Matrox Genesis
Native Library

version 2.1

Command Reference

Manual no. 10495-701-0210

May 12, 2000

Matrox® is a registered trademark of Matrox Electronic Systems Ltd.

Microsoft®, MS-DOS®, Windows®, and Windows NT® are registered
trademarks of Microsoft Corporation.

Intel®, Pentium®, and Pentium II® are registered trademarks of Intel
Corporation.

Texas Instruments is a trademark of Texas Instruments Incorporated.
RAMDAC™ is a trademark of Booktree.

All other nationally and internationally recognized trademarks and
tradenames are hereby acknowledged.

© Copyright Matrox Electronic Systems Ltd., 2000. All rights reserved.

Disclaimer: Matrox Electronic Systems Ltd. reserves the right to make
changes in specifications at any time and without notice. The
information provided by this document is believed to be accurate and
reliable. However, no responsibility is assumed by Matrox Electronic
Systems Ltd. for its use; nor for any infringements of patents or other rights
of third parties resulting from its use. No license is granted under any
patents or patent rights of Matrox Electronic Systems Ltd.

PRINTED IN CANADA

Contents

Chapter 1: Programming with the

Genesis Native Library. o oL 5
Overview. i e 6
A quick command reference 10
Chapter 2: The command descriptions. 23
Command description notes 24
Appendix A: Glossaryoiiiii i 393
Appendix B: Examples.o i 413
blobc.... 414
first.c 419
grab.c. 421
JPEO.C . o 423
pat.c. 426
ProCcess.C 430
tfilter.c 444
Index

Product Support

Chapter 1: Programming with
the Genesis Native Library

6 Chapter 1: Programming with the Genesis Native Library

User Guide

Hardware overview

Overview

The Genesis Native Library is a board-specific library that
consists of an extensive set of functions for image processing
and specialized operations such as the scheduling and
synchronization of parallel operations. It provides explicit
control over grabbing, processing, transferring to the Host, and
displaying. The library was designed for the efficient use of the
Genesis board, as well as for fast application development.

This manual describes each function of the Genesis Native
Library. Note that it is a command reference of the Native
Library, rather than a user manual. In many cases, it assumes
you are familiar with concepts explained in the Genesis Native
Library User Guide.

The Matrox Genesis main board is a single-slot, PCI board with
on-board processing and optional grab and display sections.
Processing is performed by the Texas Instruments TMS320C80
(also known as the 'C80) running at 50 MHz. This single-chip,
digital signal multiprocessor contains a RISC master processor
and four parallel processors.

The Video Interface ASIC (VIA) connects all data buses to one
another, and directs and monitors data through a system. The
V1A can also format data in various ways as it directs it through
a system.

The main board can include a Matrox-designed ASIC (the
Neighborhood Operations Accelerator or NOA), which can
accelerate neighborhood operations such as convolutions and
morphology. In addition, one or more processor boards can be
added to increase performance. A typical processor board
(which requires one extra PCI slot) contains two 'C80s, each
with additional memory, VIA, and optional NOA.

The Genesis-LC is a low-cost version of the main board.
Basically, it is the main board without a processing section.

The next page contains block diagrams of the main board,
processor board, and Genesis-LC. You will find more
hardware-related information in the Genesis Installation and
Hardware Reference.

7

Overview

'90UB.I8)0Y 8JeMPIBL pUE UOKE|/BjSUl SISaUSS) 8} Ul SJuauodwod 9A0Je 8y} JO SWOS UO |IB}9P 8J0W PUlj |[IM NOA ,

snq [e90] |Od 19-Z€ ISOH

i

4119d
abpuq
10d-03-10d
dain 9 1o aoepBU|
TR VON ——{2er-surLL 1enbia [« —
SOIHAV¥D ¥3 _>_<W_ %m e
Ik —
mo_m X o0 1 v W]
yse|4 9 oiger an :%E nduy
v 4/110d RPN B S l—ssed Mo, oapIA
ol sNq [0d 19-z€ A1epuoosg (085) g 100 Yag U“e9 | Bojeuy
W@ 0820ZESWL
an z 1
1 o)l indui
Jayng 8|qe} M d
swey N [“<~g|dn-s007 :nn_ﬂ\.dm X [s [03P
1 ze | Aepeno Jiod o niod w : a ’ Bojeuy
- 10d 080, |
28 yod s
2a an an e WYEM u d
~Z z | 4ewna YIA YIA u olqe) 1 oy jndul
1) 79 awey Ke|dsig Aewudq 0 |t %._vn__oo._ A_“_\.< } |fssed morl_ oapia
o, «du 2 8 wa-g | ueo Bojeuy
" WA qeso WA qeio n
OVANvy ez ¥9 w
<« Jaynq
€ | swey N oy ndu
19€)} an lssed Mo oopIA
o,u__ws_ ~ 4 |A|\Fw dn-»o07] na-g 1 ueos “mo_mr.;x
=N ze H ze

uonoas Ae|dsip
[euondo

_ [BUUBYOWA _ —wumth_ yod nm‘_o_ a|npow QN._D

leuondo

pJjeog ule|\ sisauan)

8 Chapter 1: Programming with the Genesis Native Library

Genesis Processor Board

‘ Grab port interface ‘ ‘ VMChannel ‘

32 32
v v v l
Grab VM Grab VM
VIA VIA
'c80 PCI PCI 'C80
port IIF I/F port
TMS320C80 2-bit PCI TMS320C80
(C80) Secondary 32-bit PCI bus PR (C80)
64, 64
SE'}}AM SbDI?fAM
uffer uffer
NOA 8,16, 32, 8,16, 32, NOA
or 64 MB or 64 MB
PClI-to-PCI
bridge
PCI IF

I

Host 32-bit PCI local bus

9

Overview

"90UBI8J8Y 8ieMplel pue uolje|ejsul sISeuas) ay) ul sjusuodwod SA0JE 8] JO SWOS UO |IBlap aJoW pull [|IM NOA

snq |ed0]| |0d Hg-Z€ 1SOH

]

40 10d
abpuq
1Dd-04-10d
aoeI9)U|
22¥-S¥/LL [enbla [~—5¢
SOIHYHO ¥ [
oo TN R
soid X 0 1 v owW MW.]
yse|4) 1oy ndui
v 4110d g2 i av || L _lssedmoil, 5gpia
oL n-4007[*7'g n9-g ueo ’
N 8 Bojeuy
v9 [(R R I
ain ¢ - J
J Jo ndui
Jaynq o a|qe} anv || ® | lssedmoq|, n«vm_u_\.,
= oweuy } g |dn-joo[“7g ua-g X ues :
3 ze | Aepeno 3mod 3 =] Bojeuy
o5 pod P |
.WM. an| 8ne WYEM u d
-3 z Jayng u siqe an] Lm,_c ndui
5 | |ssed mo|,__
g 75 swey YIN o [« ansoon 5= nae [} S ospIA
o, wdu 2 : | Bojeuy
WO n
v9 A aeo w
OVANVY aNZ
“—7Z¢ | eunq siqer any LM«E ndui
awel, lssed mo
o:o_\“ ce g | dn-oo g na-g [1 wes |[© 09pIA
10 —) Bojeuy
ce
wla ce E—
|SUUBYDINA ooepelul pod el
uonoas Ae|dsiq _ | |

s|npow gels

D]-sisausn)

10 Chapter 1: Programming with the Genesis Native Library

A quick command reference

This section lists and provides a short description of the functions of each Genesis Native
Library module. Note that Library function names are meant to be easy-to-follow:

imIntConvolve

——— All functions begin with "im"

The next letters indicate which module
- the function is in (this function, for example,
is in the integer processing module)

The final letters indicate what the function does
(this function, for example, performs a convolution)

The application control module

Command Parameters Description

imAppCatchError() Mode, HandlerFunc, HandlerParam Catch application-wide errors.

imAppControl() Item, Value Set an application-wide attribute.

imAppGetError() Item, ValuePtr Check the application for errors.

imApplnquire() Item, ValuePtr Inquire about an application-wide
attribute.

The binary processing module

Command Parameters Description

imBinConvert() Thread, Src, Dst, Cond, Vall, Val2, OSB Convert between integer and
binary buffers.

imBinCountDifference() Thread, Srcl, Src2, Result, OSB Count the difference between

two binary buffers, or perform a
binary event count on a single
binary buffer.

imBinMorphic() Thread, Src, Dst, Kernel, Op, Niter, Perform a morphological
Control, OSB operation.
imBinThin() Thread, Src, Dst, Niter, Control, OSB Perform a fast binary thinning
operation.

imBinTriadic() Thread, SrcA, SrcB, SrcC, Dst, Op, OSB Perform a logical operation.

The blob analysis module

A quick command reference 11

Command

Parameters

Description

imBlobAllocFeatureL.ist()
imBlobAllocResult()
imBlobCalculate()
imBlobControl()
imBlobCopyResult()
imBlobCopyRuns()
imBlobFill()
imBlobFree()
imBlobGetLabel()
imBlobGetNumber()
imBlobGetResult()
imBlobGetResultSingle()
imBlobGetRuns()
imBloblnquire()

imBlobLabel()
imBlobSelect()

imBlobSelectFeature()
imBlobSelectFeret()

imBlobSelectMoment()

Thread, FeatListPtr
Thread, ResultPtr

Thread, IdentBuf, GreyBuf,
FeatL.ist, Result, Mode, OSB

Thread, Result, Item, Value

Thread, Result, Feature, Mode,
DstBuf, OSB

Thread, Result, Label, XBuf, YBuUf,

LenBuf, OSB

Thread, Result, DstBuf, Mode,
Value, OSB

Thread, ResultOrFeatList
Thread, Result, X, Y, LabelPtr
Thread, Result, NumPtr

Thread, Result, Feature, Mode,
ArrayPtr

Thread, Result, Label, Feature,
Mode, ValuePtr

Thread, Result, Label, Type, XPtr,
YPtr, LenPtr

Thread, Result, Item, ValuePtr

Thread, Result, DstBuf, Mode, OSB
Thread, Result, Operation, Feature,

Mode, Cond, Low, High
Thread, FeatList, Feature, Mode
Thread, FeatList, Angle

Thread, FeatList, Mode, Type,
XOrder, YOrder

Allocate a blob analysis feature
list.

Allocate a blob analysis result
buffer.

Perform a blob analysis
calculation.

Change a blob analysis control
setting.

Copy blob analysis results.

Copy run information about a
blob.

Draw filled blobs into a buffer.

Free a blob analysis result
buffer or feature list.

Get the label value of a blob at a
specified position.

Get the number of currently
included blobs.

Transfer blob analysis results to
Host memory.

Read the feature value of a
single blob.

Transfer run information about
a blob into Host memory.

Inquire about a blob analysis
control setting.

Draw labeled blobs into a buffer.
Exclude or delete blobs.

Select a feature for calculation.

Select a specific Feret diameter
for calculation.

Select a specific moment for
calculation.

12 Chapter 1: Programming with the Genesis Native Library

The buffer management module

Command

Parameters

Description

imBufAlloc()
imBufAllocld()
imBufAlloc2d()

imBufAllocControl()
imBufChild()

imBufChildBand()
imBufChildMove()

imBufClear()
imBufClone()

imBufControl()
imBufCopy()

imBufCopyField()

imBufCopyROI ()

imBufCopyPCI()
imBufCopyVM()
imBufCreate()

imBufFree()
imBufGet()

imBufGetld()
imBufGet2d()

imBufGetField()

Thread, Xsize, Ysize, Nbands, Type,
Location, BufPtr

Thread, Xsize, Type, Location,
BufPtr

Thread, Xsize, Ysize, Type, Location,
BufPtr

Thread, BufPtr

Thread, Buf, Xstart, Ystart, Xsize,
Ysize, ChildPtr

Thread, Buf, BandNum, BandPtr

Thread, Child, Xoff, Yoff, Xsize,
Ysize

Thread, Buf, Value, OSB

Thread, Buf, NewLocation,
NewBufPtr

Thread, Buf, Item, Value

Thread, SrcBuf, DstBuf, Control,
0oSB

Thread, SrcBuf, SrcTag, DstBuf,
DstTag

Thread, SrcBuf, DstBuf, Mode,
Control, OSB

Thread, SrcBuf, DstBuf, Control,
OoSB

Thread, SrcBuf, DstBuf, SrcControl,
DstControl, OSB

Thread, Xsize, Ysize, Nbands, Type,
Location, AddrPtr, Pitch, BufPtr

Thread, Buf
Thread, Buf, Ptr

Thread, Buf, Xstart, Xsize, Ptr
Thread, Buf, Xstart, Ystart, Xsize,

Ysize, Ptr
Thread, Buf, Tag, ValuePtr

Allocate a buffer with multiple
bands.

Allocate a 1-d buffer.
Allocate a 2-d buffer.

Allocate a control buffer.

Allocate a child buffer within an
existing buffer or on the display.

Allocate a child buffer from a band
of a multi-band buffer.

Move and/or resize a child buffer.

Clear a buffer to a constant value.
Duplicate a buffer.

Modify a buffer attribute.
Copy a buffer.

Copy buffer field(s).

Copy an ROl (or ROIs) from a
source buffer into a destination
buffer.

Copy a buffer over the PCI bus.
Copy a buffer over the VMChannel.

Create a buffer out of memory that
has already been allocated.

Free a buffer.

Get data from a buffer to Host
memory.

Get a block of data from within a
1-d buffer to Host memory.

Get a block of data within a 2-d
buffer to Host memory.

Get the value of a field (and return
it as type long).

A quick command reference 13

Command

Parameters

Description

imBufGetFieldDouble()
imBufGetNextField()

imBuflnquire()
imBufLoad()
imBufMap()

imBufModify()
imBufPack()
imBufPut()
imBufPutld()
imBufPut2d()

imBufPutField()
imBufRemoveField()
imBufRestore()

imBufSave()

Thread, Buf, Tag, ValuePtr

Thread, Buf, ContextPtr, TagPtr,
ValuePtr

Thread, Buf, Item, ValuePtr
Thread, FileName, Format, Buf

Thread, Buf, Band, Ystart, AddrPtr,
PitchPtr, NlinesPtr

Thread, Buf, Xsize, Ysize, Type

Thread, SrcBuf, TagBuf, DstBuf,
Mode, OSB

Thread, Buf, Ptr
Thread, Buf, Xstart, Xsize, Ptr

Thread, Buf, Xstart, Ystart, Xsize,
Ysize, Ptr

Thread, Buf, Tag, Value
Thread, Buf, Tag

Thread, FileName, Format,
Location, BufPtr

Thread, FileName, Format, Buf

Get the value of a field (and return
it as type double).

Get the tag and value of the next
buffer field.

Inquire about a buffer attribute.
Load data from a file into a buffer.
Map a buffer into Host memory.

Modify a buffer’'s dimensions
and/or type.

Pack or unpack a buffer.

Transfer data from Host memory to
a buffer.

Transfer a block of data from Host
memory into part of a 1-d buffer.

Transfer a block of data from Host
memory into part of a 2-d buffer.

Add or modify a buffer field.
Remove a field from a buffer.

Load data from a file into an
automatically allocated buffer.

Save a buffer to a file.

The camera control module

Command

Parameters

Description

imCamAlloc()
imCamClone()
imCamControl()
imCamFree()

imCamInquire()

imCamSave()

Thread, CamFile, Mode, CameraPtr
Thread, Camera, Mode, NewCamPtr
Thread, Camera, Item, Value
Thread, Camera

Thread, Camera, Item, ValuePtr

Thread, CamFile, Camera

Allocate a camera definition.

Duplicate a camera definition.

Change a setting of a camera definition.
Free a camera definition.

Inquire about a camera definition
setting.

Save a camera definition to a file.

14

The cursor control module

Chapter 1: Programming with the Genesis Native Library

Command

Parameters

Description

imCurAlloc()
imCurDefine()

imCurEnable()

imCurFree()

imCurSelect()

imCurSetColor()

imCurGetPosition()

Dev, Mode, CursorPtr

Dev, Cursor, SizeX, SizeY, HotX,
HotY, DataPtr

Dev, Flag

Dev, Cursor
Dev, PosXPtr, PosYPtr

Dev, Cursor

Dev, Cursor, Red, Green, Blue

imCurSetPosition() Dev, PosX, PosY

Allocate a new cursor.

Define the cursor’s shape.

Enable or disable the current hardware
cursor.

Free the specified cursor.
Get the current cursor’s position.

Select the specified cursor as the
current cursor.

Set the specified cursor’s colors.

Set the current cursor’s position.

The device control module

imDevInquire()

Dev, Item, ValuePtr

Command Parameters Description
imDevAlloc() System, Node, ShellFile, Mode, DevPtr Allocate a device.
imDevFree() Dev Free a device.

Inquire about a device attribute.

The digitizer control module

Command

Parameters

Description

imDigAlloc()
imDigCapture()

imDigControl()
imDigFree()
imDigGrab()

imDiglnquire()

Thread, System, Digitizer, Mode,
DigPtr

Thread, Dig, Cam, Mode

Thread, Dig, Item, Value
Thread, Dig

Thread, Dig, Cam, Buf, Count,
Control, OSB

Thread, Dig, Item, ValuePtr

Allocate a digitizer.

Enable a synchronized or
software-triggered grab.

Set a digitizer attribute.
Free a digitizer.
Grab into a buffer.

Inquire about a digitizer attribute.

The display module

A quick command reference 15

Command

Parameters

Description

imDispAlloc()

imDispControl()
imDispFree()

imDisplnquire()

Thread, System, Display, DispFile, Mode, Allocate a display.

DispPtr

Thread, Disp, Control, Mode
Thread, Disp

Thread, Disp, Item, ValuePtr

Set display attributes.
Free a display.

Inquire about a display attribute.

The floating-point processing module

Command

Parameters

Description

imFloatConvert()
imFloatDyadic()
imFloatMac1()
imFloatMac2()

imFloatMonadic()

imFloatUnary()

Thread, Src, Dst, Mode, OSB
Thread, Srcl, Src2, Dst, Op, OSB
Thread, Src, Dst, Fac, Const, OSB
Thread, Srcl, Src2, Dst, Facl, Fac2,
0osB

Thread, Src, Const, Dst, Op, OSB

Thread, Src, Dst, Op, OSB

Convert between integer and
floating-point buffers.

Perform an arithmetic operation
between two buffers.

Multiply and accumulate with one
buffer.

Multiply and accumulate with two
buffers.

Perform an arithmetic operation
between a buffer and a constant.

Perform a unary operation on a buffer.

The data generation module

imGenWarpLutMatrix()

Command Parameters Description

imGen1d() Thread, Buf, Func, Start, End, Generate data into a 1-d
NumCoefs, Coefs, OSB buffer.

imGenWarplstOrder() Thread, Coef, Transform, Vall, Val2, Generate first-order warp
Mode, OSB coefficients.

imGenWarp4Corner() Thread, Coef, X1, Y1, X2, Y2, X3, Y3, X4, Generate warp coefficients to

Y4, Xstart, Ystart, Xend, Yend, Mode,

OSB

Thread, Xlut, Ylut, Coef, Control, OSB

map an arbitrary
quadrilateral onto a
rectangle.

Generate address LUTs for a
matrix-defined warping using
imIntWarpLut().

16 Chapter 1: Programming with the Genesis Native Library

The graphics module

Command

Parameters

Description

imGraArc()
imGraArcFill()

imGraFill()
imGraLine()
imGraPlot()
imGraRect()
imGraRectFill()
imGraText()

Thread, Context, Buf, Xcen, Ycen, Xrad, Yrad,
StartAng, EndAng

Thread, Context, Buf, Xcen, Ycen, Xrad, Yrad,
StartAng, EndAng

Thread, Context, Buf, Xstart, Ystart
Thread, Context, Buf, Xstart, Ystart, Xend, Yend
Thread, Context, Buf, Xbuf, Ybuf, NumPoints
Thread, Context, Buf, Xstart, Ystart, Xend, Yend
Thread, Context, Buf, Xstart, Ystart, Xend, Yend
Thread, Context, Buf, Xstart, Ystart, String

Draw an elliptical arc.
Draw a filled elliptical arc.

Fill a connected region.
Draw a line.

Plot a series of (x, y) points.
Draw a rectangle.

Draw a filled rectangle.
Write text.

The integer processing module

Command

Parameters

Description

imIntBinarize()
imIntClip()
imIntConnectMap()
imIntConvert()

imIntConvertColor()
imIntConvolve()

imIntCorrelate()
imIntCountDifference()
imIntDistance()
imIntDyadic()

imIntErodeDilate()

Thread, Src, Dst, Cond, Low, High,
Vall, Val2, OSB

Thread, Src, Dst, Cond, Low, High,
Vall, Val2, Mode, OSB

Thread, Src, Dst, Lut, Control, OSB
Thread, Src, Dst, Mode, OSB

Thread, Src, Dst, Type, Coef, OSB

Thread, Src, Dst, Kernel, Control,
OSB

Thread, Src, Dst, Model, Control,
osB

Thread, Srcl, Src2, Result, OSB

Thread, Src, Dst, Transform,
Control, OSB

Thread, Srcl, Src2, Dst, Op, OSB

Thread, Src, Dst, Kernel, Op, Niter,
Control, OSB

Binarize an image.
Clip or binarize an image.

Perform a 3x3 connectivity
mapping.

Convert a buffer from one
integer type to another.

Perform a color conversion.
Perform a convolution.

Perform normalized grayscale
correlation.

Count the differences between
two images.

Perform a distance transform.

Perform an arithmetic or logical
operation between two images.

Perform grayscale erosion or
dilation.

A quick command reference

17

Command

Parameters

Description

imIntFindExtreme()

imIntFFT()

imIntFlip()
imIntGainOffset()

imIntHistogram()

imlIntHistogramEqualize()

imIntLabel()
imIntLocateEvent()

imIntLutMap()
imIntMac1()
imIntMac2()

imlIntMonadic()

imIntProject()
imIntRank()
imIntRecFilter()
imIntScale()
imIntSubsample()
imIntThickThin()
imIntTriadic()

imIntWarpLut()

Thread, Src, Result, Mode, OSB

Thread, SrcR, Srcl, DstR, Dstl,
Control, OSB

Thread, Src, Dst, Func, Mode, OSB

Thread, Src, Dst, Offset, Gain, Sh
ClipVal, Mode, OSB

Thread, Src, Result, Mode, OSB

Thread, Src, Dst, HistSize, Func,
Alpha, Min, Max, Mode, OSB

Thread, Src, Dst, Mode, OSB

Thread, Src, X, Y, Pix, Num, Cond,

Low, High, OSB
Thread, Src, Dst, Lut, OSB

Thread, Src, Dst, Fac, Const, Shift,

OSB

Thread, Srcl, Src2, Dst, Facl, Fac2,

Shift, OSB
Thread, Src, Const, Dst, Op, OSB

Thread, Src, Result, Angle, Mode,

OSB

Thread, Src, Dst, Kernel, Rank,
Control, OSB

Thread, Src, Src2, Dst, Dst2, Lut,
SrcBits, DstBits, Control, OSB

Thread, SrcBuf, DstBuf, XFac, YFac,

Control, OSB

Thread, Src, Dst, Xfac, Yfac, Control,

OSB

Thread, Src, Dst, Kernel, Op, Niter,

Control, OSB

Thread, SrcA, SrcB, SrcC, Dst,
Rotate, Op, Mode, OSB

Thread, Src, Dst, Xlut, Ylut, Control,

OSB

Find the minimum and/or
maximum pixel value in an
image.

Perform a fast Fourier
transform.

Flip or rotate an image.

ift, Apply per-pixel gain and offset

correction.
Perform a histogram.

Perform a histogram
equalization.

Label connected regions.

Locate pixels that satisfy a
condition.

Perform a look-up table
mapping.

one image.

two images.

Perform an arithmetic or logical

operation between an image
and a constant.

Project a 2D image into 1D.

Perform a rank filter operation.

Perform adaptive recursive
(temporal) filtering.

Scale an image by integer or
non-integer factors.

Subsample an image.

thickening.

Perform an arithmetic or logical
operation with three operands.

Perform a warping using a
look-up table inverse address
calculation.

Multiply and accumulate with

Multiply and accumulate with

Perform grayscale thinning or

18 Chapter 1: Programming with the Genesis Native Library

Command

Parameters

Description

imIntWarpPolynomial()

Thread, Src, Dst, Coef, Control, OSB Perform a warping using

polynomial inverse address
calculation.

imIntZoom() Thread, Src, Dst, Xfac, Yfac, Control, Zoom an image.
osB

The JPEG module

Command Parameters Description

imJpegAlloc()
imJpegControl()

imJpegControlBand()

imJpegDecode()
imJpegEncode()
imJpegFree()
imJpegGetTable()

imJpeglnquire()
imJpegPutTable()

imJpegRead()
imJpegReadBuf()

imJpegRestore()

imJpegSave()
imJpegWrite()

imJpegWriteBuf()

Thread, Control, JpegPtr
Thread, Jpeg, Item, Value

Thread, Jpeg, Band, Item, Value

Thread, Buf, Jpeg, OSB
Thread, Buf, Jpeg, OSB
Thread, Jpeg

Thread, Jpeg, TableType, TableNum,
TableSizePtr, TablePtr

Thread, Jpeg, Item, ValuePtr
Thread, Jpeg, TableType, TableNum,
TableSize, TablePtr

Thread, FileHandle, Jpeg

Thread, Buf, Jpeg, Start, OSB

Thread, FileName, JpegPtr

Thread, FileName, Jpeg
Thread, FileHandle, Jpeg

Thread, Buf, Jpeg, Start, OSB

Allocate a JPEG buffer.

Change a control setting of a
JPEG buffer.

Change a control setting of a
JPEG buffer, for a specific band.

Decompress a compressed image.
Compress an image.
Free a JPEG buffer.

Transfer a JPEG table to Host
memory.

Inquire about a JPEG buffer.

Transfer a table from Host
memory to a JPEG buffer.

Read a compressed image from an
open file.

Read a compressed image from a
buffer.

Load a compressed image from a
file into an automatically allocated
JPEG buffer.

Save a compressed image from a
JPEG buffer to a file.

Write a compressed image to an
open file.

Write a compressed image to a
buffer.

A quick command reference 19

The pattern matching module

Command

Parameters

Description

imPatAllocAutoModel()

imPatAllocModel()
imPatAllocResult()
imPatCopy()
imPatFindModel()
imPatFree()

imPatGetNumber()

imPatGetResult()

imPatInquire()

imPatPreprocModel()
imPatRead()
imPatRestore()

imPatSave()
imPatSetAcceptance()

imPatSetAccuracy()
imPatSetCenter()

imPatSetCertainty()
imPatSetDontCare()

imPatSetNumber()

Thread, SrcBuf, Xsize, Ysize,
XUncert, YUncert, Type, Mode,
ModelPtr

Thread, SrcBuf, XOff, YOff, XSize,
YSize, Type, ModelPtr

Thread, NumEntries, ResultPtr
Thread, Model, DstBuf, Mode, OSB
Thread, SrcBuf, Model, Result, OSB

Thread, ModelOrResult

Thread, Result, NumPtr

Thread, Result, Type, Ptr

Thread, ModelOrResult, Item,
ValuePtr

Thread, Buf, Model, Mode, OSB
Thread, FileHandle, ModelPtr
Thread, FileName, ModelPtr

Thread, FileName, Model
Thread, Model, Acceptance

Thread, Model, Accuracy

Thread, Model, XCen, YCen
Thread, Model, Certainty

Thread, Model, SrcBuf, XOff, YOff,

Value
Thread, Model, Number

Automatically select and
allocate a pattern matching
model.

Allocate a pattern matching
model.

Allocate a pattern matching
result buffer.

Copy a pattern matching
model.

Find a pattern matching
model in an image.

Free a pattern matching
model or result buffer.

Determine the number of
matches above the
acceptance level.

Transfer results of a search to
Host memory.

Inquire about a pattern
matching model or result
buffer.

Preprocess a pattern
matching model.

Read a pattern matching
model from an open file.

Restore a pattern matching
model from a file.

Save a model to a file.

Set the acceptance level of a
search.

Set the positional accuracy of
a search.

Set a model’s center position
(hot spot).

Set the certainty level of a
search.

Set model pixels to the "don't
care" state.

Set the number of matches to
find.

20

Chapter 1: Programming with the Genesis Native Library

Command

Parameters

Description

imPatSetPosition()
imPatSetSearchPa

imPatSetSpeed()
imPatWrite()

Thread, Model, XOff, YOff, XSize,

YSize
rameter()

Thread, Model, Speed
Thread, FileHandle, Model

Thread, Model, Param, Value

Set the search region of a
search.

Set an internal search
parameter.

Set the speed of a search.
Write a model to an open file.

The run-length encoding module

Command Parameters Description

imRleDecode() Thread, Buf, CompBuf, Decode (decompress) a run-length encoded image.
Control, OSB

imRIleEncode() Thread, Buf, CompBuf, = Run-length encode (compress) an image.
Control, OSB

The synchronization module

Command

Parameters

Description

imSyncAlloc()
imSyncControl()

imSyncFree()
imSyncGetError()
imSyncHost()
imSyncThread()

Thread, OSBPtr
Thread, OSB, Item, Value

Thread, OSB

Thread, OSB, Item, ValuePtr
Thread, OSB, State

Thread, OSB, State

Allocate an operation status block.

Change the state or mode of operation of an
operation status block.

Free an operation status block.
Check a function for errors.
Synchronize the Host with a function.

Synchronize a thread with an operation in
another thread.

The system control module

Command

Parameters

Description

imSysClock()
imSyslInquire()
imSysTimeStamp()

Thread, Offset
System, Item, ValuePtr
Thread, Buf, Tag, Offset

Read the system clock.
Inquire about a system attribute.
Write a time stamp to the specified buffer field.

The thread control module

A quick command reference

21

Command Parameters Description

imThrAlloc() Dev, Control, ThreadPtr Allocate a thread.

imThrCancel() Thread Cancel all commands queued to a specified thread.
imThrControl() Thread, Item, Value Set a thread attribute.

imThrFree() Thread Free a thread.

imThrGetError() Thread, Item, ValuePtr Check a thread for errors.

imThrHalt() Thread, Mode Halt the current function.

imThrinquire() Thread, Item, ValuePtr Inquire about a thread.

imThrNop() Thread, OSB No operation.

22 Chapter 1: Programming with the Genesis Native Library

Chapter 2: The command
descriptions

24

Chapter 2: The command descriptions

Command description notes

A few notes about the command descriptions:

» They are presented in alphabetical order. As such, the
functions of each module are grouped together.

« When a parameter requires a buffer, the allowed data types
of the buffer are indicated. If no mention is made of the
buffer’s sign, it means the buffer can be either signed or
unsigned.

» Each function header contains symbols that indicate whether
the function:

— Is synchronous or asynchronous: ‘ Sync| or ‘Async’

— Uses the parallel processors (PPs) of the 'C80:

— Uses the NOA (if available):

— Supports in-place operation

(i.e. source and destination buffers can be the same):

— Supports direct processing of multiple-band images: | Multi-band
— Can run on the Genesis-LC:

Note that in-place operation applies only to processing
functions. In addition, the absence of a symbol means, for
example, that the function does not use the PPs, does not use
the NOA, does not support in-place operation, etc.

For general product support see our website, www.matrox.com,
or contact the Matrox Customer Support Group.

imAppCatchError 25

iImAppCatchError [Sync | [Gen-LC]

Synopsis Catch application-wide errors.

Format void imAppCatchError(Mode, HandlerFunc, HandlerParam)

Description

long Mode; Operation mode
void (*HandlerFunc) (void*); Pointer to function (or NULL)
void* HandlerParam; Parameter to pass to function (or NULL)

This function establishes a user-defined error handler (that is, establishes
a user-defined function that is called automatically once an error in the
application is detected). You can have this function called on subsequent
errors by clearing error information within the user-defined function (call
imAppGetError() with the IM_ERR_RESET flag). In addition, you can have
a specified parameter value passed to the function.

To get information about the detected error, you must use
imAppGetError() within the user-defined function. If you want to clear
error information so that the user-defined function is called on subsequent
errors, only use the IM_ERR_RESET flag when retrieving the last required
error item.

Note that, if an error is caused by a synchronous function, the handler is

called immediately, before the function returns. If an error is caused by an
asynchronous function, you should never rely on the handler being called
until you have explicitly waited for the completion of the function.

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The HandlerFunc parameter specifies the address of the user-defined
function to call upon detecting an error. If you want to disable error
handling, call imAppCatchError() again and set the HandlerFunc
parameter to NULL.

The HandlerParam parameter specifies the address of the parameter to
pass to the user-defined function. This parameter can be set to NULL if you
don’t need a parameter.

26 imAppCatchError

Example The following code uses imAppCatchError() to print error messages
whenever an error is detected:

Qé%d myhandler(void *param);
void main()

/* Establish error handling */
imAppCatchError (IM_DEFAULT, myhandler, NULL);

/* From now on, myhandler() will be called on error */
}
void myhandler(void *param)

char errmsg[IM ERR MSG _SIZE], errfunc[IM ERR FUNC SIZE];

/* Get the error message */
imAppGetError (IM_ERR MSG, errmsg);

/* Get the name of the offending function and clear error items */
imAppGetError (IM ERR FUNC + IM ERR RESET, errfunc);

/* Print them out */
printf("Error in %s(): <¥s>\n", errfunc, errmsg);

imAppControl 27

ImAppControl Sync | [Gen-LC

Synopsis Set an application-wide attribute.
Format void imAppControl(ltem, Value)

long Item; Attribute to set
double Value; Attribute value

Description This function sets an application-wide attribute.

The Item parameter specifies the attribute, while the Value parameter
specifies the value for this attribute. The table below lists those attributes
that can be set, and their allowable values.

Item Values Meaning

IM_APP_TIMEOUT any The maximum time (in seconds) that
floating-point the Host will wait for a synchronous
value > 0, or function to return before generating
IM_INFINITE an IM_ERR_TIMEOUT error and

resuming execution. By default,
IM_APP_TIMEOUT is set to 15 seconds.

28 imAppGetError

ImMAppGetError

Synopsis

Format

Description

Check the application for errors.
long imAppGetError(Item, ValuePtr)

long Item; Error item to retrieve
void* ValuePtr; Addressin which to return error item (or NULL)

This function returns error information about the application. The returned
information pertains to the first error to occur in the application since error
information about the application was last cleared. You clear error
information by adding IM_ERR_RESET to the Item parameter.

Note that errors can only be detected for functions that have finished
executing. Therefore, imAppGetError() might not detect errors caused by
asynchronous functions, unless some synchronization is performed to
ensure that these functions have finished executing.

The Item parameter specifies the error item to retrieve. It can be set to:

IM_ERR_CODE The error code.

IM_ERR_MSG The error message (maximum size of string:
IM_ERR_MSG_SIZE bytes).

IM_ERR_FUNC The name of the offending function (maximum size

of string: IM_ERR_FUNC_SIZE bytes).

IM_ERR_MSG_FUNC The error message and the name of the offending
function (maximum size of string: IM_ERR_SIZE
bytes).

To clear error information, add IM_ERR_RESET to the Item parameter (for
example, IM_ERR_CODE + IM_ERR_RESET). Adding IM_ERR_RESET will
simultaneously clear all error items (IM_ERR_CODE to IM_SUCCESS, and
IM_ERR_MSG, IM_ERR_FUNC, and IM_ERR_MSG_FUNC to NULL). Note that
you should only clear error information when retrieving the last required
error item. This ensures that, at any time, all error items pertain to the
same detected error.

The ValuePtr parameter specifies the address in which to return the error
item. If you are retrieving IM_ERR_MSG, IM_ERR_FUNC, or
IM_ERR_MSG_FUNC, ValuePtr should be the address of a character string;

Return value

Example

imAppGetError 29

if you are retrieving IM_ERR_CODE, ValuePtr should be the address of a
long. Since imAppGetError() also returns the error code, ValuePtr can
be set to NULL when you are retrieving the error code.

The returned value is the error code.

Error code
IM_SUCCESS
IM_ERR_BUFFER
IM_ERR_DEVICE
IM_ERR_FILE
IM_ERR_HALTED
IM_ERR_MEMORY

IM_ERR_NOT_PRESENT
IM_ERR_OPCODE
IM_ERR_OSB
IM_ERR_PARAMETER

IM_ERR_RESTRICTION

IM_ERR_SYSTEM
IM_ERR_TIMEOUT

IM_ERR_THREAD

IM_ERR_BUF_ATTRIBUTE

IM_ERR_MISC

Meaning

No error.

Invalid buffer ID.

Invalid device ID, or no such device.
File access error.

Function halted by imThrHalt().

Insufficient memory to carry out the
operation.

Referenced item not present.
Invalid opcode received.
Invalid OSB ID.

Parameter (other than an ID-type parameter)
invalid or unacceptable.

Operation unable to execute due to a
restriction.

No such system.

Device unable to respond during timeout
period.

Invalid thread ID.

Unacceptable buffer attribute (size, data
type, etc.).

Miscellaneous error (the error message string
will provide details on the cause of the error).

The following code checks for errors. Note that it reads the first items
without clearing, then clears while reading the last item. This ensures that
all error items pertain to the same detected error.

imAppGetError (IM_ERR CODE, &errcode);
imAppGetError (IM_ERR MSG, errmsg);
imAppGetError (IM ERR FUNC+IM ERR RESET, errfunc);

30 imAppGetError

The following code checks for errors, then prints the error message. There
is no need to clear if the call comes at the end of the application.

char Error[IM ERR SIZE];

if (imAppGetError (IM_ERR MSG FUNC, Error)):
printf(“%s\n", Error);

See also imThrGetError(). If your application uses only a single thread,
imThrGetError() is generally a better alternative to imAppGetError()
because it requires no explicit synchronization.

imApplnquire 31

ImApplnquire [Sync | [Gen-LC]

Synopsis

Format

Description

Return value

Inquire about an application-wide attribute.
long imApplInquire(ltem, ValuePtr)

long Item; Attribute about which to inquire
void* ValuePtr; Address of return value (or NULL)

This function inquires about an application-wide attribute.

The Item parameter specifies the attribute about which to inquire. It can
be set to:

IM_APP_TIMEOUT Inquire about the timeout period.

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. The data type depends on the attribute being
inquired. For IM_APP_TIMEOUT, ValuePtr must be the address of a double.
Note that, since imApplnquire() also returns the value of the inquired
attribute, ValuePtr can be set to NULL.

The returned value is the value of the inquired attribute, cast to long if
necessary.

32 imBinConvert

imBinConvert ‘Async| ‘Mu/t/—band’

Synopsis Convert between integer and binary buffers.

Format void imBinConvert(Thread, Src, Dst, Cond, Vall, Val2, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Cond,; Conditional operator
long Val1i; Constant

long Val2; Constant

long OSB; OSB ID (or 0)

This function converts a buffer’'s data between integer and binary. For an
integer to binary conversion, pixel values are converted to 1 if the specified
condition is true, and to 0 otherwise. For a binary to integer conversion, 0’s
are converted to Vall and 1's to Val2.

The Thread parameter specifies the thread to which to send
imBinConvert() for execution.

The Src parameter specifies the buffer to convert, while the Dst parameter
specifies the buffer in which to place the results of the conversion. The buffer
types are used to determine the type of conversion; therefore, one of these
buffers must be a binary buffer, the other must be an integer buffer.

The Cond parameter specifies the condition with which to perform an
integer to binary conversion. It can be set to:

IM_EQUAL if equal to Vall.

IM_NOT_EQUAL if not equal to Vall.

IM_LESS if less than Vall.

IM_LESS OR_EQUAL if less than or equal to Vall.
IM_GREATER if greater than Vall.
IM_GREATER_OR_EQUAL if greater than or equal to Vall.
IM_IN_RANGE if within Vall to Val2, inclusive.
IM_OUT_RANGE if less than Vall or greater than Val2.

For a binary to integer conversion, the Cond parameter must be set to
IM_DEFAULT.

See also

imBinConvert 33

The Vall and Val2 parameters specify integer constants. For cases where
Val2 is not used, any value can be given for it.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imlIntBinarize(). Use imIntBinarize() instead of imBinConvert() ifyou
are converting a buffer’s data from integer to binary but want to store the
binary data in an integer buffer (for example, as 0 and Oxff).

34 imBinCountDifference

imBinCountDifference

Synopsis

Format

Description

Count the differences between two binary buffers, or perform a binary event
count on a single binary buffer.

void imBinCountDifference(Thread, Srcl, Src2, Result, OSB)
long Thread; Thread ID

long Srcl; First source buffer ID

long Src2; Second source buffer ID (or 0)
long Result; Result buffer ID

long OSB; OSB ID (or 0)

This function counts the differences between Srcl and Src2, or the number
of 1'sin Srcl, and writes the result tothe IM_RES_NUM_DIFFERENCES field
in the result buffer.

The Srcl parameter specifies the first buffer with which to perform the
operation. This must be a binary buffer.

The Src2 parameter specifies the optional second buffer with which to
perform the operation. This buffer must be a binary buffer as well. Src2 can
be set to 0, in which case the buffer is assumed to contain all 0's. As a result,
the function counts the number of 1's in the first source buffer (Srcl).

The Result parameter specifies the buffer in which to write the number of
differences. Note that this buffer's size and data type are irrelevant, since
the result is written to a field.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBinMorphic 35

ImBinMorphic [Async] [PP] [NOA] [Mutti-band]

Synopsis

Perform a morphological operation.

Format void imBinMorphic(Thread, Src, Dst, Kernel, Op, Niter, Control,

Description

OSB)
long Thread,; Thread ID
long Src; Source buffer ID
long Dst; Destination buffer ID
long Kernel, Kernel buffer ID
long Op; Type of operation to perform
long Niter; Number of iterations
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function performs a morphological operation on a binary image, using
a specified structuring element (kernel). You can use your own kernel or a
predefined kernel. In general, the predefined kernel will execute faster.

When you use your own kernel, you can control the center pixel of the kernel.
In addition, any kernel value other than 0 or 1 is considered a "don’t care"
value; a "don’'t care" value is ignored during the operation.

If you want to thin or thicken with a series of different kernels (one applied
after the other), you can provide a multi-band kernel. Each band of the
kernel will be applied to the result of the previous one.

For binary thinning and thickening operations, imBinMorphic() checks if
any pixel values have changed during the last iteration of the operation. If
any have changed, the IM_RES_IDEMPOTENCE field of the destination
buffer is set to a non-zero value (TRUE); otherwise, this field is set to 0
(FALSE). This field can later be read using imBufGetField().

The Thread parameter specifies the thread to which to send
imBinMorphic() for execution.

The Src parameter specifies the buffer on which to perform the operation.
This must be a binary buffer.

36

imBinMorphic

The Dst parameter specifies the buffer in which to place the results of the
operation. This buffer must be a binary buffer, except when you are
performing binary template matching (in which case it can be binary, 8-bit
integer, or 16-bit integer). Note that in-place operation is not supported for
this function.

The Kernel parameter specifies the kernel with which to perform the
operation. It can be set to the identifier of a kernel buffer or to
IM_3X3 RECT_1, which is a predefined 3x3 kernel of all 1's.

If you are using your own kernel, the kernel buffer can be binary or of any
integer type. The largest kernel supported by the NOA for binary operations
is 32x32. If your operation does not use the NOA, then the largest kernel
supported is 15x15. These kernel restrictions do not apply when performing
binary pattern matching (Op parameter set to IM_MATCH).

Note that certain fields can be added to your kernel, to indicate its center
position. These are listed below, with their default values. If these fields are
not added to the kernel buffer, the default values are used.

Field Values Meaning

IM_KER_CENTER_X 0 — (Xsize-1) X coordinate of kernel
default: int(Xsize-1)/2 center.

IM_KER_CENTER_Y 0 — (Ysize-1) Y coordinate of kernel

default: int(Ysize-1)/2 center.

The Op parameter specifies the type of morphological operation to perform.
It can be set to:

IM_ERODE Erosion.

IM_DILATE Dilation.

IM_THIN Thinning.

IM_THICK Thickening.

IM_HIT_OR_MISS Hit-or-miss transformation.

IM_MATCH Binary template matching (pattern
matching).

For information on the algorithms used by the above operations, see the
Genesis Native Library User Guide.

The Niter parameter specifies the number of times to apply the operation.

If you are using a multi-band kernel, note that the number of iterations is
the number of passes through the entire kernel.

imBinMorphic 37

If you are performing a thickening or thinning operation, Niter can be set
to IM_IDEMPOTENCE, which will cause the function to iterate until no more
changes are produced (for a thinning, this typically occurs when the image
has been reduced to its skeleton).

If you are performing a hit-or-miss transformation or binary template
matching, Niter should be set to 1.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imBinMorphic() are listed below, with
default values in bold-face. Note that if the Control parameter is set to 0
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning

IM_CTL_OVERSCAN IM_TRANSPARENT Use the pixels of the source
buffer’s parent buffer as the
overscan pixels. If the
source buffer is not a child
buffer or if its parent buffer
cannot provide values for
the overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.

IM_REPLACE Set the overscan pixels to a
constant value. Specify the
value with the
IM_CTL_OVERSCAN_VAL
field.

IM_CTL_OVERSCAN_VAL OQorl Overscan replace value
(used when
IM_CTL_OVERSCAN is set
to IM_REPLACE).

IM_CTL_THRESHOLD any integer When performing template
matching with a binary
destination buffer, 1 is
written to the destination
buffer if the result is
greater than the indicated
threshold value; otherwise,
0 is written.

To reduce the NOA set-up time, which can be significant (especially on small
images), you can save some or all of the hardware register values in acontrol
cache buffer using the control fields that follow. Doing so can speed up

38

imBinMorphic

processing time for a subsequent call to this function. The first call to this
function will take slightly longer because the registers must be fully
calculated and saved, but subsequent calls will be faster.

The increase in speed depends on the number of parameters that have
changed since the setup information was saved. The increase is biggest
when everything is the same (same buffers, kernel, control fields). The
increase is slightly less if only the source and/or destination buffer addresses
have changed (same size and type of buffer, same kernel, same control
fields). This is useful if performing a double buffering operation. There is
also some set-up time saved when only the kernel is the same as before
(although buffers and control fields might have changed).

IM_CTL_CACHE_BUF Bufld Use the specified buffer as the

cache buffer in which to save the
list of register values (or where
to find them if they were saved
previously). In this case, you will
save a little time on the first call
to this function.

Note that you should allocate a
1-dimensional, 8-bit buffer of
size IM_CACHE_BUF_SIZE.

0 Automatically allocate the cache
buffer in which to save the list of
register values.

The buffer ID will be returned to
the IM_CTL_CACHE_BUF field.

IM_CTL_SETUP IM_SAVE If the cache buffer was given,

save registers and all other
information that might be useful
later. Also perform the
operation.

IM_FASTEST Assume everything is the same
as when the setup was saved.

IM_ADDRESS_ONLY Assume everything except the
source and destination
addresses are the same as when
the setup was saved.

IM_SAME_KERNEL Assume only the kernel is the

same as when the setup was
saved.

Note

Example

See also

imBinMorphic 39

Note that, whether the cache buffer is allocated automatically or you
allocate it yourself, you are responsible for freeing the buffer when you no
longer need it.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

The NOA can only directly process binary image buffers that are
byte-aligned (an image which starts on a byte boundary), and have a width
that isa multiple of 16 pixels. If you pass a hon-aligned source or destination
buffer to imBinMorphic(), there are two possible outcomes, both of which
will cause processing to be slower:

» The operation will be carried out by the 'C80 instead of the NOA, and the
15x15 maximum kernel size limitation (for operations that do not use the
NOA) will apply.

= An aligned copy of the buffer will be made first, then processing will be
done on the copy.

Note that this byte-aligned restriction can only apply to child buffers, since
buffers are always initially allocated with the proper alignment, and with
enough padding at the end of each line to satisfy the 16 pixel requirement.

For an example of thinning objects in an image to their skeleton, see
process.c in Appendix B.

imBinThin(). Use imBinThin() instead of imBinMorphic() if you want
to perform a fast binary thinning operation.

40 imBinThin

ImMBINThin ‘Async HﬂHI\IOA] ‘I\/lu/n'—/oand|

Synopsis

Format

Description

Perform a fast binary thinning operation.
void imBinThin(Thread, Src, Dst, Niter, Control, OSB)
long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Niter; Number of iterations
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function performs a fast binary thinning operation using a custom or
a default connectivity map LUT.

Using this function is the fastest way to thin a binary image. The Src buffer
is thinned for the specified number of iterations, and then the results are
put in the Dst buffer.

The Thread parameter specifies the thread to which to send imBinThin()
for execution.

The Src and Dst parameters specify the buffer on which to perform the
operation and the buffer in which to place the results of the operation,
respectively. Each must be a binary buffer.

Note that this function performs at optimal speed when both the source and
destination buffers are aligned on 16-bit boundaries, and have a width
which is a multiple of 16 pixels.

The Niter parameter specifies the number of times (iterations) this function
is to be performed. This parameter can also be set to IM_IDEMPOTENCE, in
which case the thinning operation will continue until the background and
foreground pixels reach a steady state. As aresult, the image will be reduced
to its skeleton.

See also

imBinThin 41

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imBinThin() are listed below, with default
values in bold-face. Note that if no fields are specified, the default thinning
method will be used.

Field Value Meaning
IM_CTL_OVERSCAN_VAL Oor 1 Overscan replace value. Note that
replace overscan is always used.

IM_CTL_LUT_BUF BuflD Identifier of the connectivity map
LUT buffer. The buffer must be
512 x 8-bit x N-band, where N is the
number of sub-iterations (usually
N=2).
0 Use a default 3x3 connectivity map
LUT.

Note that if you supply your own LUT, the format should be the same as
described for imIntConnectMap().

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imBinMorphic(). It is also possible to use imBinMorphic() if you want
to perform a binary thinning operation.

imIntConnectMap(). If you supply your own LUT buffer, follow the format
conventions described in imIntConnectMap() for the Lut parameter.

