������2TKPV�C�UVTKPI�KP�VJG�KOCIG�DWHHGT�WUKPI�/+.�
������0QVG��#HVGT�C�/+.�EQOOCPF�YTKVKPI�KP�C�/+.�DWHHGT��VJG�FKURNC[�
������YKNN�CWVQOCVKECNN[�WRFCVG�VJG�YKPFQY�IKXGP�VQ�/FKUR5GNGEV9KPFQY
��
�����

����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;���
�������������������������������
����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;��
���
���������9GNEQOG�VQ�/+.��������
����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;��
���
�������������������������������

������9KPFQYU�EQFG�VQ�QRGP�C�OGUUCIG�DQZ�VQ�YCKV�C�MG[����
����/GUUCIG$QZ
�����9GNEQOG�VQ�/+.�������YCU�RTKPVGF��
�����������������/+.�CRRNKECVKQP�GZCORNG��
����������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���

������)TCD�KP�VJG�WUGT�YKPFQY�KH�UWRRQTVGF�D[�VJG�U[UVGO����
����KH�
/KN&KIKVK\GT�
����]
����������)TCD�EQPVKPWQWUN[����
��������/FKI)TCD%QPVKPWQWU
/KN&KIKVK\GT��/KN+OCIG��

����������9KPFQYU�EQFG�VQ�QRGP�C�OGUUCIG�DQZ�VQ�YCKV�C�MG[����
��������/GUUCIG$QZ
���%QPVKPWQWU�ITCD�KP�RTQITGUU��
��������������������/+.�CRRNKECVKQP�GZCORNG��
�������������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���
�������������������
����������5VQR�EQPVKPWQWU�ITCD����

��������/FKI*CNV
/KN&KIKVK\GT��
����_

������&GUGNGEV�VJG�/+.�DWHHGT�HTQO�VJG�FKURNC[����
����/FKUR&GUGNGEV
/KN&KURNC[��/KN+OCIG��

������(TGG�CNNQECVGF�QDLGEVU����
����/DWH(TGG
/KN+OCIG��
�
�GPF�

���/FKUR(TGG
/KN&KURNC[��
���KH�
/KN&KIKVK\GT�
������/FKI(TGG
/KN&KIKVK\GT��
���/U[U(TGG
/KN5[UVGO��
���/CRR(TGG
/KN#RRNKECVKQP��
_

LUTs and changing the displayed colors or gray levels 85

LUTs and changing the displayed colors or
gray levels

In general, when displaying in a 256-color display resolution,
images are mapped through physical output LUTs on display.
These LUTs are available and programmable so that you can
achieve the best display effect for your images since not all
colors are available in this resolution. Note that when
displaying in a non-256-color display resolution, MIL can
simulate a display LUT in software for 8-bit images.

How images are
mapped through the
physical output LUTs

By default in windowed mode, when displaying 8-bit images,
MIL tries to use the image’s pixel values to address the physical
output LUTs. When displaying color images, MIL will search
the physical output LUTs for the entry that best matches the
color of the image’s pixels being displayed. It then creates a
translation table for the image. This table is used to convert
each pixel value upon display to a value that will address the
appropriate physical output LUT entry.

In non-windowed mode, MIL uses the image’s pixel values to
address the physical output LUTs.

Palette versus physical
output LUTs

The actual programming of the physical output LUTs is
handled by MIL in one of two ways. In windowed mode, MIL
indirectly programs the physical output LUTs through the use
of a Windows palette. In non-windowed mode, MIL programs

the physical output LUTs directly.

Default palette settings
in windowed mode

By default in windowed mode, MIL provides a good default
logical palette for the realization of the physical output LUTs
(MdispLut(..., M_DEFAULT, ...)). MIL takes into consideration
the displayed image, the Windows display driver used, and the
VGA physical output LUT capabilities, and produces the best
"portability versus visual quality" compromise possible.

Default physical output
LUT settings in
non-windowed mode

By default in non-windowed mode, MIL generates a ramp in
the physical output LUTs, which uses the full range of available
intensities (MdispLut(..., M_DEFAULT, ...)). This type of
mapping is also referred to as a pass-through LUT mapping (or
transparent LUT mapping).

86 Chapter 5: Displaying an image

Changing the default LUT values
In general, if the default LUT values are not appropriate for
your application, you can change the LUT values to control the
displayed colors or gray levels of an image. Some situations that
might require special display effects are:

■ When displaying monochrome images, you might want to
view the images with each gray intensity in a different color.
For example, you can associate specific colors to ranges of
temperatures obtained by an infra-red camera.

■ When displaying monochrome images, you might want to
invert the image values. For example, when grabbing a film
negative, you can display the film as it will be printed.

■ In windowed mode, when displaying color images under a
256-color display driver resolution, you might want to reduce
the loss of color resolution. For example, when displaying a
color image with many shades of red, you might want to select
a LUT so that all shades of the image are represented.

To change the LUT values, associate a pseudo-color or custom
LUT buffer to the display with MdispLut() or to the displayed
image buffer with MbufControl(). Please note that LUT buffers
used for display have the following restrictions:

■ If the LUT buffer values are changed while the image is
selected on the display, the changes will not take effect.

■ The LUT buffer will not be used when displaying a 3-band

8-bit image under a non-8-bit display resolution.

■ A LUT buffer cannot be associated to a display that belongs
to a system using an imaging board with an on-board display
section, unless that display has been allocated with the
M_OVR initialization parameter.

■ The LUT buffer must have one or three bands. Note that the
number of LUT buffer entries must be the same as the
maximum number of intensities that can be represented in
the displayed buffer. In other words, if you want to invert an
8-bit grayscale image (that is, an image that can have 256
intensities), your LUT must also have 256 entries.

LUTs and changing the displayed colors or gray levels 87

You can use MdispInquire() to obtain information about the
physical output LUTs of a display.

Associating a
pseudo-color LUT

To view an 8-bit image buffer with each gray intensity in a
different color, associate the default pseudo-color LUT buffer
(M_PSEUDO) with the display of the image. In windowed mode,
the data is loaded in each component of the logical palette. In
non-windowed mode, the data is loaded into the physical output
LUTs of the display.

A 1-band custom LUT
buffer

To invert the values of an 8-bit image on display, you would need
physical output LUTs that map each value to the maximum
pixel value minus the current pixel value. To do so:

1. Allocate a one-band LUT buffer (MbufAlloc1d()).

2. Generate the data into the buffer, using MgenLutRamp() or
load the data into it, using MbufPut(). The depth of the LUT
buffer data must be 8-bits.

3. Associate the LUT buffer with the required display using
MdispLut(), or to a particular image with MbufControl().

If you associate a one-band LUT buffer with the display or
buffer in windowed mode, the same data is loaded into each
component of the logical palette. In non-windowed mode, the
same data is loaded in each available display physical output
LUT.

LOGICAL PALETTE/
OUTPUT LUTs

LOGICAL PALETTE/
OUTPUT LUTs

1-band LUT buffer1-band LUT buffer
LR0LR0
L0L0 LG0LG0

LB0LB0

LR1LR1
L1L1 LG1LG1

LB1LB1

LR255LR255L255L255 LG255LG255
LB255LB255

...

...
...
... ...

...
...
...

LUT RLUT M LUT G LUT B

8/

L1L1

88 Chapter 5: Displaying an image

A 3-band custom LUT
buffer

To reduce the loss of color resolution when displaying an image
with a specific range of colors, you would need physical output
LUTs that contain all the required colors so that when Windows
creates a translation table for the image, most colors are
mapped to their exact values. Follow the steps for a 1-band LUT
buffer, except allocate and load a 3-band LUT buffer instead.
When in windowed mode, each band of the LUT buffer is loaded
into its corresponding component of the logical palette. In
non-windowed mode, each band is loaded in a different display
physical output LUT (if a different LUT is available for each
display channel).

Different display architectures in windowed mode

LR0LR0LR0LR0 LG0LG0LG0LG0 LB0LB0 LB0LB0

LR1LR1 LR1LR1LG1LG1 LG1LG1
LB1LB1 LB1LB1

LR255LR255LR255LR255 LG255LG255
LG255LG255LB255LB255 LB255LB255

...

...
...
...

...

...
...
...

...

...
...
...

LUT RLUT R

LOGICAL PALETTE/
OUTPUT LUTs

LOGICAL PALETTE/
OUTPUT LUTs

3-band LUT buffer3-band LUT buffer

LUT GLUT G LUT BLUT B

8/

8/

8/
Although all MIL display windows have a similar appearance,
MIL uses one of three different architectures to make an image
buffer visible through a display window. The particular
architecture determines the behavior of the display window
under specific circumstances. For example, the display
architecture will determine how a continuous grab operation
will behave when overlapped by another window. Similarly, the
display architecture will determine whether or not the Host
CPU is used to overlay graphical annotations or images on top
of the buffer selected for display.

Different display architectures in windowed mode 89

The three display architectures are listed and discussed below.

■ Underlay display

■ Overlay/ regular display

■ DirectDraw underlay-surface display

❖ The type of display architecture that can be used depends on
the available hardware. Keep in mind that MIL
automatically selects the most appropriate display
architecture when a display is allocated (MdispAlloc()) with
the default (M_DEFAULT) initialization flag.

Underlay display architecture
Under the underlay display architecture, the Windows desktop
sits in a dedicated overlay frame buffer surface, whereas the
selected MIL buffer(s) sits in a dedicated underlay frame buffer
surface. The data of the buffer, selected to a windowed display,
is visible through a special hardware keying mechanism.

An underlay display architecture is used only when the video
frame buffer is physically split into a main (underlay) and
overlay frame buffer. The display resolution sets the size of the
overlay and the underlay frame buffer surfaces that are used
for on-screen purposes. Accordingly, the amount of video
memory required is twice that of the current display resolution.
This display architecture is used only when it is more efficient
to do so.

The underlay display architecture is used only on Matrox

Imaging frame grabbers such as Matrox Corona, Matrox
Genesis, and Matrox Pulsar frame grabbers.

Under this display architecture, there are a number of
important features:

■ MdigGrabContinuous() is always performed live with no
Host CPU intervention, irrespective of overlapping of the
display windows.

■ Graphics and video overlay on top of the selected buffer is
done with no Host CPU intervention.

■ MdispLut() is usually not supported.

90 Chapter 5: Displaying an image

■ MdispZoom() is not accelerated by the hardware, which
means that it is emulated by the software.

■ The underlay surface data-format usually follows the
Windows display resolution. This means that the underlay
surface data-format is typically in RGB format.

MIL will choose the most appropriate display architecture at
the time of display allocation (MdispAlloc()). Still, you can use
the M_WINDOWED + M_UND initialization flag to force this
dedicated underlay display architecture, provided that you
have the appropriate hardware.

Overlay/regular display architecture
Under a overlay/regular display architecture, image buffers are
allocated in a Windows Device Independent Bitmap (DIB or
Direct Draw surface) and then Windows handles their display.
In addition, LUT buffers are loaded into logical Windows
palettes.

An overlay/regular display architecture uses the regular
Windows mechanisms (Windows API function and extensions)
to display images. In this case, the video frame buffer does not
have to meet any special conditions.

Under this display architecture, there are a number of
important features:

■ MdigGrabContinuous() is performed live with no Host CPU
intervention when (1) the display format is supported by the

frame grabber, (2) the display window is not overlapped by
another window, and (3) when there is no overlay. Otherwise,
when these conditions are not met, MIL automatically
switches to a pseudo-live grab, which uses Host CPU to
emulate the grab operation to the display.

■ Graphics and video overlay on top of the selected buffer is
emulated by the software. Consequently, the graphics
overlay makes use of the Host CPU.

■ MdispLut() is supported. Therefore, it is possible to perform
a continuous grab operation in pseudo-color.

■ MdispZoom() is not accelerated by the hardware, which
means that it is emulated by the software.

Different display architectures in windowed mode 91

Although MIL will choose the most appropriate display
architecture, at the time of display allocation (MdispAlloc()),
you can use the M_WINDOWED + M_OVR initialization flag to
force this overlay display architecture.

DirectDraw underlay-surface display architecture
The DirectDraw underlay display architecture is similar to the
underlay display architecture described above. The display
resolution sets the size of the overlay frame buffer surface.
However, under the DirectDraw underlay-surface display
architecture, the VGA display adapter dynamically allocates
an underlay surface that is of the same size as the buffer
selected to the display. Accordingly, the amount of video
memory used for on-screen purposes depends on the size and
depth of the image buffer selected for display.

A DirectDraw underlay-surface display architecture can only
be used when the VGA display adapter can dynamically
allocate an underlay surface, and is only used when it is more
efficient to do so.

The DirectDraw underlay-surface display architecture is
currently available when using a Matrox frame grabber with a
Matrox G200 or Matrox G400 graphics controller such as the
Matrox Orion frame grabber. The Cyrix processor’s companion
chip on the Matrox 4Sight imaging platform also supports the
DirectDraw underlay-surface display architecture.

Under this DirectDraw underlay surface display architecture,

there are a number of important features:

■ MdigGrabContinuous() is always performed live with no
Host CPU intervention, irrespective of overlapping of the
display windows.

■ Graphics and video overlay on top of the selected buffer is
done with no Host CPU intervention.

■ MdispLut() is not supported.

■ MdispZoom() is accelerated by the hardware, which means
that there is no Host CPU intervention.

92 Chapter 5: Displaying an image

■ The underlay surface data format is usually YUV. Typically,
this is an advantage because it allows true color images to be
displayed even in 256 colors display resolution (if there are
no hardware restrictions which apply).

MIL will choose the most appropriate display architecture at
the time of display allocation (MdispAlloc()). Still, you can use
the M_WINDOWED + M_DDRAW_UND initialization flag to force
this DirectDraw underlay-surface display architecture,
provided that you have the appropriate hardware.

Advanced controls for windowed mode

Display types in windowed mode
In windowed mode, when allocating a display (MdispAlloc()),
you can specify how image buffers are displayed in a 256-color
display resolution. There are three types of display
initialization:

■ Enhanced (M_DISPLAY_ENHANCED,
M_DISPLAY_8_ENHANCED, M_DISPLAY_24_ENHANCED)

■ Basic with optimization (M_DISPLAY_BASIC,
M_DISPLAY_8_BASIC, M_DISPLAY_24_BASIC)

■ Basic without optimization (M_DISPLAY_WINDOWS,
M_DISPLAY_24_WINDOWS)

Select both an M_DISPLAY_8_XXX and M_DISPLAY_24_XXX
display initialization to independently control the display of

8-bit and 3-band 8-bit images.

Enhanced When using an enhanced initialization, the MIL display calls
the Microsoft Video for Windows DrawDIBDraw() function to
display image buffers. This function’s use of dithering
particularly improves the display of 3-band 8-bit images under
256-color display resolution.

Note, with enhanced initializations, the actual display color
values are selected, on a best-match basis, from the logical
palette’s available display colors. Therefore, effects such as
those of an inverse LUT are not possible. This is the default
display initialization for an 8-bit 3-band image.

Advanced controls for windowed mode 93

Basic with optimization When using a basic with optimization initialization, the MIL
display calls the Windows API StretchDIBits(), StretchBlt(),
or DirectDrawBlt() function to display image buffers. When
8-bit images are displayed, the pixel values are used, as much
as possible, to index the physical output LUTs. When 3-band
8-bit images are displayed in an 256-color display resolution,
the display uses an algorithm optimized for speed. This
algorithm converts 24 bits to 8 bits by taking the
most-significant bits of each component: 3 bits each are taken
from the red and green components, and 2 bits from the blue.
This produces an 8-bit DIB with 3:3:2 RGB values for display;
it is these values that are used to address the physical output
LUTs. This is the best possible combination when you are not
aware of the color content of the image buffer.

Basic without
optimization

When using a basic without optimization initialization, the
MIL display calls the Windows API StretchDIBits(),
StretchBlt() or DirectDrawBlt() function to display image
buffers; however no optimization for speed is done when
displaying a 3-band 8-bit image in a 256-color display
resolution. The display will display such images (color images)
on a best-match basis and display 8-bit images using their pixel
values to address the physical output LUTs.

This display initialization can result in slow display
performance.

Zoom types in windowed mode
In windowed mode, when allocating a display (MdispAlloc()),
you can specify how image buffers are zoomed in a 256-color
display resolution. There are two types of zoom initialization:

■ Enhanced (M_ZOOM_ENHANCED)

■ Basic (M_ZOOM_BASIC)

Enhanced When using an enhanced zoom initialization, the
DrawDIBDraw() function is called to perform a zoom.
Although zooming might be a little slower than using the basic
initialization option, it does not alter the dithering quality,

94 Chapter 5: Displaying an image

providing a better quality zoom. This option is the default and
is only available when an M_DISPLAY_XXX_ENHANCED display
initialization is used.

Basic When using a basic zoom initialization, Windows (Windows API
functions) is called to perform the zoom. Note, if an
M_DISPLAY_XXX_ENHANCED display initialization is used,
this zoom might alter the quality of the DrawDIBDraw()
dithering.

Controlling how the LUT buffer is loaded into the
Windows palette

When calling MdispLut(), MIL will copy the data of each band
of the LUT buffer to the corresponding component of the logical
palette, without modification. To obtain good results, the
specified color values must be carefully selected to provide the
best color match upon image display. If the specified values
closely match the RGB values that occur frequently in the
image to be displayed, very good results can be obtained.

Controlling how the logical palette is loaded into
the physical output LUTs
When in windowed mode, you can control how Windows loads
the logical palette into the physical output LUTs. If you want
the Windows palette manager to use palette optimization when
realizing the physical output LUT values from the logical
palette, use MdispControl() with the

M_WINDOW_PALETTE_NOCOLLAPSE control type.

The M_WINDOW_PALETTE_NOCOLLAPSE control type can be
used to control palette optimization in one of two ways:

■ The Windows palette manager realizes the physical output
LUTs with the best color usage of the logical palette
(M_DISABLE); this is the default setting.

■ The Windows palette manager realizes the physical output
LUTs by loading the logical palette "as is" (M_ENABLE).

Optimizing the physical
output LUTs

When setting the M_WINDOW_PALETTE_NOCOLLAPSE control
type to M_DISABLE, the Windows palette manager attempts the
best color usage of the logical palette when realizing the

Advanced controls for windowed mode 95

physical output LUTs. The palette manager tries to map colors
from the logical palette into the currently realized physical
output LUTs to reduce the number of requested new entries.
This reduces the chance of a color occuring more than once in
the physical output LUTs.

Realizing the physical
output LUTs without
modification

When setting the M_WINDOW_PALETTE_NOCOLLAPSE control
type to M_ENABLE, the Windows palette manager loads each
component of the logical palette "as is" into the corresponding
physical output LUT. This can result in a color occuring more
than once in the physical output LUT.

96 Chapter 5: Displaying an image

Chapter 6: Generating
graphics

This chapter describes the graphics commands that are
available with MIL. These consist of drawing and
text-writing commands.

98 Chapter 6: Generating graphics

MIL and graphics

The MIL package supports basic drawing and text commands
that are useful in typical image processing or machine vision
applications. These commands could be used, for example, to
create a conditional buffer or to annotate an image.

Preparing for graphics

There are two requirements for graphics operations:

■ An image buffer in which to perform the operation.

■ A set of graphics parameters, referred to as a graphics
context, with which to perform the operation.

Graphics context Allocate a graphics context, using MgraAlloc(). Upon allocation,
each of the graphics parameters of the graphics context is set
to the default (refer to the MgraAlloc() command reference
description for the defaults). You can change these parameter
settings according to your needs.

Different graphics contexts can coexist. Use their identifier to
specify which to use or change.

Once a graphics context is no longer required, it should be freed,
using MgraFree().

When a MIL application is created, using MappAlloc() or

MappAllocDefault(), a default graphics context is
automatically created. It can be used as a normal graphics
context by specifying M_DEFAULT as the graphics context
identifier. Since M_DEFAULT is simply another graphics
context, you can change its parameter settings according to
your needs.

Preparing for graphics 99

Graphics
parameters

There are two basic parameters that apply to graphic objects:

1. Background color. This determines the background color of
textual graphic objects. The default background color value
is zero (typically corresponds to black). You can change this
color, using MgraBackColor().

2. Foreground color. This determines the color in which
graphic objects are drawn or written. The default
foreground color value is the highest positive buffer value
(typically corresponds to white). You can change this color,
using MgraColor().

Selecting colors A grayscale value can be any integer or floating-point number.
If the given value exceeds the range of the possible values that
can be stored in each band of the destination buffer, the least
significant bits of the value are used.

Clearing the buffer Once you are satisfied with the graphics parameters, you
should determine whether you need to clear the graphics image
buffer prior to drawing or writing to it. You can use MgraClear()
or MbufClear() to clear the buffer to a specific color.

100 Chapter 6: Generating graphics

Drawing graphics

With the MIL package, you can draw:

■ lines (MgraLine())

■ rectangles (MgraRect() and MgraRectFill())

■ arcs, circles, and ellipses (MgraArc() and MgraArcFill())

■ dots (MgraDot())

Using MgraLine(), MgraRect(), MgraArc(), or MgraDot(), you
can draw the outline of most required shapes. The outlines are
drawn one pixel wide.

In addition, the MIL package includes MgraRectFill() and
MgraArcFill() so you can draw solid rectangles and arcs.

MgraArc()

MgraArcFill()

MgraRect()

MgraRectFill()
If you need complex filled-in shapes, draw the outline of the
shape and use MgraFill() to fill it.

MgraDot()MgraLine()

Drawing graphics 101

Filling shapes MgraFill() performs a boundary-type seed fill. It fills an area
of the target buffer with the current foreground color, starting
from the specified seed position. Filling occurs on adjacent
pixels of the same value as the original seed pixel.

Note, any drawing is clipped outside the boundaries of the
buffer.

Seed position

102 Chapter 6: Generating graphics

Writing text

You can also write text in the drawing area, using MgraText().
This command writes a null-terminated (\0) ASCII string at
the specified position in a given buffer, using the foreground
and background color and current font of the specified graphics
context.

When specifying the location at which to write the string, give
the top-left corner coordinates of the first character in the
string.

Although the graphics context specifies a default character font
and size, you can change the font and size of this context, using
MgraFont() and MgraFontScale(), respectively. MgraFont()
provides a set of predefined fonts from which to choose.

(x, y)

Chapter 7: Grabbing with
your digitizer

This chapter discusses the cameras supported
with MIL and the control of your digitizers, including the
fine-tuning of the input and auto-focusing.

104 Chapter 7: Grabbing with your digitizer

Cameras and input devices

The MIL package supports input from any type of input device
supported by the digitizer. Data grabbed from an input device
with the digitizer using MdigGrab() or MdigGrabContinuous(),
is stored into an image buffer. For color cameras, you must use
color image buffers, with the same number of bands as the
incoming data. Note, since most input devices are cameras, they
will hereafter be referred to as such.

For a digitizer to be recognized by MIL, it must be allocated on
the target system, using MdigAlloc() (or MappAllocDefault()).
The allocation sets up the digitizer to match your camera’s data
format and to access the active input channel. Once you have
finished using a digitizer, you should free it, using MdigFree().

If you often use the same camera and prefer to use
MappAllocDefault() to set up and initialize your system, you
might want to update the milsetup.h file to reflect your camera.

When developing an application, it is recommended that you
use a simple camera. Once the application is working, switch
to a more sophisticated camera, if necessary. This approach
makes debugging much easier.

The data format 105

The data format

MdigAlloc() needs the camera’s digitizer configuration format
(DCF) to perform the digitizer allocation. The DCF defines such
parameters as the input frequency and resolution, and will
determine limits when grabbing an image.

MIL provides a number of predefined DCFs for the basic
cameras supported by your digitizer. Refer to the
MIL/MIL-Lite Board-specific notes manual for exact settings.
MIL also provides some DCF files that you can load if the
predefined DCFs don’t suit your needs.

Once a digitizer has been allocated, you can use MdigInquire()
to inquire about its settings.

If you find a DCF file that is appropriate for your video source,
but need to adjust some of the more common settings, you can
do so directly, without adjusting the file, using the Mdig...()
commands. For more specialized adjustments, you can adjust
the file itself, using Matrox Intellicam.

If you cannot find an appropriate DCF file or have a
non-standard input device that does not appear in our list (such
as a strobe or trigger device), you can create your own, also
using Matrox Intellicam. For more information on Matrox
Intellicam, refer to the Matrox Intellicam User Guide manual.

If you cannot develop the required DCF using Matrox
Intellicam, you should provide the camera specifications to your

Matrox Technical Support Engineer. A suitable customized
DCF file can then be developed, if your digitizer supports the
camera.

106 Chapter 7: Grabbing with your digitizer

The digitizer number

The device number In addition to the data format, MdigAlloc() requires that you
specify the digitizer number. The digitizer number specifies the
required digitizer, and its rank with respect to other digitizers
of the same type (color or monochrome) residing in the same
system. Note, if there is only one digitizer on the specified
system, you must specify the digitizer number as M_DEV0 or
M_DEFAULT.

Multiple cameras

MIL also supports applications that require input from
different cameras. In general, you cannot simultaneously
activate two cameras, whether or not they are connected to the
same digitizer.

The input channel Most digitizers have several multiplexed input channels, that
is they have several channels but can only grab from one of the
channels at a time. In this case, if you have a camera that is
not connected to the first channel of its digitizer, you must
specify the channel, using MdigChannel().

If there are several cameras of the same data format connected
to a digitizer, you only need to allocate a digitizer with the DCF
of the first camera and use MdigChannel() to switch between
the others of the same type.
When using different cameras on the same digitizer, a different
DCF must be used for each camera. In general, to switch
between cameras of different formats, you have to allocate the
digitizer with one format, grab, free the digitizer, and then
allocate the digitizer again with the second format. Some
systems permit virtual digitizers (for example, Matrox Genesis)
so that you can allocate several digitizers, specify a channel for
each digitizer, and then grab with the appropriate digitizer,
without having to free and re-allocate between switches.

Number of frames or fields 107

Number of frames or fields

To grab a single frame or field, use MdigGrab(). The type of
scanning used by your camera determines whether you grab
fields or frames. With progressive scanning cameras, frames
are grabbed. If your camera uses interlaced scanning, fields
are grabbed. By default, if your camera uses interlaced
scanning, one call to MdigGrab() will grab both the odd and
even fields.

To grab a series of continuous frames, use
MdigGrabContinuous(); this function uses the specified
digitizer to continuously acquire frames of data until
MdigHalt() is called.

Note, when grabbing data with MdigGrab(), you can specify
how many fields or frames to grab using MdigControl(), with
M_GRAB_FIELD_NUM or M_GRAB_FRAME_NUM.

Line-scan cameras If your target digitizer supports it, you can grab from a line-scan
camera in the same way you would, for example, an RS-170
type camera. However, you should be aware of how data from
these cameras is stored.

When acquiring data from a line-scan camera, each line of each
destination buffer band is filled from top to bottom. The
operation will only end once the entire buffer has been filled.

108 Chapter 7: Grabbing with your digitizer

Grabbing to the display

Live and pseudo-live continuous grabs

With MIL, you can grab to a displayable buffer selected on a
display. If your system is not using an imaging board with a
display section, MIL will use your VGA for display purposes.
MIL uses one of two methods to transfer when grabbing:

■ Live grab: MIL grabs directly to the version of the buffer
that is physically allocated in the frame buffers (display
memory).

■ Pseudo-live grab: MIL grabs into the Host memory version
of the buffer and then updates the version in the frame
buffers (display memory).

When grabbing, the digitizer (for example, Matrox Meteor-II)
always acts as the bus master.

A monoshot grab is always pseudo-live. Grabbing a specific
number of frames is also performed pseudo-live (note that
under a non-windowed display it is possible to perform a live
monoshot grab by allocating your buffer directly on the VGA
board with M_ON_BOARD.

In general, a continuous grab is live. By default, at the end of
the continuous grab, a copy of the last image grabbed is made
in the Host memory version of the buffer (or on-board
processing memory). This allows the image to be processed. You

can override the copy-to-Host behavior, using MsysControl()
with the M_LAST_GRAB_IN_TRUE_BUFFER control type. Note
that in this case, the MdigGrabContinuous() call will not modify
the Host buffer in any way.

Grabbing to the display 109

Live transfer to the display

The digitizer can generally transfer all grabbed data directly to
display memory, when grabbing to an on-board display or when
grabbing to a VGA that supports fast linear-memory accesses
to its frame buffer.

Pseudo-live transfers to the display
A continuous grab will automatically switch to pseudo-live if:

■ Your VGA board does not support fast linear-memory
accesses (discussed later in this section).

■ The format of the grabbed data is not compatible with your
VGA display mode. For example, performing a color grab in
256 color display resolution.

Matrox
Digitizer

Matrox
Digitizer

Display

VGA Board

PCI
Bus

Requires the use
of specific display
board

Video is transferred
directly to display
memory

Does not involve
the Host CPU

OR
■ Your board does not have both an underlay and overlay frame
buffer surface and there is a non-rectangular overlap
between the display windows on the display device.

■ Your board does not have both an underlay and overlay frame
buffer surface, DDraw is disabled or you are in multi-head
mode, and the grab display window does not have the focus,
that is, is not active.

■ Your board does not have both an underlay and an overlay
frame buffer surface and you are using the display’s overlay
buffer, that is, have enabled M_WINDOW_OVR_WRITE with

110 Chapter 7: Grabbing with your digitizer

MdispControl(). In this case, the grab will be pseudo-live
because an additional operation is required to combine a
grabbed image with a simulated version of the overlay.

■ You are in multi-head mode and the display window occupies
more than one screen.

MIL transparently performs pseudo-live grabs:

By default, when a continuous grab switches to pseudo-live, it
will transparently double buffer the grab in Host memory. That
is, while the digitizer is grabbing one frame into a Host buffer,
the display driver performs a blit of the previous frame (stored
in the temporary Host buffer) to the frame buffers (VGA display

VGA Board

Matrox
Digitizer

System RAM

PCI
Bus Video is transferred by

way of an intermediate
Host buffer

Any display card
can be used

Video might need to be
scaled down to appropriate
size to be displayed in
real-time (depends on
VGA board and system)

Involves the
Host CPU
memory). Double-buffering can be disabled using
MsysControl() with M_DISPLAY_DOUBLE_BUFFERING.

Pseudo-live transfers will be real time (that is, full frame rate
of 30 for NTSC or 25 fps for PAL) if the CPU transfer from the
Host buffer to display memory is fast enough. That is, if the blit
is taking at most one frame time length. Blit time is affected by
the load of the CPU (for example, the number of process threads
and the priorities of other boards). You can reduce the load of
the CPU in the pseudo-live grab operation by disabling the
double buffering operation. However, when double buffering is
disabled, only half of the full frame rate can be achieved.

Grabbing to the display 111

Multi-head mode In multi-head mode, note that a continuous grab without
overlay can be moved from one screen to another and be
displayed live when it has the focus. However, a continuous
grab with overlay will only be live on the screen attached to the
on-board display section; it will switch to pseudo-live on the
other screen(s). In both cases, when the window displaying the
grab intersects two screens, the grab is pseudo-live.

The table below indicates the type of configurations which are
supported on particular boards.

For more information about your board’s transfer capabilities,
consult the MIL/MIL-Lite Board-specific notes manual.

Window occlusion
When there is no overlap or rectangular overlap of a live grab
window, the continuous grab is displayed live. When there is
non-rectangular overlap (that is, the displayed portion of the
occluded window is no longer rectangular), there is pseudo-live
display.

Display configuration Corona Genesis Meteor-II Orion Pulsar

single-screen or multi-head
(windowed mode)

x x x x x

single- or dual-screen
(non-windowed mode)

x x x
* Window 1 is the active window and window 2 is the grab and
display window.

112 Chapter 7: Grabbing with your digitizer

Note that when DDraw is disabled (see MsysAlloc()), the
continuous grab is displayed live only when the window has the
focus (that is, is active).

Using an MGA VGA
board

Matrox recommends using Matrox MGA boards for real-time
display of video data. Selection of an MGA board depends on
your application’s requirements. To find out more about display
mode resolutions on a particular board, see the MIL/MIL-Lite
Board-specific notes manual.

Using a VGA board
other than MGA board

If your VGA is not an MGA board, you must reconfigure the
[Vga] section in the mil.ini file.

The following is an example of a mil.ini configuration file,
describing the Matrox MGA Millennium-II PCI board (contact
your VGA board vendor for this information). The Matrox
vendor identifier is 102B, the MGA Millennium-II device
identifier is 051B, the VGA frame buffer is mapped to an
address, offset by 0 from its PCI base address of 0:

[Vga]

VgaVendorId=102B

VgaDeviceId=051B

VgaBaseAddressIndex=0

VgaBaseAddressOffset=0

Instead of specifying all of the above parameters, you can
specify the VGA board’s physical address:
VgaPhysicalAddress=EF000000

If the live grab operation does not have the proper pitch or the
proper pixel depth, the following optional entries must be
specified:

VgaPitch=400

VgaFormat=M_BGR15+M_PACKED

❖ All values are hexadecimal.

The default location of the mil.ini file is the Windows directory
under Microsoft Windows. A different location can be specified
using the environment variable, MILINIDIR.

Reference levels, lookup tables, and scaling 113

Reference levels, lookup tables, and
scaling

MIL provides functions to improve the appearance of a grabbed
image on input (if your hardware allows it). You can adjust the
brightness and contrast of the images, as well as the hue and
saturation for color grabs, by fine-tuning the controls of the
analog-to-digital converters in your system. You can also
correct and precondition the input data prior to storing it,
through scaling, or by mapping it through an input LUT.

Black and white reference levels

When digitizing images, the black and white reference levels
determine the zero and full-scale levels, respectively, of the
input voltage range. The analog-to-digital converters convert
any voltage above the white reference level to the maximum
pixel value, and any voltage below the black reference level to
a zero pixel value.

Matrox digitizers support fine-tuning of these reference levels.
By reducing or increasing either or both the black and white
reference levels, you affect the brightness of the image. By
reducing one reference level and increasing the other, you affect
the contrast of the image.
MIL linearly represents the distance between the minimum
and maximum voltages, in which the black reference level can
be adjusted (hardware-specific), as units between
M_MIN_LEVEL and M_MAX_LEVEL. The same is done for the
white reference level adjustment range. These units are the
values by which you can adjust the specified reference level,
using MdigReference().

114 Chapter 7: Grabbing with your digitizer

To calculate the value to pass to MdigReference(), use the
following equation with the appropriate voltages specified in
the MIL/MIL-Lite Board-specific notes manual for your
particular board.

The smallest voltage increment supported by your board can
differ such that consecutive reference-level settings might
produce the same result.

Note, the new reference level might not take effect until the
next grab, at which point, a certain amount of delay might be
incurred as the hardware adjusts to the reference-level
changes.

Color image reference levels
When grabbing composite color images, MdigReference()
provides specific control parameters to adjust the levels of
contrast, brightness, hue, and saturation. These levels can be
set to values from 0 to 255. See the MIL/MIL-Lite
Board-specific notes manual for your particular board for more
details.

Mapping grabbed data through a LUT
You can correct or precondition input data by mapping it
through a LUT when grabbing (if the hardware permits). This

Voltage needed - minimum voltage

maximum voltage - minimum voltage

M_MAX_LEVEL - M_MIN_LEVEL

=
Value to pass to
MdigReference()
requires that you copy a LUT buffer to a digitizer’s physical
input LUT, using MdigLut().

You can copy a LUT buffer that has the same number of color
bands as the digitizer’s physical input LUTs. If you copy a
one-band LUT buffer to a digitizer that has more than one
physical input LUT, each of the digitizer's LUTs is loaded with
the same LUT buffer data.

In addition, the LUT buffer’s number of entries must match the
digitizer's input data range.

Reference levels, lookup tables, and scaling 115

To revert to the default LUT values, you must copy the default
LUT (M_DEFAULT) to the digitizer. For digitizers, the default
LUT is one that maps pixels to the same values. This type of
LUT is typically referred to as a transparent LUT.

Scaling

The MdigControl() function allows you to scale grabbed data
horizontally and vertically. If you scale grabbed data, the stored
image size is different from the original image by the specified
factors in the X and/or Y direction. The scaled image is written
in contiguous locations in the image buffer, starting from the
top-left corner. For example, if you set both the X and Y scaling
factors to 1/2, only one column and one row out of two are
written to the image buffer.

0 0

0 0

0 0

0

0

0

0 0

0 0

0 0

0 0

0

0

0

0

115

244

196 196

87 87 87 87 86 87

87 87 87 87

243

111

115

115

92 92

111

111

111 111

111

111 111

0

0 0

0 0

0 0

0

0

0 0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

45

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

215

215

215

0

0

0

0

0

0

115

196

87 87

243

115

92

0

0

0

0

0

0

0

0

0

0

0

0

Original image

X subsampling factor = 2
Y subsampling factor = 2

Subsampled image
The X and Y scaling factors are independent. Note, depending
on the digitizer and camera used, some scaling factors might
not be available.

To disable scaling, set scaling factors to 1.

116 Chapter 7: Grabbing with your digitizer

Optimizing application performance when
grabbing

Grab mode
When grabbing data with MdigGrab(), you can control the
synchronization by setting the MdigControl() M_GRAB_MODE
control type to a value of M_SYNCHRONOUS,
M_ASYNCHRONOUS, or M_ASYNCHRONOUS_QUEUED (if
supported).

■ If the grab mode is set to M_SYNCHRONOUS, your application
will be synchronized with the end of a grab operation. In other
words, your application will wait until the grab has finished
before executing the next command.

■ If the grab mode is set to M_ASYNCHRONOUS, your
application will not be synchronized with the end of a grab
operation. This option allows other commands to execute
while still grabbing. This is a useful option when performing
double buffering, a technique whereby you can grab data into
one buffer while processing the previously grabbed buffer
(discussed below). Note, a call to another MdigGrab() before
the current grab has finished will cause your application to
wait until the current grab has finished.
MdigGrabContinuous() is by definition asynchronous since
you must use MdigHalt() to stop the grab.

■ If your imaging board supports queuing, you can set the grab

mode to M_ASYNCHRONOUS_QUEUED; if another grab is
issued before the first one is finished, the grab will be queued
on-board, allowing you to perform other processes while
waiting for the next MdigGrab() to be executed. Note, you can
still force your application to wait until the end of a grab
before executing an operation, by calling MdigGrabWait().

Optimizing application performance when grabbing 117

Double buffering
Double buffering involves grabbing into one image while
processing the previously grabbed image. Double buffering
allows you to grab and process concurrently. You must switch
the destination of the grab between the two image buffers. In
addition, you need to synchronize the grabbing and processing
so that:

■ You do not process an image until an entire frame has been
grabbed into the buffer.

■ You do not grab into a buffer until the previous frame in that
buffer has been processed.

Below is an example of how to perform double buffering:

��
���6JKU�GZCORNG�FQGU�FQWDNG�DWHHGTGF�ITCD�YKVJ�TGCN�VKOG�RTQEGUUKPI�����������
���0QVG��6JKU�CUUWOG�VJCV�VJG�RTQEGUUKPI�QRGTCVKQP�KU�UJQTVGT�VJCP�C�ITCD�����
���������CPF�VJCV�VJG�2%�JCU�UWHHKEKGPV�DCPFYKFVJ�VQ�UWRRQTV�VJG���������������
���������QRGTCVKQPU�UKOWNVCPGQWUN[��#NUQ�KH�VJG�VCTIGV�RTQEGUUKPI�DWHHGT������
���������KU�PQV�QP�VJG�FKURNC[��VJG�RTQEGUUKPI�URGGF�KU�CWIOGPVGF�������������
�
�
�
���+OCIG�UECNG����
�FGHKPG�+/#)'A5%#.'�����

���JGCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��EQPKQ�J �
�KPENWFG��OKN�J �
���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&���/KN#RRNKECVKQP�
���/+.A+&���/KN5[UVGO������
���/+.A+&���/KN&KIKVK\GT���
���/+.A+&���/KN&KURNC[�����
���/+.A+&���/KN+OCIG=�?����
���/+.A+&���/KN+OCIG&KUR���
��
���NQPI���0D2TQE�����
�
��
EQPV����

118 Chapter 7: Grabbing with your digitizer

����#NNQECVKQPU����
���/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
���/U[U#NNQE
/A&'(A5;56'/A6;2'��/A&'(A5;56'/A07/��/A5'672���/KN5[UVGO��
���/FKI#NNQE
/KN5[UVGO��/A&'(#7.6��
/A&'(A&+)+6+<'4A(14/#6�/A&'(#7.6��/KN&KIKVK\GT��
���/FKUR#NNQE
/KN5[UVGO��/A&'(#7.6��/A&'(A&+52.#;A(14/#6��/A&'(#7.6��
�/KN&KURNC[���

����#NNQECVG���ITCD�DWHHGTU����
���/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%���/KN+OCIG=�?��
���/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%���/KN+OCIG=�?��

������#NNQECVG���FKURNC[CDNG�DWHHGT�CPF�ENGCT�KV����
���/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%
/A&+52���/KN+OCIG&KUR��
���/DWH%NGCT
/KN+OCIG&KUR���Z���������������
����
����
����
�
������2WV�VJG�FKIKVK\GT�KP�CU[PEJTQPQWU�OQFG����
���/FKI%QPVTQN
/KN&KIKVK\GT��/A)4#$A/1&'��/A#5;0%*410175��
��
������)TCD�KPVQ�VJG�HKTUV�DWHHGT����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?��
��

������2TQEGUU�QPG�DWHHGT�YJKNG�ITCDDKPI�VJG�QVJGT����
���YJKNG
��MDJKV
���
���]
������)TCD�UGEQPF�DWHHGT�YJKNG�RTQEGUUKPI�HKTUV�DWHHGT����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?��
����
�����
����
���
EQPV������

Optimizing application performance when grabbing 119

Multiple buffering
When an occasional frame takes longer to process than the time
required to grab, you can use a multiple buffering technique to
ensure that all processing is completed without losing any
frames. To perform multiple buffering, use the
MdigHookFunction() when grabbing asynchronously to hook
the grab function to certain grab events, such as the start or
end of a frame: the hooked function will interrupt the

���2TQEGUU�VJG�HKTUV�DWHHGT�CNTGCF[�ITCDDGF������
������0QVG��4GCN�VKOG�QPN[�KH�2%�KU�HCUV�GPQWIJ����
���/KO%QPXQNXG
/KN+OCIG=�?��/KN+OCIG&KUR��/A'&)'A&'6'%6��
����
����
����
������)TCD�HKTUV�DWHHGT�YJKNG�RTQEGUUKPI�UGEQPF�DWHHGT����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?�

������2TQEGUU�VJG�UGEQPF�DWHHGT�CNTGCF[�ITCDDGF�����
���/KO%QPXQNXG
/KN+OCIG=�?��/KN+OCIG&KUR��/A'&)'A&'6'%6��
���_
����
����
����
�����(TGG�CNNQECVKQPU����
���/DWH(TGG
/KN+OCIG&KUR��
���/DWH(TGG
/KN+OCIG=�?��
���/DWH(TGG
/KN+OCIG=�?��
���/FKUR(TGG
/KN&KURNC[��
���/FKI(TGG
/KN&KIKVK\GT��
���/U[U(TGG
/KN5[UVGO��
���/CRR(TGG
/KN#RRNKECVKQP��
_��
processing to perform the grab, and return to continue
processing after the grab is initiated. You can grab into as many
buffers as required to ensure that all processing is finished
before overwriting a buffer with a new frame.

Note, processing is generally faster if the buffer is not on the
display.

120 Chapter 7: Grabbing with your digitizer

Grabbing a sequence of frames in real-time

To grab a sequence of frames in real-time, simply use
successive, asynchronous calls to MdigGrab() :

Note that you must also allocate a buffer for each frame of the
sequence. After you have grabbed a sequence, you can use the
MbufExportSequence() function to export the sequence of image
buffers (compressed or un-compressed 8-bit) to an *.avi file.
When exporting, you must specify the number of buffers and
the frame rate (number of images/second) of the sequence. Note,
the MIL identifiers of the image buffers to export must be kept
in an array.

Use the MbufImportSequence() to import a sequence of images
from an *.avi file into separate image buffers. You can import
compressed (MJPEG) or un-compressed 8-bit images. You can
also choose to import the sequence into automatically allocated
buffers or previously allocated buffers.

Grabbing with triggers and exposures

��������2WV�FKIKVK\GT�KP�CU[PEJTQPQWU�OQFG���
������/FKI%QPVTQN
/KN&KIKVK\GT��/A)4#$A/1&'��/A#5;0%*410175��

��������)TCD�VJG�UGSWGPEG����
������HQT�
P����P�0D(TCOGU��P

�
������]
�������������)TCD�QPG�DWHHGT�CV�C�VKOG����
�����������/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=P?��
������_
If your Matrox digitizer supports trigger input, this allows you
to grab a frame upon the occurrence of an event; that is, nothing
is grabbed when you call MdigGrab() or
MdigContinousGrab(), until a specified event occurs. When
grabbing continuously, the digitizer waits for a trigger before
grabbing each frame; you must still call MdigHalt() after
grabbing all required frames.

The camera’s digitizer definition format (DCF) file specifies
whether or not to perform a triggered grab and exactly how it
should be carried out. For example, if the DCF specifies that an

Grabbing with triggers and exposures 121

exposure signal should be generated (for the camera) upon the
grab trigger event, the actual grab would only be triggered once
the active exposure time was over.

You can use MIL commands to override the DCF trigger
settings. You can enable/disable whether
MdigGrab()/MdigContinousGrab() performs a triggered
grab using MdigControl() with M_GRAB_TRIGGER. You can
also specify the source and activation mode of the event upon
which to grab using MdigControl() with
M_GRAB_TRIGGER_SOURCE and then with
M_GRAB_TRIGGER_MODE.

Asynchronous reset mode

If your digitizer supports asynchronous reset mode, the
digitizer resets the camera to begin a new frame when the
trigger signal is received.

time
lapse even field

arrival of
trigger pulse

camera resets immediately to new
even field and starts to grab

external trigger

TTL signal

Video data

Asynchronous reset mode
Otherwise, the digitizer waits for the next valid frame (or field)
before commencing to grab. The grab activation mode is
specified in the DCF file.

122 Chapter 7: Grabbing with your digitizer

Triggers and exposures
In MIL, there are two methods of grabbing with triggers and
exposures: the automatic exposure model and the manual
bypass model. They are described in detail in the following
diagrams. By default, MIL uses the automatic exposure model.
You can change this default using MdigControl() with
M_GRAB_EXPOSURE_BYPASS.

Automatic exposure
model

In the automatic exposure model, the digitizer is configured to
have the pipeline that is illustrated in the next diagram. (Note
that the defines specified in the following illustration are those
to be used with the MdigControl() function).

time lapse

even field odd field even field

arrival of
trigger pulse

start of grab is the beginning
of next even field

external trigger

TTL signal

Video data

Next valid frame (or field) mode

Grabbing with triggers and exposures 123

To summarize:

■ MdigControl() with M_GRAB_TRIGGER_SOURCE selects
which signal to use as the source of the trigger (for example,
M_HARDWARE_PORT0). MdigControl() with
M_GRAB_TRIGGER_MODE, selects the trigger detection
method (for example, trigger on the rising edge of the signal).

■ If the exposure time (MdigControl() with

(M_GRAB_EXPOSURE_BYPASS set to M_DISABLE or M_DEFAULT)

MUX

Detect

Trigger selection
and detection

trigger source (M_GRAB_TRIGGER_SOURCE)1

trigger detection method (M_GRAB_TRIGGER_MODE)2

2

exposure delay (M_GRAB_EXPOSURE_TIME_DELAY)3

3

exposure time (M_GRAB_EXPOSURE_TIME)4

bypass exposure timers if exposure time = 0 (M_GRAB_EXPOSURE_TIME)6

4

polarity of exposure signal (M_GRAB_EXPOSURE_MODE)5

MUX Grab

1

6

* exposure timers will be cascaded automatically (if necessary)
to generate one signal that has the required delay and active time

5

Exposure timers*
Grab
trigger
module

or
M_GRAB_EXPOSURE_TIME) is zero, the trigger sets off the
grab trigger module immediately, initiating the actual grab.
The exposure timers are bypassed.

■ If you set the exposure time to a non-zero value, an exposure
signal is generated with an active period equal to the
specified exposure time (M_GRAB_EXPOSURE_TIME). The
active period occurs after the specified delay
(M_GRAB_EXPOSURE_TIME_DELAY). The signal will be
generated with the specified polarity
(M_GRAB_EXPOSURE_MODE). The end of exposure will
trigger the grab trigger module, initiating the actual grab.

124 Chapter 7: Grabbing with your digitizer

Manual exposure
bypass model

In the manual bypass model, you are responsible for enabling
and setting-up all the exposure timers and grab trigger
connections

Exposure timer2 (T2)

Exposure
trigger
source2

Exposure
trigger
source1

Manual exposure bypass model
(M_GRAB_EXPOSURE_BYPASS set to M_ENABLE)

Grab

Grab trigger module

10

9

Exposure timer1 (T1)

Active level
for exposure

signal

Timer2
enabled
switch

68

Active level
for exposure

signal

Timer1
enabled
switch

13

7

Detect

MUX

6

Trigger selection and
detection

2

Detect

MUX

1

Trigger selection and
detection

4

5

Delay
before
Exposure

Exposure
time

Delay
before
Exposure

Exposure
time

T1

Hrd
Port

T2

Hrd
Port

T1
T2

Grab
trigger
source

MUX 12

Detect
(M_GRAB_EXPOSURE_SOURCE + M_TIMER1)

(M_GRAB_EXPOSURE_MODE + M_TIMER1)

(M_GRAB_EXPOSURE_TRIGGER_MODE + M_TIMER1)

(M_GRAB_EXPOSURE_TIME_DELAY + M_TIMER1)

(M_GRAB_EXPOSURE_TIME + M_TIMER1)

1

2

3

4

5

(M_GRAB_EXPOSURE_SOURCE + M_TIMER2)

(M_GRAB_ TRIGGER_MODE + M_TIMER2)EXPOSURE_

(M_GRAB_EXPOSURE_MODE + M_TIMER2)

(M_GRAB_EXPOSURE_TIME_DELAY + M_TIMER2

6

7

8

9

10

11

12

(M_GRAB_EXPOSURE_TIME + M_TIMER2)

(M_GRAB_TRIGGER_SOURCE)

(M_GRAB_TRIGGER_MODE)

Hrd
Port

11

Grabbing with triggers and exposures 125

Software triggers

In general, the digitizer’s grab trigger module and exposure
timers can also be triggered by software (M_SOFTWARE). In this
case, following a grab call, nothing is grabbed until you call a
specific function (discussed below). Note that in this case, the
grab call must be asynchronous (that is, issue the grab with
MdigGrab() in asynchronous mode or with
MdigGrabContinuous()) or the grab call must be called on a
separate thread.

In the automatic
exposure model

In the automatic exposure model, issue the software trigger by
calling MdigControl() with M_GRAB_TRIGGER and
M_ACTIVATE. This will trigger the grab if the exposure time
is 0, otherwise the call will trigger the exposure signal which
in turn will trigger the grab.

In the manual bypass
model

In the manual bypass model, to issue a software trigger for the
grab trigger module, call MdigControl() with
M_GRAB_TRIGGER and M_ACTIVATE. To issue a software
trigger for one of the exposure timers, call MdigControl() with
M_GRAB_EXPOSURE+M_TIMERn and M_ACTIVATE.

Note, for a digitizer without an exposure timer, the exposure
time is considered to be zero.

126 Chapter 7: Grabbing with your digitizer

Chapter 8: Color

This chapter discusses how to handle objects in color with
MIL.

128 Chapter 8: Color

Dealing with color

MIL supports grabbing, displaying, and accessing color images.

MIL can represent an object in color with a single color buffer,
allocated with MbufAllocColor().

Grabbing

You grab from an input device (typically a camera) into a color
image buffer, as you would into a two-dimensional grayscale
image buffer, by calling MdigGrab() or MdigGrabContinuous().

Before performing a color grab, a digitizer must be allocated,
using MdigAlloc() (or MappAllocDefault()), specifying a color
digitization data format. In addition, the digitizer and the
image buffer must be allocated on the same system and have
compatible dimensions. Once you have finished using the
digitizer, you should free it, using MdigFree().

When grabbing from a color digitizer, each color component is
transmitted simultaneously. The destination buffer must have
the same number of color bands as the digitizer. The data is
simultaneously stored in the appropriate component of the
image buffer. When grabbing RGB, the red component is stored
in the first color band, the green component is stored in the
second color band, while the blue component is stored in the
third color band.

Grabbing 129

If the hardware permits, you can control the digitization
reference level of each channel, using MdigReference().

❖ Note, upon installation, if you specified a color camera, the
default image buffer allocated with MappAllocDefault() will
be a three-band color image buffer. If you didn’t specify a color
camera, but would now prefer to use one, you might want to
update the milsetup.h file to reflect the desired defaults for
the allocation of your color camera and a color image buffer.

Note, most examples in this manual assume that the target
system has a monochrome digitizer, and that the camera and
default image buffer are monochrome. To run the examples
using a color digitizer and image buffer, you must modify the
code appropriately.

Mapping grabbed
data through a LUT

You can also correct or precondition input data by mapping it
through a LUT upon acquisition (if the hardware permits). This
requires that you associate a LUT buffer with the input device,
using MdigLut().

The LUTs that can be associated to a digitizer are either
one-dimensional LUT buffers (single rows) or LUT buffers that
have the same number of color bands as the digitizer. If you
associate a one-dimensional LUT buffer with the digitizer, each
of the digitizer’s color band input LUTs is loaded with the
one-dimensional LUT buffer data. If you associate a multi-band
LUT buffer with the digitizer, each of the digitizer’s color band
LUTs is loaded with its corresponding color band LUT buffer

data.

Note, the LUT buffer depth must match the digitizer’s pixel
depth.

To disassociate the LUT buffer from the digitizer, you need to
associate the digitizer with the default LUT, using M_DEFAULT
as a parameter to MdigLut().

130 Chapter 8: Color

Displaying

You display a color-image buffer as you would a
two-dimensional grayscale image buffer. You must first allocate
the image buffer with a displayable attribute (M_DISP), then
select it for display, using MdispSelect(). To stop displaying the
image buffer and leave the display blank, use MdispDeselect().

Before you can display a buffer, the display must be allocated,
using MdispAlloc() (or MappAllocDefault()). The image buffer
and the display must be allocated on the same system and have
compatible dimensions.

When you display a color-image buffer (usually RGB), the first
band is routed to the first output channel (usually red), the
second band is routed to the second output channel (usually
green), while the third band is routed to the third output
channel (usually blue).

When a display is allocated, a default pass-through LUT
(transparent LUT) is loaded into the output LUT(s) (if any). You
can change the displayed colors of an image by associating a
lookup table (LUT) to the display, using MdispLut().