42 imBinTriadic

iImBinTriadic ‘ Sync ’ ‘ln-P/ace’ ‘Mu/t/—band’

Synopsis Perform a logical operation.

Format void imBinTriadic(Thread, SrcA, SrcB, SrcC, Dst, Op, OSB)

Description

long Thread; Thread ID

long SrcA,; First source buffer ID (or 0)
long SrcB; Second source buffer ID (or 0)
long SrcC; Third source buffer ID (or 0)
long Dst; Destination buffer ID

long Op; Type of operation to perform
long OSB; OSB ID (or 0)

This function performs a logical operation on up to three binary images.

The PP ALU opcode specifies the type of operation to perform. Predefined
opcodes exist for common operations but if one does not exist for the
operation you want to perform, you can derive its opcode; for the details, see
the Genesis Native Library User Guide.

The Thread parameter specifies the thread to which to send
imBinTriadic() for execution.

The SrcA, SrcB, and SrcC parameters specify the buffers with which to
perform the operation. These must be binary buffers. If you don't need all
these parameters, set the unused ones to 0. Note that you must use SrcA
before using SrcB, and SrcB before using SrcC (for example, if only two
source buffers are needed, you must use SrcA and SrcB).

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a binary buffer.

The Op parameter specifies the type of operation to perform. It can be set
to the required PP ALU opcode or to one of the following predefined opcodes:

IM_PP_ZERO Fill the destination buffer with 0.
IM_PP_ONE Fill the destination buffer with 1.
IM_PP_PASS pass SrcA

IM_PP_NOT ~SrcA

IM_PP_AND SrcA & SrcB

IM_PP_OR SrcA | SrcB

IM_PP_XOR SrcA ” SrcB

imBinTriadic 43

IM_PP_XOR_XOR SrcA ™ SrcB ™ SrcC

IM_PP_NAND ~(SrcA & SrcB)
IM_PP_NOR ~(SrcA | SrcB)
IM_PP_XNOR ~(SrcA ~ SrcB)

IM_PP_MERGE (SrcA & SrcC) | (SrcB & ~SrcC)

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

44 imBlobAllocFeaturelList

imBlobAllocFeatureL.ist

Synopsis Allocate a blob analysis feature list.

Format void imBlobAllocFeatureList(Thread, FeatListPtr)

Description

long Thread; Thread ID
long* FeatListPtr; Address of feature list ID

This function allocates a feature list. A feature list holds the features to be
calculated by imBlobCalculate().

Note that, upon allocation, no features are in the feature list. You add
features using imBlobSelectFeature(), imBlobSelectFeret(), and/or
imBlobSelectMoment().

The Thread parameter specifies the thread to which to send
imBlobAllocFeatureList() for execution.

The FeatListPtr parameter specifies the address in which to return the
feature list identifier. If the feature list could not be allocated, O is returned.

imBlobAllocResult 45

imBlobAllocResult

Synopsis Allocate a blob analysis result buffer.

Format void imBlobAllocResult(Thread, ResultPtr)

Description

long Thread,; Thread ID
long* ResultPtr; Address of result buffer ID

This function allocates a blob analysis result buffer. A result buffer is used
to hold the results that are calculated by imBlobCalculate().

Note that the control settings which affect blob calculations are also stored
in result buffers. Upon allocation of a result buffer, these controls are set to
default values; see imBlobControl() for a list of controls and their default
values.

The Thread parameter specifies the thread to which to send
imBlobAllocResult() for execution.

The ResultPtr parameter specifies the address in which to return the
identifier of the blob analysis result buffer. If the result buffer could not be
allocated, O is returned.

46

imBlobCalculate

imBlobCalculate

Description

Synopsis Perform a blob analysis calculation.

Format void imBlobCalculate(Thread, IdentBuf, GreyBuf, FeatL.ist,
Result, Mode, OSB)

long Thread; Thread ID

long IdentBuf; Blob identifier image ID
long GreyBuf; Grayscale image ID (or 0)
long FeatList; Feature list ID

long Result; Result buffer ID
long Mode; Mode of operation
long OSB; OSB ID (or 0)

blob identifier image and grayscale features are calculated from the

grayscale image. Results are written to the result buffer. The controls with
which to perform a calculation are stored in the result buffer; if necessary,

use imBlobControl() to change these controls.

Note that you can clear any existing results in the result buffer before
writing results or you can accumulate results. You should clear results the
first time you perform a calculation, as well as when you change the input
images (either the identifiers of the images or the actual content of the
images). Accumulating results is useful when you are using the same images

but adding features with each calculation.

The Thread parameter specifies the thread to which to send
imBlobCalculate() for execution.

The IdentBuf parameter specifies the blob identifier image. This can be a

binary buffer, an 8-bit integer buffer, or a 16-bit integer buffer.

The GreyBuf parameter specifies the grayscale image. This can be an
unsigned 8-bit integer buffer or an unsigned 16-bit integer buffer. If you are

not calculating any grayscale features, set this parameter to 0.
The FeatList parameter specifies the feature list.

The Result parameter specifies the result buffer.

This function calculates features of an image’s blobs. The feature list
specifies the features to calculate. Binary features are calculated from the

imBlobCalculate 47

The Mode parameter specifies the mode of operation. It can be set to:

IM_CLEAR Clear results.
IM_NO_CLEAR Accumulate results.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

48 imBlobControl

imBlobControl

Synopsis Change a blob analysis control setting.

Format void imBlobControl(Thread, Result, Item, Value)

Description

Item

long Thread; Thread ID

long Result; Result buffer ID
long Item; Item to set
double Value; Value for Item

This function changes a blob analysis control setting. These settings are
stored in the blob analysis result buffer.

Note that changing a blob analysis control setting automatically re-includes
any excluded blobs in the result buffer. Blobs are excluded using
imBlobSelect().

The Thread parameter specifies the thread to which to send
imBlobControl() for execution.

The Result parameter specifies the blob analysis result buffer.

The Item parameter specifies the setting to change, while the Value
parameter specifies the value for this setting. The table below lists blob
analysis control settings, and their allowable values. The default values of
these settings are in bold-face.

Values Meaning

IM_BLOB_IDENTIFICATION IM_INDIVIDUAL Produce separate results for each

blob.
IM_WHOLE_IMAGE Group results for all blobs.

IM_LABELLED Group results for those blobs in
the blob identifier image that
have the same pixel value.

IM_BLOB_LATTICE IM_8_CONNECTED Consider diagonally adjacent

pixels as touching.

IM_4_CONNECTED Don't consider diagonally adjacent
pixels as touching.

IM_BLOB_PIXEL_ASPECT_RATIO

IM_BLOB_NUMBER_OF FERETS

IM_BLOB_FOREGROUND_VALUE

IM_BLOB_MAX_TIME

IM_BLOB_SAVE_RUNS

IM_BLOB_TIME_SLICE

any floating-point
value >0
(default: 1.0)

any integer
between
IM_MIN_FERETS
and
IM_MAX_FERETS,
inclusive
(default: 8)

IM_NON_ZERO

IM_ZERO

any floating-point
value
(default: 0.0)

IM_ENABLE
IM_DISABLE

any floating-point
value
(default: 0.0)

imBlobControl 49

Pixel aspect ratio to apply to blob
calculations.

Number of Feret diameters to
check, for features that require
multiple Feret diameters in order
to be calculated. The Feret
diameter is checked every
180°/IM_BLOB_NUMBER_OF_FERETS
starting at 0°.

Consider pixels in the blob
identifier image with non-zero
values as blob pixels.

Consider pixels in the blob
identifier image with zero values
as blob pixels.

Maximum time (in seconds)
allowed for processing. If a
non-zero value is specified,
imBlobCalculate() will time out
when the specified period expires.
If imBlobCalculate() does time
out, results will be invalid.

Save run information.

Don't save run information. This
reduces the amount of memory
required for the result buffer and
might increase the speed of
imBlobCalculate(). However,
you will not be able to use
functions that require run
information i.e.
imBlobCopyRuns(),
imBlobFill(),
imBlobGetLabel(),
imBlobGetRuns(), and
imBlobLabel().

The amount of processing time (in
seconds) that imBlobCalculate()
uses before it yields to other
threads of equal priority. By
default, imBlobCalculate() uses
all of the master processor’s time
until it finishes.

50 imBlobCopyResult

imBlobCopyResult

Synopsis

Copy blob analysis results.

Format void imBlobCopyResult(Thread, Result, Feature, Mode, DstBuf,

Description

OSB)
long Thread; Thread ID
long Result; Result buffer ID
long Feature; Feature to copy
long Mode; Mode of operation
long DstBuUf; Destination buffer ID
long OSB; OSB ID (or 0)

This function copies the results of a specified feature or of a predefined group
of features, for all currently included blobs, into a buffer. Results that
express units of measure are expressed in pixels or degrees. If the pixel
aspect ratio is not equal to 1, results that represent a position or length are
expressed in units of "pixel height".

Note that it is faster to retrieve a group of results at one time rather than
retrieving the results individually.

Similar features appear in the same group. Some features (for example, the
label value and the number of blobs) appear in all groups because you might
need them no matter what other features you calculate. To save memory
and reduce transfer time, features that can easily be derived from others
are not included in any group. For the equations needed to derive certain
features, see imBlobSelectFeature().

When retrieving results of an individual feature, the required feature must
first have been calculated, using imBlobCalculate(). When retrieving
results for a group of features, only results for features you calculated will
be valid. Values for features not calculated will be undefined, and no error
messages will be generated.

The Thread parameter specifies the thread to which to send
imBlobCopyResult() for execution.

The Result parameter specifies the result buffer containing the results to
copy.

imBlobCopyResult 51

The Feature parameter specifies the #define of the required feature or the
#define of the required group. For #defines of specific features, see
imBlobSelectFeature(), imBlobSelectFeret(), and/or
imBlobSelectMoment().

Groups have the #defines IM_BLOB_GROUP1 to IM_BLOB_GROUP6 and are
defined below, along with their data structure (when you retrieve results
for a predefined group, the results are stored in a specific data structure).
Note that the structure member names are exactly the same as the
corresponding feature name #defines, with the IM_BLOB_ prefix removed.
In order to save memory and reduce transfer time to the Host, each feature
is stored in the smallest data type that can hold it. For example, integer
results are returned as 16-bit values if possible, and floating-point values
are returned as 32-bit single precision values. You must make sure that your
compiler does not add any padding to the structure to change the alignment
of structure members. However, the structure has been defined so that most
compilers will not attempt to change the alignment.

/* IM_BLOB GROUP1 Basic binary features */
typedef struct
{
unsigned short number of blobs; /* Same as imBlobGetNumber() */
unsigned short Tabel value;
unsigned long area;
unsigned short box x min;
unsigned short box y min;
unsigned short box x max;
unsigned short box y max;
unsigned short number of holes;
unsigned short number of runs;
float perimeter;
float length;
float breadth;
float center of gravity x;
float center_of gravity y:
} IM_BLOB_GROUP1_ST;

/* IM BLOB GROUP2 Less common features */

typedef struct

{
unsigned short number of blobs;
unsigned short Tabel value;
unsigned short x min_at y min;
unsigned short x max_at y max;
unsigned short y min_at x max;
unsigned short y max_at x min;
unsigned short intercept 0;
unsigned short intercept 45;
unsigned short intercept 90;
unsigned short intercept 135;

} IM_BLOB GROUP2_ST;

52

imBlobCopyResult

/* IM_BLOB GROUP3 Binary second moments */

typedef struct

{
unsigned short number_of blobs;
unsigned short Tabel value;
float moment x1 yl1;
float moment x2 y0;
float moment x0 y2;
float moment central x1 yl;
float moment central x2 y0;
float moment central x0 y2;

} IM_BLOB_GROUP3_ST;

/* IM_BLOB GROUP4 Features derived from multiple feret diameters */
typedef struct
{
unsigned short number_of blobs;
unsigned short Tabel value;
float feret min diameter;
float feret min angle;
float feret max diameter;
float feret max angle;
float feret mean diameter;
float convex perimeter;
} IM_BLOB_GROUP4_ST;

/* IM BLOB GROUP5 Basic grayscale features */

typedef struct

{
unsigned short number_of blobs;
unsigned short Tabel value;
unsigned long sum pixel;
unsigned short min pixel;
unsigned short max pixel;
float sum pixel squared;
float center of gravity x:
float center of gravity y;

} IM_BLOB_GROUP5_ST;

/* IM BLOB GROUP6 Grayscale second moments */

typedef struct

{
unsigned short number_of blobs;
unsigned short Tabel value;
float moment x1 yl1;
float moment x2 y0;
float moment x0 y2;
float moment central x1 yl;
float moment central x2 y0;
float moment central x0 y2;

} IM_BLOB_GROUP6_ST;

See also

imBlobCopyResult 53

The Mode parameter specifies whether to copy the binary or grayscale
result of a feature, for features that have both a binary and grayscale result.
This parameter applies only when copying an individual feature, not when
copying a group of features. The Mode parameter can be set to:

IM_BINARY Copy the binary result.
IM_GRAYSCALE Copy the grayscale result.

For features that do not have both a binary and grayscale result (or for
groups of features), set the Mode parameter to IM_DEFAULT.

The DstBuf parameter specifies the buffer in which to copy results. This
must be an on-board, one-dimensional buffer. It can be of any data type, but
should be at least as big as the number of included blobs in the result buffer.
Note that you can determine the number of included blobs using
imBlobGetNumber().

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imBlobGetResult(). The imBlobGetResult() function can transfer blob
analysis results to Host memory.

54 imBlobCopyRuns

imBlobCopyRuns

Synopsis

Copy run information about a blob.

Format void imBlobCopyRuns(Thread, Result, Label, XBuf, YBuUT,

Description

LenBuf, OSB)
long Thread; Thread ID

long Result; Result buffer 1D

long Label, Label value of the blob

long XBuUf; ID of buffer to place x coordinates (or 0)

long YBUT; ID of buffer to place y coordinates (or 0)

long LenBuf; ID of buffer to place length of each run (or 0)
long OSB; OSB ID (or 0)

This function copies run information about a specified blob into a buffer. A
run is a horizontal sequence of consecutive blob pixels. You can copy the x
and y coordinate of the start of each run, as well as the length of each run.

Note that, before you can copy run information about a blob, you must
calculate the number of runs feature (IM_BLOB_NUMBER_OF_RUNS), using
imBlobCalculate().

The Thread parameter specifies the thread to which to send
imBlobCopyRuns() for execution.

The Result parameter specifies the result buffer from which to copy run
information.

The Label parameter specifies the label value of the blob whose run
information you wish to copy. Note that the label value of a blob can be
obtained by using imBlobGetLabel(), or by transferring the
IM_BLOB_LABEL_VALUE feature using imBlobGetResult().

The XBuf parameter specifies the buffer in which to place the x coordinate
of the start of each run. This must be an on-board, one-dimensional buffer.
It can be of any integer data type but must be at least as big as the number
of runs in the required blob. You can inquire about the number of runs in a
blob using imBlobGetResult() or imBlobGetResultSingle(). Note that
this parameter can be set to 0, in which case the x coordinates are not copied.

Note

See also

imBlobCopyRuns 55

The YBuf parameter specifies the buffer in which to place the y coordinate
of the start of each run. This must be an on-board, one-dimensional buffer.
It can be of any integer data type but must be at least as big as the number
of runs in the required blob. You can inquire about the number of runsin a
blob using imBlobGetResult() or imBlobGetResultSingle(). Note that
this parameter can be set to 0, in which case the y coordinates are not copied.

The LenBuf parameter specifies the buffer in which to place the length of
each run. This must be an on-board, one-dimensional buffer. It can be of any
integer data type but must be at least as big as the number of runs in the
required blob. You can inquire about the number of runs in a blob using
imBlobGetResult() or imBlobGetResultSingle(). Note that this
parameter can be set to 0, in which case the lengths are not copied.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Run results are in raw pixels and are not affected by the pixel aspect ratio.

imBlobGetRuns(). The imBlobGetRuns() function transfers run
information about a blob into Host memory.

56 imBlobFill

imBlobFill

Synopsis Draw filled blobs into a buffer.

Format void imBlobFill(Thread, Result, DstBuf, Mode, Value, OSB)

Description

long Thread; Thread ID

long Result; Result buffer ID

long DstBuf; Destination buffer ID
long Mode; Mode of operation
long Value; Fill value

long OSB; OSB ID (or 0)

This function draws selected blobs of a result buffer into a destination buffer,
filling them with a specified value. The blobs are drawn into the same
positions as they occupy in the blob identifier image associated with the
result buffer. They are selected for drawing based on their status (included
or excluded) in the result buffer. You exclude (or re-include) blobs using
imBlobSelect().

Note that this function can be used to remove unwanted blobs in a blob
identifier image, by filling them with the background value and using the
identifier image (or a copy of it) as the destination buffer.

The Thread parameter specifies the thread to which to send imBIlobFill()
for execution.

The Result parameter specifies the result buffer.

The DstBuf parameter specifies the buffer in which to draw the blobs. This
must be an 8-bit or 16-bit integer buffer.

The Mode parameter specifies the mode of operation. It can be set to:

IM_INCLUDED_BLOBS Draw included blobs.
IM_EXCLUDED_BLOBS Draw excluded blobs.
IM_ALL_BLOBS Draw all blobs, regardless of their status.

The Value parameter specifies the value with which to fill the blobs drawn
into the destination buffer.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBlobFree 57

imBlobFree

Synopsis

Free a blob analysis result buffer or feature list.

Format void imBlobFree(Thread, ResultOrFeatList)

Description

long Thread,; Thread ID
long ResultOrFeatList; Result buffer or feature list ID

This function deallocates a blob analysis result buffer or feature list.

The Thread parameter specifies the thread to which to send imBlobFree()
for execution.

The ResultOrFeatL ist parameter specifies the result buffer or feature list
to deallocate.

58 imBlobGetLabel

imBlobGetLabel
Synopsis Get the label value of a blob at a specified position.
Format long imBlobGetLabel(Thread, Result, X, Y, LabelPtr)
long Thread; Thread ID
long Result; Result buffer ID
long X; X coordinate of the blob
long; Y coordinate of the blob
long* LabelPtr; Address of label value (or NULL)
Description This function determines the label value of a blob at a specified position in

Return value

an identifier image. The identifier image is the one that was given to
imBlobCalculate() for the specified result buffer.

The Thread parameter specifies the thread to which to send
imBlobGetLabel() for execution.

The Result parameter specifies the result buffer associated with the
required identifier image.

The X and Y parameters specify the x and y coordinates of a pixel within
the identifier image.

The LabelPtr parameter specifies the address of the user-supplied variable
in which to place the label value of the specified blob. Since
imBlobGetLabel() also returns this value, LabelPtr can be set to NULL.

The returned value is the label value of the specified blob if there is a blob
at the specified position; 0 if there is no blob at the specified position.

imBlobGetNumber 59

imBlobGetNumber

Synopsis Get the number of currently included blobs.
Format long imBlobGetNumber(Thread, Result, NumPtr)

long Thread,; Thread ID
long Result; Result buffer ID
long* NumPtr; Address of count (or NULL)

Description This function determines the number of currently included blobs in a blob
analysis result buffer. Included blobs are those that are included in blob
calculations. You exclude blobs from blob calculations (or re-include them)
using imBlobSelect().

Note that, before retrieving results using imBlobCopyResult() or
imBlobGetResult(), imBlobGetNumber() can be used to determine how
much to memory to allocate for the results. However, if you are sure you
have allocated enough memory and are retrieving results for a group of
features, you do not need to call imBlobGetNumber(), since the number
of included blobs is part of all feature groups.

The Thread parameter specifies the thread to which to send
imBlobGetNumber() for execution.

The Result parameter specifies the result buffer. Note that this buffer must
already have been used in a call to imBlobCalculate().

The NumPtr parameter specifies the address of the user-supplied variable
in which to place the number of blobs. Since imBlobGetNumber() also
returns this value, NumPtr can be set to NULL.

Return value The returned value is the number of included blobs.

60 imBlobGetResult

imBlobGetResult

Synopsis Transfer blob analysis results to Host memory.

Format void imBlobGetResult(Thread, Result, Feature, Mode, ArrayPtr)

Description

long Thread; Thread ID

long Result; Result buffer ID

long Feature; Type of feature required
long Mode; Mode of operation

void* ArrayPtr; Address of array

This function transfers the results of a specified feature or of a predefined
group of features, for all currently included blobs, to an array in Host
memory. Results that express units of measure are expressed in pixels or
degrees. If the pixel aspect ratio is not equal to 1, results that represent a
position or length are expressed in units of "pixel height".

Note that it is faster to retrieve a group of results at one time rather than
retrieving the results individually.

Similar features appear in the same group. Some features (for example, the
label value and the number of blobs) appear in all groups because you might
need them no matter what other features you calculate. To save memory
and reduce transfer time, features that can easily be derived from others
are not included in any group. For the equations needed to derive certain
features, see imBlobSelectFeature().

When retrieving results of an individual feature, the required feature must
first have been calculated, using imBlobCalculate(). When retrieving
results for a group of features, only results for features you calculated will
be valid. Values for features not calculated will be undefined, and no error
messages will be generated.

The Thread parameter specifies the thread to which to send
imBlobGetResult() for execution.

The Result parameter specifies the result buffer containing the results to
transfer.

imBlobGetResult 61

The Feature parameter specifies the #define of the required feature or the
#define of the required group. For #defines of specific features, see
imBlobSelectFeature(), imBlobSelectFeret(), and/or
imBlobSelectMoment().

Groups have the #defines IM_BLOB_GROUP1 to IM_BLOB_GROUP6 and are
defined below, along with their data structure (when you retrieve results
for a predefined group, the results are stored in a specific data structure).
Note that the structure member names are exactly the same as the
corresponding feature name #defines, with the IM_BLOB_ prefix removed.
In order to save memory and reduce transfer time to the Host, each feature
is stored in the smallest data type that can hold it. For example, integer
results are returned as 16-bit values if possible, and floating-point values
are returned as 32-bit single precision values. You must make sure that your
compiler does not add any padding to the structure to change the alignment
of structure members. However, the structure has been defined so that most
compilers will not attempt to change the alignment.

/* IM_BLOB GROUP1 Basic binary features */
typedef struct
{
unsigned short number of blobs; /* Same as imBlobGetNumber() */
unsigned short Tabel value;
unsigned long area;
unsigned short box x min;
unsigned short box y min;
unsigned short box x max;
unsigned short box y max;
unsigned short number of holes;
unsigned short number of runs;
float perimeter;
float length;
float breadth;
float center of gravity x;
float center_of gravity y:
} IM_BLOB_GROUP1_ST;

/* IM BLOB GROUP2 Less common features */

typedef struct

{
unsigned short number of blobs;
unsigned short Tabel value;
unsigned short x min_at y min;
unsigned short x max_at y max;
unsigned short y min_at x max;
unsigned short y max_at x min;
unsigned short intercept 0;
unsigned short intercept 45;
unsigned short intercept 90;
unsigned short intercept 135;

} IM_BLOB GROUP2_ST;

62

imBlobGetResult

/* IM_BLOB GROUP3 Binary second moments */

typedef struct

{
unsigned short number_of blobs;
unsigned short Tabel value;
float moment x1 yl1;
float moment x2 y0;
float moment x0 y2;
float moment central x1 yl;
float moment central x2 y0;
float moment central x0 y2;

} IM_BLOB_GROUP3_ST;

/* IM_BLOB GROUP4 Features derived from multiple feret diameters */
typedef struct
{
unsigned short number_of blobs;
unsigned short Tabel value;
float feret min diameter;
float feret min angle;
float feret max diameter;
float feret max angle;
float feret mean diameter;
float convex perimeter;
} IM_BLOB_GROUP4_ST;

/* IM BLOB GROUP5 Basic grayscale features */

typedef struct

{
unsigned short number_of blobs;
unsigned short Tabel value;
unsigned long sum pixel;
unsigned short min pixel;
unsigned short max pixel;
float sum pixel squared;
float center of gravity x:
float center of gravity y;

} IM_BLOB_GROUP5_ST;

/* IM BLOB GROUP6 Grayscale second moments */

typedef struct

{
unsigned short number_of blobs;
unsigned short Tabel value;
float moment x1 yl1;
float moment x2 y0;
float moment x0 y2;
float moment central x1 yl;
float moment central x2 y0;
float moment central x0 y2;

} IM_BLOB_GROUP6_ST;

See also

imBlobGetResult 63

The Mode parameter specifies whether to transfer the binary or grayscale
result of a feature, for features that have both a binary and grayscale result.
This parameter applies only when transferring an individual feature, not
when transferring a group of features. The Mode parameter can be set to:

IM_BINARY Transfer the binary result.
IM_GRAYSCALE Transfer the grayscale result.

For features that do not have both a binary and grayscale result (or for
groups of features), set the Mode parameter to IM_DEFAULT.

The ArrayPtr parameter specifies the address of the user-supplied array
in which to place the results. By default, for individual features, results are
returned as type double. If you want results returned as a type other than
double, combine the #define of the required feature with the required type:
IM_TYPE_CHAR, IM_TYPE_SHORT, IM_TYPE_LONG, or IM_TYPE_FLOAT (for
example, IM_BLOB_AREA+IM_TYPE_LONG). For groups of features, the
ArrayPtr parameter should be the address of an array of the appropriate
type of data structure.

Note that the array should be at least as big as the number of included blobs
in the result buffer. You can determine the number of included blobs using
imBlobGetNumber().

imBlobCopyResult(). If for some reason you need to use several calls to
imBlobGetResult() to transfer results, it might be more efficient to copy
them to an on-board buffer (using multiple calls to imBlobCopyResult()),
and then transfer them to the Host all at the same time (using imBufGet()).
This is because imBlobCopyResult(), being an asynchronous function, is
more efficient than imBlobGetResult().

64 imBlobGetResultSingle

imBlobGetResultSingle

Synopsis

Read the feature value of a single blob.

Format void imBlobGetResultSingle(Thread, Result, Label, Feature,

Description

Mode, ValuePtr)
long Thread; Thread ID

long Result; Result buffer ID

long Label, Label value

long Feature; Type of feature required
long Mode; Mode of operation

void* ValuePtr; Address of feature value
This function obtains the result of a specified feature of a specified blob.

Note that the required feature must first have been calculated, using
imBlobCalculate(). Results that express units of measure are expressed
in pixels or degrees. If the pixel aspect ratio is not equal to 1, results that
represent a position or length are expressed in units of "pixel height".

The Thread parameter specifies the thread to which to send
imBlobGetResultSingle() for execution.

The Result parameter specifies the result buffer containing the results to
transfer.

The Label parameter specifies the label value of the specified blob. Note
that the label value of a blob can be obtained using imBlobGetLabel().

The Feature parameter specifies the #define of the required feature. For a
list of features and their #defines, see imBlobSelectFeature(),
imBlobSelectFeret(), and/or imBlobSelectMoment().

The Mode parameter specifies whether to transfer the binary or grayscale
result of a feature, for features that have both a binary and grayscale result.
The Mode parameter can be set to:

IM_BINARY Transfer the binary result.
IM_GRAYSCALE Transfer the grayscale result.

For features that do not have both a binary and grayscale result, set the
Mode parameter to IM_DEFAULT.

imBlobGetResultSingle 65

The ValuePtr parameter specifies the address of the user-supplied variable
in which to place the result. By default, the resultis returned as type double.
If you want the result returned as a type other than double, combine the
#define of the required feature with the required type: IM_TYPE_CHAR,

IM_TYPE_SHORT, IM_TYPE_LONG, or IM_TYPE_FLOAT (for example,
IM_BLOB_AREA+IM_TYPE_LONG).

66 imBlobGetRuns

iImBlobGetRuns

Synopsis Transfer run information about a blob into Host memory.

Format void imBlobGetRuns(Thread, Result, Label, Type, XPtr, YPtr,

Description

LenPtr)
long Thread; Thread ID
long Result; Result buffer ID
long Label, Label value of the blob
long Type; Type of arrays in which run information will be placed
void* XPtr; Address of array to place x-coordinates (or NULL)
void* YPtr; Address of array to place y-coordinates (or NULL)

void* LenPtr; Address of array to place length of each run (or NULL)

This function transfers run information about a specified blob to an array
in Host memory. A run is a horizontal sequence of consecutive blob pixels.
You can transfer the x and y coordinate of the start of each run, as well as
the length of each run.

Note that, before you can copy run information about a blob, you must
calculate the number of runs feature (IM_BLOB_NUMBER_OF_RUNS), using
imBlobCalculate().

The Thread parameter specifies the thread to which to send
imBlobGetRuns() for execution.

The Result parameter specifies the result buffer from which to transfer run
information.

The Label parameter specifies the label value of the blob whose run
information you wish to transfer. Note that the label value of a blob can be
obtained by using imBlobGetLabel(), or by transferring the
IM_BLOB_LABEL_VALUE feature using imBlobGetResult().

The Type parameter specifies the type of the arrays in which run
information will be placed. It can be set to:

IM_TYPE_CHAR Type char.

IM_TYPE_SHORT Type short.

IM_TYPE_LONG Type long.

Note

See also

imBlobGetRuns 67

The XPtr parameter specifies the user-supplied array in which to place the
x coordinate of the start of each run. This array should be at least as big as
the number of runs in the required blob. You can inquire about the number
of runsin ablob using imBlobGetResult() or imBlobGetResultSingle().
Note that this parameter can be set to NULL, in which case the x coordinates
are not transferred.

The YPtr parameter specifies the user-supplied array in which to place the
y coordinate of the start of each run. This array should be at least as big as
the number of runs in the required blob. You can inquire about the number
of runsin ablob using imBlobGetResult() or imBlobGetResultSingle().
Note that this parameter can be set to NULL, in which case the y coordinates
are not transferred.

The LenPtr parameter specifies the user-supplied array in which to place
the length of each run. This array should be at least as big as the number
of runs in the required blob. You can inquire about the number of runs in a
blob using imBlobGetResult() or imBlobGetResultSingle(). Note that
this parameter can be set to NULL, in which case the lengths are not
transferred.

Run results are in raw pixels and are not affected by the pixel aspect ratio.

imBlobCopyRuns(). The imBlobCopyRuns() function copies run
information about a blob into a buffer.

68 imBlobInquire

imBloblnquire

Synopsis

Format

Description

Inquire about a blob analysis control setting.

long imBloblnquire(Thread, Result, Item, ValuePtr)

long Thread; Thread ID
long Result; Result buffer ID
long Item; Item to inquire

void* ValuePtr; Address of return value (or NULL)

This function inquires about a blob analysis control setting. Note that these
settings are stored in blob analysis result buffers.

The Thread parameter specifies the thread to which to send

imBloblnquire() for execution.

The Result parameter specifies the blob analysis result buffer.

The Item parameter specifies the control setting about which to inquire. It

can be set to:
IM_BLOB_IDENTIFICATION

IM_BLOB_LATTICE

IM_BLOB_PIXEL_ASPECT RATIO

IM_BLOB_NUMBER_OF FERETS

IM_BLOB_MAX_LABEL

IM_BLOB_FOREGROUND_VALUE

Whether to produce separate results
for each blob (IM_INDIVIDUAL), group
results for all blobs
(IM_WHOLE_IMAGE), or group results
for those blobs in the blob identifier
image that have the same pixel value
(IM_LABELLED).

Whether diagonally adjacent pixels are
considered touching
(IM_8_CONNECTED) or not
(IM_4_CONNECTED).

Pixel aspect ratio to apply to blob
calculations.

Number of Feret diameters to check,
for features that require multiple Feret
diameters in order to be calculated.

The maximum label value of a blob in
the result buffer.

Whether pixels in the blob identifier
image with non-zero values
(IM_NON_ZERO) or with zero values
(IM_ZERO) are considered blob pixels.

Return value

IM_BLOB_TIMEOUT

IM_BLOB_MAX_TIME

IM_BLOB_SAVE_RUNS

IM_BLOB_TIME_SLICE

imBloblnquire 69

Whether imBlobCalculate() timed
out (TRUE) or completed normally
(FALSE). imBlobCalculate() will time
out if the specified maximum time
allowed for processing is exceeded.

Maximum time (in seconds) allowed for
processing. If this value is zero,
imBlobCalculate() will always run to
completion.

Whether to save run information
(IM_ENABLE) or not (IM_DISABLE). If
run information is not saved, you
cannot use functions that require run
information i.e. imBlobCopyRuns(),
imBlobFill(), imBlobGetLabel(),
imBlobGetRuns(), and
imBlobLabel().

The amount of processing time (in
seconds) that imBlobCalculate() uses
before it yields to other threads of equal
priority. If this value is zero,
imBlobCalculate() uses all of the
master processor’s time until it
finishes.

The ValuePtr parameter specifies the address in which to return the value
of the inquired control setting. By default, the value is returned as type
double. To return the value as type long, combine the specified control
setting with IM_TYPE_LONG (for example,
IM_BLOB_IDENTIFICATION+IM_TYPE_LONG).

Note that, since imBloblnquire() also returns the value of the inquired
setting, ValuePtr can be set to NULL.

The returned value is the value of the inquired control setting, cast to long

if necessary.

70 imBlobLabel

imBlobLabel

Synopsis Draw labelled blobs into a buffer.

Format void imBlobLabel(Thread, Result, DstBuf, Mode, OSB)

Description

long Thread; Thread ID

long Result; Result buffer ID

long DstBuf; Destination buffer ID
long Mode; Mode of operation
long OSB; OSB ID (or 0)

This function draws blobs of a result buffer into a destination buffer,
labelling them with their label value. The blobs are drawn into the same
positions as they occupy in the blob identifier image associated with the
result buffer. Blobs that are deleted from the result buffer are not drawn.

Note that label values must first have been generated for the blobs, using
imBlobCalculate().

The Thread parameter specifies the thread to which to send
imBlobLabel() for execution.

The Result parameter specifies the result buffer from which to draw the
labelled image.

The DstBuf parameter specifies the buffer in which to draw the labelled

image. This buffer must be an 8-bit or 16-bit integer buffer, and must be at
least the same size as the original image. In addition, it must be 16 bits deep
if the maximum label value exceeds 255. To determine the maximum label
value, use imBloblnquire(). Note that the number of blobs cannot tell you
the maximum label value, since label values are not necessarily contiguous.

The Mode parameter specifies the mode of operation. It can be set to:

IM_CLEAR Clear the destination buffer before drawing into it
(background pixels will be set to the value 0).

IM_NO_CLEAR Don't clear the destination buffer before drawing
into it (background pixels will be unchanged).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBlobSelect 71

imBlobSelect

Synopsis

Exclude or delete blobs.

Format void imBlobSelect(Thread, Result, Operation, Feature, Mode,

Description

Cond, Low, High)

long Thread,; Thread ID

long Result; Result buffer ID

long Operation; Mode of operation

long Feature; Feature to be used for selection
long Mode; Mode of operation

long Cond,; Conditional operator

double Low; Constant

double High; Constant

This function filters (excludes or deletes) unwanted blobs from a blob
analysis result buffer. It can also be used to re-include excluded blobs. Note
that blobs that are excluded are ignored during subsequent calculations and
result retrieval but can be re-included (either by calling this function again
or by calling imBlobControl()). Blobs that are deleted are removed
completely from the result buffer and cannot be re-included. However,
deleted blobs are not removed from the blob identifier image (to remove
blobs from a blob identifier image, use imBlobFill()).

Note that blobs are excluded, deleted, or re-included based on the result of
a specified feature. Therefore, the required feature must first have been
calculated, using imBlobCalculate().

The Thread parameter specifies the thread to which to send
imBlobSelect() for execution.

The Result parameter specifies the result buffer from which to exclude,
delete, or re-include blobs.

The Operation parameter specifies whether to re-include, exclude, or
delete blobs. It can be set to:

IM_INCLUDE Re-include blobs that meet the specified
condition.

IM_EXCLUDE Exclude blobs that meet the specified condition.

72

imBlobSelect

IM_INCLUDE_ONLY Include blobs that meet the specified condition,
and exclude all blobs that do not meet the
specified condition.

IM_EXCLUDE_ONLY Exclude blobs that meet the specified condition,
and re-include blobs that do not meet the
specified condition.

IM_DELETE Delete blobs that meet the specified condition.

The Feature parameter specifies the #define of the feature with which to
exclude, delete, or re-include blobs. For a list of features and their #defines,
see imBlobSelectFeature(), imBlobSelectFeret(), and/or
imBlobSelectMoment().

The Mode parameter specifies whether to use the binary or grayscale result
to exclude, delete, or re-include blobs, for features that have both a binary
and grayscale result. The Mode parameter can be set to:

IM_BINARY Use the binary result.
IM_GRAYSCALE Use the grayscale result.

For features that do not have both a binary and grayscale result, set the
Mode parameter to IM_DEFAULT.

The Cond parameter specifies the condition with which to exclude, delete,
or re-include blobs. It can be set to:

IM_OUT_RANGE if the result of the specified feature is less
than Low or greater than High.

IM_IN_RANGE if the result of the specified feature is within
Low to High, inclusive.

IM_EQUAL if the result of the specified feature is equal to
Low.

IM_NOT_EQUAL if the result of the specified feature is not
equal to Low.

IM_GREATER if the result of the specified feature is greater
than Low.

IM_LESS if the result of the specified feature is less
than Low.

IM_GREATER_OR_EQUAL if the result of the specified feature is greater
than or equal to Low.

IM_LESS OR_EQUAL if the result of the specified feature is less
than or equal to Low.

The Low and High parameters specify constants. For cases where High is
not used, any value can be given for it.

imBlobSelectFeature 73

imBlobSelectFeature

Synopsis Select a feature for calculation.

Format void imBlobSelectFeature(Thread, FeatList, Feature, Mode)

long Thread,; Thread ID

long FeatL.ist; Feature list ID

long Feature; Feature to be selected
long Mode; Mode of operation

Description This function selects a feature for calculation by imBlobCalculate(). Note
that features must be added to the feature list which is passed to
imBlobCalculate(). A feature list is allocated using
imBlobAllocFeatureList().

The Thread parameter specifies the thread to which to send
imBlobSelectFeature() for execution.

The FeatList parameter specifies the feature list.

The Feature parameter specifies the feature. It can be set to:

IM_BLOB_LABEL_VALUE

IM_BLOB_AREA

IM_BLOB_PERIMETER

IM_BLOB_BOX_X_MIN,
IM_BLOB_BOX_Y_MIN,
IM_BLOB_BOX_X_MAX,
IM_BLOB_BOX_Y_MAX

The label value of a blob. This is a positive
integer (>= 1) that is unique for each blob.
This feature is always calculated; you do not
need to select it.

The number of pixels in a blob (holes are not
counted).

The total length of edges in a blob (including
the edges of any holes), with an allowance
made for the staircase effect that is produced
when diagonal edges are digitized (inside
corners are counted as 1.414, rather than 2.0).
A single pixel blob (area = 1) has a perimeter
of 4.0.

The coordinates of the extreme left, top, right,
and bottom pixels, respectively, of a blob.

74

imBlobSelectFeature

IM_BLOB_FIRST POINT X,
IM_BLOB_FIRST _POINT_Y

IM_BLOB_FERET X,
IM_BLOB_FERET_Y

IM_BLOB_FERET_MIN_DIAMETER

IM_BLOB_FERET_MIN_ANGLE

IM_BLOB_FERET_MAX_DIAMETER

IM_BLOB_FERET_MAX_ANGLE

The x coordinate is that of the left-most pixel
on the top-most line of the blob; the y
coordinate is that of the top-most line of the
blob. Together, these define a unique point for
each blob, that is always on the perimeter of
the blob.

These are the dimensions of the minimum
bounding box of a blob in the horizontal and
vertical directions (respectively); that is,
IM_BLOB_BOX_X_MAX - IM_BLOB_BOX_X_MIN + 1,
and similarly for the y direction.

The smallest Feret diameter found after
checking a certain number of angles. More
angles will give a more accurate result, but
will take longer to calculate. You specify the
number of angles to check using
imBlobControl() (the default is 8). Note that
this feature is not very accurate for long thin
blobs. If you want an estimate of the width of
a long thin blob, it is better to use
IM_BLOB_BREADTH.

The angle at which the minimum Feret
diameter is found. This value is in degrees.
Positive values indicate a counter-clockwise
displacement from the positive x-axis;
negative values indicate a clockwise
displacement from the positive x-axis.

The largest Feret diameter found after
checking a certain number of angles. More
angles will give a more accurate result, but
will take longer to calculate. You specify the
number of angles to check using
imBlobControl (the default is 8). Note that
the maximum Feret diameter is not very
sensitive to the number of angles; 8 usually
gives an accurate result.

The angle at which the maximum Feret
diameter is found. This value is in degrees.
Positive values indicate a counter-clockwise
displacement from the positive x-axis;
negative values indicate a clockwise
displacement from the positive x-axis.

imBlobSelectFeature 75

IM_BLOB_FERET_MEAN_DIAMETER The average Feret diameter after checking a

IM_BLOB_FERET_ELONGATION

IM_BLOB_CONVEX_PERIMETER

IM_BLOB_X_MIN_AT_Y_MIN,
IM_BLOB_X_MAX_AT_Y_MAX,
IM_BLOB_Y_MIN_AT_X_MAX,
IM_BLOB_Y_MAX_AT _X_MIN

IM_BLOB_COMPACTNESS

IM_BLOB_NUMBER_OF HOLES

IM_BLOB_NUMBER_OF_RUNS

certain number of angles. You specify the
number of angles to check using
imBlobControl (the default is 8). More
angles will give a more accurate result, but
will take longer to calculate.

Equal to:

IM_BLOB_FERET_MAX_DIAMETER
IM_BLOB_FERET_MIN_DIAMETER

It is accurate for reasonably compact blobs,
but becomes less accurate for long thin blobs
(because IM_BLOB_FERET_MIN_DIAMETER
becomes less accurate). For long thin blobs, it
is better to use IM_BLOB_ELONGATION.

An approximation of the perimeter of a blob’s
convex hull. It is derived from several Feret
diameters. You specify the number of angles
at which to calculate Ferets using
imBlobControl (the default is 8). More
angles will give a more accurate result, but
will take longer to calculate.

These values, together with the four box
coordinates, give four contact points on the
convex perimeter of the blob.

A measure of how close pixels in the blob are
to one another. It is equal to:

p2

(4mA)

where A = the area and p = the perimeter of
the blob. Note that a circle has the minimum
compactness value (1.0); more convoluted
shapes have higher compactness values.

The number of holes in a blob. Holes that
intersect the edge of the image are not
counted (they might not be holes). This value
is equal to 1 - IM_BLOB_EULER_NUMBER and is
therefore a true hole count only when results
are not grouped for blobs i.e. when the
IM_BLOB_IDENTIFICATION control setting is
set to IM_INDIVIDUAL.

The total number of runs in a blob. Arunis a
horizontal string of consecutive blob pixels.

76 imBlobSelectFeature

IM_BLOB_ROUGHNESS

IM_BLOB_EULER_NUMBER

IM_BLOB_LENGTH

IM_BLOB_BREADTH

IM_BLOB_ELONGATION

IM_BLOB_INTERCEPT 0

A measure of the unevenness or irregularity
of a blob’s surface. It is equal to:

IM_BLOB_PERIMETER
IM_BLOB_CONVEX_PERIMETER
The minimum roughness value is 1.0. Jagged
blobs have much higher roughness values
because their perimeters are much larger
than their convex perimeters.

The number of blobs - number of holes. This
value is more useful when results are grouped
i.e. when the IM_BLOB_IDENTIFICATION
control setting is set to IM_WHOLE_IMAGE
than IM_INDIVIDUAL.

Derived from the perimeter (P) and area (A) of
the blob, assuming that

P = 2(length + breadth) and

A = length x breadth.

IM_BLOB_LENGTH is better than
IM_BLOB_FERET_MAX_DIAMETER at
estimating the length of long thin blobs. For
other blob types,
IM_BLOB_FERET_MAX_DIAMETER is often
better.

See IM_BLOB_LENGTH for the equations used
to derive IM_BLOB_BREADTH.
IM_BLOB_BREADTH is better than
IM_BLOB_FERET_MIN_DIAMETER at
estimating the width of long thin blobs. For
other blob types,
IM_BLOB_FERET_MIN_DIAMETER is often
better.

Equal to

IM_BLOB_LENGTH
IM_BLOB_BREADTH

It should be used instead of
IM_BLOB_FERET_ELONGATION for long thin
blobs.

The number of times a transition from
background to foreground (not vice versa)
occurs in the horizontal direction for the
entire blob. In other words, it is equal to the
number of times the neighborhood

configuration [g, ¢ occurs in ablob, where B is
a background pixel and F is a blob pixel.

IM_BLOB_INTERCEPT_45

IM_BLOB_INTERCEPT_90

IM_BLOB_INTERCEPT 135

imBlobSelectFeature 77

The number of times that the neighborhood

configuration{ 1
B

occurs in a blob, where F is a blob pixel, B is a
background pixel, and a dot can be any pixel
value.

The number of times that the neighborhood
configuration E

occurs in a blob, where F is a blob pixel and B
is a background pixel.

The number of times that the neighborhood
configuration{': "

occurs in a blob, where F is a blob pixel, B is a
background pixel, and a dot can be any pixel
value.

The following features require grayscale pixel values, and can only be
calculated if you provide a grayscale image to imBlobCalculate():

IM_BLOB_SUM_PIXEL
IM_BLOB_MIN_PIXEL
IM_BLOB_MAX_PIXEL
IM_BLOB_MEAN_PIXEL

IM_BLOB_SIGMA_PIXEL

IM_BLOB_SUM_PIXEL_SQUARED

The sum of all pixel values in a blob.
The minimum pixel value found in a blob.
The maximum pixel value found in a blob.

The mean pixel value in a blob. It is equal
to
IM_BLOB_SUM_PIXEL
IM_BLOB_AREA
The standard deviation of pixel values in a
blob. It is equal to

2 2
/Zpi -(Zp)" /N
N

where N = number of pixels and p = pixel
value.

The sum of the squares of each pixel value
in a blob.

78 imBlobSelectFeature

The following features have two definitions: a binary definition, where all
pixels are considered equal, and a grayscale definition, where pixels are
weighted by their value in agrayscale image (the grayscale version is slower
to calculate).

If you don't provide a grayscale image to imBlobCalculate(), only the
binary version can be calculated. If you do provide a grayscale image, both
versions can be calculated, according to the Mode parameter.

IM_BLOB_CENTER_OF_GRAVITY_X The x position of the center of gravity
of a blob. The grayscale version is
equal to

IM_BLOB_MOMENT X1 YO
IM_BLOB_SUM_PIXEL
while the binary version uses
IM_BLOB_AREA instead of
IM_BLOB_SUM_PIXEL.

IM_BLOB_CENTER_OF_GRAVITY_Y The y position of the center of gravity
of a blob. The grayscale version is
equal to

IM_BLOB_MOMENT X0 Y1
IM_BLOB_SUM_PIXEL

while the binary version uses

IM_BLOB_AREA instead of

IM_BLOB_SUM_PIXEL.

IM_BLOB_MOMENT_X0_Y1, Moments have the syntax
IM_BLOB_MOMENT_X1_YO, IM_BLOB_MOMENT_Xn_Ym and are
IM_BLOB_MOMENT _X1_Y1, defined as

IM_BLOB_MOMENT _X0_Y2,

IM_BLOB_MOMENT _X2_YO, w
IM_BLOB_MOMENT_CENTRAL_X0_Y2, Xinyimpi ,

IM_BLOB_MOMENT _CENTRAL_X2_YO,
IM_BLOB_MOMENT CENTRAL_X1 Y1 |

where p, = value of a pixel (always 1

for the binary version), x; = its X
coordinate, and y; = its y coordinate.
For central moments, coordinates are
relative to a blob’s center of gravity.
For ordinary moments, coordinates are
relative to the top-left corner of the
blob identifier image. Note that you
can calculate higher moments using
imBlobSelectMoment().

IM_BLOB_AXIS_PRINCIPAL_ANGLE

imBlobSelectFeature 79

This is the angle at which a blob has
the least moment of inertia (the axis of
symmetry). For elongated blobs, it is
aligned with the longest axis. The
result is always between -90° and +90°,
measured in a counter-clockwise
direction from the positive x-axis. It is
equal to:

(2* IM_BLOB_MOMENT CENTRAL X1 Y1)

—0.5* atar‘.I

M_BLOB_MOMENT_CENTRAL_X2_YO - IM_BLOB_MOMENT_CENTRAL_X0_Y2

IM_BLOB_AXIS_SECONDARY_ANGLE The angle perpendicular to

IM_BLOB_AXIS_PRINCIPAL_ANGLE. It
is always between -90° and +90°.

The following defines allow you to select groups of features in a single call:

IM_BLOB_BOX

IM_BLOB_CONTACT_POINTS

IM_BLOB_CENTER_OF_GRAVITY

IM_BLOB_ALL_FEATURES

IM_BLOB_NO_FEATURES

Adds all 4 box features plus x and y
Ferets.

Adds first point and other contact
features (IM_BLOB_X_MIN_AT_Y_MIN,
IM_BLOB_X_MAX_AT_Y_MAX,
IM_BLOB_Y_MIN_AT_X_MAX, and
IM_BLOB_Y_MAX_AT_X_MIN).

Adds both x and y coordinates of the
center of gravity.

Adds all features (except general Feret
and general moment).

Removes all features (except label
value).

80

imBlobSelectFeature

See also

The Mode parameter specifies whether to calculate the binary and/or
grayscale version of a feature, for features that have both a binary and
grayscale definition. The Mode parameter can be set to:

IM_BINARY Calculate only the binary version.

IM_GRAYSCALE Calculate only the grayscale version. You must provide
a grayscale image.

IM_DEFAULT Calculate both the binary and grayscale version. You
must provide a grayscale image.