When you associate a one-color-band LUT buffer with a display
that has more than one output LUT, the same LUT buffer data
is loaded in each of the available output channel LUTs.

When you associate a multi-band LUT buffer to a display that
has multiple output LUTs, each output LUT is loaded with the

data of the corresponding LUT buffer color band.

To disassociate the LUT buffer from the display, you need to
associate the display with the default LUT, using M_DEFAULT
as a parameter to MdispLut().

Saving and loading color images 131

Saving and loading color images

MIL supports the saving and loading of color images from disk
in different file formats. See the MbufSave(), MbufLoad(),
MbufRestore(), MbufImport(), and MbufExport() command
reference descriptions in Part II: The MIL-Lite reference for
more details.

Note, all the MIL data allocation, access, and generation
(Mbuf...() and MgenLut...()) commands can handle color image
buffers.

How to manage your color buffer

The following example demonstrates some ways in which to
manage your color buffers:

���(KNG�PCOG��OEQNQT�E
���5[PQRUKU���6JKU�RTQITCO�CNNQECVGU�C�FKURNC[CDNG�EQNQT�KOCIG�DWHHGT�
��������������FKURNC[U�KV��CPF�NQCFU�KVU�EQPVGPVU�YKVJ�C�EQNQT�KOCIG�
��������������+V�VJGP�FQGU�C�EQR[�QH�VJKU�KOCIG�CPF�YTKVGU�VGZV�KPVQ�VJG
��������������EQNQT�EQORQPGPVU�
4)$��QH�VJG�EQR[�QH�VJG�KOCIG�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J �

���5QWTEG�/+.�KOCIG�HKNG�URGEKHKECVKQPU�����
��FGHKPG�+/#)'A(+.'��������������DKTF�OKO�
��FGHKPG�+/#)'A9+&6*���������������.
��FGHKPG�+/#)'A*'+)*6��������������.

��FGHKPG�+/#)'A$#0&��������������.
��FGHKPG�+/#)'A&'26*�������������.

XQKF�OCKP
XQKF�
]�
��/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
���������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
���������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
���������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����
���������/KN5WD+OCIG����������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�UQWTEG�KOCIG������
���������/KN5WD+OCIG����������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�EQRKGF�KOCIG������
���������/KN5WD+OCIG�4GF������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�TGF�EQORQPGPV�����
���������/KN5WD+OCIG�)TGGP����5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�ITGGP�EQORQPGPV���
���������/KN5WD+OCIG�$NWG�����5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�DNWG�EQORQPGPV����
��NQPI���+OCIG5K\G:�����������+OCIG�YKFVJ�����
���������+OCIG5K\G;�����������+OCIG�JGKIJV����
��
EQPV����

132 Chapter 8: Color

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
��������������������/A07..��/A07..��

�����(KPF�VJG�DGUV�UK\G�HQT�VJG�FKURNC[�KOCIG�FGRGPFKPI�QP�VJG�FKURNC[�V[RG����
���KH�
/FKUR+PSWKTG
/KN&KURNC[�/A&+52A/1&'�/A07..���/A9+0&19'&�
��]
������+OCIG5K\G:���+/#)'A9+&6*�����
������+OCIG5K\G;���+/#)'A*'+)*6�
��_
��GNUG
��]
��������6JG�UK\G�QH�VJG�GPVKTG�FKURNC[�VQ�CXQKF�RQUUKDNG�FKURNC[�CTVKHCEVU����
������+OCIG5K\G:���OKP
/FKUR+PSWKTG
/KN&KURNC[�/A5+<'A:�/A07..��
����������������������/A&'(A+/#)'A5+<'A:A/#:��
������+OCIG5K\G;���OKP
/FKUR+PSWKTG
/KN&KURNC[�/A5+<'A;�/A07..��
����������������������/A&'(A+/#)'A5+<'A;A/#:��
��_

�����#NNQECVG�C�EQNQT�FKURNC[�KOCIG�DWHHGT�VQ�RGTHQTO�RTQEGUUKPI�KP�KV����
���/DWH#NNQE%QNQT
/KN5[UVGO��+/#)'A$#0&��+OCIG5K\G:��+OCIG5K\G;�
������������������+/#)'A&'26*
/A705+)0'&��/A+/#)'
/A&+52
/A241%���/KN+OCIG��

�����%NGCT�VJG�KOCIG�DWHHGT����
���/DWH%NGCT
/KN+OCIG���.��

�����&KURNC[�VJG�KOCIG�DWHHGT����
���/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

�����'PCDNG�MG[KPI�QP�FKURNC[�KH�KV�KU�UWRRQTVGF����
���KH�

/A&'(A&+52.#;A-';A'0#$.'A10A#..1%���������
��������/FKUR+PSWKTG
/KN&KURNC[�/A&+52A-';A5722146'&���
�������
������/FKUR1XGTNC[-G[
/KN&KURNC[�/A-';A10A%1.14�/A'37#.��Z((.�
����������������������/A&'(A&+52.#;A-';A%1.14��

�����&GHKPG���UWD�KOCIG�DWHHGTU�KP�VJG�FKURNC[�DWHHGT��TGUVTKEVKPI�VJG
������YQTM�TGIKQPU�VQ�VJG�KOCIG�UK\G�
�����

���/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5WD+OCIG���
���/DWH%JKNF�F
/KN+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5WD+OCIG���

�����.QCF�C�EQNQT�KOCIG�KP�KOCIG������
���/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG���

�����2TKPV�C�OGUUCIG����
���RTKPVH
�#�EQNQT�UQWTEG�KOCIG�YCU�NQCFGF�CPF�FKURNC[GF�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��
��
EQPV����

How to manage your color buffer 133

�����%QR[�VJG�EQNQT�KOCIG����
���/DWH%QR[
/KN5WD+OCIG���/KN5WD+OCIG���

�����%TGCVG�EJKNF�DWHHGTU�VJCV�OCR�VQ�VJG�TGF��ITGGP�CPF�DNWG�EQORQPGPVU����
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A4'&�����/KN5WD+OCIG�4GF��
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A)4''0���/KN5WD+OCIG�)TGGP��
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A$.7'����/KN5WD+OCIG�$NWG��

�����9TKVG�EQNQT�CPPQVCVKQPU�KP�GCEJ�EQORQPGPV�QH�VJG�EQRKGF�KOCIG����
���/ITC%QNQT
/A&'(#7.6���Z((��
���/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG�4GF�
������������+/#)'A9+&6*�����+/#)'A*'+)*6�����617%#0���
���/ITC%QNQT
/A&'(#7.6���Z����
���/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG�)TGGP�
������������+/#)'A9+&6*�����+/#)'A*'+)*6�����617%#0���
���/ITC%QNQT
/A&'(#7.6���Z����
���/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG�$NWG�
������������+/#)'A9+&6*�����+/#)'A*'+)*6�����617%#0���

�����2TKPV�C�OGUUCIG����
���RTKPVH
�6JG�EQNQT�UQWTEG�KOCIG�KP�VJG�VQR�NGHV�EQTPGT�YCU�EQRKGF�KP�VJG>P���
���RTKPVH
�VQR�TKIJV�EQTPGT�KOCIG�CPF�EQNQT�VGZV�CPPQVCVKQP�YCU�FQPG�KP�KV�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����&KUCDNG�MG[KPI�QP�VJG�FKURNC[�KH�KV�KU�UWRRQTVGF����
���KH�

/A&'(A&+52.#;A-';A&+5#$.'A10A(4''���������
�������/FKUR+PSWKTG
/KN&KURNC[�/A&+52A-';A5722146'&����
�����/FKUR1XGTNC[-G[
/KN&KURNC[�/A-';A1((�/A07..�/A07..�/A07..��

�����4GNGCUG�UWDKOCIGU�CPF�EQNQT�KOCIG�DWHHGT����
���/DWH(TGG
/KN5WD+OCIG�4GF��
���/DWH(TGG
/KN5WD+OCIG�)TGGP��
���/DWH(TGG
/KN5WD+OCIG�$NWG��
���/DWH(TGG
/KN5WD+OCIG���
���/DWH(TGG
/KN5WD+OCIG���
���/DWH(TGG
/KN+OCIG��

�����4GNGCUG�FGHCWNVU����

���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

134 Chapter 8: Color

Chapter 9: JPEG compression

This chapter describes how to compress and decompress
images.

136 Chapter 9: JPEG compression

Introduction

MIL allows you to compress and decompress images.
Compression allows you to store more images in memory than
would normally be possible. In addition, it allows images to be
transferred more quickly, since it reduces the amount of data
that must be transferred. MIL can compress images using the
JPEG lossless algorithm or the JPEG lossy algorithm.

❖ Under MIL-Lite, dedicated hardware is required to compress
and decompress images.

JPEG lossless The JPEG lossless algorithm compresses images without any
loss of information. Typically, the algorithm compresses images
by a factor of 2:1, although a factor of 4:1 can sometimes be
achieved. The JPEG lossless algorithm can compress 8- or
16-bit buffers with 1 or 3 bands.

JPEG lossy The JPEG lossy algorithm compresses images by a variable
factor but introduces some loss of information. The higher the
compression factor, the more the compression, but the lower the
image quality. The JPEG lossy algorithm can compress 8-bit
buffers with 1 or 3 bands. To be compatible with most
image-viewing software, MIL allows you to store compressed
color images in YUV format.

Interlaced JPEG MIL can perform a JPEG compression such that the image data
is stored in separate fields. This is referred to as an interlaced

JPEG compression. Unless otherwise stated, everything that
applies to a JPEG compression also applies to an interlaced
JPEG compression.

Control options MIL allows you to control certain aspects of a compression.
Specifically, you can use your own compression tables, although
the default tables are suitable for most applications.

*.avi files You can use MbufExportSequence() to export a sequence of
image buffers to an audio video interleave (*.avi) file. You can
use MbufImportSequence() to import a sequence of images from
an *.avi file into separate buffers.

General steps 137

General steps

Compression To compress an image:

1. Allocate a buffer in which to hold the compressed image.
Use MbufAlloc...(), allocating the buffer with an
M_COMPRESS+CompressionType attribute.

2. If necessary, change the control settings of the buffer, using
MbufControl(). Specifically, for a lossy compression, you
might want to change the quantization factor, which is one
of the factors that determine the amount of compression.

3. If the image to compress is stored in a buffer, use
MbufCopy() to compress it into the buffer allocated in step
1. If it is stored on file, use MbufImport(). Note that, if you
want the compressed image stored on file rather than in a
buffer, use MbufExport() instead of MbufCopy(). In this
case, there is no need to allocate a destination buffer.

You can also automatically compress your grabbed images.
To do so, use MdigGrab() with a destination buffer that has
an M_GRAB+M_COMPRESS+CompressionType attribute.

Decompression To decompress an image, use MbufCopy(), MbufImport(), or
MbufExport(), depending on where the source image is stored
(in a buffer or on file) and where you want results written (to a
buffer or file). Before the decompression, you should not change
any control settings in the source image. This is because, in

order for the reconstructed image to match the original, the
same controls must be used to decompress. If you do change a
control setting, the image data will be lost.

Multi-band buffers
and color formats

When you allocate a multi-band buffer for a lossy compression,
you can specify that the compressed image be stored in an RGB
or YUV format. Note that most image-viewing software display
compressed color images in YUV 4:2:2 format. When the chosen
format differs from that of the source image, MIL internally
converts the source image to the specified format, then
performs the compression.

138 Chapter 9: JPEG compression

Multi-band buffers
and control settings

If you are compressing a multi-band buffer, you can specify
different control settings for each band. To do so, create a child
buffer from each band, using MbufChildColor(), then set
controls for each child buffer, using MbufControl().
Alternatively, if you performing a lossy compression on a YUV
image, you can use the xx_LUMINANCE and xx_CHROMINANCE
control types. The xx_LUMINANCE control type affects the Y
band, while xx_CHROMINANCE affects the U and V bands.

Application-specific
markers

During a compression, MIL adds some application-specific
markers to the resulting image. Most other packages will ignore
these markers and therefore be able to decompress the file. MIL
itself ignores unrecognized markers when it decompresses files.

Controlling a JPEG compression

This section provides a brief overview of the JPEG lossless and
lossy algorithms and of the controls you have over these
algorithms. In general, you should only change these controls
if you are familiar with the algorithm you are using. For
detailed information about the JPEG lossless and lossy
algorithms, see the JPEG Technical Specification Revision 8.

JPEG lossless

The JPEG lossless algorithm is basically a two-step process.
First, predictive coding is performed on the image. Then, the
result is Huffman encoded.

Controlling a JPEG compression 139

Predictive coding Predictive coding is based on the fact that adjacent pixels in an
image generally have similar values. Therefore, the value of a
pixel can be "predicted" from the values of its neighbor(s). The
difference between the original value of the pixel and the
predicted value requires fewer bits to store than the original
pixel value.

By default, MIL uses the pixel to the left to predict values. This
is suitable for most images. However, you can specify that no
predicting be done, using MbufControl(). In this case, the values
after predictive coding will be the same as the original values.
This can be useful if you have developed your own algorithm to
take the place of predictive coding and only need your images
Huffman encoded. Note that you must implement your own
algorithm to use one of the other "predictors" supported by the
JPEG lossless algorithm; MIL only supports predictor #0 (no
predictor) and predictor #1 (the "pixel-to-the-left" predictor).

Huffman encoding After an image has been predictive coded, Huffman encoding
assigns a variable-length "code word" to each value. This code
is based on the number of bits by which the difference between
adjacent values differ. By storing the code word, rather than
the actual difference value, further compression can be
achieved. Values are assigned code words according to a DC
Huffman table. You can use the default DC Huffman table or
you can create your own table. If you want to use your own table,
refer to the Using your own table section.

JPEG lossy

The JPEG lossy algorithm is outlined below. First, each 8x8
block of the image is represented in its frequency domain
through a discrete cosine transform, resulting in 1 DC and 63
AC values. Each block is then quantized and Huffman encoded.

140 Chapter 9: JPEG compression

Quantization divides each of the 64 values in a block by a
specified value, according to a quantization table. After each
block is quantized, Huffman encoding assigns a variable-length
"code word" to each value. Each DC value in a block is assigned
a code word according to a DC Huffman table. The AC values
are assigned a code word according to an AC Huffman table.
You can control a JPEG lossy compression by using your own
quantization and/or Huffman tables.

Using your own table

For a JPEG lossless compression, you can use your own DC
Huffman table. For a JPEG lossy compression, you can use your
own quantization, DC Huffman, or AC Huffman table. In order
to use your own table:

1. Allocate a buffer with an M_ARRAY attribute and of the
required size. Huffman tables are one-dimensional, so use
MbufAlloc1d() to allocate the buffer. Quantization tables
are two-dimensional, so use MbufAlloc2d().

2. Transfer the table values to the buffer, using MbufPut1d()
or MbufPut2d(), depending on the type of table.

3. Associate the M_ARRAY buffer to the required image buffer,
using MbufControl().

Note that you can associate a different table to each band of a
multi-band buffer. To do so, create a child buffer from each band,
using MbufChildColor(), then associate a table to each child
buffer. Alternatively, for lossy compressions of YUV images, use

the xx_LUMINANCE and xx_CHROMINANCE control types.

Restart markers 141

Restart markers

When an image is compressed, MIL adds restart markers to the
bit stream of the compressed image. A restart marker is a
special code that signifies that the encoded bit stream has been
padded to the next byte boundary before the encoding process
was restarted. Restart markers can be useful if you are
transmitting the compressed image over a medium that is
susceptible to errors. If an error does occur and there are no
restart markers, the error will propagate and affect subsequent
data. However, if there are restart markers, the error will be
confined to the data between markers.

By default, MIL places restart markers after a certain number
of rows of data have been encoded (for lossless compressions)
or after a certain number of 8x8 blocks of data have been
encoded (for lossy compressions). If necessary, you can use
MbufControl() to change the number of rows or blocks between
restart markers.

❖ For a lossy compression with a high compression ratio, too
many restart markers can significantly increase the size of
the compressed image. In this case, you might want to
increase the number of rows or blocks between restart
markers, especially if you are not transmitting the image
over a noisy medium. In fact, if you are sure that the
transmission medium is not noisy, you might want to set the
restart interval to 0, that is, not use restart markers. This

will increase the compression ratio, as well as reduce the time
required to decompress the image.

142 Chapter 9: JPEG compression

Chapter 10: Data
manipulation with multiple
systems

144 Chapter 10: Data manipulation with multiple systems

Data manipulation with multiple systems

To use multiple Matrox imaging boards, you have to allocate a
MIL system for each board.

Processing To perform a processing operation, your source and destination
buffers can be on different systems; MIL will transparently
copy buffers to the most efficient of these system, if necessary.

Exchanging data To exchange data between systems, you can physically copy the
data from one system to another. The copy is always performed
by the most suitable system. If both systems are of the same
type, the copy is always performed by the destination system.

Instead of performing a physical copy using MbufCopy(), you
can allocate a buffer on one system and use MbufCreate...() to
access this buffer from another system. MbufCreate...() creates
a buffer that maps to allocated memory (for example, on the
Host or any MIL system); no memory is actually allocated to
this newly created buffer.

The second method can be used, for example, to update a buffer
(or part of it) with data grabbed from different systems. Note
that after writing to the created buffer, you should notify the
real buffer that its contents have been changed, by calling
MbufControl() with M_MODIFIED. See Chapter 3: Specifying
and managing your data buffers for more information about
creating data buffers.
Grab and display To grab, the digitizer and the destination buffer must be
allocated on the same MIL system. Similarly, to display a buffer,
the display and the buffer must be allocated on the same MIL
system.

Systems without an on-board display section use the VGA for
display. Therefore, under Windows, such systems will
automatically display together on the same screen.

Chapter 11: Using MIL with
multi-processing and under
multi-thread systems

This chapter describes how MIL handles multi-processing
and multi-threading.

146 Chapter 11: Using MIL with multi-processing and under multi-thread systems

Multi-processing

Multi-processing is the ability to execute various processes
(applications) simultaneously.

MIL applications are autonomous processes (or executables)
designed to execute a complete operation or series of operations.
Therefore, they can profit from multi-processing by executing
independently, without interference from each other.

In general, when multiple processes are running, no sharing of
systems is permitted, except for the Host and VGA. Some
particular systems, such as Matrox Genesis, can also be shared.

Systems with
multi-processing

Systems that support multiple processes have on-board
resources (like processors) that can be shared by different
processes. However, if many processes are running at the same
time, these processes have to share the available processing
time and will not be able to share data.

Systems without
multi-processing

Not all systems support multi-processing. For example, a
simple frame grabber with only acquisition capability (like the
Matrox Meteor-II) cannot ensure either the response time to a
command or the independence of a process necessary for
multi-processing. Therefore, on such systems MIL will refuse
to allocate the system if it is already being used by another
process. To use a non-multi-processing system within a
multi-processing environment, all processes that need to

communicate with the system must do so by sending their
requests through a single dedicated process.

Multi-threading 147

Multi-threading

MIL also supports multi-threading. Multi-threading is the
ability to perform multiple operations simultaneously in the
same process. This is done by creating different threads
(execution queues) to ensure sequential execution of operations
within the same thread, while allowing simultaneous yet
independent execution of other operations in other threads.

Threads within a process share the same data. Therefore, they
can communicate and exchange data such as MIL identifiers.

Multi-threading is most appropriate for applications where
independent tasks can be done simultaneously but need to
share data or to be controlled and synchronized within a main
task.

Speed considerations Multi-threading does not always result in an increase of speed
and efficiency. Threads running simultaneously share the same
system resources (such as memory) and generally run on the
same CPU. This sharing can, in some cases, slow the process.
For example, when using a system with multiple CPUs under
Windows NT, the threads generally run on separate CPUs and
provide more processing power. However, since they share the
same memory, operations that are I/O intensive and require
only simple processing might not be accelerated.

Alternatives Most applications do not require the use of multiple threads

since there are other ways of multi-tasking. Mechanisms such
as asynchronous grab and call-back functions can be used
(see MdigControl() and MdigHookFunction()). Applications
resolved by alternative means are often simpler to implement
and easier to maintain than multi-threaded applications.

148 Chapter 11: Using MIL with multi-processing and under multi-thread systems

MIL and multi-threading
When your application contains several distinct parts that you
want to run in parallel, it is often easier to design it so that each
part is controlled by a separate thread (or task). For example,
if you have two independent processing tasks that can be
performed in parallel, it is often easier to have each controlled
by a separate thread.

Thread execution Under multi-thread operating systems, you can create as many
threads as you require. The MIL commands in any thread are
executed as follows:

■ If the target processor is the Host CPU, processing in each
thread is determined by the operating system.

■ If the target processor is an on-board processor of a system
that supports multi-threading (like the Matrox Genesis),
MIL automatically creates, and eventually terminates, an
on-board thread for each Host thread that sends commands
to the board.

MIL application context For each new Host thread sending MIL commands, MIL creates
a new default MIL application context and initializes it to the
state of the main MIL application (the first application
allocated with MappAlloc()). Its purpose is to handle the context
of the new thread, such as error reporting.

You can force the thread to inherit the state of a specific existing
MIL application by creating a child MIL application, using

MappChild(). Although inheriting (upon allocation) the state
of the parent application, the child application is subsequently
considered a separate application and can be modified
independently of the state of its parent.

You can have the thread’s application initialized with a reset
initial state by allocating a new application, using MappAlloc().

Synchronization Thread synchronization is generally done by the Host
synchronization services (such as Windows NT/2000 and 98
event objects). However, when using a system with an on-board
processor, this processor is not synchronized with the Host.

Multi-threading 149

This means that Host threads continue execution without
waiting for the execution of the on-board commands to
complete. In most cases, this is desirable to make the Host
thread available for other tasks. However, for operations that
necessitate the completion of a previous command(s) in order
to return valid results (for example, MbufGet() after an
MdigGrab()), MIL automatically synchronizes the threads to
force the Host to wait for completion of the earlier command(s).

Explicit synchronization might be necessary if commands
sharing a common resource or system might conflict with each
other. For example, two threads sharing the same image buffer
MIL identifier might each try to clear the buffer to a different
value. If the threads are not synchronized, these commands
might execute at the same time and the buffer could be cleared
to either value or even to a combination of
the two values. Use the MIL synchronization command,
MappControlThread(), to control the flow of such commands.

Thread control Windows NT/2000 and 98 systems are both multi-process and
multi-thread. They provide various thread control services,
including events (used to synchronize threads).

The MIL MappControlThread() command serves as a link
between MIL and the operating system. It controls and
coordinates both MIL threads and MIL events. It can create
and delete a MIL thread, set a thread as the current active
thread, set its processing mode, determine its current state,
and synchronize its processing by forcing a "wait" state. It can

exert similar controls on MIL events. MIL events can be used
in addition to, or instead of, the operating system’s events.

Error reporting Some functions in MIL are asynchronous, that is, they queue
their command to the hardware and then immediately return
control to the Host. For this reason, errors are only reported
when detected and not necessarily before the end of the MIL
function.

The most common way to check for errors is to use the
MappGetError() function. This function returns the errors
currently detected in a thread.

150 Chapter 11: Using MIL with multi-processing and under multi-thread systems

An example of using multiple threads or systems

Multiple threads The following example illustrates how multiple threads can be
used to perform processing. It also illustrates how to
synchronize multiple threads, using events.

���(KNG�PCOG��OVJTGCF�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�WUG�FKHHGTGPV�VJTGCFU�CPF�U[PEJTQPK\G�
��������������VJGO�YKVJ�/+.��+V�ETGCVGU���FTCYKPI�VJTGCFU�VJCV�CTG�WUGF
��������������VQ�YQTM�KP���FKHHGTGPV�TGIKQPU�QH�C�FKURNC[�DWHHGT�
�������6JTGCF�WUCIG�
����������6JG�OCKP�VJTGCF�UVCTVU�C�RTQEGUUKPI�VJTGCF�KP�GCEJ�QH�VJG���FKHHGTGPV
����������SWCTVGTU�QH�C�FKURNC[�DWHHGT��6JG�OCKP�VJTGCF�VJGP�YCKVU�HQT�C�MG[�VQ
����������DG�RTGUUGF�VQ�UVQR�VJGO�
����������6JG�VQR�NGHV�CPF�DQVVQO�NGHV�VJTGCFU�YQTM�KP�C�NQQR��CU�HQNNQYU��VJG
����������VQR�NGHV�VJTGCF�FTCYU�C�TGEVCPING�KP�KVU�DWHHGT�
KP�C�UK\G
����������FKHHGTGPV�HTQO�VJG�RTGXKQWU�TGEVCPING���VJGP�UGPFU�CP�GXGPV�VQ�VJG�
����������DQVVQO�NGHV�VJTGCF��6JG�DQVVQO�NGHV�VJTGCF�YCKVU�HQT�VJG�GXGPV�HTQO�
����������VJG�VQR�NGHV�VJTGCF��EQRKGU�VJG�EQPVGPVU�QH�VJG�VQR�NGHV�DWHHGT�KPVQ�
����������KVU�DWHHGT��FTCYU�C�EKTENG�KP�VJG�TGEVCPING��VJGP�UGPFU�CP�GXGPV�VQ�
����������VJG�VQR�NGHV�VJTGCF��9JGP�VJG�VQR�NGHV�VJTGCF�TGEGKXGU�VJG�GXGPV��VJG�
����������NQQR�EQPVKPWGU�
����������6JG�VQR�TKIJV�CPF�DQVVQO�TKIJV�VJTGCFU�YQTM�GZCEVN[�VJG�UCOG�YC[�CU�VJG
����������VQR�NGHV�CPF�DQVVQO�NGHV�VJTGCFU�
��
��������0QVG�VJCV�VJG�VQR�CPF�DQVVQO�VJTGCFU�
QH�GCEJ�JCNH��EQWNF�DG�UGV�VQ�FQ
��������UQOGVJKPI�GNUG�YJKNG�YCKVKPI�HQT�GCEJ�QVJGT��
���

���JGCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��EQPKQ�J
�KPENWFG��RTQEGUU�J
�KPENWFG��YKPFQYU�J
�KPENWFG��OKN�J

���NQECN�FGHKPGU���

�FGHKPG�+/#)'A(+.'��������������DKTF�OKO�
�FGHKPG�+/#)'A9+&6*���������������
�FGHKPG�+/#)'A*'+)*6��������������
�FGHKPG�&4#9A4#&+75A/#:����������
�FGHKPG�&4#9A%'06'4A215:���������
�FGHKPG�&4#9A%'06'4A215;���������
�FGHKPG�564+0)A.'0)*6A/#:��������
�FGHKPG�564+0)A215A:�������������
�FGHKPG�564+0)A215A;��������������
�FGHKPG�564+0)A612����������������
�FGHKPG�564+0)A$1661/�������������

���6JTGCF�HWPEVKQP�RTQVQV[RGU���
WPUKIPGF�NQPI�/(6;2'�6QR6JTGCF
XQKF��62CTCO��
WPUKIPGF�NQPI�/(6;2'�$QV.GHV6JTGCF
XQKF��62CTCO��
WPUKIPGF�NQPI�/(6;2'�$QV4KIJV6JTGCF
XQKF��62CTCO��
���6JTGCF�RCTCOCVGTU�UVTWEVWTG���
��
EQPV����

Multi-threading 151

V[RGFGH�UVTWEV
���]
���/+.A+&�5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�
���/+.A+&�'XGPV'PF$QV+F�
���NQPI����0WODGT1H+VGT2VT�
���NQPI����%QO8CT2VT�
���_�6*4'#&A2#4#/�

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
���]�
���/+.A+&�/KN#RRNKECVKQP������������#RRNKECVKQP�KFGPVKHKGT����������������������
����������/KN5[UVGO�����������������5[UVGO�KFGPVKHKGT���������������������������
����������/KN&KURNC[����������������&KURNC[�KFGPVKHKGT��������������������������
����������/KN+OCIG������������������+OCIG�DWHHGT�KFGPVKHKGTU��������������������
����������/KN%JKNF������������������%JKNF�DWHHGT�KFGPVKHKGTU��������������������
����������/KN6QR.GHV+OCIG�����������6QR�NGHV�EJKNF�KOCIG������������������������
����������/KN$QV.GHV+OCIG�����������$QVVQO�NGHV�EJKNF�KOCIG���������������������
����������/KN6QR4KIJV+OCIG����������6QR�TKIJV�EJKNF�KOCIG�����������������������
����������/KN$QV4KIJV+OCIG����������$QVVQO�TKIJV�EJKNF�KOCIG��������������������
����������'XGPV5GPF6QR.GHV����������'XGPV�UGPF�D[�VQR�NGHV�VJTGCF���������������
����������'XGPV5GPF6QR4KIJV���������'XGPV�UGPF�D[�VQR�TKIJV�VJTGCF��������������
����������'XGPV9CKV6QR.GHV����������'XGPV�YCKVGF�QP�D[�VQR�NGHV�VJTGCF����������
����������'XGPV9CKV6QR4KIJV���������'XGPV�YCKVGF�QP�D[�VQR�TKIJV�VJTGCF���������
����������'XGPV'PF6QR.GHV�����������'XGPV�WUGF�VQ�GZKV�VQR�NGHV�VJTGCF����������
����������'XGPV'PF$QV.GHV�����������'XGPV�WUGF�VQ�GZKV�DQVVQO�NGHV�VJTGCF�������
����������'XGPV'PF6QR4KIJV����������'XGPV�WUGF�VQ�GZKV�VQR�TKIJV�VJTGCF���������
����������'XGPV'PF$QV4KIJV����������'XGPV�WUGF�VQ�GZKV�DQVVQO�TKIJV�VJTGCF������
���NQPI���0WODGT1H6QR.GHV�����.�����0WODGT�QH�VQR�NGHV�VJTGCFU�KVGTCVKQPU�������
����������0WODGT1H$QV.GHV�����.�����0WODGT�QH�DQVVQO�NGHV�VJTGCFU�KVGTCVKQPU����
����������0WODGT1H6QR4KIJV����.�����0WODGT�QH�VQR�TKIJV�VJTGCFU�KVGTCVKQPU������
����������0WODGT1H$QV4KIJV����.�����0WODGT�QH�DQVVQO�TKIJV�VJTGCFU�KVGTCVKQPU���
����������%QO8CT.GHV�����.����������%QOOWPKECVKQP�XCTKCDNG�HQT�NGHV�VJTGCF������
����������%QO8CT4KIJV����.����������%QOOWPKECVKQP�XCTKCDNGHQT�TKIJV�VJTGCF������
���6*4'#&A2#4#/�62CT6QR.GHV���������2CTCOGVGTU�RCUUGF�VQ�VQR�NGHV�VJTGCF��������

����������������62CT$QV.GHV���������2CTCOGVGTU�RCUUGF�VQ�DQVVQO�NGHV�VJTGCF�����
����������������62CT6QR4KIJV��������2CTCOGVGTU�RCUUGF�VQ�VQR�TKIJV�VJTGCF�������
����������������62CT$QV4KIJV��������2CTCOGVGTU�RCUUGF�VQ�DQVVQO�TKIJV�VJTGCF����
���*#0&.'�6JTGCF*CPFNG=�?�����������6JTGCF�JCPFNGU������������������������������
���&914&��6JTGCF+F=�?���������������6JTGCF�+FU����������������������������������
�
��
EQPV����

152 Chapter 11: Using MIL with multi-processing and under multi-thread systems

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
���������������������/KN&KURNC[��/A07..���/KN+OCIG��

������#NNQECVG�EJKNF�DWHHGTU����
���/DWH%JKNF�F
/KN+OCIG��������+/#)'A9+&6*����+/#)'A*'+)*6�����/KN%JKNF��
���/DWH%JKNF�F
/KN%JKNF��������+/#)'A9+&6*����+/#)'A9+&6*������/KN6QR.GHV+OCIG��
���/DWH%JKNF�F
/KN%JKNF��+/#)'A9+&6*������+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN6QR4KIJV+OCIG��
���/DWH%JKNF�F
/KN%JKNF�����+/#)'A*'+)*6��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN$QV.GHV+OCIG��
���/DWH%JKNF�F
/KN%JKNF��+/#)'A9+&6*��+/#)'A*'+)*6��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN$QV4KIJV+OCIG��
���/FKUR5GNGEV
/KN&KURNC[�/KN%JKNF��

������#NNQECVG�U[PEJTQPK\CVKQP�GXGPVU����
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV5GPF6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV5GPF6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV9CKV6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV9CKV6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF$QV.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF$QV4KIJV��

������+PKVKCNK\G�UQWTEG�DWHHGTU����
���/DWH.QCF
+/#)'A(+.'�/KN6QR.GHV+OCIG��
���/DWH.QCF
+/#)'A(+.'�/KN6QR4KIJV+OCIG��

������+PVKVCNK\G�VJTGCFU�RCTCOGVGT�UVTWEVWTGU����
���62CT6QR.GHV�5TE+OCIG+F���������/KN6QR.GHV+OCIG�
���62CT6QR.GHV�&UV+OCIG+F���������/KN6QR.GHV+OCIG�
���62CT6QR.GHV�'XGPV5GPF+F��������'XGPV5GPF6QR.GHV�
���62CT6QR.GHV�'XGPV9CKV+F��������'XGPV9CKV6QR.GHV�
���62CT6QR.GHV�'XGPV'PF+F���������'XGPV'PF6QR.GHV�
���62CT6QR.GHV�'XGPV'PF$QV+F������'XGPV'PF$QV.GHV�
���62CT6QR.GHV�0WODGT1H+VGT2VT�����0WODGT1H6QR.GHV�
���62CT6QR.GHV�%QO8CT2VT�����������%QO8CT.GHV�
���62CT$QV.GHV�5TE+OCIG+F���������/KN6QR.GHV+OCIG�
���62CT$QV.GHV�&UV+OCIG+F���������/KN$QV.GHV+OCIG�
���62CT$QV.GHV�'XGPV5GPF+F��������'XGPV9CKV6QR.GHV�
���62CT$QV.GHV�'XGPV9CKV+F��������'XGPV5GPF6QR.GHV�
���62CT$QV.GHV�'XGPV'PF+F���������'XGPV'PF$QV.GHV�
���62CT$QV.GHV�'XGPV'PF$QV+F������/A07..�
���62CT$QV.GHV�0WODGT1H+VGT2VT�����0WODGT1H$QV.GHV�
���62CT$QV.GHV�%QO8CT2VT�����������%QO8CT.GHV�

���62CT6QR4KIJV�5TE+OCIG+F��������/KN6QR4KIJV+OCIG�
���62CT6QR4KIJV�&UV+OCIG+F��������/KN6QR4KIJV+OCIG�
���62CT6QR4KIJV�'XGPV5GPF+F�������'XGPV5GPF6QR4KIJV�
���62CT6QR4KIJV�'XGPV9CKV+F�������'XGPV9CKV6QR4KIJV�
���62CT6QR4KIJV�'XGPV'PF+F��������'XGPV'PF6QR4KIJV�
���62CT6QR4KIJV�'XGPV'PF$QV+F�����'XGPV'PF$QV4KIJV�
���62CT6QR4KIJV�0WODGT1H+VGT2VT����0WODGT1H6QR4KIJV�
���62CT6QR4KIJV�%QO8CT2VT����������%QO8CT4KIJV�
���
EQPV����

Multi-threading 153

���62CT$QV4KIJV�5TE+OCIG+F��������/KN6QR4KIJV+OCIG�
���62CT$QV4KIJV�&UV+OCIG+F��������/KN$QV4KIJV+OCIG�
���62CT$QV4KIJV�'XGPV5GPF+F�������'XGPV9CKV6QR4KIJV�
���62CT$QV4KIJV�'XGPV9CKV+F�������'XGPV5GPF6QR4KIJV�
���62CT$QV4KIJV�'XGPV'PF+F��������'XGPV'PF$QV4KIJV�
���62CT$QV4KIJV�'XGPV'PF$QV+F�����/A07..�
���62CT$QV4KIJV�0WODGT1H+VGT2VT����0WODGT1H$QV4KIJV�
���62CT$QV4KIJV�%QO8CT2VT����������%QO8CT4KIJV�
���
����5VCTV�TQVCVG�CPF�GFIG�FGVGEV�VJTGCFU����
���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���6QR6JTGCF�
��62CT6QR.GHV����.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���$QV.GHV6JTGCF�
��62CT$QV.GHV����.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���6QR6JTGCF�
��62CT6QR4KIJV���.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���$QV4KIJV6JTGCF�
��62CT$QV4KIJV���.���
6JTGCF+F=�?���
�����
�����5GPF�GXGPVU�VQ�VTKIIGT�QRGTCVKQP�QH�VQR�NGHV�CPF�VQR�TKIJV�VJTGCFU����
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR.GHV��/A'8'06A5'6��/A5+)0#.'&�/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR4KIJV�/A'8'06A5'6��/A5+)0#.'&�/A07..��
�����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
���RTKPVH
�&TCYKPI�FQPG�KP�C�NQQR�WUKPI�HQWT�VJTGCFU�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��
�����/CMG�CNN�VJTGCFU�GZKV����
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV���/A'8'06A5'6��/A5+)0#.'&��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV��/A'8'06A5'6��/A5+)0#.'&��/A07..��
�����9CKV�DGHQTG�HTGGKPI�/+.�QDLGEVU�VJCV�CNN�VJTGCFU�CTG�HKPKUJGF����
���YJKNG�

/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV���/A'8'06A56#6'��/A&'(#7.6�
�����������������������������/A07..�����/A5+)0#.'&��^^
����������
/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV��/A'8'06A56#6'��/A&'(#7.6�
�����������������������������/A07..�����/A5+)0#.'&�����
�����������
���RTKPVH
�6QR�NGHV�KVGTCVKQPU�FQPG��������NF�>P���0WODGT1H6QR.GHV��
���RTKPVH
�$QVVQO�NGHV�KVGTCVKQPU�FQPG�����NF�>P���0WODGT1H$QV.GHV��
���RTKPVH
�6QR�TKIJV�KVGTCVKQPU�FQPG�������NF�>P���0WODGT1H6QR4KIJV��

���RTKPVH
�$QVVQO�TKIJV�KVGTCVKQPU�FQPG����NF�>P���0WODGT1H$QV4KIJV��
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��
��
EQPV����

154 Chapter 11: Using MIL with multi-processing and under multi-thread systems

�����(TGG�DWHHGTU����
���/CRR%QPVTQN6JTGCF
'XGPV5GPF6QR.GHV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV5GPF6QR4KIJV��/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR.GHV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR4KIJV��/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV����/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF$QV.GHV����/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF$QV4KIJV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/DWH(TGG
/KN6QR.GHV+OCIG��
���/DWH(TGG
/KN6QR4KIJV+OCIG��
���/DWH(TGG
/KN$QV.GHV+OCIG��
���/DWH(TGG
/KN$QV4KIJV+OCIG��
���/DWH(TGG
/KN%JKNF��
������4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
���_

���6QR�NGHV�CPF�VQR�TKIJV�HWPEVKQPU����
���������������������������������������
WPUKIPGF�NQPI�/(6;2'�6QR6JTGCF
XQKF��62CTCO�
���]
���/+.A+&�5TE+OCIG+F������

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F������

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F������

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���/+.A+&�'XGPV'PF$QV+F���

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF$QV+F�
���NQPI���4CFKWU8CT2VT����

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT�
���EJCT���6GZV=564+0)A.'0)*6A/#:?���564+0)A612�
���NQPI���'ZKV���
�
���YJKNG�
�'ZKV�
������]
���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
���������/QFKH[�EQOOWPKECVKQP�XCTKCDNG�CPF�TGNQCF�KOCIG�KH�PGEGUUCT[����
������KH�
�4CFKWU8CT2VT���&4#9A4#&+75A/#:�

���������]
�����������4CFKWU8CT2VT�
��������
���������_
������GNUG����
���������]
�����������4CFKWU8CT2VT��������
����������/DWH.QCF
+/#)'A(+.'��&UV+OCIG+F��
���������_

���������2TKPV�PWODGT�QH�KVGTCVKQPU�CPF�FTCY����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
�������
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC%QNQT
/A&'(#7.6���ZHH��
������/ITC6GZV
/A&'(#7.6��5TE+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��
������/ITC4GEV(KNN
/A&'(#7.6��&UV+OCIG+F��&4#9A%'06'4A215:��4CFKWU8CT2VT�
��������������&4#9A%'06'4A215;��4CFKWU8CT2VT��&4#9A%'06'4A215:
�4CFKWU8CT2VT�
��������������&4#9A%'06'4A215;
�4CFKWU8CT2VT��
��
EQPV��

Multi-threading 155

��������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
���������]
������������/CMG�DQVVQO�VJTGCF�GZKV����
���������/CRR%QPVTQN6JTGCF
'XGPV'PF$QV+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��

������������5GV�GZKV�NQQR�HNCI����
���������'ZKV���
���������_
���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�FTCYKPI����
������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
������_
�
������9CKV�DGHQTG�HTGGKPI�/+.�QDLGEVU�VJCV�CNN�VJTGCFU�CTG�HKPKUJGF����
���YJKNG�
/CRR%QPVTQN6JTGCF
'XGPV'PF$QV+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
�������
������
������/CMG�UWTG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
���/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
���TGVWTP
�.��
���_

���$QVVQO�NGHV�HWPEVKQPU����
����������������������������
WPUKIPGF�NQPI�/(6;2'�$QV.GHV6JTGCF
XQKF��62CTCO�
���]
���/+.A+&�5TE+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���NQPI���4CFKWU8CT2VT���

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT�
���EJCT���6GZV=564+0)A.'0)*6A/#:?���564+0)A$1661/�
���NQPI���'ZKV���
���
���YJKNG�
�'ZKV�
������]

������NQPI�K�
���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
���������+PETGOGPV�PWODGT�QH�KVGTCVKQPU����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.�
���������%QR[�VJG�VQR�KOCIG����
������/DWH%QR[
5TE+OCIG+F�&UV+OCIG+F��
���������2TKPV�KVGTCVKQP�EQWPV�CPF�FTCY����
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC%QNQT
/A&'(#7.6���Z((��
������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��
������/ITC%QNQT
/A&'(#7.6���Z����
������/ITC#TE(KNN
/A&'(#7.6��&UV+OCIG+F��&4#9A%'06'4A215:��&4#9A%'06'4A215;�
�������������������4CFKWU8CT2VT���4CFKWU8CT2VT����������
���
��
EQPV������

156 Chapter 11: Using MIL with multi-processing and under multi-thread systems

���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
���������'ZKV���
���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�FTCYKPI����
������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
������_
�
������/CMG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
���/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
���TGVWTP
�.��
���_

���$QVVQO�TKIJV�HWPEVKQP����
����������������������������
WPUKIPGF�NQPI�/(6;2'�$QV4KIJV6JTGCF
XQKF��62CTCO�
���]
���/+.A+&�5TE+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���NQPI���4CFKWU8CT2VT���

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT�
���EJCT���6GZV=564+0)A.'0)*6A/#:?���564+0)A$1661/�
���NQPI���'ZKV���
���
���YJKNG�
�'ZKV�
������]
���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
���������+PETGOGPV�PWODGT�QH�KVGTCVKQPU����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.�
���������%QR[�VJG�VQR�KOCIG����
������/DWH%QR[
5TE+OCIG+F�&UV+OCIG+F��
���������2TKPV�KVGTCVKQP�EQWPV�CPF�FTCY����
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC%QNQT
/A&'(#7.6���Z((��
������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��

������/ITC%QNQT
/A&'(#7.6���Z����
������/ITC#TE(KNN
/A&'(#7.6��&UV+OCIG+F��&4#9A%'06'4A215:��&4#9A%'06'4A215;�
�������������������4CFKWU8CT2VT�����4CFKWU8CT2VT������������
���
���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
���������'ZKV���
���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�FTCYKPI����
������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
������_
������
������/CMG�UWTG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
���/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
���TGVWTP
�.��
���_
���
��

Chapter 12: Using MIL with
Native Mode Functions

This chapter covers the use of Native Mode functions with
MIL.

158 Chapter 12: Using MIL with Native Mode Functions

Integrating native functions with MIL code

MIL allows you to mix board-specific code (from the native
library function set) with its own code. This is useful when you
need to access some board-specific functionality that is not
supported directly by the MIL function set or to optimize a
time-critical piece of code.

When programming in native mode through MIL, you use the
same board driver and programmer’s kit that are used by
regular native mode programmers. The only difference is the
need to use certain rules and commands to ensure proper
communication between MIL and the native functions. These
rules and commands allow you enter and leave native mode
from MIL and access MIL for information, such as the object
native handle, concerning data objects on the target board.

Portability
You should note that applications containing native mode
functions are not portable to other present or future Matrox
platforms supported by MIL.

Signaling MIL about Native Mode use
MIL must be signaled when entering and leaving native mode
and when MIL objects have been modified while in native mode,
using MsysControl(). For buffer modification, MbufControl()
can also be used to signal MIL.
On entering native mode, MIL does not affect the current state
of either the board or the environment.

The M...Inquire() functions can be used to determine the buffer,
digitizer, or display native identifier (handle) required to use
the system’s native library.

On leaving native mode, MIL assumes that the board is in the
same state as when entering. Therefore, you must ensure that
you return the board to the proper state before returning
control to MIL. Inquiries about the board state must be made
using the board’s native library inquiry functions.

A native mode example 159

A native mode example

In this example, we use MIL mixed with Genesis native library
code to grab and warp an image.

Code

���(KNG�PCOG��OPCVIGP�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�WUG�)'0'5+5�PCVKXG�NKDTCT[�
��������������HWPEVKQP�ECNNU OKZGF�YKVJ�/+.�HWPEVKQP�ECNNU�
���

���IGPGTCN�KPENWFGU���
��KPENWFG��UVFKQ�J �
��KPENWFG��UVFNKD�J �
��KPENWFG��UVTKPI�J �
��KPENWFG��OKN�J
��KPENWFG��KOCRK�J

���1RGTCVKQP�EQPVTQN�FGHKPGU���
��FGHKPG�#..1%#6'����
��FGHKPG�241%'55�����
��FGHKPG�(4''��������

���0CVKXG�HWPEVKQPU�VQ�ITCD��CPF�YCTR�CP�KOCIG����
�XQKF�)TCD#PF9CTR
/+.A+&�/KN5[UVGO��/+.A+&�/KN&KURNC[��/+.A+&�/KN%COGTC���
�����������������/+.A+&�/KN+OCIG��NQPI�1RGTCVKQP��

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
����������/KN%COGTC������������%COGTC�KFGPVKHKGT�����������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����
�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
���������������������/KN%COGTC���/KN+OCIG��
�
�����#NNQECVG�CPF�KPKVKCNK\G�YQTM�DWHHGTU���
���)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��#..1%#6'��
��������������������
������2TKPV�C�OGUUCIG�QP�VJG�JQUV�UETGGP����
����RTKPVH
�0CVKXG�HWPEVKQP�ECNNGF�KP�C�NQQR���>P���
����RTKPVH
�2TGUU��'PVGT �VQ�GPF������

���
��
EQPV������

160 Chapter 12: Using MIL with Native Mode Functions

�������)TCD�CPF�YCTR�ITCDDGF�KOCIG�KP�C�NQQR���
������YJKNG�
�MDJKV
��
������]
����������)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��241%'55��
������_
������
������(TGG�YQTM�DWHHGTU���
����)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��(4''��

����/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN%COGTC�
�������������������/KN+OCIG��
_

���0CVKXG�HWPEVKQP����
����������������������
XQKF�)TCD#PF9CTR
/+.A+&�/KN5[UVGO��/+.A+&�/KN&KURNC[��/+.A+&�/KN%COGTC�
�����������������/+.A+&�/KN+OCIG��NQPI�1RGTCVKQP�
]
������9CTR�EQGHHKEKGPV�CPF�.76�+&�XCTKCDNGU�
������
MGRV�KP�UVCVKE�VQ�CXQKF�YCTR�EQGHHKEKGPV�ECNEWNCVKQP�CV�GCEJ�ECNN��
������
����UVCVKE�NQPI�0CVKXG9CTR$WH+F����������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR.WV:$WH+F������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR.WV;$WH+F������/A07..�
����UVCVKE�NQPI�0CVKXG)TCD$WH+F����������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR4GUWNV$WH+F����/A07..�
���
������+PSWKTG�WUGHWN�/+.�KPHQTOCVKQP����
����NQPI�5K\G:������/FKI+PSWKTG
/KN%COGTC��/A5+<'A:�����/A07..��
����NQPI�5K\G;������/FKI+PSWKTG
/KN%COGTC��/A5+<'A;�����/A07..��
����NQPI�5K\G$CPF���/FKI+PSWKTG
/KN%COGTC��/A5+<'A$#0&��/A07..��
���
������/KUEGNNCPGQWU�NQECN�XCTKCDNGU���
����FQWDNG�%QTPGT:���������
����FQWDNG�%QTPGT;���������
����FQWDNG�%QTPGT:�����5K\G:�������
����FQWDNG�%QTPGT;���������
����FQWDNG�%QTPGT:�����������5K\G:�

����FQWDNG�%QTPGT;�����5K\G;�������
����FQWDNG�%QTPGT:������������5K\G:�
����FQWDNG�%QTPGT;�����5K\G;�������
����NQPI���5TE:5VCTV����.�
����NQPI���5TE;5VCTV����.�
����NQPI���5TE:'PF�����5K\G:����.�
����NQPI���5TE;'PF�����5K\G;����.�
���
EQPV������

A native mode example 161

������+PSWKTG�)GPGUKU�PCVKXG�+F	U�����
����NQPI�0CVKXG5[U6JTGCF+F���/U[U+PSWKTG
/KN5[UVGO��/A0#6+8'A6*4'#&A+&��/A07..��
����NQPI�0CVKXG&KI%COGTC+F���/FKI+PSWKTG
/KN%COGTC��/A0#6+8'A%#/'4#A+&��/A07..��
����NQPI�0CVKXG&KI%QPVTQN+F���/FKI+PSWKTG
/KN%COGTC��/A0#6+8'A%10641.A+&�
������/A07..��
����NQPI�0CVKXG&KI+F���/FKI+PSWKTG
/KN%COGTC���/A0#6+8'A+&��/A07..��
����NQPI�0CVKXG$WH+F���/DWH+PSWKTG
/KN+OCIG���/A0#6+8'A+&��/A07..��

������0QVKH[�/+.�VJCV�YG�CTG�GPVGTKPI�PCVKXG�OQFG����
����/U[U%QPVTQN
/KN5[UVGO��/A0#6+8'A/1&'A'06'4��/A07..��
���
������&Q�VJG�UGNGEVGF�QRGTCVKQP���
����UYKVEJ�
1RGTCVKQP�
���]
�������2TGCNNQECVG�ITCD�CPF�YCTR�DWHHGTU�
FQPG�QPEG�HQT�URGGF�����
�����ECUG�#..1%#6'�
�����]
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;��5K\G$CPF��+/A7$;6'�
�����������������+/A241%���0CVKXG)TCD$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;��5K\G$CPF��+/A7$;6'�
�����������������+/A241%���0CVKXG9CTR4GUWNV$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F���.���.���.��+/A(.1#6��+/A241%��
������������������0CVKXG9CTR$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;���.��+/A5*146��+/A241%�
������������������0CVKXG9CTR.WV:$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;���.��+/A5*146��+/A241%�
������������������0CVKXG9CTR.WV;$WH+F��
������KH�
0CVKXG)TCD$WH+F����0CVKXG9CTR4GUWNV$WH+F����0CVKXG9CTR$WH+F����
����������0CVKXG9CTR.WV:$WH+F����0CVKXG9CTR.WV;$WH+F�
������]
������������%CNEWNCVG�YCTR�EQGHHKEKGPVU���
����������KO)GP9CTR�%QTPGT
0CVKXG5[U6JTGCF+F��0CVKXG9CTR$WH+F��%QTPGT:��
��������������������������%QTPGT;���%QTPGT:���%QTPGT;���%QTPGT:���%QTPGT;��
��������������������������%QTPGT:���%QTPGT;���5TE:5VCTV��5TE;5VCTV�
��������������������������5TE:'PF��5TE;'PF��+/A&'(#7.6���.��
����������KO)GP9CTR.WV/CVTKZ
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV:$WH+F�
��0CVKXG9CTR.WV;$WH+F��
��0CVKXG9CTR$WH+F���.���.��
������_

������GNUG
�����]
���������RTKPVH
�'TTQT�CNNQECVKPI�TGUQWTEGU���>P���
�����_
������DTGCM����
�����_�����

���
EQPV�����

162 Chapter 12: Using MIL with Native Mode Functions

�����)TCD�CPF�9CTR�DWHHGT����
����ECUG�241%'55�
����]
���������2TQEGUU�KH�CNNQECVKQPU�YGTG�UWEEGUUHWN����
�������KH�
0CVKXG)TCD$WH+F����0CVKXG9CTR4GUWNV$WH+F����0CVKXG9CTR$WH+F���
����������0CVKXG9CTR.WV:$WH+F���0CVKXG9CTR.WV;$WH+F�
�������]
������������)TCD�VJG�KOCIG���
����������KO&KI)TCD
0CVKXG5[U6JTGCF+F��0CVKXG&KI+F��0CVKXG&KI%COGTC+F�
�������������������0CVKXG)TCD$WH+F���.��0CVKXG&KI%QPVTQN+F���.��
�
������������9CTR�VJG�ITCDDGF�KOCIG����
����������KO+PV9CTR.WV
0CVKXG5[U6JTGCF+F��0CVKXG)TCD$WH+F��0CVKXG9CTR4GUWNV$WH+F�
����������������������0CVKXG9CTR.WV:$WH+F��0CVKXG9CTR.WV;$WH+F���.���.��

�����������%QR[�VJG�TGUWNV�KPVQ�VJG�FKURNC[�DWHHGT���
���������KO$WH%QR[
0CVKXG5[U6JTGCF+F��0CVKXG�9CTR4GUWNV$WH+F��0CVKXG$WH+F���.��
�������������������.��
�������_
�������DTGCM����
����_
������
�������(TGG�ITCD�CPF�YCTR�DWHHGTU����
����ECUG�(4''�
����]
������KH�
0CVKXG)TCD$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG)TCD$WH+F��
������KH�
0CVKXG9CTR4GUWNV$WH+F�
���������KO$WH(TGG
PCVKXG5[U6JTGCF+F�0CVKXG9CTR4GUWNV$WH+F��
������KH�
0CVKXG9CTR$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR$WH+F��
������KH�
0CVKXG9CTR.WV:$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV:$WH+F��
������KH�
0CVKXG9CTR.WV;$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV;$WH+F��
������DTGCM����
����_
���_
��
��

������0QVKH[�/+.�VJCV�YG�NGCXG�PCVKXG�OQFG����
����/U[U%QPVTQN
/KN5[UVGO��/A0#6+8'A/1&'A.'#8'��/A07..��
���
������0QVKH[�/+.�VJCV�VJG�DWHHGT�YCU�OQFKHKGF����
����/DWH%QPVTQN
/KN+OCIG��/A/1&+(+'&��/A&'(#7.6��
_

Part II:
The MIL-Lite

reference
Putting thoughts into motion....