For features that do not have both a binary and grayscale definition, use
IM_DEFAULT.

imBlobSelectFeret(), imBlobSelectMoment(). These functions
calculate a specific Feret diameter and specific moment, respectively.

imBlobSelectFeret 81

imBlobSelectFeret

Synopsis

Format

Description

See also

Select a specific Feret diameter for calculation.
void imBlobSelectFeret(Thread, FeatList, Angle)

long Thread,; Thread ID
long FeatList; Feature list ID
double Angle; Angle at which to calculate the Feret diameter

This function selects a specific Feret diameter for calculation by
imBlobCalculate().

Results for this calculation can be obtained with imBlobGetResult() or
imBlobGetResultSingle(), specifying IM_BLOB_GENERAL_FERET as the
feature.

A call to this function overrides any previous angle specified for the general
Feret (IM_BLOB_GENERAL_FERET) in the feature list.

The Thread parameter specifies the thread to which to send
imBlobSelectFeret() for execution.

The FeatList parameter specifies the feature list.

The Angle parameter specifies the angle, in degrees, at which to calculate
the Feret diameter.

imBlobSelectFeature(). If you want the Feret diameter at O or 90°, it is
more efficient to use imBlobSelectFeature() to add IM_BLOB_FERET_X
or IM_BLOB_FERET_Y to the feature list.

82 imBlobSelectMoment

imBlobSelectMoment

Synopsis

Select a specific moment for calculation.

Format void imBlobSelectMoment(Thread, FeatList, Mode, Type, XOrder,

Description

YOrder)
long Thread; Thread ID
long FeatL.ist; Feature list ID
long Mode; Mode of operation
long Type; Moment type
long XOrder; X order of the moment
long YOrder; Y order of the moment

This function selects a specific moment for calculation by
imBlobCalculate().

Results for this calculation can be obtained with imBlobGetResult() or
imBlobGetResultSingle(), specifying IM_BLOB_GENERAL_MOMENT as
the feature.

A call to this function overrides any previous values specified for
IM_BLOB_GENERAL_MOMENT in the feature list.

The Thread parameter specifies the thread to which to send
imBlobSelectMoment() for execution.

The FeatList parameter specifies the feature list.

The Mode parameter specifies whether to calculate the binary and/or
grayscale version of the moment, if you will be providing a grayscale image
to imBlobCalculate(). The Mode parameter can be set to:

IM_BINARY Calculate only the binary version.
IM_GRAYSCALE Calculate only the grayscale version.
IM_DEFAULT Calculate both the binary and grayscale version.

If you will not be providing a grayscale image to imBlobCalculate(), set
the Mode parameter to IM_DEFAULT.

The Type parameter specifies the type of moment to calculate. It can be set
to either IM_CENTRAL or IM_ORDINARY.

The XOrder parameter specifies the x order of the moment.

imBlobSelectMoment 83
The YOrder parameter specifies the y order of the moment.

See also imBlobSelectFeature(). If you require only a basic moment, it is more
efficient to use imBlobSelectFeature() to add it to the feature list.

84 imBufAlloc

imBufAlloc ['Sync | [Gen-LC]

Synopsis Allocate a buffer with multiple bands.

Format void imBufAlloc(Thread, Xsize, Ysize, Nbands, Type, Location,

Description

BufPtr)
long Thread; Thread ID
long Xsize; Buffer width
long Ysize; Buffer height
long Nbands; Number of bands
long Type; Buffer data type

long Location; Location of the memory
long* BufPtr; Address of buffer ID

This function allocates a buffer with the specified number of bands, in the
specified memory bank. When allocating processing or display memory, the
memory is allocated on the node associated with the specified thread.

The Thread parameter specifies the thread to which to send imBufAlloc()
for execution.

The Xsize and Ysize parameters specify the width and height of each band
of the buffer (in pixels), respectively.

The Nbands parameter specifies the number of bands.
The Type parameter specifies the buffer data type. It can be set to:
IM_BINARY 1-bit packed binary.

IM_UBYTE 8-bit unsigned integer.

IM_BYTE 8-bit signed integer.

IM_USHORT 16-bit unsigned integer.

IM_SHORT 16-bit signed integer.

IM_ULONG 32-bit unsigned integer.

IM_LONG 32-bit signed integer.

IM_FLOAT 32-bit floating-point (IEEE-754 format).

IM_DOUBLE 64-bit floating-point (IEEE-754 format).
IM_RGB 24-bit packed RGB.

See also

imBufAlloc 85

Note that, when allocated, the first pixel of a buffer will always be aligned
on (at least) an 8-byte boundary, and the pitch of the buffer will always be
a multiple of 4 bytes (padding is added if necessary).

The Location parameter specifies where to allocate the buffer. It can be set
to:

IM_PROC Processing memory.

IM_DISP Display memory (any available bank: red, green, or
blue).

IM_DISP_RED Red display memory.

IM_DISP_GREEN Green display memory.

IM_DISP_BLUE Blue display memory.

IM_DISP_OVERLAY Overlay display memory.

IM_HOST Host system memory (specifically, DMA memory

from non-paged pool).
Note that display memory refers to off-screen display memory.

The BufPtr parameter specifies the address in which to return the buffer
identifier. If the buffer could not be allocated, O is returned.

imBufChild(), imBufAllocControl(). Use imBufChild() if you are
allocating a child buffer in on-screen display memory (imBufAlloc() can
allocate off-screen display memory but not on-screen). Use
imBufAllocControl() if you are allocating a buffer that is to be used solely
as a control buffer (imBufAllocControl() allocates a buffer that can only
hold fields, not data, so it can save you memory).

86 imBufAllocld

imBufAllocld | Sync | |Gen-LC |

Synopsis Allocate a 1D buffer.

Format void imBufAllocld(Thread, XSize, Type, Location, BufPtr)

Description

long Thread; Thread ID

long XSize; Buffer size

long Type; Buffer data type

long Location; Location of the memory
long* BufPtr; Address of buffer ID

This function allocates a one-dimensional buffer, in the specified memory
bank. When allocating processing or display memory, the memory is
allocated on the node associated with the specified thread.

The Thread parameter specifies the thread to which to send
imBufAllocld() for execution.

The XSize parameter specifies the size of the buffer (in pixels).

The Type parameter specifies the buffer data type. It can be set to:

IM_BINARY 1-bit packed binary.

IM_UBYTE 8-bit unsigned integer.

IM_BYTE 8-bit signed integer.

IM_USHORT 16-bit unsigned integer.

IM_SHORT 16-bit signed integer.

IM_ULONG 32-bit unsigned integer.

IM_LONG 32-bit signed integer.

IM_FLOAT 32-bit floating-point (IEEE-754 format).
IM_DOUBLE 64-bit floating-point (IEEE-754 format).
IM_RGB 24-bit packed RGB.

Note that, when allocated, the first pixel of a buffer will always be aligned
on (at least) an 8-byte boundary, and the pitch of the buffer will always be
a multiple of 4 bytes (padding is added if necessary).

imBufAllocld 87

The Location parameter specifies where to allocate the buffer. It can be set
to:

IM_PROC Processing memory.

IM_DISP Display memory (any available bank: red, green,
or blue).

IM_DISP_RED Red display memory.

IM_DISP_GREEN Green display memory.

IM_DISP_BLUE Blue display memory.

IM_DISP_OVERLAY Overlay display memory.

IM_HOST Host system memory (specifically, DMA memory

from non-paged pool).
Note that display memory refers to off-screen display memory.

The BufPtr parameter specifies the address in which to return the buffer
identifier. If the buffer could not be allocated, O is returned.

88 imBufAlloc2d

imBufAlloc2d Sync | | Gen-LC

Synopsis Allocate a 2D buffer.

Format void imBufAlloc2d(Thread, Xsize, Ysize, Type, Location, BufPtr)

Description

long Thread; Thread ID

long Xsize; Buffer width
long Ysize; Buffer height
long Type; Buffer data type

long Location; Location of the memory
long* BufPtr; Address of buffer ID

This function allocates a two-dimensional buffer, in the specified memory
bank. When allocating processing or display memory, the memory is
allocated on the node associated with the specified thread.

The Thread parameter specifies the thread to which to send
imBufAlloc2d() for execution.

The Xsize and Ysize parameters specify the width and height of the buffer
(in pixels), respectively.

The Type parameter specifies the buffer data type. It can be set to:
IM_BINARY 1-bit packed binary.

IM_UBYTE 8-bit unsigned integer.

IM_BYTE 8-bit signed integer.

IM_USHORT 16-bit unsigned integer.

IM_SHORT 16-bit signed integer.

IM_ULONG 32-bit unsigned integer.

IM_LONG 32-bit signed integer.

IM_FLOAT 32-bit floating-point (IEEE-754 format).
IM_DOUBLE 64-bit floating-point (IEEE-754 format).
IM_RGB 24-bit packed RGB.

Note that, when allocated, the first pixel of a buffer will always be aligned
on (at least) an 8-byte boundary, and the pitch of the buffer will always be
a multiple of 4 bytes (padding is added if necessary).

See also

imBufAlloc2d 89

The Location parameter specifies where to allocate the buffer. It can be set
to:

IM_PROC Processing memory.

IM_DISP Display memory (any available bank: red, green,
or blue).

IM_DISP_RED Red display memory.

IM_DISP_GREEN Green display memory.

IM_DISP_BLUE Blue display memory.

IM_DISP_OVERLAY Overlay display memory.

IM_HOST Host system memory (specifically, DMA memory

from non-paged pool).
Note that display memory refers to off-screen display memory.

The BufPtr parameter specifies the address in which to return the buffer
identifier. If the buffer could not be allocated, O is returned.

imBufChild(), imBufAllocControl(). Use imBufChild() if you are
allocating a child buffer in on-screen display memory (imBufAlloc() can
allocate off-screen display memory but not on-screen). Use
imBufAllocControl() if you are allocating a buffer that is to be used solely
as a control buffer (imBufAllocControl() allocates a buffer that can only
hold fields, not data, so it can save you memory).

90 imBufAllocControl

imBufAllocControl Sync | [Gen-LC]

Synopsis Allocate a control buffer.

Format void imBufAllocControl(Thread, BufPtr)

Description

long Thread; Thread ID
long* BufPtr; Address of buffer ID

This function allocates a single band buffer with no size. Buffers allocated
using imBufAllocControl() can be used as control buffers.

The Thread parameter specifies the thread to which to send
imBufAllocControl() for execution.

The BufPtr parameter specifies the address in which to return the buffer
identifier. If the buffer could not be allocated, O is returned.

imBufChild 91

imBufChild | Sync | |Gen-LC|

Synopsis Allocate a child buffer within an existing buffer or on the display.

Format void imBufChild(Thread, Buf, Xstart, Ystart, Xsize, Ysize,

Description

ChildPtr)
long Thread,; Thread ID
long Buf; Parent buffer ID
long Xstart; X origin of child buffer
long Ystart; Y origin of child buffer
long Xsize; Child buffer width
long Ysize; Child buffer height

long* ChildPtr; Address of child buffer ID

This function allocates a rectangular region of interest, within an existing
buffer or at a specific location on the display (that is, in on-screen display
memory). This region, called a child buffer, remains part of its parent buffer;
it is not allocated its own memory. However, a child buffer is considered a
data buffer in its own right and can therefore be used in the same way as
any other buffer. Any modifications made to a child buffer affects its parent
buffer (and vice versa).

A child buffer has the same number of bands as its parent buffer.

The Thread parameter specifies the thread to which to send imBufChild()
for execution.

The Buf parameter specifies the parent buffer. If you are allocating a child
buffer within an existing buffer, this parameter must be set to the identifier
of the existing buffer. If you are allocating a child buffer on the display, this
parameter can be set to:

IM_DISP Display buffer (1 band if the display is in
monochrome mode; 3 bands if it is in color mode).
IM_DISP_COLOR Color display buffer (3 bands). This can only be
allocated if the display is in color mode.
IM_DISP_RED Red display buffer (1 band). This can only be
allocated on the color version of the display.
IM_DISP_GREEN Green display buffer (1 band). This can only be

allocated on the color version of the display.

92

imBufChild

IM_DISP_BLUE Blue display buffer (1 band). This can only be
allocated on the color version of the display.

IM_DISP_OVERLAY Overlay display buffer (1 band).

Note that, when you are allocating a child buffer on the display, you should
generally set the Buf parameter to IM_DISP. This will allow the application
to run on either the monochrome or color version of the display, regardless
of the current display mode.

The Xstart and Ystart parameters specify the x and y coordinates of the
child buffer’s origin, respectively. These coordinates are relative to the
top-left corner of its parent buffer.

If the parent buffer is a packed binary buffer, it is best to specify a buffer
origin that is a multiple of 8, since some operations (such as imBufGet())
can only be performed on a byte-aligned buffer.

The Xsize and Ysize parameters specify the width and height of the child
buffer, respectively.

To create a child buffer whose width extends from the specified Xstart
position to the right side of the parent buffer, set Xsize to IM_ALL. To create
a child buffer whose height extends from the specified Ystart position to
the bottom of the parent buffer, set Ysize to IM_ALL. Setting both Xsize
and Ysize to IM_ALL creates the largest child buffer that fits within the
parent buffer (from the specified child buffer origin).

When the requested size of the child buffer extends beyond that of the parent
buffer (thatis, the child buffer does not fit entirely within the parent buffer),
the child buffer will be clipped to fit within the parent buffer. Thus, the
actual width and height of the child buffer will be smaller than those
specified using the Xsize and Ysize parameters.

The ChildPtr parameter specifies the address in which to return the child
buffer identifier. If the child buffer could not be allocated, 0O is returned.

imBufChild 93

Note If the requested child buffer does not lie within the parent buffer in either
the x or y dimension, an error is generated.

Example The following code creates a child buffer that fills the entire display.

imBufChild(Thread, IM_DISP, 0, 0, IM ALL, IM ALL, &ChildBuf);

See also imBufChildBand(). The imBufChildBand() function allocates a child
buffer from a band of a multi-band buffer.

94 imBufChildBand

imBufChildBand | Sync | | Gen-LC |

Synopsis Allocate a child buffer from a band of a multi-band buffer.

Format void imBufChildBand(Thread, Buf, BandNum, BandPtr)

Description

See also

long Thread; Thread ID

long Buf; Parent buffer 1D

long BandNum; Band number

long* BandPtr; Address of child buffer ID

This function allocates a one-band child buffer from the specified band of a
multi-band buffer. A child buffer remains part of its parent buffer; it is not
allocated its own memory. However, a child buffer is considered a data buffer
in its own right and can therefore be used in the same way as any other
buffer. Any modifications made to a child buffer affects its parent buffer
(and vice versa).

The Thread parameter specifies the thread to which to send
imBufChildBand() for execution.

The Buf parameter specifies the parent buffer.

The BandNum parameter specifies the band of the parent buffer from
which to allocate the child buffer. This parameter must be set to the index
of the required band; the valid range is 0 to (number of bands of the parent
buffer - 1).

The BandPtr parameter specifies the address in which to return the child
buffer identifier. If the child buffer could not be allocated, 0O is returned.

imBufChild(). The imBufChild() function allocates a child buffer within
an existing buffer or on the display (that is, in on-screen display memory).

imBufChildMove 95

iImBufChildMove | Async| | Gen-LC |

Synopsis Move and/or resize a child buffer.
Format void imBufChildMove(Thread, Child, Xoff, Yoff, Xsize, Ysize)

long Thread; Thread ID
long Child; Child buffer ID

long Xoff; X offset
long Yoff; Y offset
long Xsize; New child width
long Ysize; New child height

Description This function moves and/or resizes a child buffer that was allocated with
imBufChild(). The function does not move any data; instead, it modifies
the previously allocated child buffer so that it occupies a different portion
of its parent buffer.

Note that it is more efficient to move an existing child buffer than to free it
and allocate a new one.

The Thread parameter specifies the thread to which to send
imBufChildMove() for execution.

The Child parameter specifies the child buffer to move/resize.

The Xoff and Yoff parameters specify the amount by which to move the
specified buffer, in the X and Y directions, respectively. Note that by default,
these offsets are relative to the current child buffer position, not to the origin
of its parent buffer. To set the offsets relative to the parent buffer origin,
you should add IM_PARENT to the X and/or Y offset. You must add it to both
offsets if you want both to be offset from the parent buffer origin. For
example:

‘1’mBquhﬂdMove(Thr‘ead, Buf, IM PARENT+Xoff, IM PARENT+Yoff, Xsize, Ysize) ‘

Note that in this case, the specified offset is relative to the origin of the real
parent buffer. That is, if the child being moved is a child of a child (and so
on), the coordinates are given relative to the origin of the original parent
buffer (the one that was allocated with imBufAlloc(), not the one allocated
with imBufChild()).

96 imBufChildMove

The Xsize and Ysize parameters specify the new width and height for the
child buffer, respectively. To maintain the current width, set Xsize to
IM_NO_CHANGE; to maintain the current height, set Ysize to
IM_NO_CHANGE.

Note You cannot move or resize a child buffer such that it extends outside its
parent buffer.

imBufClear 97

imBufClear ‘Asyncl ‘Mu/ﬁ—bandl ‘Gen-LC|

Synopsis Clear a buffer to a constant value.
Format void imBufClear(Thread, Buf, Value, OSB)
long Thread,; Thread ID

long Buf; ID of buffer to clear
double Value; Value with which to clear buffer
long OSB; OSB ID (or 0)

Description This function clears a buffer to a specified constant value.

The Thread parameter specifies the thread to which to send imBufClear()
for execution.

The Buf parameter specifies the buffer to clear. This buffer can be of any
data type. In addition, it can have multiple bands (all bands will be cleared
to the same value).

The Value parameter specifies the constant with which to clear the buffer.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Note The PPs are only used if the buffer to clear is a packed binary buffer.

98 imBufClone

imBufClone | Sync | |Gen-LC|

Synopsis Duplicate a buffer.

Format void imBufClone(Thread, Buf, NewLocation, NewBufPtr)

Description

long Thread; Thread ID

long Buf; ID of buffer to duplicate
long NewLocation; Location of the memory
long* NewBufPtr; Address of new buffer 1D

This function allocates a new buffer with the same attributes (size, number
of bands, data type) as an existing buffer, in the specified memory bank. You
can therefore duplicate an existing buffer without first inquiring about its
attributes. When allocating processing or display memory, the memory is
allocated on the node associated with the specified thread. Note that no data
or control fields are copied to the new buffer. If necessary, use imBufCopy()
to copy data and imBufCopyField() to copy control fields.

The Thread parameter specifies the thread to which to send imBufClone()
for execution.

The Buf parameter specifies the buffer whose attributes to duplicate.

The NewL ocation parameter specifies where to allocate the new buffer. It
can be set to:

IM_DEFAULT The same type of memory as that allocated for the
original buffer.

IM_PROC Processing memory.

IM_DISP Display memory (any available bank: red, green, or
blue).

IM_DISP_RED Red display memory.

IM_DISP_GREEN Green display memory.

IM_DISP_BLUE Blue display memory.

IM_DISP_OVERLAY Overlay display memory.

IM_HOST Host system memory (specifically, DMA memory

from non-paged pool).
Note that display memory refers to off-screen display memory.

The NewBufPtr parameter specifies the address in which to return the
new buffer identifier. If the buffer could not be allocated, 0 is returned.

imBufControl 99

imBufControl [Async] [Gen-LC]|

Synopsis Modify a buffer attribute.

Format void imBufControl(Thread, Buf, Item, Value)

Description

long Thread,; Thread ID
long Buf; Buffer ID

long Item; Item to set
double Value; Value for Item

This function modifies an attribute of an existing buffer.

The Thread parameter specifies the thread to which to send
imBufControl() for execution.

The Buf parameter specifies the buffer.

The Item parameter specifies the attribute to modify, while the Value
parameter specifies the value for this attribute. The table below lists those
attributes that can be modified, and their allowable values.

Item Value Meaning

IM_BUF_PITCH any value Change the buffer’s pitch to the
specified number of bytes.

IM_BUF_LOCK IM_DEFAULT Lock a paged (virtual) buffer in
physical memory so it can be used for
DMA transfers.

IM_BUF_UNLOCK IM_DEFAULT Unlock a paged (virtual) buffer,
allowing it to be swapped. The buffer

can no longer be used for DMA
transfers.

100 imBufCopy

imBufCopy | Async| \Multi-band| | Gen-LC |

Synopsis

Copy a buffer.

Format void imBufCopy(Thread, SrcBuf, DstBuf, Control, OSB)

Description

See also

long Thread; Thread ID

long SrcBuUf; Source buffer ID

long DstBuf; Destination buffer ID
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function copies the contents of a specified source buffer to a specified
destination buffer. Control fields are not copied (use imBufCopyField() to
copy control fields).

The Thread parameter specifies the thread to which to send imBufCopy()
for execution.

The SrcBuf parameter specifies the source buffer. This buffer can be of any
data type. In addition, it can be located anywhere in your system (in
processing or display memory on any node).

The DstBuf parameter specifies the destination buffer. This buffer must
have the same pixel size as the source buffer. It can be located anywhere in
your system (in processing or display memory on any node).

The Control parameter specifies the control buffer with which to perform
the function. This parameter must be set to 0.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBufCopyPCI(), imBufCopyVM(). These functions can perform a
variety of formatting operations on the data as it is copied. However, these
functions depend on the physical path involved, so you need to understand
your system’s architecture to exploit their capabilities.

imBufCopy 101

Note The source and destination buffer can overlap if both are in display memory.
Therefore, you can use imBufCopy/() to scroll a region of the display (in
any direction). In this case, the copy is performed entirely by the display
VIA (it has no impact on concurrent operations which use processing
memory), so it is a more efficient way to implement scrolling than copying
the entire image from processing memory to display memory. (In this case,
you only have to copy from processing to display memory those few new lines
or columns needed to replace the ones that scrolled off the screen). Note that
a display to display copy is faster when the display is in monochrome mode,
so if you only need to display monochrome images, you should select
monochrome mode (use imDispControl()).

102 imBufCopyField

imBufCopyField |Async| | Gen-LC |

Synopsis

Copy buffer field(s).

Format void imBufCopyField(Thread, SrcBuf, SrcTag, DstBuf, DstTag)

Description

Example

long Thread; Thread ID

long SrcBuUf; Source buffer ID
long SrcTag; Tag of field to copy
long DstBuUf; Destination buffer ID

long DstTag; Tag of field to write to

This function copies one or all fields from a specified source buffer to a
specified destination buffer. When copying one field, you can give the field
a different tag in the destination buffer, if necessary.

Note that this function is most commonly used after copying a buffer’s data,
since a buffer’s fields are not copied when the buffer is copied.

The Thread parameter specifies the thread to which to send
imBufCopyField() for execution.

The SrcBuf parameter specifies the source buffer.

The SrcTag parameter specifies the field to copy. To copy all of a buffer’s
fields, set this parameter to IM_ALL.

The DstBuf parameter specifies the destination buffer.

The DstTag parameter specifies the field to write to, when copying just one
field from the source buffer. Note that, if you do not want to give the field
being copied a different tag, use the same tags for the SrcTag and DstTag
parameters.

When copying all of a buffer’s fields, set the DstTag parameter to IM_ALL.

The following code copies a buffer’'s data using imBufCopy(), then copies
the buffer’s fields.

/* Copy the buffer’s data */
imBufCopy(Thread, SrcBuf, DstBuf, 0, 0);:

/* Now copy all buffer fields */
imBufCopyField(Thread, SrcBuf, IM ALL, DstBuf, IM ALL);

imBufCopyPCI 103

iImBufCopyPCI | Async| | Gen-LC |

Synopsis Copy a buffer over the PCI bus.

Format void imBufCopyPCI(Thread, SrcBuf, DstBuf, Control, OSB)

Description

long Thread,; Thread ID

long SrcBuf; Source buffer ID

long DstBuUf; Destination buffer 1D
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function copies the contents of a specified source buffer to a specified
destination buffer, over the PCI bus (using only one VIA). Control fields are
not copied (use imBufCopyField() to copy control fields).

Note that, if you use imBufCopyPCI(), you should be familiar enough with
you system’s architecture to know if the source and destination buffers are
connected by the PCI bus.

imBufCopyPCI() can perform a variety of formatting options on the data
as it is copied. These options are specified through the function’s control
buffer. Options depend on whether the VIA controlling the copy is local to
the source or the destination buffer.

The Thread parameter specifies the thread to which to send
imBufCopyPCI() for execution.

The SrcBuf parameter specifies the source buffer and the DstBuf
parameter specifies the destination buffer. Various combinations of bits per
pixel and number of bands are allowed for these buffers, as outlined in the
following table. Certain combinations are allowed only if a specific control
field or VIAis used. However, if a specific VIA must be used, it will be chosen
automatically. If either VIA can be used, you can force a specific one with
the IM_CTL_VIA field; otherwise, one will be chosen by default. In all cases,
the source and destination buffers must be in different memory banks (that
is, in different nodes or in processing memory and display memory in the
same node). Note that byte-aligned packed binary buffers are supported
(they are treated as 8-bit buffers).

104

imBufCopyPCI

SrcBuf* DstBuf*

(8-32)
nx(8-32)
8
(16-32)

16
24
32
2x8
3x8
4x8
24

32

4x8

3x8

16

(same as
SrcBuf)

(same as
SrcBuf)

38
8

2x8
3x8
4x8
16
24
32
4x8

3x8

24

32

3x8

VIA
Src/Dst

Src/Dst

Dst

Src

Dst
Dst
Dst
Src
Src
Src
Dst

Dst

Src

Src

Dst

Control field

IM_CTL_BYTE_EXT

IM_CTL_PACK

IM_CTL_PACK

IM_CTL_PACK

IM_CTL_PACK

IM_CTL_FMTCVR

Description
Simple copy.

Copy all bands
sequentially.

Copy same data to all 3
display bands.

Copy most significant
byte.

Separate color planes.
Separate color planes.
Separate color planes.
Pack color planes.
Pack color planes.
Pack color planes.

Add a 0 byte and
separate color planes.

Discard most-significant
byte and separate color
planes.

Pack color planes and
discard most-significant
byte.

Pack color planes and
add a 0 byte.

Separate RGB555 or
RGB565 into 3 planes.

= = number of bands x bits per pixel; if not stated, buffers are 1-band
= = must be in display memory

[The actual combinations supported are dictated by the hardware
capabilities. The most useful combinations are listed above.

imBufCopyPCI 105

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imBufCopyPCI() are listed below, with
defaultvalues in bold-face (you will find more information about these fields
in the Genesis Native Library User Guide). Note that if the Control
parameter is set to O or if certain fields are not added to the control buffer,

the default values are used.

The following fields apply whether the source or destination VIA is used:

Field Values
IM_CTL_SETUP IM_DEFAULT

IM_ADDRESS_ONLY

IM_CTL_BYTE_SWAP IM_DISABLE
IM_ENABLE

IM_CTL_DIR_X IM_FORWARD
IM_REVERSE

IM_CTL_DIR_Y IM_FORWARD
IM_REVERSE

IM_CTL_PACK IM_DEFAULT
IM_24 TO_32

IM_32_TO 24

IM_CTL_SUBSAMP_X 1-16

Meaning

Perform a full setup
before copying.

Reprogram only the
source and destination
buffer address before
copying. SKip
programming of other
VIA registers.

No effect.

Swap the 1st and 3rd
bytes of each pixel (to
convert, for example,
RGB or RGBa color
images to BGR or BGRa
color images).

Copy left to right.

Copy right to left.

Copy top to bottom.
Copy bottom to top.

No effect.

Add a 0 byte to each pixel
of a 24-bit or 3x8-bit

buffer, to produce a 32-bit
buffer.

Discard the last byte of
each pixel of a 32-bit
buffer, to produce a 24-bit
buffer.

Only copy every nth
column to the destination
buffer, starting with the
first column.

106

imBufCopyPCI

IM_CTL_SUBSAMP_Y 1-16

Only copy every nth row
to the destination buffer,
starting with the first
row.

IM_CTL_VIA IM_DEFAULT Use any suitable VIA to
perform the copy.
IM_VIA_SOURCE Use the VIA local to the

source buffer to perform
the copy.

IM_VIA_DESTINATION Use the VIA local to the

destination buffer to
perform the copy.

The following fields only apply if the destination VIA is used:

Field Values
IM_CTL_TAG BUF 0
A buffer ID

IM_CTL_FMTCVR IM_DEFAULT

IM_RGB555

IM_RGB565

IM_CTL_WRTMSK 0 - OXFFFFFF

IM_CTL_ZOOM X 1,2,0r4

IM_CTL_ZOOM.Y 1,2, 0r4

Meaning
No effect.

Copy with tag (using the
specified packed binary buffer
as a tag buffer). The tag buffer
must be in the same memory
bank as the destination buffer.

No effect.

Expand 16-bit color images (in
RGB555 format) to 3x8-bit.

Expand 16-bit color images (in
RGB565 format) to 3x8-bit.

Don't overwrite bit planes in the
destination buffer if the
corresponding mask bit is 0.
This option can only be used if
you are copying to the display.
The required value must be
specified using 24 bits: the least
significant 8 bits applies to the
red buffer, the next 8 bits to the
green buffer, and the most
significant 8 bits to the blue
buffer.

Replicate each column n times
before writing to the destination
buffer.

Replicate each row n times

before writing to the destination
buffer.

imBufCopyPCI 107

The following fields only apply if the source VIA is used:

Field Values Meaning
IM_CTL_BYTE_EXT IM_DISABLE No effect.
8-32 Copy only the most significant 8

bits to the destination buffer, from
images with the specified pixel
depth.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

See also imBufCopy(). If you use imBufCopy/(), you don't have to worry about the
physical path involved because imBufCopy() will use whatever path is
available.

108 imBufCopyROI

imBufCopyROI [Async] [PP] [Multi-band]
Synopsis Copy an ROI (or ROIs) from a source buffer into a destination buffer.

Format void imBufCopyROI(Thread, SrcBuf, DstBuf, Mode, Control, OSB)

Description

long Thread; Thread ID

long SrcBuUf; Source buffer ID

long DstBuf; Destination buffer ID
long Mode; Mode of operation

long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function can copy an entire list of ROIs from the source buffer to the
destination buffer at arbitrary locations. The sizes and locations of each ROI
are stored as lists of values in extra 1-dimensional buffers, and the
identifiers of these extra buffers are specified through control fields.

The Thread parameter specifies the thread to which to send
imBufCopyROI() for execution.

The Src parameter specifies the source buffer. This buffer can have a depth
of 8, 16, or 32 bits.

The Dst parameter specifies the destination buffer. This buffer should have
the same pixel depth as the source buffer.

The Mode parameter specifies the mode in which this function operates.
The supported modes are:

Field Description

IM_LINE Each ROI is one horizontal line. Only the Y start
position of each ROI needs to be specified using the
appropriate control field. In this operating mode,
you should supply valid IDs for the
IM_ROI_SRC_START_Y and/or IM_ROI_DST_START_Y
fields. When one of these two latter control fields is
omitted, a ramp is assumed (that is, the lines have
sequential Y values, starting at 0). This means that
only a single list of Y values (either for the source
buffer or destination buffer) needs to be supplied to
rearrange the lines in an image.

Field Description
IM_PATCH

imBufCopyROI 109

Each ROl is a 2-dimensional patch. In this case,

both the complete ROI size and positional
information need to be specified using the
appropriate control fields. In the IM_PATCH
operating mode, valid buffer IDs must be supplied,
whereby each buffer lists a size or location of all

ROls.

The Control parameter specifies the control buffer with which to perform
the function. The possible control buffer fields are:

Field Value
IM_ROI_SIZE_X BuflID
IM_ROI_SIZE_Y BuflID

IM_ROI_SRC_START_X BufiID
IM_ROI_SRC_START_Y BufiID

IM_ROI_DST_START_X BuflID

IM_ROI_DST_START.Y BufID

IM_ROI_NUMBER 1-n

Meaning

Width of each ROI.

Height of each ROI.

Horizontal starting position of
each ROI in the source buffer.
Vertical starting position of each
ROI in the source buffer.

Horizontal starting position of
each ROI in the destination
buffer.

Vertical starting position of each
ROI in the destination buffer.

Number of ROIs to copy (default
is size of buffers containing ROI
positions)

Note that all buffers which define the ROIs should be one-dimensional and

of type IM_USHORT.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

110 imBufCopyVM

|mBquopyVM Async| | Gen-LC

Synopsis Copy a buffer over the VMChannel.

Format void imBufCopyVM(Thread, SrcBuf, DstBuf, SrcControl,

Description

DstControl, OSB)

long Thread; Thread ID

long SrcBuf; Source buffer ID

long DstBuUf; Destination buffer ID

long SrcControl; Source control buffer 1D (or 0)

long DstControl; Destination control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function copies the contents of a specified source buffer to a specified
destination buffer, over the VMChannel. Control fields are not copied (use
imBufCopyField() to copy control fields).

Note that, if you use imBufCopyVM(), you should be familiar enough with
your system’s architecture to know if the source and destination buffers are
connected by VMChannel.

imBufCopyVM() can perform a variety of formatting operations on the
data as it is copied. These operations are specified through the function’s
control buffers. Some operations only apply to the transmitting VIA, and
some only apply to the receiving VIA.

Instead of copying between buffers, you can use imBufCopyVM() to copy
from a VM stream to a buffer, or from a buffer to a VM stream. Any
formatting options that are specified will still be performed.

Normally, when you call this function with SrcBuf set to IM_VM_CHANNEL
and a 3-band destination buffer is specified, it is assumed you will be sending
a 3-band image over the VMChannel. If, however, you send a 1-band image
over the VMChannel to a display buffer (for example, to display a
monochrome image when the display is in color mode), you need the display’s
VIA to replicate the image in all three bands of the destination buffer. To
perform this replication, you should enable the appropriate DstControl
buffer field.

The Thread parameter specifies the thread to which to send
imBufCopyVM() for execution.

imBufCopyVM 111

The SrcBuf parameter specifies the source buffer and the DstBuf
parameter specifies the destination buffer. Various combinations of bits per
pixel and number of bands are allowed for these buffers, as outlined in the
table below. Certain combinations are only allowed if a specific control field
is used. Note that byte-aligned packed binary buffers are supported (they
are treated as 8-bit buffers).

SrcBuf+ DstBuf+ Control field Description
(8-32) (sameas - Simple copy.
SrcBuf)
(2-4)x8 (same as - Copy all bands
SrcBuf) simultaneously.

8 3x8* - Copy same data to all 3
display bands.

(16-32) 8 IM_CTL_BYTE_EXT*» Copy most significant byte.

(16-32) 3x8+ IM_CTL_BYTE_EXT*= Copy most significant byte to
all 3 display bands.

16 2x8 - Separate color planes.

24 3x8 - Separate color planes.

32 4x8 - Separate color planes.

2x8 16 - Pack color planes.

3x8 24 - Pack color planes.

4x8 32 - Pack color planes.

24 4x8 IM_CTL_PACK+=~+ Add a 0 byte and separate
color planes.

32 3x8 IM_CTL_PACK* Discard last byte and
separate color planes.

4x8 24 IM_CTL_PACK = Pack color planes and
discard last byte.

3x8 32 IM_CTL_PACK»*xx Pack color planes and add a
0 byte.

16 3x8 IM_CTL_FMTCVR**+ Separate RGB555 or 565 into
3 planes.

== number of bands x bits per pixel; if not stated, buffers are 1-band
== must be in display memory

= = this field must be added to SrcControl buffer

= = this field must be added to DstControl buffer

[The actual combinations supported are dictated by the hardware
capabilities. The most useful combinations are listed above.

112

imBufCopyVM

Note that, if you are copying from a VM stream to the destination buffer,
set the SrcBuf parameter to IM_VM_CHANNEL. If you are copying the
source buffer to a VM stream, set the DstBuf parameter to
IM_VM_CHANNEL.

The SrcControl and DstControl parameters specify the control buffers
with which to perform the function. The SrcControl buffer controls the
transmitting VIA,; the DstControl buffer controls the receiving VIA.

Relevant fields are listed below, with default values in bold-face (you will

find more information about these fields in the Genesis Native Library User
Guide). Note that if the SrcControl/DstControl parameters are set to 0
or if certain fields are not added to these control buffers, the default values
are used.

The following fields can be added to the SrcControl or DstControl buffers:

Field Values Meaning
IM_CTL_SETUP IM_DEFAULT Perform a full setup before
copying.

IM_ADDRESS_ONLY Reprogram only the
source and destination
buffer address before
copying. SKip
programming of other VIA
registers.

IM_CTL_ADDR_MODE IM_DEFAULT Access memory according
to the type of scanning
specified by the
IM_CTL_SCAN_MODE
field.

IM_PROGRESSIVE Access memory using
progressive scanning,
even if the
IM_CTL_SCAN_MODE field
specifies interlaced

scanning.
IM_CTL_BYTE_SWAP IM_DISABLE No effect.
IM_ENABLE Swap the 1st and 3rd

bytes of each pixel (to
convert, for example, RGB
or RGBa color images to
BGR or BGRa color
images).

IM_CTL_COUNT

IM_CTL_COUNT_MODE

IM_CTL_DIR_X

IM_CTL_DIR_Y

IM_CTL_HEADER_EOF

IM_CTL_HEADER_SOF

IM_CTL_PACK

IM_CTL_SCAN_MODE

IM_CONTINUOUS

IM_FRAME

IM_FIELD

IM_FORWARD
IM_REVERSE
IM_FORWARD
IM_REVERSE
IM_ENABLE
IM_DISABLE

IM_ENABLE

IM_DISABLE

IM_DEFAULT
IM_24 TO 32

IM_32_TO 24

IM_PROGRESSIVE

IM_INTERLACED

imBufCopyVM 113

Copy a single frame (or
field) to the destination
buffer.

Continuously copy the

source buffer to the
destination buffer.

Copy the number of
frames specified by the
IM_CTL_COUNT field.
Copy the number of fields
specified by the
IM_CTL_COUNT field.
(This option can only be
used when using
interlaced scanning).
Scan left to right.

Scan right to left.

Scan top to bottom.

Scan bottom to top.

Send end of field headers.

Don’t send end of field
headers.

Send start of field
headers.

Don’'t send start of field
headers.

No effect.

Add a 0 byte to each pixel
of a 24-bit or 3x8-bit
buffer, to produce a 32-bit
buffer.

Discard the last byte of
each pixel of a 32-bit
buffer, to produce a 24-bit
buffer.

Copy the data using
progressive scanning.

Copy the data using
interlaced scanning.

114

imBufCopyVM

IM_CTL_START_FIELD

IM_ODD

(this field can only be

used when using

interlaced scanning)

IM_CTL_SUBSAMP_X

IM_CTL_SUBSAMP_Y

IM_CTL_STREAM_ID

IM_EVEN

IM_NEXT

1-16

1-16

0-14

Start copying on the next
odd field.

Start copying on the next
even field.

Start copying on the very
next field.

Only copy every nth
column, starting with the
first column.

Only copy every nth row,
starting with the first row.

ID of the VM stream. Note
that, when copying data
between buffers, this field
is not needed and should
not be added to either
control buffer; when
copying data to a VM
stream, this field should
be added to the
SrcControl buffer; when
copying data from a VM
stream, this field should
be added to the
DstControl buffer.

The following fields can only be added to the DstControl buffer:

Field
IM_CTL_FMTCVR

IM_CTL_REPLICATE

Values
IM_DEFAULT
IM_RGBS555

IM_RGB565

IM_DISABLE
IM_ENABLE

Meaning

No effect.

Expand 16-bit color images (in
RGB555 format) to 3x8-bit.
Expand 16-bit color images (in
RGB565 format) to 3x8-bit.

Don't replicate data.

Replicate 8-bit, 1-band image data
in all three display bands when
SrcBufissetto IM_VM_CHANNEL,
and DstBuf is a 3-band display
buffer.

IM_CTL_START X

IM_CTL_START_Y

IM_CTL_STOP_X

IM_CTL_STOP_Y

IM_CTL_TAG_BUF

IM_CTL_WRTMSK

IM_CTL_ZOOM_X

IM_CTL_ZOOM_Y

0-n
0-n
IM_DEFAULT
0-n
IM_DEFAULT
0-n

0
A buffer ID

0 - OXFFFFFF

1,2,or4

1,2,or4

imBufCopyVM 115

Start copying from the specified
column.

Start copying from the specified
line.

Copy all subsequent columns.
Copy just to the specified column.
Copy all subsequent lines.

Copy just to the specified line.

No effect.

Copy with tag (using the specified
packed binary buffer as a tag
buffer). The tag buffer must be in
the same memory bank as the
destination buffer.

Don't overwrite bit planes in the
destination buffer if the
corresponding mask bit is 0. This
option can only be used if you are
copying to the display. The
required value must be specified
using 24 bits: the low 8 bits apply
to the red buffer, the next 8 bits to
the green buffer, and the high 8
bits to the blue buffer.

Replicate each column n times
before writing to the destination
buffer.

Replicate each row n times before
writing to the destination buffer.

The following field can only be added to the SrcControl buffer:

Field
IM_CTL_BYTE_EXT

Values

Meaning

IM_DISABLE No effect.

8-32

Send only the most significant 8
bits, from images with the
specified pixel depth.

116

imBufCopyVM

See also

IM_CTL_DISPLAY_SYNC IM_DISABLE Perform the copy as soon as
(this field only applies possible.
when copying to the
display)
IM_ENABLE Wait before copying, if
necessary, in order to avoid
visible artifacts.

The OSB parameter specifies the operation status block in which to store
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBufCopy(). If you use this function, you don't have to worry about the
physical path involved because imBufCopy() will use whatever path is
available.

imBufCreate 117

imBufCreate ‘ Sync | ‘Gen—LCl

Synopsis

Create a buffer out of memory that has already been allocated.

Format void imBufCreate(Thread, Xsize, Ysize, Nbands, Type, Location,

Description

AddrPtr, Pitch, BufPtr)

long Thread,; Thread ID

long Xsize; Buffer width

long Ysize; Buffer height

long Nbands; Number of bands

long Type; Buffer data type

long Location; L ocation of the memory
void** AddrPtr; Pointer to array of addresses
long Pitch; Buffer pitch

long* BufPtr; Address of buffer ID

This function creates a buffer out of memory that has already been allocated.
This memory can be contiguous physical memory, virtual memory, or
memory from one or more existing Genesis buffers.

When using memory from existing Genesis buffers, AddrPtr should point
to a list of the Genesis buffer IDs. The buffers must all be in the same
memory bank and must have the same Xsize, Ysize, Type, and Pitch. The
Xsize, Ysize, Type, and Pitch of the Genesis buffers are used to create the
new buffer; the passed values for these parameters are ignored. The new
buffer is usable by any Genesis function.

When using contiguous physical memory, AddrPtr should point to a list of
the physical (PCI) addresses. Valid values must be given for Xsize, Ysize,
Type, and Pitch. The new buffer is usable by any Genesis function,

although it should only be used as the destination of a processing function.

When using non-paged virtual memory, AddrPtr should point to a list of
virtual addresses with corresponding physical memory that is contiguous
and fixed (it will not be moved by the operating system). Valid values must
be given for Xsize, Ysize, Type, and Pitch. Note that a non-paged virtual
buffer behaves the same way as a contiguous physical (non-paged) buffer;
the only difference is that you pass a virtual address instead of a physical
address.

118

imBufCreate

When using virtual paged memory, AddrPtr should point to a list of virtual
addresses in the calling processes’s address space. Valid values must be
given for Xsize, Ysize, Type, and Pitch. The new buffer can only be used
by imBufCopy() and imBufCopyPCI(), and under Windows NT, the
appropriate pages must be locked in physical memory before attempting to
copy the buffer. To lock/unlock memory, use imBufControl().

Note that imBufCreate() never allocates memory. In addition, when a
created buffer is freed using imBufFree(), no memory is freed.

The Thread parameter specifies the thread to which to send
imBufCreate() for execution.

The Xsize and Ysize parameters specify the width and height of the buffer
(in pixels), respectively. When using existing Genesis buffers to create the
new buffer, the values for these parameters are ignored; otherwise, valid
values must be given.

The Nbands parameter specifies the number of bands for the buffer.

The Type parameter specifies the buffer data type. It can be set to:

IM_BINARY 1-bit packed binary.

IM_UBYTE 8-bit unsigned integer.

IM_BYTE 8-bit signed integer.

IM_USHORT 16-bit unsigned integer.

IM_SHORT 16-bit signed integer.

IM_ULONG 32-bit unsigned integer.

IM_LONG 32-bit signed integer.

IM_FLOAT 32-bit floating-point (IEEE-754 format).
IM_DOUBLE 64-bit floating-point (IEEE-754 format).
IM_RGB 24-bit packed RGB.

When using existing Genesis buffers to create the new buffer, the value for
Type is ignored; otherwise, the required type must be given.

The Location parameter specifies the type of memory from which to create
the new buffer. It can be set to:

IM_DEFAULT Memory from existing Genesis buffers.
IM_NON_PAGED Contiguous physical memory.
IM_PAGED Virtual paged memory.

IM_NON_PAGED_VIRTUAL Contiguous physical memory but the address
supplied is its virtual address.

Note

imBufCreate 119

The AddrPtr parameter specifies the pointer to the array containing the
Genesis buffer IDs, physical addresses, or virtual addresses from which to
create the buffer. There must be one buffer 1D/physical address/virtual
address for each band to be created.

The Pitch parameter specifies the buffer pitch, in bytes. When you create
a buffer, its pitch should be a multiple of 4 bytes in order to ensure that it
can be used by all Genesis functions. When using existing Genesis buffers
to create the new buffer, the value for this parameter is ignored; otherwise,
a valid value must be given.

The BufPtr parameter specifies the address in which to return the buffer
identifier. If the buffer could not be allocated, O is returned.

When you create an IM_PAGED buffer, it must be contiguous. The pitch must
be equal to the buffer width in bytes (and it must still be a multiple of 4
bytes). Furthermore, an IM_PAGED buffer can only be copied to (or from) a
buffer which is physically contiguous in Genesis memory.

There is also a Windows NT restriction on the use of IM_PAGED buffers
created by imBufCreate(), which does not apply to IM_NON_PAGED buffers
or to IM_HOST buffers allocated with imBufAlloc(). Under Windows NT, a
paged (or virtual) buffer must be locked in a process’s working set before it
can be used in a DMA transfer (a process’s working set is that set of memory
pages which currently resides in physical memory). To accomplish this, call
imBufControl() with IM_BUF_LOCK. Doing so will also try to increase the
size of the process’s working set, if necessary, so that it can contain the entire
buffer.

This buffer restriction arises because a Windows NT process does not have
the right to increase its working set unless it has the
SE_INC_BASE_PRIORITY_NAME privilege. Users in the Administrators and
Power Users groups normally have this privilege. If you want to grant it to
ordinary users, you can do it through the User Manager (you need to enable
"Show Advanced User Rights", and select the right to "Increase scheduling
priority").

Without the right to increase your working set size, only relatively small
paged buffers should be used. With the right, you can use larger paged
buffers.

However, there is no absolute guarantee that paged buffers will work
because there are other limitations to consider. First, if there is not enough
available physical memory, then Windows NT will not be able to lock the
entire buffer. Secondly, even if a buffer is successfully locked, Windows NT

120 imBufCreate

might swap out the buffer if it swaps out your entire process. Therefore,
paged buffers will only work reliably on a system with plenty of available
resources, and even then there is unfortunately no absolute guarantee. If
Windows swaps a page of a buffer out of physical memory while Genesis is
performing a DMA transfer to that page, system memory will be corrupted
and Windows will probably crash.

For the reasons stated above, it is recommended that you do not use paged
Host buffers at all; instead, use non-paged buffers.

imBufFree 121

imBufFree Async| | Gen-LC

Synopsis

Free a buffer.

Format void imBufFree(Thread, Buf)

Description

long Thread; Thread ID
long Buf; ID of buffer to free

This function deallocates a previously allocated buffer.

Note that, once a buffer has been deallocated, its identifier should no longer
be used. You should ensure that all functions using this buffer have
completed before deallocating it.

The Thread parameter specifies the thread to which to send imBufFree()
for execution. This thread must be on the same node as the thread which
allocated the buffer.

The Buf parameter specifies the buffer to deallocate.

122 imBufGet

ImBufGet | Sync | [Multi-band| | Gen-LC]]
Synopsis Get data from a buffer and transfer it to Host memory.
Format void imBufGet(Thread, Buf, Ptr)
long Thread; Thread ID
long Buf; ID of buffer to transfer
void* Ptr; Address of array
Description This function transfers data from a specified buffer to an array in Host
memory. If the buffer has more than one band, they are all transferred, one
after another.
The Thread parameter specifies the thread to which to send imBufGet()
for execution.
The Buf parameter specifies the buffer whose contents to transfer. This
buffer can be of any data type. If it is a packed binary buffer, it must be
byte-aligned.
The Ptr parameter specifies the address of the user-supplied array in which
to place the data. The array should be large enough to hold all the data to
be transferred.
Note The Host CPU performs the transfer. For a DMA transfer to Host memory,
you should allocate the Host memory using imBufAlloc...() (set its
Location parameter to IM_HOST), then use imBufCopy/() or
imBufCopyPCI() to perform the transfer.
See also imBufGetld(), imBufGet2d(). These functions can also transfer data to

Host memory.

imBufGetld 123

imBufGetld [Sync | [Multi-band] [Gen-LC |
Synopsis Get a 1D block of data from a buffer and transfer it to Host memory.
Format void imBufGetld(Thread, Buf, Xstart, Xsize, Ptr)
long Thread,; Thread ID
long Buf; ID of buffer to transfer
long Xstart; Block origin
long Xsize; Block width
void* Ptr; Address of array
Description This function transfers a 1D block of data from a buffer to an array in Host
memory. If the buffer has more than one band, they are all transferred, one
after another.
The Thread parameter specifies the thread towhich to send imBufGet1d()
for execution.
The Buf parameter specifies the buffer whose contents to transfer. This
buffer can be of any data type. If it is a packed binary buffer, it must be
byte-aligned.
The Xstart parameter specifies the origin of the block, relative to the top-left
corner of the source buffer.
The Xsize parameter specifies the size of the block (in pixels).
The Ptr parameter specifies the address of the user-supplied array in which
to place the data. The array should be large enough to hold all the data to
be transferred.
Note The Host CPU performs the transfer. For a DMA transfer to Host memory,
you should allocate the Host memory using imBufAlloc...() (set its
Location parameter to IM_HOST), then use imBufCopy/() or
imBufCopyPCI() to perform the transfer.
See also imBufGet(), imBufGet2d(). These functions can also transfer datato Host

memory.

124 imBufGet2d

imBufGet2d [Sync | [Multi-band] | Gen-LC |

Synopsis

Format

Description

Note

See also

Get a 2D block of data from a buffer and transfer it to Host memory.
void imBufGet2d(Thread, Buf, Xstart, Ystart, Xsize, Ysize, Ptr)

long Thread; Thread ID

long Buf; ID of buffer to transfer
long Xstart; X origin of block

long Ystart; Y origin of block

long Xsize; Block width

long Ysize; Block height

void* Ptr; Address of array

This function transfers a 2D block of data from a buffer to an array in Host
memory. If the buffer has more than one band, they are all transferred, one
after another.

The Thread parameter specifies the thread towhich to send imBufGet2d()
for execution.

The Buf parameter specifies the buffer whose contents to transfer. This
buffer must be two-dimensional and can be of any data type. If itis a packed
binary buffer, it must be byte-aligned.

The Xstart and Ystart parameters specify the x and y coordinates of the
block’s origin (in pixels), respectively. These coordinates are relative to the
top-left corner of the source buffer.

The Xsize and Ysize parameters specify the width and height of the block,
respectively.

The Ptr parameter specifies the address of the user-supplied array in which
to place the data. The array should be large enough to hold all the data to
be transferred.

The Host CPU performs the transfer. For a DMA transfer to Host memory,
you should allocate the Host memory using imBufAlloc...() (set its
Location parameter to IM_HOST), then use imBufCopy/() or
imBufCopyPCI() to perform the transfer.

imBufGet(), imBufGetld(). These functions can also transfer data to Host
memory.

imBufGetField 125

iImBufGetField | Sync | | Gen-LC |
Synopsis Get the value of a field.
Format long imBufGetField(Thread, Buf, Tag, ValuePtr)

long Thread,; Thread ID

long Buf; Buffer ID

long Tag; Tag of field to get

long* ValuePtr; Address of return value

Description This function reads the value of a field.

Return value

See also

This function performs the same task as imBufGetFieldDouble() but
returns the value of the specified field as type long, instead of type double.
Although the values of fields are internally stored as type double, many are
actually integers and can therefore be retrieved using this function.

The Thread parameter specifies the thread to which to send
imBufGetField() for execution.

The Buf parameter specifies the buffer containing the required field.

The Tag parameter specifies the field. For a list of fields, see individual
function descriptions.

The ValuePtr parameter specifies the address in which to return the value
of the field.

The returned value is IM_SUCCESS if the specified field exists;
IM_ERR_NOT_PRESENT if the specified field does not exist.

imBufGetFieldDouble(), imBufGetNextField(). The
imBufGetFieldDouble() function returns the value of a field as type
double. The imBufGetNextField() function can be used to read all of a
buffer’s fields.

126 imBufGetFieldDouble

imBufGetFieldDouble | Sync | | Gen-LC |

Synopsis

Format

Description

Return value

See also

Get the value of a field.
long imBufGetFieldDouble(Thread, Buf, Tag, ValuePtr)

long Thread; Thread ID

long Buf; Buffer ID

long Tag; Tag of field to get
double* ValuePtr; Address of return value

This function reads the value of a field.

This function performs the same task as imBufGetField() but returns the
value of the specified field as type double, instead of type long. Although the
values of fields are internally stored as type double, many are actually
integers and can therefore be retrieved using imBufGetField().

The Thread parameter specifies the thread to which to send
imBufGetFieldDouble() for execution.

The Buf parameter specifies the buffer containing the required field.

The Tag parameter specifies the field. For a list of fields, see individual
function descriptions.

The ValuePtr parameter specifies the address in which to return the value
of the field.

The returned value is IM_SUCCESS if the specified field exists;
IM_ERR_NOT_PRESENT if the specified field does not exist.

imBufGetField(), imBufGetNextField(). The imBufGetField()
function returns the value of a field as type long. The
imBufGetNextField() function can be used to read all of a buffer’s fields.

imBufGetNextField 127

iImBufGetNextField | Sync | |Gen-LC |

Synopsis

Format

Description

Return value

Get the tag and value of the next buffer field.
long imBufGetNextField(Thread, Buf, ContextPtr, TagPtr,

ValuePtr)
long Thread,; Thread ID
long Buf; ID of buffer from which to read
long* ContextPtr; Address of function’s context
long* TagPtr; Address of field's tag

double* ValuePtr; Address of field's value

This function reads the tag and value of the next field in a buffer. This
function allows you to read a buffer's fields without knowing which fields
are in the buffer.

To start reading from the first field, the ContextPtr parameter should be
the address of a variable that is initialized to IM_FIRST_FIELD. After each
call to imBufGetNextField(), ContextPtr is automatically set to the
address of the next field; therefore, the next call to the function will read
the next field in the buffer.

The Thread parameter specifies the thread to which to send
imBufGetNextField() for execution.

The Buf parameter specifies the buffer from which to read fields.

The ContextPtr parameter specifies the address in which to save context
information. To start reading from the first field, this parameter should be
the address of a variable that is initialized to IM_FIRST_FIELD. Note that
the variable will be automatically updated with the next call to the function;
you must not change its value between calls.

The TagPtr parameter specifies the address in which to return the tag of
the field.

The ValuePtr parameter specifies the address in which to return the value
of the field.

The returned value is IM_SUCCESS if a field was found;
IM_ERR_NOT_PRESENT if a field was not found.

128 imBufGetNextField
Example The following code reads all fields that are attached to a buffer.

Tong Context, Tag;
double Value;
/* Find all the fields (remember to initialize the context) */

Context = IM FIRST FIELD;
while (imBufGetNextField(Thr, Buf, &Context, &Tag, &Value) == IM SUCCESS)

printf(“Tag = %¥1i, Value = ¥1f\n", Tag, Value);

imBufGetField(), imBufGetFieldDouble(). You should use one of these
functions if you know which fields are in a buffer and you want the value of

See also

a specific field.

imBuflnquire 129

imBuflnquire [Sync | [Gen-LC]
Synopsis Inquire about a buffer attribute.
Format long imBuflnquire(Thread, Buf, Item, ValuePtr)
long Thread,; Thread ID
long Buf; Buffer ID
long Item; Attribute about which to inquire
void* ValuePtr; Address of return value (or NULL)
Description This function inquires about an attribute of a specified buffer.

The Thread parameter specifies the thread to which to send
imBuflnquire() for execution.

The Buf parameter specifies the buffer.

The Item parameter specifies the attribute about which to inquire. It can
be set to:

IM_BUF_FORMAT Pixel format of the buffer: IM_UNSIGNED
(unsigned integer buffer), IM_SIGNED
(signed integer buffer), IM_IEEE754
(IEEE-754 floating-point buffer), or
IM_PACKED (packed binary or packed
color buffer).

IM_BUF_LOCATION Memory location of buffer. See
imBufAlloc() for a list of possible
locations.

IM_BUF_NUM_BANDS Number of bands in buffer.

IM_BUF_NUM_FIELDS Number of fields in buffer.

IM_BUF_PARENT_ID Parent ID of buffer (if buffer is not a child

buffer, 0 is returned).

IM_BUF_PHYSICAL_ADDRESS Physical address of the first pixel in the
buffer. This address can be used for DMA
transfers by any PCI bus master in the
system.

IM_BUF_PITCH Buffer pitch (in bytes). The buffer pitch
should always be used when accessing a
buffer directly since a buffer’s pitch is not
necessarily the same as its width.

IM_BUF_OFFSET_BAND Band offset within parent.

IM_BUF_OFFSET_X X offset within parent.

130 imBuflnquire

Return value

IM_BUF_OFFSET_Y
IM_BUF_OWNER_ID

IM_BUF_SIZE_BIT

IM_BUF_SIZE_X
IM_BUF_SIZE_Y
IM_BUF_TYPE

Y offset within parent.

Device ID on which the buffer was
allocated.

Number of bits per pixel in the buffer: 1,
8, 16, 24, 32, or 64.

Buffer width.
Buffer height.

Buffer data type (bits per pixel and
format). See imBufAlloc() for a list of
possible types.

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imBuflnquire() also returns this value,

ValuePtr can be set to NULL.

The returned value is the value of the inquired attribute, cast to long if

necessary.

imBufLoad 131

imBufLoad [Sync | [Multi-band] | Gen-LC |

Synopsis

Load data from a file into a buffer.

Format void imBufLoad(Thread, FileName, Format, Buf)

Description

See also

long Thread,; Thread ID

char* FileName; File name

long Format; File format

long Buf; Destination buffer ID

This function loads data from a file into a specified buffer.

The Thread parameter specifies the thread to which to send imBufLoad()
for execution.

The FileName parameter specifies the name of the file from which to load
the buffer.

The Format parameter specifies the format of the specified file. It can be
set to:

IM_TIFF TIFF format.
IM_NATIVE Genesis native format (same as TIFF, but can contain
control fields in addition to data).

IM_RAW Raw file format (there must be no header included with
the file, only data).

When loading an IM_NATIVE file, any control fields in the file are also
loaded.

The Buf parameter specifies the buffer in which to place the contents of the
specified file. Note that this buffer must be of the appropriate size to hold
the data in the file. In addition, it should have the same number of bits per
pixel as the data and have the same number of bands as the data.

imBufRestore(). The imBufRestore() function loads data from afile into
an automatically allocated buffer.

132 imBufMap

imBufMap

Synopsis

Format

Description

Map a buffer into Host memory.

long imBufMap(Thread, Buf, Band, Ystart, AddrPtr, PitchPtr,

NlinesPtr)
long Thread; Thread ID
long Buf; ID of buffer to map
long Band; Band to map
long Ystart; First line to map
void** AddrPtr; Address of pointer to first pixel mapped
long* PitchPtr; Address of line pitch of buffer
long* NlinesPtr; Address of number of lines mapped

This function maps a specified buffer into Host memory and returns a
pointer to the data. Note that this function maps only one band of a buffer.
To map all bands of a multi-band buffer, you must call this function for each
band. There is no limit to the number of buffers that can be mapped
concurrently.

The Thread parameter specifies the thread to which to send imBufMap()
for execution.

The Buf parameter specifies the buffer to map.

The Band parameter specifies the band of the buffer to map. This parameter
must be set to the index of the required band; the valid range is 0 to (number
of bands - 1).

The Ystart parameter specifies the first line of the buffer to map.

The AddrPtr parameter specifies the address in which to return the pointer
to the first pixel mapped. This pointer remains valid until the buffer is freed.

The PitchPtr parameter specifies the address in which to return the line
pitch of the buffer. The line pitch is the number of bytes from a pixel to its
neighboring pixel on the line below. Note that the line pitch is not given in
pixels, but in bytes.

imBufMap 133

The NlinesPtr parameter specifies the address in which to return the
number of consecutive lines mapped. Since all buffers are currently
allocated contiguous memory, the number of consecutive lines mapped is
(the number of lines in the buffer) - Ystart.

Note Buffers might be allocated with some padding at the end of each line.
Therefore, the line pitch of a buffer is not necessarily the same as its width.

Return value The returned value is the number of consecutive lines mapped.

Example See process.c in Appendix B.

134 imBufModify

imBufModify

Synopsis Modify a buffer's dimensions and/or type.

Format void imBufModify(Thread, Buf, Xsize, Ysize, Type)

Description

long Thread; Thread ID

long Buf; ID of buffer to modify
long Xsize; New buffer width
long Ysize; New buffer height
long Type; New buffer type

This function modifies an existing buffer's dimensions and/or type.

Although you can change the size of a buffer, you cannot change the actual
amount of memory allocated to it. Therefore, you could, for example, change
a 512x512 8-bit buffer into a 512x256 16-bit buffer if the original buffer
occupies contiguous memory locations. However, if the buffer does not
occupy contiguous memory locations (if, for example, the buffer is a child
buffer), the attempt to modify it would fail.

This function allows an application to use a given region of memory for
different purposes, rather than allocating new memory. If, for example, you
require signed and unsigned data at different points in an application, you
can allocate just one buffer and modify it when necessary.

The Thread parameter specifies the thread to which to send
imBufModify() for execution.

The Buf parameter specifies the buffer to modify.

The Xsize and Ysize parameters specify the new width and height for the
buffer, respectively. To maintain the current width, set Xsize to
IM_NO_CHANGE; to maintain the current height, set Ysize to
IM_NO_CHANGE.

imBufModify 135

The Type parameter specifies the buffer data type. It can be set to
IM_NO_CHANGE, which maintains the current type, or to one of the

following:

IM_BINARY 1-bit packed binary.

IM_UBYTE 8-bit unsigned integer.

IM_BYTE 8-bit signed integer.

IM_USHORT 16-bit unsigned integer.

IM_SHORT 16-bit signed integer.

IM_ULONG 32-bit unsigned integer.

IM_LONG 32-bit signed integer.

IM_FLOAT 32-bit floating-point (IEEE-754 format).
IM_DOUBLE 64-bit floating-point (IEEE-754 format).
IM_RGB 24-bit packed RGB.

If the buffer originally occupied contiguous memory locations, the pitch of
the buffer will be updated automatically by imBufModify(). The new pitch
will be equal to the new Xsize multiplied by the new pixel size (in bytes).

Note, however, that the pitch is changed only if the new value is a multiple
of 4 bytes (a requirement for all Genesis buffers).

Note imBufModify() has many uses but can be dangerous because it performs
little error checking. Use this function with care.

See also imBufControl(). This function can be used to change a buffer’s pitch.

136 imBufPack

imBufPack [Async| PP [Multi-band|

Synopsis Pack or unpack a buffer.

Format void imBufPack(Thread, SrcBuf, TagBuf, DstBuf, Mode, OSB)

Description

long Thread; Thread ID

long SrcBuUf; Source buffer ID

long TagBuf; Binary tag buffer 1D
long DstBuf; Destination buffer ID
long Mode; Operation mode

long OSB; OSB ID (or 0)

This function packs or unpacks the specified buffer, according to a tag buffer.
When packing, the function copies selected pixels of the source buffer to the
destination buffer, starting from the top-left corner of the destination buffer.
When unpacking, the function copies pixels of the source buffer to selected
positions in the destination buffer, again starting from the top-left corner of
the destination buffer.

The tag buffer controls which pixels of the source buffer to copy (when
packing), or which pixels of the destination buffer to overwrite (when
unpacking). Specifically, if a pixel of the tag buffer has a particular value (0
or 1, depending on the specified mode), the corresponding pixel of the
source/destination buffer is ignored (not copied or not overwritten,
respectively). The actual number of pixels copied from the source buffer to
the destination buffer is written to the IM_RES_NUM_PIXELS field of the
destination buffer. This number will be correct even if the destination buffer
is too small to hold all tagged pixels (in which case the contents of the
destination buffer are undefined).

If the same tag buffer is used to pack a buffer and then to unpack the
resulting buffer, the packed pixels will be written to their original positions.

Note that this function can be used to process non-rectangular regions. For
more details, see the Genesis Native Library User Guide.

The Thread parameter specifies the thread to which to send imBufPack()
for execution.

imBufPack 137

The SrcBuf parameter specifies the source buffer. This buffer can be of any
integer type, or can be a 32-bit floating-point buffer. When unpacking, this
buffer must be one-dimensional.

The TagBuf parameter specifies the tag buffer with which to perform the
operation. This must be a packed binary buffer.

The DstBuf parameter specifies the destination buffer. This buffer must
have the same pixel size as the source buffer, and be large enough to hold
the result. When packing, this buffer must be one-dimensional.

The Mode parameter specifies the mode of operation. It can be set to:

IM_PACK_0 Pack source pixels tagged with the value 0.
IM_PACK_1 Pack source pixels tagged with the value 1.
IM_UNPACK_0 Unpack source pixels tagged with the value 0.
IM_UNPACK_1 Unpack source pixels tagged with the value 1.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Example See process.c in Appendix B.

138 imBufPut

imBufPut | Sync | [Multi-band| | Gen-LC]
Synopsis Transfer data from Host memory to a buffer.
Format void imBufPut(Thread, Buf, Ptr)
long Thread; Thread ID
long Buf; Destination buffer ID
void* Ptr; Address of array
Description This function transfers data from an array in Host memory to a specified

buffer. If the buffer has more than one band, they are all overwritten, one
after another.
The Thread parameter specifies the thread to which to send imBufPut()
for execution.
The Buf parameter specifies the buffer in which to copy the data. This buffer
can be of any data type. If it is a packed binary buffer, it must be
byte-aligned.
The Ptr parameter specifies the address of the user-supplied array
containing the data to copy. The array must be large enough to fill the buffer.

Note The Host CPU performs the transfer. If Host memory was allocated using
imBufAlloc...(), it is faster to use imBufCopy() or imBufCopyPCI(); for
these functions, the VIA drives the transfer without involving the Host CPU.
Note, however, that imBufCopy() and imBufCopyPCI() can only work
with Host buffers allocated with imBufAlloc...().

See also imBufPutld(), imBufPut2d(). These functions can also transfer data

from Host memory to a buffer.

imBufPutld 139

imBufPutld [Sync | [Multi-band] | Gen-LC |
Synopsis Transfer a 1D block of data from Host memory into part of a buffer.
Format void imBufPutld(Thread, Buf, Xstart, Xsize, Ptr)

long Thread,; Thread ID
long Buf; Destination buffer ID
long Xstart; Block origin
long Xsize; Block width
void* Ptr; Address of array

Description This function transfers a 1D block of data from Host memory into part of a
buffer. If the buffer has more than one band, they are all overwritten, one
after another.
The Thread parameter specifies the thread towhich to send imBufPutld()
for execution.
The Buf parameter specifies the buffer into which to copy the data. This
buffer can be of any data type. If it is a packed binary buffer, it must be
byte-aligned.
The Xstart parameter specifies the origin of the block, relative to the top-left
corner of the destination buffer.
The Xsize parameter specifies the size of the block (in pixels).
The Ptr parameter specifies the address of the user-supplied array
containing the data to copy. The array must be large enough to fill the block
of the buffer.

Note The Host CPU performs the transfer. If Host memory was allocated using
imBufAlloc...(), itis faster to use imBufCopy() or imBufCopyPCI(); for
these functions, the VIA drives the transfer without involving the Host CPU.
Note, however, that imBufCopy() and imBufCopyPCI() can only work
with Host buffers allocated with imBufAlloc...().

See also imBufPut(), imBufPut2d(). These functions can also transfer data from

Host memory to a buffer.

140 imBufPut2d

imBufPut2d [Sync | [Muli-band] [Gen-LC |

Synopsis Transfer a 2D block of data from Host memory into part of a buffer.

Format void imBufPut2d(Thread, Buf, Xstart, Ystart, Xsize, Ysize, Ptr)

Description

Note

See also

long Thread; Thread ID

long Buf; Destination buffer ID
long Xstart; X origin of block

long Ystart; Y origin of block

long Xsize; Block width

long Ysize; Block height

void* Ptr; Address of array

This function transfers a 2D block of data from Host memory into part of a
buffer. If the buffer has more than one band, they are all overwritten, one
after another.

The Thread parameter specifies the thread towhich to send imBufPut2d()
for execution.

The Buf parameter specifies the buffer into which to copy the data. This
buffer can be of any data type. If it is a packed binary buffer, it must be
byte-aligned.

The Xstart and Ystart parameters specify the x and y coordinates of the
block origin, respectively. These coordinates are relative to the top-left
corner of the destination buffer.

The Xsize and Ysize parameters specify the width and height of the block
(in pixels), respectively.

The Ptr parameter specifies the address of the user-supplied array
containing the data to copy. The array must be large enough to fill the block
of the buffer.

The Host CPU performs the transfer. If Host memory was allocated using
imBufAlloc...(), it is faster to use imBufCopy() or imBufCopyPCI(); for
these functions, the VIA drives the transfer without involving the Host CPU.
Note, however, that imBufCopy() and imBufCopyPCI() can only work
with Host buffers allocated with imBufAlloc...().

imBufPut(), imBufPutld(). These functions can also transfer data from
Host memory to a buffer.

imBufPutField 141

imBufPutField | Async| | Gen-LC |

Synopsis Add or modify a buffer field.

Format void imBufPutField(Thread, Buf, Tag, Value)

Description

long Thread,; Thread ID
long Buf; Buffer ID
long Tag; Tag of field
double Value; Value of field

This function adds a field to a specified buffer, or modifies an existing field
of a specified buffer.

The Thread parameter specifies the thread to which to send
imBufPutField() for execution.

The Buf parameter specifies the buffer into which to add the field, or the
buffer containing the field to modify. This buffer can be of any data type,
and can have any size.

The Tag parameter specifies the field to add/modify. For a list of fields, see
individual function descriptions. Tags can have any non-zero value, and a
new field will automatically be created if it doesn’t already exist.

Note that you can add your own field as long as you use tags that do not
conflict with those used by the Genesis Native Library. Tags from 1 to 9999
(inclusive) are reserved for user fields.

The Value parameter specifies the value for the specified field.

Note A buffer’s fields are not copied when a buffer is copied. Use

imBufCopyField() to copy a buffer’s fields.

142 imBufRemoveField

imBufRemoveField [Async] [Gen-LC]

Synopsis Remove a field from a buffer.

Format void imBufRemoveField(Thread, Buf, Tag)

Description

long Thread; Thread ID

long Buf; Buffer ID

long Tag; Tag of field

This function removes a field from a specified buffer.

The Thread parameter specifies the thread to which to send
imBufRemoveField() for execution.

The Buf parameter specifies the buffer.

The Tag parameter specifies the field. For a list of fields, see individual
function descriptions.

imBufRestore 143

imBufRestore | Sync | [Mutti-band] | Gen-LC]

Synopsis

Load data from a file into an automatically allocated buffer.

Format void imBufRestore(Thread, FileName, Format, Location, BufPtr)

Description

long Thread,; Thread ID

char* FileName; File name

long Format; File format

long Location; Location of the memory
long* BufPtr; Address of buffer ID

This function allocates a new buffer in the specified memory bank and loads
it with data from the specified file. When allocating processing or display

memory, the memory is allocated on the node associated with the specified
thread.

The Thread parameter specifies the thread to which to send
imBufRestore() for execution.

The FileName parameter specifies the name of the file from which to load
the buffer.

The Format parameter specifies the format of the specified file. It can be
set to:

IM_TIFF TIFF format.

IM_NATIVE Genesis native format (same as TIFF, but can contain
control fields in addition to data).

Note that, when loading an IM_NATIVE file, any attribute fields in the file
are also loaded.

144 imBufRestore

The Location parameter specifies where to allocate the buffer. It can be set

to:

IM_PROC Processing memory.

IM_DISP Display memory (any available bank: red, green, or blue).
IM_DISP_RED Red display memory.

IM_DISP_GREEN Green display memory.

IM_DISP_BLUE Blue display memory.

IM_DISP_OVERLAY Overlay display memory.

IM_HOST Host system memory (specifically, DMA memory from

non-paged pool).
Note that display memory refers to off-screen display memory.

The BufPtr parameter specifies the address in which to return the buffer
identifier. If the buffer could not be allocated, O is returned.

imBufSave 145

imBufSave | Sync | [Multi-band] | Gen-LC]

Synopsis Save a buffer to a file.

Format void imBufSave(Thread, FileName, Format, Buf)

long Thread,; Thread ID
char* FileName; File name
long Format; File format
long Buf; Buffer ID

Description This function saves a specified buffer to a specified file.

The Thread parameter specifies the thread to which to send imBufSave()
for execution.

The FileName parameter specifies the name of the file in which to save the
buffer.

The Format parameter specifies the format with which to save the buffer
to the file. It can be set to:

IM_TIFF TIFF format.

IM_NATIVE Genesis native format (same as TIFF, but can contain control
fields in addition to data).

IM_RAW Raw file format (no header is saved, just the data).

Note that, when saving an IM_NATIVE file, control fields are also saved.

The Buf parameter specifies the buffer to save to file. This buffer can be of
any data type, and can have any number of bands. If the buffer is packed
binary, it must be byte-aligned.

146 imCamAlloc

imCamaAlloc Sync | [Gen-LC

Synopsis

Allocate a camera definition.

Format void imCamAlloc(Thread, CamFile, Mode, CameraPtr)

Description

Note

long Thread; Thread ID
char* CamFile; File containing camera definition (or NULL)
long Mode; Operation mode

long* CameraPtr; Address of camera definition ID

This function allocates a camera definition, loading its definition from the
specified file. Note that all the settings (input channel, gain and reference
levels, etc.) in the file are sent to the board. However, the digitizer is only
programmed to these settings when a grab is issued with this camera
definition. Therefore, using imCamAlloc() does not affect the digitizer.

Once a camera definition is allocated, you can change its settings using
imCamcControl(). Using imCamcControl() will not change the original
camera definition file.

The Thread parameter specifies the thread to which to send
imCamAlloc() for execution.

The CamFile parameter specifies the name of the file containing the
camera definition. This parameter can be set to NULL, in which case the
camera definition file specified during installation will be used.

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The CameraPtr parameter specifies the address in which to return the
identifier of the camera definition. If the camera definition could not be
allocated, O is returned.

If you are running several applications simultaneously on a Genesis system
and if these applications are not dependent on a particular cameratype, you
should use the camera definition file that was specified during installation.
This will allow the applications to most efficiently share the digitizer, since
the digitizer will not be re-programmed between grabs.

imCamClone 147

iImCamcClone | Sync | |Gen-LC |

Synopsis

Duplicate a camera definition.

Format void imCamClone(Thread, Camera, Mode, NewCamPtr)

Description

long Thread,; Thread ID

long Camera; Camera definition ID

long Mode; Operation mode

long* NewCamPtr; Address of new camera definition ID

This function duplicates a camera definition.

Note that this function allows you to create several IDs for the same camera
without accessing the camera definition file. It is useful when you need
several versions of a camera definition simultaneously, each with different
settings (inputchannel, reference levels, etc.). You can change settings using
the imCamcControl() function.

The Thread parameter specifies the thread to which to send
imCamcClone() for execution.

The Camera parameter specifies the camera definition to duplicate.

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The NewCamPtr parameter specifies the address in which to return the
identifier of the new camera definition. If the new camera definition could
not be allocated, 0 is returned.

148 imCamControl

iImCamcControl | Async| | Gen-LC |

Synopsis Change a setting of a camera definition.

Format void imCamControl(Thread, Camera, Item, Value)

Description

long Thread; Thread ID
long Camera; Camera definition ID
long Item; Item to set

double Value; Value for Item
This function changes a setting of a specified camera definition.

Where supported, you can specify different settings (such as gain and
reference levels) for each channel. To do so, combine the #define of the
required setting with one or more of the channel #defines (for example,
IM_DIG_GAIN + IM_CHANNEL_1). If you change a setting without specifying
a channel, the setting is changed on all channels currently selected for the
camera.

Note that the digitizer is only programmed to a specific camera definition
when a grab is issued with the identifier of that camera definition.
Therefore, using imCamControl() will not affect the digitizer hardware;
it will simply change a camera definition already in memory.

The Thread parameter specifies the thread to which to send
imCamcControl() for execution.

The Camera parameter specifies the camera definition.

The Item parameter specifies the setting to change, while the Value
parameter specifies its value. The table below lists those settings that can
be changed, and their allowable values. Note that a #define specified as
IM_XXX_0/1 means you can use IM_XXX_0 or IM_XXX_1 (it does not mean use
IM_XXX_0/1). In addition, if it is more convenient to use a simple integer
channel number, you can convert it to the corresponding #define with the
macro IM_CHANNEL(n). For example, IM_CTL_CHANNEL(3) is equivalent to
IM_CTL_CHANNEL_3.

Item
IM_DIG_CHANNEL

IM_DIG_GAIN

(note that you can specify
different gains for each
channel, if necessary)

IM_DIG_LUT BUF

IM_DIG_REF_BLACK

(note that you can specify
different reference levels for
each channel, if necessary)

IM_DIG_REF_WHITE

(note that you can specify
different reference levels for
each channel, if necessary)

Values
IM_CHANNEL_0/1/2/3

0-100

IM_DEFAULT

0
A buffer ID

0-100

IM_DEFAULT

0-100

IM_DEFAULT

imCamcControl 149

Meaning

Input channel. To grab from
multiple channels, combine
the required channels (for
example,

IM_CHANNEL_O+
IM_CHANNEL_1+
IM_CHANNEL_2).

Specify the gain used by the
analog-to-digital converters,
as a percentage.

Use the gain specified in the
original camera definition
file.

Use a transparent LUT on
the grabbed data.

Use the specified buffer to
map the grabbed data.

Specify the black reference
level, as a percentage.

Use the reference level
specified in the original
camera definition file.

Specify the white reference
level, as a percentage.

Use the reference level
specified in the original
camera definition file.

Note that IM_DIG_REF_WHITE and IM_DIG_REF_BLACK can be set below
0% or above 100%. This is because the 0% and 100% levels are the black
and white reference levels, respectively, specified in the DCF file, rather
than the minimum and maximum values supported by the hardware.

150

imCamControl

Item
IM_DIG_SIZE_X

IM_DIG_SIZE_Y

IM_DIG_SYNC_CHANNEL

IM_DIG_TRIG_SOURCE

Values
8-n

IM_DEFAULT

IM_DEFAULT

IM_CHANNEL_0/1/2/3

IM_CHANNEL_GRAB

IM_DEFAULT

IM_SOFTWARE

IM_HARDWARE

IM_EXPOSURE

IM_NONE
IM_DEFAULT

Meaning

Adjust the width of the
grabbed frame to the
specified number of pixels
per line.

Use the number of pixels per
line specified in the original
camera definition file.

Adjust the height of the
grabbed frame to the
specified number of lines.

Use the number of lines
specified in the original
camera definition file.

Use the specified channel as
the synchronization channel.

Use the current grab channel
as the synchronization
channel as well.

Use the channel specified in
the original camera
definition file as the
synchronization channel.

Use software to trigger the
grab.

Use hardware to trigger the
grab. To select a specific
hardware trigger, combine
with IM_TRIGGER1/2

(for example,
IM_HARDWARE+
IM_TRIGGERL1).

Use an exposure timer to
trigger the grab. To select a
specific timer, combine with
IM_TIMER1/2 (for example,
IM_EXPOSURE+
IM_TIMERL1).

Don't grab with a trigger.
Use the source specified in
the original camera
definition file to trigger the
grab.

Item
IM_DIG_TRIG_MODE

IM_DIG_TRIG_MODE
(cont.)

IM_DIG_USER_IN_FORMAT

Values
IM_RISING_EDGE

IM_FALLING_EDGE

IM_DEFAULT

IM_ACTIVE_HIGH

IM_ACTIVE_LOW

IM_TTL

IM_RS422

IM_DEFAULT

IM_DISABLE

imCamcControl 151

Meaning

The hardware trigger is edge
sensitive and generates a
positive pulse.

The hardware trigger is edge
sensitive and generates a
negative pulse.

The hardware trigger is of
the type specified in the
original camera definition
file.

The trigger (software or
hardware) is level sensitive
and generates a high signal.
Note that a level-sensitive
trigger cannot be used to
start an exposure timer.

The trigger (software or
hardware) is level sensitive
and generates a low signal.
Note that a level-sensitive
trigger cannot be used to
start an exposure timer.

Enable the TTL receivers for
trigger and user inputs.

Enable the RS-422 receivers
for trigger and user inputs.

Enable the receivers
specified in the original
camera definition file for
trigger and user inputs.

Disable trigger and user
inputs.

152 imCamControl

Item Values Meaning

IM_DIG_USER_OUT Oor1l Set an output line on the
grab section low (0) or high
(2). To select a specific user
bit, combine with
IM_BITO0/1/2/3/4
(for example,
IM_DIG_USER_OUT+
IM_BITO).

Note that IM_BIT2/3/4
correspond to camera control
bits 0/1/2, respectively, on
the connector. For
information on pinout and
signal descriptions, see the
Genesis Installation and
Hardware Reference.

IM_DIG_USER_OUT_FORMAT IM_TTL Enable the TTL drivers for
exposure and user outputs.
IM_RS422 Enable the RS-422 drivers
for exposure and user
outputs.
IM_DEFAULT Enable the drivers specified

in the original camera
definition file for exposure
and user outputs.

IM_DISABLE Disable exposure and user
outputs.

The following settings are only relevant if you are using the exposure timers.
To associate a specific timer with these settings, combine the required item
with IM_TIMERZ1/2 (for example, IM_DIG_EXP_TIME+IM_TIMER2). If you
don't select a specific timer, timer 1 is used.

Item Values Meaning

IM_DIG_EXP_TIME any floating-point The exposure time of the output
value >0 signal, in seconds.

IM_DIG_EXP_DELAY any floating-point The delay before starting the

value >0 output signal, in seconds.

IM_DIG_EXP_SOURCE

IM_DIG_EXP_SOURCE

(cont.)

IM_DIG_EXP_MODE
(this setting only applies if
you are generating an

exposure output)

IM_SOFTWARE
IM_HARDWARE

IM_VSYNC
IM_HSYNC
IM_CONTINUOUS
IM_TIMER2
IM_TIMER1
IM_NONE

IM_DEFAULT

IM_ACTIVE_HIGH

IM_ACTIVE_LOW

IM_DEFAULT

imCamcControl 153

Use software to start the timer.

Use a hardware trigger input to
start the timer. To select a specific
trigger, combine with
IM_TRIGGER1/2

(for example,

IM_HARDWARE+

IM_TRIGGERL1).

Use the vertical sync of the
camera signal to start the timer.

Use the horizontal sync of the
camera signal to start the timer.

Restart the timer automatically
as soon as it elapses.

Use timer 2 to start timer 1 (this
only applies for timer 1).

Use timer 1 to start timer 2 (this
only applies for timer 2).

Don't use the exposure timer.

Use the source specified in the
original camera definition file to
start the timer.

Generate a positive exposure
pulse.

Generate a negative exposure
pulse.

Generate a pulse of the type
specified in the original camera
definition file.

154 imCamFree

ImCamkFree | Async| | Gen-LC |

Synopsis Free a camera definition.
Format void imCamFree(Thread, Camera)

long Thread; Thread ID
long Camera; Camera definition ID

Description This function deallocates a previously allocated camera definition.

Before you deallocate a camera definition, you should ensure that all
operations involving the camera have completed.

The Thread parameter specifies the thread to which to send imCamFree()
for execution.

The Camera parameter specifies the camera definition to deallocate.

imCaminquire 155

imCamlnquire [Sync | [Gen-LC]
Synopsis Inquire about a camera definition setting.
Format long imCamlinquire(Thread, Camera, Item, ValuePtr)
long Thread,; Thread ID
long Camera; Camera definition ID
long Item; Setting about which to inquire
void* ValuePtr; Address of return value (or NULL)
Description This function inquires about a setting of a specified camera definition.

The Thread parameter specifies the thread to which to send
imCamIinquire() for execution.

The Camera parameter specifies the camera definition about which to

inquire.

The Item parameter specifies the setting about which to inquire. Note that
certain settings can be combined with a specific channel, timer, etc. For
example, IM_DIG_GAIN+IM_CHANNEL_O0 will return the gain level for
channel 1. See imCamControl() for a list of settings that can be combined.

Item can be set to:

IM_DIG_CHANNEL
IM_DIG_EXP_DELAY

IM_DIG_EXP_MODE
IM_DIG_EXP_SOURCE
IM_DIG_EXP_TIME

IM_DIG_GAIN
IM_DIG_INPUT_MODE

IM_DIG_MAX_CHANNELS

IM_DIG_NUM_BANDS
IM_DIG_REF_BLACK

IM_DIG_REF_WHITE

Input channel.

Delay before starting the output signal, in
seconds; returned as type double.

Type of exposure pulse generated.
Timer source.

Exposure time of the output signal, in
seconds; returned as type double.

Gain level; returned as type double.

Video input connector that is attached to
the camera: IM_ANALOG or IM_DIGITAL.

Maximum number of channels for the
current camera.

Number of bands grabbed.

Black reference level; returned as type
double.

White reference level; returned as type
double.

156 imCaminquire

Return value

IM_DIG_SCAN_MODE

IM_DIG_SIZE_BIT
IM_DIG_SIZE_X
IM_DIG_SIZE_Y
IM_DIG_SYNC_CHANNEL
IM_DIG_TRIG_MODE

IM_DIG_TRIG_SOURCE
IM_DIG_TYPE

IM_DIG_USER_IN_FORMAT

IM_DIG_USER_OUT

IM_DIG_USER_OUT_FORMAT

Type of scan mode used:
IM_PROGRESSIVE, IM_INTERLACED, or
IM_LINE.

Number of bits per pixel grabbed.

Width of grabbed frame (pixels per line).
Height of grabbed frame (lines per frame).
Synchronization channel.

When using an edge-sensitive trigger,
whether to wait for a positive or negative
pulse, or for the pulse specified in the
original camera definition file:
IM_RISING_EDGE, IM_FALLING_EDGE, or
IM_DEFAULT. When using a level-sensitive
trigger, whether to wait for a low or high
signal: IM_ACTIVE_LOW or
IM_ACTIVE_HIGH.

Trigger source.

Type of buffer needed for grabbed data.
Note that this can be passed to
imBufAlloc...().

Type of receivers enabled for digital trigger
and user inputs: IM_TTL, IM_RS422,
IM_DISABLE.

Whether output line on the grab section is
low (0) or high (1).

Type of drivers enabled for digital exposure

and user outputs: IM_TTL, IM_RS422, or
IM_DISABLE.

The ValuePtr parameter specifies the address in which to return the value
of the inquired setting. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imCamInquire() also returns this value,

ValuePtr can be set to NULL.

The returned value is the value of the inquired setting, cast to long if

necessary.

imCamsSave 157

ImCamsSave | Sync | |Gen-LC |

Synopsis

Save a camera definition to a file.

Format void imCamSave(Thread, CamFile, Camera)

Description

long Thread,; Thread ID
char* CamFile; File name
long Camera; Camera definition ID

This function saves a camera definition to a specified file.

The Thread parameter specifies the thread to which to send imCamSave()
for execution.

The CamFile parameter specifies the name of the file in which to save the
camera definition.

The Camera parameter specifies the camera definition.

158 imCurAlloc

imCurAlloc | Sync | | Gen-LC |

Synopsis Allocate a new cursor.

Format void imCurAlloc(Dev, Mode, CursorPtr)

Description

long Dev; Device ID (or 0)
long Mode; Cursor mode
long *CursorPtr; Address of cursor 1D

This function allocates a new cursor. You can allocate an unlimited number
of cursors, but only one can be loaded into the hardware at a time.

After the initial allocation, the cursor’s attributes are undefined. Use the
imCurDefine() and imCurSetColor() functions to set these attributes.
Then, call imCurSelect() to load the function definitions into the physical
hardware and select the software copy of the cursor to the display and
imCurEnable() to make the hardware cursor visible. You are responsible
for tracking and moving the cursor using the imCurGetPosition() and
imCurSetPosition() functions.

The Dev parameter specifies the device on which to allocate the cursor. You
can pass 0 if your system has only one display.

The Mode parameter specified the cursor mode. Currently, only the default
mode is supported; therefore, pass IM_DEFAULT.

The CursorPtr parameter specifies the address in which to return the
cursor identifier. If cursor allocation fails, the imCurAlloc() function will
return a cursor ID of 0; however, no error will be logged.

imCurDefine 159

ImCurDefine [Sync | [Gen-LC]

Synopsis

Defines the cursor’s shape.

Format wvoid imCurDefine(Dev, Cursor, SizeX, SizeY, HotX, HotY, DataPtr)

Description

long Dev; Device ID (or 0)

long Cursor; Cursor ID

long SizeX; Width of cursor

long SizeY; Height of cursor

long HotX; X position of hot spot

long HotY,; Y position of hot spot

unsigned char *DataPtr; Address of array of cursor values

This function defines the specified cursor’s shape (only the software copy
that appears on-screen, not the actual hardware).

Each cursor pixel has a color value. A cursor pixel with a value of 0 is always
transparent. Cursor pixel values of 1, 2, and 3 represent the three
user-definable colors. The three cursor colors are set by specifying the red,
green, and blue color component using the imCurSetColor() function.

The maximum size for a cursor is 64x64, and the hotspot is defined relative
to the top-left corner (0,0). Valid positions for the hotspot are between (0,0)
and (63,63), inclusive.

You can allocate and define any number of cursors. Select the cursor to the
display by calling imCurSelect().

The Dev parameter specifies the device on which to define the cursor’s
attributes. This should be the same device identifier as the one on which
the cursor is allocated. You can pass 0 if your system has only one display
device.

The Cursor parameter specifies the cursor identifier.

The SizeX and SizeY parameters specify the width and height of the
specified cursor, respectively. The possible range of values is from 1 to 64.

The HotX and HotY parameters specify the X and Y coordinate of the
specified cursor’s hotspot, respectively. The possible range of values is from
0 to 63. However, itis prudent to set hotspot coordinates that are within the
region defined by SizeX and SizeY.

160

imCurDefine

Example

The DataPtr parameter specifies the address of the array defining the
cursor’s shape. DataPtr must point to SizeX*SizeY bytes of data, where
each byte represents one cursor pixel.

See the curdemo.c that is included in the Genesis Native Library
\EXAMPLES\HosT\MIsc\ directory.

imCurEnable 161

ImCurEnable [Sync | [Gen-LC]|

Synopsis

Format

Description

Note

Enable or disable the current hardware cursor on the specified display
device.

void imCurEnable(Dev, Flag)

long Dev; Device ID (or 0)
long Flag; Enable flag

This function enables (makes visible) or disables (hides) the specified
hardware cursor.

The Dev parameter specifies the device on which to enable/disable the
cursor. You can pass 0 if your system has only one display device.

The Flag parameter specifies the new state of the cursor. This flag can be
set to:

Value Description
IM_DISABLE Disable (hide) the current cursor.
IM_ENABLE Enable (make visible) the current cursor.

Since the hardware cursor is initially undefined, you should only call this
function after you have selected a cursor to the display (imCurSelect()).

162 imCurFree

ImMCurFree [Sync | [Gen-LC]

Synopsis

Format

Description

Note

Free the specified cursor.
void imCurFree(Dev, Cursor)

long Dev; Device ID (or 0)
long Cursor; Cursor ID

This function frees the specified cursor.

The Dev parameter specifies the device on which to free the cursor. You can
pass 0 if your system has only one display device.

The Cursor parameter specifies the identifier of the cursor.

This function does not affect the hardware copy of the cursor. For example,
if the cursor is currently selected to the screen and enabled, freeing the
cursor (imCurFree()) will not disable the cursor in hardware. That is, the
hardware cursor will still be visible.

imCurGetPosition 163

ImCurGetPosition [Sync | [Gen-LC]|

Synopsis Get the current cursor’s position.

Format void imCurSetPosition(Dev, PosXPtr, PosYPtr)

long Dev; Device ID (or 0)
long *PosXPtr; Address of cursor’s X position
long *PosYPtr; Address of cursor’s Y position

Description This function returns the specified cursor’s current position.

The Dev parameter specifies the device on which to get the cursor’s position.
You can pass 0 if your system has only one display device.

The PosXPtr parameter specifies the address in which to return the
cursor’s X-coordinate.

The PosYPtr parameter specifies the address in which to return the
cursor’s Y-coordinate.

164 imCurSelect

iImCurSelect [Sync | [Gen-LC]

Synopsis

Select the specified cursor as the current cursor.

Format void imCurSelect(Dev, Cursor)

Description

Note

long Dev; Device ID (or 0)
long Cursor; Cursor ID (or 0)

This function selects the specified cursor as the current hardware cursor,
overriding any existing cursor. After you select a cursor, the cursor position
is initially undefined. You should call imCurSetPosition() to set the
position at which to display the cursor.

The Dev parameter specifies the device on which to select the cursor. You
can pass 0 if your system has only one display device.

The Cursor parameter specifies the identifier of the cursor. If you pass 0
as the cursor ID, the default (arrow) cursor is selected.

Since the hardware cursor is initially undefined, you should call this
function before you enable the cursor (imCurEnable()) for the first time.

imCurSetColor 165

iImCurSetColor [Sync | [Gen-LC]|

Synopsis

Set the specified cursor’s colors.

Format void imCurSetColor(Deyv, Cursor, Color, Red, Green, Blue)

Description

long Dev; Device ID (or 0)

long Cursor; Cursor ID (or 0)

long Color; Color to change

long Red; Red component of new color
long Green; Green component of new color
long Blue; Blue component of new color

This function selects the specified cursor’s colors.

The Dev parameter specifies the device on which to set the cursor color, and
is only needed when the hardware cursor is to be updated (cursor ID is 0).
You can pass 0 if your system has only one display device.

The Cursor parameter specifies the cursor identifier. If you provide a valid
cursor ID, only the software cursor structure will be changed, and you will
not see the effect until you select the cursor to the display (imCurSelect()).
You can provide 0 for the cursor ID, in which case the hardware will be
updated immediately.

The Color parameter specifies the user-defined color value to change. The
three user-defined color values are 1,2, or 3.

The Red parameter specifies the red component of the cursor’s color. The
supported range of values is from 0 to 255.

The Green parameter specifies the green component of the cursor’s
color.The supported range of values is from 0 to 255.

The Blue parameter specifies the blue component of the cursor’s color.The
supported range of values is from 0 to 255.

Note You cannot change color O; it is always transparent.

166 imCurSetPosition

ImCurSetPosition [Sync | [Gen-LC]

Synopsis Set the current cursor’s position.

Format void imCurSetPosition(Dev, PosX, PosY)

Description

long Dev; Device ID (or 0)
long PosX; Cursor’s X coordinate
long PosY; Cursor’s Y coordinate

This function sets the current hardware cursor’s horizontal and vertical
position on screen.

You can set the position of the cursor whether or not it is currently visible.

Also, keep in mind that you are responsible for keeping track of the cursor’s
position. When the display is panned or zoomed, you should call
imCurSetPosition() to reset the cursor’s position. Similarly, if you specify
a position that is not valid for the current screen resolution, the cursor will
not be visible.

The Dev parameter specifies the device on which to set the cursor position.
You can pass 0 if your system has only one display device.

The PosX parameter specifies the cursor’s X-coordinate. The valid range is
from O to the maximum screen resolution width.

The PosY parameter specifies the cursor’s Y-coordinate. The valid range is
from O to the maximum screen resolution height.

imDevAlloc 167

imDevAlloc [Sync | [Gen-LC]

Synopsis Allocate a device.

Format void imDevAlloc(System, Node, ShellFile, Mode, DevPtr)

Description

long System; System number

long Node; Node number

char* ShellFile; File name of 'C80 code (or NULL)
long Mode; Operation mode

long* DevPtr; Address of device ID

Thisfunction allocates adevice. A device refers to a specific node on a specific
system. If the board on which the specified node is located has a display
section, then the device also includes the display section.

The System parameter specifies the number of the system (0, 1, 2, etc.) on
which the node is located.

The Node parameter specifies the number of the node (0, 1, 2, etc.).

The ShellFile parameter specifies the name of the file containing the 'C80
code to download to the device when it is allocated. This parameter can be
set to NULL, in which case the file specified during installation is
downloaded.

The Mode parameter specifies the mode of operation. It can be set to:
IM_DEFAULT Download code if necessary; otherwise, just
establish communications with the device.

IM_DOWNLOAD Download code unconditionally (this also resets
all hardware and software).

The DevPtr parameter specifies the address in which to return the device
identifier. If the device could not be allocated, 0 is returned.

168 imDevFree

imDevFree

Synopsis Free a device.
Format void imDevFree(Dev)
long Dev; Device ID
Description This function deallocates a previously allocated device.
Note that any functions still running on the device will not be affected.

The Dev parameter specifies the device to deallocate.

imDevinquire 169

imDevinquire [‘Sync | [Gen-LC]
Synopsis Inquire about a device attribute.
Format long imDevinquire(Dev, Item, ValuePtr)
long Deyv; Device ID
long Item; Attribute about which to inquire
void* ValuePtr; Address of return value (or NULL)
Description This function inquires about an attribute of a specified device.

The Dev parameter specifies the device.

The Item parameter specifies the attribute about which to inquire. It can

be set to:
IM_DEV_MVP

IM_DEV_MVP_SPEED

IM_DEV_VIA_PRIMARY

IM_DEV_VIA_DISPLAY

IM_DEV_ACCELERATOR

IM_DEV_MEM_PROC

IM_DEV_MEM_DISP

IM_DEV_MEM_OVERLAY

IM_DEV_OWNER_SYSTEM

IM_DEV_OWNER_NODE

IM_DEV_MEM_HOST

IM_DEV_FREE_MEM_HOST

Whether the MVP ('C80) is present
(1) or not present (0).

MVP ('C80) clock speed in MHz: 50
or 60.

Whether the primary VIA is
present (1) or not present (0).
Whether the display VIA is present
(1) or not present (0).

Whether the NOA is present (1) or
not present (0).

Amount of processing memory, in
MBytes: 0, 8, 16, 32, or 64.
Amount of display memory, in
MBytes: 0, 2, or 6.

Amount of overlay display memory,
in MBytes: 0 or 2.

System to which the device
belongs: 0 - n.

Node on which the device was
allocated: O - n.

Total amount of Host DMA
memory, in bytes.