Chapter 13: Programming
with MIL

166 Chapter 13: Programming with MIL

A MIL overview
The Matrox imaging library (MIL) is a hardware-independent
library divided into different modules based on functionality.

MIL-Lite

Data
generation

module

MIL basic objects

Graphics
module

Data
allocation

and access
module

System,
Digitizer

and Display
allocation

and control
modules

Application
allocation

and control
module

User
application

program
Part I of this manual, Using MIL-Lite, describes how to solve
typical applications using the library. Code examples are also
provided.

Hardware
driver

Hardware
device

A MIL overview 167

Starting your MIL application

Application and system
initialization

At the beginning of each MIL application, you need to:

1. Allocate your application with MappAlloc(). This will
create a control and execution environment for your
application. Once you have finished using an application,
you should free it with MappFree().

2. Allocate your hardware system with MsysAlloc(). This will
open communication channels and initialize the hardware
resources. Once Host communication has been established
with a system, you can allocate its memory resources,
display, and input capabilities.

For typical setups, you will only need to use one system,

whereas for more sophisticated setups, you might need to
allocate more than one. You can use their system identifiers
to select between them.

Once you have completely finished using a system, you
should free the device, using MsysFree().

168 Chapter 13: Programming with MIL

Default initialization If the required system is mapped to the default location
specified in the milsetup.h file, you can perform the above steps
by making a single call to MappAllocDefault(). Review the
milsetup.h file to make sure that the default setup
configuration matches your system configuration (refer to
Appendix A: The default setup configuration file for more
information on this file). The MappAllocDefault() macro can
also allocate a default display, digitizer and image buffer. Use
the MappFreeDefault() macro to free the defaults allocated.

❖ Note, for more information about added functionality and
hardware limitations specific to your target system, refer to
MIL/MIL-Lite Board-Specific Notes.

Header file and libraries

The required header
file

To compile a MIL application program, you must include the
mil.h header file, in addition to the required standard C include
files. This mil.h file includes all constant definitions, type
definitions, and function prototypes. It also includes any
required macro files (for example, the milsetup.h file for the
MappAllocDefault() macro).

Linking to the MIL
library

After you have compiled your application program, you will
have to link it with the appropriate libraries or import libraries
for your operating system, compiler, and target board. The MIL
libraries are located in the MATROX IMAGING (OR
USER-SPECIFIED)\MIL\LIBRARY\WINNT\MSC\DLL
directory.
MIL object manipulation concepts

Data objects MIL manipulates different types of objects. Objects must be
allocated by MIL before they can be used. Besides allocating
your MIL application and system (discussed in the previous
section), the following objects must also be allocated:

■ Displays

■ Digitizers

■ Buffers

A MIL overview 169

Displays and digitizers With MIL, display and digitizer objects provide a way to
communicate or control dedicated hardware resources. Note,
several of these devices can be allocated at the same time;
you use their identifiers to select between them. Once you have
finished using a device, you should free it, using MdigFree()
or MdispFree(). Refer to Chapter 7: Grabbing with your
digitizer for more information on digitizers and Chapter 5:
Displaying an image for more information on display
controllers.

Buffers Buffers are simply storage locations for data. The most
generally used buffers, referred to as data buffers, are allocated
with MbufAllocColor(), MbufAlloc1d() or MbufAlloc2d();
whereas, other data buffer, such as pattern matching model
buffers, are allocated with commands that are specific to that
MIL module and are only used by that module.

You can manipulate portions of data buffers by allocating sub
buffers or child buffers. Any manipulation performed on the
child buffer directly affects the parent buffer and vice versa.
Any operation that can be performed on the parent buffer can
also be performed on the child buffer. Refer to Chapter 3:
Specifying and managing your data buffers for more
information on allocating buffers.

Error handling

Error reporting When calling a function, it is a good idea to provide detection
and handling of errors, especially when allocating buffers and

devices. Otherwise, your program might produce unexpected
results. Note, every allocation returns an identifier; M_NULL is
returned if the allocation was unsuccessful.

With MIL, you can detect errors by having them reported to the
Host screen, and by checking the system error code for them.
You enable or disable error reporting to the screen with
MappControl(). By default, errors are reported to the screen.

170 Chapter 13: Programming with MIL

You can determine the success of a command, using
MappGetError(), then handle the outcome accordingly. Using
MappHookFunction(), you can attach (or detach) a
user-defined function to MIL errors when they occur. Using
MappGetError(), you can also get any associated error
messages. Refer to Appendix D: Troubleshooting for further
information on handling error messages.

Tracing an application

Debugging an
application

When developing an application, it is often useful to trace the
command calls made by the application in order to debug it.

MIL supports an automatic tracing mechanism that can be
enabled or disabled with MappControl(). When the MIL
tracing mechanism is enabled, as each command is processed
its function name and parameters are reported to the screen.
By default, the tracing mechanism is disabled.

You can attach or detach a user-defined function to the start or
end of all subsequent MIL function calls, using
MappHookFunction().

A quick command reference 171

A quick command reference
This section lists and provides a quick reference description of
the commands of each MIL module. It also discusses each
module, giving a brief overview of the capabilities of the library.
For a complete description of the syntax and use of each
command refer to the Command references description chapter.

The application allocation and control module
The application allocation and control module supports the MIL
allocation and environment control functions. These include
MIL initialization, error reporting, and application tracing
functions.

MIL allocation and
control commands

Command parameters Description

MappAlloc() InitFlag, ApplicationIdPtr Allocate a MIL application.

MappAllocDefault() InitFlag, ApplicationIdPtr,
SystemIdPtr, DisplayIdPtr,
DigIdPtr, ImageBufIdPtr

Allocate MIL application
defaults.

MappControl() ControlType, ControlValue Control an application
environment setting.

MappControlThread() ControlId, ControlType,
ControlValue, ControlVarPtr

Allocate/control MIL
application thread(s) or events.

MappFree() ApplicationId Free a MIL application.

MappFreeDefault() ApplicationId, SystemId, DisplayId,
DigId, ImageBufId

Free MIL application defaults.

MappGetError() ErrorType, ErrorPtr Get error codes and related

information.

MappGetHookInfo() EventId, InfoType, UserVarPtr Get information about a
hooked event.

MappHookFunction() HookType, HookHandlerPtr,
UserDataPtr

Hook a function to an event.

MappInquire() InquireType, UserVarPtr Inquire about the application
parameter setting.

MappModify() FirstMILId, SecondMILId,
ModificationType, ModificationFlag

Modify specified MIL object(s).

MappTimer() ControlValue, TimePtr Control the MIL timer.

172 Chapter 13: Programming with MIL

The buffer allocation and access module
The data buffer allocation and access module is a group of
functions that supports all the MIL data buffer manipulations.
These tools include those that can allocate, read from, and write
to general data buffers.

Data allocation and
access commands

Command parameters Description

MbufAlloc1d() SystemId, SizeX, Type, Attribute,
BufIdPtr

Allocate a 1D data buffer.

MbufAlloc2d() SystemId, SizeX, SizeY, Type,
Attribute, BufIdPtr

Allocate a 2D data buffer.

MbufAllocColor() SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, BufIdPtr

Allocate a color data buffer.

MbufChildColor() ParentBufId, Band, BufIdPtr Allocate a child data buffer within
a color parent buffer.

MbufChildColor2d() ParentBufId, Band, OffX, OffY,
SizeX, SizeY, BufIdPtr

Allocate a child data buffer within
a color parent buffer.

MbufChild1d() ParentBufId, OffX, SizeX, BufIdPtr Allocate a 1D child data buffer.

MbufChild2d() ParentBufId, OffX, OffY, SizeX,
SizeY, BufIdPtr

Allocate a 2D child data buffer.

MbufClear() DestImageBufId, Color Clears a buffer to a specified color.

MbufControl() BufId, ControlType, ControlValue Control specified buffer features.

MbufControlNeighborhood()

MbufCopy() SrcBufId, DestBufId Copy data from one buffer to
another.

MbufCopyClip() SrcBufId, DestBufId, DestOffX, Copy buffer clipping data outside

DestOffY destination buffer.

MbufCopyColor() SrcBufId, DestBufId, Band Copy one or all bands of an image
buffer.

MbufCopyColor2d() SrcBufId, DestBufId, SrcBand,
SrcOffX, SrcOffY, DestBand,
DestOffX, DestOffY, SizeX, SizeY

Copy a 2D region of one or all
bands of an image buffer to
another buffer.

MbufCopyCond() SrcBufId, DestBufId, CondBufId,
Condition, CondValue

Copy conditionally the source
buffer to the destination buffer.

MbufCopyMask() SrcBufId, DestBufId, MaskValue Copy buffer with mask.

MbufCreateColor() SystemId, SizeBand, SizeX, SizeY,
Attribute, ControlFlag, Pitch,
ArrayOfDataPtr, BufIdPtr

Create a color data buffer.

A quick command reference 173

MbufCreate2d() SystemId, SizeX, SizeY, Type,
Attribute, ControlFlag, Pitch,
DataPtr, BufIdPtr

Create a two-dimensional data
buffer.

MbufDiskInquire() FileName, InquireType,
UserVarPtr

Inquire about the buffer data in a
file.

MbufExport() FileName, FileFormatBufId,
SrcBufId

Export a data buffer to a file.

MbufExportSequence() FileName, FileFormatId,
BufArrayPtr, NumberOfImages,
FrameRate, ControlFlag

Export a sequence of image buffers
to an AVI file.

MbufFree() BufId Free a data buffer.

MbufGet() SrcBufId, UserArrayPtr Get data from a buffer and place it
in a user-supplied array.

MbufGetColor() SrcBufId, DataFormat, Band,
UserArrayPtr

Get data from one or all bands of a
buffer and place it in a
user-supplied array.

MbufGetColor2d() SrcBufId, DataFormat, Band, OffX,
OffY, SIzeX, SizeY, UserArrayPtr

Get data from a region of one of all
bands of a buffer and place it in a
user-supplied array.

MbufGetLine() ImageBufId, StartX, StartY, EndX,
EndY, Mode, NumPixelsPtr,
UserArrayPtr

Read a series of pixels within
specified coordinates, count them,
and store them in a user-defined
array.

MbufGet1d() SrcBufId, OffX, SizeX,
UserArrayPtr

Get data from a 1D area of a buffer
and place it in a user-supplied
array.

MbufGet2d() SrcBufId, OffX, OffY, SizeX, SizeY,
UserArrayPtr

Get data from a 2D area of a buffer
and place it in a user-supplied

Data allocation and
access commands

Command parameters Description
array.

MbufImport() FileName, FileFormatBufId,
Operation, SystemId, BufIdPtr

Import data from a file into a data
buffer.

MbufImportSequence() FileName, FileFormatId,
Operation, SystemId, BufArrayPtr,
StartImage, NumberOfImages,
ControlFlag

Import a sequence of images from
an *.avi file into separate image
buffers.

MbufInquire() BufId, InquireType, UserVarPtr Inquire about a data buffer
parameter setting.

MbufLoad() FileName, BufId Load MIL file format data from a
file into a data buffer.

MbufPut() DestBufId, UserArrayPtr Put data from a user-supplied
array into a data buffer.

174 Chapter 13: Programming with MIL

The digitizer allocation and control module
The digitizer allocation and control module supports the
allocation, manipulation, and control of digitizers.

MbufPutColor() DestBufId, DataFormat, Band,
UserArrayPtr

Put data from a user-supplied
array into one or all bands of a
data buffer.

MbufPutColor2d() DestBufId, DataFormat, Band,
OffX, OffY, SizeX, SizeY,
UserArrayPtr

Put data from a user-supplied
array into a region of one of all
bands of a data buffer.

MbufPutLine() ImageBufId, StartX, StartY, EndX,
EndY, Mode, NbPixelsPtr,
UserArrayPtr

Write a specified series of pixels
within specified coordinates on a
line.

MbufPut1d() DestBufId, OffX, SizeX,
UserArrayPtr

Put data from a user-supplied
array into a 1D area of a buffer.

MbufPut2d() DestBufId, OffX, OffY, SizeX, SizeY,
UserArrayPtr

Put data from a user-supplied
array into a 2D area of a buffer.

MbufRestore() FileName, SystemId, BufIdPtr Restore Mil file format data from a
file into an automatically allocated
data buffer.

MbufSave() FileName, BufId Save a data buffer in a file using
the MIL output file format.

Data allocation and
access commands

Command parameters Description

Digitizer allocation and
control commands

Command parameters Description
MdigAlloc() SystemId, DigNum, DataFormat,
InitFlag, DigIdPtr

Allocate a digitizer.

MdigChannel() DigId, Channel Select the active input channel
of a digitizer.

MdigControl() DigId, ControlType, ControlValue Control the specified digitizer.

MdigFocus() DigId, DestImageBufId,
FocusImageRegionBufId,
FocusHookPtr, UserDataPtr,
MinPosition, StartPosition,
MaxPosition,
MaxPositionVariation, ProcMode,
ResultPtr

Adjust a camera’s lens motor to
a position which provides
optimum focus.

A quick command reference 175

The display allocation and control module
The display allocation and control module supports the
allocation, manipulation, and control of displays.

MdigFree() DigId Free a digitizer.

MdigGrab() DigId, DestImageBufId Grab data from an input device
into a buffer.

MdigGrabContinuous() DigId, DestImageBufId Grab data continuously from an
input device.

MdigGrabWait() DigId, Flag Wait for the end of the grab in
progress.

MdigHalt() DigId Halt a continuous grab from an
input device.

MdigHookFunction() DigId, HookType,
HookHandlerPtr, UserDataPtr

Hook a function to a digitizer
event.

MdigInquire() DigId, InquireType, UserVarPtr Inquire about a digitizer
parameter setting.

MdigLut() DigId, LutBufId Copy a LUT buffer to a digitizer
LUT.

MdigReference() DigId, ReferenceType,
ReferenceLevel

Select digitization reference
level.

Digitizer allocation and
control commands

Command parameters Description

Display allocation and
control commands

Command parameters Description

MdispAlloc() SystemId, DispNum, DispFormat,
InitFlag, DisplayIdPtr

Allocate a display.
MdispControl() DisplayId, ControlType, ControlValue Control the behavior of a MIL
display window.

MdispDeselect() DisplayId, ImageBufId Stop displaying an image
buffer.

MdispFree() DisplayId Free a display.

MdispHookFunction() DisplayId, HookType,
HookHandlerPtr, UserDataPtr

Hook a function to a display
event.

MdispInquire() DisplayId, InquireType, UserVarPtr Inquire about a display
parameter setting.

MdispLut() DisplayId, LutBufId Copy a LUT buffer to a
display output LUT.

MdispOverlayKey() DisplayId, KeyMode, KeyCond,
KeyMask, KeyColor

Enable overlay keying.

176 Chapter 13: Programming with MIL

The basic data generation module

The basic data generation module provides a limited set of data
generation tools that can be used to automatically generate
predefined data in a data buffer (for example, generating ramp
in a LUT buffer).

The basic graphics module

MdispPan() DisplayId, XOffset, YOffset Pan and scroll a display.

MdispSelect() DisplayId, ImageBufId Select an image buffer to
display.

MdispSelectWindow() DisplayId, ImageBufId,
ClientWindowHandle

Select an image buffer to
display in a user-defined
window.

MdispZoom() DisplayId, XFactor, YFactor Zoom a display.

Display allocation and
control commands

Command parameters Description

Basic data generation
commands

Command parameters Description

MgenLutFunction() LutBufId, Func, a, b, c, StartIndex,
StartXValue, EndIndex

Generate data into a LUT
buffer using a specified
standard mathematical
function.

MgenLutRamp() LutId, StartIndex, StartValue,
EndIndex, EndValue

Generate ramp data into a
LUT buffer.
The basic graphics module provides a limited set of graphic
primitives that can be used to create drawings and text
annotations in an image.

Basic graphics
commands

Command parameters Description

MgraDot() GraphContId, DestImageBufId,
XPos, YPos

Draw a dot.

MgraFill() GraphContId, DestImageBufId,
XStart, YStart

Perform a boundary-type
seed fill.

MgraFont() GraphContId, FontName Associate a text font with a
graphics context.

A quick command reference 177

The system allocation and inquiry module
The system allocation and inquiry module supports the
allocation and inquiry of systems.

MgraFontScale() GraphContId, XFontScale,
YFontScale

Set the font scale of a
graphics context.

MgraFree() GraphContId Free a graphics context.

MgraInquire() GraphContId, InquireType,
UserVarPtr

Inquire about the graphic
parameters.

MgraLine() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a line.

MgraRect() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a rectangle.

MgraRectFill() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a filled rectangle.

MgraText() GraphContId, DestImageBufId,
XStart, YStart, String

Write text.

Basic graphics
commands

Command parameters Description

System allocation and
inquiry commands

Command parameters Description

MsysAlloc() SystemTypePtr, SystemNum,
InitFlag, SystemIdPtr

Allocate a system.

MsysControl() SystemId, ControlType,
ControlValue

Control system behavior.
MsysFree() SystemId Free a system.

MsysInquire() SystemId, InquireType, UserVarPtr Inquire about a system
parameter setting.

178 Chapter 13: Programming with MIL

Chapter 14: The command
reference descriptions

180 Chapter 14: The command reference descriptions

The reference description notes
The command descriptions are presented in alphabetical order.
Consequently, related commands are grouped together because
of their nomenclature. For example, all the data buffer
allocation and access module commands begin with the letters
Mbuf.

The M_ prefix All predefined MIL constants have been prefixed with M_ to
avoid conflicts with any previously defined user names.

Parameters All MIL parameters that end with Id expect an allocated MIL
object identifier. The letters preceding the Id indicate the
module with which to allocate the identifier. For example, the
variable BufId must be a buffer identifier created with
MbufAlloc...(). If the identifier can be any MIL object identifier
(that is, created with any MIL module), it is prefaced simply
with the sequence "MIL", for example MILId.

Examples Part I of this manual describes how the MIL commands are
used in typical applications. Code examples are also provided.

Command limitations Some command descriptions have a Status section. This section
describes any software or hardware limitation that is currently
imposed on the command. Some limitations should be corrected
in future revisions, but not necessarily.

Word usage All the MIL documentation uses the words function and

command interchangeably since most of the commands in MIL
are C functions. Digitizer and frame grabber are also used
interchangeably. Finally, in general, Host refers to the
principal CPU in one’s computer, while system refers to your
Matrox imaging board and its associated resources.

The reference description notes 181

In addition, some of these commands are implemented as
macros. If you are interested in the definition of the macros,
you can find them or their file names in the mil.h or milsetup.h
header file.

The use of the words board-specific or system-specific indicates
that the current subject might be valid only when using certain
boards or systems.

Fonts All commands and parameters are presented in bold so that
you can quickly scan for them. Predefined constants are
presented in a smaller font.

MappAlloc 183

MappAlloc

Synopsis Allocate a MIL application.

Format MIL_ID MappAlloc(InitFlag, ApplicationIdPtr)

Description This function allocates a MIL application. A MIL application must be
allocated prior to using any other MIL functions. The MIL functions use the
first application that was user-allocated.

The InitFlag parameter specifies the type of initialization to perform on
the MIL application. This parameter should be set to one of the following
values:

The ApplicationIdPtr parameter specifies the address of the variable in
which the application identifier is to be written. Since the MappAlloc()
function also returns the application identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

In multi-thread environments, the application is shared by all threads and
Mapp...() function calls from any thread apply to all threads unless
specifically localized to that thread by specifying an M_THREAD_CURRENT
flag when calling the function. However, if a new MIL application is

long InitFlag; Initialization flag
MIL_ID *ApplicationIdPtr; Storage location for application identifier

M_DEFAULT Default initialization.
M_QUIET Suppress the displaying of error messages during the

allocation of the application.
allocated within a thread, using MappAlloc(), this thread will be isolated
from the shared application and all application controls and hooks will be
independent. For example, turning off the error print in the new thread,
using MappControl(), will not affect the printing of errors by the original
shared application; nor will such a command called from a thread attached
to the original application affect the new application.

Note, upon allocation of a MIL application, a default system
(M_SYSTEM_HOST) is automatically allocated. This default Host system can
be used in MIL function calls by specifying M_DEFAULT_HOST wherever a
system identifier is required.

184 MappAlloc

In addition, a default graphic context is also allocated upon allocation of a
MIL application. This default graphic context can be used in MIL graphic
function calls by specifying M_DEFAULT wherever a graphic context
identifier is required.

In multi-thread applications, a default graphic context is allocated for each
thread in order to avoid inter-thread interference.

Return value The returned value is the application identifier. If allocation fails, M_NULL
is returned as the identifier.

See also MappFree(), MappAllocDefault()

MappAllocDefault 185

MappAllocDefault

Synopsis Allocate MIL application defaults.

Format void MappAllocDefault(InitFlag, ApplicationIdPtr,
 SystemIdPtr, DisplayIdPtr,
 DigIdPtr, ImageBufIdPtr)

Description This macro sets up the requested MIL and processing environments using
the defaults specified in the milsetup.h file. It can allocate and initialize a
MIL application, allocate the system to receive the MIL commands, allocate
the digitizer and display, and allocate and clear a displayable image buffer
on this target system, depending on what is requested.

The InitFlag parameter specifies the type of initialization setup to perform
and is used principally to initialize the default system. This parameter can
be set to one of the following:

long InitFlag; Initialization flag
MIL_ID *ApplicationIdPtr; Storage location for application identifier
MIL_ID *SystemIdPtr; Storage location for system identifier
MIL_ID *DisplayIdPtr; Storage location for display identifier
MIL_ID *DigIdPtr; Storage location for digitizer identifier
MIL_ID *ImageBufIdPtr; Storage location for image buffer identifier

M_COMPLETE Perform a complete initialization of the MIL
environment: initialize MIL to its default state and
download any system’s required resident software. At
least one complete initialization is necessary after you
M_PARTIAL should only be selected if the required resident software has
already been downloaded. This option is particularly useful when debugging
since resident software generally needs to be downloaded once after
power-up (or rebooting the system) and the downloading process can take
a substantial amount of initialization time on certain systems.

power-up your system.
M_PARTIAL Initialize MIL to its default state, but do not download

any system’s resident software.
M_SETUP Set InitFlag to one of the above, based on the default

state requested when the installation utility was run
(refer to the milsetup.h file to determine what these
setup defaults are).

186 MappAllocDefault

The ApplicationIdPtr parameter specifies the address of the variable in
which the application identifier is to be written. Upon execution of this
function, the default application specified in the milsetup.h file is allocated
and its identifier returned. Instead of using MappAllocDefault(), you can
use MappAlloc() to allocate an application. Note, an application must be
allocated in order to allocate any other object in MIL.

The SystemIdPtr parameter specifies the address of the variable in which
the system identifier is to be written. Upon execution of this function, the
default system specified in the milsetup.h file is allocated and its identifier
returned. Instead of using MappAllocDefault(), you can use MsysAlloc()
to allocate a system. MappAlloc() will also allocate a default Host system.
Note, a system must be allocated in order to allocate any other objects on it
(display, digitizer or data buffers).

The DisplayIdPtr parameter specifies the address of the variable in which
the display identifier is to be written. If this parameter is set to M_NULL, a
display is not allocated; otherwise, the default display specified in the
milsetup.h file is allocated and its identifier returned.

The DigIdPtr parameter specifies the address of the variable in which the
digitizer identifier is to be written. If this parameter is set to M_NULL, a
digitizer is not allocated; otherwise, the default digitizer specified in the
milsetup.h file is allocated and its identifier returned.

The ImageBufIdPtr parameter specifies the address of the variable in
which the image buffer identifier is to be written. If this parameter is set to
M_NULL, an image buffer is not allocated; otherwise, the default image
buffer specified in the milsetup.h file is allocated and its identifier returned.
It is then cleared and displayed on the system’s display screen.
The installation utility modifies the milsetup.h header file to create the
appropriate macros and customize the default setup. If the installation
utility is not executed, the default state supported will be undefined.

After installation, if you want to change the default state of
MappAllocDefault(), edit milsetup.h to suit your needs.

Note, if a digitizer is specified and the default camera type
(M_DEF_DIGITIZER_FORMAT) in the milsetup.h file is a 3-band color (RGB)
type, then a 3-band image buffer will be allocated by default; otherwise, a
1-band image buffer will be allocated.

MappAllocDefault 187

Example For example, a typical default setup for a Genesis board in its power-up
state with one input device (RS-170 camera) and one default image buffer
(full-screen size) on the display is:

If, for example, you don’t need to acquire data from the camera but want to
perform the rest of the above setup, you would make the following call:

Note, upon execution of this function, a default graphics context is
automatically allocated. This default graphics context can be used in MIL
graphic function calls by specifying M_DEFAULT wherever a graphic context
identifier is required.

See also MappFreeDefault(), MappAlloc(), MsysAlloc(), MdispAlloc(),MdigAlloc(),
MbufAllocColor(),MbufAlloc1d(), MbufAlloc2d()

MappAllocDefault(M_COMPLETE, &System, &Display, &Digitizer, &ImageBuffer);

MappAllocDefault(M_COMPLETE, &System, &Display, M_NULL, &ImageBuffer)

188 MappControl

MappControl

Synopsis Control an application environment setting.

Format void MappControl(ControlType, ControlValue)

Description This function controls the output of error messages to the screen, the output
of function names and parameters to the screen at the start and end of MIL
functions, and parameter checking at the start of MIL functions. It also
controls the processing and memory compensation modes.

The ControlType and ControlValue parameters specify the type of event
to control and the flag with which to control the event. These parameters
should be set according to the following combinations:

long ControlType; Type of event to control
long ControlValue; Flag to control event

ControlType ControlValue Result
M_ERROR M_PRINT_ENABLE Enable printing of error

messages (default)
M_ERROR M_PRINT_DISABLE Disable printing of error

messages
M_TRACE M_PRINT_ENABLE Enable printing of function

names and parameters
M_TRACE M_PRINT_DISABLE Disable printing of function

names and parameters (default)
M_PARAMETER M_CHECK_ENABLE Enable checking of parameters

(default)

M_PARAMETER M_CHECK_DISABLE Disable checking of parameters
M_PROCESSING M_COMPENSATION_ENABLE Enable processing

compensation; if your system
cannot perform a certain
processing operation due to its
limitations, processing will be
done by the Host. (default)

M_PROCESSING M_COMPENSATION_DISABLE Disable processing
compensation.

MappControl 189

In multi-thread environments, an MappControl() call applies to all
application threads running MIL unless specifically limited to the calling
thread by adding M_THREAD_CURRENT to the ControlType parameter.
For example, MappControl(M_TRACE, M_PRINT_ENABLE) called from
any application thread enables trace printing in all threads running MIL.
However, MappControl(M_TRACE+M_THREAD_CURRENT,
M_PRINT_ENABLE) will enable trace printing in the currently running
thread only and ignore calls from other threads. To restore all-thread trace
printing, within the same thread call
MappControl(M_TRACE+M_THREAD_CURRENT, M_DEFAULT).

If error printing is disabled, you can still check for error, using
MappGetError().

Note, if parameter checking is disabled to accelerate an application,
unpredictable behavior can be expected when passing invalid parameters
to a function.

See also MappGetError(), MappHookFunction(), MappInquire()

M_MEMORY M_COMPENSATION_ENABLE Enable memory compensation; if
your system cannot perform a
certain memory (buffer)
allocation due to insufficient
memory (default).

M_MEMORY M_COMPENSATION_DISABLE Disable memory compensation.

ControlType ControlValue Result

190 MappControlThread

MappControlThread

Synopsis Allocate/control MIL application thread(s) or events.

Format long MappControlThread(ControlId, ControlType,
 ControlValue, ControlVarPtr)

Description This function allocates/controls MIL application threads or events.

A MIL thread is a command stream used to send MIL commands to the
various allocated MIL systems. MIL automatically allocates a MIL thread
for each existing HOST thread that is using MIL. MappControlThread()
allows you to synchronize MIL threads running on the Host and/or various
MIL systems.

A MIL event is a marker that can be inserted between commands sent to a
given thread. Its state can be set to either M_SIGNALED or
M_NOT_SIGNALED in a given thread and can be inquired about or waited
for (MappControlThread(Event, M_EVENT_WAIT,...)), until in
M_SIGNALED state, by other threads in order to monitor the execution of
commands.

The event can be one of the following reset types:

MIL_ID ControlId Thread or Event identifier
long ControlType; Type of control set on thread or event
long ControlValue; Value of control setting
long *ControlVarPtr; Storage location for returned value

Auto-Reset: Calling MappControlThread(Event, M_EVENT_SET,...), sets or

resets the event state to M_SIGNALED or M_NOT_SIGNALED. When
in M_SIGNALED state, the event is automatically reset to
M_NOT_SIGNALED when a call to MappControlThread(Event,
M_EVENT_WAIT, M_DEFAULT,...) returns. This type of event is
useful in applications where only one thread waits on a specific
event.

Manual-Reset: Calling MappControlThread(Event, M_EVENT_SET,...), sets or
resets the event state to M_SIGNALED or M_NOT_SIGNALED. The
event state remains unchanged until an explicit call to
MappControlThread(Event, M_EVENT_SET,...) is issued. This
type of event is useful when multiple threads wait on a specific
event.

MappControlThread 191

The ControlId parameter specifies the identifier of the thread or event to
be controlled. If set to M_DEFAULT, it uses the default MIL thread/event
identifier associated with the Host thread. The thread or event can be
user-allocated using the M_THREAD_ALLOC or M_EVENT_ALLOC
ControlType of MappControlThread().

The ControlType and ControlValue parameters specify the thread or
event control operation to be performed. These parameters can be set to the
following combinations:

 Thread
 ControlType ControlValue Result
M_THREAD_ALLOC M_DEFAULT Create a new selectable MIL thread on

a multi-thread system (such as Genesis)
and return its MIL_ID. Under Windows
NT, MIL automatically allocates a default
MIL thread for each existing Host thread.
Note, ControlId must be set to
M_DEFAULT.

M_THREAD_FREE M_DEFAULT Free an existing MIL thread.
Note that default MIL threads will be
automatically freed. *

M_THREAD_SELECT M_DEFAULT Select the MIL thread to which
subsequent MIL commands will be sent.*

M_THREAD_WAIT M_DEFAULT Synchronize commands sent to a thread.
Force a wait for completion of all
commands currently executing in the
thread. Useful for commands sent to
systems allowing an immediate return
(before execution is actually completed).*

M_THREAD_MODE M_SYNCHRONOUS
MIL commands sent to the thread are
completed (execution terminated) before
returning.*

 M_ASYNCHRONOUS MIL commands sent to the thread return
immediately (when the system and
command allow an immediate return).
(default) *

192 MappControlThread

M_THREAD_IO_MODE M_SYNCHRONOUS MIL commands MbufGet...() and
MbufPut...() sent to the thread wait,
before executing, for the completion of
previous MIL commands sent in the
thread (default).*

M_ASYNCHRONOUS MIL commands MbufGet...() and
MbufPut...() sent to the thread execute
immediately.*

* No return value is required. ControlVarPtr should be set to M_NULL.

 Thread
 ControlType ControlValue Result

 Event
 ControlType ControlValue Result
M_EVENT_ALLOC (any of the values listed below) Create a new MIL

synchronization event and
return its MIL ID.
Note, ControlId must be set
to M_DEFAULT.

M_DEFAULT or
M_NOT_SIGNALED+M_AUTO_RESET

Event is initialized as
M_NOT_SIGNALED and as an
Auto-Reset type.

M_SIGNALED+M_AUTO_RESET Event is initialized as
M_SIGNALED and and as an
Auto-Reset type.

M_NOT_SIGNALED+M_MANUAL_RESET Event is initialized as
M_NOT_SIGNALED and as an
Manual-Reset type.

M_SIGNALED+M_MANUAL_RESET
 Event is initialized as
M_SIGNALED and and as an
Manual-Reset type.

M_EVENT_FREE M_DEFAULT Free an existing MIL event.*
M_EVENT_SET M_SIGNALED or

M_NOT_SIGNALED
Set a MIL event to the
specified state.*

M_EVENT_WAIT M_DEFAULT Wait for the specified event to
be in an M_SIGNALED state. If
the event is auto-reset, resets
to M_NOT_SIGNALED after
the wait call is returned.*

MappControlThread 193

The ControlVarPtr parameter specifies a pointer to the user variable
where the return value is to be written. Specify M_NULL if no return value
is required (see footnotes of control tables).

Examplemthread.c

Return value The returned value is the requested event state, cast to a long. If no
information was requested (controls were only set), the returned value is
not valid.

M_EVENT_STATE M_DEFAULT Inquire the state of the MIL
event. The return value can
be: M_SIGNALED or
M_NOT_SIGNALED.

 * No return value is required. ControlVarPtr should be set to M_NULL.

 Event
 ControlType ControlValue Result

194 MappFree

MappFree

Synopsis Free a MIL application.

Format void MappFree(ApplicationId)

Description This function deallocates a MIL application previously allocated with
MappAlloc().

Prior to freeing a MIL application, ensure that all allocated systems, buffers,
displays, and digitizers are freed. MappFree() must be the last function
called in a MIL application; no other MIL command can be executed after
a call to this function.

Note, if you use MappAllocDefault() to allocate the default MIL
application, you must use MappFreeDefault() to free the application.

The ApplicationId parameter specifies the application to free.

See also MappAlloc(), MappFreeDefault()

MIL_ID ApplicationId; Application identifier

MappFreeDefault 195

MappFreeDefault

Synopsis Free MIL application defaults.

Format void MappFreeDefault(ApplicationId, SystemId, DisplayId,
 DigId, ImageBufId)

Description This macro frees the MIL application defaults that were allocated with the
MappAllocDefault() macro (located in milsetup.h). Note, this command
does not affect what is being displayed on the system’s display; if you want
to clear the display, you should do so, using MdispDeselect(), before calling
MappFreeDefault().

The ApplicationId parameter specifies the identifier of the application to
deallocate.

The SystemId parameter specifies the identifier of the system to deallocate.

The DisplayId parameter specifies the identifier of the display to
deallocate. If set to M_NULL, no display is deallocated.

The DigId parameter specifies the identifier of the digitizer to deallocate.
If set to M_NULL, no digitizer is deallocated.

MIL_ID ApplicationId; Application identifier
MIL_ID SystemId; System identifier
MIL_ID DisplayId; Display identifier
MIL_ID DigId; Digitizer identifier
MIL_ID ImageBufId; Image buffer identifier
The ImageBufId parameter specifies the identifier of the image buffer to
deallocate. If set to M_NULL, no buffer is deallocated.

See also MappAllocDefault(), MappFree(),MsysFree(), MdispFree(), MdigFree(),
MbufFree()

196 MappGetError

MappGetError

Synopsis Get error codes and related information.

Format long MappGetError(ErrorType, ErrorPtr)

Description This function obtains current or global system error codes, subcodes,
messages, submessages, function codes and function names. This function
allows you to check for errors after each MIL function call or to get the first
error that occurred after a series of MIL function calls.

A typical use of this function is to check whether a buffer allocation call was
successful (MbufAllocColor(), MbufAlloc1d(), and MbufAlloc2d()).

This function can also be used when error-reporting to the screen has been
disabled, using MappControl(), and you want to obtain information about
a detected error.

In multi-thread environments, an MappGetError() call returns the error
of the current thread or, if none, checks for errors in the other threads
running MIL. To return only errors in the current thread, add
M_THREAD_CURRENT to the ErrorType parameter
(M_CURRENT+M_THREAD_CURRENT).

The ErrorType parameter specifies the error type. This parameter can be
set to one of the following:

long ErrorType; Error type
void *ErrorPtr; Storage location for information

ErrorType Description

M_CURRENT Get the error code returned by the last

command call. The system current-error code is
reset to M_NULL_ERROR before each MIL
function call and is set to a specific error code if
an error occurs while trying to execute the
function.

M_CURRENT_SUB_NB Get the number of error subcodes associated
with the current error.

M_CURRENT_SUB_1...3 Get the nth error subcode returned by the last
command call. Note, when there is no error, the
error subcode(s) is set to M_NULL_ERROR.

M_CURRENT_FCT Get the function code associated with the
current error.

MappGetError 197

M_CURRENT+
M_MESSAGE

Get the error message associated with the
current error. The system current- error
message is reset to "NULL" before each MIL
function call and is set to a specific error
message if an error occurs while trying to
execute the function.

M_CURRENT_SUB_1...3+
M_MESSAGE

Get the nth error submessage associated with
the current error.

M_CURRENT_FCT+
M_MESSAGE

Get the function name associated with the
current error.

M_GLOBAL Get the error code of the first error that has
occurred since the last call to
MappGetError(M_GLOBAL...). The global
system-error code is reset to M_NULL_ERROR
after each MappGetError() call with this
setting.

M_GLOBAL_SUB_NB Get the number of error subcodes associated
with the first error that occurred since the last
call to MappGetError(M_GLOBAL...).

M_GLOBAL_SUB_1...3 Get the nth error subcode of the first error that
has occurred
since the call to
MappGetError(M_GLOBAL...). Note, when
there is no error, the error subcode(s) is set to
M_NULL_ERROR.

M_GLOBAL_FCT Get the function code associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

ErrorType Description
M_GLOBAL+
M_MESSAGE

Get the error message associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL_SUB_1...3+
M_MESSAGE

Get the nth error submessage associated with
the first error that has occurred since the last
call to MappGetError(M_GLOBAL...).

M_GLOBAL_FCT+
M_MESSAGE

Get the function name associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

198 MappGetError

The ErrorPtr parameter specifies the address of the variable in which the
requested information is to be written. If the error code is read and it is
equal to M_NULL_ERROR, no error has occurred. Since the
MappGetError() function also returns the error code or subcode, you can
set this parameter to M_NULL.

This variable should be a pointer to a long when getting error codes,
subcodes, number of subcodes, and function codes. This variable should be
a pointer to a string when getting messages, submessages and function
names. The string must be at least M_ERROR_MESSAGE_SIZE characters
in size.

Return value The returned value is the requested error code or subcode. When getting
error messages, submessages, and function names, the returned value is
the associated error code.

Example mshift.c

MappGetHookInfo 199

MappGetHookInfo

Synopsis Get information about a hooked event.

Format long MappGetHookInfo(EventId, InfoType, UserVarPtr)

Description This function retrieves information about the event that caused the
hook-handler function to be called. This function should only be called
within the scope of a hook-handler function call (see
MappHookFunction()).

The EventId parameter specifies the event identifier received from the
hook-handler function.

The InfoType parameter specifies the type of information to get.

If the hook handler was called with an M_ERROR_CURRENT HookType,
supported values for InfoType are:

MIL_ID EventId; Event identifier received from the hook-handler
function

long InfoType; Type of information to get
void *UserVarPtr; Storage location for the information

InfoType Description
M_CURRENT Error code.
M_CURRENT_SUB_NB Number of error subcodes.
M_CURRENT_SUB_1 Error subcode 1.
M_CURRENT_SUB_2 Error subcode 2.

M_CURRENT_SUB_3 Error subcode 3.
M_CURRENT_FCT Function code that caused an error.
M_MESSAGE+M_CURRENT Error message.
M_MESSAGE+M_CURRENT_SUB_1 Error submessage 1.
M_MESSAGE+M_CURRENT_SUB_2 Error submessage 2.
M_MESSAGE+M_CURRENT_SUB_3 Error submessage 3.
M_MESSAGE+M_CURRENT_FCT Name of the function that caused an

error.

200 MappGetHookInfo

If the hook-handler function was called with an M_ERROR_GLOBAL
HookType, supported values for InfoType are:

If the hook-handler function was called with an M_TRACE_START or
M_TRACE_END HookType, supported values for InfoType are:

InfoType Description
M_GLOBAL Error code.
M_GLOBAL_SUB_NB Number of error subcodes.
M_GLOBAL_SUB_1 Error subcode 1.
M_GLOBAL_SUB_2 Error subcode 2.
M_GLOBAL_SUB_3 Error subcode 3.
M_GLOBAL_FCT Function code that caused an error.
M_MESSAGE+M_GLOBAL Error message.
M_MESSAGE+M_GLOBAL_SUB_1 Error submessage 1.
M_MESSAGE+M_GLOBAL_SUB_2 Error submessage 2.
M_MESSAGE+M_GLOBAL_SUB_3 Error submessage 3.
M_MESSAGE+M_GLOBAL_FCT Function name that caused an error.

InfoType Description
M_CURRENT_FCT Code of the function that just started or

ended.
M_MESSAGE+M_CURRENT_FCT Name of the function that just started

or ended.
M_PARAM_NB Number of parameters associated to the

function call.
M_PARAM_TYPE+n. th
Data type of the n parameter. This

can be: M_TYPE_LONG,
M_TYPE_SHORT, M_TYPE_CHAR,
M_TYPE_DOUBLE, M_TYPE_PTR,
M_TYPE_MIL_ID, or M_TYPE_STRING.
(The pointer to a string is invalid after
exiting the hook function. For future
use, copy and save it.)

M_PARAM_VALUE+n Value of the nth parameter.

MappGetHookInfo 201

If the hook handler was called with an M_MODIFIED_BUFFER HookType,
supported values for InfoType are:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written.

UserVarPtr should be a pointer to a long when getting error codes,
subcodes, number of subcodes, function codes and parameter types. It
should be a pointer to a string when getting error messages, submessages,
and function names. The string must be at least M_ERROR_MESSAGE_SIZE
characters in size. When getting parameter values, UserVarPtr should be
a pointer to the type specified by the returned value of an M_PARAM_TYPE+n
request in a previous call to this function.

Return value The returned value is M_NULL if successful; on error, no regular MIL errors
are logged.

See also MappHookFunction()

InfoType Description
M_MODIFIED_BUFFER
+M_BUFFER_ID

MIL identifier of the modified buffer.

M_MODIFIED_BUFFER
+M_REGION_OFFSET_X

X offset, of the modified region in the buffer,
as a long value.

M_MODIFIED_BUFFER
+M_REGION_OFFSET_Y

Y offset, of the modified region in the buffer,
as a long value.

M_MODIFIED_BUFFER
+M_REGION_SIZE_X

Width, of the modified region in the buffer, as
a long value.

M_MODIFIED_BUFFER
+M_REGION_SIZE_Y

Height, of the modified region in the buffer,
as a long value.

202 MappHookFunction

MappHookFunction

Synopsis Hook a function to an event.

Format void MappHookFunction(HookType, HookHandlerPtr,
 UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified application event. Once a hook-handler function is defined and
hooked to an event, it is automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MappHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.

The user can obtain information concerning the event, using
MappGetHookInfo(), and take appropriate action before returning
control to the application.

This function is typically used to trap errors that occur in an application

long HookType; Type of event to hook
MAPPHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void *UserDataPtr; User data pointer
without checking every MIL command execution with MappGetError() or
to detect the start or end of certain MIL commands.

In multi-thread environments, an MappHookFunction() call hooks or
unhooks the function specified by HookHandlerPtr to all application
threads running MIL, unless specifically limited to the calling thread by
adding M_THREAD_CURRENT to the HookType parameter (for example,
to call the hook-handler function only for errors occurring in the current
thread, specify M_ERROR_CURRENT+M_THREAD_CURRENT as the
HookType parameter).

MappHookFunction 203

The HookType parameter specifies the event type. This parameter can be
set to one of the following:

HookType Description
M_ERROR_CURRENT Call the hook-handler function each time an

error occurs.
M_ERROR_GLOBAL Call the hook-handler function when the first

error occurs in a series of MIL calls.
M_TRACE_START Call the hook-handler function at the start of

each MIL function.
M_TRACE_END Call the hook-handler function at the end of

each MIL function.
M_MODIFIED_BUFFER
+(BufId)

Call the hook-handler function each time the
specified buffer is modified at the end of a MIL
function.

M_ERROR_FATAL Call the hook-handler function before a
fatal-error exit.

M_UNHOOK
+M_ERROR_CURRENT

Detach the hook-handler function being called
each time an error occurs.

M_UNHOOK
+M_ERROR_GLOBAL

Detach the hook-handler function being called
when the first error occurs in a series of MIL
calls.

M_UNHOOK
+M_TRACE_START

Detach the hook-handler function being called
at the start of each MIL function.

M_UNHOOK
+M_TRACE_END

Detach the hook-handler function being called
at the end of each MIL function.

M_UNHOOK
+M_MODIFIED_BUFFER
+(BufId)

Detach the hook-handler function being called
each time the specified buffer is modified at the

end of a MIL function.

M_UNHOOK
+M_ERROR_FATAL

Detach the hook-handler function being called
before a fatal-error exit.

204 MappHookFunction

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MAPPHOOKFCTPTR, MFTYPE and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype of this function has been kept for backwards
compatibility. However, because of the current chaining method, the
function always returns null.

See also MappGetHookInfo(), MappControl(), MappGetError()

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Event identifier to pass to
MappGetHookInfo() when inquiring
about the hooked event

void MPTYPE *UserDataPtr; user data pointer

MappInquire 205

MappInquire

Synopsis Inquire about the application parameter setting.

Format long MappInquire(InquireType, UserVarPtr)

Description This function inquires about the specified application control, processing
mode, or memory setting.

The InquireType parameter specifies the type of information to inquire
about. This parameter can be set to one of the following values. See
MappControl() for more information about these values. In multi-thread
environments, you can inquire the status of a control from any thread;
however, to inquire the status of a thread-specific parameter, add
M_THREAD_CURRENT to the InquireType parameter
(M_ERROR+M_THREAD_CURRENT).

long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_CURRENT_APPLICATION Identifier of the current MIL application, if

any. Returns 0, without generating an error,
if no application is allocated.

M_ERROR Error printing mode (M_PRINT_ENABLE or
M_PRINT_DISABLE).

M_TRACE Trace printing mode (M_PRINT_ENABLE or
M_PRINT_DISABLE).

M_PARAMETER Parameter checking mode
(M_CHECK_ENABLE or

M_CHECK_DISABLE).

M_PROCESSING Processing compensation mode
(M_COMPENSATION_ENABLE or
M_COMPENSATION_DISABLE).

M_MEMORY Memory compensation mode
(M_COMPENSATION_ENABLE or
M_COMPENSATION_DISABLE).

M_VERSION Version of MIL library.

206 MappInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MappInquire()
function also returns the requested information, you can set this parameter
to M_NULL. The variable should be a pointer to a long, unless you are using
M_VERSION, in which case it should be a pointer to a double.

Return value The returned value is the requested system information cast to long.

See also MappControl()

M_OBJECT_TYPE+(MILId) Type of the specified MIL object.
(M_APPLICATION, M_SYSTEM, M_LUT,
M_DISPLAY, M_DIGITIZER, M_IMAGE,
M_KERNEL, M_STRUCT_ELEMENT,
M_HIST_LIST, M_EXTREME_LIST,
M_PROJ_LIST, M_EVENT_LIST,
M_COUNT_LIST, M_BLOB_OBJECT,
M_PAT_OBJECT, M_GRAPHIC_CONTEXT,
M_OCR_OBJECT, M_USER_OBJECT_1, or
M_USER_OBJECT_2)

InquireType Description

MappModify 207

MappModify

 Synopsis Modify specified MIL object(s).

Format void MappModify(FirstMILId, SecondMILId,
 ModificationType, ModificationFlag)

Description This function modifies the specified MIL object(s) according to the specified
operation.

The FirstMILId parameter specifies the identifier of the first MIL object
to be modified.

The SecondMILId parameter specifies the identifier of the second MIL
object (if applicable) to be modified.

The ModificationType parameter specifies the desired operation. This
parameter should be set to the following value:

The ModificationFlag parameter should be set to M_NULL.

MIL_ID FirstMILId; First MIL object identifier
MIL_ID SecondMILId; Second MIL object identifier
long ModificationType; Type of modification
long ModificationFlag; Modification flag

M_SWAP_ID Exchange the identifiers of the first and second
specified MIL objects

208 MappTimer

MappTimer

Synopsis Control the MIL timer.

Format void MappTimer(ControlValue, TimePtr)

Description This function controls the MIL timer. This is useful for benchmarking
operations in a MIL application. The MIL timer resolution varies according
to the hardware and operating system used.

The ControlValue parameter specifies the control to exert on the MIL
timer. It can be set to one of the following:

The TimerPtr parameter specifies the address of the variable in which to
store the timer information produced by the M_TIMER_READ or
M_TIMER_RESOLUTION controls. For the M_TIMER_WAIT control,
TimerPtr specifies the variable from which to read the timer information.
For M_TIMER_RESET, set TimerPtr to M_NULL.

long ControlValue; Type of modification
double *TimePtr; Storage location for time

ControlValue Description
M_TIMER_RESET Resets a MIL timer to zero.
M_TIMER_READ Reads the time (in seconds) of the MIL timer,

since the last reset.
M_TIMER_RESOLUTION Reads the MIL timer resolution (in seconds).
M_TIMER_WAIT Wait for the specified period of time (in

seconds) before returning.
Example mpatrot.c

MbufAlloc1d 209

 MbufAlloc1d

Synopsis Allocate a 1D data buffer.

Format MIL_ID MbufAlloc1d(SystemId, SizeX, Type, Attribute, BufIdPtr)

Description This function allocates a one-dimensional one-band data buffer on the
specified system.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError() or by verifying that the buffer identifier
returned is not M_NULL. When a buffer is no longer required, release it,
using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeX parameter specifies the buffer width in the units appropriate for

MIL_ID SystemId; System identifier
long SizeX; X dimension
long Type; Data depth and data type
long Attribute; Buffer attribute
MIL_ID *BufIdPtr; Storage location for buffer identifier
the selected type of buffer attributes. For example, if the buffer has a LUT
buffer attribute, specify the number of LUT entries to allocate.

The Type parameter specifies a combination of two values: the depth and
type of the data. Express the depth in bits and give the data range as one
of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

Data type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

210 MbufAlloc1d

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
For example, to allocate a LUT buffer, you should set the Attribute
parameter to M_LUT. Set this parameter to one of the following:

When allocating an image buffer (M_IMAGE), you must also specify the
intended purpose of this buffer by combining M_IMAGE with one or more of
the following:

The maximum (total) number of grab (M_GRAB) buffers that can be
allocated is restricted by the total amount of DMA memory that was
specified at the time of installation.

For sytems with on-board processors, the total number of M_GRAB buffers
is limited by the amount of on-board memory.

For an M_COMPRESS type of image buffer, one of the following must be

Attribute Description
M_IMAGE Image data.
M_LUT Lookup table.

Usage Specifiers Description
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data. This type

of buffer is usually allocated in physically
contiguous, non-paged memory.

M_COMPRESS An image buffer that can hold compressed data.
Note that a buffer with this attribute cannot have
the M_SIGNED data type.
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

Compression specifiers: Description Supported data
formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or
16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band 8-bit data.

MbufAlloc1d 211

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAlloc1d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

Status Current limitation:

Board-dependent internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).

Board-dependent location specifiers:
M_ON_BOARD Force the buffer in the on-board memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_OVR Force the buffer in the overlay frame buffer.
M_NON_PAGED Force the buffer in non-pageable memory.
■ For M_LUT data buffer, the data type must be 8, 16, or 32-bit integer or
floating point.

See also MbufAlloc2d(), MbufAllocColor(), MbufFree()

212 MbufAlloc2d

MbufAlloc2d

Synopsis Allocate a 2D data buffer.

Format MIL_ID MbufAlloc2d(SystemId, SizeX, SizeY, Type, Attribute,
BufIdPtr)

Description This function allocates a two-dimensional one-band data buffer on the
specified system.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError() or by verifying that the buffer identifier
returned is not M_NULL. When a buffer is no longer required, release it,
using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated

MIL_ID SystemId System identifier
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data depth and data type
long Attribute; Buffer attributes
MIL_ID *BufIdPtr; Storage location for buffer identifier
system).

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, specify the width and
height in pixels.

MbufAlloc2d 213

The Type parameter specifies a combination of two values: the depth and
type of the data. Express the depth in bits and give the data range as one
of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
This parameter should be set to one of the following:

When selecting an M_IMAGE attribute, it should be set to M_IMAGE +
specifier. For example, to allocate an image buffer that can be processed and
displayed, you should set the Attribute parameter to M_IMAGE + M_DISP.
The specifier can be one or more of the following:

Data type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

M_IMAGE Image data.
M_LUT Lookup table.

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data. This type of

buffer is usually allocated in physically contiguous,
non-paged memory.

M_COMPRESS An image buffer that can hold compressed data.
The maximum (total) number of grab (M_GRAB) buffers that can be
allocated is restricted by the total amount of DMA memory that was
specified at the time of installation.

For boards with on-board processors, the total number of M_GRAB buffers
is limited by the amount of on-board memory.

Note that a buffer with this attribute cannot have
the M_SIGNED data type.

214 MbufAlloc2d

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

Compression specifiers: Description Supported data
formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or
16-bit data.

M_JPEG_LOSSLESS_INTERLACED The buffer will be
used to hold JPEG
lossy data.

1-band, 8- or
16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band 8-bit data.

M_JPEG_LOSSY_INTERLACED The buffer will be
used to hold JPEG
lossy data in
separate fields.

1-band 8-bit data.
Board-dependent internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).

Board-dependent location specifiers:
M_ON_BOARD Force the buffer in the on-board memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_OVR Force the buffer in the overlay frame buffer.
M_NON_PAGED Force the buffer in non-pageable memory.

MbufAlloc2d 215

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAlloc2d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

Status Current limitation:

■ For M_LUT data buffer, the data type must be 8, 16, or 32-bit integer or
floating point.

See also MbufAlloc1d(), MbufAllocColor(), MbufFree()

216 MbufAllocColor

MbufAllocColor

Synopsis Allocate a color data buffer.

Format MIL_ID MbufAllocColor(SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, BufIdPtr)

Description This function allocates a data buffer with multiple color bands on the
specified system. This type of buffer allows the representation of color
images (for example, RGB).

This function creates buffers that have a two-dimensional surface for each
specified color band. You can use MbufAlloc1d() and MbufAlloc2d() to
create single band one- or two-dimensional data buffers, respectively.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError(), or by verifying that the buffer
identifier returned is not M_NULL.

When a buffer is no longer required, release it, using MbufFree().

MIL_ID SystemId System identifier
long SizeBand; Number of color bands
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data type and data depth per band
long Attribute; Buffer attributes
MIL_ID *BufIdPtr; Storage location for buffer identifier
The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeBand parameter specifies the number of (xy) surfaces (also called
color bands) to allocate to the buffer. Specify one band for each color
component the buffer will need to store for the image. Monochrome images
require one band; RGB color images require three color bands. This
parameter can be set to any non-zero integer value. However, in general,
only 1- and 3-band buffers are allowed.

MbufAllocColor 217

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth per band. Express the depth in bits and give the data type as
one of the following:

For example, when allocating an 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

Note, you cannot allocate a 1-bit (binary) LUT buffer.

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
This parameter should be set to M_LUT, or to M_IMAGE + specifier. For
example, to allocate an image buffer that can be processed and displayed,
you should set the Attribute parameter to M_IMAGE + M_DISP. The
specifier can be one or more of the following:

Data type Description Depth/band (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which data can be grabbed. This type

of buffer is usually allocated in physically contiguous,
The maximum (total) number of grab (M_GRAB) buffers that can be
allocated is restricted by the total amount of DMA memory that was
specified at the time of installation.

For boards with on-board processors, the total number of M_GRAB buffers
is limited by the amount of on-board memory.

non-paged memory.
M_COMPRESS An image buffer that can hold compressed data. Note

that a buffer with this attribute cannot have the
M_SIGNED data type.

218 MbufAllocColor

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid

Compression specifiers: Description Supported data formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or 16-bit data,
and 3-band fomats:
M_RGB24, and M_RGB48.

M_JPEG_LOSSLESS_INTERLACED The buffer will be
used to hold JPEG
lossy data.

1-band, 8- or 16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band 8-bit, and the 3-band
8-bit formats:
M_RGB24, M_YUV24,
M_YUV12, M_YUV9,
M_YUV16 + M_PLANAR, and
M_YUV16 + M_PACKED.

M_JPEG_LOSSY_INTERLACED The buffer will be
used to hold JPEG
lossy data in
separate fields.

1-band 8-bit, and the 3-band
8-bit format:
M_YUV16 + M_PACKED.
conversion during a time critical operation, you can add one of the following:

For the following specifiers, the buffer must be an 8-bit multi-band color
buffer. See MIL/MIL-Lite Board-Specific Notes to verify which formats
are supported on your board.

Internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).
M_NO_FLIP Force the buffer to be top up.

MbufAllocColor 219

Note that it might be slower to use buffers that have been forced with one
of these attributes. Although there is no right or wrong storage format to
use, certain operations are optimized for some formats.

Internal storage format specifiers for color buffers:
M_PACKED Buffer bands to be packed (color buffer

only).
M_PLANAR Force the buffer bands to be planar (color

buffer only).
M_RGB3 + M_PLANAR 3-bit (RGB 1:1:1) planar pixels.
M_RGB15+M_PACKED 16-bit packed pixels (XRGB 1:5:5:5). Note

that when accessing an
M_RGB15+M_PACKED buffer as a 3-band
8-bit buffer, the least significant bits are set
to 0.

M_RGB16+M_PACKED 16-bit packed pixels (RGB 5:6:5). Note that
when accessing an M_RGB16+M_PACKED
buffer as a 3-band 8-bit buffer, the least
significant bits are set to 0.

M_BGR24+M_PACKED 24-bit (BGR) packed pixels.
M_RGB24+M_PLANAR 24-bit (RGB 8:8:8) planar pixels.
M_BGR32+M_PACKED 32-bit (BGR) packed pixels.
M_RGB48+M_PLANAR 48-bit (RGB 16:16:16) planar pixels.
M_RGB96+M_PLANAR 96-bit (RGB 32:32:32) planar pixels.
M_YUV9+M_PLANAR YUV9 planar standard.
M_YUV12+M_PLANAR YUV12 planar standard.
M_YUV16+M_PLANAR YUV16 planar (4:2:2) standard.

M_YUV16+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_UYVY+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_YUYV+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV24+M_PLANAR YUV24 planar standard.

Location specifiers:
M_ON_BOARD Force the buffer in the on-board video memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_OVR Force the buffer in the overlay frame buffer.
M_PAGED Force the buffer in pageable memory.
M_NON_PAGED Force the buffer in non-pageable memory.

220 MbufAllocColor

Note that you can allocate one M_DISP+M_ON_BOARD buffer and one
M_OVR+M_ON_BOARD buffer.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAllocColor() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufAlloc1d(), MbufAlloc2d(), MbufFree()

MbufChildColor 221

MbufChildColor

Synopsis Allocate a color-band child data buffer within a color parent buffer.

Format MIL_ID MbufChildColor(ParentBufId, Band, BufIdPtr)

Description This function allocates a child data buffer within the specified, previously
allocated, color parent data buffer. It selects one of the color bands of the
data buffer and allocates the band as a child of that buffer.

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A color child buffer is considered a data buffer in its own right. It can be any
color band of its parent buffer, and can be used in the same circumstances
as its parent buffer. A child buffer inherits its type and attributes from the
parent buffer.

To allocate a child in one specific band, or specifically in all bands, use
MbufChildColor2d() instead of MbufChildColor().

When this buffer is no longer required, release it, using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.
The parent buffer cannot have an M_COMPRESS attribute.

MIL_ID ParentBufId; Parent buffer identifier
long Band; Index of the color band
MIL_ID *BufIdPtr; Storage location for child buffer identifier
The Band parameter specifies the index of the color band of the parent data
buffer from which to allocate the child data buffer. This parameter can be
set to a value from 0 to (number of bands of the parent buffer - 1). For RGB
parent buffers, band 0 corresponds to the red band, band 1 corresponds to
the green band, and band 2 corresponds to the blue band. The specified color
band should be valid in the parent buffer.

For RGB parent buffers, Band can be also be set to: M_RED, M_GREEN,
M_BLUE. For HLS parent buffers, Band can be set to: M_HUE,
M_LUMINANCE, or M_SATURATION.

222 MbufChildColor

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChildColor()
function also returns the child buffer identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufAllocColor(), MbufChild2d(), MbufCopyColor(),MbufChildColor2d(),
MbufFree()

MbufChildColor2d 223

MbufChildColor2d

Synopsis Allocate a child data buffer within a color parent buffer.

Format MIL_ID MbufChildColor2d(ParentBufId, Band, OffX, OffY, SizeX,
SizeY, BufIdPtr)

Description This function allocates a child data buffer within the specified, previously
allocated, color parent data buffer. It selects a two-dimensional region in
one or all of the color bands of the parent data buffer and allocates the region
as a child of that buffer.

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A color child buffer is considered a data buffer in its own right. It can be
used in the same circumstances as its parent buffer. A child buffer inherits
its type and attributes from the parent buffer.

When this buffer is no longer required, release it, using MbufFree().

MIL_ID ParentBufId; Parent buffer identifier
long Band; Index of the color band
long OffX; X pixel offset relative to parent buffer
long OffY; Y pixel offset relative to parent buffer
long SizeX; X dimension
long SizeY; Y dimension
MIL_ID *BufIdPtr; Storage location for child buffer identifier
The ParentBufId parameter specifies the identifier of the parent buffer.
The parent buffer cannot have an M_COMPRESS attribute unless the Band
parameter is set to M_ALL_BAND.

The Band parameter specifies the index of the color band of the parent data
buffer from which to allocate the child data buffer. This parameter can be
set to a value from 0 to (number of bands of the parent buffer - 1). For RGB
parent buffers, band 0 corresponds to the red band, band 1 corresponds to
the green band, and band 2 corresponds to the blue band. The specified color
band should be valid in the parent buffer.

224 MbufChildColor2d

For RGB parent buffers, Band can be also be set to: M_RED, M_GREEN,
M_BLUE. For HLS parent buffers, Band can be set to: M_HUE,
M_LUMINANCE, or M_SATURATION.

To allocate a child buffer with the same number of bands as the parent
buffer, specify M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the child buffer, relative to the parent buffer’s top-left pixel. The
offsets must be within the width and height of the parent buffer,
respectively.

The SizeX and SizeY parameters specify the width and height of the child
buffer, respectively.

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChildColor2d()
function also returns the child buffer identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufAllocColor(), MbufChild1d(), MbufChild2d() MbufChildColor(),
MbufCopyColor2d(), MbufFree()

MbufChild1d 225

MbufChild1d

Synopsis Allocate a 1D child data buffer.

Format MIL_ID MbufChild1d(ParentBufId, OffX, SizeX,BufIdPtr)

Description This function allocates a one-dimensional child data buffer within the
specified, previously allocated parent data buffer. If the parent buffer is
multi-band, this function allocates a multi-band child buffer; the child is
allocated within the specified one-dimensional region in each color band. To
allocate a child in one specific band, or specifically in all bands, use
MbufChildColor2d() instead of MbufChild1d().

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A child buffer is considered a data buffer in its own right, and can be used
in the same circumstances as its parent buffer. A child buffer inherits its
type and attributes from the parent buffer.

When this buffer is no longer required, it can be released using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.

MIL_ID ParentBufId; Parent buffer identifier
long OffX; X pixel offset relative to parent buffer
long SizeX; Child buffer width
MIL_ID *BufIdPtr; Storage location for child buffer identifier
The OffX parameter specifies the offset of the child buffer relative to the
parent buffer’s top-left pixel. The offset must be within the width of the
parent buffer.

The SizeX parameter specifies the width of the child buffer.

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChild1d() function
also returns the child buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufChild2d(), MbufChildColor(), MbufFree()

226 MbufChild2d

MbufChild2d

Synopsis Allocate a child buffer within a specific region of a parent buffer.

Format MIL_ID MbufChild2d(ParentBufId, OffX, OffY, SizeX, SizeY,
 BufIdPtr)

Description This function allocates a two-dimensional child buffer within a region of the
specified, previously allocated data buffer. If the parent buffer is multi-band,
this function allocates a multi-band child buffer; the child is allocated within
the specified region in each color band. To allocate a child region in one
specific band, or specifically in all bands, use MbufChildColor2d() instead
of MbufChild2d().

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Any modification to the child buffer affects the parent and
vice versa. Note, a parent buffer can have several child buffers.

A child buffer is considered a data buffer in its own right, and can be used
in the same circumstances as its parent buffer. A child buffer inherits its
type and attributes from the parent buffer.

MIL_ID ParentBufId; Parent buffer identifier
long OffX; X pixel offset relative to the parent buffer
long OffY; Y pixel offset relative to the parent buffer
long SizeX; Child buffer width
long SizeY; Child buffer height
MIL_ID *BufIdPtr; Storage location for child buffer identifier
When this buffer is no longer required, it can be released, using
MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the child buffer’s top-left pixel, relative to the parent buffer’s
top-left pixel. The given offsets must be within the width and height of the
parent buffer.

The SizeX and SizeY parameters specify the width and height of the child
buffer.

MbufChild2d 227

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChild2d() function
also returns the child buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufChild1d(), MbufChildColor(), MbufChildColor2d(), MbufFree()

228 MbufClear

MbufClear

Synopsis Clears a buffer to a specified color.

Format void MbufClear(DestImageBufId, Color)

Description This function clears the entire specified buffer to the specified color.

The DestImageBufId parameter specifies the identifier of the image buffer
to clear.

The Color parameter specifies the grayscale or RGB color value with which
to clear the buffer. Set this parameter as follows:

■ To clear a 1-band buffer, set this parameter to any value. This value will
be cast to the type of the destination buffer.

■ To clear a multi-band buffer to a grayscale value, set this parameter to
any value. This value will be cast to the type of the destination buffer’s
bands and replicated in each band.

■ To clear an 8-bit 3-band buffer to an RGB color, set this parameter using
the following macro:

M_RGB888(red component, green component, blue component)

■ To clear a 16-bit or 32-bit multi-band buffer to a color value, use
MgraControl().

MIL_ID DestImageBufId; Destination image buffer identifier
double Color; Color with which to clear buffer
See also MgraClear()

MbufControl 229

MbufControl

Synopsis Control specified buffer features.

Format void MbufControl(BufId, ControlType, ControlValue)

Description This function allows you to control certain buffer features.

The BufId parameter specifies the identifier of the buffer.

The ControlType and ControlValue parameters specify the buffer
feature to control and the value needed for the control. These two
parameters should be set to one of the following:

MIL_ID BufId; Buffer identifier
long ControlType; Type of buffer feature to control
double ControlValue; Value associated with control type

ControlType ControlValue Description
M_ASSOCIATED_LUT LUT buffer

identifier
Associate a LUT buffer with the specified
image buffer. The image buffer must be a
1-band 8-bit buffer.
If and when the image buffer is selected to
the display, the required changes occur to
produce the display effect of the LUT, unless
the display is also associated with a custom
LUT (MdispLut()). In single-screen mode,
MIL indirectly programs the physical output
LUTs with the image’s associated LUT
(through the use of a Windows palette). In
dual-screen mode, the associated LUT is

automatically copied to the physical output
LUTs.
MIL checks the target system to determine
whether or not a LUT is supported. If not, an
error is generated.
To deassociate a LUT buffer from an image
buffer, set ControlValue to M_DEFAULT.

230 MbufControl

For buffers with an M_IMAGE + M_COMPRESS attribute, ControlType and
ControlValue can also be set to one of the following.

Note that, if the buffer contains any data, setting one of these control types
automatically deletes the data. This is because, for MIL to decompress the
buffer’s data, it must know the control values that were used in the
compression. If you change one of these controls, MIL will be unable to
decompress the data and the data is therefore irrelevant.

M_MODIFIED M_DEFAULT Signal MIL that the buffer content was
modified without using MIL. This control
must be used to ensure that MIL updates its
internal information on the buffer. For
example, if a display buffer was modified
outside MIL, the display will not be updated
until you use this control. Note, if only a
certain region of the buffer was modified,
specify an appropriate child buffer as BufId.

M_WINDOW_DC_ALLOC M_DEFAULT Allocate a Windows display context (DC) for
drawing. Determine the DC handle (HDC)
using MbufInquire().
When using this control type, the buffer must
be internally stored in M_DIB or M_DDRAW
format, and cannot be a child buffer.
The display context must be allocated and
used only for a very short period of time; free
it as soon as possible.

M_WINDOW_DC_FREE M_DEFAULT Free a Windows display DC.

ControlType ControlValue Description

ControlType ControlValue Description

M_HUFFMAN_AC ID of buffer with

M_ARRAY attribute
Associate an AC Huffman
table to the buffer. Only used
for lossy compressions. If the
buffer is 3-band, the same
table is applied to all bands.

M_HUFFMAN_AC_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate an AC Huffman
table to the buffer. Only used
for lossy compressions of YUV
buffers. The table is applied
only to the Y band.

MbufControl 231

M_HUFFMAN_AC_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate an AC Huffman
table to the buffer. Only used
for lossy compressions of YUV
buffers. The table is applied to
the U and V bands.

M_HUFFMAN_DC ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table
to the buffer. If the buffer is
3-band, the same table is
applied to all bands.

M_HUFFMAN_DC_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table
to the buffer. Only available for
YUV buffers. The table is
applied only to the Y band.
Can only be used if the
compressed image buffer is of a
lossy type.

M_HUFFMAN_DC_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table
to the buffer. Only available for
YUV buffers. The table is
applied to the U and V bands.
Can only be used if the
compressed image buffer is of a
lossy type.

M_PREDICTOR 0, 1 (default), or 2 For lossless compressions, use
predictor #0 (no prediction),
predictor #1 (the
"pixel-to-the-left" predictor), or
predictor #2 (the ”pixel-above”
predictor). If the buffer is
3-band, the same predictor is

ControlType ControlValue Description
applied to all bands.
M_Q_FACTOR integer value

between 1 and 99;
default value is 50

Quantization factor for lossy
compressions. The higher the
factor, the more the
compression, but the lower the
image quality. If the buffer is
3-band, the same factor is
applied to all bands.

M_Q_FACTOR_LUMINANCE integer value
between 1 and 99;
default value is 50

Quantization factor for lossy
compressions of YUV images.
The higher the factor, the more
the compression, but the lower
the image quality. The factor is
applied only to the Y band.

232 MbufControl

Note The ControlType M_ASSOCIATED_LUT is not available with 32-bit or
floating-point buffers.

M_Q_FACTOR_CHROMINANCE integer value
between 1 and 99;
default value is 50

Quantization factor for lossy
compressions of YUV images.
The higher the factor, the more
the compression, but the lower
the image quality. The factor is
applied to the U and V bands.

M_QUANTIZATION ID of buffer with
M_ARRAY attribute

Associate a quantization table
to the buffer. Only used for
lossy compressions. If the
buffer is 3-band, the same
table is applied to all bands.

M_QUANTIZATION_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate a quantization table
to the buffer. Only used for
lossy compressions of YUV
buffers. The table is applied
only to the Y band.

M_QUANTIZATION_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate a quantization table
to the buffer. Only used for
lossy compressions of YUV
buffers. The table is applied to
the U and V bands.

M_RESTART_INTERVAL any integer value;
default value is 8

Place restart markers after
every n rows of data (for
lossless compressions) or after
every n 8x8 blocks of data (for
lossy compressions).

ControlType ControlValue Description
See also MbufLoad(), MbufRestore(), MbufImport(), MbufExport(), MbufSave()

MbufCopy 233

MbufCopy

Synopsis Copy data from one buffer to another.

Format void MbufCopy(SrcBufId, DestBufId)

Description This function copies the specified source buffer data to the specified
destination buffer. If the source and destination buffers are of different data
types, MIL converts the data automatically.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied into the destination.
If the destination depth is greater than that of the source, the source data
is zero or sign-extended (depending on the type of the source) when copied
into the destination. If the destination is larger in size than the source,
exceeding areas of the buffer are unaffected.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.
When copying a binary buffer to a buffer of a different depth, each bit is
copied into the least-significant bit of a different destination pixel. The
remaining bits of the destination pixel are set to 0; to propagate the bit value
to all bits, use MimBinarize().

When copying from a floating-point buffer to an integer buffer, the values
are truncated.

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
If the source buffer has an M_COMPRESS specifier and the destination buffer
does not, the data will be automatically decompressed. If the destination
buffer has an M_COMPRESS specifier and the source buffer does not, the
data will be automatically compressed. If both buffers have M_COMPRESS
specifiers but different compression types, the data will be re-compressed
according to the settings in the destination buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

Note This function is optimized for packed binary buffers.

See also MbufCopyClip(), MbufCopyCond(), MbufCopyMask(), MbufCopyColor(),
MbufCopyColor2d().

234 MbufCopyClip

MbufCopyClip

Synopsis Copy buffer, clipping data outside the destination buffer.

Format void MbufCopyClip(SrcBufId, DestBufId, DestOffX, DestOffY)

Description This function copies the source buffer data to the destination buffer starting
at the specified offset. Data outside of the destination buffer is not copied
(it is clipped).

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.
When copying a binary buffer to a buffer of a different depth, each bit is
copied into the least-significant bit of a different destination pixel. The
remaining bits of the destination pixel are set to 0; to propagate the bit value
to all bits, use MimBinarize().

When copying from a floating-point buffer to an integer buffer, the values

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long DestOffX; X pixel offset relative to destination buffer
long DestOffY; Y pixel offset relative to destination buffer
are truncated.

If the source buffer has an M_COMPRESS specifier and the destination buffer
does not, the data will be automatically decompressed. If the destination
buffer has an M_COMPRESS specifier and the source buffer does not, the
data will be automatically compressed. If both buffers have M_COMPRESS
specifiers but different compression types, the data will be re-compressed
according to the settings in the destination buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The DestOffX and DestOffY parameters specify the horizontal and vertical
pixel offsets of the destination buffer area at which to start copying data.
Specify offsets relative to the top-left corner of the destination buffer (0,0).

MbufCopyClip 235

These two parameters can be set to negative values and can be specified
anywhere outside the destination buffer. Data extending beyond the limits
of the destination buffer is not copied (it is clipped).

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyCond(), MbufCopyMask()

236 MbufCopyColor

MbufCopyColor

Synopsis Copy one or all bands of an image buffer.

Format void MbufCopyColor(SrcBufId, DestBufId, Band)

Description This function copies one or all color bands of the specified source buffer to
the specified destination buffer. It can also be used to insert or extract a
color component from a color image.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to (number of bands of the
buffer - 1), where band 0 is red, band 1 is green, and band 2 is blue, or to
one of the following:

The Band parameter gives the index of the color band to extract or insert.
If the source is a monochrome buffer and the destination is a multi-band

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long Band; Index of the color band to copy

M_RED Copy to/from the red color band.
M_GREEN Copy to/from the green color band.
M_BLUE Copy to/from the blue color band.
M_ALL_BAND Copy all color bands.
(color) buffer, the unique source buffer band is inserted into the specified
band of the destination buffer. If the source is a multi-band buffer and the
destination is a monochrome buffer, the specified source buffer band is
extracted from the source buffer and written to the destination buffer. If
both are multi-band buffers, the specified band(s) is copied from the source
to the destination.

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

MbufCopyColor 237

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination. Also, the buffers must have the same number of bands if
all bands are to be copied.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyCond(), MbufCopyMask()

238 MbufCopyColor2d

MbufCopyColor2d

Synopsis Copy a two-dimensional region of one or all bands of an image buffer to
another buffer.

Format void MbufCopyColor2d(SrcBufId, DestBufId, SrcBand, SrcOffX,
 SrcOffY, DestBand, DestOffX, DestOffY, SizeX, SizeY)

Description This function copies a two-dimensional region of one or all color bands of
the specified source buffer to the specified color band(s) of the destination
buffer. It can also be used to insert or extract a color component from a color
buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long SrcBand; Index of the source color band to copy
long SrcOffX; X pixel offset relative to the source parent buffer
long SrcOffY; Y pixel offset relative to the source parent buffer
long DestBand; Index of the destination color band to copy
long DestOffX; X pixel offset relative to the destination parent

buffer
long DestOffY; Y pixel offset relative to the destination parent

buffer
long SizeX; X dimension
long SizeY; Y dimension
The SrcBand and DestBand parameters specify the index of the source
and destination color bands. These parameters can be set to any index from
0 to (number of bands of the buffer - 1), where band 0 is red, band 1 is green,
and band 2 is blue or to one of the following:

M_RED Copy to/from the red color band.
M_GREEN Copy to/from the green color band.
M_BLUE Copy to/from the blue color band.
M_ALL_BAND Copy all color bands.

MbufCopyColor2d 239

If the source is a monochrome buffer and the destination is a multi-band
(color) buffer, the unique source buffer band is inserted into the specified
band of the destination buffer. If the source is a multi-band buffer and the
destination is a monochrome buffer, the specified source buffer band is
extracted from the source buffer and written to the destination buffer. If
both are multi-band buffers, the specified band(s) is copied from the source
to the destination.

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination. Also, the buffers must have the same number of bands if
all bands are to be copied.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.

The SrcOffX parameter specifies the horizontal pixel offset of the region to
read relative to the source buffer starting coordinate. The offset must be
within the width of the source buffer.

The SrcOffY parameter specifies the vertical pixel offset of the region to
read relative to the source buffer starting coordinate. The offset must be
within the height of the source buffer.

The DestOffX parameter specifies the horizontal pixel offset of the region

to write relative to the destination buffer starting coordinate. The offset
must be within the width of the destination buffer.

The DestOffY parameter specifies the vertical pixel offset of the region to
write relative to the destination buffer starting coordinate. The offset must
be within the height of the destination buffer.

The SizeX parameter specifies the width of the region to be copied, starting
from the specified offset (SrcOffX, DestOffX).

The SizeY parameter specifies the height of the region to be copied, starting
from the specified offset (SrcOffY, DestOffY).

240 MbufCopyColor2d

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyColor(), MbufCopyCond(),
MbufCopyMask()

MbufCopyCond 241

MbufCopyCond

Synopsis Copy conditionally the source buffer to the destination buffer.

Format void MbufCopyCond(SrcBufId, DestBufId, CondBufId,
 Condition, CondValue)

Description This function copies the source buffer data to the destination buffer,
modifying only those pixels of the destination buffer that have a
corresponding pixel in the conditional buffer that satisfies the specified
condition. Other pixels are unchanged. If the source and destination buffers
are of different data types, MIL converts the data automatically.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The CondBufId parameter specifies the identifier of the condition buffer.

Note that if a one-band condition buffer is used with a three-band
destination buffer, the one band of the condition buffer will be used for each
destination band.

The Condition parameter specifies the condition for which the condition
buffer is tested. This parameter can be set to one of the following:

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
MIL_ID CondBufId; Condition buffer identifier
long Condition; Processing condition
double CondValue; Condition value
The CondValue parameter specifies the pixel value for the specified
condition. Even though this value is of type ‘ long’, it is treated as if it had
the same type and depth as the condition buffer. If M_DEFAULT is used,
CondValue is ignored. If the condition buffer is binary, this value must be
0 or 1.

M_EQUAL Modify destination buffer pixels corresponding to
condition buffer pixels that are equal to CondValue.

M_NOT_EQUAL Modify destination buffer pixels corresponding to
condition buffer pixels that are not equal to
CondValue.

M_DEFAULT Modify destination buffer pixels corresponding to
condition buffer pixels that are non-zero.

242 MbufCopyCond

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyMask()

MbufCopyMask 243

MbufCopyMask

Synopsis Copy buffer with mask.

Format void MbufCopyMask(SrcBufId, DestBufId, MaskValue)

Description This function copies the specified source buffer data to the specified
destination buffer, modifying only the bits of the destination that have a
non-zero corresponding bit in the mask.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The MaskValue parameter specifies the mask value. Even though this
value is of type ’long’, it is treated as if it had the same depth as the
destination buffer; the most-significant bits that are not required are
ignored. If the destination buffer is binary, the value must be 0 or 1.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Status Not available on floating-point buffers.

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long MaskValue; Mask value to apply to the destination buffer
See also MbufCopy(), MbufCopyClip(), MbufCopyCond()

244 MbufCreate2d

MbufCreate2d

Synopsis Create a two-dimensional data buffer.

Format MIL_ID MbufCreate2d(SystemId, SizeX, SizeY,
Type, Attribute, ControlFlag, Pitch,
DataPtr, BufIdPtr)

Description This function creates a two-dimensional data buffer that maps to a
user-specified data array and associates it with a specific MIL system. This
function should be used with caution because, when using physical
addresses, they provide direct manipulation of any of your PC’s
memory mapped devices; when using logical addresses, memory
protection errors could result. It is generally better to leave buffer
allocation, data loading, and memory control to MIL
(MbufAlloc2d(),MbufGet2d(), MbufPut2d()), since MIL might require
special memory attributes (such as non-paged memory) or alignment in

MIL_ID SystemId System identifier
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data type and data depth
long Attribute; Buffer attributes
long ControlFlag; Creation control flag
long Pitch; Value of pitch if necessary
void *DataPtr Pointer to data
MIL_ID *BufIdPtr; Storage location for buffer identifier
order to associate the buffer with a particular target system.

The appropriate memory must be allocated by the user before calling
MbufCreate2d() and freed when no longer required, after calling
MbufFree().

The SystemId parameter specifies the MIL system with which the buffer
will be associated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system with which to
associate the buffer (it can be the Host system or any already allocated
system).

MbufCreate2d 245

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth. Express the depth in bits and give the data range as one of the
following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter defines the buffer usage. This parameter should
be set to one of the following:

When selecting an M_IMAGE attribute, it should be set to M_IMAGE +
specifier. For example, to create an image buffer that can be processed and
displayed, you should set the Attribute parameter to M_IMAGE + M_DISP.
The specifier can be one or more of the following:

Data Type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

M_IMAGE Image data.
M_LUT Lookup table.

Usage specifiers:
M_DISP An image buffer that can be displayed.
You must specify the appropriate internal storage format of the buffer; MIL
needs this information to manipulate the data.

M_GRAB An image buffer in which to grab data from input
devices. To specify this attribute, the memory must
usually be physically contiguous, non-paged memory.

M_COMPRESS An image buffer that can hold compressed data. See
MbufAlloc...() for a list of compression specifiers.
Note that a buffer with this attribute cannot have the
M_SIGNED data type.

Board-dependent location specifiers:
M_PAGED Buffer is in pageable memory.
M_NON_PAGED Buffer is in non-pageable memory.

246 MbufCreate2d

The ControlFlag parameter specifies the physical nature of the buffer. It
can be set to one of the following:

The Pitch parameter specifies the pitch in pixels or bytes (as determined
by ControlFlag) or M_DEFAULT. The pitch is the length of the buffer’s
memory (not data) line.

The DataPtr parameter is a pointer to the data array to which to map the
created MIL buffer.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufCreate2d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If

Board-dependent internal storage format specifiers:
M_FLIP The buffer is top down (DIB).
M_NO_FLIP The buffer is top up.

ControlFlag Description
M_DEFAULT Same as +M_PITCH. The pitch is the width

(size X) of the buffer.
M_HOST_ADDRESS
+M_PITCH

DataPtr is the Host address of the data buffer.
The pitch is in pixels.

M_HOST_ADDRESS
+M_PITCH_BYTE

DataPtr is the Host address. The pitch is in
bytes.

M_PHYSICAL_ADDRESS
+M_PITCH

DataPtr is the physical address of the data
buffer in memory. The pitch is in pixels.

M_PHYSICAL_ADDRESS
+M_PITCH_BYTE

DataPtr is the physical address of the data
buffer. The pitch is in bytes.
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

This function is optimized for packed binary buffers.

Return value The returned value is the buffer identifier. If allocation fails, an identifier
of 0 is returned.

See also MbufAlloc2d(), MbufGet2d(), MbufPut2d(), MbufFree()

MbufCreateColor 247

MbufCreateColor

Synopsis Create a color data buffer.

Format MIL_ID MbufCreateColor(SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, ControlFlag,
Pitch,ArrayOfDataPtr, BufIdPtr)

Description This function creates a color data buffer that maps to a user-specified data
array and associates it with a specific MIL system. This function should
be used with caution because, when using physical addresses, they
provide direct manipulation of any of your PC’s memory mapped
devices; when using logical addresses, memory protection errors
could result. It is generally better to leave buffer allocation, data loading,
and memory control to MIL (MbufAllocColor(), MbufGetColor(),
MbufPutColor()), since MIL might require special memory attributes

MIL_ID SystemId System identifier
long SizeBand; Number of color bands
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data type and data depth per band
long Attribute; Buffer attributes
long ControlFlag; Creation control flag
long Pitch; Value of pitch, if necessary
void **ArrayOfDataPtr Array of data buffer pointers
MIL_ID *BufIdPtr; Storage location for buffer identifier
(such as non-paged memory) or alignment in order to associate the buffer
with a particular target system. MbufInquire() can be used to get the
pointer to a MIL allocated buffer.

The appropriate memory must be allocated by the user before calling
MbufCreateColor() and freed when no longer required, after calling
MbufFree().

The SystemId parameter specifies the MIL system with which the buffer
will be associated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify

248 MbufCreateColor

M_DEFAULT, MIL will select the most appropriate system with which to
associate the buffer (it can be the Host system or any already allocated
system).

The SizeBand parameter specifies the number of (xy) surfaces (also called
color bands) that the buffer should have in order to represent the color
components of an object. When acquiring or processing monochrome images,
the buffer requires only one color band. For RGB color images, it requires
three color bands. The possible range for this parameter is 1 to n. However,
there are generally either 1 or 3 bands.

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth per band. Express the depth in bits and give the data range as
one of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter specifies the buffer usage. This parameter should
be set to M_LUT, or to M_IMAGE + specifier. For example, to create an image

Data Type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32
buffer that can be processed and displayed, you should set the Attribute
parameter to M_IMAGE + M_DISP. The specifier can be one or more of the
following:

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data from input

devices. To specify this attribute, the memory must
usually be physically contiguous, non-paged memory.

M_COMPRESS An image buffer that can hold compressed data. See
MbufAllocColor() for a list of compression specifiers.
Note that a buffer with this attribute cannot have the
M_SIGNED data type.

MbufCreateColor 249

You must specify the appropriate internal storage format of the buffer; MIL
needs this information to manipulate the data. For example, you do not want
MIL to interpret a packed data buffer as a planar.

Board-dependent location specifiers:
M_PAGED Buffer is in pageable memory.
M_NON_PAGED Buffer is in non-pageable memory.

Board-dependent internal storage format specifiers:
M_FLIP The buffer is top down (DIB).
M_NO_FLIP The buffer is top up.
M_PACKED The buffer bands are packed.
M_PLANAR The buffer bands are planar.

For the following specifiers, the buffer must be an 8-bit multi-band
buffer. See MIL/MIL-Lite Board-Specific Notes to verify which formats
are supported on your board.
Note that it might be slower to use buffers that have been forced with one
of these attributes. Although there is no right or wrong storage format to
use, certain operations are optimized for some formats.
M_RGB15+M_PACKED 16-bit packed pixels (XRGB 1:5:5:5). Note

that when accessing an
M_RGB15+M_PACKED buffer as a 3-band
8-bit buffer, the least significant bits are set
to 0.

M_RGB16+M_PACKED 16-bit packed pixels (RGB 5:6:5). Note that
when accessing an M_RGB16+M_PACKED
buffer as a 3-band 8-bit buffer, the least
significant bits are set to 0.
M_BGR24+M_PACKED 24-bit (BGR) packed pixels.
M_BGR32+M_PACKED 32-bit (BGR) packed pixels.
M_RGB24+M_PLANAR 24-bit (RGB) planar pixels
M_YUV9+M_PLANAR YUV9 planar standard.
M_YUV12+M_PLANAR YUV12 planar standard.
Board-dependent internal storage format specifiers:
M_YUV16+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_UYVY+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_YUYV+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV24+M_PLANAR YUV24 planar standard.

250 MbufCreateColor

The ControlFlag parameter specifies the physical nature of the buffer. It
can be set to one of the following:

The Pitch parameter specifies the pitch in pixels or bytes (as determined
by ControlFlag) or M_DEFAULT. The pitch is the number of pixels or bytes
(as specified by the ControlFlag) between the beginnings of any two
adjacent lines of the buffer data. Note that when creating an
M_BGR24 + M_PACKED buffer, you should use M_PITCH_BYTE instead of
M_PITCH because the latter might not be able to take into account internal
padding.

The ArrayOfDataPtr parameter is the address of an array of pointers.
These pointers address the data buffers to which to map the created MIL
buffer. When pointing to a planar buffer, one pointer per band must be
provided. Pointers to a 3-band planar buffer must be ordered R-G-B or Y-U-V
in the array. When pointing to a single-band buffer or a packed buffer, a
pointer to the packed data must be provided.

ControlFlag Description
M_DEFAULT Same as +M_PITCH. The pitch is the width

(size X) of the buffer.
M_HOST_ADDRESS
+M_PITCH

The data pointer is the Host address of the
data buffer. The pitch is in pixels.

M_HOST_ADDRESS
+M_PITCH_BYTE

The data pointer is the Host address.
The pitch is in bytes.

M_PHYSICAL_ADDRESS
+M_PITCH

The data pointer is the physical address of the
data buffer in memory. The pitch is in pixels.

M_PHYSICAL_ADDRESS
+M_PITCH_BYTE

The data pointer is the physical address of the
data buffer in memory. The pitch is in bytes.
The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufCreateColor() function
also returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

This function is optimized for packed binary buffers.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufAllocColor(), MbufGetColor(), MbufPutColor(), MbufFree()

MbufDiskInquire 251

MbufDiskInquire

Synopsis Inquire about the buffer data in a file.

Format long MbufDiskInquire(FileName, InquireType, UserVarPtr)

Description This function inquires about the buffer data in the specified file on disk.

The FileName parameter specifies the file name. Note, an error occurs if
the file does not have a known file format or the file format isn’t supported.

The supported file types include all the formats supported by the
MbufExport() and MbufExportSequence() functions. Since a "RAW"
data file does not have any information regarding size or type, you can only
use MbufDiskInquire() to determine the file format of this type of file.

The InquireType parameter specifies the parameter about which to
inquire. This parameter can be set to one of the following values:

char *FileName; File name
long InquireType; Type of information about which to inquire
void *UserVarPtr; Storage location for inquiry result

InquireType Description
M_SIZE_X Width of the data in the file.
M_SIZE_X+M_LUT Width of the LUT associated with the

image in the file. When there is no LUT
associated with the image, returns
M_INVALID.

M_SIZE_Y Height of the data in the file.

M_SIZE_BAND Number of color bands in the file.
M_SIZE_BAND+M_LUT Number of bands of the LUT associated

with the image in the file. When there
is no LUT associated with the image,
returns M_INVALID.

M_TYPE File data type and depth (size in bits +
M_SIGNED, M_UNSIGNED or
M_FLOAT).

M_SIZE_BIT File data depth in bits.
M_SIGN File data range (M_SIGNED or

M_UNSIGNED).
M_ATTRIBUTE File attribute.

252 MbufDiskInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MbufDiskInquire()
function also returns the requested information, you can set this parameter
to M_NULL.

The UserVarPtr parameter should be a pointer to a long. Certain
exceptions apply when InquireType is set to one of the following:

■ When M_FILE_FORMAT is specified, this parameter should be a pointer
to a MIL_ID.

■ When M_ASPECT_RATIO or M_FRAME_RATE is specified, this

M_FILE_FORMAT MIL identifier (MIL_ID) of the file
format. See MbufExport() and
MbufExportSequence() for all
supported file formats.

M_LUT_PRESENT Presence of LUT data in the file.
(M_YES or M_NO)

M_ASPECT_RATIO Aspect ratio of the image in the file.
(default is 1:1)

M_NUMBER_OF_IMAGES Number of images in an *.avi file.
M_FRAME_RATE Frame rate (number of images/second)

of an *.avi file.
M_COMPRESSION_TYPE Returns the compression type of the image

in the file. Returns M_NULL if the image is
not compressed (for example, in a BMP file
format). See MbufAllocColor() for all
possible compression formats.

M_OFFSET_CENTER_Y Offset center Y coordinate.

InquireType Description
parameter should be a pointer to a double value.

Return value The returned value is the value that represents the setting for the requested
information, cast to long. If the requested information is not available,
M_INVALID is returned.

See also MbufLoad(), MbufImport()

MbufExport 253

MbufExport

Synopsis Export a data buffer to a file.

Format void MbufExport(FileName, FileFormatBufId, SrcBufId)

Description This function exports a data buffer to a file, using the specified output file
format.

Note, you can also save a buffer in an M_MIL file format, using MbufSave().
The M_MIL file format is TIFF compatible.

To export an image with a LUT (color palette), associate the LUT to the
image, using MbufControl(). Upon export, the image is saved with its
associated color palette (MIM, TIFF and BMP file formats).

If you are exporting uncompressed data to a file with an M_JPEG_xx file
attribute, this function will automatically compress the data, according to
the file format. The buffer does not need an M_COMPRESS attribute. If you
are exporting compressed data to an uncompressed file format, this function
will automatically decompress the data.

The FileName parameter specifies the name of the file in which to store
the data buffer. If the file already exists, it will be overwritten.

The FileFormatBufId parameter specifies the identifier of the information

char *FileName; Destination file name
MIL_ID FileFormatBufId; File format specification identifier
MIL_ID SrcBufId; Source data buffer identifier
buffer containing the file conversion format. Predefined file format
identifiers are available for the most commonly used file formats:

FileFormatBufId Description
M_MIL Save the buffer contents in MIL file

format (a regular TIFF 6.0 file format
with extra information included in the
comment field. It uses TIFF "chunky"
mode to save color images.)

M_TIFF Save the buffer contents in TIFF file
format (only available for image
buffers and saved in "chunky" mode
for color images). The TIFF file format
that is used respects the TIFF 6.0
specification.

254 MbufExport

FileFormatBufId Description
M_BMP Save the buffer contents in BMP file

format. The BMP file format that is
used is the standard Windows format.

M_JPEG_LOSSLESS Save the buffer contents in a
JPEG-lossless file format. If the buffer
is 3-band, the data will be stored in
RGB format.

M_JPEG_LOSSY Save the buffer contents in a
JPEG-lossy file format. If the buffer is
3-band and does not have an
M_COMPRESS attribute, the data will
be stored in YUV16 packed format;
otherwise, it will be stored in the same
color format as the buffer.

M_JPEG_LOSSLESS_INTERLACED Save an interlaced JPEG-lossless
image, to a file in the same
compression format. If the buffer is
3-band, the buffer will be stored in
RGB format.

M_JPEG_LOSSY_INTERLACED Save an interlaced JPEG-lossy image,
to a file in the same compression
format. If the buffer is 3-band, the
data will always be stored in YUV16
packed format.

M_JPEG_LOSSY_RGB Save a 3-band buffer in a JPEG-lossy
file format and store the data in RGB
format. This attribute is only
applicable to uncompressed image
buffers.
Note that, except for the M_MIL and M_RAW file formats, the source buffer
must have an M_IMAGE attribute.

If you are saving a non 8-bit buffer in M_BMP, M_JPEG_LOSSY,
M_JPEG_LOSSY_RGB or M_JPEG_LOSSY_INTERLACED format, only the 8
least-significant bits are saved. This is because these formats are restricted
to 8 bits per band. If you are saving an a non 8-bit or a non 16-bit buffer in

M_RAW Save the buffer contents in raw file
format. The contents are dumped
directly (byte stream) into the file and
no header is added. If the buffer is
multi-band, all bands are dumped one
after the other.

MbufExport 255

the M_JPEG_LOSSLESS or M_JPEG_LOSSLESS_INTERLACED
formats, only the 8 least significant or 16 least significant bits, respectively,
are saved.

By default, most color buffers are saved in packed (chunky) format (in
accordance with TIFF 6.0 specifications). Color binary buffers are saved in
1-bit per pixel format (data is stored in 3-bands, packed binary format).
When a color buffer is saved in a raw file format, its bands are saved in a
planar format (one band after another). Note, however, that with M_MIL or
M_TIFF file formats, M_PLANAR can be added (for example,
M_TIFF+M_PLANAR) in order to save a color image in planar, rather than
packed, mode.

The SrcBufId parameter specifies the identifier of the data buffer to save.

Note This function is optimized for packed binary buffers.

Under MIL-Lite, dedicated hardware is required to export compressed
images. This is not a restriction under MIL.

See also MbufImport(), MbufSave(), MbufLoad(), MbufRestore(), MbufControl().

256 MbufExportSequence

MbufExportSequence

Synopsis Export a sequence of image buffers to an .avi file.

Format void MbufExportSequence(FileName, FileFormatId, BufArrayPtr,
NumberOfImages, FrameRate,
ControlFlag)

Description This function exports a sequence of image buffers to an audio video
interleave (*.avi) file.

The FileName parameter specifies the name of the file in which to export
the image buffers.

The FileFormatId parameter specifies the format of the file. It can be set
to:

char *FileName; File name
MIL_ID FileFormatId; File format
MIL_ID *BufArrayPtr; Array of image buffer identifiers
long NumberOfImages; Number of image buffers
double FrameRate; Frame rate
long ControlFlag; Control flag

M_AVI_MJPG An AVI format used to hold JPEG lossy interlaced,
YUV16 packed image buffers. The image buffers must
be in this format or in a non-compressed 8-bit format
before calling this function (in the latter case, they will
be converted appropriately). If the image buffers are in
any other format, they will not be exported and an

error will be generated.

M_AVI_DIB An AVI format used to hold non-compressed 8-bit
image buffers. If necessary, the image buffers will be
converted to a non-compressed 8-bit format before
exporting.

M_AVI_MIL An AVI format used to hold image buffers in their MIL
format. This saves images in the format in which they
are sent to this function. Since the images are saved
"as is", no loss is introduced in the images. This type of
sequence might not be readable by Windows NT’s
Media Player.

M_DEFAULT MIL automatically decides the appropriate format.

MbufExportSequence 257

The BufArrayPtr parameter specifies the address of the array containing
the MIL identifiers of the image buffers to export.

The NumberOfImages parameter specifies the number of image buffers
to export. If the supplied array is larger than this number, the remaining
buffer identifiers are ignored.

The FrameRate parameter specifies the frame rate (number of image
buffers/second) of the sequence.

The ControlFlag parameter specifies whether to append the image buffers
to the *.avi file, if the file already exists, or overwrite the file. It can be set to:

M_DEFAULT Overwrite the file. The file will be opened, written into,
and then the file will be closed.

M_OPEN Open the AVI file for writing, and set the pointer to the
beginning of the file. If M_OPEN+M_APPEND is
specified, the file is opened and the file pointer is set to
the end of the file. BufArrayPtr, NumberOfImages,
and FrameRate should be set to M_NULL.

M_WRITE Write the specified number of images in the files
starting from the current file pointer position. After
the write operation, the file pointer is left at the end of
the file, ready for the next M_WRITE operation.
BufArrayPtr, NumberOfImages, and FrameRate
should be set to the appropriate values.

M_CLOSE Close the AVI file. BufArrayPtr, NumberOfImages,
and FrameRate should be set to M_NULL.

M_APPEND Append the image buffers to the file. The file will be
opened, the specified images will be appended, and
then the file will be closed.
Note Under MIL-Lite, dedicated hardware is required to export compressed
sequences. This is not a restriction under MIL.

See also MbufImportSequence()

258 MbufFree

MbufFree

Synopsis Free a data buffer.

Format void MbufFree(BufId)

Description This function deallocates a previously allocated data buffer. The memory
reserved for the specified buffer is released.

Child buffers associated to a parent buffer must be deallocated, using
MbufFree(), prior to deallocating the parent buffer.

The BufId parameter specifies the identifier of the data buffer to deallocate.

See also MbufAlloc1d(), MbufAlloc2d(), MbufAllocColor(), MbufChild1d(),
MbufChild2d(), MbufChildColor()

MIL_ID BufId; Buffer identifier to deallocate

MbufGet 259

MbufGet

Synopsis Get data from a buffer and place it in a user-supplied array.

Format void MbufGet(SrcBufId, UserArrayPtr)

Description This function copies data from a specified MIL source buffer to a
user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy source buffer data. Ensure that the user array is large enough
to accommodate the data from the source buffer. MbufGet() assumes that
the array is of the same data type and depth as the source buffer’s bands.

Note, for multi-band buffers, MbufGet() behaves like
MbufGetColor(SrcBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr).
Refer to MbufGetColor() for more details.

Note This function is optimized for packed binary buffers.

See also MbufGet1d(), MbufGet2d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier
void *UserArrayPtr; Destination user array

260 MbufGetColor

MbufGetColor

Synopsis Get data from one or all bands of a buffer and place it in a user-supplied
array.

Format void MbufGetColor(SrcBufId, DataFormat, Band, UserArrayPtr)

Description This function copies data from one or all color bands of a specified MIL
source buffer to a user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer. The
internal data format of the source buffer need not match the specified data
format of the user-supplied array; an internal conversion will be performed
if necessary. Note, however, if the formats do match the operation will be
much faster.

The DataFormat parameter specifies the data format to use to save the
data in the user array. Note that Sx and Sy denote the source width and
height, respectively. This parameter must be set to one of the following
values:

MIL_ID SrcBufId; Source buffer identifier
long DataFormat; Data format of the user array
long Band; Color band of source buffer
void *UserArrayPtr; Destination user array

DataFormat Description
M_SINGLE_BAND Copy a single color band. The user array must be

of the same type as the source buffer and have a

size of Sx x Sy.

M_BGR24+M_PACKED Copy three bands in an interleaved manner
(BGRBGR). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 3 bytes (Sx x Sy x 3char).

M_BGR32+M_PACKED Copy three bands in an interleaved manner
(BGRXBGRX). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 4 bytes (Sx x Sy x long).

M_RGB15+M_PACKED Copy three bands in an interleaved manner (RGB
5:5:5). The source buffer must be a single-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

MbufGetColor 261

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to n-1 (number of bands of the
source buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The UserArrayPtr parameter specifies the address of the user array in

M_RGB16+M_PACKED Copy three bands in an interleaved manner (RGB
5:6:5). The source buffer must be a single-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same data type as the source buffer and have a
size of Sx x Sy x number of color bands of the
source buffer, where Sx and Sy denote the source
width and height, respectively. This format is to
be used when copying from all color bands of the
source buffer.

M_RED Copy from the red color band.
M_GREEN Copy from the green color band.
M_BLUE Copy from the blue color band.
M_ALL_BAND Copy from all color bands.

DataFormat Description
which to copy data from the source buffer. Ensure that the user array is
large enough to accommodate the data from the source buffer in the format
specified.

Note This function is optimized for packed binary buffers.

See also MbufGet(), MbufGet1d(), MbufGet2d(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

262 MbufGetColor2d

MbufGetColor2d

Synopsis Get data from a region of one or all bands of a buffer and place it in a
user-supplied array.

Format void MbufGetColor2d(SrcBufId, DataFormat, Band, OffX, OffY,
SizeX, SizeY, UserArrayPtr)

Description This function copies data from a specific region of one or all color bands of
a specified MIL source buffer to a user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer. The
internal data format of the source buffer need not match the specified data
format of the user-supplied array; an internal conversion will be performed
if necessary. Note however, if the formats do match the operation will be
much faster.

The DataFormat parameter specifies the data format to use to save the
data in the user array. Note that Sx and Sy denote the source width and

MIL_ID SrcBufId; Source buffer identifier
long DataFormat; Data format of the user array
long Band; Color band of source buffer
long OffX; X pixel offset relative to the source buffer
long OffY; Y pixel offset relative to the source buffer
long SizeX; Source buffer region width
long SizeY; Source buffer region height
void *UserArrayPtr; Destination user array
height, respectively. This parameter must be set to one of the following
values:

DataFormat Description
M_SINGLE_BAND Copy a single color band. The user array must be

of the same type as the source buffer and have a
size of Sx x Sy.

M_BGR24+M_PACKED Copy three bands in an interleaved manner
(BGRBGR). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 3 bytes (Sx x Sy x 3char).

MbufGetColor2d 263

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to n-1 (number of bands of the
source buffer - 1), or to one of the following values:

M_BGR32+M_PACKED Copy three bands in an interleaved manner
(BGRXBGRX). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 4 bytes (Sx x Sy x long).

M_RGB15+M_PACKED Copy three bands in an interleaved manner (RGB
5:5:5). The source buffer must be a single-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

M_RGB16+M_PACKED Copy three bands in an interleaved manner (RGB
5:6:5). The source buffer must be a single-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same type as the source buffer and have a size of
Sx x Sy x number of color band of the source
buffer. This format is to be used when copying all
color bands of the source buffer.

M_RED Copy from the red color band.
M_GREEN Copy from the green color band.
M_BLUE Copy from the blue color band.

DataFormat Description
If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets (relative to the top-left source buffer coordinate) of the source buffer
region in which to get the data.

The SizeX and SizeY parameters specify the width and height of the source
buffer region in which to get the data.

M_ALL_BAND Copy from all color bands.

264 MbufGetColor2d

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data. Ensure that there are enough entries in the user
array to receive the data of the specified source buffer region.

Note This function is optimized for packed binary buffers.

See also MbufGet(), MbufGet1d(), MbufGet2d(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor(), MbufPutColor2d()

MbufGetLine 265

MbufGetLine

Synopsis Read the pixels along a specified theoretical line, count the pixels, and store
them in a user-defined array.

Format void MbufGetLine(ImageBufId, StartX, StartY, EndX, EndY,
 Mode, NbPixelsPtr, UserArrayPtr)

Description This function reads the series of pixels between specified coordinates
(theoretical line) in a specified source image and stores the pixels in a
user-defined array. The Bresenham algorithm is used to determine the
theoretical line.

The ImageBufId parameter specifies the identifier of the source image
buffer. This must be a single-band (monochrome) buffer.

The StartX and StartY parameters specify the horizontal and vertical pixel
offsets of the starting position of the line, relative to the top-left pixel of the
source buffer.

MIL_ID ImageBufId; Image buffer identifier
long StartX; X start position of the line
long StartY; Y start position of the line
long EndX; X end position of the line
long EndY; Y end position of the line
long Mode; Operation mode
long *NbPixelsPtr; Number of pixels
void *UserArrayPtr; Destination user array
The EndX and EndY parameters specify the horizontal and vertical pixel
offsets of the finishing position of the line, relative to the top-left pixel of the
source buffer.

The Mode parameter specifies the operation mode. This parameter must
be set to M_DEFAULT.

The NbPixelsPtr parameter specifies the address of the variable in which
to write the number of pixels found along the theoretical line. You can set
this parameter to M_NULL if you don’t want this value to be evaluated.

266 MbufGetLine

The UserArrayPtr parameter specifies the address of the user array in
which to store the pixels from the image buffer. MbufGetLine() assumes
that the array is of the same data type as the source buffer. Ensure that the
user array is large enough to accommodate the data to be stored. To
determine the required size of the array, you can set this parameter to
M_NULL and pass a non-null address to NbPixelsPtr. In this case, nothing
is read from the image buffer.

See also MbufPutLine()

MbufGet1d 267

MbufGet1d

Synopsis Get data from a 1D area of a buffer and place it in a user-supplied array.

Format void MbufGet1d(SrcBufId, OffX, SizeX, UserArrayPtr)

Description This function copies data from a specified one-dimensional area of a MIL
source buffer to a user-supplied array.

Note, for multi-band buffers, this function linearly copies the data from the
one-dimensional region of each band (RRR...GGG...BBB...).

The SrcBufId parameter specifies the identifier of the source buffer.

The OffX parameter specifies the horizontal offset (in pixels) of the required
area, relative to the top-left pixel of the source buffer.

The SizeX parameter specifies the width of the required area of the source
buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data from the source buffer. Ensure that the user array
is large enough to accommodate the data to be copied from the source buffer.
MbufGet1d() assumes that the array is of the same data type as the source
buffer.

MIL_ID SrcBufId; Source buffer identifier
long OffX; X offset relative to source buffer origin
long SizeX; Width of source buffer area from which to get data
void *UserArrayPtr; Destination user array
See also MbufGet(), MbufGet2d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

268 MbufGet2d

MbufGet2d

Synopsis Get data from a 2d area of a buffer and place it in a user-supplied array.

Format void MbufGet2d(SrcBufId, OffX, OffY, SizeX, SizeY, UserArrayPtr)

Description This function copies data from a specified two-dimensional region of a MIL
source buffer to a user-supplied array.

Note, for multi-band buffers, this function linearly copies the data from the
specified two-dimensional region of each band (RRR...GGG...BBB...).

The SrcBufId parameter specifies the identifier of the source buffer.

The OffX parameter specifies the horizontal offset (in pixels) of the required
area, relative to the top-left pixel of the source buffer. The OffY parameter
specifies the vertical offset.

The SizeX and SizeY parameters specify the width and height of the
required area of the source buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data from the source buffer. Ensure that the user array

MIL_ID SrcBufId; Source buffer identifier
long OffX; X pixel offset relative to source buffer region
long OffY; Y pixel offset relative to source buffer region
long SizeX; Width of required data area
long SizeY; Height of required data area
void *UserArrayPtr; Source user array
is large enough to accommodate the data to be copied. MbufGet2d()
assumes that the array is of the same data type as the source buffer.

See also MbufGet(), MbufGet1d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MbufImport 269

MbufImport

Synopsis Import data from a file into a data buffer.