Total amount of free Host DMA
memory, in bytes (not necessarily
contiguous).

170 imDevinquire

Note

Return Value

IM_DEV_MSG_TOTAL Total number of message buffers.
This defines the total number of
commands that can be queued to
the node (see the following note).

IM_DEV_MSG_FREE Number of free message buffers.
This defines the number of
additional commands that can still
be queued to the node (see the
following note).

IM_DEV_FREE_MEM_PROC Total amount of free processing
memory (not necessarily
contiguous).

IM_DEV_FREE_MEM_DISP Total amount of free off-screen
display memory (not necessarily
contiguous).

IM_DEV_PRODUCT_ID Type of device: IM_DEV_GENESIS
(Genesis main board),
IM_DEV_GENESIS_PRO (Genesis
processor board),
IM_DEV_GENESIS_LC
(Genesis-LC).

IM_DEV_CUSTOMER_PRODUCT_ID Product ID of device. This is
reserved for customer use. It is not
available for a Genesis processor
board.

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imDevInquire() also returns this value,
ValuePtr can be set to NULL.

Most Genesis functions send a single message from the Host to the 'C80.
Each message requires one message buffer, which remains allocated to that
command until it completes. The IM_DEV_MSG_TOTAL and
IM_DEV_MSG_FREE items can be used to inquire about the total number of
message buffers and the number of free message buffers, respectively. The
total number of message buffers can be changed at Shell download time
through the CoffLoadOption entry in the genesis.ini file. The message
buffers on each node are shared by all applications using that node. It is not
a good idea to let the number of free messages get too small since some
applications might experience delays while they wait for a free message
buffer.

The returned value is the value of the inquired attribute, cast to long if
necessary.

imDigAlloc 171

imDigAlloc Sync | [Gen-LC

Synopsis Allocate a digitizer.

Format void imDigAlloc(Thread, System, Digitizer, Mode, DigPtr)

Description

long Thread,; Thread ID

long System; System number

long Digitizer; Digitizer number

long Mode; Operation mode

long DigPtr; Address of digitizer ID

This function assigns an identifier to a digitizer.

Note that this function is normally only needed if you have more than one
Genesis digitizer, since you sometimes have to specify which digitizer a
function should use. If your Genesis system has just one digitizer, you do
not need to use this function.

The Thread parameter specifies the thread to which to send imDigAlloc()
for execution.

The System parameter specifies the number of the system
(0, 1, 2, etc.) on which the digitizer is located.

The Digitizer parameter specifies the number of the digitizer
0, 1, 2, etc.).

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The DigPtr parameter specifies the address in which to return the digitizer
identifier. If the digitizer could not be allocated, O is returned.

172 imDigCapture

imDigCapture | Async| | Gen-LC |

Synopsis Enable a synchronized or software-triggered grab.

Format void imDigCapture(Thread, Dig, Cam, Mode)

Description

long Thread; Thread ID

long Dig; Digitizer ID (or 0)
long Cam; Camera ID
long Mode; Mode of operation

This function enables a synchronized or software-triggered grab. You must
ensure that the digitizer is ready to grab before calling imDigCapture(),
and you should not have changed the camera definition since it was used in
imDigGrab().

For synchronized grabs, imDigCapture() automatically enables the
capture regardless of the trigger source. It simultaneously enables any
exposure timers that are also being used, so that any exposure outputs will
be generated only for the frame that is actually captured (avoiding the
possibility of, for example, capturing a frame but failing to fire a strobe, or
vice versa).

The Thread parameter specifies the thread to which to send
imDigCapture() for execution.

The Dig parameter specifies the digitizer. If your system has just one
digitizer, you can set this parameter to 0.

The Cam parameter specifies the camera definition used in imDigGrab().

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_ENABLE.

imDigCapture 173

Example The following code grabs to two nodes at the same time. A synchronized
grab is required to ensure that the same frame is grabbed to both nodes.

/* Select synchronized capture mode */
imBufPutField(Threadl, ControlBuf, IM CTL CAPTURE MODE, IM SYNCHRONIZED);
imSyncHost(Threadl, 0, IM COMPLETED);

/* Queue both grabs in synchronized mode */
imDigGrab(Threadl, 0, Camera, Bufl, 1, ControlBuf, OSB1);
imDigGrab(Thread2, 0, Camera, Buf2, 1, ControlBuf, 0SB2);

/* Wait until both nodes are ready to grab */
imSyncThread(Thread3, 0SB1, IM READY);
imSyncThread(Thread3, 0SB2, IM READY);

/* Now enable the capture */
imDigCapture(Thread3, 0, Camera, IM ENABLE);

The following code is an example of a software-triggered grab.

imCamATloc(Threadl, NULL, IM DEFAULT, &Camera);
imCamControl (Threadl, Camera, IM DIG TRIG SOURCE, IM SOFTWARE);
imDigGrab(Threadl, 0, Camera, DstBuf, 1, 0, 0); /* waits for software trigger */

%mDigCapture(ThreadZ, 0, Camera, IM ENABLE); /* give software trigger */

174 imDigControl

imDigControl [Async] [Gen-LC]

Synopsis Set a digitizer attribute.

Format void imDigControl(Thread, Dig, Item, Value)

Description

long Thread; Thread ID

long Dig; Digitizer ID (or 0)
long Item; Attribute to set
double Value; Attribute value

This function sets an attribute of a specified digitizer.

This function programs the digitizer directly. Therefore, using
imDigControl() will interfere with other applications also using the
digitizer. Since many digitizer attributes can be set using imCamcControl()
and since imCamcControl() does not program the digitizer directly, it is
always better to use imCamcControl(), if possible.

The Thread parameter specifies the thread to which to send
imDigControl() for execution.

The Dig parameter specifies the digitizer. If your system has just one
digitizer, you can set this parameter to 0.

The Item parameter specifies the attribute, while the Value parameter
specifies the value for this attribute. The table below lists those attributes
that can be set, and their allowable values. Note that a #define specified as
IM_XXX_0/1 means that you can use IM_XXX_0or IM_XXX_1 (it does not mean
use IM_XXX_0/1).

Item Values Meaning

IM_DIG_TRIGGER IM_ENABLE Enable a software-triggered
grab. For an edge-sensitive
trigger, the required pulse is
generated. For a
level-sensitive trigger, the
required level is set.

IM_DISABLE Disable a level-sensitive
software triggered grab.

IM_DIG_USER_OUT Oor1il

IM_DIG_USER_IN_FORMAT IM_TTL
IM_RS422

IM_DEFAULT

IM_DISABLE
IM_DIG_USER_OUT_FORMAT IM_TTL
IM_RS422

IM_DEFAULT

IM_DISABLE

imDigControl 175

Set an output line on the grab
section to low (0) or high (1).
To select a specific user bit,
combine with IM_BIT0/1/2/3/4
(for example,
IM_DIG_USER_OUT+IM_BITO)

Note that IM_BIT2/3/4
correspond to camera control
bits 0/1/2, respectively, on the
connector. For information on
pinout and signal
descriptions, see the Genesis
Installation and Hardware
Reference.

Enable the TTL receivers for
trigger and user inputs.

Enable the RS-422 receivers
for trigger and user inputs.

Enable the receivers specified
in the original camera
definition file for trigger and
user inputs.

Disable trigger and user
inputs.

Enable the TTL drivers for
exposure and user outputs.

Enable the RS-422 drivers for
exposure and user outputs.

Enable the drivers specified
in the original camera
definition file for exposure
and user outputs.

Disable exposure and user
outputs.

176

imDigControl

See also

The following setting is only relevant if you are using the exposure timers.
To associate a specific timer with this setting, combine with IM_TIMER1/2
(for example, IM_DIG_EXPOSURE+IM_TIMER?2). If you don't select a specific
timer, timer 1 is used.

Item Values Meaning
IM_DIG_EXPOSURE IM_ENABLE Start the exposure timer if source is
IM_SOFTWARE (or IM_CONTINUOUS).

IM_DISABLE Stop the exposure timer if source is
IM_CONTINUOUS.

imCamcControl(). Most digitizer attributes should be set using
imCamcControl(), since this function does not program the digitizer
directly.

imDigFree 177

imDigFree Async| | Gen-LC

Synopsis

Format

Description

Free a digitizer.
void imDigFree(Thread, Dig)

long Thread; Thread ID
long Dig; Digitizer ID

This function deallocates a previously allocated digitizer.

The Thread parameter specifies the thread to which to send imDigFree()
for execution.

The Dig parameter specifies the digitizer to deallocate.

178 imDigGrab

imDigGrab [Async| [Multi-band] | Gen-LC |

Synopsis

Grab into a buffer.

Format void imDigGrab(Thread, Dig, Cam, Buf, Count, Control, OSB)

Description

long Thread; Thread ID

long Dig; Digitizer ID (or 0)

long Cam; Camera ID

long Buf; Buffer ID

long Count; Number of frames, fields, or lines to grab
long Control; Control buffer ID (or 0)

long OSB; OSB ID (or 0)

This function grabs frames or fields of data from a specified camera to a
specified destination buffer. You can grab a specific number of frames or
fields, or continuously grab frames until you call imThrHalt().

Note that you can also use imDigGrab() to grab from the VMChannel,
instead of grabbing from a camera.

The Thread parameter specifies the thread to which to send imDigGrab()
for execution.

The Dig parameter specifies the digitizer from which to grab. If your system
has just one digitizer, you can set this parameter to 0.

The Cam parameter specifies the camera definition with which to grab. If
you are grabbing from the VMChannel, set this parameter to
IM_VM_CHANNEL.

The Buf parameter specifies the destination buffer. This buffer should be
of an appropriate pixel depth to hold the grabbed data. In addition, it should
be a multi-band buffer if you are grabbing from several channels
simultaneously (for example, if you are grabbing from a color camera).

The Count parameter specifies the number of frames, fields, or lines to
grab. (You specify whether to grab frames, fields, or lines using the
IM_CTL_COUNT_MODE field of the control buffer). The Count parameter
can be set to the specified number, or to IM_CONTINUOUS, which will
continuously grab frames until you call imThrHalt().

imDigGrab 179

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imDigGrab() are listed below, with default
values in bold-face. Note that if the Control parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field
IM_CTL_SETUP

IM_CTL_ADDR_MODE

IM_CTL_BYTE_EXT

IM_CTL_BYTE_SWAP

Values
IM_DEFAULT

IM_VIA_ONLY

IM_ADDRESS_ONLY

IM_DEFAULT

IM_PROGRESSIVE

IM_DEFAULT

10, 12, 0r 14

IM_DISABLE
IM_ENABLE

Meaning

Perform a full setup before
grabbing.

Reprogram only the VIA
registers before grabbing.
Skip programming of the
grab module (the camera
must be compatible with the
previous grab).

Reprogram only those VIA
registers which control the
destination buffer address
before grabbing. Skip
programming of most VIA
registers and the grab
module.

Write data according to the
type of scanning that your
camera uses (progressive or
interlaced).

Write data using progressive
scanning (even if your
camera uses interlaced
scanning).

Extract the most-significant
8 bits, when grabbing at a
pixel depth greater than 8
bits into an 8-bit destination
buffer.

Extract the most-significant
8 bits, when grabbing at the
specified pixel depth into an
8-bit destination buffer.

No effect.

Swap the 1st and 3rd bytes of
each pixel (to convert, for
example, RGB or RGBa color
images to BGR or BGRa color
images).

180

imDigGrab

IM_CTL_CAPTURE_MODE IM_DEFAULT

IM_CTL_CHANNEL

IM_CTL_COUNT_MODE

IM_CTL_DIR_X

IM_CTL_DIR_Y

IM_CTL_STOP_X

IM_CTL_STOP_Y

IM_CTL_STREAM_ID

IM_SYNCHRONIZED

IM_DEFAULT

IM_CHANNEL 0,
IM_CHANNEL 1,

IM_CHANNEL_2, or

IM_CHANNEL_3

IM_DEFAULT

IM_FIELD

IM_LINE

IM_FORWARD
IM_REVERSE
IM_FORWARD
IM_REVERSE

IM_DEFAULT
0-n

IM_DEFAULT
0-n
0-14

Grab is started in normal
way.

Grab must be enabled by
calling imDigCapture().
Grab from the channel(s)
specified in the camera
definition.

Grab from the specified
channel(s). To specify more
than one channel, combine
the #defines i.e.
IM_CHANNEL_0+
IM_CHANNEL_1+
IM_CHANNEL_2.

Grab the number of frames
specified by the Count
parameter (or, the number of
lines, if you are using a
line-scan camera).

Grab the number of fields
specified by the Count
parameter. (This option only
applies if your camera uses
interlaced scanning).

Grab the number of lines
specified by the Count
parameter (for line-scan
cameras).

Grab left to right.
Grab right to left.
Grab top to bottom.
Grab bottom to top.

Grab all subsequent
columns.

Grab until the specified
column.

Grab all subsequent lines.
Grab until the specified line.

Grab from the specified VM
stream, instead of from a
camera. The Cam parameter
must be set to
IM_VM_CHANNEL.

IM_CTL_SUBSAMP_X
IM_CTL_SUBSAMP_Y
IM_CTL_TAG_BUF

IM_CTL_WRTMSK

IM_CTL_ZOOM_X

IM_CTL_ZOOM_Y

IM_CTL_GRAB_MODE

IM_CTL_LINE_INT

1-16
1-16

0

A buffer ID

0 - OXFFFFFF

1,2, 0r4

1,2, 0r4

IM_SYNCHRONOUS

imDigGrab 181

Grab only every nth column.
Grab only every nth row.
No effect.

Grab with tag (using the
specified buffer as a tag
buffer).

Don't overwrite bit planes in
the destination buffer if the
corresponding mask bit is 0.
This option can only be used
if you are grabbing to the
display. The required value
must be specified using 24
bits: the high 8 bits apply to
the red buffer, the next 8 bits
to the green buffer, and the
low 8 bits to the blue buffer.

Replicate each column n
times before writing to the
destination buffer.

Replicate each row n times
before writing to the
destination buffer.

Block the thread to which
imDigGrab() is sent, until
the grab finishes.

IM_ASYNCHRONOUS Don't block the thread.

IM_DISABLE
0-n

IM_CONTINUOUS

Disable line interrupts.

Interrupt once after the
specified line.

Interrupt after every line, or
after every few lines if the
line rate is too high. By
default, the interval between
interrupts is chosen
automatically. You can force
a specific interval using the
IM_CTL_LINE_INT_STEP
field.

182

imDigGrab

IM_CTL_LINE_INT_FIELD
(this field only applies if
you are interrupting once
and your camera uses
interlaced scanning)

IM_CTL_LINE_INT_STEP
(this field only applies if
IM_CTL_LINE_INT is set to
IM_CONTINUOUS)

IM_CTL_START_FIELD
(this field only applies if
your camera uses
interlaced scanning)

IM_CTL_START_X

IM_CTL_START_Y

IM_DEFAULT

IM_FIRST
IM_BOTH
IM_DEFAULT

1-n

IM_DEFAULT

IM_ODD

IM_EVEN

IM_NEXT

0-n

0-n

Interrupt on the second field
if grabbing two fields;
otherwise, interrupt on the
first field.

Interrupt on the first field.
Interrupt on both fields.

Automatically choose the
interval between interrupts.

Force interrupts every
specified number of lines.

Start grabbing on the field
specified in the camera
definition.

Start grabbing on the next
odd field.

Start grabbing on the next
even field.

Start grabbing on the very
next field.

Start grabbing from the
specified column.

Start grabbing from the
specified line.

When grabbing directly to a buffer across the primary PCI bus (for example,
when grabbing to a Host buffer), a small, local work buffer (local to the VIA
performing the grab) is used to store the data temporarily before it is sent
to its final destination. The larger this buffer, the less chance there is of a
data overrun when the PCI bus is heavily loaded. It can also be useful

(especially on Genesis-LC) to copy this buffer to the display in order to view
the live image as it is being grabbed.

To control the size and location of the local work buffer, add the following
field on the control buffer:

IM_CTL_WORK_BUFFER

0
Bufld

Usethe default work buffer.

Use the specified buffer as
awork buffer.

imDigGrab 183

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

Note that you must specify an operation status block when using line
interrupts. The current grab line will be updated in the operation status
block each time an interrupt occurs.

184 imDiglnquire

imDiglnquire [Sync | [Gen-LC]
Synopsis Inquire about a digitizer attribute.

Format long imDiglnquire(Thread, Dig, Item, ValuePtr)
long Thread; Thread ID
long Dig; Digitizer ID (or 0)
long Item; Attribute about which to inquire
void *ValuePtr; Address of return value (or NULL)

Description This function inquires about an attribute of a specified digitizer.

Return value

See also

The Thread parameter specifies the thread to which to send
imDiglnquire() for execution.

The Dig parameter specifies the digitizer. If your system has just one
digitizer, you can set this parameter to 0.

The Item parameter specifies the attribute about which to inquire. It can
be set to:

IM_DIG_USER_IN Whether input line on the grab section is low (0) or
high (1). To select a specific user bit, combine with
IM_BITO/1 (for example, IM_DIG_USER_IN+IM_BIT1
will return the current value of input line 1).

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imDiglnquire() also returns the value
of the inquired attribute, ValuePtr can be set to NULL.

The returned value is the value of the inquired attribute, cast to long if
necessary.

imCamInquire(). This function should be used to inquire about most
digitizer attributes.

imDispAlloc 185

imDispAlloc [Sync | [Gen-LC]

Synopsis Allocate a display.

Format void imDispAlloc(Thread, System, Display, DispFile, Mode,

Description

DispPtr)
long Thread,; Thread ID
long System; System number
long Display; Display number
char* DispFile; Display configuration file (or NULL)
long Mode; Operation mode

long* DispPtr; Address of display ID
This function assigns an identifier to a display.

Note that this function is normally only needed if you have more than one
Genesis display section, since you sometimes have to specify which display
a function should use. If your Genesis system has just one display, you do
not need to use this function.

The Thread parameter specifies the thread to which to send
imDispAlloc() for execution.

The System parameter specifies the number of the system
(0, 1, 2, etc.) on which the display is located.

The Display parameter specifies the number of the display
0, 1, 2, etc.).

The DispFile parameter specifies the name of a display configuration
format (.vcf) file. This parameter can be set to NULL, in which case the .vcf
file specified during installation will be used. Note that the readme.txt file
in the \GENESIS\VCF directory specifies the resolution set with each
corresponding .vcf file.

186

imDispAlloc

Note

The Mode parameter specifies the mode of operation. It can be set to:

IM_DEFAULT Initialize the display only if not already done.
IM_DOWNLOAD Initialize the display by downloading the specified .vcf
file.

The DispPtr parameter specifies the address in which to return the display
identifier. If the display could not be allocated, O is returned.

You should generally set the DispFile parameter to NULL and the Mode
parameter to IM_DEFAULT. This will allow several applications to share the
display simultaneously.

imDispControl 187

imDispControl [Async] [Gen-LC]|

Synopsis Set display attributes.
Format wvoid imDispControl(Thread, Disp, Control, Mode)
long Thread,; Thread ID

long Disp; Display ID (or 0)
long Control; Control buffer ID
long Mode; Operation mode

Description This function sets attributes of the specified display.

The Thread parameter specifies the thread to which to send
imDispControl() for execution.

The Disp parameter specifies the display. If your system has just one
display, you can set this parameter to 0.

The Control parameter specifies the control buffer with which to perform
the function. For imDispControl(), the control buffer specifies which
attributes of the display to set, and their values. Relevant fields are listed
below. Any fields not added will not affect the display.

Field Values Meaning

IM_DISP_BUF 0 Display from the memory
base address.
A display buffer ID Display from the origin of the
specified buffer.

IM_DISP_KEY_MODE IM_KEY_OFF Show only the overlay frame
buffer.
IM_KEY_ALWAYS Show only the main frame
buffer.

IM_KEY_IN_RANGE Show the main frame buffer
only where the pixels of the
overlay frame buffer are in a
specified range. Specify the
range with the
IM_DISP_KEY_LOW and
IM_DISP_KEY_HIGH fields.

188 imDispControl

IM_DISP_KEY_MODE
(cont.)

IM_DISP_KEY_LOW
IM_DISP_KEY_HIGH

IM_DISP_LUT BUF

IM_DISP_MODE

IM_KEY_OUT_RANGE Show the main frame buffer

0-255

0-255

0

A buffer 1D

IM_DISP_MONO

IM_DISP_COLOR

IM_DISP_RED

IM_DISP_GREEN

IM_DISP_BLUE

only where the pixels of the
overlay frame buffer are out
of a specified range. Specify
the range with the
IM_DISP_KEY_LOW and
IM_DISP_KEY_HIGH fields.

Lowest value of the keying
range.

Highest value of the keying
range.

Associate a transparent LUT
with the display.

Associate the specified LUT
with the display. For a color
display, the LUT buffer
should be 3 bands of 8 bits per
pixel or 1 band of 24 bits per
pixel. For a monochrome
display, the LUT buffer
should be 1 band of 8 bits per
pixel.

Display the main frame
buffer in monochrome.

Display the main frame
buffer in true color. You must
have the color version of the
display section.

Display in monochrome the
red band of the main frame
buffer. You must have the
color version of the display
section.

Display in monochrome the
green band of the main frame
buffer. You must have the
color version of the display
section.

Display in monochrome the
blue band of the main frame
buffer. You must have the
color version of the display
section.

IM_DISP_PAN_X a multiple of 4

IM_DISP_PAN_Y any integer
IM_DISP_WRTMSK 0 - OXFEFFFF
IM_DISP_ZOOM 1,2,0r4

IM_DISP_OVERLAY_MODE IM_ENABLE

IM_DISABLE

imDispControl 189

Displace the image
horizontally so that the
specified column is at the left
of the screen.

Displace the image vertically
so that the specified line is at
the top of the screen.

Protect bit planes in the main
frame buffer from being
overwritten by direct accesses
(by the Host or 'C80), if the
corresponding mask bit is 0.
The required value must be
specified using 24 bits: the
low 8 bits of the value applies
to the red buffer, the next 8
bits to the green buffer, and
the high 8 bits to the blue
buffer.

Zoom the image by the
specified factor.

Enable the overlay, and use
the display LUT for the
overlay. Note that enabling or
disabling the overlay does not
change the current display
settings (mode, keying). You
can still select monochrome
or color modes for the main
(underlay) frame buffer with
IM_DISP_MODE. And if you
enable the overlay at a later
time, the previous keying
mode will still be in effect.

Disable the overlay, and use
the display LUT for the main
frame buffer. This is intended
to be used in a dual-screen
display configuration only.
Note that while the overlay is
disabled, the keying mode has
no effect, and you always see
the LUT-mapped main
(underlay) frame buffer.

190 imDispControl

The Mode parameter specifies the mode of operation. It can be set to:

IM_NOW Update the display immediately. (This might cause
display artifacts).
IM_FRAME Update the display at the end of the current frame.

Note If you want several applications to share the display, you should avoid
calling imDispControl() (except to set the keying when using the overlay).

imDispFree 191

imDispFree | Async| | Gen-LC |
Synopsis Free a display.
Format void imDispFree(Thread, Disp)
long Thread,; Thread ID
long Disp; Display ID
Description This function deallocates a previously allocated display.

The Thread parameter specifies the thread to which to send imDispFree()
for execution.

The Disp parameter specifies the display to deallocate.

192 imDisplnquire

imDisplnquire Sync | [Gen-LC
Synopsis Inquire about a display attribute.
Format long imDisplnquire(Thread, Disp, Item, ValuePtr)

long Thread; Thread ID
long Disp; Display ID (or 0)
long Item; Attribute about which to inquire
void* ValuePtr; Address of return value (or NULL)

Description This function inquires about an attribute of a specified display. You can

change the value of an attribute using imDispControl().

The Thread parameter specifies the thread to which to send
imDisplnquire() for execution.

The Disp parameter specifies the display. If your system has just one
display, you can set this parameter to 0.

The Item parameter specifies the attribute about which to inquire. It can

be set to:

IM_DISP_RESOLUTION_X Display width.
IM_DISP_RESOLUTION_Y Display height.

IM_DISP_KEY_MODE

IM_DISP_KEY_LOW
IM_DISP_KEY_HIGH
IM_DISP_MODE

Keying mode: IM_KEY_OFF, IM_KEY_ALWAYS,
IM_KEY_IN_RANGE, or IM_KEY_OUT_RANGE
(see imDispControl() for a description of
these return values).

Lowest value of the keying range.

Highest value of the keying range.

Display mode: IM_DISP_MONO,
IM_DISP_COLOR, IM_DISP_RED,
IM_DISP_GREEN, IM_DISP_BLUE (see
imDispControl() for a description of these

return values), or IM_NONE (system does not
have a display).

Return value

IM_DISP_VGA _MODE

IM_DISP_PAN_X

IM_DISP_PAN_Y
IM_DISP_WRTMSK
IM_DISP_ZOOM

imDisplnquire 193

Display configuration:

IM_DISABLE (VGA disabled),
IM_SINGLE_SCREEN (single-screen
configuration),

IM_DUAL_SCREEN (dual-screen
configuration),

IM_DUAL_HEAD (dual-head configuration;
available only under Windows), or IM_NONE
(no display; for example, a Genesis processor
board with no main board).

Horizontal displacement of the image (in
columns).

Vertical displacement of the image (in lines).
Value of the write mask.
Zoom factor.

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imDisplnquire() also returns this value,
ValuePtr can be set to NULL.

The returned value is the value of the inquired attribute, cast to long if

necessary.

194 imFloatConvert

imFloatConvert ‘Asyncl ‘/n-P/acel

Synopsis Convert between integer and floating-point buffers.

Format void imFloatConvert(Thread, Src, Dst, Mode, OSB)

Description

long Thread; Thread ID

long Src; Source buffer 1D

long Dst; Destination buffer ID
long Mode; Operation mode

long OSB; OSB ID (or 0)

This function converts a buffer’s data between integer and floating-point.

For a floating-point to integer conversion, the data can be rounded towards
zero or rounded towards the nearest integer. Overflows or underflows are
set to the maximum or minimum value, respectively, of the destination
buffer’s data type.

The Thread parameter specifies the thread to which to send
imFloatConvert() for execution.

The Src parameter specifies the buffer to convert, while the Dst parameter
specifies the buffer in which to place the results of the conversion. For an
integer to floating-point conversion, the source buffer can be of any integer
type, while the destination buffer must be a 32-bit floating-point buffer. For
a floating-point to integer conversion, the source buffer must be a 32-bit
floating-point buffer and the destination buffer must be a 32-bit integer
buffer.

The Mode parameter specifies the mode of operation. For a floating-point
to integer conversion, Mode can be set to:

IM_TRUNCATE Round towards zero.
IM_ROUND Round towards the nearest integer.

For an integer to floating-point conversion, Mode must be set to
IM_DEFAULT.

imFloatConvert 195

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

196 imFloatDyadic

imFIoatDyadiC ‘Async| ‘/n-P/acel

Synopsis Perform an arithmetic operation between two floating-point buffers.

Format void imFloatDyadic(Thread, Srcl, Src2, Dst, Op, OSB)

Description

long Thread; Thread ID

long Srcl; First source buffer ID
long Src2; Second source buffer ID
long Dst; Destination buffer ID
long Op; Operation to perform
long OSB; OSB ID (or 0)

This function performs an arithmetic operation between two floating-point
buffers.

The Thread parameter specifies the thread to which to send
imFloatDyadic() for execution.

The Srcl and Src2 parameters specify the buffers with which to perform
the operation. These must be 32-bit floating-point buffers.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a 32-bit floating-point buffer.

The Op parameter specifies the type of operation to perform. It can be set to:

IM_ADD Add.

IM_SUB Subtract: Srcl - Src2.

IM_SUB_ABS Subtract and take the absolute value:
|Srcl - Src2].

IM_MIN Compare Srcl and Src2 on a pixel-by-pixel basis and
take the minimum of the two.

IM_MAX Compare Srcl and Src2 on a pixel-by-pixel basis and
take the maximum of the two.

IM_MULT Multiply.

IM_DIV Divide: Src1/Src2.

IM_SQUARE_ADD Square and add: Src1? + Src2?2.
IM_ATAN2 Arctangent (Src1/Src2).

See also

imFloatDyadic 197

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imFloatMonadic(), imFloatUnary(). These functions perform
arithmetic operations with only one floating-point buffer.

198 imFloatMac1

imFloatMacl ‘Async| ‘/n-P/acel

Synopsis

Multiply and accumulate with one floating-point buffer.

Format void imFloatMacl(Thread, Src, Dst, Fac, Const, OSB)

Description

See also

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
double Fac; Constant

double Const; Constant

long OSB; OSB ID (or 0)

This function scales a floating-point buffer by a specified factor, adds a
specified constant to the result, and then stores final results in the
destination buffer (Dst = Fac*Src + Const). If the source buffer is of
single-precision, the constants are converted to single-precision values
before the operation.

The Thread parameter specifies the thread to which to send
imFloatMac1() for execution.

The Src parameter specifies the buffer with which to perform the operation.
This must be a 32-bit floating-point buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a 32-bit floating-point buffer.

The Fac parameter specifies the factor with which to multiply the source
buffer.

The Const parameter specifies the constant to add to the scaled source
buffer.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imFloatMac2(). This function performs a multiply-and-accumulate
operation with two floating-point buffers.

imFloatMac2 199

imFloatMac?2 ‘Async| ‘/n-P/acel

Synopsis

Format

Description

See also

Multiply and accumulate with two floating-point buffers.
void imFloatMac2(Thread, Srcl, Src2, Dst, Facl, Fac2, OSB)

long Thread,; Thread buffer ID

long Srcl; First source buffer ID
long Src2; Second source buffer ID
long Dst; Destination buffer 1D
double Fac1,; Constant

double Fac2; Constant

long OSB; OSB ID (or 0)

This function multiplies two floating-point buffers by specified factors, then
adds the results. Final results are stored in the destination buffer

(Dst = Fac1*Srcl + Fac2*Src2). If asource buffer is of single-precision, its
constant (Facl or Fac2) is converted to a single-precision value before the
operation.

The Thread parameter specifies the thread to which to send
imFloatMac?2() for execution.

The Srcl and Src2 parameters specify the buffers with which to perform
the operation. These must be 32-bit floating-point buffers.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a 32-bit floating-point buffer.

The Facl and Fac2 parameters specify the factors by which to multiply the
first and second source buffers, respectively.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imFloatMac1(). This function performs a multiply-and-accumulate
operation with one floating-point buffer.

200 imFloatMonadic

imFloatMonadic ‘Async| ‘/n-P/acel
Synopsis Perform an arithmetic operation between a floating-point buffer and a

Format

Description

constant.

void imFloatMonadic(Thread, Src, Const, Dst, Op, OSB)

long Thread; Thread ID

long Src; Source buffer 1D
double Const; Constant

long Dst; Destination buffer ID
long Op; Operation to perform
long OSB; OSB ID (or 0)

This function performs an arithmetic operation between a floating-point
buffer and a specified constant. If the buffer is of single precision, the
constant is converted to a single precision value before the operation.

The Thread parameter specifies the thread to which to send
imFloatMonadic() for execution.

The Src parameter specifies the buffer with which to perform the operation.
This must be a 32-bit floating-point buffer.

The Const parameter specifies the constant to use in the operation.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a 32-bit floating-point buffer.

The Op parameter specifies the type of operation to perform. It can be set to:

IM_ADD Add.
IM_SUB Subtract: Src - Const.
IM_SUB_ABS Subtract and take the absolute value:

|Src - Const].
IM_SUB_NEG Subtract and negate: Const - Src.

IM_MIN Compare Src and Const on a pixel-by-pixel basis
and take the minimum of the two.

IM_MAX Compare Src and Const on a pixel-by-pixel basis
and take the maximum of the two.

IM_MULT Multiply.

IM_DIV Divide by Const: Src/Const.

IM_DIV_INTO Divide into Const: Const/Src.

See also

imFloatMonadic 201

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imFloatDyadic(), imFloatUnary(). These functions also perform an
arithmetic operation between floating-point buffers.

202

imFloatUnary

imFloatUnary

‘ Async | ‘ /n-P/acel

Description

Synopsis Perform a unary operation on a floating-point buffer.

Format void imFloatUnary(Thread, Src, Dst, Op, OSB)

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Op; Operation to perform
long OSB; OSB ID (or 0)

This function performs a unary operation on a floating-point buffer.

The Thread parameter specifies the thread to which to send

imFloatUnary() for execution.

The Src parameter specifies the buffer on which to perform the operation.

This must be a 32-bit floating-point buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a 32-bit floating-point buffer.

The Op parameter specifies the type of operation to perform. It can be set to:

IM_NEG Negate.
IM_ABS Absolute value.
IM_LOG Natural logarithm.
IM_EXP Exponential.
IM_SQUARE Square.
IM_SQRT Square root.
IM_SIN Sine.

IM_COS Cosine.
IM_TAN Tangent.
IM_ATAN Arctangent.
IM_CUBE Cube.
IM_CBRT Cube root.

Note that, for trigonometric operations, pixel values are considered to be in

radians.

See also

imFloatUnary 203

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imFloatDyadic(), imFloatMonadic(). These functions also perform an
arithmetic operation between floating-point buffers.

204 imGenld

iImGenld | Async| [Gen-LC]

Synopsis

Generate data into a one-dimensional buffer.

Format void imGenld(Thread, Buf, Func, Start, End, NumCoefs, Coefs,

Description

OSB)
long Thread; Thread ID
long Buf; Destination buffer ID
long Func; Function to generate
long Start; Start value
long End; End value
long NumCoefs; Number of coefficients in the function
double* Coefs; Address of array containing the coefficients
long OSB; OSB ID (or 0)

This function generates data into a one-dimensional buffer, according to a
specified function.

The Thread parameter specifies the thread to which to send imGenld()
for execution.

The Buf parameter specifies the one-dimensional buffer in which to
generate data. This buffer can be of any integer type, or can be a 32-bit
floating-point buffer.

The Func parameter specifies the function with which to generate data. It
can be set to:

IM_POLYNOMIAL Cg + CyX + Cox2 + ... + CppxN'1
where N is the number of coefficients.

The Start and End parameters specify the first and last values at which to
evaluate the function. In other words, the function is evaluated at

x = Start, x = Start + 1, ..., x = End. The results are written into the first
(End - Start + 1) positions of the destination buffer. Note that all
calculations are done in double precision and the final result is converted
to the destination buffer’s type.

The NumCoefs parameter specifies the number of coefficients to use in the
function. This function supports a maximum of 10 coefficients.

Example

imGenld 205

The Coefs parameter specifies the address of the array containing the
double precision floating-point coefficients.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

The following code generates the numbers 255, 254, ..., 1, 0 into a buffer.
The buffer could therefore be used to map an 8-bit image (using
imlIntLutMap()) such that pixel values in the image get inverted (that is,
such that pixel value 0 is converted to 255, 1 to 254, etc.).

double Coef[2] = {255.0, -1.0};

/* Generate an inverse ramp */

imGenld(Thread, LutBuf, IM _POLYNOMIAL, 0, 255, 2, Coef, 0);

206 imGenWarplstOrder

iImGenWarplstOrder

Synopsis

Generate first-order warp coefficients.

Format void imGenWarplstOrder(Thread, Coef, Transform, Vall, Val2,

Description

Mode, OSB)
long Thread; Thread ID
long Coef; Warp coefficient buffer 1D
long Transform; Type of transformation to perform
double Val1l; Constant
double Val2; Constant
long Mode; Operation mode
long OSB; OSB ID (or 0)

This function generates first-order warp coefficients for use with
imIntWarpPolynomial() or imGenWarpLutMatrix().

Coefficients can be generated for a rotation, an image scaling, a shearing,
or a translation. Note that, with imGenWarplstOrder(), you specify how
to perform the required forward transformation (source to destination) but
the function generates coefficients for the inverse transformation
(destination to source), as required by imIntWarpPolynomial() and
imGenWarpLutMatrix().

To combine transformations, you need to use separate calls to this function.
For example, to generate coefficients for a rotation and translation, you
would call this function twice, and write to the same buffer on both calls.

The Thread parameter specifies the thread to which to send
imGenWarplstOrder() for execution.

The Coef parameter specifies the buffer in which to write the coefficients.
This must be a 32-bit floating-point buffer. If you are generating coefficients
for imIntWarpPolynomial(), the Coef buffer must have a size of 3x2; if
you are generating coefficients for imGenWarpLutMatrix(), the Coef
buffer must have a size of 3x3.

imGenWarp1stOrder 207

The Transform parameter specifies the coefficients to generate. It can be
set to:

IM_ROTATE Generate coefficients for a counter-clockwise rotation
around (0,0) by Val1°.

IM_SCALE Generate coefficients for an image scaling, by a factor
of Vall in the x direction and by a factor of Val2 in the
y direction.

IM_SHEAR_X Generate coefficients for a shearing in the x direction,
by a factor of Vall.

IM_SHEAR_Y Generate coefficients for a shearing in the y direction,

by a factor of Vall.

IM_TRANSLATE Generate coefficients for a translation by Vall pixels
in the x direction and by Val2 pixels in the y direction.

The Vall and Val2 parameters specify transformation parameters. For
cases where Val2 is not used, any value can be given for it.

The Mode parameter specifies the mode of operation. It can be set to:
IM_CLEAR Clear the coefficient buffer before generating

coefficients.

IM_NO_CLEAR Don't clear the coefficient buffer before generating
coefficients.

Note that, if you are combining transformations, you should clear the
coefficient buffer on the first call, and not clear it on subsequent calls.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

208 imGenWarplstOrder

Example The following code generates coefficients for a 30° rotation about the point
(200, 100). Note that rotations are performed about (0, 0). Therefore, both
rotation and translation coefficients are required. One way to generate the
required coefficients is to first specify the rotation and then specify the
translation, but the translation amount would be difficult to calculate.
Instead, it is easier to translate the center of rotation to the origin, rotate,
then translate the center of rotation back to its original position. The
coefficient buffer is 3x2 since imIntWarpPolynomial() is used to perform
the transformation.

imBufAlloc2d(Thr, 3, 2, IM_FLOAT, IM_PROC, &Coef);

imGenWarplstOrder (Thr, Coef, IM TRANSLATE, -200.0, -100.0, IM CLEAR, 0);
imGenWarplstOrder (Thr, Coef, IM ROTATE, 30.0, 0.0, IM NO CLEAR, 0);
imGenWarplstOrder (Thr, Coef, IM TRANSLATE, 200.0, 100.0, IM_NO CLEAR, 0);

imIntWarpPolynomial(Thr, Src, Dst, Coef, 0, 0);:

For another example of using imGenWarp1lstOrder(), see process.c in
Appendix B.

imGenWarp4Corner 209

iImGenWarp4Corner

Synopsis

Generate warp coefficients to map an arbitrary quadrilateral onto a
rectangle.

Format void imGenWarp4Corner(Thread, Coef, X1, Y1, X2, Y2, X3, Y3,

Description

X4, Y4, Xstart, Ystart, Xend, Yend,

Mode, OSB)
long Thread,; Thread ID
long Coef; Warp coefficient buffer 1D
double X1; X coordinate of quadrilateral’s 1st corner
double Y1; Y coordinate of quadrilateral’s 1st corner
double X2; X coordinate of quadrilateral’s 2nd corner
double Y2; Y coordinate of quadrilateral’s 2nd corner
double X3; X coordinate of quadrilateral’s 3rd corner
double Y3; Y coordinate of quadrilateral’s 3rd corner
double X4; X coordinate of quadrilateral’s 4th corner
double Y4; Y coordinate of quadrilateral’s 4th corner
long Xstart; X coordinate of rectangle’s top-left corner
long Ystart; Y coordinate of rectangle’s top-left corner
long Xend; X coordinate of rectangle’s bottom-right corner
long Yend; Y coordinate of rectangle’s bottom-right corner
long Mode; Operation mode
long OSB; OSB ID (or 0)

This function generates warp coefficients for perspective transformations
that map an arbitrary quadrilateral onto a rectangle. To perform the
warping, pass the generated coefficients to imGenWarpLutMatrix(),
which will generate the address look-up tables required by
imIntWarpLut().

The Thread parameter specifies the thread to which to send
imGenWarp4Corner() for execution.

The Coef parameter specifies the buffer in which to write the coefficients.
This must be a 32-bit floating-point buffer of size 3x3.

210

imGenWarp4Corner

The (X1, Y1) through (X4, Y4) parameters specify the (generally
non-integer) corner points of the source quadrilateral; the (Xstart, Ystart)
and (Xend, Yend) parameters specify the integer corner points of the
rectangle, as follows:

(X2, Y2)

(Xstart, Ystart)
1 2

(X1, Y1)

4 3 4 3
(x4, v4) (X3,Y3) (Xend, Yend)

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

Example See process.c in Appendix B.

imGenWarpLutMatrix 211

ImGenWarpLutMatrix

Synopsis

Generate address LUTs for a matrix-defined warping using
imIntWarpLut().

Format void imGenWarpLutMatrix(Thread, Xlut, Ylut, Coef, Control,

Description

OSB)
long Thread,; Thread ID
long Xlut; X-LUT buffer ID
long Ylut; Y-LUT buffer ID
long Coef; Warp coefficient buffer 1D
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function generates the address look-up tables (LUTs) needed to
perform a 3x3 matrix-defined warping using imIntWarpLut(). Note that
a warping is performed by first associating each pixel position of the
destination buffer, (Xq, Yq), With a specific point (address) in the source

buffer, (xg, Ys). The pixel value of (x4, yq) is then determined from its

associated point and from a specified interpolation mode. A 3x3
matrix-defined warping associates (Xg, Yq4) With (X, ys) through the

following:

X Coo €10 C20| | X4
Y| = |Co1 €11 C21]|Yyg

Wl |Cop €12 Coof [1
where
o = X - S00%d™ C10%d* 20
S
W CopXg C1p¥g+Cop
_y _ Co1XgtCrYgt S
Y= o= Ty T

W CopXg C1p¥g+Cop

To perform 3x3 matrix-defined warpings, you must supply the 3x3
coefficients (cqg ... C2) to imGenWarpLutMatrix(). The
imGenWarpLutMatrix() function generates the LUTSs required by
imIntWarpLut() to perform the warping. Note that imIntWarpLut()
determines x5 from one LUT and yg from another LUT.

212

imGenWarpLutMatrix

Field

IM_CTL_PRECISION 0-n

The 3x3 coefficients can be user-supplied or automatically generated using
either imGenWarp4Corner() (for perspective transformations that map
an arbitrary quadrilateral onto a rectangle) or imGenWarplstOrder () (for
first-order polynomial transformations).

The Thread parameter specifies the thread to which to send
imGenWarpLutMatrix() for execution.

The Xlut parameter specifies the buffer in which to place the x4 points. This

must be a signed 16-bit buffer, and have the same size as the destination
buffer that you will eventually pass to imIntWarpLut().

The Ylut parameter specifies the buffer in which to place the y4 points. This

must be a signed 16-bit buffer, and have the same size as the destination
buffer that you will eventually pass to imIntWarpLut().

The Coef parameter specifies the buffer containing the coefficients required
to produce the desired warping. This must be a 32-bit floating-point buffer
of size 3x3.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imGenWarpLutMatrix() are listed below,
with default values in bold-face. Note that if the Control parameter is set
to O or if certain fields are not added to the control buffer, the default values
are used.

Values Meaning

Number of fractional bits for the
address. If you are not going to
perform interpolation with
imIntWarpLut() (i.e. you are
going to use nearest neighbor
interpolation), give 0. If you
require interpolation, give a
value > 0.

imGenWarpLutMatrix 213

IM_CTL_OVERSCAN IM_TRANSPARENT If addresses fall outside of the
source buffer of imIntWarpLut(),
use them anyway. Note that, if the
source buffer is not a child buffer,
these addresses will point to
undefined pixel values, leading to
unpredictable results.

IM_REPLACE Replace addresses that fall
outside of the source buffer of
imIntWarpLut() with a constant
address. Specify the values of the
address with the
IM_CTL_OVERSCAN_X and
IM_CTL_OVERSCAN_Y fields. If
you use replace overscan, the size
of the source buffer is required;
specify this with the
IM_CTL_SRC_SIZE_X and
IM_CTL_SRC_SIZE_Y fields.

IM_CTL_OVERSCAN_X any integer Replace value for X address.
(default: 0)

IM_CTL_OVERSCAN_Y any integer Replace value for Y address.
(default: 0)

IM_CTL_SRC_SIZE_X any integer X size of source buffer to be given
(default: value of to imIntWarpLut().
Xlut)

IM_CTL_SRC_SIZE_Y any integer Y size of source buffer to be given
(default: value of to imIntWarpLut().
Ylut)

IM_CTL_ZOOM 1,2,0or4 Multiply destination addresses by

the specified factor before using
them to calculate source
addresses. This field allows you to
generate LUTs that are smaller
than the image you want to warp,
which will considerably speed up
LUT generation. You should zoom
up the address LUTs (with
interpolation), before using them
in imIntWarpLut().

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Example See process.c in Appendix B.

214 imGraArc

iImGraArc

‘ Async ’ ‘Mu/z‘/—band ’

Synopsis

Draw an elliptical arc.

Format wvoid imGraArc(Thread, Context, Buf, Xcen, Ycen, Xrad, Yrad,

Description

StartAng, EndAng)

long Thread; Thread ID

long Context; Control buffer ID (or 0)
long Buf; Destination buffer 1D
long Xcen; X coordinate of arc centre
long Ycen; Y coordinate of arc centre
long Xrad; X radius of arc

long Yrad; Y radius of arc

double StartAng; Starting angle
double EndAng; Ending angle

This function draws an elliptical arc.

The Thread parameter specifies the thread to which to send imGraArc()

for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraArc() are listed below, with default
values in bold-face. Note that if the Context parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values
IM_GRA_COLOR 0 - OXFFFFFFFF

IM_GRA_COLOR_MODE IM_DEFAULT

IM_PACKED

Meaning

Color with which to draw
the arc.

Use the specified color in all
bands of a multi-band
buffer.

Use the least-significant
byte of the specified color in
the first band of a
multi-band buffer, the next
byte in the second band of
the buffer, etc. The buffer
must be 8-bit, with no more
than 4 bands.

See also

imGraArc 215

IM_GRA_DRAW_MODE IM_PASS Draw the arc in the
specified color.
IM_XOR Draw the arc in the colors

that result from performing
an XOR between the
specified color and the
pixels of the destination
buffer.

The Buf parameter specifies the buffer in which to draw. This must be an
8-bit, 16-bit, or 32-bit integer buffer.

The Xcen and Ycen parameters specify the x and y coordinates of the arc
center, relative to the top-left corner of the destination buffer.

The Xrad and Yrad parameters specify the elliptic arc radii.

The StartAng and EndAng parameters specify the angles at which to start
and to end drawing of the arc, moving in a counter-clockwise direction.
Express these angles as degrees, relative to the positive x-axis. To draw a
complete ellipse, set StartAng to 0 and EndAng to 360.

imGraArcFill(). This function draws a filled elliptical arc.

216 imGraArcFill

imGraArcFill ‘Asyncl ‘/\/Iu/t/—bandl

Synopsis Draw a filled elliptical arc.

Format void imGraArcFill(Thread, Context, Buf, Xcen, Ycen, Xrad, Yrad,
StartAng, EndAng)

long Thread; Thread ID

long Context; Control buffer ID (or 0)
long Buf; Destination buffer ID
long Xcen; X coordinate of arc centre
long Ycen; Y coordinate of arc centre
long Xrad; X radius of arc

long Yrad; Y radius of arc

double StartAng; Starting angle
double EndAng; Ending angle

Description This function draws a filled elliptical arc.

The Thread parameter specifies the thread to which to send
imGraArcFill() for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraArcFill() are listed below, with

default values in bold-face. Note that if the Context parameter is set to O
or if certain fields are not added to the control buffer, the default values are

used.

Field Values Meaning

IM_GRA_COLOR 0 - OXFFFFFFFF Color with which to draw
the arc.

IM_GRA_COLOR_MODE IM_DEFAULT Use the specified color in all
bands of a multi-band
buffer.

IM_PACKED Use the least-significant

byte of the specified color in
the first band of a
multi-band buffer, the next
byte in the second band of
the buffer, etc. The buffer
must be 8-bit, with no more
than 4 bands.

See also

imGraArcFill 217

The Buf parameter specifies the buffer in which to draw. This must be an
8-bit, 16-bit, or 32-bit integer buffer.

The Xcen and Ycen parameters specify the x and y coordinates of the arc
center, relative to the top-left corner of the destination buffer.

The Xrad and Yrad parameters specify the elliptic arc radii.

The StartAng and EndAng parameters specify the angles at which to start
and to end drawing of the arc, moving in a counter-clockwise direction.
Express these angles as degrees, relative to the positive x-axis. To draw a
complete ellipse, set StartAng to 0 and EndAng to 360.

imGraArc(). This function draws an unfilled elliptical arc.

218 imGraFill

iImGrakFill | Async| [Multi-band]

Synopsis Fill a connected region.

Format void imGraFill(Thread, Context, Buf, Xstart, Ystart)

Description

long Thread; Thread ID
long Context; Control buffer ID (or 0)

long Buf; Destination buffer 1D
long Xstart; X coordinate of seed pixel
long Ystart; Y coordinate of seed pixel

This function fills the connected region around a specified pixel (called the
seed pixel). Note that a connected region is an area of touching pixels that
have the same value as the seed pixel (horizontally and vertically adjacent
pixels are considered touching; diagonally adjacent pixels are not).

This function also records the bounding box of the filled region in the
specified control buffer. After calling imGraFill(), you can read the
maximum and minimum coordinate of filled pixels from the appropriate
fields in the control buffer using imBufGetField().