Format MIL_ID MbufImport(FileName, FileFormatBufId, Operation,
 SystemId, BufIdPtr)

Description This function imports data, of the specified format, from a file into a MIL
data buffer on the specified system. The buffer can be an existing data buffer,
or an automatically allocated buffer.

Note, you can also import data using MbufLoad() or MbufRestore();
however, these functions try to determine the format from the data rather
than allowing you to specify the data type.

If you are importing uncompressed data into a buffer with an M_COMPRESS
attribute, this function will automatically compress it, according to the
compression settings found in the buffer. If you are importing compressed
data into a buffer with an M_IMAGE attribute (but not an M_COMPRESS
attribute), this function will automatically decompress it. If necessary, the
data in the file will be transformed to fit into the buffer. If you are not sure
what type of compressed data the file contains, use M_DEFAULT as the file
format rather than M_JPEG_xx; the data will be read correctly.

char *FileName; Source file name
MIL_ID FileFormatBufId; File format specification identifier
long Operation; Import operation
MIL_ID SystemId; System identifier
MIL_ID *BufIdPtr; Buffer identifier (returned or given)
When a buffer is automatically allocated during a restore operation, it is
allocated with the same attributes as the original buffer, with the exception
of M_IMAGE buffers. In the case of an M_IMAGE type buffer, the
MbufImport() function tries to allocate an image buffer so that it can be
used for acquisition (M_GRAB), display (M_DISP) operations. If there is
insufficient appropriate memory to allocate such a buffer, it tries to allocate
one that can be used in all of the above operations except for acquisition
(M_GRAB). If it is still unsuccessful, it tries to remove the M_DISP attribute,
leaving the buffer with the M_IMAGE attribute only. If it still cannot allocate
the image buffer, it generates an error. If this happens, you can use
MbufImport() with M_LOAD to load the image into a previously allocated
buffer.

270 MbufImport

When importing a compressed file into an automatically allocated buffer,
the buffer will have an M_COMPRESS attribute.

When importing an image file that has been saved with an associated LUT
(color palette), the LUT is also imported and associated with the resulting
image buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

Similarly, when loading a monochrome image file that has been saved with
an associated LUT (color palette) into a single-band buffer, the LUT is also
imported and associated with the resulting image buffer.

❖ Note that the associated LUT will be automatically selected on the display
(MdispLut()) if the image buffer is selected on a display and the default
LUT has not been overidden by a former call to MdispLut().

When loading an image file that has been saved with an associated LUT
(color palette) into a 3-band 8-bit image buffer, the LUT is automatically
applied to the data to generate 3-band image data. In this case, a LUT buffer
is not created and, therefore, is not associated to the 3-band 8-bit buffer.

The FileName parameter specifies the name of the file from which to get
the data.

The FileFormatBufId parameter specifies the identifier of the information
buffer containing the file conversion format. Predefined file format
identifiers are available for the most commonly used file formats:

M_MIL Import data that is in MIL file
format.

M_TIFF Import data that is in TIFF file

format (only available for image
buffers). The TIFF 6.0 specification is
used.

M_BMP Import data that is in BMP file
format (only available for image
buffers). The standard Windows BMP
format is used.

M_RAW Import data that is in RAW file
format.

M_JPEG_LOSSLESS Import a JPEG-lossless image.
M_JPEG_LOSSY Import a JPEG-lossy image.

MbufImport 271

The Operation parameter specifies the import operation. This parameter
can be set to one of the following:

After restoring a buffer, we recommend that you check if the operation was
successful, by using MappGetError(), or by verifying that the returned
buffer identifier is not M_NULL.

Note, you cannot restore (M_RESTORE) a RAW data file (M_RAW) because
its dimensions are unknown.

M_JPEG_LOSSLESS_INTERLACED Import a JPEG-lossless image stored
in two separate fields. If the buffer is
3-band, the buffer will be stored in
RGB format. Only available for image
buffers.

M_JPEG_LOSSY_INTERLACED Import a JPEG-lossy image stored in
two separate fields. If the buffer is
3-band, the data will always be stored
in YUV16 packed format. Only
available for image buffers.

M_JPEG_LOSSY_RGB Import a 3-band JPEG-lossy image
that is in RGB format.

M_DEFAULT Automatically determine the file
format. If the file format is not
supported, its data will be treated in
RAW file format.

M_RESTORE Data from the specified file is imported into an
automatically allocated MIL data buffer.

M_LOAD Data from the specified file is imported into a
previously allocated MIL data buffer.
Using MbufDiskInquire(), you can inquire about the dimensions of a
buffer saved in a file (except for RAW files) without importing it.

The SystemId parameter specifies the system on which the MIL buffer will
be allocated. This parameter must be given a valid system identifier or it
can be set to M_DEFAULT_HOST. In the latter case, the default Host system
of the current MIL application is used. You can also specify M_DEFAULT, in
which case MIL selects the most appropriate system on which to allocate
the buffer (either the Host system or any currently allocated system).

Set SystemId to M_NULL if M_LOAD is specified as the operation.

272 MbufImport

The BufIdPtr parameter specifies the address of the variable that either
gives or receives a data buffer identifier, depending on the setting of the
Operation parameter. When Operation is set to M_RESTORE,
MbufImport() returns the buffer identifier and stores it at the specified
variable address. Since MbufImport() also returns the buffer identifier,
you can set this parameter to M_NULL. If allocation fails, M_NULL is written
as the identifier.

When a buffer identifier is given, the buffer must be large enough in depth
and dimensions to hold the data; if not, some data is clipped. For example,
if the data is deeper than the buffer, the most-significant bits of the data
are not written. If, however, the buffer is larger in depth or dimensions than
the data, excess areas are unaffected.

Note Under MIL-Lite, dedicated hardware is required to import compressed
images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier (for an M_RESTORE operation
only). If allocation fails, M_NULL is returned.

Status This function supports the baseline TIFF 6.0 format for grayscale and RGB
images.

See also MbufDiskInquire(), MbufExport(), MbufSave(), MbufLoad(),
MbufRestore(), MbufControl().

MbufImportSequence 273

MbufImportSequence

Synopsis Import a sequence of images from an *.avi file into separate image buffers.

Format void MbufImportSequence(FileName, FileFormatId, Operation,
SystemId, BufArrayPtr, StartImage,
NumberOfImages, ControlFlag)

Description This function imports a sequence of images from an *.avi file into separate
image buffers. MbufImportSequence() can automatically allocate the
necessary buffers or you can use previously allocated buffers. In the latter
case, the BufArrayPtr parameter should point to an array containing the
buffer identifiers. In the former case, MbufImportSequence() will write
the identifiers of the new buffers into the array pointed to by BufArrayPtr.

The FileName parameter specifies the name of the file.

The FileFormatId parameter specifies the format of the file. It can be set
to:

char *FileName; File name
MIL_ID FileFormatId; File format
long Operation; Operation mode
MIL_ID SystemId; Target system
MIL_ID *BufArrayPtr; Array of image buffer identifiers
long StartImage; Start image
long NumberOfImages; Number of image buffers
long ControlFlag; Control flag
The Operation parameter specifies whether to import the sequence into
automatically allocated buffers or previously allocated buffers. It can be set
to:

M_AVI_MJPG An AVI format containing compressed images.
M_AVI_DIB An AVI format containing non-compressed images.
M_AVI_MIL An AVI format containing images in their MIL

format.
M_DEFAULT MIL automatically determines the file format.

M_LOAD Import the sequence into previously allocated buffers.
M_RESTORE Import the sequence into automatically allocated buffers.

274 MbufImportSequence

The SystemId parameter specifies the system on which to allocate the
buffers for an M_RESTORE operation. This parameter must be set to a valid
system identifier, M_DEFAULT_HOST, or M_DEFAULT. To use the default
Host system of the current MIL application, specify M_DEFAULT_HOST. If
you specify M_DEFAULT, MIL will select the most appropriate system on
which to allocate the buffer (it can be the Host system or any already
allocated system).

For an M_LOAD operation, set the SystemId parameter to M_NULL.

The BufArrayPtr parameter specifies the address of the array containing
the buffer identifiers (for an M_LOAD operation) or the address of the array
in which to store the new buffer identifiers (for an M_RESTORE operation).

For an M_LOAD operation, the destination buffers should be large enough
to hold the imported images. If you are importing compressed images into
buffers with only an M_IMAGE specifier, the images will be automatically
decompressed. If you are importing decompressed images into buffers with
an M_IMAGE+M_COMPRESS specifier, the images will be automatically
compressed.

For an M_RESTORE operation, the destination buffers will be allocated with
an appropriate size and type to hold the images. For example, if you are
importing compressed images, the destination buffers will have an
M_IMAGE+M_COMPRESS specifier. If an M_RESTORE operation fails, zero
will be written for the buffer identifiers.

The StartImage parameter specifies the first image in the sequence to
import. Images start at 0.
The NumberOfImages parameter specifies the number of images, starting
at StartImage, to import. The array pointed to by BufArrayPtr should be
at least as big as this number. Note that you can inquire about the number
of images in an *.avi file using MbufDiskInquire().

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to one of the following:

ControlFlag Description
M_DEFAULT Open the AVI file, read the specified images,

and then close the file.
M_OPEN Open the AVI file for reading, and set the

pointer to the first image. BufArrayPtr,
NumberOfImages, and StartImage should
be set to M_NULL.

MbufImportSequence 275

Note Under MIL-Lite, dedicated hardware is required to import compressed
sequences. This is not a restriction under MIL.

See also MbufDiskInquire(), MbufExportSequence()

M_READ Read the specified images in the AVI file,
starting at the specified StartImage position.
To read the image at the current read position,
set StartImage to M_DEFAULT. After the read
operation, the file pointer is left at the position
of the next image, ready for the next M_READ
operation.

M_CLOSE Close the AVI file after reading, and (re)set the
pointer position to the first image.
BufArrayPtr, NumberOfImages, and
FrameRate should be set to M_NULL.

ControlFlag Description

276 MbufInquire

MbufInquire

Synopsis Inquire about a data buffer parameter setting.

Format long MbufInquire(BufId, InquireType, UserVarPtr)

Description This function inquires about a specified MIL buffer parameter setting. This
function is useful, for example, to check the size of a buffer restored from
disk.

The BufId parameter specifies the identifier of the source buffer.

The InquireType parameter specifies the buffer parameter setting about
which to inquire. This parameter can be set to one of the following values:

MIL_ID BufId; Source buffer identifier
long InquireType; Type of information about which to inquire
void *UserVarPtr; Storage location for requested information

InquireType Description
M_SIZE_X Width of the buffer.
M_SIZE_Y Height of the buffer.
M_SIZE_BAND Number of buffer color bands.
M_SIZE_BIT Depth per band, in bits.
M_SIZE_BYTE Size of the buffer, in bytes.
M_SIZE_BYTE_PER_PIXEL Depth per pixel, in bytes.
M_TYPE Buffer data type and depth (size in bits +

M_SIGNED, M_UNSIGNED, or M_FLOAT).

M_SIGN Buffer range (M_SIGNED or M_UNSIGNED).
M_ATTRIBUTE Buffer attribute.
M_OWNER_SYSTEM Identifier of the system on which the buffer has

been allocated.
M_OWNER_SYSTEM_TYPE Type of system on which the buffer was

allocated.
M_PITCH* The number of pixels between the beginnings

of any two adjacent lines of the buffer data.
M_PITCH_BYTE* The number of bytes between the beginnings of

any two adjacent lines of the buffer data.
*Note: when inquiring the pitch of an M_BGR24 + M_PACKED buffer, you should use
M_PITCH_BYTE instead of M_PITCH because the latter might not be able to take into
account internal padding.

MbufInquire 277

M_HOST_ADDRESS Host pointer to the buffer or M_NULL. If a
planar, 3-band buffer is being used, M_NULL
will be returned. However, the Host address
can be determined by allocating a child buffer
for the required band and then using
M_HOST_ADDRESS to determine its Host
address. If available, this pointer can be used
to directly access the data of a MIL buffer with
the Host CPU.

M_PHYSICAL_ADDRESS Physical address of the buffer
or M_NULL. Available only for a non-paged
buffer mapped to the Host. This type of buffer
is used only for access by bus masters other
than the Host CPU.

M_PARENT_ID Identifier of parent buffer. (returns same as
BufId if no parent buffer)

M_PARENT_OFFSET_X X offset relative to the parent buffer.
M_PARENT_OFFSET_Y Y offset relative to the parent buffer.
M_PARENT_OFFSET_BAND Band offset relative to the parent buffer.
M_ANCESTOR_ID MIL identifier of the ancestor buffer (returns

same as BufId if no ancestor buffer). An
ancestor buffer is a buffer from which other
buffers originated.
It must have been allocated with
MbufAlloc1d(), MbufAlloc2d(), or
MbufAllocColor() and does not have a parent
buffer.

M_ANCESTOR_OFFSET_X X offset relative to the ancestor buffer.

InquireType Description
M_ANCESTOR_OFFSET_Y Y offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_BAND Band offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_BIT Bit offset relative to the ancestor buffer.

278 MbufInquire

M_MODIFICATION_COUNT Returns the current value of the modification
counter of the image buffer. The modification
counter is intialized to a number that is unique
to the image buffer and is given its own unique
range. If the image buffer is freed, this number
will not be reassigned to a new image buffer.
This number is incremented by one each time
the image buffer is modified.
If the image buffer is accessed externally, for
example, when using MbufCreateColor() or
MbufCreate2d(), MbufControl() with
M_MODIFIED must be called to indicate that
the image buffer’s contents have been modified.
Calling this function will increment the
counter.
This feature is useful for optimization. For
example, you can avoid repeating certain
computations (for example, analysis
computations) if you know that the image
buffer has not been modified. In this case,
inquire the count before the first computation
in the sequence of computations, and then
inquire it again before repeating the same
sequence. If no modifications have been made
to the image buffer, you can avoid repeating the
sequence unnecessarily.

M_ASSOCIATED_LUT Identifier of the LUT buffer associated with the
image buffer. (returns M_DEFAULT if no LUT)

M_NATIVE_ID The native identifier (handle) of the buffer.
This identifier can be used when operating in

InquireType Description
the system native library.
M_WINDOW_DDRAW_SURFACE Pointer (LPDIRECTDRAWSURFACE) to the

DirectDraw surface associated with the MIL
buffer (if any) or M_NULL.

M_WINDOW_DIB_HEADER Pointer (LPBITMAPINFO) to the header of the
DIB associated with the MIL buffer (if any) or
M_NULL.

M_WINDOW_DC Windows display context handle (HDC)
(MbufControl()) or M_NULL.

MbufInquire 279

M_FORMAT This setting accesses information about the
buffer format. See MbufAlloc...() for all
possible return values. Note, it is also possible
to extract the internal format of the buffer by
adding the M_INTERNAL_FORMAT mask to the
resulting M_FORMAT value.

For M_IMAGE+M_COMPRESS image buffers
(see MbufAlloc...() for possible values):
M_COMPRESSION_TYPE Type of compression. See MbufAlloc...() for

possible values.
M_SIZE_BYTE Size of compressed buffer in bytes. The buffer

size will be zero if the buffer has not been
initialized with data.

M_RESTART_INTERVAL Number of lines between restart markers (for
lossless compressions) or number of 8x8 blocks
of data between restart markers (for lossy
compressions).

M_HUFFMAN_DC Identifier of the array buffer containing the DC
Huffman table which is associated with the
image buffer. For YUV buffers, only the
identifier of the array buffer associated with
the luminance band (Y) is returned.

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSY or M_JPEG_LOSSY_INTERLACED:
M_HUFFMAN_AC Identifier of the array buffer containing the AC

Huffman table which is associated with the
image buffer. For YUV buffers, only the
identifier of the array buffer associated with

InquireType Description
the luminance band (Y) is returned.
M_HUFFMAN_AC_LUMINANCE Identifier of the array buffer containing the AC

Huffman table which is associated with the Y
band of a YUV image buffer. If the image buffer
is not YUV, M_ERROR is returned.

M_HUFFMAN_AC_CHROMINANCE Identifier of the array buffer containing the AC
Huffman table which is associated with the U
and V bands of a YUV image buffer. If the
image buffer is not YUV, M_ERROR is returned.

M_HUFFMAN_DC_LUMINANCE Identifier of the array buffer containing the DC
Huffman table which is associated with the Y
band of a YUV image buffer. If the image buffer
is not YUV, M_ERROR is returned.

280 MbufInquire

M_HUFFMAN_DC_CHROMINANCE Identifier of the array buffer containing the DC
Huffman table which is associated with the U
and V bands of a YUV image buffer. If the
image buffer is not YUV, M_ERROR is returned.

M_Q_FACTOR Quantization factor. For YUV buffers, only the
quantization factor associated with the
luminance band (Y) is returned.

M_Q_FACTOR_LUMINANCE Quantization factor for the Y band of a YUV
image buffer. If the image buffer is not YUV,
M_ERROR is returned.

M_Q_FACTOR_CHROMINANCE Quantization factor for the U and V bands of a
YUV image buffer. If the image buffer is not
YUV, M_ERROR is returned.

M_QUANTIZATION Identifier of the array buffer containing the
quantization table which is associated with the
image buffer. For YUV buffers, only the
identifier of the array buffer associated with
the luminance band (Y) is returned.

M_QUANTIZATION_LUMINANCE Identifier of the array buffer containing the
quantization table which is associated with the
Y band of a YUV image buffer. If the image
buffer is not YUV, M_ERROR is returned.

M_QUANTIZATION_CHROMINANCE Identifier of the array buffer containing the
quantization table which is associated with the
U and V bands of a YUV image buffer. If the
image buffer is not YUV, M_ERROR is returned.

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSLESS or M_JPEG_LOSSLESS_INTERLACED:

InquireType Description
To extract the internal format of the buffer, use the M_INTERNAL_FORMAT
mask to isolate it from the other flags. For example:

M_PREDICTOR Type of predictor.

$WHHGT(QTOCV�/DWH+PSWKTG
$WH+F��/A(14/#6�����
KH�

$WHHGT(QTOCV�/A+06'40#.A(14/#6���/A$)4���
]
���
_

MbufInquire 281

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. The variable must be of type
long, except when the InquireType is set to one of the following:

■ M_PARENT_ID

■ M_OWNER_SYSTEM

■ M_ANCESTOR_ID

■ M_HUFFMAN...

■ M_QUANTIZATION...

In which case, the UserVarPtr parameter requires a pointer to a MIL_ID.

Since the MbufInquire() function also returns the requested information,
you can set this parameter to M_NULL.

Return value The returned value is the value that represents the setting of the requested
MIL buffer attribute, cast as long.

282 MbufLoad

MbufLoad

Synopsis Load data from a file into a data buffer.

Format void MbufLoad(FileName, BufId)

Description This function loads data from a file into a previously allocated data buffer.
The function detects the file format from the data.

Note, you can perform the same operation as MbufLoad() using
MbufImport(), which uses the specified file format to open the file instead
of trying to determine the format from the data.

The FileName parameter specifies the name of file from which to load the
data buffer.

The BufId parameter specifies the identifier of the destination buffer. This
buffer must be big enough in depth and dimensions to hold the data; if not,
some data is clipped. For example, if the data is deeper than the buffer, the
most-significant bits of the data are truncated when loaded into the buffer.
If the buffer depth is greater than that of the data, the data is zero or
sign-extended (depending on the data type) when loaded into the buffer. If
the buffer is larger in size than the data, exceeding areas of the buffer are
unaffected.

When loading an image file that was saved with an associated LUT (color
palette), the LUT is also loaded and associated with the destination image

char *FileName; Source file name
MIL_ID BufId; Destination buffer identifier
buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

Note Under MIL-Lite, dedicated hardware is required to load compressed images.
This is not a restriction under MIL.

See also MbufImport(), MbufExport(), MbufSave(), MbufRestore(), MbufInquire(),
MbufControl()

MbufPut 283

MbufPut

Synopsis Put data from a user-supplied array into a data buffer.

Format void MbufPut(DestBufId, UserArrayPtr)

Description This function copies data from a user-supplied array to a specified MIL
destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the destination buffer. MbufPut() assumes
that the array is of the same data type and depth as the destination buffer’s
bands.

Note, for multi-band buffers, MbufPut() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr). See
MbufPutColor() for more details.

Example mconvol.c

See also MbufPut1d(), MbufPut2d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier
void *UserArrayPtr; Source user array

284 MbufPutColor

MbufPutColor

Synopsis Put data from a user-supplied array into one or all bands of a data buffer.

Format void MbufPutColor(DestBufId, DataFormat, Band, UserArrayPtr)

Description This function copies data from a user-supplied array to one or all bands of
a specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.
The internal data format of the destination buffer need not match the
specified data format of the user-supplied array; an internal conversion will
be performed if necessary. Note, however, if the formats do match the
operation will be much faster.

The DataFormat parameter specifies the data format of the user-supplied
array; this information is required to properly copy the data. Note that Dx
and Dy denote the destination width and height, respectively. This
parameter must be set to one of the following values:

MIL_ID DestBufId; Destination buffer identifier
long DataFormat; Data format of source user array
long Band; Color band in destination buffer
void *UserArrayPtr; Source user array

DataFormat Description
M_SINGLE_BAND Copy to a single color band. The user array must

be of the same type as the destination buffer and
have a size of Dx x Dy.
M_BGR24+M_PACKED Copy to three bands in an interleaved manner
(BGRBGR). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 3 bytes (Dx x Dy x 3char).

M_BGR32+M_PACKED Copy to three bands in an interleaved manner
(BGRXBGRX). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 4 bytes (Dx x Dy x long).

M_RGB15+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:5:5). The destination buffer must be a
single-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

MbufPutColor 285

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band in which to copy.
This parameter can be set to any index from 0 to (number of bands of the
destination buffer - 1) or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough

M_RGB16+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:6:5). The destination buffer must be a
single-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same type as the destination buffer and have a
size of Dx x Dy x number of color band of the
destination buffer. This format is to be used when
copying to all color bands of the destination buffer.

M_RED Copy to the red color band.
M_GREEN Copy to the green color band.
M_BLUE Copy to the blue color band.
M_ALL_BAND Copy to all color bands.

DataFormat Description
entries in the user array to fill the color band of the destination buffer.

See also MbufPut(), MbufPut1d(), MbufPut2d(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

286 MbufPutColor2d

MbufPutColor2d

Synopsis Put data from a user-supplied array into a region of one or all bands of a
data buffer.

Format void MbufPutColor2d(DestBufId, DataFormat, Band, OffX, OffY,
 SizeX, SizeY, UserArrayPtr)

Description This function copies data from a user-supplied array to a specified region in
one or all bands of a specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.
The internal data format of the destination buffer need not match the
specified data format of the user-supplied array; an internal conversion will
be performed if necessary. Note, however, if the formats do match the
operation will be much faster.

The DataFormat parameter specifies the data format of the user-supplied
array; this information is required to properly copy the data. Note that Dx

MIL_ID DestBufId; Destination buffer identifier
long DataFormat; Data format of source user array
long Band; Color band in destination buffer
long OffX; X pixel offset relative to the parent buffer
long OffY; Y pixel offset relative to the parent buffer
long SizeX; Destination buffer region width
long SizeY; Destination buffer region height
void *UserArrayPtr; Source user array
and Dy denote the destination width and height, respectively. This
parameter must be set to one of the following values:

DataFormat Description
M_SINGLE_BAND Copy to a single color band. The user array must

be of the same type as the destination buffer and
have a size of Dx x Dy.

M_BGR24+M_PACKED Copy to three bands in an interleaved manner
(BGRBGR). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 3 bytes (Dx x Dy x 3char).

MbufPutColor2d 287

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band in which to copy.
This parameter can be set to any index from 0 to (number of bands of the
destination buffer - 1), or to one of the following values:

M_BGR32+M_PACKED Copy to three bands in an interleaved manner
(BGRXBGRX). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 4 bytes (Dx x Dy x long).

M_RGB15+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:5:5). The destination buffer must be a
single-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_RGB16+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:6:5). The destination buffer must be a
single-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same type as the destination buffer and have a
size of Dx x Dy x number of color band of the
destination buffer. This format is to be used when
copying to all color bands (M_ALL_BAND) of the
destination buffer.

M_RED Copy to the red color band.

DataFormat Description
If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the destination buffer region in which to put the data, relative to
the destination buffer’s top-left pixel.

The SizeX and SizeY parameters specify the width and height of the
destination buffer region in which to put the data.

M_GREEN Copy to the green color band.
M_BLUE Copy to the blue color band.
M_ALL_BAND Copy to all color bands.

288 MbufPutColor2d

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified region of the destination buffer.

See also MbufPut(), MbufPut1d(), MbufPut2d(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor(), MbufGetColor2d()

MbufPutLine 289

MbufPutLine

Synopsis Write a specified series of pixels along a specified theoretical line.

Format void MbufPutLine(ImageBufId, StartX, StartY, EndX, EndY,
 Mode, NbPixelsPtr, UserArrayPtr)

Description This function reads a series of pixels from a user-defined array and writes
them to the specified image, along the theoretical line defined by specified
coordinates. The Bresenham algorithm is used to determine the theoretical
line.

The ImageBufId parameter specifies the identifier of the destination
image buffer. This must be a single-band (monochrome) buffer.

The StartX and StartY parameters specify the horizontal and vertical pixel
offsets of the starting position of the line, relative to the top-left pixel of the
source buffer.

The EndX and EndY parameters specify the horizontal and vertical pixel

MIL_ID ImageBufId; Image buffer identifier
long StartX; X start position on the line
long StartY; Y start position on the line
long EndX; X end position on the line
long EndY; Y end position on the line
long Mode; Operation mode
long *NbPixelsPtr Number of pixels
void *UserArrayPtr; Source user array
offsets of the finishing position on the line, relative to the top-left pixel of
the source buffer.

The Mode parameter specifies the operation mode. This parameter must
be set to M_DEFAULT.

The NbPixelsPtr parameter specifies the address of the variable in which
to write the number of pixels found along the theoretical line. You can set
this parameter to M_NULL if you don’t want this value to be evaluated.

290 MbufPutLine

The UserArrayPtr parameter specifies the address of the user array
containing the pixels to insert in the image buffer. MbufPutLine() assumes
that the array is of the same data type as the destination buffer. Ensure
that the user array contains all the pixels to be inserted. To determine the
number of pixel values required, you can set this parameter to M_NULL and
pass a non-null address to NbPixelsPtr. In this case, nothing is written to
the image buffer.

See also MbufGetLine()

MbufPut1d 291

MbufPut1d

Synopsis Put data from a user-supplied array into a 1D area of a buffer.

Format void MbufPut1d(DestBufId, OffX, SizeX, UserArrayPtr)

Description This function copies data from a user-supplied array to a one-dimensional
area of the specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The OffX parameter specifies the horizontal offset of the destination buffer
area in which to put data, relative to the destination buffer’s top-left pixel.

The SizeX parameter specifies the width of the destination buffer area in
which to copy the data (starting from the specified offset OffX).

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified destination buffer area.
MbufPut1d() assumes that the array is of the same data type as the
destination buffer.

Note, for multi-band buffers, MbufPut1d() behaves like

MIL_ID DestBufId; Destination buffer identifier
long OffX; X pixel offset relative to destination buffer origin
long SizeX; Width of destination buffer area in which to put

data
void *UserArrayPtr; Source user array
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr), but
puts the data in the specified one-dimensional region. Refer to
MbufPutColor() for more details.

See also MbufPut(), MbufPut2d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

292 MbufPut2d

MbufPut2d

Synopsis Put data from a user-supplied array into a 2d area of a buffer.

Format void MbufPut2d(DestBufId, OffX, OffY, SizeX, SizeY, UserArrayPtr)

Description This function copies data from a user-supplied array to a two-dimensional
area of the specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the destination buffer area in which to put the data, relative to
the destination buffer’s top-left pixel.

The SizeX and SizeY parameters specify the width and height of the
destination buffer area in which to copy the data (starting from the specified
offsets OffX and OffY).

The UserArrayPtr parameter specifies the address of the user array from

MIL_ID DestBufId; Destination buffer identifier
long OffX; X pixel offset relative to destination buffer origin
long OffY; Y pixel offset relative to the destination buffer

origin
long SizeX; Width of destination buffer area in which to put

data
long SizeY; Height of destination buffer area in which to put

data
void *UserArrayPtr; Source user array
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified destination buffer area.
MbufPut2d() assumes that the array is of the same data type as the
destination buffer.

Note, for multi-band buffers, MbufPut2d() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr), but
puts the data in the specified two-dimensional region. Refer to
MbufPutColor() for more details.

See also MbufPut(), MbufPut1d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MbufRestore 293

MbufRestore

Synopsis Restore data from a file into an automatically allocated data buffer.

Format MIL_ID MbufRestore(FileName, SystemId, BufIdPtr)

Description This function restores the data from the specified file and loads it into an
automatically allocated buffer. It tries to detect the file format from the data.
If the file is in a M_MIL file format, the buffer is allocated with the same
attributes as the original buffer, with the exception of M_IMAGE buffers.

In the case of an M_IMAGE type buffer, the MbufRestore() function tries
to allocate the buffer so that it can be used for acquisition (M_GRAB), display
(M_DISP) operations. If there is insufficient appropriate memory to allocate
such a buffer, this function tries to allocate one that can be used in all of the
above operations except for acquisition (M_GRAB). If it is still unsuccessful,
it tries to remove the M_DISP attribute, leaving the buffer with the
M_IMAGE attribute only. If it still cannot allocate the image buffer, it
generates an error. If this happens, you can use MbufLoad() to load the
image in a previously allocated buffer.

When restoring an image file that was saved with an associated LUT (color
palette), the LUT is also restored and associated with the restored image
buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

char *FileName; Source file name
MIL_ID SystemId; System identifier
MIL_ID *BufIdPtr; Storage location for MIL buffer identifier
After restoring a buffer, we recommend that you check that the operation
was successful by using MappGetError() or by checking that the buffer
identifier returned is not M_NULL.

Note, you can perform the same operation as MbufRestore() by using
MbufImport(), which uses the specified file format to restore the data
instead of trying to determine the format from the data.

The FileName parameter specifies the name of the file from which to
restore the data buffer.

The SystemId parameter specifies the system on which the MIL buffer will
be allocated. This parameter must be given a valid system identifier or can
be set to M_DEFAULT_HOST. In the latter case, the default Host system of

294 MbufRestore

the current MIL application is used. You can also specify M_DEFAULT, in
which case MIL selects the most appropriate system on which to allocate
the buffer (either the Host system or any currently allocated system).

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufRestore() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to restore compressed
images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufLoad(), MbufSave(), MbufExport(), MbufImport(), MbufInquire(),
MbufControl()

MbufSave 295

MbufSave

Synopsis Save a data buffer in a file, using the MIL output file format.

Format void MbufSave(FileName, BufId)

Description This function saves a previously allocated data buffer in a file, using the
MIL output file format (a regular TIFF file format with extra information
included in the comment field). The buffer attributes and data type are also
saved in the file.

When saving an image buffer (M_IMAGE) that has an associated LUT buffer
(color palette), the content of the LUT is also saved with the image.

Note, you can perform the same operation as MbufSave() by using
MbufExport() with its FileFormatBufId parameter set to M_MIL.

The FileName parameter specifies the name of the file in which to save the
data buffer. If this file already exists, it will be overwritten.

The BufId parameter specifies the identifier of the data buffer to save.

Note This function is optimized for packed binary buffers.

See also MbufLoad(), MbufRestore(), MbufExport(), MbufImport(), MbufControl()

char *FileName; Destination file name
MIL_ID BufId; Source buffer

296 MdigAlloc

MdigAlloc

Synopsis Allocate a digitizer.

Format MIL_ID MdigAlloc(SystemId, DigNum, DataFormat, InitFlag,
 DigIdPtr)

Description This function allocates a digitizer on the specified system so that it can be
used by subsequent MIL digitizer functions.

A digitizer on the target system must be allocated in order to acquire data
from an input device.

Upon execution of this command, MIL ensures that the digitizer is present
before allocating it and generates an error if it is not.

The default input channel is determined by the selected input device data
format (generally, M_CH0). Some digitizers have multiple input channels.
You can switch to another channel by using MdigChannel().

When you have completely finished using a digitizer, you should free it,
using MdigFree().

The SystemId parameter specifies the identifier of the system on which the

MIL_ID SystemId; System identifier
long DigNum; Digitizer number
char *DataFormat; Data format name or file name
long InitFlag; Initialization flag
MIL_ID *DigIdPtr; Storage location for digitizer identifier
digitizer will be allocated. This parameter must be given a valid system
identifier.

The DigNum parameter specifies the number (or rank) of the digitizer that
is required. This parameter can be set to one of the following:

The DataFormat parameter specifies the name of the data format or the
name of the file in which the data format of the input device can be found.
Depending on the target system, different data formats can be supported.

M_DEFAULT Default digitizer (the same as M_DEV0).
M_DEV0 The first digitizer on the specified system.
... The nth digitizer on the specified system.
M_DEV15 The sixteenth digitizer on the specified system.

MdigAlloc 297

See the appendix in this manual that applies to your specific board, the
read.me file of the MIL drivers, or the user guide of your specific board for
the valid values. This parameter can also be set to M_CAMERA_SETUP,
which indicates to MIL to use the camera format specified in the milsetup.h
file.

The InitFlag parameter specifies the type of initialization you want to
perform on the digitizer. This parameter should be set to M_DEFAULT.

The DigIdPtr parameter specifies the address of the variable in which the
digitizer identifier is to be written. Since the MdigAlloc() function also
returns the digitizer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the digitizer identifier. If allocation fails, M_NULL is
returned.

See also MdigFree(), MappAllocDefault()

298 MdigChannel

MdigChannel

Synopsis Select the active input channel of a digitizer.

Format void MdigChannel(DigId, Channel)

Description This function selects the active input channel (if any) for the specified
digitizer. If the digitizer does not have the specified channel, an error is
generated and the last selected channel remains effective. The default
channel is the one specified in the data format selected upon digitizer
allocation, using MdigAlloc().

The DigId parameter specifies the identifier of the digitizer.

The Channel parameter specifies the channel on which the digitizer is to
input data (signal and sync). This parameter can be set to one of the
following values, depending on the number of channels available for the
specified digitizer’s data format.

MIL_ID DigId; Digitizer identifier
long Channel; Input channel

M_DEFAULT Corresponds to the default channel for the specified
digitizer data format or M_CH0.

M_CH0 Channel 0
M_CH1 Channel 1
M_CH2 Channel 2
M_CH3 Channel 3
M_RGB RGB input source (if present). The RGB signal is on
If your digitizer has only one channel that supports the selected data format,
Channel can only be set to M_DEFAULT.

To select a sync channel only, add M_SYNC to the required channel (M_CH...)
parameter (for example, M_CH0+M_SYNC).

To select a signal channel only, add M_SIGNAL to the required channel
(M_CH...) parameter (for example, M_CH0+M_SIGNAL).

See also MdigAlloc()

channels 0, 1, and 2. The sync is on channel 3. This
selection can be used only for RGB input.

MdigControl 299

MdigControl

Synopsis Control the specified digitizer feature.

Format void MdigControl(DigId, ControlType, ControlValue)

Description This function allows you to control various digitizer settings.

The DigId parameter specifies the identifier of the digitizer.

The ControlType and ControlValue parameters specify, respectively, the
digitizer feature to control and the value to assign to the digitizer feature.

MIL_ID DigId; Digitizer identifier
long ControlType; Control Type
double ControlValue; Control value

ControlType Description & ControlValue
M_GRAB_SCALE Control the vertical and horizontal scaling factor when

grabbing data with MdigGrab() or
MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).
For example, if
ControlValue is set to 0.5,
the source image height and
width are reduced by a
factor of two.

M_FILL_DESTINATION The scaling factor is
calculated to fill the
destination buffer, if the

hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab is scaled to fit the size
of the display, if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

300 MdigControl

M_GRAB_SCALE_X Control the horizontal scaling factor when grabbing data
with MdigGrab() or MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).

M_FILL_DESTINATION The scaling factor is
calculated to fill the width
of the destination buffer, if
the hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab width is scaled to fit
the size of the display, if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

M_GRAB_SCALE_Y Control the vertical scaling factor when grabbing data with
MdigGrab() or MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).

M_FILL_DESTINATION The scaling factor is
calculated to fill the height
of the destination buffer, if
the hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the

ControlType Description & ControlValue
grab height is scaled to fit
the size of the displayif the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

M_GRAB_WINDOW_RANGE Limit the range of pixel values between 10 and 245:
M_ENABLE or M_DISABLE.

M_SOURCE_OFFSET_X Set the X offset of the input signal capture window.
M_SOURCE_OFFSET_Y Set the Y offset of the input signal capture window.
M_SOURCE_SIZE_X Set the width of the input signal capture window.
M_SOURCE_SIZE_Y Set the height of the input signal capture window.

MdigControl 301

M_GRAB_MODE Control the synchronization when grabbing data with
MdigGrab().
M_SYNCHRONOUS
(default)

Synchronize your
application with the end of
a grab operation (that is,
wait until a grab has
finished before returning
from the grab command).

M_ASYNCHRONOUS Do not synchronize your
application with the end of
a grab operation, but return
immediately after initiating
the start of a grab. This
allows other operations to
be performed while waiting
for MdigGrab() to be
executed. However, only one
MdigGrab() command can
be queued; a call to another
MdigGrab() before the
current grab has finished
will cause your application
to wait until the current
grab has finished.
Note, in this mode, you can
use MdigGrabWait() to
force your application to
wait until a grab that is in
progress has finished.

M_ASYNCHRONOUS_QUEUED Do not synchronize your
application with the end of
a grab operation, but return
immediately after initiating

ControlType Description & ControlValue
the start of the grab. Queue
the grab on-board if another
grab is issued before the
first one has finished. This
allows other operations to
be performed while waiting
for the next MdigGrab() to
be executed, but in this case
more than one MdigGrab()
command can be queued.
See MIL/MIL-Lite Board
Specific Notes for
exceptions.

302 MdigControl

M_GRAB_FIELD_NUM Control the number of fields to grab when grabbing data
with MdigGrab().

M_GRAB_FRAME_NUM Control the number of frames to grab when grabbing data
with MdigGrab().

M_GRAB_START_MODE Set the grab start mode to odd, even or any field:
M_FIELD_START_ODD, M_FIELD_START_EVEN
(M_DEFAULT), or M_FIELD_START.

M_GRAB_HALT_ON_NEXT_FIELD Stop grabbing at the end of the current field, rather than at
the end of the frame. M_ENABLE, M_DISABLE or
M_DEFAULT (same as M_DISABLE).

M_GRAB_TRIGGER_SOURCE Set the source of the grab trigger.
M_NULL The trigger is inactive.
M_DEFAULT Same as DCF file (if any) or

M_NULL.
M_SOFTWARE Use software trigger.
M_HARDWARE_PORT0 Use hardware trigger

connected to port 0 (the
most common connection
for analog). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT1 Use hardware trigger
connected to port 1 (the
most common connection
for digital). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT_CAMERA Use hardware trigger
connected to the same port
as the selected camera
(MIL-determined). See the

ControlType Description & ControlValue
MIL/MIL-Lite Board
Specific Notes manual.

M_HSYNC Trigger on each Hsync
signal.

M_VSYNC Trigger on each Vsync
signal.

M_TIMER1 Trigger on timer 1 signal.
M_TIMER2 Trigger on timer 2 signal.

MdigControl 303

M_GRAB_TRIGGER_MODE Set the hardware trigger activation mode.
M_EDGE_RISING Low to high signal variation

(valid with exposure).
M_EDGE_FALLING High to low signal variation

(valid with exposure).
M_LEVEL_LOW Minimum signal level (not

valid with exposure).
M_LEVEL_HIGH Maximum signal level (not

valid with exposure).
M_DEFAULT The trigger mode in the

DCF file or, if none,
M_EDGE_RISING.

M_GRAB_TRIGGER Set the grab trigger detection state.
M_ENABLE Enable trigger detection.
M_DISABLE Disable trigger detection.
M_DEFAULT The trigger state from the

DCF file or, if none,
M_DISABLE.

M_ACTIVATE Start the grab immediately
(for software trigger). An
asynchronous or continuous
grab must be in progress.

M_GRAB_EXPOSURE_BYPASS
(If the board supports exposures; See
Matrox Board Specific Notes)

Activate the manual or automatic exposure model (see
Grabbing with triggers in the Matrox Imaging Library User
Guide):
M_ENABLE Manual exposure model.
M_DISABLE Automatic exposure model.
M_DEFAULT Same as M_DISABLE.

For the following M_GRAB_EXPOSURE... control types, you can add M_TIMER1 or M_TIMER2 in manual
exposure mode, to control the different on-board exposure timers. When omitted, Timer1 is assumed.

ControlType Description & ControlValue
M_GRAB_EXPOSURE
(If the board supports exposures; See
Matrox Board Specific Notes)

When using a software trigger source, use this control type
to activate the specified grab exposure timer. When using a
non-software trigger source, enable or disable the specified
grab exposure timer. Note, the M_GRAB_EXPOSURE control
type has no effect when grabbing using the automatic
exposure model.
M_ACTIVATE Activate a software trigger

for the specified exposure
timer.

M_ENABLE Enable exposure timer.
M_DISABLE Disable exposure timer.
M_DEFAULT same as .dcf (non-software

trigger source).

304 MdigControl

M_GRAB_EXPOSURE_TIME
(If the board supports exposures; See
Matrox Board Specific Notes)

Set the time (in nsec) for the active portion of the exposure
signal (that is, the exposure time). M_DEFAULT has the
same effect as the setting in the digitizer’s DCF.
When using the automatic exposure model, if a single timer
cannot generate the required exposure time, MIL
automatically sets up connections with the second timer to
generate the requested exposure time length. If
ControlValue is set to 0, exposure is disabled and the grab
is performed immediately.
Note, an error is returned if the specified exposure time
cannot be generated.

M_GRAB_EXPOSURE_MODE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Set the exposure signal’s polarity:
M_LEVEL_HIGH

M_LEVEL_LOW

M_DEFAULT Same as DCF.
M_GRAB_EXPOSURE_TIME_DELAY
(If the board supports exposures; See
MIL/MIL-Lite Specific Notes)

Set the delay (in nsec) between the trigger and the start of
exposure. If M_DEFAULT, same value as DCF.
Note, an error is returned if the specified delay cannot be
generated.

M_GRAB_EXPOSURE_TRIGGER_MODE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Set the trigger activation mode for specified timer.

M_DEFAULT Same as the .dcf file.
M_EDGE_RISING Low-to-high signal

variation.
M_EDGE_FALLING High-to-low signal

variation.
M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Select the trigger source for the specified exposure timer if
the hardware supports it.
The M_GRAB_EXPOSURE_SOURCE control type has no effect
when grabbing using the automatic exposure model.

ControlType Description & ControlValue
M_DEFAULT Same as the .dcf file.
M_NULL Disable specified exposure

timer. This has no effect
when grabbing using
automatic exposure model.

M_SOFTWARE Use software trigger. The
exposure signal is
generated when
MdigControl() with
M_GRAB_EXPOSURE +
M_TIMERn and
M_ACTIVATE is called.

MdigControl 305

Note If using a software trigger, setting M_GRAB_TRIGGER to M_ACTIVATE starts

M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See
Matrox Board Specific Notes)
(cont.)

M_HARDWARE_PORT0 Connect hardware trigger
to port 0. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT1 Connect hardware trigger
to port 1. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT2 Connect hardware trigger
to port 2. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_VSYNC Use vertical sync signal.
M_HSYNC Use horizontal sync signal.
M_TIMER1 Use exposure signal

generated by Timer1. Use
only if setting trigger source
for Timer2.

M_TIMER2 Use exposure signal
generated by Timer2. Use
only if setting trigger source
for Timer1.

M_CONTINUOUS No actual trigger. Run
selected exposure timer in
periodic mode.
Automatically reset timer
after each exposure signal
is output. Exposure signal
loops between delay and
active mode.

ControlType Description & ControlValue
a grab immediately; if using a hardware trigger, setting M_GRAB_TRIGGER
to M_DISABLE temporarily stops a continuous grab.

See also MdigGrab(), MdigGrabContinuous(), MdigGrabWait()

306 MdigFree

MdigFree

Synopsis Free a digitizer.

Format void MdigFree(DigId)

Description This function deallocates a digitizer previously allocated with MdigAlloc().

The DigId parameter specifies the identifier of the digitizer.

See also MdigAlloc().

MIL_ID DigId; Digitizer identifier

MdigGrab 307

MdigGrab

Synopsis Grab data from an input device into a buffer.

Format void MdigGrab(DigId, DestImageBufId)

Description This function uses the specified digitizer to acquire data from an input
device (generally a camera) and stores this data in the destination image
buffer.

When grabbing in color, all bands will be filled simultaneously. Note, the
destination image buffer must have the same number of color bands (in
general three) as the digitizer.

When acquiring data from a line-scan type of input device, each line of the
destination image buffer is filled from top to bottom or a single line is
grabbed, depending on the data format specification passed to MdigAlloc().
The operation will only end when the entire buffer has been filled.

When acquiring data from an interlaced camera, both the odd and even
fields are grabbed.

You can use MdigGrabContinuous() to grab multiple frames of data.

The DigId parameter specifies the identifier of the digitizer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

MIL_ID DigId; Digitizer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
See also MdigGrabContinuous(), MdigControl()

308 MdigGrabContinuous

MdigGrabContinuous

Synopsis Grab data continuously from an input device.

Format void MdigGrabContinuous(DigId, DestImageBufId)

Description This function uses the specified digitizer to continuously acquire frames of
data from the specified input device (generally a camera) and stores this
data in the destination image buffer, until MdigHalt() is called.

When acquiring data from a line-scan type of input device, each line of the
destination image buffer is filled from top to bottom or a single line is
grabbed, depending on the data format specification passed to MdigAlloc().
The operation will only end when the entire buffer has been filled.

When grabbing in color, the destination image buffer must have the same
number of color bands (in general three) as the digitizer; all bands will be
filled simultaneously.

The DigId parameter specifies the identifier of the digitizer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

Status Hardware limitations:

On certain platforms, the next MIL command called after
MdigGrabContinuous() must be MdigHalt(); otherwise, errors can

MIL_ID DigId; Digitizer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
occur.

Examples mdispovr.c,mwindisp.c, mfocus.c, mdbproc.c, mgrabhk.c, mgrabseq.c,
msubtrac.c, msurvey.c

See also MdigHalt(), MdigGrab(), MdigControl()

MdigGrabWait 309

MdigGrabWait

Synopsis Wait for the end of the grab in progress.

Format void MdigGrabWait(DigId, Flag)

Description This function allows you to temporarily override a grab mode of
M_ASYNCHRONOUS on the specified digitizer (see MdigControl()). Using
this function allows your application to wait for the grab in progress to end,
before continuing.

The DigId parameter specifies the identifier of the digitizer.

The Flag parameter specifies the digitizer flag to set. This parameter must
be set to one of the following:

The M_GRAB_END flag should not be used when grabbing data with
MdigGrabContinuous().

Some of these flags are not supported on all platforms.

See also MdigControl(), MdigGrab()

MIL_ID DigId; Digitizer identifier
long Flag; Digitizer flag

M_GRAB_END Wait for the end of the current grab.
M_GRAB_NEXT_FRAME Wait for the end of the current frame grab.
M_GRAB_NEXT_FIELD Wait for the end of the current field grab.

310 MdigHalt

MdigHalt

Synopsis Halt a continuous grab from an input device.

Format void MdigHalt(DigId)

Description This function stops the specified digitizer from grabbing data. It should be
used when performing a continuous grab with MdigGrabContinuous().

This function will wait for the end of the current frame before returning, to
ensure the last frame is always valid. To override this, use MdigControl()
with M_GRAB_HALT_ON_NEXT_FIELD set to M_ENABLE.

The DigId parameter specifies the identifier of the digitizer.

Examples mdispovr.c,mwindisp.c

See also MdigGrabContinuous(), MdigControl()

MIL_ID DigId; Digitizer identifier

MdigHookFunction 311

MdigHookFunction

Synopsis Hook a function to a digitizer event.

Format void MdigHookFunction(DigId, HookType,
 HookHandlerPtr, UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified digitizer event. Once a hook-handler function is defined and
hooked to an event, it is automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MdigHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.This function is not supported on all
systems. See MIL/MIL-Lite Board-Specific Notes to verify if this function
is supported on your board.

The DigId parameter specifies the identifier of the digitizer.

MIL_ID DigId; Digitizer identifier
long HookType; Type of event to hook
MDIGHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void *UserDataPtr User data pointer
The HookType parameter specifies the event type. This parameter can be
set to one of the values in the following tables. Note, these defines can be
combined with M_UNHOOK to unhook the function.

Hook Type Description
M_GRAB_START Hook to the start of each grab.
M_GRAB_END Hook to the end of each grab.
M_GRAB_FRAME_START Hook to the start of grabbed frames.
M_GRAB_FRAME_END Hook to the end of grabbed frames.
M_GRAB_FIELD_END Hook to the end of grabbed fields.
M_GRAB_FIELD_END_ODD Hook to the end of grabbed odd fields.
M_GRAB_FIELD_END_EVEN Hook to the end of grabbed even fields.

312 MdigHookFunction

When a camera is connected, but not grabbing, the parameter can be set to
one of the following:

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MDIGHOOKFCTPTR and MPTYPE are reserved MIL
predefined types for function and data pointers.

The UserDataPtr parameter specifies the address of the user data that

M_FRAME_START Hook to the start of the incoming signal’s
frames.

M_FIELD_START Hook to the start of the incoming signal’s
fields.

M_FIELD_START_ODD Hook to the start of the incoming signal’s
odd fields.

M_FIELD_START_EVEN Hook to the start of the incoming signal’s
even fields.

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Event identifier (currently set to null)

void MPTYPE *UserDataPtr; User data pointer
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype of this function has been kept for backwards
compatibility. However, because of the current chaining method, the
function always returns null.

Examples mgrabhk.c

See also MdigControl()

MdigInquire 313

MdigInquire

Synopsis Inquire about a digitizer parameter setting.

Format long MdigInquire(DigId, InquireType, UserVarPtr)

Description This function inquires about the specified digitizer parameter setting.

The DigId parameter specifies the identifier of the digitizer.

The InquireType parameter specifies the digitizer parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID DigId; Digitizer identifier
long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_OWNER_SYSTEM The MIL identifier (MIL_ID)

of the system on which the digitizer has
been allocated (MdigAlloc()).

M_NATIVE_ID The native identifier of the digitizer (if
any).

M_NUMBER Digitizer rank in the system
(MdigAlloc()).

M_FORMAT Digitizer data format (MdigAlloc()).
M_FORMAT_SIZE Number of characters in the digitizer data

format string.
M_INIT_FLAG Digitizer initialization flag

(MdigAlloc()).
M_CHANNEL Current channel of the digitizer
(MdigChannel()).
M_CHANNEL+M_SYNC Current synchronization channel of the

digitizer (MdigChannel()).
M_CHANNEL+M_SIGNAL Current signal channel of the digitizer

(MdigChannel()).
M_CHANNEL_NUM Number of available channels of the

device (MdigChannel()).
M_LUT_ID MIL identifier (MIL_ID) of the LUT

associated with the digitizer (MdigLut()).
M_BLACK_REF Digitizer black reference level

(MdigReference()).
M_WHITE_REF Digitizer white reference level

(MdigReference()).

314 MdigInquire

M_HUE_REF Digitizer hue reference level
(MdigReference()).

M_SATURATION_REF Digitizer saturation reference level
(MdigReference()).

M_BRIGHTNESS_REF Digitizer brightness reference level
(MdigReference()).

M_COLOR_MODE
See the Matrox Board Specific Notes to determine
which mode applies to your particular board.

Monochrome or color input:
M_MONOCHROME
M_RGB,
M_MONO8_VIA_RGB
M_COMPOSITE,
M_EXTERNAL_CHROMINANCE

M_CONTRAST_REF Digitizer contrast reference level
(MdigReference()).

M_GRAB_SCALE_X Digitizer horizontal and vertical scaling
factor (MdigControl()).

M_GRAB_SCALE_X Digitizer horizontal scaling factor
(MdigControl()).

M_GRAB_SCALE_Y Digitizer vertical scaling factor
(MdigControl()).

M_GRAB_MODE Grab synchronization
(M_SYNCHRONOUS, M_ASYNCHRONOUS,
or M_ASYNCHRONOUS_QUEUED.)
(MdigControl()).

M_GRAB_FRAME_NUM Number of frames grabbed when
MdigGrab() is called (MdigControl()).

M_GRAB_FIELD_NUM Number of fields grabbed when
MdigGrab() is called. (MdigControl()).

M_GRAB_START_MODE Type of field on which to grab.
M_GRAB_HALT_ON_NEXT_FIELD Whether to stop grabbing as soon as

InquireType Description
possible, whether the last frame is valid
or not (MdigControl()).

M_GRAB_TRIGGER_SOURCE Grab trigger source (MdigControl()).
M_GRAB_TRIGGER_MODE Hardware trigger activation mode

(MdigControl()).
M_GRAB_TRIGGER Grab trigger state (M_ENABLE,

M_DISABLE, M_START_GRAB or
M_DEFAULT (same as .dcf, if any, or
M_DISABLE) (MdigControl()).

M_GRAB_WINDOW_RANGE State of limiting the range of the grabbed
pixel values: M_ENABLE or M_DISABLE.

M_SIZE_X Digitizer input width.
M_SIZE_Y Digitizer input height.
M_SIZE_BAND Number of input color bands of the

digitizer.

MdigInquire 315

M_SIZE_BAND_LUT Number of input color bands of the input
LUT (if any) associated with the digitizer.

M_SIZE_BIT Number of bits of the digitizer.
M_SIGN Digitizer data range (M_SIGNED or

M_UNSIGNED).
M_TYPE Digitizer data type (number of bits +

M_SIGNED or M_UNSIGNED).
M_SOURCE_SIZE_X Width of the input-signal capture window.
M_SOURCE_SIZE_Y Height of the input-signal capture

window.
M_SOURCE_OFFSET_X X offset of the input-signal capture

window.
M_SOURCE_OFFSET_Y Y offset of the input signal capture

window.
M_SCAN_MODE Scan mode (M_INTERLACE,

M_PROGRESSIVE, or M_LINESCAN).
M_INPUT_MODE Analog or digital input (M_ANALOG or

M_DIGITAL).
M_GRAB_EXPOSURE_BYPASS
(If the board supports exposures; See Matrox Board
Specific Notes)

The exposure model that is activated
(manual or automatic).

For the following M_GRAB_EXPOSURE... inquire types, you can add M_TIMER1 or M_TIMER2 in
manual exposure mode, to control the different on-board exposure timers. When omitted, Timer1 is
assumed.