The Thread parameter specifies the thread to which to send imGraFill()
for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraFill() are listed below, with default
values in bold-face. Note that if the Context parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values Meaning
IM_GRA_COLOR 0 - OXFFFFFFFF Color with which to fill.
IM_GRA_COLOR_MODE IM_DEFAULT Use the specified color in all
bands of a multi-band
buffer.
IM_PACKED Use the least-significant

byte of the specified color in
the first band of a
multi-band buffer, the next
byte in the second band of
the buffer, etc. The buffer
must be 8-bit, with no more
than 4 bands.

See also

imGrafFill 219

imGraFill() records the bounding box of the region it fills in the Context
buffer. After calling this function, you can read the following fields from the
Context buffer using imBufGetField():

Field

IM_GRA_BOX_X_MIN
IM_GRA_BOX_X_MAX
IM_GRA_BOX_Y_MIN
IM_GRA_BOX_Y_MAX

Meaning

X-coordinate of left-most pixel filled.
X-coordinate of right-most pixel filled.
Y-coordinate of top-most pixel filled.
Y-coordinate of bottom-most pixel filled.

The Buf parameter specifies the buffer in which to perform the fill. This
must be an 8-bit, 16-bit, or 32-bit integer buffer.

The Xstart and Ystart parameters specify the X and Y coordinates of the
seed pixel, relative to the top-left corner of the destination buffer.

imGraArcFill(), imGraRectFill(). These functions draw filled elliptical
arcs and filled rectangles, respectively.

220 imGraline

imGraLine

‘ Async | ‘ Multi-band |

Synopsis Draw a line.

Format void imGraLine(Thread, Context, Buf, Xstart, Ystart, Xend, Yend)

Description

long Thread,; Thread ID

long Context; Control buffer ID (or 0)
long Buf; Destination buffer ID

long Xstart; X coordinate of start of line
long Ystart; Y coordinate of start of line
long Xend; X coordinate of end of line
long Yend; Y coordinate of end of line

This function draws a line.

The Thread parameter specifies the thread to which to send imGraLine()

for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraLine() are listed below, with default
values in bold-face. Note that if the Context parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values
IM_GRA_COLOR 0 - OXFFFFFFFF
IM_GRA COLOR_MODE IM_DEFAULT

IM_PACKED

IM_GRA_DRAW _MODE IM_PASS

IM_XOR

Meaning
Color with which to draw.

Use the specified color in all
bands of a multi-band buffer.

Use the least-significant byte
of the specified color in the
first band of a multi-band
buffer, the next byte in the
second band of the buffer, etc.
The buffer must be 8-bit, with
no more than 4 bands.

Draw the line in the specified
color.

Draw the line in the colors
that result from performing
an XOR between the specified
color and the pixels of the
destination buffer.

imGraline 221

The Buf parameter specifies the buffer in which to draw. This must be an
8-bit, 16-bit, or 32-bit integer buffer.

The Xstart and Ystart parameters specify the x and y coordinates of the
line’s start point, relative to the top-left corner of the destination buffer.

The Xend and Yend parameters specify the x and y coordinates of the line’s
end point, relative to the top-left corner of the destination buffer.

See also imGraPlot(). This function can plot a series of lines faster than separate
calls to imGraLine().

222 imGraPlot

imGraPlot

| Async | |Multi-band|

Synopsis Plot a series of (x,y) points.

Format void imGraPlot(Thread, Context, Buf, Xbuf, Ybuf, NumPoints)

Description

long Thread; Thread ID

long Context; Control buffer ID (or 0)
long Buf; Destination buffer 1D
long Xbuf; Buffer ID of X coordinates
long Ybuf; Buffer ID of Y coordinates
long NumPoints; Number of points to plot

This function plots a series of (x,y) points. Prior to plotting, the x and y
coordinates are multiplied by a specified scale factor; then an offset is added.
This allows you to control the slope and location of your plot.

The Thread parameter specifies the thread to which to send imGraPlot()

for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraPlot() are listed below, with default
values in bold-face. Note that if the Context parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field
IM_GRA_COLOR
IM_GRA_COLOR_MODE

IM_GRA_PLOT_MODE

Values
0 - OXFFFFFFFF

IM_DEFAULT

IM_PACKED

IM_PLOT_POLY

IM_PLOT_LINES

IM_PLOT DOTS

Meaning
Color with which to plot.

Use the specified color in all
bands of a multi-band buffer.

Use the least-significant byte
of the specified color in the
first band of a multi-band
buffer, the next byte in the
second band of the buffer, etc.
The buffer must be 8-bit, with
no more than 4 bands.

Connect the points with a
single line.

Connect each pair of points
separately.

Draw a dot at each point.

IM_GRA_SCALE_X any floating-point
value
(default: 1.0)
IM_GRA_SCALE_Y any floating-point
value
(default: 1.0)
IM_GRA_OFFSET_X any integer
(default: 0)
IM_GRA_OFFSET_Y any integer
(default: 0)
IM_GRA_DRAW_MODE IM_PASS

IM_XOR

imGraPlot 223

Scale all X coordinates by the
specified factor.

Scale all Y coordinates by the
specified factor.

Add the specified offset to all
scaled X coordinates.

Add the specified offset to all
scaled Y coordinates.

Draw the plot in the specified
color.

Draw the plot in the colors
that result from performing
an XOR between the specified
color and the pixels of the
destination buffer.

The Buf parameter specifies the buffer in which to plot. This must be an

8-bit, 16-bit, or 32-bit integer buffer.

The Xbuf parameter specifies the buffer containing the X coordinates.

The Ybuf parameter specifies the buffer containing the Y coordinates.

The NumPoints parameter specifies the number of points to plot. This
parameter can be set to IM_ALL, in which case all points are plotted.

Example See process.c in Appendix B.

224 imGraRect

iImGraRect

‘ Async | ‘ Multi-band |

Synopsis Draw a rectangle.

Format void imGraRect(Thread, Context, Buf, Xstart, Ystart, Xend, Yend)

Description

long Thread; Thread ID

long Context; Control buffer ID (or 0)

long Buf; Destination buffer ID

long Xstart; X coordinate of top-left corner

long Ystart; Y coordinate of top-left corner

long Xend; X coordinate of bottom-right corner
long Yend; Y coordinate of bottom-right corner

This function draws a rectangle.

The Thread parameter specifies the thread to which to send imGraRect()

for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraRect() are listed below, with default
values in bold-face. Note that if the Context parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field
IM_GRA_COLOR
IM_GRA_COLOR_MODE

IM_GRA_DRAW_MODE

Values
0 - OXFFFFFFFF
IM_DEFAULT

IM_PACKED

IM_PASS

IM_XOR

Meaning
Color with which to draw.

Use the specified color in all
bands of a multi-band buffer.

Use the least-significant byte
of the specified color in the
first band of a multi-band
buffer, the next byte in the
second band of the buffer, etc.
The buffer must be 8-bit,
with no more than 4 bands.

Draw the rectangle in the
specified color.

Draw the rectangle in the
colors that result from
performing an XOR between
the specified color and the
pixels of the destination
buffer.

See also

imGraRect 225

The Buf parameter specifies the buffer in which to draw. This must be an
8-bit, 16-bit, or 32-bit integer buffer.

The Xstart and Ystart parameters specify the x and y coordinates of the
rectangle’s top-left corner. These coordinates are relative to the top-left
corner of the destination buffer.

The Xend and Yend parameters specify the x and y coordinates of the
rectangle’sbottom-right corner. These coordinates are relative to the top-left
corner of the destination buffer.

imGraRectFill(). This function draws a filled rectangle.

226 imGraRectFill

iImGraRectFill [Async] [Mutti-band]

Synopsis Draw a filled rectangle.

Format void imGraRectFill(Thread, Context, Buf, Xstart, Ystart, Xend,
Yend)

long Thread; Thread ID
long Context; Control buffer ID (or 0)

long Buf; Destination buffer 1D

long Xstart; X coordinate of top-left corner

long Ystart; Y coordinate of top-left corner

long Xend; X coordinate of bottom-right corner
long Yend; Y coordinate of bottom-right corner

Description This function draws a filled rectangle.

The Thread parameter specifies the thread to which to send
imGraRectFill() for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraRectFill() are listed below, with

default values in bold-face. Note that if the Context parameter is set to O
or if certain fields are not added to the control buffer, the default values are

used.
Field Values Meaning
IM_GRA_COLOR 0 - OXFFFFFFFF Color with which to draw.
IM_GRA_COLOR_MODE IM_DEFAULT Use the specified color in
all bands of a multi-band
buffer.
IM_PACKED Use the least-significant

byte of the specified color
in the first band of a
multi-band buffer, the
next byte in the second
band of the buffer, etc.
The buffer must be 8-bit,
with no more than 4
bands.

The Buf parameter specifies the buffer in which to draw. This must be an
8-bit, 16-bit, or 32-bit integer buffer.

See also

imGraRectFill 227

The Xstart and Ystart parameters specify the x and y coordinates of the
rectangle’s top-left corner. These coordinates are relative to the top-left
corner of the destination buffer.

The Xend and Yend parameters specify the x and y coordinates of the
rectangle’sbottom-right corner. These coordinates are relative to the top-left
corner of the destination buffer.

imGraRect(). This function draws an unfilled rectangle.

228 imGraText

iImGraText ‘ Async | ‘/\/Iu/t/—bandl

Synopsis Write text.

Format void imGraText(Thread, Context, Buf, Xstart, Ystart, String)

long Thread; Thread ID
long Context; Control buffer ID (or 0)

long Buf; Destination buffer ID

long Xstart; X coordinate of start of string
long Ystart; Y coordinate of start of string
char* String; Null terminated ASCII string

Description This function writes an ASCII string into the specified buffer. The size of
the text is determined from the specified font type (default, small, medium,
large) and by the specified x and y scale factors.

The Thread parameter specifies the thread to which to send imGraText()
for execution.

The Context parameter specifies the control buffer with which to perform
the function. Relevant fields for imGraText() are listed below, with default
values in bold-face. Note that if the Context parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values Meaning
IM_GRA_COLOR 0 - OXFFFFFFFF Foreground color.
IM_GRA _BACK _COLOR 0 - OXFFFFFFFF Background color.
IM_GRA_BACK_MODE IM_OPAQUE Draw the background in

the color specified by the
IM_GRA_BACK_COLOR
field.

IM_TRANSPARENT Don’t draw the
background.

imGraText 229

IM_GRA_COLOR_MODE IM_DEFAULT Use the specified
foreground and
background colors in all
bands of a multi-band
buffer.

IM_PACKED Use the least-significant
byte of the specified
foreground and
background colors in the
first band of a multi-band
buffer, the next byte of
the specified colors in the
second band of the buffer,
etc. The buffer must be
8-bit, with no more than 4
bands.

IM_GRA_FONT IM_FONT_DEFAULT Use the default font.

IM_FONT_SMALL Use a small version of the
default font.

IM_FONT_MEDIUM Use a medium version of
the default font.

IM_FONT_LARGE Use a large version of the
default font.

IM_GRA_FONT_SCALE_X any integer Scale the size of
(default: 1) characters in the x
direction by the specified
factor.
IM_GRA_FONT_SCALE_Y any integer Scale the size of
(default: 1) characters in the y
direction by the specified
factor.

The Buf parameter specifies the buffer in which to write. This must be an
8-bit, 16-bit, or 32-bit integer buffer.

The Xstart and Ystart parameters specify the x and y coordinates at which
to start writing the top-left corner of the first character. These coordinates
are relative to the top-left corner of the destination buffer.

The String parameter specifies the address of the string.

Example See process.c in Appendix B.

230 imIntBinarize

imIntBinarize

‘Asyncl ‘/n-P/acel ‘/\/Iu/ti-bandl

Synopsis Binarize an image.

Format void imIntBinarize(Thread, Src, Dst, Cond, Low, High, Val1l, Val2,

Description

long Thread;
long Src;
long Dst;
long Cond,;
long Low;
long High;
long Val1l,;
long Val2;
long OSB;

OSB)

Thread ID

Source buffer 1D
Destination buffer ID
Conditional operator
Low threshold

High threshold
Constant

Constant

OSB ID (or 0)

This function binarizes an integer image. It converts pixel values to Val1l if
a specified condition is true; to Val2 otherwise.

The Thread parameter specifies the thread to which to send
imlIntBinarize() for execution.

The Src parameter specifies the buffer to binarize. This buffer can be of any

integer type.

The Dst parame

ter specifies the buffer in which to place the results of the

operation. This must be an 8-bit integer buffer.

The Cond parameter specifies the condition with which to binarize the

image. It can be

set to:

IM_EQUAL if equal to Low.
IM_NOT_EQUAL if not equal to Low.
IM_LESS if less than Low.

IM_LESS OR_EQUAL if less than or equal to Low.
IM_GREATER if greater than Low.

IM_GREATER_OR_EQUAL if greater than or equal to Low.

IM_IN_RANGE
IM_OUT_RANGE

if within Low to High, inclusive.
if less than Low or greater than High.

See also

imIntBinarize 231

The Low and High parameters specify integer constants. Note that, when
the source buffer is a 32-bit integer buffer, Low and High are interpreted
as signed if the source buffer is signed; they are interpreted as unsigned if
the source buffer is unsigned.

For cases where High is not used, any value can be given for it.
The Vall and Val2 parameters specify integer constants.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imBinConvert(). Use imBinConvert() instead of imIntBinarize() ifyou
want to store the binary data in a binary buffer (imIntBinarize() stores
the binary data in an integer buffer).

232 imIntClip

iml ntCIip ‘Async| ‘/n-/—"/ace| ‘l\/lu/t/—band|

Synopsis

Clip or binarize an image.

Format void imIntClip(Thread, Src, Dst, Cond, Low, High, Vall, Val2, Mode,

Description

OSB)
long Thread; Target thread
long Src; Source buffer 1D
long Dst; Destination buffer ID
long Cond, Clipping condition
long Low; First threshold
long High; Second threshold (optional)
long Val1i; Constant
long Val2; Constant
long Mode; Mode of operation
long OSB; OSB ID (or 0)

This function clips or binarizes an image, using constant or non-constant
thresholds. This function is similar to imIntBinarize() and
imBinConvert(), except that with imIntClip() the threshold levels can be
images instead of constants. Using images allows the threshold level to be
different for each pixel. Thisfeature is useful, for example, when the lighting
in the original image is not uniform.

The Thread parameter specifies the thread to which to send imIntClip()
for execution.

The Src parameter specifies the buffer to clip or binarize. This buffer can
be of any integer type (8, 16, or 32 bits, signed or unsigned).

The Dst parameter specifies the buffer in which to place the results of the
operation. If the Mode parameter is set to IM_PASS_PIXEL, the destination
buffer must be of the same type as the source buffer (Src). If the Mode
parameter is set to IM_PASS_CONSTANT, the destination buffer depth must
be 1 bit or 8 bits.

imIntClip 233

The Cond parameter specifies the condition with which to clip or binarize
the image. It can be set to:

IM_EQUAL If equal to Low.

IM_NOT_EQUAL If not equal to Low.

IM_LESS If less than Low.

IM_LESS OR_EQUAL If less than or equal to Low.
IM_GREATER If greater than Low.
IM_GREATER_OR_EQUAL If greater than or equal to Low.
IM_IN_RANGE If within Low to High, inclusive.
IM_OUT_RANGE If less than Low or greater than High.

For all Cond values, with the exception of IM_IN_RANGE and
IM_OUT_RANGE, the result is as follows:

if (Src cond Low) // Low can be an image or a constant
Dst = Vall

else
Dst = (Mode & IM PASS CONSTANT) ? Val2 : Src

When Cond is IM_IN_RANGE, the result is as follows:

if (Src >= Low && Src <= High) // Low and High can be images or constants
Dst = Vall

else
Dst = (Mode & IM PASS CONSTANT) ? Val2 : Src

When Cond is IM_OUT_RANGE, the result is as follows:

if (Src < Low) // Low can be an image or a constant
Dst = Vall

else if (Src > High) // High can be an image or a constant
Dst = Val2

else // i.e., it is assumed you specified IM PASS PIXEL
Dst = Src

The Low and High parameters specify integer constants or image buffer
identifiers. In the latter case, the buffers must be of the same type as the
source buffer (Src).

For a 32-bit signed source buffer, if the Low and High thresholds are
constants, they are interpreted as signed constants. Similarly, for a 32-bit
unsigned source buffer, if the Low and High thresholds are constants, they
are interpreted as unsigned constants.

The Vall and Val2 parameters specify integer values to use as replacement
values.

234

imiIntClip

See also

The Mode parameter specifies the mode of operation to be used for this
clipping operation. The Mode can be one of the following:

IM_THRESH_CONSTANT The Low and High parameters
are both constants.
IM_THRESH_PIXEL The Low and High parameters

are both images.

The modes listed above can be combined with one of the following:

IM_PASS_CONSTANT Pass Val2 when condition is
FALSE.

IM_PASS_PIXEL Pass Src pixel when condition
ISFALSE.

These mode values can be combined in all four possible combinations.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imlIntBinarize() and imBinConvert(). Use imIntBinarize() or
imBinConvert() to binarize or clip an image using constant or
non-constant thresholds when you do not want to use images as the
threshold levels.

imIntConnectMap 235

imIntConnectMap [Async| [PP| [Multi-band|

Synopsis

Perform a 3x3 connectivity mapping.

Format void imIntConnectMap(Thread, Src, Dst, Lut, Control, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer 1D
long Lut; LUT buffer ID

long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function performs a 3x3 connectivity mapping on an integer image. It
calculates a connectivity code for each pixel in the image and then maps
these codes through the specified LUT buffer.

Connectivity codes are determined in the following order:

N3 Ny Ny
n4 n8 no
N5 Ng Ny

where n; is either 0 or 1 (non-zero pixels are treated as 1).

8
Connectivity code = z 2'n,
=0

Result = LUTMAP (Connectivity code).

The Thread parameter specifies the thread to which to send
imIntConnectMap() for execution.

The Src parameter specifies the buffer on which to perform the connectivity
mapping. This must be an 8-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
mapping. This can be an 8-bit or 16-bit integer buffer. Note that in-place
operation is not supported for this function.

236 imIntConnectMap

The Lut parameter specifies the LUT buffer. Since each connectivity code

has 9 bits, the LUT buffer should have at least 2° (or 512) entries. The LUT
buffer must be of the same type as the destination buffer.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntConnectMap() are listed below, with
default values in bold-face. Note that if the Control parameter is set to O
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning

IM_CTL_OVERSCAN IM_TRANSPARENT Process the bordering
pixels of the source
buffer using the pixels of
its parent buffer as the
overscan pixels. If the
source buffer is not a
child buffer or if its
parent buffer can't
provide values for the
overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.

IM_REPLACE Process the bordering
pixels of the source
buffer by assigning a
specific value to the
overscan pixels. Specify
the value with the
IM_CTL_OVERSCAN_VAL
field.

IM_CTL_OVERSCAN_VAL Oor1 Overscan replace value
(used when
IM_CTL_OVERSCAN is
set to IM_REPLACE).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIntConvert 237

imIntConvert ‘Async| ‘/n—P/ace| ‘I\/lu/t/—band|

Synopsis Convert a buffer from one integer type to another.

Format void imIntConvert(Thread, Src, Dst, Mode, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Mode; Operation mode

long OSB; OSB ID (or 0)

This function converts a buffer'sdata from one integer type to another. When
converting to a lower type, the most significant bits are discarded. When
converting to a higher type, the most significant bit is extended if the source
buffer is signed; otherwise, 0 is extended.

Note that you can clip the source buffer’s pixel values to the dynamic range
of the destination buffer (after sign-extending if necessary). Alternatively,
you can take the absolute value and clip to the dynamic range of the
destination buffer (after sign-extending if necessary).

The Thread parameter specifies the thread to which to send
imlIntConvert() for execution.

The Src parameter specifies the buffer to convert. This buffer can be of any
integer type.

The Dst parameter specifies the buffer in which to place the results of the
conversion. This buffer must be of the type to which you want to convert
(note that you can convert to any integer type).

The Mode parameter specifies the mode of operation. It can be set to:
IM_DEFAULT Sign-extend when converting to a higher type; discard

high bits when converting to a lower type.

IM_CLIP Clip to the dynamic range of the destination buffer (after
sign-extending if necessary).

IM_ABS_CLIP Take the absolute value and clip to the dynamic range of
the destination buffer (after sign-extending if necessary).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

238 imIntConvertColor

imIntConvertColor [Async| [PP| [In-Place]

Synopsis

Perform a color conversion.

Format void imIntConvertColor(Thread, Src, Dst, Type, Coef, OSB)

Description

long Thread; Thread ID

long Src; Source buffer 1D

long Dst; Destination buffer ID

long Type; Conversion type

long Coef; Coefficient buffer ID (or 0)
long OSB; OSB ID (or 0)

This function converts a color image to a different color space, or converts
an image between color and grayscale. You can perform a predefined
conversion or a custom matrix-defined conversion.

The Thread parameter specifies the thread to which to send
imIntConvertColor() for execution.

The Src parameter specifies the buffer to convert. This must be a 1-band or
3-band, 8-bit integer buffer.

[0 RGB and HSL values are always assumed to be unsigned, regardless of
the data type of the buffer in which they are stored.

The Dst parameter specifies the buffer in which to place the results of the
conversion. This must be a 1-band or 3-band, 8-bit integer buffer. Note that
results might be scaled to cover the range of the destination buffer. For
example, 0° to 360° H (Hue) values of the HSL color space will generate
values from 0 to 255 in the 8-bit destination buffer.

The Type parameter specifies the type of conversion to perform. It can be
set to:

Field Meaning

IM_RGB_TO_HSL Convert from the RGB color space to the HSL color
space. The source and destination buffers must have
3 bands.

IM_HSL_TO_RGB Convert from the HSL color space to the RGB color
space. The source and destination buffers must have
3 bands.

Field
IM_RGB_TO L

IM_RGB_TO_|I

IM_L_TO_RGB

IM_RGB_TO_H

IM_MATRIX

imintConvertColor 239

Meaning

Convert from the RGB color space to grayscale, where
the grayscale values represent the luminance of each
pixel. The source buffer must be 3-band. The
destination buffer can be 1-band or 3-band. If it is
3-band, it is assumed to be an HSL image and only
the last band (that is, band 2) is written.

Convert from the RGB color space to grayscale, where
the grayscale values represent the intensity of each
pixel, that is, | = (R + G + B)/3. The source buffer
must be 3-band. The destination buffer can be 1-band
or 3-band. If it is 3-band, it is assumed to be an HSI
image and only the last band (that is, band 2) is
written.

Convert from grayscale to the RGB color space (the
grayscale values are repeated in each color band,
producing a monochromatic RGB image). The source
buffer can be 1-band or 3-band. If it is 3-band, it is
assumed to be an HSL image and only the last band
(that is, band 2) is used. The destination buffer must
be 3-band.

Calculates only the H component of HSL (faster than
calculating all three components). The source buffer
must be 3-band; the destination buffer can be 1-band
or 3-band (in the latter case, only band 0 is written).

Perform an arbitrary matrix-defined color conversion.
You must also pass a 3x3 or 3x1 floating point
coefficient buffer.

The Coef parameter specifies the coefficient buffer used to perform certain

conversions.

For a matrix-defined conversion, the coefficient buffer (Coef) should be 3x3
if both source and destination buffers have 3 bands. If the source buffer has
3 bands and the destination buffer has 1 band, then the coefficient buffer

should be 3x1.

240 imIntConvertColor

For 3x3 Coef buffers:

c
def
ghi

each band of the destination is calculated from the source bands as follows:

Dst[0] = a.Src[0] + b.Src[1] + ¢.Src[2]

Dst[1] = d.Src[0] + e.Src[1] + f.Src[2]

Dst[2] = g.Src[0] + h.Src[1] + i.Src[2]

By default, underflows and overflows are not clipped; the input format is
the same as that of the source buffer, and the output format is the same as
that of the destination buffer. The following control fields can be added to
the Coef buffer in matrix-defined mode, with default values in bold-face.

Field
IM_CTL_CLIP

IM_CTL_INPUT_FORMAT
(The default is the source
buffer format)

IM_CTL_OUTPUT_FORMAT
(The default is the
destination buffer format)

Value

IM_DISABLE

IM_ENABLE

IM_UNSIGNED

IM_SIGNED

IM_UNSIGNED

IM_SIGNED

Meaning

Do not clip underflows and
overflows.

Clip underflows and overflows.
When clipping is enabled,
underflows and overflows are
clipped to the output range
([0, 255] for unsigned outputs, and
[-128, 127] for signed outputs).
All input bands are unsigned
(for example, RGB).

Last two input bands are signed
(for example, YUV). Note that the
first input band is always
unsigned.

All output bands are unsigned.

Last two output bands are signed.
Note that the first output band is
always unsigned.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIintConvolve 241

imIntConvolve [Async| [PP] [NOA| [Multi-band]

Synopsis Perform a convolution.

Format void imIntConvolve(Thread, Src, Dst, Kernel, Control, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Kernel, Kernel buffer ID

long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function performs a convolution operation on an integer image, using
a specified kernel. You can use your own kernel or a predefined kernel. In
general, the predefined kernels will execute faster.

If you use your own kernel rather than a predefined one, you can shift, take
the absolute value of, and/or clip the results of the convolution. You can also
control the center pixel of the kernel.

The Thread parameter specifies the thread to which to send
imlIntConvolve() for execution.

The Src parameter specifies the buffer on which to perform the convolution.
This can be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
convolution. For user-defined kernels, this buffer can be of any integer type.
For predefined kernels, this buffer must be of the same type as the source
buffer. Note that in-place operation is not supported for this function.

The Kernel parameter specifies the kernel with which to perform the

convolution. It can be set to the identifier of a kernel buffer or to a predefined
kernel. The kernel buffer must be a single-band, 8- or 16-bit integer buffer.
If the source buffer has more than one band, the kernel is used on each band.

The maximum kernel width or height supported for a convolution with the
NOA is normally 33, but is dependent on the total number of kernel
elements. The total number of kernel elements cannot exceed 512 if using
al6-bit integer buffer, and cannot exceed 1024 if using an 8-bit integer

242 imIntConvolve

buffer. Note that a 16-bit kernel buffer will be considered as an 8-bit buffer
whenever all the kernel values can fit in 8 bits.

However, there are some of exceptions to the rule above:

= If both the image and kernel are 8-bit, then the kernel width can go up to
64. Nonetheless, the kernel height is still limited to 33 and the total
number of kernel values has the same limit.

» If the kernel is 1xN (width is 1), the kernel height can go up to 64.

If your operation does not use the NOA, then the largest kernel supported
is usually 15x15; however, the 'C80 does support kernels up to 31x31 if all
of the following conditions are met:

o Source buffer is unsigned 8-bit.
o Destination buffer is 8- or 16-bit.
o Kernel is signed 8-bit, i.e. [-128, +127].

The predefined kernels are listed below, along with the normalization
operations associated with the kernel. Note that clipping, when performed,
is to the range of the destination buffer.

Identifier Kernel
222
IM_HORIZ_EDGE cinllo o o
2 2 2
[0 -1 0]
IM_LAPLACIAN_EDGE clip|_1 4 _1
0 -1 0]
—1 -1 -1
IM_LAPLACIAN_EDGE2 clip|_1 g _1
-1 -1
11 1] |[~odf B
IM_PREWITT_EDGE cioll o o oll+|l_1 o 4810
0o o

-1-1-1 -101|0 O

Identifier

IM_ROBERTS_EDGE

IM_SHARPEN

IM_SHARPEN2

IM_SMOOTH

IM_SOBEL_EDGE

IM_VERT_EDGE

imIintConvolve

Kernel

{2

[0 -1 0]
clip|-1 5 —1
|0 -1 0]

g
g
0

+

w

=

clip|_

L

-1-
9 —
-1-

L

= = Py

121
242/ »4

121

o 0O
! 121 -10 H]_H
clip 0 0 Of|*||-20 »

o 0O

-1-2-1 -1040 O

243

244 imIntConvolve

If you are using your own kernel, certain fields can be added to the kernel
buffer, to control the behavior of the kernel. These are listed below, with
their default values in bold-face. Note that, if these fields are not added to
the kernel buffer, the default values are used.

Field Values Meaning
IM_KER_SHIFT 0-31 Shift results by the specified
number of bits.
IM_KER_CLIP IM_DISABLE Don't clip results.
IM_ENABLE Clip results to the range of
the destination buffer.
IM_KER_ABSOLUTE IM_DISABLE Don't take the absolute value
of results.
IM_ENABLE Take the absolute value of
the results.
IM_KER_CENTER_X 0 - (Xsize-1) X coordinate of kernel center.
default: int(Xsize-1)/2
IM_KER_CENTER_Y 0 - (Ysize-1) Y coordinate of kernel center.

default: int(Ysize-1)/2

Note that the order of operation is: perform a convolution, shift by the
specified number of bits, take the absolute value, and then clip to the range
of the destination buffer.

If you shift, take the absolute value, or clip results, the function might run
slower. Therefore, only use these options if necessary.

The following field can be used to add a constant offset to the kernel buffer.
However, this is only supported when using the NOA.

Field Values Meaning

IM_KER_OFFSET <integer> Constant offset added to
result before normalization
(default is 0).

imIintConvolve 245

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntConvolve() are listed below, with

default values in bold-face. Note that if the Control parameter is set to 0
or if certain fields are not added to the control buffer, the default values are

used.

Field
IM_CTL_COMPUTATION

IM_CTL_INPUT_BITS

IM_CTL_OUTPUT BITS

Values
IM_EXACT

IM_FAST

1-16

(default: source buffer

pixel size)

1-32
(default: destination
buffer pixel size)

Meaning

Don’'t make any
approximations.

Make approximations, if
appropriate, so as to
increase operation speed.
Note that some rounding
errors (usually small) can
occur if you set this field.

Actual number of bits
needed to represent the
input data. This field can
increase operation speed.
For example, if a 16-bit
source buffer contains
only 10-bit data,
operation speed might be
increased if you set
IM_CTL_INPUT_BITS to
10.

Number of bits required
to hold the output data.

Clipping (when enabled)
is to this range.

246

imIntConvolve

IM_CTL_OVERSCAN IM_TRANSPARENT Process the bordering
pixels of the source buffer
using the pixels of its
parent buffer as the
overscan pixels. If the
source buffer is not a
child buffer or if its
parent buffer cannot
provide values for the
overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.

IM_REPLACE Process the bordering
pixels of the source buffer
by assigning a specific
value to the overscan
pixels. Specify the value

with the
IM_CTL_OVERSCAN_VAL
field.
IM_CTL_OVERSCAN_VAL any integer Overscan replace value
(default: 0) (used when

IM_CTL_OVERSCAN is set
to IM_REPLACE).

To reduce the NOA set-up time, which can be significant (especially on small
images), you can save some or all of the hardware register values in a control
cache buffer using the control fields that follow. Doing so can speed up
processing time for a subsequent call to this function. The first call to this
function will take slightly longer because the registers must be fully
calculated and saved, but subsequent calls will be faster.

The increase in speed depends on the number of parameters that have
changed since the setup information was saved. The increase is biggest
when everything is the same (same buffers, kernel, control fields). The
increase is slightly less if only the source and/or destination buffer addresses
have changed (same size and type of buffer, same kernel, same control

imIintConvolve 247

fields). This is useful if performing a double buffering operation. There is
also some set-up time saved when only the kernel is the same as before
(although buffers and control fields might have changed).

IM_CTL_CACHE_BUF

IM_CTL_SETUP

Bufld

IM_SAVE

IM_FASTEST

IM_ADDRESS_ONLY

IM_SAME_KERNEL

Use the specified buffer as the
cache buffer in which to save the
list of register values (or where
to find them if they were saved
previously). In this case, you will
save a little time on the first call
to this function.

Note that you should allocate a
1-dimensional, 8-bit buffer of
size IM_CACHE_BUF_SIZE.

Automatically allocate the cache
buffer in which to save the list of
register values.

The buffer ID will be returned to
the IM_CTL_CACHE_BUF field.

If the cache buffer was given,
save registers and all other
information that might be useful
later. Also perform the
operation.

Assume everything is the same
as when the setup was saved.

Assume everything except the
source and destination
addresses are the same as when
the setup was saved.

Assume only the kernel is the
same as when the setup was
saved.

Note that, whether the cache buffer is allocated automatically or you
allocate it yourself, you are responsible for freeing the buffer when you no

longer need it.

248

imIntConvolve

Example

Note

In addition, the following fields can be added to the control buffer. However,
they are only supported when using the NOA.

Field Values Meaning

IM_CTL_ZOOM_X 1,2,0r4 Horizontal zoom factor.

IM_CTL_ZOOM_Y 1,2,0r4 Vertical zoom factor.

IM_CTL_SUBSAMP_X 1 or 2 Horizontal subsample factor.

IM_CTL_SUBSAMP_Y 1 or 2 Vertical subsample factor.

IM_CTL_COEF_TYPE IM _DEFAULT Normal convolution.
IM_PIXEL Sum of pixels squared

(SrcBuf must be unsigned
8-bit). Kernel values should
be 0 or 1, where O implies a
"don’t care".

U Zooming is only supported for transparent overscan.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

See process.c in Appendix B.

The NOA kernel and control features should not be used if you want your
code to run on a Genesis board without a NOA.

imintCorrelate 249

imIntCorrelate [Async| [PP| [NOA| [Multi-band]

Synopsis Perform normalized grayscale correlation.
Format void imIntCorrelate(Thread, Src, Dst, Model, Control, OSB)
long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Model; Model buffer ID

long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

Description This function performs normalized grayscale correlation on an integer
image. Normalized grayscale correlation is a neighborhood operation that
determines the new value (r) for a pixel based on a specified kernel (model):

r =

A/[NZIZ_HZIEZ}[NZMZ_HZMEZ}

where M = the value of a model pixel and | = the value of the underlying
image pixel. All summations are over the N model pixels that are not set to
a "don't care" state.

The above equation reaches its maximum value of 1 where the image and
model match exactly, gives 0 where the image and model are uncorrelated,
and is negative where the similarity is less than might be expected by chance
(reaching -1 when the image is a negative version of the model). Note that
normalized grayscale correlation is similar to convolution, but is unaffected
by linear (constant gain and offset) changes in the image or model pixel
values.

You can specify that r? be calculated instead of r to avoid the calculation of
the square root. You can also specify that negative values be clipped to 0, if
such values are not useful to your application.

250

imintCorrelate

Note that model pixels that are set to the "don’t care" state are ignored in
the operation. In order to set model pixels to the "don't care" state, you must
supply a mask buffer (through the control buffer) that is at least as big as
the model. If a pixel in the mask buffer has the value 0, its corresponding
pixel in the model is set to the "don’t care" state; if a pixel in the mask buffer
has the value 1, its corresponding pixel in the model is used.

The Thread parameter specifies the thread to which to send
imlIntCorrelate() for execution.

The Src parameter specifies the buffer on which to perform the correlation.
This must be an 8-bit unsigned integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be a 16-bit signed integer buffer or a 32-bit
floating-point buffer. If it is floating-point, the floating-point correlation
value is output (maximum value is 1.0). If it is integer, results are scaled so
that the maximum correlation value is equal to the value specified by the
IM_CTL_MAX_SCORE field of the control buffer.

The Model parameter specifies the model. This must be an unsigned 8-bit
integer buffer.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntCorrelate() are listed below, with
default values in bold-face. Note that if the Control parameter is set to O
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning
IM_CTL_MASK_BUF 0 Use all model pixels.
A buffer ID Use the specified mask

buffer to set model pixels
to the "don’t care" state.
The buffer must be
unsigned 8-bit integer.
Pixels in the buffer must
be 0 or 1; other values
will produce undefined
results.

imintCorrelate 251

IM_CTL_OVERSCAN IM_TRANSPARENT Process the bordering
pixels of the source
buffer using the pixels of
its parent buffer as the
overscan pixels. If the
source buffer is not a
child buffer or if its
parent buffer can't
provide values for the
overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.

IM_REPLACE Process the bordering
pixels of the source
buffer by assigning a
specific value to the
overscan pixels. Specify
the value with the
IM_CTL_OVERSCAN

field.
IM_CTL_OVERSCAN_VAL any integer Overscan replace value
(default: 0) (used when

IM_CTL_OVERSCAN is
set to IM_REPLACE).
IM_CTL_MAX_SCORE any integer If the destination buffer
(default: 10000) is integer, scale results so
that the maximum
correlation value is equal
to the specified value.

IM_CTL_SCORE_TYPE IM_DEFAULT Outputr.
IM_CLIP Output max (r, 0).
IM_SQUARE Output r2.
IM_CLIP_SQUARE Output max (r, 0)%.
IM_CTL_STEP 1 Use all model pixels
during the correlation.
2 To increase speed, skip

every second model pixel
(in both x and y) during
the correlation.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

See also The pattern matching module.

252 imIntCountDifference

imIntCountDifference

Synopsis

Count the differences between two images.

Format void imIntCountDifference(Thread, Srcl, Src2, Result, OSB)

Description

long Thread; Thread ID

long Srcl; First source buffer ID
long Src2; Second source buffer ID
long Result; Result buffer ID

long OSB; OSB ID (or 0)

This function counts the differences between two integer images.

The number of differences is written into the IM_RES_NUM_DIFFERENCES
field of the result buffer. This number can later be read using
imBufGetField().

The Thread parameter specifies the thread to which to send
imIntCountDifference() for execution.

The Srcl and Src2 parameters specify the buffers tocompare. These buffers
can be of any integer type but must have the same type.

The Result parameter specifies the buffer in which to write the number of
differences. Note that this buffer's size and data type are irrelevant, since
the result is written to a field.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIntDistance 253

imIntDistance ‘ Async |‘ /n-P/acel ‘ Mu/t/'-bandl

Synopsis Perform a distance transform.

Format void imIntDistance(Thread, Src, Dst, Transform, Control, OSB)

Description

long Thread,; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Transform; Distance transform
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function determines the shortest distance from each foreground
(non-zero) pixel to a background (zero) pixel, and assigns this distance to
the foreground pixel. Background pixels remain as zero.

The Thread parameter specifies the thread to which to send
imlIntDistance() for execution.

The Src parameter specifies the buffer on which to perform the transform.
This can be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
transform. This can be an 8-bit or 16-bit integer buffer, but must be at least
as deep as the source buffer (i.e., you cannot use a 16-bit source buffer and
an 8-bit destination buffer).

The Transform parameter specifies how to calculate the distance.
Specifically, it determines in which direction you can step from one pixel to
the next, and how much to count for each step. This parameter can be set to:

IM_CITY_BLOCK Count horizontal and vertical steps as 1; do not
allow diagonal steps.
IM_CHESSBOARD Count horizontal, vertical, and diagonal steps as 1.

IM_CHAMFER_3_4 Count horizontal and vertical steps as 3; count
diagonal steps as 4.

254

imIntDistance

Note that IM_CHAMFER_3_4 produces the most accurate results, because it
is a better approximation of the true (Euclidean) distance between a
foreground and background pixel. However, it requires that the destination
buffer be large enough to hold a number at least three times the maximum
distance between a foreground and background pixel (even if you choose to
normalize results). In general, you should be able to avoid overflows by using
a 16-bit destination buffer. Note that you normalize results through the
control buffer.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntDistance() are listed below, with
default values in bold-face. Note that if the Control parameter is set to O
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning
IM_CTL_NORMALIZE IM_DISABLE Don't normalize results.
(this field only has an

effect if you are using

IM_CHAMFER_3_4)

IM_ENABLE Normalize results (that is,
divide results by 3 so that
each horizontal or vertical
step is counted as 1).

IM_CTL_OVERSCAN_VAL IM_REPLACE_MIN Replace pixels bordering
the source buffer with the
minimum value that can be
held in the source buffer.
This has the effect that
pixels outside the source
buffer are considered
background pixels.

IM_REPLACE_MAX Replace pixels bordering
the source buffer with the
maximum value that can
be held in the source
buffer. This has the effect
that pixels outside the
source buffer are
considered foreground
pixels.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imintDyadic 255

iml ntDyadic ‘Async] ‘/n-P/ace’ ‘Mu/n’—band’

Synopsis

Perform an arithmetic or logical operation between two integer images.

Format void imIntDyadic(Thread, Srcl, Src2, Dst, Op, OSB)

Description

long Thread; Thread ID

long Srcl; First source buffer ID

long Src2; Second source buffer ID
long Dst; Destination buffer 1D

long Op; Type of operation to perform
long OSB; OSB ID (or 0)

This function performs an arithmetic or logical operation between two
integer images. The source buffers and destination buffer of the operation
can be of any integer type, although the operation might execute faster if
they are all of the same type. For information on how mixed data types are
handled, see the Genesis Native Library User Guide.

Note that, for operations that can produce overflows or underflows, results
that will not fit in the destination buffer generally have their high bits
discarded (in other words, these results wrap around). However, when
saturation is used in an operation, results that overflow or underflow are
set to the maximum or minimum value, respectively, in the destination
buffer.

The Thread parameter specifies the thread to which to send
imlIntDyadic() for execution.

The Srcl and Src2 parameters specify the buffers with which to perform
the operation. These buffers can be of any integer type.

The Dst parameter specifies the buffer in which to place the results of the
operation. This buffer can be of any integer type.

imintDyadic

The Op parameter specifies the operation to perform. This parameter can

be set to:

IM_ADD
IM_ADD_SAT
IM_SUB
IM_SUB_SAT
IM_SUB_CLIP

IM_SUB_ABS

IM_MIN

IM_MAX

IM_MULT
IM_MULT_MSB

IM_DIV
IM_DIV_FRAC

IM_AND
IM_OR
IM_XOR
IM_NAND
IM_NOR
IM_XNOR

Add.

Add and saturate.

Subtract: Srcl - Src2.

Subtract, Srcl - Src2, and saturate.

Subtract and, if necessary, clip results so that they fit
in the destination buffer. This operation should be
used instead of IM_SUB_SAT when the source and
destination buffers have the same pixel depth but the
source buffers are unsigned while the destination
buffer is signed (under this condition, IM_SUB_SAT
does not produce the desired effect).

Subtract and take the absolute value:

| Srcl- Src2].

Compare Srcl and Src2 on a pixel-by-pixel basis and
take the minimum of the two.

Compare Srcl and Src2 on a pixel-by-pixel basis and
take the maximum of the two.

Multiply.

Multiply and, if the product requires more bits than
the destination buffer can hold, keep just the most
significant bits. For example, when multiplying an

8-bit buffer by a 16-bit buffer, keep only the most
significant bits of the 24-bit result.

Divide: Src1/Src2.

Divide and, if the destination buffer has more bits per
pixel than the first source buffer, use the extra bits to
store the fractional part of the result. For example, if
Srcl is 8-bit and Dst is 16-bit, the result will be in a
8 - 8 fixed-point format (that is, there will be 8 bits for
the integer part of the result and 8 bits for the
fractional part).

Logical AND.
Logical OR.
Logical XOR.
Logical NAND.
Logical NOR.
Logical XNOR.

imintDyadic 257

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

See also imBinTriadic(), imIntMonadic(), imIntTriadic(). imBinTriadic()
performs an arithmetic or logical operation on up to three binary images.
imlIntMonadic() performs an arithmetic or logical operation between an
integer image and a constant. imIntTriadic() performs an arithmetic or
logical operation on up to three integer images.

258 imIntErodeDilate

imIntErodeDilate NOA| [Multi-band

Synopsis

Perform grayscale erosion or dilation.

Format void imIntErodeDilate(Thread, Src, Dst, Kernel, Op, Niter,

Description

Control, OSB)
long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID

long Kernel, Kernel buffer ID

long Op; Type of operation to perform
long Niter; Number of iterations

long Control; Control buffer ID (or 0)

long OSB; OSB ID (or 0)

This function performs a grayscale erosion or dilation on an integer image,
using a specified structuring element (kernel). You can use your own kernel
or a predefined 3x3 kernels of all 0’s.

When you use your own kernel, you can control the center pixel of the kernel.
In addition, any kernel value set to IM_DONT_CARE is ignored during the
operation.

The Thread parameter specifies the thread to which to send
imIntErodeDilate() for execution.

The Src parameter specifies the buffer on which to perform the operation.
This can be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be of the same type as the source buffer. Note that
in-place operation is not supported for this function.

The Kernel parameter specifies the kernel with which to perform the
operation. It can be set to the identifier of a kernel buffer or to
IM_3X3_RECT_0, which is a predefined 3x3 kernel of all 0's. Note that the
predefined kernel simply takes the minimum pixel value in the
neighborhood (for an erosion) or the maximum pixel value (for a dilation).

If you are using your own kernel, it can be of any data type. In addition, it
must be 16-bit signed integer if you are using IM_DONT_CARE values.

imIntErodeDilate 259

The maximum kernel width or height supported for a convolution with the
NOA is normally 33, but is dependent on the total number of kernel
elements. The total number of kernel elements cannot exceed 512. For
example, a 23x23 kernel is too big because the number of kernel elements
is 529. However, if your operation does not use the NOA, then the largest
kernel must be no larger than 15x15.

Note that certain fields can be added to your kernel, to indicate its center
position. These are listed below, with their default values. If these fields are
not added to the kernel buffer, the default values are used.

Field Values Meaning

IM_KER_CENTER_X 0 — (Xsize-1) X coordinate of kernel center.
default: int(Xsize-1)/2

IM_KER_CENTER_Y 0 — (Ysize-1) Y coordinate of kernel center.

default: int(Ysize-1)/2

The Op parameter specifies the type of operation to perform. It can be set to:

IM_ERODE Erosion.
IM_DILATE Dilation.

The Niter parameter specifies the number of times to apply the operation.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntErodeDilate() are listed below, with
default values in bold-face. Note that if the Control parameter is set to 0
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning

IM_CTL_OVERSCAN IM_TRANSPARENT Process the bordering
pixels of the source buffer
using the pixels of its
parent buffer as the
overscan pixels. If the
source buffer is not a child
buffer or if its parent
buffer cannot provide
values for the overscan
pixels, the overscan pixels
will be undefined, leading
to unpredictable results.

260

imIntErodeDilate

IM_CTL_OVERSCAN IM_REPLACE Process the bordering
pixels of the source buffer
by assigning a specific
value to the overscan
pixels. Specify the value

with the
IM_CTL_OVERSCAN_VAL
field.
IM_CTL_OVERSCAN_VAL any integer Overscan replace value
(default: 0) (used when

IM_CTL_OVERSCAN is set
to IM_REPLACE).

To reduce the NOA set-up time, which can be significant (especially on small
images), you can save some or all of the hardware register values in a control
cache buffer using the control fields that follow. Doing so can speed up
processing time for a subsequent call to this function. The first call to this
function will take slightly longer because the registers must be fully
calculated and saved, but subsequent calls will be faster.

The increase in speed depends on the number of parameters that have
changed since the setup information was saved. The increase is biggest
when everything is the same (same buffers, kernel, control fields). The
increase is slightly less if only the source and/or destination buffer addresses
have changed (same size and type of buffer, same kernel, same control
fields). This is useful if performing a double buffering operation. There is
also some set-up time saved when only the kernel is the same as before
(although buffers and control fields might have changed).

IM_CTL_CACHE_BUF Bufld Use the specified buffer as the

cache buffer in which to save the
list of register values (or where
to find them if they were saved
previously). In this case, you will
save a little time on the first call
to this function.

Note that you should allocate a
1-dimensional, 8-bit buffer of
size IM_CACHE_BUF_SIZE.

0 Automatically allocate the cache
buffer in which to save the list of
register values.

The buffer ID will be returned to
the IM_CTL_CACHE_BUF field.

imIntErodeDilate 261

IM_CTL_SETUP IM_SAVE If the cache buffer was given,

See also

Note

save registers and all other
information that might be useful
later. Also perform the
operation.

IM_FASTEST Assume everything is the same
as when the setup was saved.

IM_ADDRESS_ONLY Assume everything except the
source and destination
addresses are the same as when
the setup was saved.

IM_SAME_KERNEL Assume only the kernel is the
same as when the setup was
saved.

Note that, whether the cache buffer is allocated automatically or you
allocate it yourself, you are responsible for freeing the buffer when you no
longer need it.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBinMorphic(). This function performs morphological operations
(including erosions and dilations) on binary images.

This function treats overflows differently depending on whether the NOA
or’'C80is used. When using the NOA, overflows (or underflows) are properly
clipped to the maximum (or minimum) value that can be represented in the
destination buffer. When the 'C80 is used, overflows are not clipped.

262 imIntFindExtreme

imIntFindExtreme

Synopsis Find the minimum and/or maximum pixel value in an image.
Format void imIntFindExtreme(Thread, Src, Result, Mode, OSB)
long Thread; Thread ID

long Src; Source buffer ID
long Result; Result buffer ID
long Mode; Operation mode
long OSB; OSB ID (or 0)

Description This function finds the minimum and/or maximum pixel value in an image.

The minimum pixel value is written into the IM_RES_MIN_PIXEL field of
the result buffer; the maximum pixel value is written into the
IM_RES_MAX_PIXEL field of the result buffer. These fields can later be read
using imBufGetField().

The Thread parameter specifies the thread to which to send
imlIntFindExtreme() for execution.

The Src parameter specifies the buffer on which to perform the operation.
This buffer can be of any integer type.

The Result parameter specifies the buffer in which to write the results of
the operation. Note that this buffer’s size and data type are irrelevant, since
the result is written to a field.

The Mode parameter specifies the mode of operation. It can be set to:

IM_MIN_PIXEL Find the minimum value.

IM_MAX_PIXEL Find the maximum value.

IM_MIN_PIXEL+IM_MAX_PIXEL Find the minimum and maximum
value.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

See also imlIntLocateEvent(). This function can be used to determine the position
of the minimum or maximum pixel.

imIntFFT 263

im | ntF FT ‘ Asyncl ‘/n-P/ace|

Synopsis

Perform a fast Fourier transform.