M_GRAB_EXPOSURE
(If the board supports exposures; See Matrox Board
Specific Notes)

Exposure timer state for non-software
trigger source:
M_ENABLE or M_DISABLE.

M_GRAB_EXPOSURE_MODE
(If the board supports exposures; See Matrox Board
Specific Notes)

Exposure signal’s polarity:
M_LEVEL_HIGH or M_LEVEL_LOW.

M_GRAB_EXPOSURE_SOURCE The trigger source for the specified

InquireType Description
(If the board supports exposures; See Matrox Board
Specific Notes)

exposure timer if the hardware supports
it.

M_GRAB_EXPOSURE_TIME
(If the board supports exposures; See Matrox Board
Specific Notes)

Time (in nsec) for the active portion of the
exposure signal (that is, the exposure
time). M_DEFAULT has the same effect as
the setting in the digitizer’s DCF.

M_GRAB_EXPOSURE_TIME_DELAY
(If the board supports exposures; See Matrox Board
Specific Notes)

The delay (in nsec) between the trigger
and the start of exposure.

M_GRAB_EXPOSURE_TRIGGER_MODE
(If the board supports exposures; See Matrox Board
Specific Notes)

Trigger activation mode for specified
timer: M_EDGE_RISING or
M_EDGE_FALLING.

316 MdigInquire

You can inquire about the reference level on a specific input channel by
adding one of the following predefined values to M_BLACK_REF and
M_WHITE_REF.

For example M_BLACK_REF+M_CH1_REF.

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MdigInquire()
function also returns the requested information, you can set this parameter
to M_NULL.

The UserVarPtr parameter should be a pointer to a long, except when
InquireType is set to one of the following:

■ M_OWNER_SYSTEM and M_LUT_ID, in which case it should be a pointer
to a MIL_ID.

■ M_FORMAT, in which case it should be a pointer to a character array.

■ M_GRAB_SCALE_X and M_GRAB_SCALE_Y, in which case it should be a
pointer to a double.

Return value Except for the M_FORMAT inquire type, the returned value is the setting of
the requested digitizer attribute, cast to long. For the M_FORMAT inquire
type, the returned value is M_NULL.

See also MdigAlloc(), MdigChannel(), MdigControl(), MdigReference()

M_CH0_REF Inquire about reference level on channel 0 (default).
M_CH1_REF Inquire about reference level on channel 1.
M_CH2_REF Inquire about reference level on channel 2.
M_CH3_REF Inquire about reference level on channel 3.

MdigLut 317

MdigLut

Synopsis Copy a LUT buffer to a digitizer LUT.

Format void MdigLut(DigId, LutBufId)

Description This function copies a LUT buffer to the specified digitizer LUT. MIL uses
the data format of the digitizer to determine whether a LUT is supported.
If it is not, an error is generated.

The DigId parameter specifies the identifier of the digitizer.

The LutBufId parameter specifies the identifier of a previously allocated
LUT buffer (with an M_LUT attribute). The LUT buffer pixel depth and
number of entries must match those of the digitizer, and the LUT buffer
must either have a single color band or match the number of color bands of
the digitizer. If the LUT buffer has a single color band, its data is loaded
into the LUTs of each of the digitizer’s color bands. You can set this
parameter to M_DEFAULT to associate the default pass-through LUT (or
transparent LUT) with the digitizer.

See also MdigAlloc(), MbufAlloc1d()

MIL_ID DigId; Digitizer identifier
MIL_ID LutBufId; LUT buffer identifier

318 MdigReference

MdigReference

Synopsis Select digitization reference level.

Format void MdigReference(DigId, ReferenceType, ReferenceLevel)

Description This function sets (if available) the reference levels used to digitize the
analog signal received from an input device (generally a camera). This
function is specific to analog input devices. Depending on the type of
digitizer and input signal, some reference types are not applicable.

The DigId parameter specifies the identifier of the digitizer on which to set
the reference level. An error is generated if the specified digitizer does not
support the type of programmable digitization reference levels specified.

The ReferenceType parameter specifies the reference level type to adjust
for the specified digitizer. This parameter can be set to one of the following:

MIL_ID DigId; Digitizer identifier
long ReferenceType; Reference type
long ReferenceLevel; Reference level

M_BLACK_REF Set the input signal’s digitization black
reference level (0).

M_WHITE_REF Set the input signal’s digitization white
reference level (eg: 0xff for 8-bit digitization).

M_BRIGHTNESS_REF Set the brightness level for composite input
signals.

M_CONTRAST_REF Set the contrast level for composite input

signals.

M_HUE_REF Set the hue level for composite input signals.
M_SATURATION_REF Set the saturation level for composite input

signals.

MdigReference 319

On many digitizers, when using RGB input and setting ReferenceType to
M_BLACK_REF or M_WHITE_REF, you can control the reference level of a
specific input channel by combining it with one of the following:

The ReferenceLevel parameter specifies the level of reference. This
parameter can be set to a value between M_MIN_LEVEL and M_MAX_LEVEL,
inclusive. The value may be expressed as an integer within this range, or
as M_MIN_LEVEL + n or M_MAX_LEVEL - n. If you set this parameter to
M_DEFAULT, the reference levels are set to the default levels for the specified
digitizer data format.

To calculate the value to pass to MdigReference(), use the following equation
with the appropriate voltages specified in the MIL Board-specific notes for
your particular board.The smallest voltage increment supported by your

board can differ such that consecutive reference-level settings might
produce the same result.

Note, some digitizers might take a few milliseconds before the reference

M_CH0_REF Set the reference level on input channel 0.
M_CH1_REF Set the reference level on input channel 1.
M_CH2_REF Set the reference level on input channel 2.
M_CH3_REF Set the reference level on input channel 3.
M_ALL_REF Set the reference level on all input channels.

 (This is the default setting).

Voltage needed - minimum voltage

maximum voltage - minimum voltage

M_MAX_LEVEL - M_MIN_LEVEL

=
Value to pass to
MdigReference()
level stabilizes.

See also MdigAlloc()

320 MdispAlloc

MdispAlloc

Synopsis Allocate a display.

Format MIL_ID MdispAlloc(SystemId, DispNum, DispFormat, InitFlag,
 DisplayIdPtr)

Description This function allocates a display on the specified system so that it can be
used by subsequent MIL display functions.

A display on the target system must be allocated in order to display an image
buffer.

When you have completely finished using a display, you should free it, using
MdispFree().

The SystemId parameter specifies the system on which the display is
allocated. This parameter must be given a valid system identifier.

The DispNum parameter specifies the number (or rank) of the display that
is required. This parameter can be set to one of the following:

MIL_ID SystemId; System identifier
long DispNum; Display number
char *DispFormat; Display format name or file name
long InitFlag; Initialization flag
MIL_ID *DisplayIdPtr; Storage location for the display identifier

M_DEFAULT Any available display.
M_DEV0 The first display on the specified system.
The DispFormat parameter specifies the name of the display format or the
name of the file in which the display format is to be found. Under Windows
in single-screen mode, DispFormat must be set to M_DEFAULT, which
when displaying from an imaging system with an on-board display, sets the
display resolution of the main (underlay) frame buffer to that of the overlay
(VGA) frame buffer. Under Windows in dual-screen mode, DispFormat can
be set to a string that specifies the required display resolution; see the
MIL/MIL-Lite Board-Specific Notes manual for the formats supported by

...,
M_DEV15 The sixteenth display on the specified system.

MdispAlloc 321

your board. Under Windows in dual-screen mode, DispFormat can also be
set to M_DEFAULT, which indicates that MIL should use the format specified
in the milsetup.h file.

The InitFlag parameter specifies the display mode of your system.
Depending on your system’s display configuration, InitFlag will have a
different default. This parameter can be set to one of the following:

M_WINDOWED The display has a window associated
with it. The image buffer selected for
display purposes is presented (on-screen)
in its own window. The display window is
tracked and updated with the image
buffer selected for display; that is, if the
window moves or is occluded, the
window is updated with the image buffer
accordingly. For each system that has
been allocated, you can allocate and
select up to a maximum of 64 windowed
displays.
This mode is the default allocation mode
in a single-screen configuration
(M_DEFAULT). If your board has a
display section and you are using it in a
dual-screen configuration, you can still
choose not to use it, and display an
image, even a live grabbed image, in
windowed mode. In this case, the display
is on your Windows desktop.

M_NON_WINDOWED The display has no window associated
with it. You are responsible for moving
and tracking this type of display, if

required. This is the default for
dual-screen mode. In single-screen mode,
only 1 non-windowed display can be
allocated in the underlay. In dual-screen
mode, 2 non-windowed displays can be
allocated; one can be allocated in the
underlay and one can be allocated in the
overlay.
Note that this mode is only available on
frame grabbers that have an on-board
VGA adapter.

322 MdispAlloc

MIL automatically selects the most appropriate display architecture, but
you can force a particular display architecture by adding one of the following
initialization flags to M_WINDOWED. See the MIL User Guide for a
detailed description of these architectures.

In windowed mode, when using a 256-color Windows display resolution, you
can control the Windows display function that MIL uses for display by
adding one of the following to InitFlag. To independently control the display
of 8-bit and 3-band 8-bit images, add both an M_DISPLAY_8... and
M_DISPLAY_24... display initialization to InitFlag.

M_OVR Force the display architecture to an
overlay/regular display. An
overlay/regular display architecture is
particularly useful, because, in general,
you can associate a LUT with this type of
display (Refer to MdispLut() for more
details). When in dual-screen mode, your
buffer must be allocated with an
M_IMAGE+M_OVR+... attribute before it
can be selected to an M_OVR display.

M_UND Force the display architecture to a
dedicated underlay display.

M_DDRAW_UND Force the display architecture to a
DirectDraw underlay-surface display.

Display initialization Description
M_DISPLAY_ENHANCED
M_DISPLAY_8_ENHANCED
M_DISPLAY_24_ENHANCED (default)

When using an enhanced
initialization, the MIL display calls
the Microsoft Video for Windows
DrawDIBDraw() function to

display image buffers. This
function’s use of dithering
particularly improves the display
of 3-band 8-bit images under a
256-color display resolution.
Note, with enhanced
initializations, the actual display
color values are selected, on a
best-match basis, from the logical
palette’s available display colors.
Therefore, effects such as those of
an inverse LUT are not possible.
This is the default display
initialization for an 8-bit 3-band
image buffer.

MdispAlloc 323

M_DISPLAY_BASIC
M_DISPLAY_8_ BASIC (default)
M_DISPLAY_24_BASIC

When using a basic with
optimization initialization, the
MIL display calls the Windows API
StretchDIBits(), StretchBlt(), or
DirectDrawBlt() function to
display image buffers. When 8-bit
images are displayed, the pixel
values are used, as much as
possible, to index the physical
LUTs. When 3-band 8-bit images
are displayed in a 256-color display
resolution, the display uses an
algorithm optimized for speed.
This algorithm converts 24 bits to
8 bits by taking the
most-significant bits of each
component: 3 bits each are taken
from the red and green
components, and 2 bits from the
blue. This produces an 8-bit DIB
with 3:3:2 RGB values for display;
it is these values that are used to
address the physical LUTs. This is
the best possible combination
when you are not aware of the color
content of the image buffer.

M_DISPLAY_WINDOWS
M_DISPLAY_24_WINDOWS

When using a basic without
optimization initialization, the
MIL display calls the Windows API
StretchDIBits(), StretchBlt() or
DirectDrawBlt() function to

Display initialization Description
display image buffers; however no
optimization for speed is done
when displaying a 3-band 8-bit
image in a 256-color display
resolution. This can result in slow
performance.
This display initialization is a
combination of
M_DISPLAY_8_BASIC and
M_DISPLAY_24_WINDOWS.

324 MdispAlloc

You can add one of these values to the InitFlag to control the Windows
zoom type that MIL uses for the display:

The DisplayIdPtr parameter specifies the address of the variable in which
to write the display identifier. Since the MdispAlloc() function also returns
the display identifier, you can set this parameter to M_NULL. If allocation
fails, M_NULL is written as the identifier.

Return value The returned value is the display identifier. If allocation fails, M_NULL is
returned.

See also MdispControl(), MdispFree(), MappAllocDefault()

Zoom initialization Description
M_ZOOM_ENHANCED When using an enhanced initialization,

the DrawDIBDraw() function is called
to perform a zoom. Although zooming
might be a little slower than using the
basic initialization option, it does not
alter the dithering quality, providing a
better quality zoom. This option is the
default and is only available when
M_DISPLAY_XXX_ENHANCED is used.
When adding a zoom initialization type, the
default is M_ZOOM_ENHANCED. If you
select only M_DISPLAY_ENHANCED,
M_ZOOM_ENHANCED is assumed.

M_ZOOM_BASIC When using a basic initialization,
Windows (Windows API functions) is
called to perform a zoom. Note, if
M_DISPLAY_XXX_ENHANCED is used,
this zoom might alter the quality of the
DrawDIBDraw() dithering.

MdispControl 325

MdispControl

Synopsis Control the MIL display.

Format void MdispControl(DisplayId, ControlType, ControlValue)

Description This function allows you to control the specified MIL display; it does this by
setting the state of the display’s individual features.

The DisplayId parameter specifies the identifier of the target display.

The ControlType and ControlValue parameters specify the display
feature to modify and the new value to assign to the feature, respectively.
The control types for M_WINDOWED displays can control the default MIL
or user-specified window of a display (MdispSelect() or
MdispSelectWindow()).

The corresponding combinations for the ControlType and ControlValue
parameters are:

MIL_ID DisplayId; Display identifier
long ControlType; Window feature to change
long ControlValue; Value of the window feature

ControlType Description and ControlValue
The following controls are only available with M_WINDOWED displays.
M_DESKTOP_CHANGE Allow the update of the Windows desktop:

M_ENABLE or M_DISABLE.
Note: M_DISABLE (stop desktop update) should be used
carefully and for only short periods of time or undesirable
results can occur.
M_DESKTOP_LOCK_TIMEOUT Control the Windows desktop lock timeout. When
debugging an application using DIRECTDRAW, the
desktop locks when a breakpoint is found in the code. A
timeout value for the lock can be specified as follows: any
value in milliseconds, M_DEFAULT (a generally acceptable
value), or M_INFINITE (no timeout value is assigned).
The default ControlValue is M_INFINITE.

M_THREAD_PRIORITY Thread priority.

Range: Priority class:

1 - 6 Idle.

7 - 10 Normal.

11 - 15 High.

16 - 31 Real-time.

326 MdispControl

M_VIEW_BIT_SHIFT The number of bits by which to shift when M_VIEW_MODE
is set to M_BIT_SHIFT. Should be set to the number of
significant bits in the buffer minus 8. For example, if a
16-bit buffer contains data grabbed from a 10-bit digitizer,
a shift of 2 should be used.

M_VIEW_MODE Controls how a buffer gets remapped to the display;
especially useful when displaying a non 8-bit buffer.
M_BIT_SHIFT Bit-shift the pixel values of the buffer

by the specified number of bits upon
updating the display. Specify the
number of bits with
M_VIEW_BIT_SHIFT.

M_MULTI_BYTES Display each byte of the buffer in
separate display pixels. In other
words, each pixel of a 16-bit buffer
will occupy two consecutive display
pixels. Each pixel of a 32-bit buffer
will occupy four consecutive display
pixels. This mode is primarily useful
when grabbing from a multi-tap
camera.

M_DEFAULT MIL automatically selects the
appropriate mode, depending on the
buffer depth:
1-bit M_BIT_SHIFT (0 shift)
8-bit M_BIT_SHIFT (0 shift)
16-bit M_BIT_SHIFT (8-bit shift)
32-bit M_BIT_SHIFT (24-bit shift)
32-bit float M_BIT_SHIFT (0 shift)

M_WINDOW_BUF_WRITE Allow direct access (destructive annotation) to the copy of
the buffer stored in the frame buffer, after an
MdispSelect() operation: M_ENABLE or M_DISABLE
(default).

ControlType Description and ControlValue
If enabled, the MIL identifier of this buffer can be
inquired, using MdispInquire().
If disabled, the buffer is invalid.
Note, this control is only supported on systems with an
on-board display section (and are using it for display), and
on systems using a Matrox VGA board.

M_WINDOW_COLOR Force a window update to fill with a constant background
color rather than with the selected buffer: M_ENABLE or
M_DISABLE.

M_WINDOW_COLOR_CHANGE Set a background color, in Windows’ COLORREF format.
It is used when M_WINDOW_COLOR is enabled.

M_WINDOW_INITIAL_POSITION_X Set the window client area’s initial leftmost X coordinate.
M_WINDOW_INITIAL_POSITION_Y Set the window client area’s initial topmost Y coordinate.

MdispControl 327

M_WINDOW_KEYBOARD_USE Activate the keys associated with the display window:
M_ENABLE (default) or M_DISABLE.
The default key usage is:
+ Increase the x and y zoom factors.
- Decrease the x and y zoom factors.
Pg-up Scroll the buffer up to the previous

display section.
Pg-dn Scroll the buffer down to the next

display section.
Up arrow Scroll the buffer up to the previous

line.
Dn arrow Scroll the buffer down to the next

line.
Left arrow Pan the buffer left by one pixel.
Right arrow Pan the buffer right by one pixel.
Ctrl Up arrow Scroll the buffer up to the previous

display section.
M_WINDOW_MAXBUTTON Make the window’s maximize button visible: M_ENABLE or

M_DISABLE.
M_WINDOW_MENU_BAR Make the window’s menu bar visible:

M_ENABLE or M_DISABLE.
M_WINDOW_MENU_BAR_CHANGE Allow toggling the menu bar presence:

M_ENABLE or M_DISABLE.
M_WINDOW_MINBUTTON Make the window’s minimize button visible: M_ENABLE or

M_DISABLE.
M_WINDOW_MOVE Allow window movement: M_ENABLE or M_DISABLE

M_WINDOW_OVERLAP Allow window to be overlapped by another:
M_ENABLE or M_DISABLE (keep window on top).

M_WINDOW_OVR_DESTRUCTIVE The overlay shown on top of the buffer is allowed to

ControlType Description and ControlValue
overwrite the buffer’s content (to increase display speed or
save memory): M_ENABLE or M_DISABLE (default).

M_WINDOW_OVR_FLICKER The overlay shown on top of the buffer is allowed some
flicker (to increase display speed or save memory):
M_ENABLE or M_DISABLE (default).

M_WINDOW_PAINT Force the window’s update and paint the whole region:
M_DEFAULT or M_NULL.

328 MdispControl

M_WINDOW_PALETTE_NOCOLLAPSE M_ENABLE The Windows palette manager
attempts the best color usage of the
logical palette when realizing the
output LUTs. It tries to map colors
from the logical palette into the
currently-realized output LUTs to
reduce the number of requested new
entries.

M_DISABLE
(default)

The Windows palette manager loads
each component of the logical palette
directly “as is” in the ocrresponding
output LUT. This can result in a color
occurring more than once in the
output LUTs.

M_WINDOW_RANGE Inform the display that the displayed buffer values will be
restricted to between 10 and 245. This allows the
optimization of display update. M_ENABLE or M_DISABLE
(default).

M_WINDOW_RESIZE Allow window resizing:M_ENABLE (or M_NORMAL_SIZE),
M_DISABLE, or M_FULL_SIZE (to force a full-size display)

M_WINDOW_SCROLLBAR Make the window's scroll bars visible:
M_ENABLE or M_DISABLE.

M_WINDOW_SNAP_X Restrict the leftmost X coordinate of window client area to
a given multiple of the screen's absolute coordinate.
Permissible values are positive or negative integers.
Positive snap values adjust the X coordinate to the closest
right pixel; negative ones adjust it to the closest left pixel.

M_WINDOW_SNAP_Y Restrict the topmost Y coordinate of the window client area
to a given multiple of the screen's absolute coordinate.
Permissible values are positive or negative integers.
Positive snap values adjust the Y coordinate to the closest
upper pixel; negative ones adjust it to the closest lower
pixel.

ControlType Description and ControlValue
M_WINDOW_SYSBUTTON Make the window's system button visible:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_BAR Make the window's title bar visible:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_BAR_CHANGE Allow toggling the title bar presence:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_NAME Set the display window title to a specified string (the string
must be casted to long).

M_WINDOW_UPDATE Allow updating of the window display: M_ENABLE or
M_DISABLE.

MdispControl 329

M_WINDOW_UPDATE_ON_PAINT M_ENABLE Update the display on reception of a
WM_PAINT message in Windows.

M_DISABLE Update the display on reception of a
WM_ERASEBKGND message in
Windows.

 M_DEFAULT Allow MILto decide which message to
receive before updating the display.

M_WINDOW_ZOOM Allow window zooming: M_ENABLE or M_DISABLE

The following controls are only available with windowed displays, and non-windowed displays on
a Matrox imaging board with a display section:
M_WINDOW_OVR_LUT Associate a LUT with the overlay buffer. Set

ControlValue to the LUT buffer’s identifier.
M_WINDOW_OVR_SHOW Show the overlay buffer: M_ENABLE (default) or

M_DISABLE.
M_WINDOW_OVR_WRITE Allow annotating the displayed image non-destructively,

using MIL’s overlay-display mechanism. When enabled in
windowed mode, the display is associated with a
temporary overlay buffer whenever a buffer is selected on
the display. When enabled in non-windowed mode, the
display is immediately associated with a temporary
overlay buffer. This overlay buffer will annotate the
underlying image with an effect called keying, which
makes portions of the overlay show through.
In windowed mode, the overlay buffer has the same
number of bands and is the same size as the selected image
buffer. A new temporary overlay buffer is created when a
new buffer is selected on the display.
In non-windowed mode, the overlay buffer is the same size
as the display. The overlay buffer is not modified whenever
a new buffer is selected on the display, and is freed when
deselecting the image buffer from the display.

ControlType Description and ControlValue
The MIL identifier of this buffer can be inquired, using
MdispInquire().
If your board does not have two frame buffer surfaces, a
simulated version of the overlay effect is produced through
software
M_ENABLE Enable MIL’s overlay-display

mechanism.
M_DISABLE
(default)

Disable MIL’s overlay-display
mechanism.

330 MdispControl

Example mdispovr.c

See also MdispInquire()

The following controls are only available with an M_WINDOWED display on a Matrox MGA
display card or a Matrox imaging board with a display section.
M_HARDWARE_PAN Use your system’s hardware pan options (M_ENABLE) or

the software pan options of the display’s window
(M_DISABLE). The default is M_DISABLE.

M_HARDWARE_ZOOM Use your system’s hardware zoom options (M_ENABLE) or
the software zoom options of the display’s window
(M_DISABLE). The default is M_DISABLE.

ControlType Description and ControlValue

MdispDeselect 331

MdispDeselect

Synopsis Stop displaying an image buffer.

Format void MdispDeselect(DisplayId, ImageBufId)

Description This function stops displaying the specified image buffer on the specified
display. In windowed mode, the display is closed. In non-windowed mode,
the display is blanked.

Note, when displaying a parent buffer, you cannot remove one of its child
buffers from the display.

Note, you do not have to use MdispDeselect() before selecting another buffer
for display; just use MdispSelect().

The DisplayId parameter specifies the identifier of the display from which
to remove the image buffer.

The ImageBufId parameter specifies the identifier of the buffer to remove
from the display. This buffer must be an image buffer, with an M_DISP
attribute, that is currently displayed.

See also MdispSelect()

MIL_ID DisplayId; Display identifier
MIL_ID ImageBufId; Image buffer identifier

332 MdispFree

MdispFree

Synopsis Free a display.

Format void MdispFree(DisplayId)

Description This function deallocates a display previously allocated with MdispAlloc().

The DisplayId parameter specifies the identifier of the display.

See also MdispAlloc(), MappFreeDefault()

MIL_ID DisplayId; Display identifier

MdispHookFunction 333

MdispHookFunction

Synopsis Hook a function to a display event.

Format MDISPHOOKFCTPTR (MdispHookFunction(DisplayId, HookType,
 HookHandlerPtr, UserDataPtr))

Description This function allows you to attach or detach a user-defined function to a
specified display event. Once a hook-handler function is defined and hooked
to an event, it is automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MdispHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.The DisplayId parameter specifies the
identifier of the target display for the hook.

The HookType parameter specifies the display event type. This parameter
can be set to the following:

MIL_ID DisplayId Display identifier
long HookType; Type of event to hook
MDISPHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void MPTYPE *UserDataPtr; User data pointer
The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

M_FRAME_START Call the hook-handler function each time a new frame
is displayed.

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Reserved for future use

void MPTYPE *UserDataPtr; Pointer that was passed by MdispHookFunction()

334 MdispHookFunction

Upon successful completion, the hook-handler function should return
M_NULL. Note, MDISPHOOKFCTPTR, MFTYPE and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype structure of this function has been kept for
backwards compatibility. However, because of the current chaining method,
the function always returns null.

See also MdispControl(), MdispInquire()

MdispInquire 335

MdispInquire

Synopsis Inquire about a display parameter setting.

Format long MdispInquire(DisplayId, InquireType, UserVarPtr)

Description This function inquires about a specified display parameter setting.

The DisplayId parameter specifies the identifier of the display.

The InquireType parameter specifies the display parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID DisplayId; Display identifier
long InquireType; Display parameter to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_DISPLAY_MODE Display mode. M_WINDOWED if the display

object is bounded by a movable frame or
M_NON_WINDOWED.

M_FORMAT Display data format (MdispAlloc()).
M_FORMAT_SIZE Number of characters in the data format

string (MdispAlloc()).
M_FRAME_START_HANDLER_PTR Handler pointer hooked using

MdispHookFunction() to the start of a
displayed frame (MdispSelect()).

M_FRAME_START_HANDLER_USER_PTR User pointer hooked using
MdispHookFunction() to the start of a
displayed frame (MdispSelect()).
M_INIT_FLAG Display initialization flag (MdispAlloc()).
M_KEY_COLOR Keying color (MdispOverlayKey()).
M_KEY_CONDITION Keying condition (MdispOverlayKey()).
M_KEY_MASK Keying mask (MdispOverlayKey()).
M_KEY_MODE State of keying mode

(MdispOverlayKey()).
M_KEY_SUPPORTED System support of true keying (M_YES or

M_NO).
M_LUT_ID The identifier of the LUT associated with

the display (MdispLut()).
M_LUT_SUPPORTED Whether a LUT is supported on the

specified display (MdispLut()).
M_NATIVE_ID The display’s native identifier, if any.

336 MdispInquire

M_NUMBER Display rank in the system
(MdispAlloc()).

M_OWNER_SYSTEM The identifier of the system on which the
display has been allocated (MdispAlloc()).

M_PAN_X Pan X pixel offset (MdispPan()).
M_PAN_Y Pan Y pixel offset (MdispPan()).
M_SELECTED The identifier of the image buffer currently

displayed. M_NULL is returned if no buffer
is currently being displayed.
(MdispSelect()).

M_SIGN Display data range (M_UNSIGNED).
M_SIZE_BAND The number of color bands the display is

capable of displaying. In windowed mode, 3
will be returned; in non-windowed mode, 1
or 3 will be returned.

M_SIZE_BAND_LUT Number of color bands of the output LUT
(if any) associated with the display.

M_SIZE_BIT Number of bits (depth) of the display.
M_SIZE_X Display width.
M_SIZE_Y Display height.
M_THREAD_PRIORITY Thread priority.
M_TYPE Display data type (number of bits +

M_UNSIGNED).
M_VGA_PIXEL_FORMAT Pixel format of the current VGA display

resolution. Allocating a display buffer with
the same format will ensure maximum
performance with regard to display
updates.

InquireType Description
M_ZOOM_X Zoom factor in X (MdispZoom()).
M_ZOOM_Y Zoom factor in Y (MdispZoom()).

The following inquire types are only available with M_WINDOWED displays:
M_VIEW_BIT_SHIFT The number of bits by which the buffer

data gets shifted when M_VIEW_MODE is
set to M_BIT_SHIFT.

M_VIEW_MODE How a buffer gets remapped to the display:
M_BIT_SHIFT or M_MULTI_BYTES.

M_WINDOW_BUF_ID Identifier of the copy of the buffer stored in
the frame buffer (display memory) or
M_NULL.

M_WINDOW_BUF_WRITE Whether direct access to the copy of the
buffer stored in the frame buffer is enabled
(M_ENABLE or M_DISABLE).

MdispInquire 337

M_WINDOW_CLIP_LIST Window clip list pointer (LPRGNDATA).
M_WINDOW_CLIP_LIST_SIZE Window clip list size to allocate.
M_WINDOW_COLOR Force a constant background color

(M_ENABLE or M_DISABLE).
M_WINDOW_COLOR_CHANGE Current constant color.
M_WINDOW_DDRAW_SURFACE Pointer to the DirectDraw primary surface

(LPDIRECTDRAWSURFACE) used by a
display window (if any) or M_NULL.

M_WINDOW_DIB_HEADER Pointer to the header (LPBITMAPINFO) of
the DIB buffer associated with the display
window (if any) or M_NULL.

M_WINDOW_HANDLE Windows handle (HWND) of the display
window.

M_WINDOW_MAXBUTTON Maximize button presence
(M_ENABLE or M_DISABLE).

M_WINDOW_MENU_BAR Menu bar presence (M_ENABLE or
M_DISABLE).

M_WINDOW_MENU_BAR_CHANGE State of menu bar changing (M_ENABLE or
M_DISABLE).

M_WINDOW_MINBUTTON Minimize button presence (M_ENABLE or
M_DISABLE).

M_WINDOW_MOVE State of display window moving
(M_ENABLE or M_DISABLE).

M_WINDOW_OFFSET_X Display window client area offset X,
relative to the top left of the screen.

M_WINDOW_OFFSET_Y Display window client area offset Y,
relative to the top left of the screen.

M_WINDOW_OVERLAP State of display window overlapping

InquireType Description
(M_ENABLE or M_DISABLE).
M_WINDOW_PALETTE_NOCOLLAPSE Whether the Windows palette is forced to

be non-collapsed:
M_ENABLE or M_DISABLE.

M_WINDOW_PAN_X Display window horizontal scroll bar
position.

M_WINDOW_PAN_Y Display window vertical scroll bar position.
M_WINDOW_RANGE Inform the display that the displayed

buffer values will be restricted to between
10 and 245. This allows the optimization of
display update. M_ENABLE or M_DISABLE
(default).

M_WINDOW_RESIZE State of display window resizing
(M_ENABLE, M_DISABLE, M_FULL_SIZE or
M_NORMAL_SIZE).

338 MdispInquire

M_WINDOW_SCROLLBAR Scroll bar presence (M_ENABLE or
M_DISABLE).

M_WINDOW_SIZE_X Display window client area width.
M_WINDOW_SIZE_Y Display window client area height.
M_WINDOW_SYSBUTTON System button presence (M_ENABLE or

M_DISABLE).
M_WINDOW_TITLE_BAR Title bar presence (M_ENABLE or

M_DISABLE).
M_WINDOW_TITLE_BAR_CHANGE State of title bar changing

(M_ENABLE or M_DISABLE)
M_WINDOW_TITLE_NAME Window title string pointer.
M_WINDOW_TITLE_NAME_SIZE Number of characters in the window’s title

string.
M_WINDOW_UPDATE State of window update (M_ENABLE or

M_DISABLE).
M_WINDOW_ZOOM State of display window zooming

(M_ENABLE or M_DISABLE).
M_WINDOW_ZOOM_X Window zoom X factor (controlled by zoom

buttons).
M_WINDOW_ZOOM_Y Window zoom Y factor (controlled by zoom

buttons).

The following inquire types are only available with windowed displays, and
non-windowed displays on a Matrox imaging board with a display section:
M_WINDOW_OVR_BUF_ID Identifier of the overlay buffer associated

with the display or M_NULL.
M_WINDOW_OVR_DISP_ID Identifier of the overlay display associated

with the underlay display or M_NULL.
M_WINDOW_OVR_LUT LUT associated with the overlay buffer of

InquireType Description
the display.
M_WINDOW_OVR_SHOW Visible state of the overlay (M_ENABLE or

M_DISABLE).
M_WINDOW_OVR_WRITE Whether or not the overlay-display

mechanism has been enabled.
(M_ENABLE or M_DISABLE).

The following inquire types are only available with an M_WINDOWED display on a
Matrox MGA display card or a Matrox imaging board with a display section.
M_HARDWARE_PAN Whether your system’s hardware pan

options are enabled or disabled.
M_HARDWARE_ZOOM Whether your system’s hardware zoom

options are enabled or disabled.

MdispInquire 339

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. If MdispInquire() also returns
the requested information, you can set this parameter to M_NULL instead
of passing the address of the variable.

This parameter should be a pointer to a long except when InquireType is
set to one of the following:

■ M_OWNER_SYSTEM, M_SELECTED, and M_LUT_ID, in which case it
should be a pointer to a MIL_ID.

■ M_FORMAT, in which case it should be a pointer to a character array.

Return value Except for the M_FORMAT inquire type, the returned value is the setting of
the requested display attribute, cast to long. For the M_FORMAT inquire
type, the returned value is M_NULL.

See also MdispAlloc(), MdispControl(), MdispSelect(), MdispPan(),
MdispOverlayKey(), MdispZoom()

340 MdispLut

MdispLut

Synopsis Associate a LUT buffer to a display.

Format void MdispLut(DisplayId, LutBufId)

Description This function associates a LUT buffer to the specified display. If and when
the display is selected, the change required to produce the display (LUT)
effect occurs. In dual-screen mode, the LUT buffer is loaded into the physical
LUTs. In single-screen mode, MIL indirectly programs the physical output
LUTs through the use of a Windows palette. MIL checks the target display
to determine whether or not a LUT is supported. If not, an error is generated.
See Chapter 17:Lookup tables and Chapter 18:Displaying an image in the
MIL User Guide for more details on using LUTs.

The DisplayId parameter specifies the identifier of the display to which
the LUT buffer is copied.

The LutBufId parameter specifies the identifier of a previously allocated
LUT buffer (with an M_LUT attribute). The LUT buffer can be the default
LUT (M_DEFAULT), the pseudo LUT (M_PSEUDO), or a custom LUT buffer:

■ The default LUT (M_DEFAULT)

If you set LutBufId to M_DEFAULT in windowed mode, MIL provides a
good default logical palette for the realization of the physical output LUTs.
MIL takes into consideration the displayed image, the Windows display

MIL_ID DisplayId; Display identifier
MIL_ID LutBufId; LUT buffer identifier
driver used, and the VGA physical output LUT capabilities, and produces
the best "portability versus visual quality" compromise possible.

By default in non-windowed mode, MIL generates a ramp in the physical
output LUTs, which uses the full range of available intensities. This type
of mapping is also referred to as a pass-through LUT mapping (or
transparent LUT mapping).

■ A pseudo-color LUT (M_PSEUDO)

If you set LutBufId to M_PSEUDO in windowed mode, the data is loaded
in each component of the logical palette. In non-windowed mode, the data
is loaded into the physical output LUTs of the display.

MdispLut 341

■ A custom LUT buffer identifier

You can associate a custom LUT (allocated with MbufAlloc1d() or
MbufAllocColor()) with the display by setting LutBufId to the LUT’s
buffer identifier (a buffer having the M_LUT attribute).

If you associate a one-band LUT buffer with a windowed-mode display
and then select the display (MdispSelect()), the same data is loaded in
each component of the logical palette. In non-windowed-mode, the same
data is loaded into each of the physical output LUTs.

If you associate a three-band color LUT buffer (RGB) with a windowed
mode display and then select the display, each band of the LUT buffer is
loaded into its corresponding component of the logical palette. If you
associate a three-band color LUT buffer (RGB) with a non-windowed mode
display, each LUT buffer color band is loaded in a different physical output
LUT (if a different LUT is available for each display output channel).

Refer to both Chapter 17: Look-up tables (LUTS), as well as Chapter 18:
Displaying an image in the MIL User Guide for a detailed description of
managing LUT buffers and achieving the appropriate display effect.

LUT buffers used for display have the following restrictions:

■ If the LUT buffer values are changed while the image is selected on the
display, the changes will not take effect until the next call is made to
MdispLut(). That is, the LUT is not automatically updated when the
LUT buffer is modified.

■ In general, the LUT buffer will not be used when displaying a 3-band 8-bit
image under a non-8-bit display resolution.
■ In general, a LUT buffer cannot be associated with an M_UND display.

■ The LUT buffer must have one or three bands. Note that the number of
LUT buffer entries must be the same as the maximum number of
intensities that can be represented in the displayed buffer. In other words,
if you want to invert an 8-bit grayscale image (that is, an image that can
have 256 intensities), your LUT must also have 256 entries.

Note To obtain good results, the specified color values must be carefully selected
to provide the best color match for displaying your image. If the specified
values closely match the RGB values that occur frequently in the image to
be displayed, very good results can be obtained.

342 MdispLut

Status Hardware limitations:

Some hardware systems do not support display LUTs.

See also MbufAlloc1d(), MbufAllocColor(), MgenLutRamp(), MgenLutFunction(),
MbufPut(), MbufPut1d()

MdispOverlayKey 343

MdispOverlayKey

Synopsis Enable overlay keying for the specified display.

Format void MdispOverlayKey(DisplayId, KeyMode, KeyCond,
 KeyMask, KeyColor)

Description This function enables overlay keying, an operation that makes portions of
the overlay buffer transparent so that underlying areas of the displayable
image show through. This function only has an effect when the MIL
overlay-display mechanism is enabled with MdispControl(). Note, keying
is only supported in non-windowed mode if you are using a system with an
on-board display section.

The DisplayId parameter specifies the identifier of the display.

The KeyMode parameter specifies the keying mode. It can be set to one of
the following:

MIL_ID DisplayId; Display identifier
long KeyMode; Mode for keying
long KeyCond; Keying condition
long KeyMask; Keying mask to apply before comparison
long KeyColor; Keying color with which to compare

M_KEY_OFF Display the overlay buffer only (no keying).
M_KEY_ON_COLOR Display the image buffer selected on the display

only where the pixels of the overlay buffer are
equal to KeyColor.
The KeyCond parameter specifies the keying condition when keying is
enabled. If keying is enabled (M_KEY_ON_COLOR), set this parameter to one
of the following:

Otherwise, set the KeyCond to M_NULL.

M_KEY_ALWAYS Display the image buffer selected on the display
only.

M_EQUAL Display the image buffer where the overlay
buffer’s pixels equal the value of the KeyColor.

M_NOT_EQUAL Display the image buffer where the overlay
buffer’s pixels do not equal the value of the
KeyColor.

344 MdispOverlayKey

The KeyMask parameter specifies the mask to apply to the overlay pixels,
before performing the comparison and when keying is enabled
(M_KEY_ON_COLOR).

When keying is not enabled, set KeyMask to M_NULL.

The KeyColor parameter specifies the keying color when keying is enabled
(M_KEY_ON_COLOR). When in an 8-bit display mode (display depth), set
this parameter to the required 8-bit color index. When in any other display
mode, you can set this parameter to:

■ An 8-bit grayscale value. This value will be used for each band.

■ An RGB value using the following macro:

M_RGB888(red component, green component, blue component)

When keying is not enabled, set KeyColor to M_NULL.

Example The following portion of MIL code will display the main frame buffer when
the overlay frame buffer color is equal to 10.

MdispOverlayKey(DisplayId, M_KEY_ON_COLOR, M_EQUAL, 0xffL, 10L)

MdispPan 345

MdispPan

Synopsis Pan and scroll a display.

Format void MdispPan(DisplayId, XOffset, YOffset)

Description This function associates pan and scroll values with the specified display.
When an image buffer is selected for display, it will be panned and scrolled
on the display according to these values.

The DisplayId parameter specifies the identifier of the display.

The XOffset and YOffset parameters specify the number of pixels by which
to pan and scroll, respectively, an image buffer when it is displayed. Specify
the pan and scroll in relation to the top-left corner of the image buffer.
Specify a positive XOffset value to pan the image to the left, a positive
YOffset value to scroll the image upwards.

Note, the offsets are in image pixels (not screen pixels), so they are not
affected by the current zoom factor. For example, if the display has an
associated zoom factor 4, panning by an offset of one image pixel results in
panning by 4 on the display.

Status Hardware limitations:

Some hardware systems do not support panning and some only support

MIL_ID DisplayId; Display identifier
long XOffset; X pixel offset relative to top-left corner of buffer
long YOffset; Y pixel offset relative to top-left corner of buffer
certain panning values.

See also MdispZoom(), MdispControl()

346 MdispSelect

MdispSelect

Synopsis Select an image buffer to display.

Format void MdispSelect(DisplayId, ImageBufId)

Description This function outputs the specified image buffer contents to the specified
MIL display. You can only display one buffer at a time on a specific display.

The DisplayId parameter specifies the identifier of the display.

The ImageBufId parameter specifies the image buffer to display. To be
displayable, this buffer must be an image buffer that has an M_IMAGE +
M_DISP attribute.

If the specified image buffer is smaller in size than the display size, the
border outside the image is blanked out (if the hardware supports this). If
the specified buffer is larger in size than the system display, the right and
bottom portion of the buffer, the part that exceeds the display size, is not
displayed.

Note By default, under Windows, a call to MdispSelect() creates a window
surrounding the image.

See also MdispDeselect()

MIL_ID DisplayId; Display identifier
MIL_ID ImageBufId; Image buffer identifier

MdispSelectWindow 347

MdispSelectWindow

Synopsis Select an image buffer to display in a user-defined window.

Format void MdispSelectWindow(DisplayId, ImageBufId,
 ClientWindowHandle)

Description This function displays the specified image buffer contents in the specified
user window, using the specified MIL display.

This function is valid only in a Windows environment.

The DisplayId parameter specifies the identifier of the display.

The ImageBufId parameter specifies the image buffer to display. To be
displayable, this buffer must be an image buffer that has an M_IMAGE +
M_DISP attribute.

If the specified image buffer is smaller in size than the target window size,
the border outside the image is not modified. If the specified buffer is larger
in size than the target window, the right and bottom portion of the buffer,
the part that exceeds the window, is not displayed.

The ClientWindowHandle parameter specifies the handle of the
user-defined window or child window. This window must have been created
with the Windows API functions. If this parameter is set to zero, this

MIL_ID DisplayId; Display identifier
MIL_ID ImageBufId; Image buffer identifier
HWND ClientWindowHandle; User-defined window handle
function behaves like MdispSelect().

Examplemwindisp.c, mdispmfc.dsp

See also MdispSelect(), MdispDeselect()

348 MdispZoom

MdispZoom

Synopsis Zoom a display.

Format void MdispZoom(DisplayId, XFactor, YFactor)

Description This function associates a zoom factor with the specified display. When an
image buffer is selected for display, it will be zoomed according to this factor
(if this feature is supported by the target system). The image buffer will be
displayed starting from its top-left corner, unless it has been panned and/or
scrolled, using MdispPan().

The DisplayId parameter specifies the identifier of the display.

The XFactor and YFactor parameters specify the X and Y zoom factor,
respectively. You can only zoom an image by integer factors; zoom factors
between -16 and 16, inclusive (except 0), are supported.

Status Hardware limitations:

■ Some hardware systems do not support zooming and some only support
certain zoom factors.

Example mmultdis.c

See also MdispPan(), MdispControl()

MIL_ID DisplayId; Display identifier
long XFactor; X zoom factor
long YFactor; Y zoom factor

MgenLutFunction 349

MgenLutFunction

Synopsis Generate data into a LUT buffer using a specified standard mathematical
function.

Format void MgenLutFunction(LutBufId, Func, a, b, c, StartIndex,
 StartXValue, EndIndex)

Description This function generates data in the specified LUT buffer area (StartIndex
to EndIndex inclusive) according to the function specified by Func and
using the LUT location index and the StartXValue as the X value in the
equation.

The LutBufId parameter specifies the identifier of the LUT in which to
generate values. This parameter must be given a valid LUT buffer identifier.
Allocate a LUT buffer, using MbufAlloc1d() or MbufAllocColor(). If the
LUT is a multi-band LUT (allocated with MbufAllocColor()), the same
data is written to all bands.

MIL_ID LutBufId; LUT buffer identifier
long Func; Function to use for calculations
double a; Function constant a
double b; Function constant b
double c; Function constant c
long StartIndex; First LUT index
double StartXValue; Initial X value
long EndIndex; Last LUT index
The Func parameter specifies the function to use for calculations. This
parameter can be set to one of the following:

M_LOG alogb (x) + c

M_EXP ab x + c
M_SIN asin(bx) + c
M_COS acos(bx) + c
M_TAN atan(bx) + c
M_QUAD ax2 + bx + c

350 MgenLutFunction

The a, b, c parameters specify function constants. For M_SIN, M_COS, and
M_TAN, X is considered to be in degrees. All results are converted to integer
by truncation, except when using a floating-point LUT buffer. Note, if the
given parameters cause an overflow or underflow, indeterminate
results will be written in the destination LUT.

The StartIndex and EndIndex specify the first and last LUT index entries
for which to generate values. The StartIndex value must be less than or
equal to the EndIndex value.

The StartXValue parameter specifies the initial value of X in the function.

See also MgenLutRamp(), MbufPut1d(), MbufPutColor(), MbufAlloc1d(),
MbufAllocColor().

MgenLutRamp 351

MgenLutRamp

Synopsis Generate ramp data into a LUT buffer.

Format void MgenLutRamp(LutId, StartIndex, StartValue, EndIndex,
 EndValue)

Description This function generates a ramp, inverse ramp, or a constant in the specified
LUT buffer region (StartIndex to EndIndex). The increment between
LUT entries is the difference between StartValue and EndValue, divided
by the number of entries.

If you need to generate a more complex LUT, use MgenLutFunction() or
generate the values with your Host system and load them into a MIL LUT
buffer, using MbufPut1d() or MbufPutColor().

The LutId parameter specifies the identifier of the LUT in which to
generate values. This parameter must be given a valid LUT buffer identifier.
Allocate a LUT buffer, using MbufAlloc1d() or MbufAllocColor().

The StartIndex and EndIndex parameters specify the first and last LUT
index entry for which to generate values. StartIndex must be less than or
equal to EndIndex.

MIL_ID LutId; LUT identifier
long StartIndex; First LUT index
double StartValue; Start value of input range
long EndIndex; Last LUT index
double EndValue; End value of input range
The StartValue and EndValue parameters specify the extreme values
from which the increment is calculated. StartValue is the first LUT entry.
If both values are the same, the entire LUT range is filled with this value.
If EndValue is smaller than StartValue, an inverse ramp is generated.
These parameters accept only integer values, except when using a
floating-point LUT buffer.

Examples mdispovr.c, mnatfct.c

See also MgenLutFunction(), MbufPut1d(), MbufPutColor(), MbufAlloc1d(),
MbufAllocColor()

352 MgraAlloc

MgraAlloc

Synopsis Allocate a graphics context.

Format MIL_ID MgraAlloc(SystemId, GraphContIdPtr)

Description This function allocates a graphics context, which specifies drawing and text
parameters for use in subsequent MIL graphic functions.

Upon allocation of a graphics context, the drawing and text parameters are
set to the following default values:

You can modify these values, using MgraColor(), MgraBackColor(),
MgraFont(), and MgraFontScale(), or inquire about the current values,
using MgraInquire().

You can set the attributes of the graphic context (for example, background
transparency), using MgraControl().

When a graphics context is no longer required, release it, using
MgraFree().

MIL_ID SystemId; System identifier
MIL_ID *GraphContIdPtr; Storage location for graphics context

identifier

Foreground color 0xFFFFFFFF
Background color 0x00000000
Font M_FONT_DEFAULT_SMALL

Font scale X = 1.0, Y = 1.0
The SystemId parameter specifies the system on which the graphics
context will be allocated. This parameter must be set to a valid system
identifier, M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST
to allocate on the default Host system of the current MIL application.
Specify M_DEFAULT to have MIL select the most appropriate system on
which to allocate the graphics context (it can be the default Host system or
any already allocated system).

The GraphContIdPtr parameter specifies the address of the variable in
which the graphics context identifier is to be written. Since the MgraAlloc()
function also returns the buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

MgraAlloc 353

Note, upon allocation of an application, a default graphics context is
automatically allocated. Rather than using MgraAlloc() to allocate a
graphics context, you can use this default graphics context, by specifying
M_DEFAULT wherever a graphics context identifier is required.

Return value The returned value is the graphics context identifier. If allocation fails,
M_NULL is returned.

See also MgraFree(), MgraColor(), MgraBackColor(), MgraFont(), MgraFontScale(),
MgraInquire()

354 MgraArc

MgraArc

Synopsis Draw an arc.

Format void MgraArc(GraphContId, DestImageBufId, XCenter, YCenter,
 XRad, YRad, StartAngle, EndAngle)

Description This function draws an elliptic arc based on an ellipse centered at (XCenter,
YCenter) with radii XRad and YRad. The arc is defined by the start angle
StartAngle and the end angle EndAngle. The arc is drawn with the
foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the image buffer
in which to draw.

The XCenter and YCenter parameters specify the X and Y coordinates of

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XCenter; X-coordinate of arc center
long YCenter; Y-coordinate of arc center
long XRad; Horizontal radius of elliptic arc
long YRad; Vertical radius of elliptic arc
double StartAngle; Starting angle relative to the positive X-axis
double EndAngle; Ending angle relative to the positive X-axis
the arc center, relative to the top-left corner of the specified target buffer.

The XRad and YRad parameter specify the elliptic arc radii. The radii
should be given in pixels and must be greater than 0.

The StartAngle and EndAngle specify the angles at which to start and
end drawing the arc, respectively, moving in a counter-clockwise direction.
Express angles in degrees in relation to the positive X-axis.

If part of the arc falls outside of the specified target buffer, that part is
clipped off.

Examples mfft.c, mmeas.c

See also MgraArcFill()

MgraArcFill 355

MgraArcFill

Synopsis Draw a filled elliptic arc.

Format void MgraArcFill(GraphContId, DestImageBufId, XCenter,
 YCenter, XRad, YRad, StartAngle, EndAngle)

Description This function draws a filled elliptic arc based on an ellipse centered at
(XCenter, YCenter) with radii XRad and YRad. The arc is defined by the
start angle StartAngle and end angle EndAngle. The arc is drawn and
filled with the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application will be used.

The DestImageBufId parameter specifies the identifier of the image buffer
in which to draw.

The XCenter and YCenter parameters specify the X and Y coordinates of

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XCenter; X-coordinate of arc center
long YCenter; Y-coordinate of arc center
long XRad; Horizontal radius of elliptic arc
long YRad; Vertical radius of elliptic arc
double StartAngle; Starting angle relative to the positive X-axis
double EndAngle; Ending angle relative to the positive X-axis
the arc center relative to the top-left corner of the specified target buffer.

The XRad and YRad parameters specify the elliptic arc radii. The radii
should be given in pixels and must be greater than 0.

The StartAngle and EndAngle specify the angles at which to start and
end drawing the arc, respectively, moving in a counter-clockwise direction.
Express angles in degrees in relation to the positive X-axis.

If part of the arc falls outside of the specified target buffer, that part is
clipped off.

Example mdisplay.c

See also MgraArc(), MgraFill()

356 MgraBackColor

MgraBackColor

Synopsis Sets the background color of a graphics context.

Format void MgraBackColor(GraphContId, BackgroundColor)

Description This function sets the background color of a specified graphics context.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the background color. This parameter can
be set to M_DEFAULT, in which case the default graphics context of the
current MIL application is used.

The BackgroundColor parameter specifies the background color. Set this
parameter as follows:

■ When using the graphics context to draw in a 1-band buffer, set this
parameter to any value. This value will be cast to the type of the
destination buffer.

■ When using the graphics context to draw in a multi-band buffer with a
grayscale background value, set this parameter to any value. This value
will be cast to the type of the destination buffer’s bands and replicated in
each band.

■ When using the graphics context to draw in an 8-bit 3-band buffer with
an RGB background value, set this parameter using the following macro:

MIL_ID GraphContId; Graphics context identifier
double BackgroundColor; Background drawing and text color
M_RGB888(red component, green component, blue component)

■ When using the graphics context to draw in a 16-bit or 32-bit multi-band
buffer with a color background value, use MgraControl().

Example mcode.c

See also MgraColor(), MgraAlloc(), MgraInquire(), MgraControl()

MgraClear 357

MgraClear

Synopsis Clear an image buffer to a specified foreground color.

Format void MgraClear(GraphContId, DestImageBufId)

Description This function clears the entire specified buffer to the foreground color
specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer to
clear. This parameter must be given a valid image buffer identifier.

See also MgraColor()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier

358 MgraColor

MgraColor

Synopsis Sets the foreground color of a graphics context.

Format void MgraColor(GraphContId, ForegroundColor)

Description This function sets the foreground color of a specified graphics context.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the foreground color. This parameter can be
set to M_DEFAULT, in which case the default graphics context of the current
MIL application is used.

The ForegroundColor parameter specifies the foreground color. Set this
parameter as follows:

■ When using the graphics context to draw in a 1-band buffer, set this
parameter to any value. This value will be cast to the type of the
destination buffer.

■ When using the graphics context to draw in a multi-band buffer with a
grayscale foreground value, set this parameter to any value. This value
will be cast to the type of the destination buffer’s bands and replicated in
each band.

■ When using the graphics context to draw in an 8-bit 3-band buffer with
an RGB foreground value, set this parameter using the following macro:

MIL_ID GraphContId; Graphics context identifier
double ForegroundColor; Foreground drawing and text color
M_RGB888(red component, green component, blue component)

■ When using the graphics context to draw in a 16-bit or 32-bit multi-band
buffer with a color foreground value, use MgraControl().

Examples mblob.c, mcalib.c, mcode.c, mdisplay.c, mmeas.c, mmeasmul.c, mocrread.c,
mwarp.c

See also MgraBackColor(), MgraAlloc(), MgraInquire(), MgraControl()

MgraControl 359

MgraControl

Synopsis Control the specified graphic context.

Format void MgraControl(GraphContId, ControlType, ControlValue)

Description This function allows you to set the attributes of a graphic context.

The GraphContId parameter specifies the identifier of the graphic context
(MgraAlloc()). To control the default graphic context of the current MIL
application, set this parameter to M_DEFAULT.

The ControlType and ControlValue parameters specify the graphic
features to control and the values needed for the control. These two
parameters can be set to one of the following combinations:

MIL_ID GraphContId; Graphic context identifier
long ControlType; Control type
double ControlValue; Control value

ControlType Description & ControlValue
M_BACKGROUND_MODE Controls the setting of the background color on

the drawing surface.
M_OPAQUE Fill background with the

current background color
before drawing text. This is
the default value
(M_DEFAULT).

M_TRANSPARENT Do not change background
before drawing text. This
For M_COLOR and M_BACKCOLOR, specify a ControlValue as follows:

■ When using the graphics context to draw in a 1-band buffer, set
ControlValue to any value. This value will be cast to the type of the
destination buffer.

creates a transparent
background for printed
characters.

M_COLOR Sets the foreground color of a specified graphics
context.

M_BACKCOLOR Sets the background color of a specified
graphics context.

360 MgraControl

■ To specify a grayscale value when using the graphics context to draw in
a multi-band buffer, set ControlValue to any value. This value will be
cast to the type of the destination buffer’s bands and replicated in each
band.

■ To specify an RGB value when using the graphics context to draw in an
8-bit 3-band buffer, set ControlValue using the following macro:

M_RGB888(red component, green component, blue component)

■ To specify a color value when using the graphics context to draw in a 16-bit
or 32-bit multi-band buffer, you must call MgraControl() for each color
component (R,G, and B). Add M_RED, M_GREEN, or M_BLUE to M_COLOR
or M_BACKCOLOR to specify the component. Set ControlValue to any
value; this value will be cast to the type of the destination buffer’s bands.
For example, you would make the following call to set the red color
component:

MgraControl(M_DEFAULT, M_COLOR+M_RED, red color component)

Note that you can use the M_RED, M_GREEN, and M_BLUE constants even
when using the graphics context to draw in an 8-bit multi-band buffer.

Examples mcalib.c, mdispovr.c

See also MgraAlloc(), MgraBackColor(), MgraColor()

MgraDot 361

MgraDot

Synopsis Draw a dot.

Format void MgraDot(GraphContId, DestImageBufId, XPos, YPos)

Description This function draws a dot at the specified drawing position, using the
foreground color specified in the graphics context .

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XPos and YPos parameters specify the X and Y coordinates of the
drawing position. The given coordinate is relative to the top-left corner of
the specified target buffer. It should be valid in the specified image buffer;
otherwise, nothing will be drawn.

See also MbufPut2d(), MbufPutColor()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XPos; X position of dot
long YPos; Y position of dot

362 MgraFill

MgraFill

Synopsis Perform a boundary-type seed fill.

Format void MgraFill(GraphContId, DestImageBufId, XStart, YStart)

Description This function performs a boundary-type seed fill. It fills in an area of the
target buffer, with the foreground color specified in the graphics context,
starting from the specified seed position. Filling occurs on adjacent pixels
(vertically and horizontally to original seed pixel) that have the same value
as the original seed pixel.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the X and Y coordinates of the
seed position. If the specified point is not within an enclosed area, filling
occurs until the boundaries of the buffer are encountered. The given
coordinate is relative to the top-left corner of the specified target buffer. It
should be valid in the specified image buffer; otherwise, the operation is not

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of seed position
long YStart; Y-coordinate of seed position
performed.

See also MgraArcFill(), MgraRectFill()

MgraFont 363

MgraFont

Synopsis Associate a text font with a graphics context.

Format void MgraFont(GraphContId, FontName)

Description This function associates a character font with the specified graphics context
for use with subsequent MgraText() function calls.

The GraphContId parameter specified the identifier of the graphics
context with which to associate the character font. This parameter can be
set to M_DEFAULT, in which case, the default graphics context of the current
MIL application is used.

The FontName parameter specifies the font with which to write text. This
parameter can be set to one of the following:

Examples mocrfont.c, mocrread.c

MIL_ID GraphContId; Graphics context identifier
void *FontName; Character font

M_FONT_DEFAULT_LARGE Default font with 16x32 pixel wide
characters.

M_FONT_DEFAULT_MEDIUM Default font with 12x24 pixel wide
characters.

M_FONT_DEFAULT_SMALL Default font with 8x16 pixel wide
characters.

M_FONT_DEFAULT In general corresponds to
M_FONT_DEFAULT_SMALL.
See also MgraFontScale(), MgraAlloc(), MgraText(), MgraInquire()

364 MgraFontScale

MgraFontScale

 Synopsis Set the font scale of a graphics context.

Format void MgraFontScale(GraphContId, XFontScale, YFontScale)

Description This function sets the font scale of the specified graphics context for use
with subsequent MgraText() function calls.

The GraphContId parameter specifies the identifier of the graphics
context for which to set the font scale. This parameter can be set to
M_DEFAULT, in which case the default graphics context of the current MIL
application is used.

The XFontScale and YFontScale parameters are used to multiply the
width and height of the font characters, respectively. Each of these
parameters can be independently set to any positive floating point value.
The default X and Y scale factors are 1.0.

Note, using a font with a scale of 1.0 accelerates text drawing.

Example mocrfont.c

See also MgraFont(), MgraAlloc(), MgraText(), MgraInquire()

MIL_ID GraphContId; Graphics context identifier
double XFontScale; Font scaling factor in X
double YFontScale; Font scaling factor in Y

MgraFree 365

MgraFree

Synopsis Free a graphics context.

Format void MgraFree(GraphContId)

Description This function deallocates a graphics context previously allocated with
MgraAlloc().

The GraphContId parameter specifies the identifier of the graphics
context to deallocate. If M_DEFAULT is specified, an error will occur.

See also MgraAlloc()

MIL_ID GraphContId; Graphics context identifier

366 MgraInquire

MgraInquire

Synopsis Inquire about the graphics parameters.

Format void MgraInquire(GraphContId, InquireType, UserVarPtr)

Description This function inquires about a graphic parameter in the specified graphics
context.

The GraphContId parameter specifies the identifier of the graphics
context on which to perform the inquiry. This parameter can be set to
M_DEFAULT, in which case the default graphics context of the current MIL
application is used.

The InquireType parameter specifies the graphic parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID GraphContId; Graphics context identifier
long InquireType; Graphic parameter to inquire
void *UserVarPtr; Storage location for inquiry result

InquireType Description
M_COLOR Foreground color.
M_BACKCOLOR Background color.
M_BACKGROUND_MODE Background mode.
M_FONT Character font.
M_FONT_X_SCALE Font scaling factor in X.
M_FONT_Y_SCALE Font scaling factor in Y.
The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. This variable should be defined
as follows:

M_OWNER_SYSTEM MIL identifier (MIL_ID) of the system on
which the graphics context has been
allocated (MgraAlloc()).

InquireType Pointer to a:
M_COLOR double
M_BACKCOLOR double
M_BACKGROUND_MODE long
M_FONT void

MgraInquire 367

See also MgraColor(), MgraBackColor(), MgraFont(), MgraFontScale()

M_FONT_X_SCALE double
M_FONT_Y_SCALE double
M_OWNER_SYSTEM MIL_ID

InquireType Pointer to a:

368 MgraLine

MgraLine

 Synopsis Draw a line.

Format void MgraLine(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a line starting and ending at the specified coordinates,
using the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case, the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of one line
extremity, while XEnd and YEnd specify the coordinates of the other. The
given coordinates are relative to the top-left corner of the specified target
buffer. They should be valid in the specified buffer; otherwise, the line is
clipped outside the buffer boundaries.

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of start of line position
long YStart; Y-coordinate of start of line position
long XEnd; X-coordinate of end of line position
long YEnd; Y-coordinate of end of line position
Examples mblob.c, mcalib.c, mmeas.c, mmeasmul.c, mpatrot.c, mwarp.c

MgraRect 369

MgraRect

Synopsis Draw a rectangle.

Format void MgraRect(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a rectangle starting from the specified top-left
coordinate to the specified bottom-right corner. The rectangle is drawn in
the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the top-left
corner of the rectangle, XEnd and YEnd specify the coordinates of the
bottom-right corner. The given coordinates are relative to the top-left corner
of the specified target buffer. They should be valid in the specified buffer;

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of top-left rectangle corner
long YStart; Y-coordinate of top-left rectangle corner
long XEnd; X-coordinate of bottom-right rectangle corner
long YEnd; Y-coordinate of bottom-right rectangle corner
otherwise, the rectangle is clipped outside the buffer boundaries.

Examples mmeas.c, mmeasmul.c, mrestmod.c, msearch.c, mshift.c

See also MgraRectFill()

370 MgraRectFill

MgraRectFill

Synopsis Draw a filled rectangle.

Format void MgraRectFill(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a filled rectangle starting from the specified top-left
coordinate to the specified bottom-right corner. The rectangle is drawn and
filled in the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the top-left
corner of the rectangle, XEnd and YEnd specify the coordinates of the
bottom-right corner. The given coordinates are relative to the top-left corner
of the specified target buffer. They should be valid in the specified buffer;

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of top-left rectangle corner
long YStart; Y-coordinate of top-left rectangle corner
long XEnd; X-coordinate of bottom-right rectangle corner
long YEnd; Y-coordinate of bottom-right rectangle corner
otherwise, the rectangle is clipped outside the buffer boundaries.

See also MgraRect(), MgraFill()

MgraText 371

MgraText

Synopsis Write text.

Format void MgraText(GraphContId, DestImageBufId, XStart, YStart,
 String)

Description This function writes the specified ASCII string to the specified buffer
starting at the specified writing position, using the parameters (colors, font,
and size) defined in the graphics context. Use MgraFont() and
MgraFontScale() to modify the font and size. Use MgraControl() to
obtain a transparent background for printed characters.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case, the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to write. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the position
at which to start writing the top-left corner of the first character. The given
coordinates are relative to the top-left corner of the buffer. They should be

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of writing position
long YStart; Y-coordinate of writing position
char *String; Null terminated ASCII string
valid in the specified buffer; otherwise, the text is clipped.

The String parameter specifies the address of the string that must be
written in the destination buffer. There is no restriction on the length of the
string, except that the string must be null (\0) terminated.

Examples mcalib.c, mcode.c, mdispovr.c, mocrfont.c, mocrread.c, mstart.c, mthread.c,
mwindib.c, mwindisp.c

See also MgraFont(), MgraFontScale(), MgraControl()

372 MsysAlloc

MsysAlloc

Synopsis Allocate a hardware system.

Format MIL_ID MsysAlloc(SystemTypePtr, SystemNum, InitFlag,
 SystemIdPtr)

Description This function allocates a hardware system (board set or Host system) so
that it can be used by subsequent MIL functions. Upon execution of this
function, MIL ensures that it can open communication with the system
before allocating it and generates an error if it cannot.

A system must be allocated before any buffers, displays, or digitizers can be
allocated on it. Before allocating a system, an application must be allocated,
using MappAlloc() or MappAllocDefault().

Note, upon allocation of an application, a default Host system is
automatically allocated. Rather than using MsysAlloc() to allocate a Host
system, you can use this default Host system, by specifying
M_DEFAULT_HOST wherever a Host system identifier is required.

When you no longer need a particular system, free it using MsysFree().

The SystemTypePtr parameter specifies the type of system to allocate.
This parameter is a pointer to a function that allows communication with

void *SystemTypePtr; Type of system to allocate
long SystemNum; System number
long InitFlag; Initialization flag
MIL_ID *SystemIdPtr; Storage location for system identifier
the specified system (board). Set this parameter to one of the following
values:

SystemTypePtr Type of system to allocate
M_SYSTEM_SETUP System selected in the setup utility.
M_SYSTEM_HOST Host type system.
M_SYSTEM_VGA VGA type system.
M_SYSTEM_METEOR_II Meteor-II type system.
M_SYSTEM_METEOR_II_1394 Meteor-II /1394 type system.
M_SYSTEM_METEOR_II_DIG Meteor-II /Digitial type system.
M_SYSTEM_ORION Orion type system.

MsysAlloc 373

The SystemNum parameter specifies the number (or rank) of the target
board of the specified system type. This parameter can be set to one of the
following:

The InitFlag parameter specifies the type of initialization you want to
perform on the selected system. This parameter can be set to one of the
following:

M_SYSTEM_PULSAR Pulsar type system.
M_SYSTEM_GENESIS Genesis type system.
M_SYSTEM_CORONA Corona type system.

M_DEFAULT Default board.
M_DEV0 The first board of the specified system type.
..., The nth board of the specified system type.
M_DEV15 The sixteenth board of the specified system type.

M_COMPLETE Perform a complete initialization of the system: initialize
the system to its default state and download any required
resident software. At least one complete initialization is
necessary after you power-up your system.

M_PARTIAL Initialize the system with its default state, but do not
download any resident software (which can take a few
seconds).

M_DDRAW Enable the use of DirectDraw by the system.
M_NO_DDRAW Disable the use of DirectDraw by the system.
M_DEFAULT Same as M_COMPLETE.

SystemTypePtr Type of system to allocate
Refer to the MIL/MIL-Lite Board-Specific Notes for possible additional
information that applies to your particular system.

The SystemIdPtr parameter specifies the address of the variable in which
to write the system identifier. Since the MsysAlloc() function also returns
the system identifier, you can set this parameter to M_NULL. If allocation
fails, M_NULL is written as the identifier.

Return value The returned value is the system identifier. If allocation fails, M_NULL is
returned.

See also MsysFree()

374 MsysControl

MsysControl

Synopsis Control system behavior.

Format void MsysControl(SystemId, ControlType, ControlValue)

Description This function controls the system behavior. For example, it can be used to
control where buffers allocated on the specified system will be processed.
Generally, when you allocate buffers on a specific system, processing is done
on that system or on the Host system if it is more appropriate. However, you
can use this function to force all processing on a specific system.

The SystemId parameter specifies the identifier of the system on which to
set the control.

The ControlType and ControlValue parameters specify the type of event
to control and the associated value, respectively. These parameters can be
set to any valid control type and control value combination that is supported
by the system (refer to the appropriate appendix), or to one of the following
combinations:

MIL_ID SystemId; System identifier
long ControlType; Type of event to control
long ControlValue; Flag to control event

ControlType ControlValue & Description
M_PROCESSING_SYSTEM MIL identifier of

the system to use
for processing, cast to
long.

Force the processing of buffers,
allocated on the system specified
by SystemId, to be performed by
the system specified by the

control value.

M_DEFAULT_HOST Force the processing of buffers,
allocated on the system specified
by SystemId, to be performed by
the default Host system.

M_DEFAULT Re-establish the default
processing system selected by
MIL at system allocation.

*Note, even when you force processing to be performed by a specific system, some operations
might not execute successfully if the specific system does not completely support the requested
operation. This can occur even if processing compensation is enabled.

MsysControl 375

M_PSEUDO_LIVE_GRAB Specifies whether to perform a pseudo-live grab when a
live grab is enabled but is not possible. If a live grab is
enabled, and can be performed, it will take priority over a
pseudo-live continuous grab, even if a pseudo-live grab is
enabled. A continuous grab is done pseudo-live only when
it is enabled and it is not possible to perform a live grab.
If pseudo-live grabbing is disabled and a live grab cannot
be performed, a continuous grab will be paused until
conditions under which a live grab can be performed are
achieved (or the grab times out). When grabbing to an
underlay frame buffer surface, this control type should be
left to the default setting.
M_ENABLE Pseudo-live grab is enabled

(default).
M_DISABLE Pseudo-live grab is disabled.

M_LIVE_GRAB_MOVE_UPDATE Specifies whether to copy the current image from
its previous (window) location to the location of the
displaced window before restarting the grab
operation (the grab is stopped during window
displacement). This is particularly useful when
grabbing from a triggered camera, since a trigger is
probably not issued as often as the window is
displaced. Therefore, the window will be empty
after its displacement unless
M_LIVE_GRAB_MOVE_UPDATE is enabled.
M_ENABLE Perform a copy between the

windows. (Default for triggered
cameras)

M_DISABLE Do not perform a copy between
the windows. (Default for
non-triggered cameras)

ControlType ControlValue & Description

376 MsysControl

M_LIVE_GRAB_NO_TEARING Specifies whether or not no-tearing mode is enabled with
live grabs. This mode should be enabled before selecting
any buffer to the display.
This mode requires special hardware. A Matrox G400 (or
higher) video graphics adapter should be used. In
addition, this mode can only be used when the grab buffer
is selected to a display that is under a DirectDraw
underlay-surface display architecture
(M_WINDOWED+M_DDRAW_UNDERLAY). (Note that
this is the default display mode when the hardware is
available)
M_ENABLE No-tearing mode is enabled with

live grabs.
M_DISABLE No-tearing mode is disabled with

live grabs.(default)
M_LAST_GRAB_IN_TRUE_BUFFER Specifies, when the display is in windowed mode

(M_WINDOWED), whether a snapshot grab is
automatically performed in the true grab buffer at the
end of a live grab operation. You can override this default,
in which case, the true buffer will not contain the
grabbed data. This default can be overridden by setting
the ControlType to M_DISABLE:
M_ENABLE Grab last frame in true grab

buffer (default).
M_DISABLE Don’t grab last frame in true

grab buffer.
M_NATIVE_MODE_ENTER M_DEFAULT Signal to MIL that the system is

entering the system's native
mode.

M_NATIVE_MODE_LEAVE M_DEFAULT Signal to MIL that the system is
exiting the system's native mode.

ControlType ControlValue & Description
M_USE_MMX Specifies whether MMX opcodes are used when
processing is done on the specified system.
M_DEFAULT Like M_ENABLE when an MMX

processor is detected, otherwise
like M_DISABLE.

M_ENABLE Use the MMX opcodes to
accelerate processing.

M_DISABLE Never use the MMX opcodes.

MsysControl 377

See also MappGetError(), MappHookFunction(), MappControl()

M_USE_SSE Control the use of SSE code when processing is
done on the specified system.
M_DEFAULT When an SSE processor is

detected, this control type is
similar to M_ENABLE;
otherwise, it is similar to
M_DISABLE.

M_ENABLE Use the SSE opcodes to
accelerate processing. Note,
an error will be generated if
no SSE processor is detected
or if the operating system
does not support it.

M_DISABLE Never use the SSE opcodes.
M_LIVE_GRAB Specifies whether to perform a live grab whenever

possible, or to force a pseudo-live grab, when grabbing
continuously into a displayable buffer. When grabbing to
an underlay frame buffer surface, this control type should
be left to the default setting.
M_ENABLE Live grab is enabled (default).
M_DISABLE Live grab is disabled.

ControlType ControlValue & Description

378 MsysFree

MsysFree

Synopsis Free a system.

Format void MsysFree(SystemId)

Description This function deallocates a system previously allocated with MsysAlloc().

Prior to freeing a system, ensure that all buffers, displays, and digitizers
allocated on the system are freed.

The SystemId parameter specifies the identifier of the system to free.

See also MsysAlloc()

MIL_ID SystemId; System identifier

MsysInquire 379

MsysInquire

Synopsis Inquire about a system parameter setting.

Format long MsysInquire(SystemId, InquireType, UserVarPtr)

Description This function inquires about the specified system parameter setting.

The SystemId parameter specifies the system identifier.

The InquireType parameter specifies the system parameter about which
to inquire. Some of the values are not supported by all platforms. This
parameter can be set to one of the following values:

MIL_ID SystemId; System identifier
long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_OWNER_APPLICATION The MIL identifier (MIL_ID) of the application on

which the system has been allocated.
M_SYSTEM_TYPE The type of system allocated:

M_SYSTEM_HOST_TYPE, M_SYSTEM_VGA_TYPE,
M_SYSTEM_METEOR_II_1394_TYPE,
M_SYSTEM_METEOR_II_TYPE,
M_SYSTEM_METEOR_II_DIG_TYPE,
M_SYSTEM_ORION_TYPE,
M_SYSTEM_PULSAR_TYPE,
M_SYSTEM_GENESIS_TYPE, or
M_SYSTEM_CORONA_TYPE.

M_SYSTEM_NAME The system name. This inquire type copies the

system’s name (that is, the board type) to the
user-supplied array, as a string. Note that this
inquire type is available when using any supported
Matrox Imaging board.

M_SYSTEM_TYPE_PTR Pointer to a function that can communicate with
the system (board). This inquiry type returns the
actual system type pointer that was passed to the
MsysAlloc() function upon system allocation. It is
preferable to use M_SYSTEM_TYPE_PTR to inquire
about the type of system allocated.

M_NUMBER Board number of the system (MsysAlloc()).
M_INIT_FLAG System initialization flag (MsysAlloc()).
M_DISPLAY_NUM Number of displays available on the system.
M_DIGITIZER_NUM Number of digitizers available on the system.
M_PROCESSOR_NUM Number of processors available on the system.

380 MsysInquire

M_PROCESSING_SYSTEM_TYPE Processing system type used to process buffers
allocated on that system (MsysControl()). Either
M_SYSTEM_HOST_TYPE, or
M_SYSTEM_GENESIS_TYPE will be returned.

M_PROCESSING_SYSTEM Identifier of the processing system.
M_DCF_SUPPORTED Whether the system supports downloadable

digitizer configuration format (.dcf) files.
M_USE_MMX State of use of MMX code for processing on the

specified system (M_ENABLE or M_DISABLE).
M_USE_SSE State of use of SSE code for processing on the

specified system (M_ENABLE or M_DISABLE).
M_PHYSICAL_ADDRESS_VGA The physical address of the VGA frame buffer. If

the VGA is not a Matrox VGA, M_NULL is
returned.

M_COMPRESSION_SUPPORTED Whether the system supports compression and
decompression of images (M_YES or M_NO). Note
that, under MIL-Lite, dedicated hardware is
required to compress and decompress images.
Under the full version of MIL, compression and
decompression is supported, whether or not
dedicated hardware is present.

M_DUAL_SCREEN_MODE Whether the system is in dual-screen mode
(M_ENABLE or M_DISABLE).

M_LIVE_GRAB Whether the live grab is enabled (M_ENABLE or
M_DISABLE).

M_PSEUDO_LIVE_GRAB Whether the pseudo live grab is enabled
(M_ENABLE or M_DISABLE).

M_LIVE_GRAB_NO_TEARING Whether no-tearing mode is enabled with live
grabs.

M_LIVE_GRAB_MOVE_UPDATE Whether the live grab move update is enabled

InquireType Description
The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. When MsysInquire() also
returns the requested information, you can set this parameter to M_NULL.

The variable should be a pointer to a long except for the following inquire
types:

■ M_OWNER_APPLICATION and M_PROCESSING_SYSTEM_TYPE, which
should be a pointer to a MIL_ID.

(M_ENABLE or M_DISABLE).
M_LAST_GRAB_IN_TRUE_BUFFER A last grab is done to the true buffer at the end of a

continuous grab:
 M_ENABLE or M_DISABLE.

MsysInquire 381

■ M_SYSTEM_NAME, which should be a pointer to a character array. The
character array must be larger enough to hold the name of the system.

■ M_SYSTEM_TYPE_PTR, which should be a void pointer.

Return value Except for M_SYSTEM_NAME, the returned value is the requested system
information, cast to long. For M_SYSTEM_NAME, the returned value is
M_NULL.

See also MsysAlloc(), MsysControl()

382 MsysInquire

Appendices

Appendix A: The default
setup configuration file

This appendix discusses the main defaults specified in the
setup configuration file.

386 Appendix A: The default setup configuration file

The default setup configuration file
When you use the MappAllocDefault() macro to initialize the
global state of the library, open communication channels with
any required hardware system, download any required
resident software to this hardware, allocate an image buffer,
display controller or digitizer, the macro uses the defaults
specified in the milsetup.h file. This file is set up upon
installation with the install utility. It is an ASCII file that can
also be modified manually. You should review the contents of
this file prior to using the MappAllocDefault() macro to
ensure that the defaults are as required. You can modify these
defaults to a preferred default setup. This appendix discusses
each of the main defaults in detail so that you can modify them,
if required, by altering their predefined values. For a complete
listing of all the defaults, refer to the milsetup.h file.

The setup flag

The M_MIL_USE_SETUP default determines whether
milsetup.h has already been included. This default should
always be set to 1L.

The native mode flag

���
���5'672�52'%+(+'&�(.#)��
���#EVKXCVG�QT�FGCEVKXCVG�/+.�WUG�UGVWR�HNCI�����������������������
�FGHKPG�/A/+.A75'A5'672����������.

���
The M_MIL_USE_NATIVE default determines whether native
mode code specific to a system can be used in the MIL
application. When this default is set to 1L, MIL assumes that
native-mode code may be used and will include associated
prototypes and defines.

���0#6+8'�/1&'�241)4#//+0)�(.#)����������������������������������
���#EVKXCVG�QT�FGCEVKXCVG�PCVKXG�OQFG�RTQITCOOKPI����������������
�FGHKPG�/A/+.A75'A0#6+8'�����.

The default setup configuration file 387

Default initialization
flag

The M_SETUP default determines the type of initialization to
perform if it is specified by the MappAllocDefault() InitFlag
parameter. M_SETUP can be set to M_COMPLETE (initialize
MIL and do a complete initialization of the specified system) or
M_PARTIAL (initialize MIL but don’t fully initialize the system).
In general, set this parameter to M_COMPLETE if initialization
time is not critical.

Default system

The above defaults determine the target system (or board) that
will be allocated by MappAllocDefault(). The
MappAllocDefault() macro calls the MsysAlloc() command
to allocate the target system. M_DEF_SYSTEM_TYPE specifies
the system type, M_DEV_SYSTEM_NUM specifies its device
number in your Host system, and M_DEF_SYSTEM_SETUP can
be used later as an MsysAlloc() parameter.

Default display

���
���&'(#7.6�56#6'�+0+6+#.+<#6+10�(.#)�����������������������������
�FGHKPG�/A5'672�������������/A%1/2.'6'

���
���&'(#7.6�5;56'/�52'%+(+%#6+10����������������������������������
�FGHKPG�/A&'(A5;56'/A6;2'���������������������/A5;56'/A27.5#4
�FGHKPG�/A&'(A5;56'/A07/����������������������/A&'8�
�FGHKPG�/A5;56'/A5'672������������������������/A&'(A5;56'/A6;2'
The above defaults determine the display type that will be
allocated if the MappAllocDefault() DisplayIdVarPtr
parameter is not set to M_NULL. MappAllocDefault() macro
calls the MdispAlloc() command to allocate the display.

���
���&'(#7.6�&+52.#;�52'%+(+%#6+10���������������������������������
�FGHKPG�/A&'(A&+52.#;A07/���������������������/A&'8�
�FGHKPG�/A&'(A&+52.#;A(14/#6�������������������/A&'(#7.6�
�FGHKPG�/A&'(A&+52.#;A+0+6��������������������/A&'(#7.6
�FGHKPG�/A&+52.#;A5'672�����������������������/A&'(A&+52.#;A(14/#6
�FGHKPG�/A&'(A&+52.#;A-';A%1.14����������������.
�FGHKPG�/A&'(A&+52.#;A-';A'0#$.'A10A#..1%������.
�FGHKPG�/A&'(A&+52.#;A-';A&+5#$.'A10A(4''������.

388 Appendix A: The default setup configuration file

M_DEF_DISPLAY_NUM specifies display number on your target
system, and M_DEF_DISPLAY_FORMAT specifies the display
format. M_DEF_DISPLAY_INIT should be set to M_DEFAULT.

Default digitizer

The above defaults determine the digitizer type that will be
allocated if the MappAllocDefault() DigitizerIdVarPtr
parameter is not set to M_NULL. MappAllocDefault() macro
calls the MdigAlloc() command to allocate the digitizer.
M_DEF_DIGITIZER_NUM specifies digitizer number on your
target system, and M_DEF_DIGITIZER_FORMAT specifies the
input data format (or camera output data format).
M_DEF_DIGITIZER_INIT should be set to M_DEFAULT.

Default image buffer

���
���&'(#7.6�&+)+6+<'4�52'%+(+%#6+10�������������������������������
�FGHKPG�/A&'(A&+)+6+<'4A07/������������������/A&'8�
�FGHKPG�/A&'(A&+)+6+<'4A(14/#6����������������>>27.5#4.+$>>&%(>>4���A.1�&%(�
�FGHKPG�/A&'(A&+)+6+<'4A+0+6�����������������/A&'(#7.6
�FGHKPG�/A&'(A%#/'4#A5'672�������������������/A&'(A&+)+6+<'4A(14/#6

��
���&'(#7.6�+/#)'�$7(('4�52'%+(+%#6+10�����������������������������
�FGHKPG�/A&'(A+/#)'A07/$#0&5A/+0���������������.
�FGHKPG�/A&'(A+/#)'A5+<'A:A/+0�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A;A/+0�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A:A/#:�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A;A/#:�����������������
�FGHKPG�/A&'(A+/#)'A6;2'��������������������
/A705+)0'&
�FGHKPG�/A&'(A+/#)'A#664+$76'A/+0����������/A+/#)'
/A241%
The above defaults determine the image buffer that will be
allocated if the MappAllocDefault() ImageIdVarPtr
parameter is not set to M_NULL. By default, if a color digitizer
was specified upon installation, a color buffer (three bands) will
be allocated; otherwise, a monochrome buffer is allocated. The
MappAllocDefault() macro calls the MbufAlloc2d()
command to allocate a monochrome buffer or
MbufAllocColor() to allocate a color buffer. The buffer width
and height are the maximum between the default display image
dimensions M_DEF_IMAGE_SIZE_X_MIN and
M_DEF_IMAGE_SIZE_Y_MIN and the default display format
size, but never exceed M_DEF_IMAGE_SIZE_X_MAX and
M_DEF_IMAGE_SIZE_Y_MAX. M_DEF_IMAGE_TYPE specifies

The default setup configuration file 389

the depth and range of the data buffer.
M_DEF_IMAGE_ATTRIBUTE_MIN specifies the minimum
attributes for the buffer usage.
M_DEF_IMAGE_NUMBANDS_MIN specifies the number of color
bands of the buffer.

390 Appendix A: The default setup configuration file

When you do not want to use defaults
When you do not want to use MappAllocDefault(), you can
individually specify the allocation of any MIL application,
system, digitizer, buffer, or display. The individual allocations
must respect the following:

■ You must allocate the MIL application before using any other
MIL function.

■ You must allocate the MIL system after allocating the MIL
application and before allocating any digitizer, buffer, or
display. You can allocate multiple systems within an
application.

■ You can allocate multiple digitizers, buffers, or displays
within a system.

■ When freeing (de-allocating) individually, you must respect
the reverse of the order required for allocation.

The following illustrates allocating individually, using a
modification of the mgrab.c example (appearing in Chapter 2).

���(KNG�PCOG��OITCD�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�HTQO�VJG�FGHCWNV�ECOGTC�
���
�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�

��/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT��������
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�������������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT������������
����������/KN%COGTC������������%COGTC�KFGPVKHKGT��������������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�������

����#NNQECVG�CP�CRRNKECVKQP����
��/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
����#NNQECVG�C�U[UVGO����
��/U[U#NNQE
/A5;56'/A/'6'14�++��/A&'8���/A%1/2.'6'��/KN5[UVGO��

���
EQPV��

When you do not want to use defaults 391

����#NNQECVG�C�FKIKVK\GT����
��/FKI#NNQE
/KN5[UVGO��/A&'8���/A%#/'4#A5'672��/A&'(#7.6���/KN%COGTC��

����#NNQECVG�C�FKURNC[����
��/FKUR#NNQE
/KN5[UVGO��/A&'8���/A&+52.#;A5'672��/A&'(#7.6�
��������������/KN&KURNC[��

����#NNQECVG�C�DWHHGT����
��/DWH#NNQE�F
/KN5[UVGO���������������/A+/#)'�
�/A241%�
�/A)4#$�
�/A&+52�
���������������/KN+OCIG��

����5GNGEV�C�FKURNC[����
��/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

����)TCD�CP�KOCIG�����
��/FKI)TCD
/KN%COGTC��/KN+OCIG��

����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
��RTKPVH
�#P�KOCIG�JCU�DGGP�ITCDDGF�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF����
��IGVEJCT
��

����4GNGCUG�VJG�DWHHGT����
��/DWH(TGG
/KN+OCIG��

����4GNGCUG�VJG�FKURNC[����
��/FKUR(TGG
/KN&KURNC[��

����4GNGCUG�VJG�FKIKVK\GT����
��/FKI(TGG
/KN%COGTC��

����4GNGCUG�VJG�U[UVGO����
��/U[U(TGG
/KN5[UVGO��

����4GNGCUG�VJG�CRRNKECVKQP���
��/CRR(TGG
/KN#RRNKECVKQP��
_

392 Appendix A: The default setup configuration file

 Appendix B: The MIL Function
Developer’s Toolkit

This chapter covers the purpose and contents of the
toolkit that provides a privileged interface with MIL.

394 Appendix B: The MIL Function Developer’s Toolkit

The MIL Function Developer’s Toolkit
The MIL Function Developer’s Toolkit provides a privileged
interface with MIL that allows MIL programmers to define
commands to extend MIL’s functionality.

You can create your own MIL-type functions (pseudo-MIL
functions) and integrate them directly into the MIL library,
where they behave like standard MIL functions (for example,
respecting error handling and tracing). This is useful to create
high-level packages on top of MIL or to extend the MIL library
function set (for example, by adding new functions with
specialized algorithms). Although pseudo-MIL functions can
also integrate native mode functions, their inclusion makes the
pseudo-MIL function non-portable to other platforms. The
toolkit provides a series of functions (Mfunc...()) designed to
facilitate the creation of pseudo-MIL functions.

An example using the
Function Developer’s Toolkit
In this example, we create a pseudo-MIL function that adds a
constant to a LUT buffer and writes the result into the same
buffer.

Code

��
��
���(KNG�PCOG��OPCVHEV�E�

���5[PQRUKU���6JKU�UJQYU�VJG�WUG�QH�VJG�/+.�PCVKXG�OQFG�RTQITCOOGT	U�MKV��
��������������6JKU�GZCORNG�UJQYU�JQY�VJG�WUGT�ECP�OKZ�/+.�EQFG�CPF
��������������WUGT�EQFG�VQ�ETGCVG�C�RUGWFQ�/+.�HWPEVKQP�
��������������6JKU�GZCORNG�ETGCVGU�C�HWPEVKQP�VJCV�#&&U�C�EQPUVCPV
��������������VQ�C�.76�DWHHGT�DGHQTG�VQ�WUG�VJCV�.76�QP�VJG�FKURNC[��
��������������0QVG��6JG�.WV�OWUV�JCXG�����GPVT[�CPF�DG���DKV�WPUKIPGF�
���
���JGCFGTU����
�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J
�FGHKPG�/#:A.76A5+<'�������
�FGHKPG�/#:A.76A&'26*����
�FGHKPG�&+/'05+10A'4414��

An example using the Function Developer’s Toolkit 395

���(WPEVKQP�FGHKPKVKQP����
XQKF�#FF%QPUV6Q.WV
/+.A+&�.WV+F��WPUKIPGF�EJCT�%QPUVCPV6Q#FF�
]
��/+.A+&��������(WPE�
��UJQTV���������P��6OR8CNWG�
��WPUKIPGF�EJCT�.WV%QPVGPV=/#:A.76A5+<'?�

�����2TGRCTG�VJG�UVCTV�QH�VJG�HWPEVKQP�CPF�TGIKUVGT�VJG�RCTCOGVGTU����
��(WPE���/HWPE#NNQE
�#FF%QPUV6Q.WV�����
��/HWPE2CTCO+F
(WPE���.WV+F�/A.76�/A+0
/A176��
��/HWPE2CTCO%JCT
(WPE���%QPUVCPV6Q#FF��

�����/CTM�VJG�UVCTV�QH�VJG�HWPEVKQP����
���KH�
/HWPE5VCTV
(WPE��
���]
��������&Q�VJG�QRGTCVKQP�WUKPI�C�EWUVQO�HWPEVKQP�CPF�EJGEM�VQ���
��������PQV�GZEGGF�VJG�UWRRQTVGF�NKOKVU�KH�TGSWKTGF�������������
������KH�
�
�/HWPE2CTCO%JGEM
(WPE���^^
����������

/DWH+PSWKTG
.WV+F�/A5+<'A:�/A07..������/#:A.76A5+<'����
����������
/DWH+PSWKTG
.WV+F�/A5+<'A$+6�/A07..�����/#:A.76A&'26*����
������]
�����������4GCF�VJG�.WV�EQPVGPV����
���������/DWH)GV
.WV+F�.WV%QPVGPV��

�����������#FF�VJG�EQPUVCPV����
���������HQT�
P������P���/#:A.76A5+<'��P

�
���������]
��������������%CNEWNCVG�VJG�XCNWG�VQ�YTKVG���
������������6OR8CNWG���
UJQTV�.WV%QPVGPV=P?�
�
UJQTV�%QPUVCPV6Q#FF�
��������������9TKVG�VJG�XCNWG�KH�PQ�QXGTHNQY�GNUG�UCVWTCVG���
������������KH�
6OR8CNWG�����ZHH�
���������������.WV%QPVGPV=P?���
WPUKIPGF�EJCT�6OR8CNWG�
������������GNUG�
���������������.WV%QPVGPV=P?����ZHH�
���������_

�����������9TKVG�VJG�TGUWNV�KP�VJG�.WV����
���������/DWH2WV
.WV+F�.WV%QPVGPV��
������_

������GNUG�
������]
�����������4GRQTV�C�/+.�GTTQT����
���������/HWPE'TTQT4GRQTV
(WPE�/A(70%A'4414
&+/'05+10A'4414�
��������������������������.WV�FKOGPUKQPU�PQV�UWRRQTVGF��
��������������������������5K\G�KU�PQV�����GPVTKGU�QT��
��������������������������&GRVJ�KU�PQV���DKV���
�������������������������/A07..���
�����_
��_
�����/CTM�VJG�GPF�QH�VJG�HWPEVKQP����
��/HWPE(TGG#PF'PF
(WPE��
_
��
EQPV����

396 Appendix B: The MIL Function Developer’s Toolkit

���/CKP�VQ�VGUV�VJG�HWPEVKQP����
XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP��������#RRNKECVKQP�+FGPVKHKGT�����
���������/KN5[UVGO�������������5[UVGO�+FGPVKHKGT����������
���������/KN&KURNC[������������&KURNC[�+FGPVKHKGT���������
���������/KN+OCIG��������������+OCIG�DWHHGT�+FGPVKHKGT����
���������/KN.WV����������������.WV�DWHHGT�+FGPVKHKGT������

�����#NNQECVG�FGHCWNV�CRRNKECVKQP��U[UVGO��FKURNC[�CPF�KOCIG����
��/CRR#NNQE&GHCWNV
/A%1/2.'6'���/KN#RRNKECVKQP���/KN5[UVGO�
��������������������/KN&KURNC[��/A07..���/KN+OCIG��

�����.QCF�C�TGHGTGPEG�KOCIG���
��/DWH.QCF
�$QCTF�OKO���/KN+OCIG��

�����2CWUG���
��RTKPVH
�%WUVQO�RUGWFQ�/+.�HWPEVKQP�ETGCVKQP�CPF�WUCIG��>P>P���
��RTKPVH
�4GHGTGPEG�KOCIG�YCU�NQCFGF��RTGUU�C�MG[�VQ�EQPVKPWG�>P���
��IGVEJCT
��

�����#NNQECVG�C�.76�DWHHGT���
��/DWH#NNQE�F
/A&'(#7.6��/#:A.76A5+<'��/#:A.76A&'26*��/A.76���/KN.WV��

�����5GV�VJG�.76�VQ�C�TCOR�
VTCPURCTGPV�����
��/IGP.WV4COR
/KN.WV��������/#:A.76A5+<'����/#:A.76A5+<'����
�����%CNN�VJG�2UGWFQ�/+.�HWPEVKQP�VQ�CFF�CP�QHHUGV�
�Z����VQ�VJG�.76����
��#FF%QPUV6Q.WV
/KN.WV���Z����

�����5MKR�VCTIGV�U[UVGO�PQV�UWRRQTVKPI�FKURNC[�NWV���
��KH�
/U[U+PSWKTG
/KN5[UVGO��/A5;5A6;2'��/A07..�����/A5;56'/A27.5#4A6;2'�
��]
����RTKPVH
�&KURNC[�.76�PQV�UWRRQTVGF�QP�2WNUCT��+OCIG�PQV�OQFKHKGF�>P���
��_
��GNUG
��]
�������7UG�VJG�PGY�.76�HQT�VJG�FKURNC[����
����/FKUR.WV
/KN&KURNC[��/KN.WV��
�������2CWUG���

����RTKPVH
�6JG�YJKVG�NGXGN�QH�VJG�KOCIG�YCU�CWIOGPVGF�WUKPI�UQOG>P����
����RTKPVH
�TGIWNCT�/+.�HWPEVKQPU�CPF�C�EWUVQO�RUGWFQ�/+.�HWPEVKQP�>P���
��_

��RTKPVH
�2TGUU�C�MG[�VQ�VGTOKPCVG�>P���
��IGVEJCT
��

�����(TGG�VJG�.76�DWHHGT���
���/DWH(TGG
/KN.WV��

�����(TGG�FGHCWNVU���
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

MIL Function Developer’s Toolkit Command Reference 397

MIL Function Developer’s Toolkit
Command Reference
The MIL Function Developer’s Toolkit provides functions that
allow you to create pseudo-MIL functions. The following table
provides an overview of these functions.

MIL developer
functions

Command parameters Description

MfuncAlloc() FunctionName, ParameterNumber Allocate a pseudo-MIL
function.

MfuncAllocId() FunctionId, ObjectType, UserPtr Allocate a pseudo-MIL object
(a user-created object
associated with a MIL
identifier).

MfuncErrorReport() FunctionId, ErrorCode,
ErrorMessage, ErrorSubMessage1,
ErrorSubMessage2,
ErrorSubMessage3

Report an error message.

MfuncFreeAndEnd() FunctionId Free and end a pseudo-MIL
function.

MfuncFreeId() FunctionId, ObjectId Free the MIL identifier
associated with a pseudo-MIL
object.

MfuncGetError() FunctionId, ErrorType, ErrorVarPtr Get error code or message.

MfuncIdGetObjectType() FunctionId, ObjectId Get the object type of a
pseudo-MIL object.

MfuncIdGetUserPtr() FunctionId, ObjectId Get the user pointer
associated with a pseudo-MIL
object.
MfuncIdSetObjectType() FunctionId, ObjectId, ObjectType Assign a new object type to a
pseudo-MIL object.

MfuncIdSetUserPtr() FunctionId, ObjectId, UserPtr Assign a new user pointer to a
pseudo-MIL object.

MfuncModified() BufId Signal the modification of a
MIL buffer.

MfuncParamChar() FunctionId, ParamIndex,
ParamValue

Register a character
parameter.

MfuncParamCheck() FunctionId Read the MIL application
parameter checking flag.

MfuncParamDouble() FunctionId, ParamIndex,
ParamValue

Register a double parameter.

398 Appendix B: The MIL Function Developer’s Toolkit

MfuncParamId() FunctionId, ParamIndex,
ParamValue, ParamIs,
ParamHasAttr

Register a MIL_ID parameter.

MfuncParamLong() FunctionId, ParamIndex,
ParamValue

Register a long parameter.

MfuncParamPointer() FunctionId, ParamIndex,
ParamValue

Register a pointer parameter.

MfuncParamRegister() FunctionId Read MIL application
parameter registering flag.

MfuncParamShort() FunctionId, ParamIndex,
ParamValue

Register a short parameter.

MfuncParamString() FunctionId, ParamIndex,
ParamValue

Register a null terminated
string parameter.

MfuncStart() FunctionId Signal the start of a
pseudo-MIL function.

MIL developer
functions

Command parameters Description

MfuncAlloc 399

MfuncAlloc

 Synopsis Allocate a Pseudo-MIL function.

Format MIL_ID MfuncAlloc(FunctionName, ParameterNumber)

Description This function allows you to associate the current user-created function (that
is, the function calling MfuncAlloc()) with a MIL identifier and allocate it
as a pseudo-MIL function. This function will then be considered as a
standard MIL function, respecting all of MIL environment controls, such as
tracing and error handling.

You must establish the existence of the pseudo-MIL function (with a call to
MfuncAlloc()), before calling any other function. You must also register
each parameter of this pseudo-MIL function by calling the appropriate
MfuncParam...() function. Once this has been done, you must signal the
actual start of the pseudo-MIL function by calling MfuncStart().

Upon completion, you must signal the end of the pseudo-MIL function by
calling MfuncFreeAndEnd().

The FunctionName parameter is a null terminated string specifying the
name of the current user-created function.

The ParameterNumber parameter is the number of parameters passed
to the current user-created function.

Return value The returned value is a MIL identifier for the function; M_NULL on error.

char *FunctionName; Function name
long ParameterNumber; Number of parameters passed
Example mnatfct.c

See also MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer(), MfuncParamShort(), MfuncParamString()

400 MfuncAllocId

MfuncAllocId

Synopsis Allocate a MIL identifier for a user-created object.

Format MIL_ID MfuncAllocId(FunctionId, ObjectType, UserPtr)

Description This function allows you to allocate a MIL identifier and associate it with a
user-created object (such as a structure, or an array). The object is then
known as a pseudo-MIL object. This permits a user-created object to be
recognized by MIL and treated as a standard MIL object, for such procedures
as tracing or error handling.

The FunctionId parameter is the identifier of the pseudo-MIL function
currently in use.

The ObjectType parameter identifies the type of MIL object being
allocated. This type is a bit encoded value and must be composed of
M_USER_OBJECT_1 or M_USER_OBJECT_2 with one of the 16 least
significant bits set (for example, M_USER_OBJECT_1 + 0x1L). You should
use different group types (M_USER_OBJECT_ 1 or M_USER_OBJECT_2) for
objects that are to be used in different MIL modules.

The UserPtr parameter specifies the address of the user-created object that
is to be associated with a MIL identifier. This object can be a structure, an
array, or any other data type.

MilId FunctionId; Function identifier
long ObjectType; Object type
void *UserPtr; Pointer to the user-created object
Return value The returned value is the allocated MIL identifier; M_NULL on error.

See also MfuncFreeId(), MfuncParamId(), MfuncIdGetObjectType(),
MfuncIdSetObjectType(), MfuncIdGetUserPtr(), MfuncIdSetUserPtr()

MfuncErrorReport 401

MfuncErrorReport

Synopsis Report an error message.

Format long MfuncErrorReport(FunctionId, ErrorCode, ErrorMessage,
 ErrorSubMessage1, ErrorSubMessage2,
 ErrorSubMessage3)

Description This function allows you to log an error message using the MIL error
handling mechanism. When this function is called, MIL will treat your error
as a normal MIL error. If error reporting is enabled, the error message will
be printed and all the information will be logged by the MIL error handler.
These errors can be read using the standard MIL error functions
(MappGetError()).

If you report an error with an error code set to M_NULL, you will reset any
pending internal error that a MIL function call, inside your pseudo-MIL
function, might have generated. This is useful if you don’t wish the MIL
error message to be reported. If you don’t clear these errors, or you don’t
report your own error, MIL will detect any pending error when executing
MfuncFreeAndEnd() and report the error message, prefixed with the

MIL_ID FunctionId; Function identifier
long ErrorCode; Error code to log
char *ErrorMessage; Error message to log
char *ErrorSubMessage1; Sub-error message 1 to log
char *ErrorSubMessage2; Sub-error message 2 to log
char *ErrorSubMessage3; Sub-error message 3 to log
name of your pseudo-MIL function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ErrorCode parameter is the numeric code assigned to the pseudo-MIL
function’s group of error messages. It must be M_FUNC_ERROR or greater
(M_FUNC_ERROR+offset), so that it does not conflict with MIL specific
errors.

402 MfuncErrorReport

The ErrorMessage parameter and its sub-messages are null terminated
strings specifying the text of your error message. If you do not want to use
one of the sub-messages, M_NULL can be passed. The error message, or any
sub-error message, must not be longer than M_ERROR_MESSAGE_SIZE
characters (including the terminating null character).

Return value The returned value is M_NULL if an error occurred during the error log
operation; otherwise, not null.

MfuncFreeAndEnd 403

MfuncFreeAndEnd

Synopsis Free and end a Pseudo-MIL function.

Format void MfuncFreeAndEnd(FunctionId)

Description This function signals the end of a pseudo-MIL function, and frees the
identifier associated with it. It assumes that a corresponding call to
MfuncStart() was previously made.

You must call this function to exit the pseudo-MIL function. When
MfuncFreeAndEnd() is called, MIL will treat your function end as a
standard MIL function end. Any pending error within the function will be
reported and, if trace reporting is enabled, the trace message will be printed.
You can control the trace behavior using the normal MIL trace control
function (MappControl()).

The FunctionId parameter is the MIL identifier of the function to
terminate.

See also MfuncAlloc(), MfuncStart()

MIL_ID FunctionId; Function identifier

404 MfuncFreeId

MfuncFreeId

Synopsis Free the MIL identifier associated with a pseudo-MIL object.

Format void MfuncFreeId(FunctionId, ObjectId)

Description This function frees a MIL object identifier that was allocated with the
MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object to
free.

See also MfuncAllocId()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier

MfuncGetError 405

MfuncGetError

Synopsis Get error code or message.

Format long MfuncGetError(FunctionId, ErrorType, ErrorVarPtr)

Description This function allows you to read an error code or message that was
previously reported. This function can be used to check the success of a MIL
function call inside a pseudo-MIL function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ErrorType parameter identifies the type of error you want to read. It
must be set to one of the following:

MIL_ID FunctionId; Function identifier
long ErrorType; Error type
void *ErrorVarPtr; Pointer to a variable for the error

M_INTERNAL Error code returned by the last call to any MIL
function. This code is reset to M_NULL_ERROR
before each MIL function call and is set to a
specific error code if an error occurs while
executing the function. The error code is
written in the location pointed to by
ErrorVarPtr (when not M_NULL) as a long
value and is also returned by
MfuncGetError().

M_INTERNAL_SUB_NB Returns the number of error subcodes
associated to the internal error. The number is

written in the location pointed to by
ErrorVarPtr (when not M_NULL) as a long
value and is also returned by
MfuncGetError().

M_INTERNAL_SUB_1, ...
M_INTERNAL_SUB_3

The nth error subcode associated to the
current error. The error subcode is written in
the location pointed to by ErrorVarPtr (when
not M_NULL) as a long value and is also
returned by MfuncGetError().

M_INTERNAL_FCT The function code associated to the current
error. The function code is written in the
location pointed to by ErrorVarPtr (when
ErrorVarPtr is not M_NULL) as a long value
and is also returned by MfuncGetError().

406 MfuncGetError

The ErrorVarPtr parameter is the address of the variable containing the
error code or message.

To get the M_GLOBAL or M_CURRENT error, use the regular
MappGetError() function.

Return value The returned value is an error code or sub-error code; otherwise, M_NULL.

M_INTERNAL_...+
M_MESSAGE

When M_MESSAGE is added to an
M_INTERNAL... define, the function will
return the string associated with specified
error type. The string will be written in a
character array pointed to by
ErrorVarPtr. This array must be at least
M_ERROR_MESSAGE_SIZE characters in size.

MfuncIdGetObjectType 407

MfuncIdGetObjectType

Synopsis Get the object type of a pseudo-MIL object.

Format long MfuncIdGetObjectType(FunctionId, ObjectId)

Description This function retrieves the object type of an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

Return value The returned value is the object type of the specified object. When the
MIL_ID is not valid, M_NULL is returned if the Id value is less than the
greater valid Id; M_INVALID if the Id value is greater than the greater valid
Id.

See also MfuncAllocId(), MfuncIdSetObjectType()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier

408 MfuncIdGetUserPtr

MfuncIdGetUserPtr

Synopsis Get the user pointer of a pseudo-MIL object.

Format void* MfuncIdGetUserPtr(FunctionId, ObjectId)

Description This function obtains the user pointer of an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

Return value The returned value is the user pointer of the specified object.

See also MfuncAllocId(), MfuncIdSetUserPtr()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier

MfuncIdSetObjectType 409

MfuncIdSetObjectType

Synopsis Assign a new object type to a pseudo-MIL object.

Format void MfuncIdSetObjectType(FunctionId, ObjectId, ObjectType)

Description This function assigns a new object type to an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

The ObjectType parameter is the new object type to be assigned to the
specified object. This type is a bit encoded value and must be composed of
M_USER_OBJECT_1 or M_USER_OBJECT_2 with one of the 16 least
significant bits set (for example, M_USER_OBJECT_1 + 0x1L).

See also MfuncAllocId(), MfuncIdGetObjectType()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier
long ObjectType; New object type

410 MfuncIdSetUserPtr

MfuncIdSetUserPtr

Synopsis Assign a new pointer to a pseudo-MIL object.

Format void MfuncIdSetUserPtr(FunctionId, ObjectId, UserPtr)

Description This function assigns a new user pointer to an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

The UserPtr parameter is the new user pointer to assign to the specified
object.

See also MfuncAllocId(), MfuncIdGetUserPtr()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier
Void *UserPtr; New user pointer

MfuncModified 411

MfuncModified

Synopsis Signal the modification of a MIL buffer.

Format long MfuncModified(BufId)

 Description This function must be used to signal to MIL that the identified buffer has
been modified (altered). MIL will then increment the modification count of
that MIL buffer. This count is used by some MIL functions to manage
automatic updates. The current value of the count is accessible via
MbufInquire().

The BufId parameter is the MIL identifier of the buffer that has been
modified.

Return value The returned value is M_NULL if successful; otherwise, an error was found.

MIL_ID BufId; Buffer identifier

412 MfuncParamChar

MfuncParamChar

Synopsis Register a character parameter.

Format void MfuncParamChar(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a character parameter of the current
pseudo-MIL function. The MfuncParamChar() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the character parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamDouble(),
MfuncParamId(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
char ParamValue; Parameter value

MfuncParamCheck 413

MfuncParamCheck

Synopsis Read the MIL application parameter checking flag.

Format long MfuncParamCheck(FunctionId)

Description This function allows you to read the MIL application parameter checking
flag, which has been set with the MappControl() function. The
MfuncParamCheck() function can be used to determine if the parameters
of the specified pseudo-MIL function must be checked. This is typically used
when you want to save the parameter checking time for a time-critical
pseudo-MIL function.

The FunctionId parameter is the identifier of the pseudo-MIL function in
use.

Return value The returned value is M_NULL if no parameter checking is required;
otherwise, checking is required.

See also MappControl()

MIL_ID FunctionId; Function identifier

414 MfuncParamDouble

MfuncParamDouble

 Synopsis Register a double parameter.

Format void MfuncParamDouble(FunctionId, ParamIndex, ParamValue)

 Description This function allows you to register a double parameter of the current
pseudo-MIL function. The MfuncParamDouble() function should be
called after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the double parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamCheck(),
MfuncParamId(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
double ParamValue; Parameter value

MfuncParamId 415

MfuncParamId

Synopsis Register a MIL_ID parameter.

Format void MfuncParamId(FunctionId, ParamIndex, ParamValue,
 ParamIs, ParamHasAttr)

Description This function allows you to register a MIL_ID parameter of the specified
pseudo-MIL function. The MfuncParamId() function should be called after
a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the pseudo-MIL function
that received the parameter.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the MIL_ID parameter.