Format void imIntFFT(Thread, SrcR, Srcl, DstR, Dstl, Control, OSB)

Description

long Thread; Thread ID

long SrcR; Source buffer ID (real part)

long Srcl; Source buffer ID (imaginary part)

long DstR; Destination buffer ID (real part)

long Dstl; Destination buffer ID (imaginary part)
long Control; Control buffer ID (or 0)

long OSB; OSB ID (or 0)

This function performs a fast Fourier transform (FFT) on an integer image.
It can also be used to perform an inverse FFT on a transformed image.

Note that imIntFFT() uses a fixed-point integer representation of the
image. This is faster than using a floating-point representation. It can also
be just as accurate if you left-shift the input image by enough bits before
performing the transform. To avoid overflows, you should then enable
normalization (through the control buffer). Normalization will right-shift
results at each stage of the transform so that the dynamic range does not
get larger.

The Thread parameter specifies the thread to which to send imIntFFT()
for execution.

The SrcR parameter specifies the real part of the source image. This must
be a signed 32-bit integer buffer.

The Srcl parameter specifies the imaginary part of the source image. This
must be a signed 32-bit integer buffer. If the source image is real, you must
clear this buffer to zero before calling imIntFFT().

The DstR parameter specifies the buffer in which to write the real part of
the result. This must be a signed 32-bit integer buffer.

264

imIntFFT

Note

The Dstl parameter specifies the buffer in which to write the imaginary
part of the result. This must be a signed 32-bit integer buffer.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntFFT() are listed below, with default
values in bold-face. Note that if the Control parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values
IM_CTL_DIRECTION IM_FORWARD

IM_REVERSE
IM_CTL_BLOCK_X IM_ALL

1
IM_CTL_BLOCK_Y IM_ALL

1

IM_CTL_NORMALIZE IM_ENABLE

IM_DISABLE

Meaning
Perform an FFT.
Perform an inverse FFT.

X-block size is full width of image
(use this for a normal 2D FFT).

X-block size is 1 column i.e.
perform a 1D FFT on all the
columns of the image
(IM_CTL_BLOCK_Y should be set to
IM_ALL).

Y-block size is full height of image
(use this for a normal 2D FFT).
Y-block size is 1 row i.e. perform a
1D FFT on all the rows of the
image (IM_CTL_BLOCK_X should
be set to IM_ALL).

Normalize results (divide by 2 after
each stage of the FFT).

Don’'t normalize results.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

The width and height of the source and destination buffers must be a power

of 2.

Example See process.c in Appendix B.

imintFlip 265

iml ntFIip ‘Async| ‘Mu/t/—band’

Synopsis Flip or rotate an image.

Format wvoid imIntFlip(Thread, Src, Dst, Func, Mode, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID

long Func; Type of operation to perform
long Mode; Operation mode

long OSB; OSB ID (or 0)

This function flips an image (horizontally or vertically) or rotates it (by 90,
180, or 270°). Note that this function is faster than the more general warping
functions (imIntWarp...()) at performing these operations.

The Thread parameter specifies the thread to which to send imIntFlip()
for execution.

The Src parameter specifies the buffer on which to perform the transform.
This buffer can be of any integer type, or can be a 32-bit floating-point buffer.

The Dst parameter specifies the buffer in which to place the results of the
transform. This buffer must have the same pixel size as the source buffer.
Note that in-place operation is not supported for this function.

The Func parameter specifies the type of transform to perform. It can be
set to:

IM_FLIP_H Flip horizontally (left to right).
IM_FLIP_V Flip vertically (top to bottom).
IM_ROTATE_90 Rotate 90° counter-clockwise.
IM_ROTATE_180 Rotate 180° counter-clockwise.
IM_ROTATE_270 Rotate 270° counter-clockwise.

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

266

imIntFlip

Note

See also

If rotating by 90 or 270°, the x and y dimensions of the source buffer are
swapped. Therefore, the destination buffer should be of an appropriate size
to hold all of the result. If, for example, the source buffer is 512x480, the
destination buffer should be 480x512 to hold all of the result.

imIntWarpPolynomial(). The imIntWarpPolynomial() function can
rotate an image by any angle, but takes longer to perform.

imIintGainOffset 267

im I ntGai nOffset ‘Async’ ‘/n-P/ace’ ‘Mu/l‘/—band’

Synopsis Apply per-pixel gain and offset correction.

Format void imIntGainOffset(Thread, Src, Dst, Offset, Gain, Shift,

Description

ClipVal, Mode, OSB)
long Thread,; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer 1D

long Offset; Offset buffer ID (or 0)

long Gain; Gain buffer ID

long Shift; Number of bits to shift

long ClipVal; Constant used to replace overflows
long Mode; Operation mode

long OSB; OSB ID (or 0)

This function applies per-pixel gain and offset correction to an integer
image: Dst = ((Src - Offset) * Gain)) >> Shift.

You can clip the results of the operation, in which case underflows are set
to zero after the offset is subtracted and overflows in the final result are set
to a specified integer value. Note that you can set overflows to any integer
value. If, for example, you are applying gain and offset correction to 10-bit
data (range 0 - 1023), you might want to use a 16-bit destination buffer and
clip overflows to 1023 (so that any result exceeding 1023 is set to this value).
Alternatively, you might want to use an 8-bit destination buffer, a larger

right-shift, and clip overflows to 255, to display the result of the correction.

The Thread parameter specifies the thread to which to send
imlIntGainOffset() for execution.

The Src parameter specifies the buffer on which to apply the correction.
This must be an 8-bit or 16-bit unsigned integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
correction. This must be of the same type as the source buffer, or have a
smaller pixel size than the source buffer.

268

imIntGainOffset

See also

The Offset parameter specifies the offset buffer. This must be of the same
type as the source buffer. If this buffer is one-dimensional, it is used on each
line of the source buffer. Note that this parameter can be set to 0, in which
case no offset is subtracted.

The Gain parameter specifies the gain buffer. This must be an 8-bit or
16-bit, unsigned integer buffer. If this buffer is one-dimensional, it is used
on each line of the source buffer.

The Shift parameter specifies the number of bits by which to right-shift.
Note that, if the gain buffer is in fixed-point format, an appropriate shift
must be applied.

The ClipVal parameter specifies the integer value to which to set overflows.
The Mode parameter specifies the mode of operation. It can be set to:

IM_DEFAULT Don'tclip results.

IM_CLIP Clip results (that is, set underflows to zero after the offset
is subtracted and set overflows in the final result to
ClipVal).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIntMacl(), imIntMac2(). These functions perform a similar arithmetic
operation.

Example See process.c in Appendix B.

imIntHistogram 269

ImIntHistogram [Async| [PP| [Multi-band|

Synopsis Perform a histogram.

Format void imIntHistogram(Thread, Src, Result, Mode, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID
long Result; Result buffer ID
long Mode; Operation mode
long OSB; OSB ID (or 0)

This function performs a histogram on an integer image.

The Thread parameter specifies the thread to which to send
imlIntHistogram() for execution.

The Src parameter specifies the buffer on which to perform the histogram.
This must be an 8-bit or 16-bit integer buffer. Note that the buffer’s values
are always considered to be unsigned, even if the buffer is of a signed type.

The Result parameter specifies the buffer in which to write the results of
the histogram. This must be a one-dimensional, 16-bit or 32-bit integer
buffer. To guarantee maximum speed, the buffer should be no larger than
necessary. However, it should be larger than the maximum pixel value in
the source image, or results will be unpredictable. For 10-bit data, an

appropriate size is 21°=1024.
To speed up the operation, certain fields can be added to the result buffer.

These are listed below, with their default values in bold-face. Note that, if
these fields are not added to the result buffer, the default values are used.

Field Values Meaning
IM_CTL_INPUT_BITS 9-16 Input data size. If the input
(this field only applies to (default value data size exceeds the result
16-bit source buffers) depends on result buffer size, input pixels are
buffer size) right shifted accordingly.
IM_CTL_SUBSAMP_X 1-16 Only use the columns of the

source buffer that are
multiples of the specified
value when generating the
histogram, starting with the
first column.

270

imlIntHistogram

Example

See also

IM_CTL_SUBSAMP_Y 1-16 Only use the row of the
source buffer that are
multiples of the specified
value when generating the
histogram, starting with the
first row.

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

See process.c in Appendix B.

imlIntHistogramEqualize(). You can use this function to transform an
image’s histogram into a look-up table with which to map the image.

imintHistogramEqualize 271

imIntHistogramEqualize [Async)| [PP] [in-Place| [Multi-band]

Synopsis

Perform a histogram equalization.

Format void imIntHistogramEqualize(Thread, Src, Dst, HistSize, Func,

Description

Alpha, Min, Max, Mode, OSB)
long Thread,; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer 1D

long HistSize; Intermediate histogram size
long Func; Type of equalization to perform
double Alpha; Adjustment parameter

long Min; Lowest pixel value to equalize
long Max; Highest pixel value to equalize
long Mode; Operation mode

long OSB; OSB ID (or 0)

This function performs a histogram equalization on an integer image, or
generates a look-up table (LUT) which can later be used to equalize an image
(using, for example, imIntLutMap()). In the former case, a histogram is
performed on the source image, the histogram is transformed into a LUT
using the specified equalization operation, and then this LUT is used to
transform the source image. In the latter case, a histogram is transformed
into a LUT using the specified equalization operation; the histogram can be
of the source image or user-supplied.

Note that you perform histograms using imlntHistogram().

The Thread parameter specifies the thread to which to send
imlIntHistogramEqualize() for execution.

The Src parameter specifies the image buffer from which to generate the
histogram, or the histogram buffer from which to generate the LUT. The
image buffer must be 8-bit or 16-bit integer; the histogram buffer must be
16-bit or 32-bit integer. Note that the image buffer’s values are always
considered to be unsigned, even if this buffer is of a signed type.

The Dst parameter specifies the image buffer in which to write the results
of the equalization, or the LUT buffer in which to write the generated LUT.
The image or LUT buffer must be 8-bit or 16-bit integer.

272 imintHistogramEqualize

The HistSize parameter specifies the size required for the histogram of the
source image. To guarantee maximum speed, this should be no larger than
necessary. However, it should be larger than the maximum pixel value in
the source image, or results will be unpredictable. For 10-bit data, an

appropriate size is 210=1024.

The Func parameter specifies the type of equalization operation with which
to generate the LUT. The table below lists available equalization operations
and their density functions.

Output probability density
model

Transfer functions

IM_UNIFORM

1

Py(9) =
g 9max = 9min

gmln gs gmax

9= [gmax_gmin] IDf(f) *Omin

IM_EXPONENTIAL

NG=Gppip)] - 1
= (g) _ a% min H g= gmin_aln[l_Pf(f)]
920min
IM_RAYLEIGH 2 512
(g_gmin) g-= gmm 20 |nD;
T2 AP0
p _ 9= 9min 2a
o0 = — e
a
920min
IM_HYPER_CUBE_ROOT . PN
Py@) = 30—%—F
S TS s | 97 e oin [PHON 3o el
max
IM_HYPER_LOG 1
Py(9) =

9T (G — NGy]

gmax

- The cumulative probability distribution, P¢(f), of the input image is approximated by
its cumulative histogram:

I
P()= § He(m)
2o

- Refer to Digital Image Processing, William K. Pratt, United States, John Wiley & Sons,

1978, p.318.

Example

imiIntHistogramEqualize 273

The Alpha parameter specifies the value of the "a" constant used in the
equations for IM_EXPONENTIAL and IM_RAYLEIGH. For
IM_EXPONENTIAL, a greater Alpha results in a LUT with a lower
occurrence of the most frequent histogram values. For IM_RAYLEIGH, a
greater Alpha results in a LUT with a higher occurrence of the most
frequent histogram values.

The Min and Max parameters specify the range of pixel values in the source
image on which to apply the equalization. Pixel values outside this range
are ignored.

The Mode parameter specifies the mode of operation. It can be set to:

IM_DEFAULT Perform an equalization on the source image.
IM_IMAGE _TO_LUT Generate a LUT from a histogram of the source
image.

IM_HIST_TO_LUT Generate a LUT from the supplied histogram.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

The following code performs uniform histogram equalization on an 8-bit
image:

imIntHistogramEqualize(Thread, Buf, Buf, 256, IM UNIFORM, 0.0, 0, 255, IM DEFAULT, 0);

274 imintLabel

imintLabel ‘Async’ Wu/ﬁ—bandl

Synopsis

Label connected regions.

Format void imIntLabel(Thread, Src, Dst, Mode, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID
long Dst; Destination buffer ID
long Mode; Labelling mode

long OSB; OSB ID

This function labels each connected region in an integer image. Starting
from the top left corner, connected regions are given unique consecutive
values starting with 1.

Note that a connected region is an area of touching pixels with non-zero
values. Pixels are considered touching if they are horizontally or vertically
adjacent. If they are diagonally adjacent, you can specify whether or not
they are considered touching.

The number of labelled regions is written into the IM_RES_MAX_PIXEL field
of the result buffer. This number can later be read using imBufGetField().

The Thread parameter specifies the thread to which to send imiIntLabel()
for execution.

The Src parameter specifies the buffer to label. This must be an 8-bit or
16-bit integer buffer.

The Dst parameter specifies the buffer in which to write the number of
labelled regions. This must be an 8-bit or 16-bit integer buffer.

The Mode parameter specifies whether or not diagonally adjacent pixels

are considered touching. It can be set to:

IM_4_ CONNECTED Don't consider diagonally adjacent pixels as
touching.

IM_8_CONNECTED Consider diagonally adjacent pixels as touching.

imintLabel 275

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Note A complex image with many regions can take long to label. If your image is
noisy, it might be more efficient to first filter it to remove unwanted regions
caused by noise.

276 imintLocateEvent

imIntLocateEvent

Synopsis

Locate pixels that satisfy a condition.

Format void imIntLocateEvent(Thread, Src, X, Y, Pix, Num, Cond, Low,

Description

High, OSB)
long Thread; Thread ID
long Src; Source buffer ID
long X; Buffer ID for X coordinates (or 0)
long Y, Buffer ID for Y coordinates (or 0)
long Pix; Buffer ID for pixel values (or 0)
long Num; Buffer ID for number of events
long Cond,; Conditional operator
long Low; Constant
long High; Constant
long OSB; OSB ID (or 0)

This function locates pixels in an integer image that satisfy a specified
condition.

The number of located pixels iswritten into the IM_RES_NUM_EVENTS field
of the result buffer. This number can later be read using imBufGetField().

The Thread parameter specifies the thread to which to send
imlIntLocateEvent() for execution.

The Src parameter specifies the buffer whose pixels to locate. This buffer
can be of any integer type.

The X parameter specifies the one-dimensional buffer in which to write the
x coordinates of the located pixels. This must be a 16-bit or 32-bit integer

buffer. If this buffer is too small to hold all results, some will be lost. Note
that this parameter can be set to 0, in which case the x coordinates will not
be written.

The Y parameter specifies the one-dimensional buffer in which to write the
y coordinates of the located pixels. This must be a 16-bit or 32-bit integer

buffer, and have the same type as the X buffer. If this buffer is too small to
hold all results, some will be lost. Note that this parameter can be set to 0,
in which case the y coordinates will not be written.

imintLocateEvent 277

The Pix parameter specifies the one-dimensional buffer in which to write
the pixel values of the located pixels. This buffer must be of the same type
as the source buffer. If this buffer is too small to hold all results, some will
be lost. Note that this parameter can be set to 0, in which case the pixel
values will not be written.

The Num parameter specifies the buffer in which to write the number of
located pixels. Note that this buffer’s size and data type are irrelevant, since
the result is written to a field. In addition, even if the buffers used to hold
results are not large enough, the number written to the field will always be
correct.

The Cond parameter specifies the condition with which to locate pixels. It
can be set to:

IM_EQUAL if equal to Low.

IM_NOT_EQUAL if not equal to Lowv.

IM_LESS if less than Low.

IM_LESS OR_EQUAL if less than or equal to Low.
IM_GREATER if greater than Low.
IM_GREATER_OR_EQUAL if greater than or equal to Low.
IM_IN_RANGE if within Low to High, inclusive.
IM_OUT_RANGE if less than Low or greater than High.

The Low and High parameters specify integer constants. For cases where
High is not used, any value can be given for it.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

278 imiIntLutMap

imintLutM ap ‘Async| ‘/n-P/ace| Wu/n‘—band|

Synopsis Perform a look-up table mapping.

Format void imIntLutMap(Thread, Src, Dst, Lut, OSB)

Description

long Thread; Thread ID

long Src; Source buffer 1D

long Dst; Destination buffer ID
long Lut; LUT buffer ID

long OSB; OSB ID (or 0)

This function maps an integer image using the specified look-up table
(LUT). Note that you can use the imGen1d() function to generate the LUT.

The speed of the LUT mapping decreases as the LUT size increases. To help
speed up the operation, this function can perform both non-interpolated
LUT mappings and interpolated LUT mappings. A non-interpolated LUT
mapping does not subsample the LUT buffer, so the actual values in the
LUT buffer are used. An interpolated LUT mapping subsamples the LUT
buffer to reduce its size and, therefore, increase speed.

The Thread parameter specifies the thread to which to send
imlIntLutMap() for execution.

The Src parameter specifies the buffer to map. Thiscan bean 8, 16, or 32-bit
integer buffer, with the exception of interpolated modes which do not accept
32-bit source buffers. Note that the buffer's values are always considered to
be unsigned, even if the buffer is of a signed type.

The Dst parameter specifies the buffer in which to place the results of the
mapping. This can be of any integer type, but must be of the same type as
the LUT buffer.

The Lut parameter specifies the look-up table buffer. The LUT buffer should
be no larger than necessary, to guarantee maximum speed. However, it
should be no smaller than the maximum pixel value that will be mapped
through it; otherwise, the results will be unpredictable.

Certain fields can be added to the LUT buffer to control the behavior (mode)
of the mapping. These fields and their corresponding LUT mapping
behaviors are described below, with their default values in bold-face. Each
LUT mapping mode is also fully described in Chapter 3:Processing
Functions of the Genesis Native Library User Guide.

imintLutMap 279

Basic mode. The most basic (non-interpolated) mode is used when no
control fields are added to the LUT buffer to specify another mode. The
operation used is,

Dst = Lut[Src]

In this mode, make sure that no pixel value in the source buffer exceeds the
size of the LUT buffer. For example, with 10-bit data, an appropriate LUT

size is 210=1024.

For LUTs bigger than 16 KBytes, the function can be quite slow in this mode
because the LUT can not fit entirely in on-chip RAM. In this case, the
function can work in one of two ways internally, depending on whether it
uses the default or PP option.

By default, large LUTs are processed using the transfer controller of the
‘C80, making the operation strongly data-dependent. In general, this
method should only be used for 16:32 mappings.

Using the PP option, you can increase the speed of the operation for large
LUTs in a way that makes multiple passes with the PPs, but still uses the
basic non-interpolated LUT mode. This option requires a large temporary
work buffer for temporary data storage. You can specify whether to have the
temporary work buffer automatically allocated, or you can supply it
yourself, by adding the IM_CTL_WORK_BUF field to the LUT buffer as
follows:

Field Values Meaning

IM_CTL_WORK_BUF 0 Automatically allocate
a temporary work
buffer for the PP option.

A buffer ID Use the specified buffer
as a temporary work
buffer.

Note that performance drops if this buffer is too small, so be sure you have
enough memory for a large work buffer.

Shift & mask mode. Another (non-interpolated) mode of this function
allows source values to be right shifted and/or masked before indexing the
LUT. The operation performed is,

Dst = Lut[(Src >> shift) & mask]

280

imintLutMap

This mode is particularly useful when the source buffer contains negative
values (it saves a separate masking operation), or when you want to increase
the speed of the operation by using a smaller LUT (it saves a separate right
shift operation). In this mode, the source buffer must be 16- or 32-bit. The
amount of shift and the mask value are both determined from the difference
between the dynamic range of the input data and the size of the LUT buffer
used. To select this mode you need to specify the dynamic range of the source
pixels (size of the input data) with the IM_CTL_INPUT_BITS field as
follows:

Field Values Meaning

IM_CTL_INPUT _BITS 9-16 The input data size
when performing a
non-interpolated LUT
mapping on a 16-bit
source buffer.

17-32 The input data size
when performing a
non-interpolated LUT
mapping on a 32-bit
source buffer.

Clip mode. A third (non-interpolated) mode of this function allows you to
have large values clipped to the maximum value that the LUT can handle.
The operation performed is,

Dst = Lut[clip(Src)]

Keep in mind that unsigned clipping is performed. Thatis, only values above
the upper limit are clipped, so you should not have any negative values in
your source buffer. There is no right shift in this mode; therefore, the
dynamic range of the source data is always deduced from the LUT’s size,
and the clipping value is equal to (Size of LUT - 1). For example, 1023 for a
1024-entry (10-bit) LUT. To select this mode, you need to enable clipping as

follows:

Field Values Meaning
IM_CTL_CLIP IM_ENABLE Clip the largest input
values to avoid reading
beyond the end of the
LUT.
IM_DISABLE Assume that the data
has already been
clipped.

imintLutMap 281

U Note that when you want this mode, you should not add the
IM_CTL_INPUT_BITS field to the LUT buffer.

Interpolated mode. Alternatively, you can improve performance with
large LUTs by using an interpolated LUT. When using an interpolated LUT,
the output for each 16-bit input is determined by linearly interpolating
between two values of the subsampled LUT. As a result, in this mapping
mode, the LUT buffer is subsampled to reduce its size (that is, number of
entries x number of bytes) to 16 KByte. You can control the subsampling of

the LUT buffer by specifying one of the following modes:

Field Values Meaning
IM_CTL_RESAMPLE IM_INTERPOLATE Use an interpolated
(subsampled) LUT.

IM_NO_INTERPOLATE Do not use an
interpolated
(subsampled) LUT.

For example, an interpolated LUT can be used to perform a 16:8 or 16:32
LUT mapping. (Note that since a 16:32 LUT mapping is normally used to
display an image in pseudo-color, a 32-bit destination buffer is always
assumed to be in RGBa format.)

In interpolated mode, the output for each 16-bit input is determined by
linearly interpolating between two values of the subsampled LUT. You need
to specify the number of input bits in the control fields that follow. When
performing an interpolated LUT mapping, you might prefer to provide the
LUT already scaled down, since it will be quicker to generate and load. In
this case, the input data size will be bigger than the LUT size (for example,
16-bit data with a 12-bit LUT). Therefore, you must also specify the input
data size, since the input data size is normally deduced from the size of the
LUT.

Field Values Meaning
IM_CTL_INPUT_BITS 9-16 Input data size.

(default value depends
on the LUT size)

282

imintLutMap

Note

Optionally, in the interpolated mode, you can specify that input values be
clipped to avoid reading beyond the end of the subsampled LUT. To select
this clipped mode, you need to enable clipping as follows:

Field Values Meaning

IM_CTL_CLIP IM_ENABLE Clip the largest input
values, to avoid reading
beyond the end of the
LUT.

IM_DISABLE Assume that the data
has already been
clipped.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

The IM_CTL_INPUT_BITS and IM_CTL_CLIP fields produce different results
depending on whether this function uses an interpolated or
non-interpolated LUT mapping mode.

imIntMac1 283

imIntMacl ‘Async| ‘/n-P/ace| ‘l\/lu/n’—band|

Synopsis

Multiply and accumulate with one integer image.

Format void imIntMacl(Thread, Src, Dst, Fac, Const, Shift, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer 1D
long Fac; Constant

long Const; Constant

long Shift; Constant

long OSB; OSB ID (or 0)

This function multiplies an integer image by a specified factor, adds a
specified constant to the result, and then shifts results by the specified
number of bits. Final results are written into the destination buffer:
Dst = (Fac*Src + Const) >> Shift.

Note that a shift is useful if the images contain data in fixed-point format.
The shift is a signed shift if the source buffer is signed.

The Thread parameter specifies the thread to which to send imIntMac1()
for execution.

The Src parameter specifies the buffer with which to perform the operation.
This can be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This buffer can be of any integer type.

The Fac parameter specifies the factor with which to multiply the source
buffer. This can be an integer value between -32768 and 32767 if the source
buffer is signed; between 0 and 65535 if the source buffer is unsigned.

The Const parameter specifies the constant to add to the scaled source
buffer.

The Shift parameter specifies the number of bits by which to right-shift.
This can be an integer value between 0 and 31.

284

imIntMac1

Note

See also

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

After the multiply stage of the operation, internal precision is always 32 bits.

imlIntGainOffset(), imIntMac2(). These functions perform a similar
arithmetic operation.

imIntMac?2 285

imIntMac?2 ‘Async| ‘/n-/—"/ace| ‘l\/lu/n’—band|

Synopsis Multiply and accumulate with two integer images.

Format void imIntMac2(Thread, Srcl, Src2, Dst, Facl, Fac2, Shift, OSB)

Description

long Thread,; Thread ID

long Srcl; First source buffer ID
long Src2; Second source buffer ID
long Dst; Destination buffer ID
long Faci; Constant

long Fac2; Constant

long Shift; Constant

long OSB; OSB ID (or 0)

This function multiplies two integer images by specified factors, adds the
results, then shifts the sum by the specified number of bits. Final results
are written into the destination buffer:

Dst = (Facl*Srcl + Fac2*Src2) >> Shift.

The Thread parameter specifies the thread to which to send imIntMac2()
for execution.

The Srcl and Src2 parameters specify the buffers with which to perform
the operation. These can be 8-bit or 16-bit integer buffers, but both must
either be signed or unsigned.

The Dst parameter specifies the buffer in which to write the results of the
operation. This buffer can be of any integer type.

The Facl and Fac?2 parameters specify the factors with which to multiply
the first and second source buffers, respectively. These parameters can have
an integer value between -32768 and 32767 if the source buffers are signed,;
between 0 and 65535 if the source buffers are unsigned.

The Shift parameter specifies the number of bits by which to right-shift.
This can be an integer value between 0 and 31. Note that the shift is asigned
shift if the source buffers are signed.

286

imIntMac?2

Note

See also

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

After the multiply stage of the operation, internal precision is always 32 bits.

imlIntGainOffset(), imIntMac1(). These functions perform a similar
arithmetic operation.

imIntMonadic 287

imIntMonadic ‘Async’ ‘/n-P/ace’ Wu/z‘f—band’

Synopsis

Format

Description

Perform an arithmetic or logical operation between an integer image and a
constant.

void imIntMonadic(Thread, Src, Const, Dst, Op, OSB)
long Thread; Thread ID

long Src; Source buffer ID

double Const; Constant

long Dst; Destination buffer 1D

long Op; Type of operation to perform
long OSB; OSB ID (or 0)

Thisfunction performsanarithmeticor logical operation between an integer
image and a constant. The image buffers and constant can be of any integer
type, although the operation might execute faster if they are of the same
type. For information on how to handle mixed data types, see the Genesis
Native Library User Guide.

Note that, for operations that can produce overflows or underflows, results
that will not fit in the destination buffer generally have their high bits
discarded (in other words, these results wrap around). However, when
saturation is used in an operation, results that overflow or underflow are
set to the maximum or minimum value, respectively, in the destination
buffer.

The Thread parameter specifies the thread to which to send
imIntMonadic() for execution.

The Src parameter specifies the buffer with which to perform the operation.
This buffer can be of any integer type.

The Const parameter specifies the constant to use in the operation. The
effective type of the constant is determined from its actual value.

The Dst parameter specifies the buffer in which to write the results of the
operation. This buffer can be of any integer type.

288

imIntMonadic

The Op parameter specifies the type of operation to perform. It can be set to:

IM_ADD
IM_ADD_SAT
IM_SUB

IM_SUB_SAT
IM_SUB_ABS

IM_SUB_NEG
IM_MIN

IM_MAX

IM_MULT
IM_MULT_MSB

IM_DIV
IM_DIV_FRAC

IM_DIV_INTO
IM_SHIFT

IM_AND
IM_OR
IM_XOR
IM_NAND
IM_NOR
IM_XNOR

Add.

Add and saturate.

Subtract: Src - Const.

Subtract, Src - Const, and saturate.

Subtract and take the absolute value:
| Src - Const].

Subtract: Const - Src.

Compare Src and Const on a pixel-by-pixel basis and
take the minimum of the two.

Compare Src and Const on a pixel-by-pixel basis and
take the maximum of the two.

Multiply.
Multiply and, if the product requires more bits than the

destination buffer can hold, keep just the most
significant bits.

Divide by Const: Src/Const.

Divide by Const and, if the destination buffer has more
bits per pixel than the source buffer, use the extra bits
to store the fractional part of the result.

Divide into Const: Const/Src.

Bitwise shift by Const (left-shift if Const is positive;
right-shift if Const is negative).

Logical AND.
Logical OR.
Logical XOR.
Logical NAND.
Logical NOR.
Logical XNOR.

In addition to the above operations, you can perform certain unary
operations, by appropriately setting the Const parameter. For example, you
can negate the source image (set Op to IM_SUB_NEG and Const to 0), take
its absolute value (set Op to IM_SUB_ABS and Const to 0), or perform a
logical NOT (set Op to IM_XOR and Const to Oxffffffff for 32-bit images,
Oxffff for 16-bit images, or Oxff for 8-bit images).

See also

imIntMonadic 289

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imBinTriadic(), imIntDyadic(), imIntTriadic(). imBinTriadic()
performs an arithmetic or logical operation on up to three binary images.
imlIntDyadic() performs an arithmetic or logical operation between two
integer images. imIntTriadic() performs an arithmetic or logical operation
on up to three integer images.

290 imintProject

imintP FOjGCt ‘Async’ ‘/\//u/t/'—bandl

Synopsis Project a 2D integer image into 1D.

Format void imIntProject(Thread, Src, Result, Angle, Mode, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID
long Result; Result buffer ID
double Angle; Angle to project
long Mode; Operation mode
long OSB; OSB ID (or 0)

This function adds pixel values along all lines in an image that are at a
specified angle (called the projection angle). The sum of pixel values along
each of these lines is written into the result buffer.

This function can be used to perform a column profile (the sum of pixel
values along each column in an image) or a row profile (the sum of pixel
values along each row in an image).

The Thread parameter specifies the thread to which to send
imlIntProject() for execution.

The Src parameter specifies the buffer with which to perform the operation.
This can be an 8-bit unsigned, 16-bit signed or unsigned, or 32-bit signed,
integer buffer.

The Result parameter specifies the one-dimensional integer buffer in which
to write the results of the operation. If the source buffer is a 32-bit signed
buffer, this result buffer mustbe a 32-bit buffer. Otherwise, this result buffer
can be either a 16-bit or 32-bit buffer.

The Angle parameter specifies the projection angle. This parameter can be
set to:

0.0 Project onto a line at 0° (that is, sum all columns).
90.0 Project onto a line at 90° (that is, sum all rows).

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIntRank 291

imIntRank ‘Async’ ‘Mu/t/—band’

Synopsis Perform a rank filter operation.

Format void imIntRank(Thread, Src, Dst, Kernel, Rank, Control, OSB)

Description

long Thread,; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer 1D
long Kernel, Kernel buffer ID

long Rank; Rank value

long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function performs a rank filter operation on an integer image, using a
specified kernel. It sorts a pixel's neighborhood values in increasing order,
and then replaces the pixel with the Rankth value in the list.

The Thread parameter specifies the thread to which to send imIntRank()
for execution.

The Src parameter specifies the buffer on which to perform the rank filter
operation. This can be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This can be an 8-bit or 16-bit integer buffer, but must be of the
same type as the source buffer. Note that in-place operation is not supported
for this function.

The Kernel parameter specifies the kernel with which to perform the
operation. It can be set to one of the following predefined kernels:

IM_3X3_RECT_O0 A 3x3 kernel.

IM_3X3_CROSS_0 A 3x3 kernel whose four corners are set to
IM_DONT_CARE.

292

imIntRank

The following kernels can only be used when Rank is set to IM_MEDIAN:

IM_3X3_X

IM_3X1
IM_5X1
IM_7X1
IM_9X1
IM_1X3
IM_1X5
IM_1X7
IM_1X9

3x3 "X" shaped kernel (5 active elements in the shape
of an "X").

Horizontal one-dimensional kernel with 3 elements.
Horizontal one-dimensional kernel with 5 elements.
Horizontal one-dimensional kernel with 7 elements.
Horizontal one-dimensional kernel with 9 elements.
Vertical one-dimensional kernel with 3 elements.
Vertical one-dimensional kernel with 5 elements.
Vertical one-dimensional kernel with 7 elements.
Vertical one-dimensional kernel with 9 elements.

Note that the 1-dimensional horizontal and vertical kernels can be used in
combination to achieve approximations to larger 2-dimensional kernels. For
example, applying a 5x1 median followed by a 1x5 median will give a
reasonable approximation to a 5x5 median.

The Rank parameter specifies the rank value. This parameter can be set
to a value from 1 to the number of valid neighborhood values, or to
IM_MEDIAN, which is a median rank value, (int ((valid neighborhood values
+ 1)/2)). Note that the number of valid neighborhood values corresponds to
the number of kernel values that are not set to IM_DONT_CARE. Therefore,
for IM_3X3_RECT_0, the median rank value is 5; for IM_3X3_CROSS_0, the
median rank value is 3.

See also

imIntRank 293

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntRank() are listed below, with default
values in bold-face. Note that if the Control parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values
IM_CTL_OVERSCAN IM_TRANSPARENT
IM_REPLACE

IM_CTL_OVERSCAN_VAL any integer
(default: 0)

Meaning

Process the bordering
pixels of the source
buffer using the pixels of
its parent buffer as the
overscan pixels. If the
source buffer is not a
child buffer or if its
parent buffer cannot
provide values for the
overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.

Process the bordering
pixels of the source
buffer by assigning a
specific value to the
overscan pixels. Specify
the value with the
IM_CTL_OVERSCAN_VAL
field.

Overscan replace value
(used when
IM_CTL_OVERSCAN is
set to IM_REPLACE).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imlIntErodeDilate(). This function can use a custom-made kernel to
replace a pixel by the minimum or maximum value in its neighborhood.

294 imIntRecFilter

imIntRecFilter [Async] [PP| [in-Place] [Multi-band]

Synopsis Perform adaptive recursive (temporal) filtering.

Format void imIntRecFilter(Thread, Src, Src2, Dst, Dst2, Lut, SrcBits,

Description

DstBits, Control, OSB)

long Thread,; Thread ID

long Src; First source buffer ID

long Src2; Second source buffer 1D

long Dst; Destination buffer ID

long Dst2; Second destination buffer 1D (or 0)
long Lut; LUT buffer ID

long SrcBits; Number of bitsin Src buffer

long DstBits; Number of bitsin Dst and Src2 buffers
long Control; Control buffer ID (or 0)

long OSB; OSB ID (or 0)

This function performs adaptive recursive (temporal) filtering. It
determines the difference between two source buffers, assigns a weight to
the difference according to the specified look-up table (LUT), then adds the
weighted difference to the second source buffer, that is,

Dst = LUT[Src - Src2] + Src2

In the interests of accuracy and efficiency, the actual implementation is
closer to:

a=LUT[Src - Src2]
Dst = a(Src - Src2) + Src2

Since the Dst and Src2 buffers usually have more bits than the Src buffer
(the DstBits and SrcBits parameters indicate the actual number of bits in
these buffers), the exact operations carried out are actually:

1. determine no. of fractional bits: frac = DstBits - SrcBits
2. calculate full precision difference: tmp = (Src << frac) - Src2

3. lookup “a” from reduced precision difference, where a = LUT[tmp >>
(DstBits - 8)]

imIntRecFilter 295
4. make sure result has same precision as Src2: Dst = (a*tmp >> 14) + Src2
5. optionally produce an 8-bit version of the result: Dst2 = (Dst >> frac)

Note that the above uses a limited number of bits to determine “a” but the
actual multiplication is performed with full precision.

The first half of the LUT is used to assign a weight to positive differences,
and the second half of the LUT is used to assign a weight to negative
differences. By using an appropriate LUT, various effects can be achieved.
For example, if the first half of the LUT is set to a constant value and the
second half is set to 0, then increasing pixel values will have an effect on
the output, but decreasing values will have no effect (the previous output
will be maintained). This makes bright areas of the image “sticky”.

The Thread parameter specifies the thread to which to send
imlIntRecFilter() for execution.

The Src and Src2 parameters specify the buffers on which to perform the
operation, while the Dst and Dst2 parameters specify the buffers in which
to place the results of the operation. All of these buffers must be unsigned.
The allowed pixel depth combinations for these buffers are outlined below.

Src Src2 Dst Dst2
8-bit 8-bit 8-hit -

8-bit 16-bit 16-bit 8-bit
16-bit 16-bit 16-bit 8-bit

If an 8-bit result is not needed, Dst2 should be set to 0. Note that Dst2
should be set to 0 when Dst is 8-bit, since it is not needed in this case.

The Lut parameter specifies the look-up table buffer. The LUT buffer must
have 512 entries of 16 bits each. The first half of the LUT is used to assign
a weight to positive differences, and the second half of the LUT is used to
assign a weight to negative differences. Each weight must be in the range
0.0 to 1.0 (inclusive) with 14 fractional bits (hence 1.0 is encoded as 0x4000,
0.5 is encoded as 0x2000, etc.). Note that, if Dst and Src2 have more than
8 bits, there are not enough LUT entries for all possible differences. In this
case, each entry is used for a range of differences. For example, if
DstBits = 12, there are 212 » 2 = 8192 possible differences, so each entry is
used for 8192/512 = 16 differences, that is, LUT[O] is used for differences of
0 to 15, LUTI[1] for differences of 16 to 31, etc.

296

imIntRecFilter

See also

The SrcBits parameter specifies the actual number of bits in the Src buffer
(note, for example, that Src can be a 16-bit buffer but contain only 10-bit
data). The allowed number of bits is 8 to 15.

The DstBits parameter specifies the actual number of bits in the Src2 and
Dst buffers. The allowed number of bits is 8 to 15, and must not be less than
SrcBits.

The Control parameter specifies the control buffer with which to perform
the function. Currently, there are no fields defined for this function. You can
set this parameter to O.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIntMac2(). Ifall of the LUT is set to a constant value, the effect is simple
(non-adaptive) recursive filtering, which might be performed faster using
imIntMac2().

imiIntScale 297

imIntScale ‘Asyncl ‘Mu/t/—band’

Synopsis Scale an image by integer or non-integer factors.

Format voidimlIntScale(Thread, SrcBuf, DstBuf, XFac, YFac, Control, OSB)

Description

long Thread,; Thread ID

long SrcBuf; Source buffer ID

long DstBuUf; Destination buffer ID
double XFac; Horizontal scale factor
double YFac; Vertical scale factor
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function scales an image by an integer or non-integer factor. This
function supports an interpolated and a non-interpolated mode. In
interpolated mode, an approximation to the specified scale factor might be
used; however, in non-interpolated mode, the exact scale factor that is
specified is used.

imIntScale() is the fastest way to perform an interpolated scaling by an
integer factor (particularly for factors of 2, 4, and 8). Note that if you specify
a non-integer factor in interpolated mode, the actual scale factor used might
be slightly different, in the interest of speed. However, integer factors will
be exactly as specified, as will those that can be expressed as the ratio of
two small integers (such as 1.5 = 3/2).

The Thread parameter specifies the thread to which to send imIntScale()
for execution.

The SrcBuf parameter specifies the buffer to scale. This buffer can be an
8-bit or 16-bit unsigned integer buffer.

The DstBuf parameter specifies the buffer in which to place the results of
the operation. This buffer must be of the same type as the source buffer, or
have a smaller pixel size.

The XFac and YFac parameters specify the horizontal and vertical scale
factors, respectively. These can be set to a value less than or greater than 1,
or to IM_FILL. In the latter case, the scale factor is automatically chosen
such that the re-scaled image will just fill the destination buffer, in the
horizontal and/or vertical dimension.

298

imIntScale

See also

In interpolated mode, the scaling factor is used exactly as specified when:
scaling factor (that is, XFac and/or YFac) = n/m,
where n and m are integers between 1 and 16 (inclusive).

In other cases, the scale factor used might be slightly different from the one
requested.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntScale() are listed below, with default
values in bold-face. Note that if the Control parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field Values Meaning
IM_CTL_RESAMPLE IM_NO_INTERPOLATE Don't interpolate.
IM_INTERPOLATE Perform bilinear
interpolation.
IM_CTL_SHIFT 1-8 Right shift by the

specified number of bits.
This field applies only
when SrcBuf is 16-bit
and DstBuf is 8-bit.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imIntSubsample(), imIntWarpPolynomial(), imIntZoom().
imIntSubsample() and imIntZoom() are the fastest way to scale an
image by an integer factor without interpolation.
imIntWarpPolynomial() is the slowest way to scale an image, but has the
fewest restrictions. imIntScale() can be used as a faster alternative to
imIntWarpPolynomial() when you only require scaling (without
interpolation).

imIntSubsample 299

iImIntSubsample [Async] [Pp| [NOA| [Mutti-band]

Synopsis Subsample an image.

Format void imIntSubsample(Thread, Src, Dst, Xfac, Yfac, Control, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID

long Xfac; Horizontal subsampling factor
long Yfac; Vertical subsampling factor
long Control; Control buffer ID (or 0)

long OSB; OSB ID (or 0)

This function subsamples an integer image. It divides the image into
Xfac x Yfac blocks, and then copies a value from each block into the
appropriate pixel of the destination buffer. This value can be the value of a
pixel at a specified position in the block, or the average of values in that
block.

The Thread parameter specifies the thread to which to send
imlIntSubsample() for execution.

The Src parameter specifies the buffer to subsample. If not interpolating
(that is, if not taking the average of values in a block), this buffer can be of
any integer type, or can be a 32-bit floating-point buffer. If interpolating,
this buffer must be either 8-bit unsigned integer or 16-bit signed integer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This buffer must be of the same type as the source buffer. Note
that in-place operation is not supported for this function.

The Xfac and Yfac parameters specify the horizontal and vertical
subsampling factors, respectively. These can be set to an integer value
between 1 and 16.

300

imIntSubsample

See also

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntSubsample() are listed below, with
default values in bold-face. Note that if the Control parameter is set to O
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning

IM_CTL_RESAMPLE IM_NO_INTERPOLATE Use the pixel at the
specified position within
the block (the position is
specified through the
IM_CTL_SAMPLE_X and
IM_CTL_SAMPLE_Y fields).

IM_INTERPOLATE Use the average value of
each block.
IM_MAX Use the maximum value of
each block.
IM_CTL_SAMPLE_X 0 - (Xfac-1) X coordinate of pixel to use
default: int(Xfac-1)/2 (if not interpolating).
IM_CTL_SAMPLE_Y 0 - (Yfac-1) Y coordinate of pixel to use

default: int(Yfac-1)/2 (if not interpolating).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imlIntScale(), imIntWarpPolynomial(), imIntZoom(). imIntScale() is
the fastest way to subsample or zoom an image by an integer factor with
interpolation. imIntWarpPolynomial() is the slowest way to subsample
an image but has the fewest restrictions. imIntZoom() can zoom an image.

imIntThickThin 301

IMmINntThickThin ‘Asyncl ‘Mu/z‘/—band’

Synopsis

Perform grayscale thinning or thickening.

Format void imIntThickThin(Thread, Src, Dst, Kernel, Op, Niter,

Description

Control, OSB)
long Thread,; Thread ID

long Src; Source buffer 1D

long Dst; Destination buffer 1D

long Kernel, Kernel buffer ID

long Op; Type of operation to perform
long Niter; Number of iterations

long Control; Control buffer ID (or 0)

long OSB; OSB ID (or 0)

This function performs a grayscale thinning or thickening on an integer
image, using a specified structuring element (kernel). Kernel values other
than O or 1 are ignored during the operation.

If you want to thin or thicken with a series of different kernels (one applied
after the other), you can use a multi-band kernel. Each band of the kernel
will be applied to the result of the previous one.

For information on the thinning and thickening algorithms, see the Genesis
Native Library User Guide.

Note that imIntThickThin() checks if any pixel values have changed
during the last iteration of the operation. If any have changed, the
IM_RES_IDEMPOTENCE field of the destination buffer is set to a non-zero
value (TRUE); otherwise, this field is set to O (FALSE). This field can later
be read using imBufGetField().

The Thread parameter specifies the thread to which to send
imIntThickThin() for execution.

The Src parameter specifies the buffer on which to perform the operation.
This must be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This must be of the same type as the source buffer. Note that
in-place operation is not supported for this function.

302

imIntThickThin

The Kernel parameter specifies the kernel buffer with which to perform
the operation. This must be a 3x3 buffer of any data type.

The Op parameter specifies the type of operation to perform. It can be set to:

IM_THICK Thickening operation.
IM_THIN Thinning operation.

The Niter parameter specifies the number of times to apply the operation.
Note that, for a multi-band kernel, the number of iterations is the number
of passes through the entire kernel. This parameter can be set to
IM_IDEMPOTENCE, which will cause the function to iterate until no more
changes are produced (for a thinning operation, this will typically occur
when the image has been reduced to its skeleton).

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntThickThin() are listed below, with
default values in bold-face. Note that if the Control parameter is set to O
or if certain fields are not added to the control buffer, the default values are
used.

Field Values Meaning

IM_CTL_OVERSCAN IM_TRANSPARENT Process the bordering
pixels of the source buffer
using the pixels of its
parent buffer as the
overscan pixels. If the
source buffer is not a
child buffer or if its
parent buffer can't
provide values for the
overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.

IM_REPLACE Process the bordering
pixels of the source buffer
by assigning a specific
value to the overscan
pixels. Specify the value
with the
IM_CTL_OVERSCAN_VAL
field.

See also

imIntThickThin 303

IM_CTL_OVERSCAN_VAL any integer Overscan replace value
(default is 0) (used when
IM_CTL_OVERSCAN is set

to IM_REPLACE).

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imBinMorphic(), imIntErodeDilate(). The imBinMorphic() function
can thin or thicken a binary image. The imIntErodeDilate() function can
perform grayscale erosion or dilation on an integer image.

304 imiIntTriadic

imIntTriadic ‘Async| ‘/n-P/ace| Wu/z‘/—band’
Synopsis Perform an arithmetic or logical operation with three operands.

Format void imIntTriadic(Thread, SrcA, SrcB, SrcC, Dst, Rotate, Op,

Description

Mode, OSB)
long Thread; Thread ID
long SrcA, First source operand (buffer ID or constant)
long SrcB; Second source operand (buffer 1D)
long SrcC; Third source operand (buffer ID or constant)
long Dst; Destination buffer ID
long Rotate; Amount to rotate SrcB operand
long Op; Type of operation to perform
long Mode; Operation mode
long OSB; OSB ID (or 0)

This function performs an arithmetic or logical operation between three
operands.

The SrcB operand must be an integer image; the other two operands can
be integer images or constants. In all cases, each non-constant input is
sign-extended to 32 bits and the SrcB input is rotated by a specified number
of bits before the operation is performed. If the destination buffer of the
operation has fewer than 32 bits, the high bits of the result are discarded.

The PP ALU opcode specifies the type of operation to perform. Predefined
opcodes exist for common operations but if one does not exist for the
operation you want to perform, you can derive its opcode; see the Genesis
Native Library User Guide for details.

The Thread parameter specifies the thread to which to send
imlIntTriadic() for execution.

The SrcA parameter specifies the first operand. This can be the identifier
of an image buffer or a specified constant. This operand can be of any integer
type.

The SrcB parameter specifies the second operand. This must be the
identifier of an image buffer. This operand can be of any integer type.

imiIntTriadic 305

The SrcC parameter specifies the third operand. This can be the identifier
of an image buffer or a specified constant. This operand can be of any integer
type.

The Dst parameter specifies the buffer in which to place the results of the
operation. This buffer can be of any integer type.

The Rotate parameter specifies the number of bits by which to rotate the
SrcB image buffer. This parameter can be set to an integer value between
-31 and 31. A positive value indicates a rotation to the left; a negative value
indicates a rotation to the right. Note that a rotation to the right causes the
least-significant bits to wrap around to the high bits of a pixel value; a
rotation to the left causes the high bits to wrap around to the
least-significant bits of a pixel value.

The Op parameter specifies the type of operation to perform. It can be set
to the required PP ALU opcode (that is, to the 32-bit part of the opcode that
resides in register dO for the instruction class EALU | | ROTATE) or to a

predefined opcode. The predefined opcodes are listed below.

IM_PP_PASS_A pass SrcA

IM_PP_PASS_B pass SrcB

IM_PP_PASS _C pass SrcC

IM_PP_PASS pass SrcA (same as IM_PP_PASS_A)

IM_PP_NOT ~SrcA

IM_PP_AND SrcA & SrcB

IM_PP_OR SrcA | SrcB

IM_PP_XOR SrcA " SrcB

IM_PP_XOR_XOR SrcA ” SrcB ~ SrcC

IM_PP_NAND ~(SrcA & SrcB)

IM_PP_NOR ~(SrcA | SrcB)

IM_PP_XNOR ~(SrcA ~ SrcB)

IM_PP_ADD_ADD SrcA + SrcB + SrcC (Only SrcC can be constant)

IM_PP_ADD_SUB SrcA + SrcB - SrcC (Only SrcC can be constant)

IM_PP_SUB_SUB SrcA - SrcB - SrcC (Only SrcC can be constant)

IM_PP_SRA_ADD SrcA + (SrcB & SrcC) i.e. shift right arithmetic
and add (sign bit is propagated as SrcB is rotated
right)

IM_PP_SRA_SUB SrcA - (SrcB & SrcC) i.e. shift right arithmetic

and subtract (sign bit is propagated as SrcB is
rotated right)

306 imiIntTriadic

IM_PP_ADD_ABS SrcA + | SrcB]| (SrcC must be constant 0)
IM_PP_SUB_ABS SrcA - | SrcB| (SrcC must be constant 0)
IM_PP_ADD_AND SrcA + (SrcB & SrcC)

IM_PP_SUB_AND SrcA - (SrcB & SrcC)

IM_PP_ADD_OR SrcA + (SrcB | SrcC)

IM_PP_SUB_OR SrcA - (SrcB | SrcC)

IM_PP_EXT_FIELD SrcB & SrcC
IM_PP_INS_FIELD (SrcA & SrcC) | (SrcB & ~SrcC)
IM_PP_ADD_FIELD (SrcA & SrcC) + (SrcB & SrcC)
IM_PP_MERGE (SrcA & SrcC) | (SrcB & ~SrcC)

Note that some operations require that you pass particular constants for
certain operands. For example, a bit-shift requires a rotate followed by a
boolean operation to mask out the unwanted bits. You must supply the mask
by passing the appropriate constant as the SrcB operand (see the
examples).