The ParamIs parameter specifies the type of MIL object. It must be one, or
more, of the following types to be considered valid:

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
MIL_ID ParamValue; Parameter value
long ParamIs; Type of MIL object represented
long ParamHasAttr; Attribute the MIL object must have

M_IMAGE M_LUT M_STRUCT_ELEMENT
M_KERNEL M_HIST_LIST M_PROJ_LIST

M_EVENT_LIST M_COUNT_LIST M_EXTREME_LIST

M_DISPLAY M_DIGITIZER M_ARRAY

M_APPLICATION M_SYSTEM M_GRAPHIC_CONTEXT

M_BLOB_RESULT M_BLOB_FEATURE_LIST M_PAT_MODEL

M_PAT_RESULT M_OCR_FONT M_OCR_RESULT

M_MEAS_MARKER M_MEAS_RESULT M_MEAS_CONTEXT

M_USER_OBJECT_1 M_USER_OBJECT_2

416 MfuncParamId

The ParamHasAttr parameter specifies what kind of attribute the MIL
object must have, in order to be considered a valid MIL_ID parameter for the
specified function. Either M_IN or M_OUT (or both) must be specified, to
indicate if the buffer is used for input or output. Optionally, you can specify
one or more additional attributes from the following list: M_GRAPH, M_DISP,
M_GRAB.

Note that the arguments tagged as M_OUT will have their internal
modification count incremented to signal that they have been modified.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MfuncParamLong 417

MfuncParamLong

Synopsis Register a long parameter.

Format void MfuncParamLong(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a long parameter of the current
pseudo-MIL function. The MfuncParamLong() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the long parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
long ParamValue; Parameter value

418 MfuncParamPointer

MfuncParamPointer

Synopsis Register a pointer parameter.

Format void MfuncParamPointer(FunctionId, ParamIndex, *ParamValue)

Description This function allows you to register a pointer parameter of the current
pseudo-MIL function. The MfuncParamPointer() function should be
called after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the pointer parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
void *ParamValue; Parameter value

MfuncParamRegister 419

MfuncParamRegister

Synopsis Read the MIL application parameter registering flag.

Format long MfuncParamRegister(FunctionId)

Description This function allows you to read the MIL application parameter registering
flag. This function can be used to know if the parameters of the specified
pseudo-MIL function must be registered. This is typically used when you
want to save the parameter registration time for some time-critical
pseudo-MIL functions.

The FunctionId parameter is the identifier of the pseudo-MIL function in
use.

Return value The returned value is M_NULL if no parameter registering is required;
otherwise, registering is required.

MIL_ID FunctionId; Function identifier

420 MfuncParamShort

MfuncParamShort

Synopsis Register a short parameter.

Format void MfuncParamShort(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a short parameter of the current
pseudo-MIL function. The MfuncParamShort() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the short parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
short ParamValue; Parameter value

MfuncParamString 421

MfuncParamString

Synopsis Register a null terminated string parameter.

Format void MfuncParamString(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a null terminated string parameter of
the current pseudo-MIL function. The MfuncParamString() function
should be called after a call to MfuncAlloc() and before a call to
MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the string parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer(), MfuncParamShort()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
void ParamValue; Parameter value

422 MfuncStart

MfuncStart

Synopsis Signal the start of a pseudo-MIL function.

Format long MfuncStart(FunctionId)

Description This function signals to MIL the actual start of the specified pseudo-MIL
function. When this function is called, MIL will treat your function start as
a standard MIL function start. If trace reporting is enabled, the trace
message will be printed. You can control the trace behavior using the normal
MIL trace function (MappControl()).

Note that if a MIL identifier was registered in the function parameter list
with MfuncParamId(), the validity of that identifier will be checked
during MfuncStart() execution, and a MIL error will be reported if that
identifier is not valid.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function to start.

Return value The returned value is M_NULL if an error occurred; otherwise, not null.

See also MfuncAlloc(), MfuncFreeAndEnd(), MfuncParamId(), MappControl()

MIL_ID FunctionId; Function identifier

Appendix C: Troubleshooting

This appendix discusses error reporting, and suggests
possible reasons for reported problems.

424 Appendix C: Troubleshooting

Error reporting
MIL has an error-reporting mechanism that is adaptable to
your application development stage. MIL can report
application errors to the screen or by using MappGetError().
During application development, it is probably best to have
errors reported to the screen so that you can quickly debug the
application. You control error reporting to the screen, using
MappControl(); by default, error reporting to the screen is
enabled.

In some circumstances, you might want your application to act
on an error. You can do this by testing for the error and acting
on it. For example, we recommend that it acts upon errors that
occur during data buffer allocation. In this case, the application
can inquire about the application error-code variable, using
MappGetError(). You can also have your application act on
errors by associating a function to them, using
MappHookFunction().

Did an error occur? MappGetError() allows you to check for the success of the
previous command call or that of a sequence of previous
command calls. If this command returns an error code other
than M_NULL_ERROR, you can use MappGetError() again to
obtain a more detailed description of the error.

The error description MappGetError() can provide the name of the function that
caused an error, a system-error message associated to the error,

and more specific sub-messages. Note, it returns the same
messages as those printed to the screen when error reporting
is enabled.

Possible solutions If the error messages do not provide sufficient information, you
should refer to the next section for possible causes for the errors
and suggested solutions. The error messages are in
alphabetical order. Note, error messages for the more specific
blob analysis and pattern recognition modules are
explained in separate sections at the end of this appendix. If
these suggestions don’t work for you, and you cannot resolve
the problem, see our website, www.matrox.com, or contact the
Matrox Customer Support Group.

Error messages explained 425

Error messages explained
☛ "Allocation error."

Error code: M_ALLOC_ERROR and M_ALLOC_ERROR_2

■ "Application already exists for this task."

You cannot allocate more than one MIL application in the
same Host environment.

■ "Buffer type not supported."

You cannot allocate the buffer because the type (e.g. LUT) or
depth (e.g. 16-bit) is not supported by the target platform.

■ "Cannot allocate system."

The application cannot allocate the requested system. This
can occur if there is insufficient memory, or communication
with the specified system cannot be established.

■ "Cannot allocate digitizer."

The application cannot allocate the requested digitizer. This
can occur if there is insufficient memory, or the digitizer
cannot be initialized as specified.

■ "Cannot allocate display."

The application cannot allocate the requested display. This
can occur if there is insufficient memory, or the display cannot
be initialized as specified.
■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate a required temporary
buffer, or you have allocated the maximum number of buffers.
Free all buffers that are no longer required.

■ "Not enough host memory to allocate buffer."

There is insufficient memory on the Host to allocate the
specified buffer. Free Host memory or Host buffers that are
no longer required.

426 Appendix C: Troubleshooting

■ "Not enough host memory to do operation."

There is insufficient memory on the Host to perform the
specified operation. Free Host memory or Host buffers that
are no longer required.

■ "Not enough memory to allocate application."

There is insufficient memory to allocate and start the MIL
application.

■ "Not enough memory to allocate buffer."

There is insufficient memory in the appropriate location to
allocate the specified buffer, or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required, or allocate large buffers before smaller ones.

☛ "Application free operation error."
Error code: M_APP_FREE_ERROR

■ "Application still has system(s) associated to it."

The application cannot be freed because it still has system(s)
allocated. Free all systems allocated within the application,
then free the application.

■ "Default host system still has buffer(s) associated with
it"

The Host system cannot be freed because it still has buffer(s)
associated with it. Free all associated buffers, then free the

Host system.

☛ "Buffer access error."
Error code: M_ACCESS_ERROR

■ "Cannot export buffer."

A MIL buffer cannot be exported to a file in the specified file
format. Possible reasons for this error are:

❐ There might be insufficient Host RAM to allocate
temporary work space.

❐ There might be insufficient disk space to save the buffer.

❐ Export of this type of MIL buffer might not be supported.

Error messages explained 427

■ "Cannot import buffer."

A file cannot be imported into a MIL buffer for the same
reasons indicated in the "Cannot export buffer" error, or due
to one of the following:

❐ The specified file might not be a valid MIL file.

❐ The specified file might be corrupted.

■ "Cannot M_RESTORE a M_RAW file format buffer."

You are trying to restore a file that was stored in M_RAW
format. A file stored in raw format does not have any header
data identifying its buffer parameters. Therefore, to restore
this data file, you must allocate an appropriate MIL buffer,
then import the data, using M_LOAD.

■ "Cannot restore buffer."

A restore operation cannot be successfully completed for the
same reasons indicated in the "Cannot import buffer" error.

■ "Source buffer must be an M_IMAGE buffer."

The buffer does not have the expected M_IMAGE attribute.

☛ "Buffer free operation error."
Error code: M_BUFFER_FREE_ERROR

■ "Buffer still has child(ren) associated to it."

A MIL buffer cannot be freed because it still has child
buffer(s) associated to it. Free all associated child buffers,

then free the parent buffer.

■ "Use MnatBufDestroy() on this kind of buffer."

You are trying to use a standard MIL command to destroy a
buffer allocated in native mode with MnatBufCreate...().

428 Appendix C: Troubleshooting

☛ "Call context error"
Error code: M_CALL_CONTEXT_ERROR

■ "Cannot allocate temporary buffer in memory."

There is insufficient Host memory to allocate the temporary
buffer required for the operation, or you have allocated the
maximum number of buffers. Free Host memory or Host
buffers that are no longer required.

☛ "Child allocation error."
Error code: M_CHILD_ERROR

■ "Cannot allocate temporary child buffer in memory."

There is insufficient memory to allocate a temporary child
buffer required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "Not enough memory to allocate child buffer."

There is insufficient memory left to allocate the specified
buffer. Free all buffers that are no longer required.

☛ "Digitizer error."
Error code: M_DIGITIZER_ERROR

■ "Digitizer and buffer must belong to same system."

The grab buffer is not allocated on the same system as the
digitizer. Allocate them on the same system.
■ "Digitizer LUT dimensions are not compatible with the
user LUT."

The LUT buffer does not have the required number of entries
to map the range of possible image buffer pixel values.
Ensure that the LUT buffer and the digitizer LUTs have the
same number of entries and color bands.

☛ "Display error."
Error code: M_DISPLAY_ERROR

■ "Buffer not currently selected on display."

You cannot de-select a buffer that is not currently selected on
the display.

Error messages explained 429

■ "Cannot associate a M_PSEUDO LUT with a
monochrome display."

The target platform does not support a pseudo-color LUT
with a monochrome display.

■ "Display and buffer must belong to same system."

The buffer to display is not allocated on the same system as
the display. Allocate them on the same system.

■ "Display LUT dimensions are not compatible with the
user LUT."

The LUT buffer does not have the required number of entries
to map the range of possible image buffer pixel values.
Ensure that the LUT buffer and the target display output
LUTs have the same number of entries and color bands.

■ "Zoom factors must be between -16 and 16 inclusive
(except 0)."

You cannot zoom with a factor outside the accepted range.

☛ "File access error."
Error code: M_FILE_ERROR

■ "Cannot open input file."

The file cannot be found or access is denied.

■ "Cannot open output file."

The file cannot be found or access is denied.
■ "Cannot read file."

This can occur if the specified file is read-protected or a
disk-access error has occurred.

■ "Cannot write to file."

Write-access is denied or a disk-access error has occurred.

■ "Not a MIL file."

The specified file does not have a MIL file format.

430 Appendix C: Troubleshooting

☛ "Function start error."
Error code: M_FUNCTION_START_ERROR

■ "No application allocated yet, allocate one."

A function is called prior to a MIL application allocation. Use
MappAlloc() or MappAllocDefault() to allocate the
application before performing any other MIL operation.

☛ "Inappropriate MIL ID."
Error code: M_INVALID_NATURE

The specified MIL object does not have the appropriate
attributes for the operation. For example, it might occur when
an operation expects an image buffer identifier and it is given
LUT buffer identifier instead.

"Invalid parameter n."

The nth parameter is not valid.

☛ "Invalid attributes."
Errorcode: M_INVALID_ATTRIBUTE

■ "Invalid parameter n."

The nth parameter does not have the appropriate attribute(s).

☛ Invalid MIL ID."
Error code: M_INVALID_ID

The specified system, digitizer, display, or buffer identifier is

not valid. That is, its corresponding object was not successfully
allocated before you tried to use it. If you have performed the
object allocation, check to make sure that it was successful.

■ "Invalid parameter n."

The nth parameter is not valid.

☛ "Invalid parameter."
Error code: M_INVALID_PARAM_ERROR, M_INVALID_PARAM_ERROR_2 and
 M_INVALID_PARAM_ERROR_3

■ "Bad parameter value."

A parameter is set to an invalid value. Check that the given
value is within0 the parameter’s range.

Error messages explained 431

■ "For this operation the grab mode must be
asynchronous."

You cannot do an asynchronous operation when the grab
mode setting is synchronous (see MdigControl()).

■ "For this operation, you should supply a LUT buffer
with at least 512 entries."

Your LUT buffer has an insufficient number of entries for the
target operation.

■ "No graphic text fonts selected."

The specified graphics context does not specify a font to use
to draw text.

■ "One parameter does not reside within the buffer’s
limits."

A specified parameter exceeds the target buffer’s limits. This
is typically caused when you try to allocate a child partially
outside its parent.

■ "Param n not in supported list."

The specified nth parameter value is not one of the supported
values for that parameter.

■ "Pointer must be non Null."

An M_NULL pointer is passed to a function that needs to
return more than one element.
■ "Scale factors out of supported range."

The specified scale factor is outside the supported range of
the target system, or no scaling is supported.

■ "Specified center is outside buffer."

You cannot specify a center of rotation that is outside the
specified buffer coordinates.

432 Appendix C: Troubleshooting

■ "This type of conversion requires two 3 band buffers."

"This type of conversion requires a 3-band source buffer."

"This type of conversion requires a 3-band destination
buffer."

You cannot perform a conversion between buffers that do not
have the appropriate number of bands.

☛ "MIL driver obsolete."
■ "Version must be (version #) or higher."

Your MIL driver is older than the specified version and is not
supported by the current version of the library.

☛ "MIL file access error."
Error code: M_MIL_FILE_ERROR, M_MIL_FILE_ERROR_2 and
 M_MIL_FILE_ERROR_3.

■ "Bad file format detected."

■ Check the file to ensure it is not corrupted.

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "Cannot close file."
A disk-access error has occurred.

■ "Cannot open file."

The file is not found or access is denied.

■ "Cannot read file."

The specified file is read protected or a disk-access error has
occurred.

■ "Cannot seek in file."

MIL cannot read the specified file.

Error messages explained 433

■ "Cannot write to file."

Write-access is denied or a disk-access error has occurred.

■ "Not a MIL file."

A MIL file format is anticipated but not found.

■ "Only 8, 16 or 32 BitsPerSample supported."

The file bit size setting is not 8, 16, or 32 bits/sample.

■ "Only compression type 1 supported."

The target file is compressed and MIL cannot read it.

■ "Only identical BitsPerSample for every sample
supported."

The bits/sample are not identical for every sample in the
TIFF file.

■ "Only PlanarConfiguration 2 supported for
multi-band images."

The PlanarConfiguration parameter is not equal to 2 in the
TIFF file. MIL only supports planar mode for color images.

■ "PhotometricInterp incompatible with
SamplePerPixel."

The photometric interpolation setting of the file is
incompatible with the sample/pixel supported by MIL (type
1 for monochrome buffers and type 2 for multi-band buffers).

This occurs when the TIFF file contains a palletized image,
since only grayscale or true color image formats are
supported.

■ "The image file does not conform to the TIFF 6.0
specification."

The image file has been created according to an older,
unsupported, TIFF specification.

434 Appendix C: Troubleshooting

■ "Up to 8 Samples Per Pixel supported."

The samples/pixel is greater than 8 in the TIFF file.

■ "Wrong Byte Order, Only INTEL Byte Ordering
supported."

The file has the wrong byte ordering. Only INTEL byte
ordering is supported by the MIL TIFF handler.

☛ "Processing error."
Error code: M_PROCESSING_ERROR

■ "All buffers do not have the same working system."

"Cannot find any working system between buffers."

"Cannot process a HOST buffer as a whole and a temporary
buffer."

The location of the specified buffers is not valid for the
requested operation.

☛ "System command error."
Error code: M_COMMAND_DECODER_ERROR

■ "Operation execution failed."

The target system cannot execute the requested operation.

■ "Requested operation not supported."

The target system does not support the requested operation.
☛ "System free operation error."
Error code: M_SYSTEM_FREE_ERROR

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "System still has buffer(s) associated to it."

You cannot free a system that still has buffer(s) allocated on
it. Free those buffers, then free the system.

Error messages explained 435

■ "System still has digitizer(s) associated to it."

You cannot free a system that still has digitizer(s) allocated
on it. Free those digitizers, then free the system.

■ "System still has display(s) associated to it."

You cannot free a system that still has display(s) allocated on
it. Free those displays, then free the system.

☛ "TIFF file access error."
Error code: M_TIFF_ERROR and M_TIFF_ERROR_2

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "Cannot close file."

A disk-access error has occurred.

■ "Cannot open file."

The TIFF file is not found or access is denied.

■ "Cannot read file."

This can occur if the specified TIFF file is read protected or
a disk-access error has occurred.

■ "Cannot write to file."
Write-access to the specified TIFF is denied or a disk-access
error has occurred.

■ "Not a TIFF file."

The specified file is not detected as a TIFF file. This can occur
if the file is of the wrong type or if it is corrupted.

■ "Only 8, 16 or 32 BitsPerSample supported."

The file bit size setting is not 8, 16, or 32 bits/sample.

436 Appendix C: Troubleshooting

■ "Only compression type 1 supported."

The target TIFF file is compressed and MIL TIFF handler
cannot read it.

■ "Only identical BitsPerSample for every sample
supported."

The bits/sample ratio is not identical for every sample in the
TIFF file.

■ "Only PlanarConfiguration 2 supported for
multi-band images."

The PlanarConfiguration parameter is not equal to 2 in the
TIFF file. MIL only supports planar mode for color images.

■ "PhotometricInterp incompatible with
SamplePerPixel."

The photometric interpolation setting of the file is
incompatible with the sample/pixel supported by MIL (type
1 for monochrome buffers and type 2 for multi-band buffers).
This occurs when the TIFF file contains a palletized image,
since only grayscale or true color image formats are
supported.

■ "The image file does not conform to the TIFF 6.0
specification."

The image file has been created according to an older,
unsupported, TIFF specification, or it is incomplete.
■ "Up to 8 Samples Per Pixel supported."

The samples/pixel ratio is greater than 8 in the TIFF file.

■ "Wrong Byte order, only INTEL Byte Ordering
supported."

The file has the wrong byte ordering. Only INTEL byte
ordering is supported by the MIL TIFF handler.

Driver error messages explained 437

Driver error messages explained
☛ "Asynchronous grab mode not supported."

Error code: M_ERROR_SYSTEM_START_CODE + 76L

The target system does not support asynchronous grab mode.

☛ "Board initialization failed."
Error code: M_ERROR_SYSTEM_START_CODE + 11L

Communication with the specified board cannot be established
or initialization is impossible.

☛ "Board selection failed."
Error code: M_ERROR_SYSTEM_START_CODE + 12L

The specified board cannot be selected as the target of the
requested operation. Communication is impossible or broken.

☛ "Buffer(s) still allocated on that system."
 Error code: M_ERROR_SYSTEM_START_CODE + 1L

You cannot free a system without freeing all currently allocated
system buffers.

☛ "Buffer type not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 22L

The selected buffer type is not supported by the target system.

☛ "Can not allocate digitizer."
Error code: M_ERROR_SYSTEM_START_CODE + 56L
The digitizer cannot be initialized as specified.

☛ "Can not allocate display."
Error code: M_ERROR_SYSTEM_START_CODE + 65L

The display cannot be initialized as specified.

☛ "Can not allocate LUT buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 55L

The target system does not support LUT or allocation of a
custom LUT.

438 Appendix C: Troubleshooting

☛ "Can not allocate temporary buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 85L

Insufficient memory available on the system boards or on the
Host. Free any buffers that are not in use.

☛ "Can not display buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 63L

The buffer is allocated for display or the system does not
support the display of that type of buffer.

☛ "Can not grab buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 70L

The buffer is not allocated as a grab buffer or the system does
not support the grab.

☛ "Can not open specified .DCF file."
Error code: M_ERROR_SYSTEM_START_CODE + 29L

The display configuration file is not found or access is denied.

☛ "Can not undisplay buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 66L

You cannot de-select a buffer that is not selected on the display.

☛ "Can not update display."
Error code: M_ERROR_SYSTEM_START_CODE + 78L

This can occur when trying to update the display with new data.

Access to the display may be impossible.

☛ "Can not update displayed buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 64L

Access to the displayed buffer might be impossible.

☛ "Character font not supported on system"
Error code: M_ERROR_SYSTEM_START_CODE + 27L

The selected character font is not supported on the target
system.

Driver error messages explained 439

☛ "Continuous grab must be halted before next
operation."

Error code: M_ERROR_SYSTEM_START_CODE + 14L

You cannot execute the requested command while performing
a continuous grab on the target system. Halt the grab before
issuing another command.

☛ Data format name or file name not found."
Error code: M_ERROR_SYSTEM_START_CODE + 56L

Verify the selected data format name and file name.

☛ "Device(s) still allocated on that driver."
Error code: M_ERROR_SYSTEM_START_CODE + 9L

You cannot free a system without freeing all of its devices
(digitizer or display).

☛ "Digitizer channel not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 21L

The selected digitizer channel is not supported.

☛ "Digitizer configuration error."
Error code: M_ERROR_SYSTEM_START_CODE + 13L

The digitizer cannot be initialized as specified.

☛ "Digitizer format not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 25L
The selected digitizer format is not supported.

☛ "Digitizer(s) still allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 5L

You cannot free a system without freeing all of its digitizers.

☛ Display configuration error."
Error code: M_ERROR_SYSTEM_START_CODE + 18L

The display cannot be initialized as specified.

440 Appendix C: Troubleshooting

☛ Display(s) still allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 6L

You cannot free a system without freeing all of its displays.

☛ "Error changing channel."
Error code: M_ERROR_SYSTEM_START_CODE + 71L

The selected channel is invalid or there is no digitizer connected
to that channel.

☛ "Error changing reference."
Error code: M_ERROR_SYSTEM_START_CODE + 72L

Verify whether the system supports reference level changes.

☛ "Error setting LUT."
Error code: M_ERROR_SYSTEM_START_CODE + 67L

This might be due to insufficient memory to perform the
operation.

☛ "Incompatible buffer memory organization."
Error code: M_ERROR_SYSTEM_START_CODE + 10L

The memory organization of the buffers used in the requested
operation are not compatible with each other on the target
system. This is determined by your hardware.

☛ "Input device not responding."
Error code: M_ERROR_SYSTEM_START_CODE + 16L
The digitizer is not sending data to the system. Ensure that the
digitizer is properly connected to the system.

The following errors occur when the requested item is
inappropriate or outside the supported range for your system.
Verify your system’s restrictions on the specified item.

☛ "Invalid board number."
Error code: M_ERROR_SYSTEM_START_CODE + 50L

☛ "Invalid digitizer channel."
Error code: M_ERROR_SYSTEM_START_CODE + 15L

☛ "Invalid digitizer number."
Error code: M_ERROR_SYSTEM_START_CODE + 80L

Driver error messages explained 441

☛ "Invalid display number."
Error code: M_ERROR_SYSTEM_START_CODE + 79L

☛ "Invalid horizontal scaling factor."
Error code: M_ERROR_SYSTEM_START_CODE + 74L

☛ "Invalid initialization flag."
Error code: M_ERROR_SYSTEM_START_CODE + 28L

☛ "Invalid number of fields."
Error code: M_ERROR_SYSTEM_START_CODE + 82L

☛ ""Invalid scaling factor."
Error code: M_ERROR_SYSTEM_START_CODE + 69L

☛ "Invalid system number."
Error code: M_ERROR_SYSTEM_START_CODE + 51L

☛ "Invalid vertical scaling factor."
Error code: M_ERROR_SYSTEM_START_CODE + 75L

☛ "LUT is more than 256 elements."
Error code: M_ERROR_SYSTEM_START_CODE + 54L

☛ "LUT not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 73L

- - - - - - - - - - - end of group - - - - - - - - - - -

442 Appendix C: Troubleshooting

☛ "Not enough host memory"
Error code: M_ERROR_SYSTEM_START_CODE + 2L

There is insufficient host memory available. Free all unused
buffers residing on the Host.

☛ "Not enough memory to allocate buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 23L

There is insufficient memory to allocate the specified buffer on
the target system. Free all unused buffers.

☛ "Pan factor not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 19L

The requested pan factor is outside of the supported range.

☛ "Parameter to inquire not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 20L

Inquiry of this parameter is not supported or the type of inquiry
is invalid.

☛ "Synchronous grab mode not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 77L

The target digitizer does not support synchronous grab. You
must use asynchronous mode.

☛ "Too many buffers allocated on that system."
Error code: M_ERR_SYSTEM_START_CODE + 3L
You have exceeded the number of allowable system buffers.
Free unused buffers.

☛ "Too many digitizers allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 7L

You have exceeded the number of allowable system digitizers.

☛ "Too many display allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 8L

You have exceeded the number of allowable system displays.

Driver error messages explained 443

☛ "Too many systems of that type allocated"
Error code: m_ERROR_SYSTEM_START_CODE + 4L

You have exceeded the number of allowable systems of the
specified type.

☛ "Zoom factor not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 17L

The requested zoom factor is outside the supported range.

444 Appendix C: Troubleshooting

Index

A
AC Huffman table 139
acquisition

attribute 39, 209, 212, 216, 244, 247
continuous 33, 308
image 32, 104, 307
input LUT 129
precondition 114

address
Host 55
logical 55

allocate
application 20, 183
buffers 29, 169
child buffer 42, 221, 223, 225–226
data buffer 36
defaults 21, 168, 185
digitizer 32, 104, 169, 296
display 66, 169, 320
graphics context 98, 352
image buffer 27, 39
LUT buffer 61–62
multi-band buffer 128, 216
one-dimensional buffer 209
pseudo-MIL function 399
pseudo-mil identifier 400
system 167, 372
thread 190

pseudo-MIL, parameter registering flag 419
simultaneous processing 146
starting 167

application context 148
architecture, display 322
arcs, draw 100, 354
arcs, draw filled 355
attributes, data buffer usage 209, 212,
216, 244, 247

avi files 252, 256, 273

B
background color

associate to graphics context 99, 356
inquire 366

Binary buffers 49
binary buffers, packed 38
blanking, display 71, 331
brightness, adjust on input 113
buffer

accessing a 54
RGB 47
storage format 46–49, 51–52
user-allocated 55

buffers
address 55
binary 49
displayable 39
grab 39
pitch of 55
YUV 49
two-dimensional buffer 212
allocation error 41
analog reference levels 318
annotation

image 98
non destructive 77

application
allocate 183
building 20
child 148
control environment 188
control module 171
free 194
inquire environment 205
pseudo-MIL, parameter checking flag 413

C
camera

acquisition from 32, 104
adjusting/focusing 33
sophisticated 104
specification 105, 296

character parameter
pseudo-MIL 412

characters, text 102, 177, 371
child application 148
child buffers 42

allocate 42, 221, 223, 225–226
ancestor buffer 277
attributes 221, 223, 225–226

data buffer attributes 42
definition 36
dimensions 42
display 43, 75
display multiple 72
inheriting parent features 42
LUT 61
multiple dimensions 221, 223, 226
offset 221, 223, 225–226
offset from parent 42
parent buffer 277
physical space 221, 223, 225–226
purpose 169
returned coordinates 42, 221, 223, 225–
226

size 42
type 221, 223, 225–226

circles, draw 100, 354
clear

buffer 228, 357
display 71, 331
graphics image buffer 99

clipping
borders 43
data 234
graphics 101

color
handling techniques 127
input LUT 129

color band 37, 216, 244, 247
LUT 87

color images

commands
Function DevelopersToolkit’ 397
functions 21
MIL, command summary 171
predefined constants 180
pseudo-MIL 158, 394

communication channels 20, 23, 167
compensation

memory 189
processing 188

compiling 22
compressing images 136
conditional buffer, creating 98
continuous grab 33, 308
contrast 113

image, adjusting 113
control

application environment settings 188
areas processed 42
buffer features 229
digitizer 299
display 325
graphic context 359
messages, error 188, 190
parameter checking 188
processing compensation 188
system processing 374
thread 190
timer 208
trace mechanism 188

conversion
data format 45, 253, 269
allocate buffer 128, 216
allocate child buffer 221, 223
copy 236, 238
copy single band 43
create buffer 247
dealing with 128
displaying 130, 346–347
grabbing 128, 307–308
loading 131, 282, 295
put data in band 44
reference levels 114
saving 131, 282, 295

command reference
order 180
quick reference 171
status section 180

coordinates
child buffer 42
of a pixel 58
text writing 102

copy
bit truncation/extension 44
clip, and 43, 234
color band 43, 62, 236, 238
conditional 43, 241
data 43, 233, 236, 238, 241, 259–260,
262, 265, 283–284, 286, 291–292

data line 289
data to LUT 62
mask 43, 243
specific buffer areas 43

Corona
exposure 120, 123–125

automatic model 122
bypass model 124

triggers 120, 123–125
custom

window, VGA 81

D
data allocation and access module 35, 172
data buffer

allocation 209, 212, 216, 244, 247
ancestor 277
attributes 38, 41, 209, 212, 216, 244, 247
automatically allocated 45
child 36, 42
clear 99, 228, 357
clip border 43, 234
color band 37, 128, 216, 244, 247
control 229
copy 233
copy color 236, 238
copy theoretical line 265
defined 36, 169
depth 38, 209, 212, 216, 244, 247
dimensions 37
display 65
export data 45, 253
free 37, 258
get data, put in array 44
handling 35

put data 44, 283–284, 286, 291–292
range 38, 209, 212, 216, 244, 247
restore 45, 293
retrieve data 259–260, 262, 267–268
save 45, 253, 295
sign 209, 212, 216, 244, 247
two-dimensional 244
type 38, 216, 244, 247
write data 289

data format, input device 105, 296
data generation

LUT 61, 351
module 176

data objects, manipulation concepts 168
data type 29
data, overwriting 29
DC Huffman table 139
dcf files 105
debugging 170
decompressing images 136
default graphics context 98
defaults

application 185
display 387
free 195
image buffer 18, 21, 29, 31, 388
initialization flag 387
initializing 18
input device 104, 388
input LUT 115
setup 386
system 387
import 45
import data 269
incorrect usage 41
inquire 251, 276
integer 38
intended usage 39
load 253
location 38
LUT, see LUT buffer 61
management 44
multiple dimensions 216, 247
multiple, display 43
multiple, handling 43
packed binary 38
parent 277
pseudo-MIL, modification 411

depth
data buffer 38
display 70

destination buffer 29
device

control module 103
digitizer

allocate 32, 104, 296
color data format 128
configuration format 105
control 299
data format 296
event hook 311
free 104, 306
input channel 106, 298
inquire 105, 313

LUT 64, 114, 129, 317
number 106, 296
reference levels 113, 318

digitizer configuration files 105
DirectDraw 88, 91
DirectDraw underlay-surface 91
DirectDraw underlay-surface display 91
DirectDraw underlay-surface display archi-
tecture 91, 322

display 88
allocation 20, 320
annotating 76

Windows GDI 78
architectures 322
border handling 66
buffer 29, 43
clear 71
color 86
color image 130
control behavior 325
control module 65, 175
dual-screen 67
example 77, 82
format 320
free 82, 332
image buffer 346–347
image location 66
inquire 335
LUT 63, 86, 130, 340
mode

non-windowed 69
windowed 69

Windows, VGA 81
zoom 75, 348

display architecture 322
display architectures 88
display mode

windowed 92
Displayable buffers 39
dots, draw 100, 361
double buffering, definition 116
DrawDIBDraw()

VGA 92–94, 322, 324
drawing 98, 100
dual-screen configuration

displaying in 67
VGA 67

dynamic range 113

E
edge

rising/falling 302–303
error reporting

appendix 424
automatic 31
code 196
hook 202, 333
memory, insufficient 41
message control 21, 188, 190
messages 170, 196, 424
pseudo-MIL function 401, 405
screen 169, 424
suberror code 196
monochromatic effect 63
monochrome buffer 28
multi-head 68
multiple buffers 72
non 8-bit buffers 70
number 320
pan 75, 345
pseudo-color effect 63
psuedo color LUT 87
scroll 75, 345
single-screen 67
size and depth 70
true color effect 64
user-defined window 81
VGA 67
VGA system 81

thread 148–149
use 169

examples
color, run with 129
display in user-defined window 82
display multiple buffers 72
display with overlay 77
Function DeveloppersToolkit’ 394
general information 18, 23
grab 32
image allocation/display 30
installing 18
MIL sample program 23
mmultdis.c 72
modify for color 28
mstart.c 23

mwindisp.c 82
Native Mode ProgrammersToolkit’ 159
pseudo-function development 394
standard defaults 28
zooming 75

export data buffer 45, 253
exposure 125

automatic model
Corona 122

bypass model
Corona 124

Corona 120

F
field grabbing 107, 302
file format 45, 253
files

avi 252, 256, 273
filled-in shapes 101, 355

boundary-type seed fill 362
font

associate to graphics context 102, 363
inquire 366
predefined 102
scale 102, 364
size 102, 364

foreground color
associate to graphics context 99, 358
fill with 101
inquire 366

frame

function
development 159, 394
execution success 21
hook 170, 202, 311, 333
pseudo-MIL, allocate 399
pseudo-MIL, example 394
pseudo-MIL, free 403
pseudo-MIL, start 422
user-created 15

Function Developers Toolkit 393
Function DevelopersToolkit

command summary 397
example 394

functions
commands 21

functions See also, commands 180

G
gamma correction 64
Genesis

system 373
global library state 386
Grab 39
grab 115

color images 128
continuous 33, 308
data buffer 39, 128
example 32
fields 107
frames 33, 107
halt 33, 310
grabbing 33, 107
frame buffer 66
frame buffer, display 77
free

application 194
application defaults 195
buffer, data 37, 258
defaults 168, 195
digitizer 306
display 332
graphics context 98, 177, 365
pseudo-MIL function 403
pseudo-MIL identifier 404
system 378

image 32, 104, 307
mode 116
monochrome 32
multi-dimensional buffers 128
scale 299
synchronization 116
wait 309

Grab buffers 39
GrabAndWarp()

example 159
graphics 98

arcs, draw 100, 354
boundary type seed fill 101, 362
buffer, clear 99, 357
capabilities 14
circles, draw 100, 354

clipping 101
dots, draw 100, 361
filled elliptic arcs, draw 100, 355
filled rectangles, draw 100, 177, 370
filled-in shapes 100
lines, draw 100, 177, 368
module 97
non-destructive annotation 77
outline, draw 100
parameters 99
rectangles, draw 100, 369
text, write 102, 177, 371

graphics context
allocate 98, 352
background color, associate 99, 356
control 359
default 98, 353
definition 98
font scale, associate 102, 364
foreground color, associate 99, 358
free 98, 177, 365
inquire 366
object parameters 99
text font, associate 102, 363

H
halt grabbing 33, 310
header file 22
hook

digitizer event 311
error 202, 333

hue 224, 236, 239, 261, 263, 285, 287
HLS 221

Huffman encoding 138–139

I
identifier, MIL objects 180
image

grabbing 32
image buffer

acquisition 39
allocation 27, 29–30, 38–39
clear 228, 357
color 28, 33
conditional 98
default 21, 29, 129
defined 29
destination 29
display 30, 39
display border 66
display multiple 72
display position 66
free 37
map through LUT 60
removing from display 71, 331
select for display 66, 346
select window for display 347
size 29
source 29
two-dimensional 28–29, 33
uses 29

import data 269

get information 199
to an event 202
trace 202, 333
user-defined function 170

Host
communication 167
screen 169

host
communication 20
CPU 14
default system 37, 183, 186, 209,
212, 216, 271, 352, 372

screen 21
system 21, 62, 351, 372

include file 22
initialization

default 168, 185
input device 104
system 18, 104, 167

input device
brightness 113
contrast 113
control module 174
defaults 104
frequency 105
line-scan 107
LUT 114
reference level 316

resolution 105
subsampling 115
using 32

input signal 300
inquire

application environment 205
data buffer 251, 276
digitizer 105, 313
display 335
graphics context 366
system 379

installation
MIL 18
test program 22

integer buffers 38
Intellicam 105
intensity

correction 62
interlaced JPEG compression 136

J
JPEG compression 136

K
kernels

buffer allocation 39
keying 77

inquire 335

L

control loading into Windows palette 92, 94
pseudo-color 87

lossless compression 136
lossy compression 136
luminance

HLS 221, 224, 236, 239, 261, 263,
285, 287

LUT 85
1-band custom 87
3-band custom 88
changing default 86
control loading into physical output LUTs
94

control loading into Windows palette 92, 94
pseudo-color 87

LUT buffer
allocation 38, 61
child buffer 61
color bands 61–62, 129
data generation 61–62
dimensions 61
load 62
management 61
one-dimensional 61
restore 62

LUTs
custom 87
data generation 349, 351
definition 60
display 63, 130, 340
display color, change 86
general information 59
lines
draw 100, 177, 368

line-scan device 107
link program with library 22
load

color image 131
data 44–45, 282
LUT data 62

look-up table 85
1-band custom 87
3-band custom 88
changing default 86
control loading into physical output
LUTs 94

index 61
input 113–114, 129, 317
input mapping 64
intensity correction 62
monochromatic effect 63
multiple-color-band 88
one-color-band 87
pseudo-color effect 63
ramp 61
true-color effect 64
usage 63

M
M_DISP 39
M_GRAB 39
macros 181
Mapp...() 171, 183
MappAlloc() 21, 98, 148, 167, 183

example 82
MappAllocDefault() 18, 20, 29, 31–32, 66, 98,
104, 128–130, 168, 386

example 22, 30, 32–33, 72, 159, 394
MappChild() 148
MappControl() 21, 169–170, 424
MappControlThread() 149
MappFree() 21, 167

example 82
MappFreeDefault() 20, 168

example 23, 30, 32–33, 72, 159, 394
MappGetError() 21, 149, 170, 424

example 30
MappHookFunction() 21, 170, 424
MappModify() 207
mask, copy 43, 243
Mbuf...() 172
MbufAlloc() 54
MbufAlloc1d() 36, 61, 87, 169

example 394
MbufAlloc2d() 29, 36, 72, 169

example 30, 82
MbufAllocColor() 21, 36, 46, 61, 128, 169
MbufChild1d() 42
MbufChild2d() 42, 72

example 72

MbufExportSequence() 256
MbufFree() 21, 37, 42, 61

example 72, 394
MbufGet() 44, 54

example 394
MbufGet1d() 44
MbufGetColor() 44
MbufImport() 45, 131, 137
MbufImportSequence() 136, 273
MbufInquire() 55–56, 78

example 159, 394
MbufLoad() 45, 62, 131

example 72, 394
MbufPut() 44, 54, 62, 87

example 394
MbufPut1d() 44, 62
MbufPutColor() 44, 62
MbufRestore() 45, 62, 131
MbufSave() 45, 131
Mdig...() 174
MdigAlloc() 21, 32, 104–106, 128, 296

example 82
MdigChannel() 106, 298
MdigControl() 33, 116, 147, 299
MdigFree() 21, 104, 128, 169, 306

example 82
MdigGrab() 33, 107, 116, 128, 137, 307

example 32
MdigGrabContinuous() 33, 128, 308

example 33, 82
MdigGrabWait() 116, 309
MdigHalt() 33, 116, 310
MbufChildColor() 42, 138
MbufClear() 99

example 72, 82
MbufControl 78
MbufControl() 78, 87, 137–138, 140

example 159
MbufCopy() 62, 137
MbufCopyClip() 43
MbufCopyColor() 43, 62
MbufCopyCond() 43
MbufCopyMask() 43
MbufCreate2d() 55
MbufCreateColor() 55
MbufExport() 45, 131, 137
MbufExportSequence 136

example 33, 82
MdigHookFunction() 147, 311
MdigInquire() 105, 313

example 159
MdigLut() 64, 114, 129, 317
MdigReference() 114, 129, 318
Mdisp...() 175
MdispAlloc() 21, 29, 66–67, 77, 130, 320

example 82
MdispControl() 70, 77, 325

example 77
MdispDeselect() 29–30, 71, 130, 331

example 72, 82
MdispFree() 21, 71, 169, 332

example 82
MdispHookFunction() 79, 333

MdispInquire() 79, 87, 335
example 77

MdispLut() 63, 87, 130, 340
MdispOverlayKey() 77, 343
MdispPan() 75, 345
MdispSelect() 29, 39, 43, 66, 72, 130, 346

example 72
VGA 81

MdispSelectWindow() 81, 347
example 82

MdispZoom() 75, 348
example 72

memory
compensation 189
insufficient 41
resources 20–21

messages, error 21, 31
Meteor

system 372
MfuncAlloc() 399, 412, 414–415, 417–418,
420

example 394
MfuncAllocId() 400, 407, 409–410
MfuncErrorReport() 401

example 394
MfuncFreeAndEnd() 401, 403

example 394
MfuncFreeId() 404
MfuncGetError() 405
MfuncIdGetObjectType() 407
MfuncIdGetUserPtr() 408
MfuncIdSetObjectType() 409

MfuncStart() 399, 403, 412, 414–415,
417–418, 420–422

example 394
Mgen...() 176
MgenLutFunction() 61–62, 349
MgenLutRamp() 61, 87, 351

example 394
Mgra...() 176
MgraAlloc() 98, 352
MgraArc() 100, 354
MgraArcFill() 100, 355
mgrab.c 390
MgraBackColor() 99, 356
MgraClear() 99, 357
MgraColor() 99, 358
MgraControl() 359
MgraDot() 100, 361
MgraFill() 100–101, 362
MgraFont() 102, 363
MgraFontScale() 102, 364
MgraFree() 98, 365
MgraInquire() 366
MgraLine() 100, 368
MgraRect() 100, 369
MgraRectFill() 100, 370
MgraText() 102, 371

example 22, 77, 82
MIL

file format 45, 253
header file 22
include file 22
objects 15, 180, 207
MfuncIdSetUserPtr() 410
MfuncModified() 411
MfuncParamChar() 412

example 394
MfuncParamCheck() 413

example 394
MfuncParamDouble() 414
MfuncParamId() 415, 422

example 394
MfuncParamLong() 417
MfuncParamPointer() 418
MfuncParamRegister() 419
MfuncParamShort() 420
MfuncParamString() 421

running application 22, 167
structure 166

MIL modules
application 171
data allocation and access 172
data generation 176
digitizer control 174
display allocation 175
display control 65, 175
graphics 97, 176
I/O device control 103
system device 177

mil.h 22, 168, 181
mil.ini

Meteor-II 112

milsetup.h 18, 20–21, 28, 104, 129,
168, 185, 195, 386

MimBinarize()
example 72

MimHistogramEqualize() 62
MimLutMap()

example 394
mmultdis.c 72
MMX Technology, Intel 16
mnatfct.c 394
mnatgen.c 159
monochromatic effect 63
monochrome image buffer 29
mstart.c 22
Msys...() 177
MsysAlloc() 21, 167, 372

example 82
MsysControl() 374

example 159
MsysFree() 21, 167, 378

example 82
MsysInquire() 379

example 82, 159
multi-dimensional buffers 128
multi-head configuration

displaying in 68
multiple buffers

displaying 72
multi-processing 145–146

definition 146
multi-threading 145, 147

definition 147

O
object identifier 180
object type

pseudo-MIL function 407
pseudo-MIL, assign 409

open communication 20, 23, 167
overlay

example 77
simulated 77
usage 77

Overlay/regular display 90
Overlay/regular display architecture 90
overlay/regular display architecture 322
overwriting data 29

P
packed binary buffers 38
palette

image 61
panning, display 75, 345
parameter

double, pseudo-MIL 414
long, pseudo-MIL 417
MIL_ID, pseudo-MIL 415
null-terminated string, pseudo-MIL 421
pointer, pseudo-MIL 418
short, pseudo-MIL 420

parameter checking control 188
parent buffer 36, 42, 169

display 72, 75
physical memory 29
MvgaDispDeselectClientArea()

VGA 81
mwindisp.c 82

N
native mode 157, 393

example code 159
flag 386
integrating with MIL 158
interface 158
portability 394

non 8-bit buffers
displaying 70

buffer allocation 38
picth 55
pixel

coordinates 58
depth 15
value, mininum/maximum 113

pointer
pseudo-MIL object 408
pseudo-MIL object, assign 410

portability
native mode 158

portability, native mode 394
predictive coding 138–139
preprocess

input data 114

processing
attribute 209, 212, 216, 244, 247
compensation 374
control 188
limiting 42
system, force 374

program examples 18
pseudo-color

effect 63
pseudo-MIL commands 394
pseudo-MIL functions 394, 399
Pulsar

system 373
put data

1D data buffer 291
2D data buffer 292
array, from 44
data buffer 283–284, 286

Q
quantization 140

R
ramp, LUT 61
read.me 18–19, 22–23
rectangles, draw 100, 369
rectangles, draw filled 177, 370
reference level

analog 113
black/white 113, 316, 318
controls 113, 318

S
sample program 22
saturation

HLS 221, 224, 236, 239, 261, 263,
285, 287

save
color image 131
data 44–45, 253, 295

scale, input 115, 299
scaling 115
scrolling, display 75, 345
seed fill, boundary-type 362
select

digitizer input channel 298
image to display 346

setup flag 386
single-screen configuration

displaying in 67
VGA 67

size
child buffers 42
data buffer 37
display 70
image buffer 29
LUT buffer 61
system display 67
text character 102

software triggers
Corona 125

source buffer 29
speed

multi-threading 147
digitizer 316
input channel 113, 316

reporting errors 169
resident software, required 386
restart markers 141
restore

data buffer 293
LUT buffer 62

retrieve data
1D data buffer 267
2D data buffer 268
color bands 260, 262
data buffer 259–260, 262

RGB
buffers 47

stop grabbing 33, 310
storage area 29
strobe device 105
structure, MIL 166
structuring elements

buffer allocation 39
subsampling input 115
synchronization

of grab 116, 301
thread 147–148
with grab end 301

system
allocation 20, 372
buffers 29
configuration 18
control behavior 374
default 15, 18
default setup configuration 386
definition 14
device 63, 128, 130, 167–168
display criteria 29
free 378
Genesis 373
grab criteria 33
Host 372
initialization 18, 104
inquire 366, 379
Meteor 372
module 177
multiple 21
multi-processing capabilities 146
number 372
Pulsar 373
type 372
VGA 372

T
target system

system 15
test installation program 23
text

character font 102, 363

toolkit
Function Developers’ 157, 393
Native Mode Programmers’ 393

trace
application 170
hook 202, 333
mechanism control 188

transforming data 45, 253, 269
trigger device 105
triggers 123, 125

Corona 120, 124
true color effect 64

U
Underlay display 89
Underlay display architecture 89
underlay display architecture 322
user-allocated buffer 55

V
VGA

system 372

W
wait, grab 309
Window occlusion

Meteor-II 113
Windows

custom window, VGA 81

character size 364
graphics 102
support 98
write 177, 371

theoretical data line 265, 289
thread

allocate or control 190
application context 148
data sharing 147
error reporting 148–149
multi-threading 145, 150
synchronization 148

TIFF file format 253
timer control 208

X
xfontscale, inquire 366

Y
yfontscale, inquire 366
YUV buffers 49

Z
zoom

display 75, 348
example 75

Product Assistance Request Form

Name:
Company:
Address:
Phone: Fax:
E-mail:

Hardware Specific Information
Computer: CPU:
System memory: PCI Chipset:
System BIOS rev:
Video card used: Resolution:
Network Card: Network Software:
Other cards in system:

Software Specific Information
Operating system: Rev:
Matrox SW used: Rev:
Compiler: Rev:

Describe the problem:

	Contents
	Chapter 1: Getting started
	The MIL-Lite package
	MIL and the Intel MMX™/SSE™ technologies
	System requirements
	Getting started
	Installation
	Building an application
	Distributing your MIL application

	Chapter 2: Allocating an image buffer and grabbing images
	Getting started
	Allocating and displaying an image buffer
	Grabbing images

	Chapter 3: Specifying and managing your data buffers
	Data buffers
	Target system
	Specifying the dimensions of a data buffer
	Data type and depth
	Attribute
	Manipulating and controlling certain data buffer areas
	Child buffers
	Copying specific buffer areas

	Managing data buffers
	Controlling how color image buffers are stored
	RGB buffers
	Binary buffers
	YUV buffers
	YUV16 Packed
	YUV9 Planar
	YUV12 Planar
	YUV16 Planar
	YUV24 Planar
	Child YUV buffers

	Accessing a MIL buffer directly
	Mapping a data buffer to user-allocated memory
	Pixel conventions

	Chapter 4: Lookup tables
	Lookup tables
	LUTs and data buffers
	Loading and generating data into LUTs
	Generating data directly into the LUT buffer
	Loading LUTs with precalculated data

	Using LUTs
	Displaying using LUTs
	LUTs and digitizers

	Chapter 5: Displaying an image
	Displaying an image
	Display configuration
	Single-screen configuration
	Dual-screen configuration
	Multi-head display configuration

	Display modes and the display window
	Displaying in windowed-mode
	Displaying in non-windowed mode
	Display size and depth
	Displaying buffers of different data depths

	Removing a buffer from the display
	Displaying multiple buffers
	Panning, scrolling, and zooming
	Annotating the displayed image non-destructively
	Using GDI annotations

	Displaying an image in a user-defined window
	Using the MdispSelectWindow() function

	LUTs and changing the displayed colors or gray levels
	Changing the default LUT values

	Different display architectures in windowed mode
	Underlay display architecture
	Overlay/regular display architecture
	DirectDraw underlay-surface display architecture

	Advanced controls for windowed mode
	Display types in windowed mode
	Zoom types in windowed mode
	Controlling how the LUT buffer is loaded into the Windows palette
	Controlling how the logical palette is loaded into the physical output LUTs

	Chapter 6: Generating graphics
	MIL and graphics
	Preparing for graphics
	Drawing graphics
	Writing text

	Chapter 7: Grabbing with your digitizer
	Cameras and input devices
	The data format
	The digitizer number
	Multiple cameras
	Number of frames or fields
	Grabbing to the display
	Live and pseudo-live continuous grabs
	Live transfer to the display
	Pseudo-live transfers to the display
	Window occlusion

	Reference levels, lookup tables, and scaling
	Black and white reference levels
	Color image reference levels
	Mapping grabbed data through a LUT
	Scaling

	Optimizing application performance when grabbing
	Grab mode
	Double buffering
	Multiple buffering
	Grabbing a sequence of frames in real-time

	Grabbing with triggers and exposures
	Asynchronous reset mode
	Triggers and exposures
	Software triggers

	Chapter 8: Color
	Dealing with color
	Grabbing
	Displaying
	Saving and loading color images
	How to manage your color buffer

	Chapter 9: JPEG compression
	Introduction
	General steps
	Controlling a JPEG compression
	JPEG lossless
	JPEG lossy
	Using your own table

	Restart markers

	Chapter 10: Data manipulation with multiple systems
	Data manipulation with multiple systems

	Chapter 11: Using MIL with multi-processing and under multi-thread systems
	Multi-processing
	Multi-threading
	MIL and multi-threading

	Chapter 12: Using MIL with Native Mode Functions
	Integrating native functions with MIL code
	Portability
	Signaling MIL about Native Mode use

	A native mode example

	Chapter 13: Programming with MIL
	A MIL overview
	Starting your MIL application
	Header file and libraries
	MIL object manipulation concepts
	Error handling
	Tracing an application

	A quick command reference
	The application allocation and control module
	The buffer allocation and access module
	The digitizer allocation and control module
	The display allocation and control module
	The basic data generation module
	The basic graphics module
	The system allocation and inquiry module

	Chapter 14: The command reference descriptions
	The reference description notes
	MappAlloc
	MappAllocDefault
	MappControl
	MappControlThread
	MappFree
	MappFreeDefault
	MappGetError
	MappGetHookInfo
	MappHookFunction
	MappInquire
	MappModify
	MappTimer
	MbufAlloc1d
	MbufAlloc2d
	MbufAllocColor
	MbufChildColor
	MbufChildColor2d
	MbufChild1d
	MbufChild2d
	MbufClear
	MbufControl
	MbufCopy
	MbufCopyClip
	MbufCopyColor
	MbufCopyColor2d
	MbufCopyCond
	MbufCopyMask
	MbufCreate2d
	MbufCreateColor
	MbufDiskInquire
	MbufExport
	MbufExportSequence
	MbufFree
	MbufGet
	MbufGetColor
	MbufGetColor2d
	MbufGetLine
	MbufGet1d
	MbufGet2d
	MbufImport
	MbufImportSequence
	MbufInquire
	MbufLoad
	MbufPut
	MbufPutColor
	MbufPutColor2d
	MbufPutLine
	MbufPut1d
	MbufPut2d
	MbufRestore
	MbufSave
	MdigAlloc
	MdigChannel
	MdigControl
	MdigFree
	MdigGrab
	MdigGrabContinuous
	MdigGrabWait
	MdigHalt
	MdigHookFunction
	MdigInquire
	MdigLut
	MdigReference
	MdispAlloc
	MdispControl
	MdispDeselect
	MdispFree
	MdispHookFunction
	MdispInquire
	MdispLut
	MdispOverlayKey
	MdispPan
	MdispSelect
	MdispSelectWindow
	MdispZoom
	MgenLutFunction
	MgenLutRamp
	MgraAlloc
	MgraArc
	MgraArcFill
	MgraBackColor
	MgraClear
	MgraColor
	MgraControl
	MgraDot
	MgraFill
	MgraFont
	MgraFontScale
	MgraFree
	MgraInquire
	MgraLine
	MgraRect
	MgraRectFill
	MgraText
	MsysAlloc
	MsysControl
	MsysFree
	MsysInquire

	Appendix A: The default setup configuration file
	The default setup configuration file
	When you do not want to use defaults

	Appendix B: The MIL Function Developer's Toolkit
	The MIL Function Developer's Toolkit
	An example using the Function Developer's Toolkit
	MIL Function Developer's Toolkit Command Reference
	MfuncAlloc
	MfuncAllocId
	MfuncErrorReport
	MfuncFreeAndEnd
	MfuncFreeId
	MfuncGetError
	MfuncIdGetObjectType
	MfuncIdGetUserPtr
	MfuncIdSetObjectType
	MfuncIdSetUserPtr
	MfuncModified
	MfuncParamChar
	MfuncParamCheck
	MfuncParamDouble
	MfuncParamId
	MfuncParamLong
	MfuncParamPointer
	MfuncParamRegister
	MfuncParamShort
	MfuncParamString
	MfuncStart

	Appendix C: Troubleshooting
	Error reporting
	Error messages explained
	Driver error messages explained

	Index
	Product Support