The Mode parameter specifies the mode of operation. It can be set to:

IM_DEFAULT All operands are images.
IM_CONSTANT_A SrcA is a constant.
IM_CONSTANT_C SrcC is a constant.
IM_CONSTANT_AC SrcA and SrcC are constants.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

Example The following code performs the operation A + (B >> 4). Note that the SrcC
operand is used to clear the unwanted bits (four in this case) that were
rotated from the least-significant bits into the most-significant bits.

imIntTriadic(Thr, A, B, OxOfffffff, Dst, -4, IM PP_ADD AND, IM_CONSTANT C, 0);

The following code merges A and B, using C as a pixel mask (i.e. passes A
where C is 0xff and B where C is 0). For more information on merging
images, see process.c in Appendix B.

‘1’m1ntTr‘1'ad1'c(Thr‘, A, B, C, Dst, 0, IM_PP_MERGE, IM DEFAULT, 0); ‘

The following code extracts bits 10-14 from B and right-justifies them (using
C to mask out the unwanted bits).

‘1’m1ntTr‘1'ad1'c(Thr‘, 0, B, 0x1f, Dst, -10, IM PP _EXT _FIELD, IM_CONSTANT AC, 0);

imIntTriadic 307

See also imBinTriadic(), imIntDyadic(), imIntMonadic(). TheimBinTriadic()
function can perform a logical operation on up to three binary images. The
imlIntDyadic() and imIntMonadic() functions perform an arithmetic or
logical operation on integer images.

308 imIntWarpLut

imintWarpLut [Async] [PP| [Multi-band]
Synopsis Perform a warping using a look-up table inverse address calculation.

Format void imIntWarpLut(Thread, Src, Dst, Xlut, Ylut, Control, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Xlut; X-LUT buffer ID

long Ylut; Y-LUT buffer ID

long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function warps an integer image using a look-up table (LUT) address
mapping. Each pixel position of the destination buffer,

(X4, Yq), 9ets associated with a specific point (address) in the source buffer,
(Xs: Yg); Xg is determined from (xq, Yq) through one LUT, and y; is determined
from (Xg, yg) through another LUT. The pixel value of (xg, yq) is then
determined from its associated point and from a specified interpolation
mode.

The LUTs with which to perform the warping can be user-supplied or, for
3x3 matrix-defined warpings, automatically generated using
imGenWarpLutMatrix(). In general, X and yg are non-integer values and
the LUTSs contain fixed-point values with the precision specified in the
control buffer. The points x5 and yg are interpreted as signed numbers so
that transparent overscan can be supported (note, for example, that
negative y; values correspond to pixels above the top line of the source

buffer).

The Thread parameter specifies the thread to which to send
imIntWarpLut() for execution.

The Src parameter specifies the buffer on which to perform the warping.
This can be of any integer type if not interpolating. If interpolating, this
must be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to place the results of the
warping. This buffer must be of the same type as the source buffer. Note
that in-place operation is not supported for this function.

imintWarpLut 309

The Xlut parameter specifies the two-dimensional LUT buffer from which
X is determined. This mustbe a signed, 16-bit integer buffer and of the same
size as the destination buffer.

The Ylut parameter specifies the two-dimensional LUT buffer from which
Y, is determined. This must be asigned, 16-bit integer buffer and of the same

size as the destination buffer.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntWarpLut() are listed below, with

default values in bold-face. Note that if the Control parameter is set to 0
or if certain fields are not added to the control buffer, the default values are

used.
Field Values Meaning
IM_CTL_PRECISION 0-n Number of fractional

bits in the LUT buffers
for xsand yg. This field

only has an effect if
you are interpolating
(that is, if
IM_CTL_RESAMPLE is
set to IM_BILINEAR).

IM_CTL_RESAMPLE IM_NEAREST_NEIGHBOR Don't interpolate. The
points x5 and yg are
interpreted as
integers.

IM_BILINEAR Perform bilinear
interpolation.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Note Various overscan modes can be implemented simply by using appropriate
address values. For transparent overscan, use values which address pixels
outside the source buffer (if the source buffer is a child buffer). For replace
overscan, use aconstant address which points to a source pixel with a known
value.

Example See process.c in Appendix B.

310 imIntWarpPolynomial

imIntWarpPolynomial [Async| [PP| [Mutti-band]|
Synopsis Perform a warping using polynomial inverse address calculation.

Format void imIntWarpPolynomial(Thread, Src, Dst, Coef, Control, OSB)

Description

long Thread; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer ID
long Coef; Warp coefficient buffer ID
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function warps an integer image using a first-order polynomial
mapping. Each pixel position of the destination buffer, (x4, yq), gets

associated with a specific point in the source buffer, (xs, ys) using the
following equations:

Xs=4ag T a;Xq + ayyy
Ys = bg + biXg + byyy

The pixel value of (xq4, Yq) is then determined from its associated point and
from a specified interpolation mode.

Note that a first-order warping is equivalent to linearly translating, scaling,
rotating, and shearing the source image. First-order warp coefficients can
be generated using imGenWarplstOrder().

The Thread parameter specifies the thread to which to send
imIntWarpPolynomial() for execution.

The Src parameter specifies the buffer on which to perform the operation.
This can be of any integer type if not interpolating. If interpolating, this
must be an 8-bit or 16-bit integer buffer.

The Dst parameter specifies the buffer in which to write the results of the
operation. This buffer must be of the same type as the source buffer. Note
that in-place operation is not supported for this function.

imIntWarpPolynomial 311

The Coef parameter specifies the buffer containing the required
coefficients. This buffer must be a single-band 32-bit floating-point buffer,
of size 3x2 or 3x3. If the source buffer has more than one band, the same
coefficients are used for each band.

If the Coef buffer is 3x2, the first row specifies the a, coefficients and the
second row specifies the b, coefficients.

Ifthe Coefbuffer is 3x3, the order of coefficients is the same as that expected
by imGenWarpLutMatrix(). Note that the third row of coefficients is
ignored (they are assumed to be 0, 0, 1) since imIntWarpPolynomial()
only performs first-order warpings.

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntWarpPolynomial() are listed below,
with default values in bold-face. Note that if the Control parameter is set
to O or if certain fields are not added to the control buffer, the default values
are used.

Field Values Meaning
IM_CTL_RESAMPLE IM_NEAREST_NEIGHBOR Don't interpolate.
IM_BILINEAR Perform bilinear
interpolation.
IM_BICUBIC Perform bicubic
interpolation.
IM_CTL_OVERSCAN IM_TRANSPARENT When (xg, y,) falls

outside the source
buffer, use pixels of its
parent buffer as the
overscan pixels. If the
source buffer is not a
child buffer or if its
parent buffer can't
provide values for the
overscan pixels, the
overscan pixels will be
undefined, leading to
unpredictable results.
IM_REPLACE When (xg, ys) falls
outside the source

buffer, set the overscan
pixels to 0.

312

imIntWarpPolynomial

Note

Example

See also

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

Every pixel of the destination buffer is always written, regardless of the size
of the source buffer. If your transformation requires source pixels outside
the source buffer, you should use replace overscan mode.

See process.c in Appendix B.

imIntFlip(), imIntScale(), imIntSubsample(), imIntZoom(). If the
required warping can be performed using one of these functions, your
application will run faster.

imintZoom 313

imIintZoom ‘Async| ‘I\IOA’ Wu/z‘/—band’

Synopsis Zoom an image.

Format void imIntZoom(Thread, Src, Dst, Xfac, Yfac, Control, OSB)

Description

long Thread,; Thread ID

long Src; Source buffer ID

long Dst; Destination buffer 1D
long Xfac; Horizontal zooming factor
long Yfac; Vertical zooming factor
long Control; Control buffer ID (or 0)
long OSB; OSB ID (or 0)

This function zooms an integer image. It replicates each pixel into an
Xfac x Yfac block of pixels, and then copies this block to the appropriate
area of the destination buffer. It can then apply an averaging filter (of size
Xfac x Yfac) to the destination buffer, thereby producing an interpolated
zoom.

The Thread parameter specifies the thread to which to send imIntZoom()
for execution.

The Src parameter specifies the buffer to zoom. If not interpolating, this
buffer can be of any integer type or can be a 32-bit floating-point buffer. If
interpolating, this buffer can be 8-bit unsigned integer or 16-bit signed
integer.

The Dst parameter specifies the buffer in which to place the results of the
operation. This buffer must be of the same type as the source buffer. If this
buffer is too small, the result is clipped to fit. Note that in-place operation
is not supported for this function.

The Xfac and Yfac parameters specify the horizontal and vertical zooming
factors, respectively. These can be set to an integer value between 1 and 16.

314

See also

imintZoom

The Control parameter specifies the control buffer with which to perform
the function. Relevant fields for imIntZoom() are listed below, with default
values in bold-face. Note that if the Control parameter is set to O or if

certain fields are not added to the control buffer, the default values are used.

Field
IM_CTL_RESAMPLE

IM_CTL_CENTER_X
IM_CTL_CENTER_Y

IM_CTL_OVERSCAN
(this field only
applies if the
destination buffer is
to be filtered)

Values

IM_NO_INTERPOLATE

IM_INTERPOLATE

0 — (Xfac-1)
default: int(Xfac-1)/2
0 — (Yfac-1)

default: int(Yfac-1)/2
IM_TRANSPARENT

IM_REPLACE

Meaning

Don't filter the destination
buffer.

Filter the destination
buffer.

X coordinate of filter center.
Y coordinate of filter center.

Filter the bordering pixels
of the source buffer using
the pixels of its parent
buffer as the overscan
pixels. If the source buffer
is not a child buffer or if its
parent buffer can't provide
values for the overscan
pixels, the overscan pixels
will be undefined, leading
to unpredictable results.

Filter the bordering pixels
of the source buffer by
setting the overscan pixels
to 0.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imlIntScale(), imIntSubsample(), imIntwWarpPolynomial().
imIntScale() is the fastest way to zoom or subsample an image by an
integer factor with interpolation. imIntWarpPolynomial() is the slowest
way to zoom an image but has the fewest restrictions. imlntSubsample()
can subsample an image.

imJpegAlloc 315

imJpegAlloc

Synopsis Allocate a JPEG buffer.

Format void imJpegAlloc(Thread, Control, JpegPtr)

Description

long Thread,; Thread ID
long Control; Control buffer ID (or 0)
long* JpegPtr; Address of JPEG buffer ID

This function allocates a JPEG buffer. JPEG buffers are used to hold JPEG
compressed images.

Note that the control settings of a JPEG buffer affect how an image is
compressed into that JPEG buffer (using imJpegEncode()), or how that
JPEG buffer is decompressed (using imJpegDecode()). When a JPEG
buffer is allocated, these control settings are set to default values. For a list
of control settings and their default values, see imJpegControl().

The Thread parameter specifies the thread to which to send
imJpegAlloc() for execution.

The Control parameter specifies the control buffer with which to perform
the function. This parameter must be set to O.

The JpegPtr parameter specifies the address in which to return the
identifier of the JPEG buffer. If the JPEG buffer could not be allocated, O is
returned.

316 imJpegControl

imJpegControl

Synopsis

Change a control setting of a JPEG buffer.

Format void imJpegControl(Thread, Jpeg, Item, Value)

Description

long Thread; Thread ID

long Jpeg; JPEG buffer ID
long Item; Item to set
double Value; Value for Item

This function changes a control setting of a JPEG buffer. Among other
things, these settings affect how an image is compressed into that JPEG
buffer (using imJpegEncode()), or how that JPEG buffer is decompressed
(using imJpegDecode()).

The Thread parameter specifies the thread to which to send
imJpegControl() for execution.

The Jpeg parameter specifies the JPEG buffer.

The Item parameter specifies the setting to change, while the Value
parameter specifies the value for this setting. The table below lists available
settings, and their allowable values. The default values of settings are in
bold-face.

Item Values Meaning
IM_JPEG_MODE IM_BASELINE Perform lossy compression
(baseline sequential mode).

IM_LOSSLESS Perform lossless
compression.

IM_JPEG_PREDICTOR 1 Use predictor #1 for lossless
compression modes.
0 Don't use a predictor for
lossless compression modes.
IM_JPEG_Q_FACTOR 1-99 Quality factor for lossy

(default: 50) compression modes. The
higher the factor, the more
the compression, but the
lower the image quality.

IM_JPEG_RESTART_ROWS

IM_JPEG_SAVE_TABLES

IM_JPEG_SAVE_IMAGE

IM_JPEG_SIZE_BIT

IM_JPEG_NUM_BLOCKS

IM_JPEG_RESET

(the Value parameter for
this item is ignored; any

value can be given for it)

any integer
(default: 32)

IM_ENABLE

IM_DISABLE
IM_ENABLE

IM_DISABLE

9-16
(default value
depends on
source buffer
size)

any integer
(default: 1)

imJpegControl 317

Place restart markers after
every n rows of data (for
lossless compressions) or
after every n 8x8 blocks of
data (for lossy
compressions).

Save the compression tables,
as well as the compressed
image, when writing to a
file.

Don't save the compression
tables.

Include the compressed
image when writing to a file.

Don't include the
compressed image. (This
allows a table-only file to be
created.)

Actual number of bits per
pixel in the source buffer.
This setting only applies to
lossless compressions, since
the source buffer can be
16-bit but only contain, for
example, 10- or 12-bit data.
(For lossy compressions, the
source buffer must always be
8-bit).

Divide an image (internally)
into the specified number of
blocks, then compress it
block by block. There are
some restrictions on the size
of each block; for details, see
the Genesis Native Library
User Guide.

Free all memory associated
with the JPEG buffer. This
also stops a block-by-block
compression before all blocks
are compressed.

318 imJpegControl

The following settings affect all bands of a multi-band image that is to be
compressed. If necessary, you can set different values for each band, using
imJpegControlBand().

Item Values Meaning

IM_JPEG_TABLE QUANT 0-3 Quantization table to use. This table
is only used for lossy compression

modes.

IM_JPEG_TABLE_AC 0-3 AC Huffman table to use. This table is
only used for lossy compression
modes.

IM_JPEG_TABLE_DC 0-3 DC Huffman table to use. This table is

used for lossy and lossless
compression modes.

Example See jpeg.c in Appendix B.

imJpegControlBand 319

imJpegControlBand
Synopsis Change a control setting of a JPEG buffer, for a specific band.
Format imJpegControlBand(Thread, Jpeg, Band, Item, Value)

long Thread,; Thread ID
long Jpeg; JPEG buffer ID
long Band; Band number
long Item; Item to set
double Value; Value for Item

Description This function changes a control setting of a JPEG buffer, for a specific band.

This function is useful if you are compressing a multi-band image and want
one or more control settings to be different for each band.

The Thread parameter specifies the thread to which to send
imJpegControlBand() for execution.

The Jpeg parameter specifies the JPEG buffer.

The Band parameter specifies the band. This parameter must be set to the
number of the required band; the valid range is O to 3.

The Item parameter specifies the setting to change, while the Value
parameter specifies the value for this setting. The table below lists settings
that can be changed for each band, and their allowable values.

Item Values Meaning

IM_JPEG_TABLE_QUANT 0 -3 Quantization table to use. This table
is only used for lossy compression
modes.

IM_JPEG_TABLE_AC 0-3 AC Huffman table to use. This table
is only used for lossy compression
modes.

IM_JPEG_TABLE_DC 0-3 DC Huffman table to use. This table

is used for lossy and lossless
compression modes.

320 imJpegDecode

imJpegDecode [Async] [PP| [NOA|

Synopsis

Decompress a compressed image.

Format void imJpegDecode(Thread, Buf, Jpeg, OSB)

Description

long Thread; Thread ID

long Buf; Destination buffer ID
long Jpeg; JPEG buffer ID
long OSB; OSB ID (or 0)

This function decompresses a JPEG compressed image.

Note that the control settings of the JPEG buffer affects how the image is
decompressed. These control settings should not be changed before
decompressing because, for the reconstructed image to match the original
image, the same controls must be used to compress and decompress.

The Thread parameter specifies the thread to which to send
imJpegDecode() for execution.

The Buf parameter specifies the buffer in which to place the decompressed
image. This buffer must be of the appropriate size and type to hold the
decompressed image.

The Jpeg parameter specifies the JPEG buffer containing the compressed
image.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

Note The NOA is only used for lossless compression modes.

Example See jpeg.c in Appendix B.

imJpegEncode 321

iImJpegEncode [Async] [pP| [NOA]

Synopsis Compress an image.

Format void imJdpegEncode(Thread, Buf, Jpeg, OSB)

Description

long Thread,; Thread ID

long Buf; Source buffer ID
long Jpeg; JPEG buffer ID
long OSB; OSB ID (or 0)

This function compresses an image.

Note that the control settings of the JPEG buffer affect how the image is
compressed. You can change these settings using imJpegControl(),
imJpegControlBand(), and/or imJpegPutTable().

The Thread parameter specifies the thread to which to send
imJpegEncode() for execution.

The Buf parameter specifies the buffer to compress. For a lossless
compression, this can be an 8-bit or 16-bit integer buffer, with 1 to 4 bands.
For a lossy compression, this must be an 8-bit integer buffer, with 1 to 4
bands.

The Jpeg parameter specifies the JPEG buffer in which to place the
compressed image.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

Note The NOA is only used for lossless compression modes.

Example See jpeg.c in Appendix B.

322 imJpegFree

imJpegFree

Synopsis Free a JPEG buffer.
Format void imJpegFree(Thread, Jpeg)

long Thread; Thread ID
long Jpeg; Jpeg buffer ID

Description This function deallocates a previously allocated JPEG buffer.

The Thread parameter specifies the thread to which to send imJpegFree()
for execution.

The Jpeg parameter specifies the JPEG buffer to deallocate.

imJpegGetTable 323

imJpegGetTable

Synopsis Transfer a JPEG table to Host memory.

Format void imJpegGetTable(Thread, Jpeg, TableType, TableNum,

Description

TableSizePtr, TablePtr)

long Thread,; Thread ID

long Jpeg; JPEG buffer ID

long TableType; Table type

long TableNum,; Table number

long* TableSizePtr; Address in which to return table size
void* TablePtr; Address of array

This function transfers a specified table of a JPEG buffer to an array in Host
memory.

The Thread parameter specifies the thread to which to send
imJpegGetTable() for execution.

The Jpeg parameter specifies the JPEG buffer containing the required
table.

The TableType parameter specifies the type of table to transfer. It can be
set to:

IM_JPEG_TABLE_QUANT Quantization table.
IM_JPEG_TABLE_AC AC Huffman table.
IM_JPEG_TABLE_DC DC Huffman table.

The TableNum parameter specifies the number of the specified table type.
It can be set to a number between 0 and 3.

The TableSizePtr parameter specifies the address in which to return the
size of the transferred table (in bytes).

The TablePtr parameter specifies the address of the array in which to place
the table.

324 imJpeglnquire

imJpeglnquire

Synopsis

Format

Description

Inquire about a JPEG buffer.
long imJpeglnquire(Thread, Jpeg, Item, ValuePtr)

long Thread; Thread ID
long Jpeg; JPEG buffer ID
long Item; Attribute about which to inquire

void* ValuePtr; Address of return value (or NULL)
This function inquires about an attribute of a specified JPEG buffer.

Note that certain attributes describe the original image that was
compressed into the JPEG buffer. Therefore, if you are decompressing an
image and do not know the buffer attributes of the original image, you can
use imJpeglnquire() to allocate an appropriate buffer (by passing the
return values of these attributes to imBufAlloc()).

The Thread parameter specifies the thread to which to send
imJpeglnquire() for execution.

The Jpeg parameter specifies the JPEG buffer.

The Item parameter specifies the attribute about which to inquire. It can
be set to:

IM_JPEG_MODE Mode of operation: IM_BASELINE or
IM_LOSSLESS.

IM_JPEG_PREDICTOR Predictor for lossless compression modes.

IM_JPEG_Q_FACTOR Quality factor for lossy compression
modes.

IM_JPEG_RESTART_ROWS Number of rows after which restart
markers are placed.

IM_JPEG_SAVE_TABLES Whether tables are saved to the JPEG
buffer (non-zero i.e. TRUE) or not saved
(zero i.e. FALSE).

IM_JPEG_SAVE_IMAGE Whether the image is saved to the JPEG
buffer (non-zero i.e. TRUE) or not saved
(zero i.e. FALSE).

IM_JPEG_TABLE_QUANT Quantization table used.
IM_JPEG_TABLE_AC AC Huffman table used.
IM_JPEG_TABLE_DC DC Huffman table used.

imJpeglnquire 325

The following attributes can only be inquired if the JPEG buffer contains a
compressed image (that is, if the JPEG buffer was used in a call to
imJpegEncode(), imJpegRead(), or imJpegReadBuf(), or was created
by imJpegRestore()).

IM_JPEG_SIZE Size of compressed image (in bytes).

IM_JPEG_SIZE_X Width of the original image (can be passed to
imBufAlloc()).

IM_JPEG_SIZE_Y Height of the original image (can be passed to
imBufAlloc()).

IM_JPEG_SIZE_BIT Number of bits per pixel in the original image.

IM_JPEG_NUM_BANDS Number of bands in the original image (can be
passed to imBufAlloc()).

IM_JPEG_TYPE Data type of the original image (can be passed
to imBufAlloc()).

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imJpeglnquire() also returns this value,
ValuePtr can be set to NULL.

Return value The returned value is the value of the inquired attribute, cast to long if
necessary.

Example See jpeg.c in Appendix B.

326 imJpegPutTable

imJpegPutTable

Synopsis

Transfer a table from Host memory to a JPEG buffer.

Format void imJpegPutTable(Thread, Jpeg, TableType, TableNum,

Description

TableSize, TablePtr)

long Thread; Thread ID

long Jpeg; JPEG buffer ID
long TableType; Table type

long TableNum; Table number
long TableSize; Table size

void* TablePtr; Address of array

This function transfers a table from an array in Host memory to a JPEG
buffer.

The Thread parameter specifies the thread to which to send
imJpegPutTable() for execution.

The Jpeg parameter specifies the JPEG buffer into which to transfer the
table.

The TableType parameter specifies the type of table being transferred. It
can be set to:

IM_JPEG_TABLE_QUANT Quantization table.
IM_JPEG_TABLE_AC AC Huffman table.
IM_JPEG_TABLE_DC DC Huffman table.

The TableNum parameter specifies the number of the specified table type
to update. It can be set to a number between 0 and 3.

The TableSize parameter specifies the size (in bytes) of the table being
transferred.

The TablePtr parameter specifies the address of the array containing the
table to transfer. The array should be a byte array with 64 values for a
guantization table, and a short array for a Huffman table.

imJpegRead 327

imJpegRead

Synopsis

Read a compressed image from an open file.

Format void imJpegRead(Thread, FileHandle, Jpeg)

Description

See also

long Thread; Thread ID
FILE* FileHandle; Handle of open file
long Jpeg; JPEG buffer ID

This function reads a compressed image from an open file to an existing
JPEG buffer.

Note that tables and other controls in the file overwrite the corresponding
controls in the JPEG buffer. If corresponding controls are not found in the
file, the current controls in the JPEG buffer are used.

The Thread parameter specifies the thread to which to send
imJpegRead() for execution.

The FileHandle parameter specifies the handle of the open file (opened
with fopen()). Before calling this function, the file must be positioned just
before the start of the compressed image. After the function call, the file
remains open and is positioned immediately after the compressed image.

The Jpeg parameter specifies the JPEG buffer in which to store the
compressed image.

imJpegReadBuf(), imJpegRestore(). The imJpegReadBuf() function
reads a compressed image from an ordinary (contiguous) buffer. The
imJpegRestore() function loads a compressed image from a file into an
automatically allocated JPEG buffer.

328 imJpegReadBuf

imJpegReadBuf

Synopsis

Format

Description

See also

Transfer a JPEG compressed image from an ordinary (contiguous) buffer to
a JPEG buffer.

void imJpegReadBuf(Thread, Buf, Jpeg, Start, OSB)

long Thread; Thread ID

long Buf; Source buffer 1D
long Jpeg; JPEG buffer ID
long Start; Byte offset

long OSB; OSB ID (or 0)

This function transfers a JPEG compressed image from an ordinary
(contiguous) buffer to an existing JPEG buffer. This operation will permit
you to use other JPEG functions, which require that image data be in a
JPEG buffer.

Note that tables and other control fields in the ordinary buffer overwrite
the corresponding control fields in the JPEG buffer. If corresponding control
fields are not found in the ordinary buffer, the current control fields in the
JPEG buffer are used.

The Thread parameter specifies the thread to which to send
imJpegReadBuf() for execution.

The Buf parameter specifies the ordinary (contiguous) buffer containing the
compressed image.

The Jpeg parameter specifies the JPEG buffer in which to store the
compressed image.

The Start parameter specifies the byte offset, from the beginning of the
source buffer, at which the compressed image is stored.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imJpegRead(), imJpegRestore(). These functions can transfer
compressed images from files into JPEG buffers directly.

imJpegReadBuf 329

Note It is recommended to copy ordinary Host buffers to ordinary processing
buffers before calling imJpegReadBuf() because it is much slower to read
from a Host buffer than from a buffer in processing memory. This is
particularly useful for JPEG lossless compression when the compressed
image is relatively large.

330 imJpegRestore

imJpegRestore
Synopsis Load a compressed image from a file into an automatically allocated JPEG
buffer.
Format void imJpegRestore(Thread, FileName, JpegPtr)
long Thread; Thread ID
char* FileName; File name
long* JpegPtr; Address of JPEG buffer ID
Description This function allocates a JPEG buffer, and loads it with a compressed image
from a file. You can then inquire about the attributes of the compressed
image using imJpeglnquire() (in order, for example, to allocate a suitable
buffer in which to decompress the image).
Note that all controls that were used to perform the compression are copied
from the file to the JPEG buffer. These should not be changed before
decompressing because, for the reconstructed image to match the original
image, the same controls must be used to decompress.
The Thread parameter specifies the thread to which to send
imJpegRestore() for execution.
The FileName parameter specifies the name of the file from which to load
the JPEG buffer.
The JpegPtr parameter specifies the address in which to return the
identifier of the JPEG buffer. If the JPEG buffer could not be allocated, O is
returned.
See also imJpegRead(), imJpegReadBuf(). The imJpegRead() function allows

you to load several images from the same file. The imJpegReadBuf()
function reads a compressed image from an ordinary (contiguous) buffer.

imJpegSave 331

imJpegSave

Synopsis Save a compressed image from a JPEG buffer to a file.

Format void imJpegSave(Thread, FileName, Jpeg)

Description

See also

long Thread,; Thread ID
char* FileName; File name
long Jpeg; JPEG buffer ID

This function saves a compressed image from a JPEG buffer to a file. Note
that tables and other controls in the JPEG buffer are also written to the file.

The Thread parameter specifies the thread towhich to send imJpegSave()
for execution.

The FileName parameter specifies the name of the file in which to save the
compressed image.

The Jpeg parameter specifies the JPEG buffer containing the compressed
image to save.

imJpegWriteBuf(). This function writes a compressed image from a JPEG
buffer to an ordinary (contiguous) buffer. You can then save the data to disk
using whatever method you like. Depending on your system, this might be
faster than using imJpegSave().

332 imJpegWrite

imJpegWrite

Synopsis Write a compressed image to an open file.

Format void imJpegWrite(Thread, FileHandle, Jpeg)

long Thread; Thread ID
FILE* FileHandle; Handle of open file
long Jpeg; JPEG buffer ID

Description This function writes a compressed image from a JPEG buffer to an open file.
Note that tables and other controls in the JPEG buffer are also written to
the file.

The Thread parameter specifies the thread to which to send
imJpegWrite() for execution.

The FileHandle parameter specifies the handle of the open file (opened
with fopen()). The compressed image is written starting at the current file
position. After writing, the file remains open and is positioned immediately
after the image just written.

The Jpeg parameter specifies the JPEG buffer containing the compressed
image to write.

imJpegWriteBuf 333

imJpegWriteBuf

Synopsis

Format

Description

See also

Transfer a compressed image from a JPEG buffer to an ordinary
(contiguous) buffer.

void imJpegWriteBuf(Thread, Buf, Jpeg, Start, OSB)
long Thread,; Thread ID

long Buf; Destination buffer 1D
long Jpeg; JPEG buffer ID

long Start; Byte offset

long OSB; OSB ID (or 0)

This function transfers a compressed image from a JPEG buffer to an
ordinary (contiguous) buffer. Note that the compressed image remains
compressed in the ordinary buffer, allowing you to save the data to disk
using whichever method is fastest on your system. Also, note that tables
and other controls in the JPEG buffer are written to the ordinary buffer as
well. However, it is not possible to operate on compressed image data in an
ordinary buffer using the imJpeg...() functions; these functions require
that image data be in a JPEG buffer.

The Thread parameter specifies the thread to which to send
imJpegWriteBuf() for execution.

The Buf parameter specifies the buffer in which to write the compressed
image. This buffer should be big enough to hold all of the data. If necessary,
you can inquire about the required size of the buffer using the IM_JPEG_SIZE
item of imJpeglnquire().

The Jpeg parameter specifies the JPEG buffer containing the compressed
image to write.

The Start parameter specifies the byte offset, from the beginning of the
destination buffer, at which to start writing the compressed image. This
parameter allows you to store several compressed images in a single buffer.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imJpegReadBuf().Use the imJdpegReadBuf() function to transfer the
compressed image back to a JPEG buffer.

334 imPatAllocAutoModel

imPatAllocAutoModel [Sync | [Pp] [NOA]

Synopsis

Automatically select and allocate a pattern matching model.

Format voidimPatAllocAutoModel(Thread, SrcBuf, XSize, YSize, XUncert,

Description

YUncert, Type, Mode, ModelPtr)

long Thread; Thread ID

long SrcBuUf; Source buffer ID

long XSize; Model width

long YSize; Model height

long XUncert; Maximum uncertainty in X
long YUncert; Maximum uncertainty in Y
long Type; Model type

long Mode; Mode of operation

long *ModelPtr; Address of model 1D(s)

This function automatically searches for and allocates one or more models
of the specified size from a specified source buffer. Each model is unique
within the area defined by the maximum positional uncertainty in the X
and Y direction (XUncert and YUncert), respectively. It is not guaranteed
to be unique within the entire target image.

Each model will be allocated with the usual default search parameters,
except that the search position will be set to the actual position of the model,
plus or minus the specified positional uncertainty.

Automatic allocation can take several seconds, and the speed can vary
according to the Mode parameter setting.

The Thread parameter specifies the thread to which to send
imPatAllocAutoModel() for execution.

The SrcBuf parameter specifies the buffer from which to allocate the model.
This must be an unsigned 8-bit buffer.

The XSize and YSize parameters specify the width and height of the model,
respectively.

imPatAllocAutoModel 335

The XUncertand YUncert parameters specify the maximum displacement
(shift) expected between the reference position of the model(s) in the source
and target images. These values represent the number of pixels by which
the target location can be offset from the model location, in either direction
on the vertical and horizontal axes. This function takes into account these
uncertainty values and automatically selects models that are far enough
from the image border to ensure their presence in the target images. This
means that the positional uncertainty also corresponds to the minimum
distance from the image border (in the corresponding X and Y directions),
from which the function can select a model.

The Type parameter specifies the model type. This parameter must be set
to IM_NORMALIZED.

The Mode parameter specifies the manner in which this function operates.
The supported operating mode settings are:

IM_BEST The slowest operating speed,
which produces the best overall
result.

IM_FAST A fast operating speed.

IM_VERY_FAST The fastest operating speed.

IM_DEFAULT Same as IM_FAST

IM_MULTIPLE+n Allocate more than one modd,

where nisthe number of models
to alocate (up to a maximum of
10). You can combine this mode
with one of the other operating
speed modes. By default, only
one model is chosen (n=1).

The ModelPtr parameter specifies the address in which to return the model
identifier(s). The ModelPtr must point to enough memory to hold all the
returned model IDs. During each attempt to search for and allocate a model,
if no suitable model is not found (allocated), O is returned. Therefore, it is
possible that some model IDs will be 0.

336 imPatAllocModel

imPatAllocModel

Synopsis Allocate a pattern matching model.

Format void imPatAllocModel(Thread, SrcBuf, XOff, YOff, XSize, YSize,

Description

Type, ModelPtr)

long Thread; Thread ID

long SrcBuUf; Source buffer ID

long XOff; X coordinate of model origin
long YOff; Y coordinate of model origin
long XSize; Model width

long YSize; Model height

long Type; Model type

long* ModelPtr; Address of model ID
This function allocates a model from a specified source buffer.

Note that the search parameters of a model affect how a search is performed
with that model. When a model is allocated, these search parameters are
set to default values (listed below). If a default value is not suitable, use the
appropriate imPatSet...() function.

Acceptance level: 70%

Positional accuracy: IM_MEDIUM (% 0.25 pixels)
Model center (hot spot): int ((Xsize-1)/2, (Ysize-1)/2)
Certainty level: 80%

Number of matches: 1

Search region: IM_ALL (entire image)
Search speed: IM_MEDIUM

The Thread parameter specifies the thread to which to send
imPatAllocModel() for execution.

The SrcBuf parameter specifies the buffer from which to allocate the model.
This must be an unsigned 8-bit integer buffer.

The XOff and YOff parameters specify the X and Y coordinates of the model
origin, relative to the top-left corner of the source buffer.

The XSize and YSize parameters specify the width and height of the model,
respectively.

imPatAllocModel 337

The Type parameter specifies the model type. This parameter must be set
to IM_NORMALIZED.

If model allocation is time critical in your application, you can speed it up
by combining one of the following flags with IM_NORMALIZED:

IM_FAST Faster model allocation. This leads to
some very small differences in the
model, but this should not affect
matching in most applications.

IM_VERY_FAST Fastest model allocation. This is a bit
more likely to cause problems than
IM_FAST.

The ModelPtr parameter specifies the address in which to return the model
identifier. If the model could not be allocated, O is returned.

338 imPatAllocResult

imPatAllocResult

Synopsis Allocate a pattern matching result buffer.

Format void imPatAllocResult(Thread, NumEntries, ResultPtr)

Description

long Thread; Thread ID
long NumEntries; Number of result buffer entries
long* ResultPtr; Result buffer 1D

This function allocates a pattern matching result buffer.

Note that a pattern matching result buffer is used to store the results of a
pattern matching operation.

The Thread parameter specifies the thread to which to send
imPatAllocResult() for execution.

The NumEntries parameter specifies the number of entries for the result
buffer. Note that this should be at least equal to the number of matches you
want found.

The ResultPtr parameter specifies the address in which to return the result
buffer identifier. If the result buffer could not be allocated, O is returned.

imPatCopy 339

imPatCopy

Synopsis Copy a pattern matching model.

Format void imPatCopy(Thread, Model, DstBuf, Mode, OSB)

Description

long Thread,; Thread ID

long Model; Model ID

long DstBuUf; Destination buffer ID
long Mode; Mode of operation
long OSB; OSB ID (or 0)

This function copies a model to a destination buffer. This function can also
be used to copy only the model’s "don't care" pixels.

The Thread parameter specifies the thread to which to send imPatCopy()
for execution.

The Model parameter specifies the model to copy.

The DstBuf parameter specifies the destination buffer. This must be an
unsigned 8-bit integer buffer, and be at least as large as the model.

The Mode parameter specifies the mode of operation. It can be set to:

IM_DEFAULT Copy the model to the buffer.
IM_DONT_CARE Copy only the model's "don’t care" pixels to the buffer.

When copying the entire model, any "don’t care" pixels in the model are
given their original values. When copying only the model’s "don’t care"
pixels, "don’t care" pixels are given the value zero, while other pixels in the
destination buffer are not overwritten. To give "don’t care" pixels a value
other than zero, combine (using + or |) IM_DONT_CARE with the required
value (for example, IM_DONT_CARE+255). To clear pixels in the destination
buffer that are not "don't care" to the value zero, combine IM_DONT_CARE
with IM_CLEAR_BACKGROUND (for example,
IM_DONT_CARE+255+IM_CLEAR_BACKGROUND).

Note that, by copying the entire model to a buffer and then copying only the
model’s "don’t care" pixels to the same buffer, you can overlay "don't care"
pixels onto the original model.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

340 imPatFindModel

imPatFindModel [Async]| [PP] [NOA|

Synopsis Find a pattern matching model in an image.
Format void imPatFindModel(Thread, SrcBuf, Model, Result, OSB)
long Thread; Thread ID

long SrcBuUf; Source buffer ID
long Model; Model ID

long Result; Result buffer ID
long OSB; OSB ID (or 0)

Description This function searches for a model in an image. The results of the search
are written to the specified result buffer. Specifically, the match score and
coordinates of each found match are written to the result buffer (in
decreasing order of match score). Results can be read using
imPatGetResult().

Note that the search parameters of the model affect how the search is
performed. To change the value of a search parameter, use the appropriate
imPatSet...() function.

The Thread parameter specifies the thread to which to send
imPatFindModel() for execution.

The SrcBuf parameter specifies the buffer in which to search for the model.
This must be an unsigned 8-bit integer buffer.

The Model parameter specifies the model for which to search.
The Result parameter specifies the result buffer in which to store results.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

imPatFree 341

imPatFree

Synopsis Free a pattern matching model or result buffer.
Format void imPatFree(Thread, ModelOrResult)

long Thread,; Thread ID
long ModelOrResult; Model or result buffer ID

Description This function deallocates a previously allocated model or result buffer.

The Thread parameter specifies the thread to which to send imPatFree()
for execution.

The ModelOrResult parameter specifies the model or result buffer to
deallocate.

342 imPatGetNumber

imPatGetNumber

Synopsis

Format

Description

Determine the number of matches above the acceptance level.
long imPatGetNumber(Thread, Result, NumPtr)

long Thread; Thread ID
long Result; Result buffer ID
long* NumPtr; Address of return value (or NULL)

This function determines the number of matches of a search that are above
the acceptance level.

Note that, before retrieving results using imPatGetResult(),
imPatGetNumber() can be used to determine how much memory is
required for the results. However, if you are sure you have allocated enough
memory, there is no need to call imPatGetNumber(), since
imPatGetResult() can also return the number of matches above the
acceptance level.

The Thread parameter specifies the thread to which to send
imPatGetNumber() for execution.

The Result parameter specifies the result buffer of the required search.
Note that this buffer must have already been used in a call to
imPatFindModel().

The NumPtr parameter specifies the address (of a long) in which to place
the number of matches. Since imPatGetNumber() also returns the
number of matches, this parameter can be set to NULL.

Return value The returned value is the number of matches above the acceptance level.

imPatGetResult 343

iImPatGetResult

Synopsis Transfer results of a search to Host memory.

Format void imPatGetResult(Thread, Result, Type, Ptr)

Description

long Thread,; Thread ID

long Result; Result buffer ID
long Type; Result type
void* Ptr; Address of array

This function transfers the results of a search to an array in Host memory.
You can transfer the match scores, x coordinates, and y coordinates of the
found matches, as well as the number of matches above the acceptance level.
Results are returned in decreasing order of match score.

Note that the number of found matches might be less than the number of
matches you requested (with imPatSetNumber()) because a match is
considered found only if it is above the acceptance level. Before you retrieve
results, you can call imPatGetNumber() to determine how much memory
is required for the results. The imPatGetNumber() function returns the
number of matches above the acceptance level. If you are sure you have
allocated enough memory, however, there is no need to call
imPatGetNumber() since imPatGetResult() can also return the number
of matches above the acceptance level.

The Thread parameter specifies the thread to which to send
imPatGetResult() for execution.

The Result parameter specifies the result buffer of the required search.
Note that this buffer must have already been used in a call to
imPatFindModel().

The Type parameter specifies the type of result to transfer. It can be set to:

IM_ALL The match scores, x coordinates, and y coordinates
of the found matches, as well as the number of
matches above the acceptance level.

IM_PAT_SCORE The match scores of the found matches.
IM_PAT_POSITION_X The x coordinates of the found matches.
IM_PAT_POSITION_Y The y coordinates of the found matches.

344

imPatGetResult

When Type is set to IM_ALL, the results are stored in a specific data
structure (defined below). Note that the structure member names are
exactly the same as the corresponding #defines, with the IM_PAT_ prefix
removed. In order to save memory and reduce transfer time to the Host,
each result is stored in the smallest data type that can hold it. For example,
integer results are returned as 16-bit values if possible, and floating-point
values are returned as 32-bit single precision values. You must make sure
that your compiler does not add any padding to the structure to change the
alignment of structure members. However, the structure has been defined
so that most compilers will not attempt to change the alignment.

typedef struct
{
short number; /* Same as imPatGetNumber() */
short reserved;
float score;
float position x;
float position y;
} IM _PAT RESULT ST;

The Ptr parameter specifies the address of the user-supplied array in which
to place results. If Type is set to IM_ALL, the array must be of type
IM_PAT_RESULT_ST. If Type is set to anything else, the array should be of
type double.

imPatinquire 345

imPatlnquire

Synopsis

Format

Description

Inquire about a pattern matching model or result buffer.

long imPatlnquire(Thread, ModelOrResult, Item, ValuePtr)

long Thread,; Thread ID

long ModelOrResult; Model or result buffer ID

long Item; Attribute about which to inquire
void* ValuePtr; Address of return value (or NULL)

This function inquires about an attribute of a specified model or result
buffer.

The Thread parameter specifies the thread to which to send
imPatlnquire() for execution.

The ModelOrResult parameter specifies the model or result buffer.

The Item parameter specifies the attribute about which to inquire. For a
result buffer, Item can be set to:

IM_PAT_RESULT_SIZE Number of entries in the result
buffer. This is fixed during result
buffer allocation.

After calling imPatFindModel(), you can call imPatinquire() to get
information about the largest match peak that was not returned as a match
result. At the same time, because the peak might have been rejected at a
low resolution level where the score is not very reliable, you can also inquire
the level at which the score was obtained. To do so, use the following inquire

items:

IM_PAT_BEST_REJECT_SCORE The largest peak that was rejected
during the search (either because it
was below the acceptance level, or
because you did not ask for enough
matches).

IM_PAT_BEST_REJECT_LEVEL The level at which the best reject
score was obtained.

346 imPatlnquire

For a model, Item can be set to one of the attributes listed below, or to
IM_ALL. In the latter case, the values of all attributes listed below are
returned at the same time.

IM_PAT ORIGINAL_X

IM_PAT ORIGINAL_Y

IM_PAT OFFSET_X

IM_PAT OFFSET_Y

IM_PAT SIZE_X

IM_PAT SIZE_Y

IM_PAT TYPE

IM_PAT POSITION_START_X

IM_PAT POSITION_START_Y

IM_PAT _POSITION_SIZE_X

IM_PAT POSITION_SIZE_Y

IM_PAT_POSITION_ACCURACY

IM_PAT NUMBER

IM_PAT_SPEED

X offset from model’s center (hot spot) to the
top-left corner of the image from which model
was created. Model’s hot spot can be set using
imPatSetCenter().

Y offset from model’s center (hot spot) to the
top-left corner of the image from which model
was created. Model’s hot spot can be set using
imPatSetCenter().

X offset from model’s top-left corner to the
top-left corner of the image from which model
was created. This is fixed during model
allocation.

Y offset from model’s top-left corner to the
top-left corner of the image from which model
was created. This is fixed during model
allocation.

Model width. This is fixed during model
allocation.

Model height. This is fixed during model
allocation.

Model type. This is fixed during model
allocation.

X coordinate of search region’s origin, relative to
the top-left corner of the image being searched.
This can be set using imPatSetPosition().

Y coordinate of search region’s origin, relative to
the top-left corner of the image being searched.
This can be set using imPatSetPosition().
Width of search region. This can be set using
imPatSetPosition().

Height of search region. This can be set using
imPatSetPosition().

Positional accuracy. This can be set using
imPatSetAccuracy().

Number of matches to find. This can be set using
imPatSetNumber ().

Search speed. This can be set using
imPatSetSpeed().

IM_PAT_ACCEPTANCE

IM_PAT_CERTAINTY

IM_PAT_CENTER_X

IM_PAT CENTER_Y

IM_PAT_PREPROCESSED

IM_PAT FIRST LEVEL

IM_PAT_LAST LEVEL

IM_PAT _MODEL_STEP

IM_PAT_FAST_FIND

IM_PAT_SCORE_TYPE

imPatinquire 347

Acceptance level. This can be set using
imPatSetAcceptance().

Certainty level. This can be set using
imPatSetCertainty().

X offset from model’s center (hot spot) to model’s
top-left corner. Model’s hot spot can be set using
imPatSetCenter().

Y offset from model’s center (hot spot) to model’s
top-left corner. Model’s hot spot can be set using
imPatSetCenter().

Whether the model was preprocessed (non-zero
i.e. TRUE) or not preprocessed (zero i.e. FALSE).
Model can be preprocessed using
imPatPreprocModel().

Resolution level for the initial stage of the
search. The level can be set using
imPatSetSearchParameter().

Resolution level for the final stage of the search.
The level can be set using
imPatSetSearchParameter().

Model step for search: 1 or 2. The model step can
be set using imPatSetSearchParameter().

Whether fast peak finding is enabled. This can
be set using imPatSetSearchParameter().

Whether negative match scores are clipped to 0
(IM_DEFAULT) or set to their absolute values
(IM_ABSOLUTE). Match scores can be set to their
absolute values using
imPatSetSearchParameter().

When Item is set to IM_ALL, the results are stored in a specific data
structure (defined below). Note that the structure member names are
exactly the same as the corresponding predefined constants, with the
IM_PAT_ prefix removed. To save memory and reduce transfer time to the
Host, each result is stored in the smallest data type that can hold it. For
example, integer results are returned as 16-bit values if possible, and
floating-point values are returned as 32-bit single precision values. You
must make sure that your compiler does not add any padding to the

348 imPatlnquire

Note

Return value

structure to change the alignment of structure members. However, the
structure has been defined so that most compilers will not attempt to change
the alignment.

typedef struct
{
short type;
short offset x;
short offset y;
short size x;
short size y;
short preprocessed;
float center x;
float center y;
float original x;
float original y;
short number;
short speed;
short position start x;
short position start y;
short position size x;
short position size y;
short position accuracy;
short reserved;
float acceptance;
float certainty;
long first Tevel;
long Tlast level;
long model step;
long fast find;
long score type;
} IM_PAT_INQUIRE_ST;

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. If Item is set to IM_ALL, the address must be to
an array of type IM_PAT_INQUIRE_ST. If Item is set to a specific attribute,
the address should be of type double, although you can have the attribute
returned as type long by setting ValuePtr to NULL and using the function’s
return value instead.

The values for IM_PAT_ORIGINAL_X and IM_PAT_ORIGINAL_Y can be
compared with the coordinates returned by imPatGetResult(), to indicate
the shift between the image from which the model was created and the
image being searched.

The returned value is the value of the inquired attribute, cast to long if
necessary. This only applies when inquiring about a specific attribute.

imPatPreprocModel 349

imPatPreprocModel

Synopsis

Preprocess a pattern matching model.

Format void imPatPreprocModel(Thread, Buf, Model, Mode, OSB)

Description

long Thread,; Thread ID

long Buf; Target image ID (or 0)
long Model; Model ID

long Mode; Mode of operation
long OSB; OSB ID (or 0)

This function preprocesses a specified model. Preprocessing analyzes a
model to determine which shortcuts can safely be used during a search with
the model.

More shortcuts might be found if you provide a typical image that will be

searched. However, you should only provide such an image if all images on
which you will be searching for the model have the same type of background.
If the images might have different backgrounds, do not provide one.

Note that, when you save a model to disk, the preprocessing changes are
also saved; there is no need to preprocess again after restoring it. Therefore,
you normally need to preprocess a model just once, right after creating it.
However, if you use imPatSetDontCare(), the effect of preprocessing is
undone; in this case, you will need to preprocess again.

The Thread parameter specifies the thread to which to send
imPatPreprocModel() for execution.

The Buf parameter specifies the "typical image" with which to preprocess
the model. This must be an 8-bit unsigned integer buffer. Set this parameter
to 0 if you are not providing an image (note that you should not provide an
image if the images on which you will be searching for the model might have
different backgrounds).

The Model parameter specifies the model to preprocess.

The Mode parameter specifies the mode of operation. This parameter must
be set to IM_DEFAULT.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

350 imPatRead

imPatRead

Synopsis

Read a pattern matching model from an open file.

Format void imPatRead(Thread, FileHandle, ModelPtr)

Description

See also

long Thread; Thread ID
FILE* FileHandle; Handle of open file
long* ModelPtr; Address of model ID

The function reads a model from an open file, and assigns it an identifier.

Note that the model’s search parameters (including any effects of
preprocessing) are also read from the file.

The Thread parameter specifies the thread to which to send imPatRead()
for execution.

The FileHandle parameter specifies the handle of the open file (opened
with fopen()). Before calling this function, the file pointer must be
positioned just before the start of a valid pattern matching model. After the
function call, the file remains open and is positioned immediately after the
model.

The ModelPtr parameter specifies the address in which to return the model
identifier. If the model could not be allocated, O is returned.

imPatRestore(). The imPatRestore() function restores a previously
saved model from file.

imPatRestore 351

imPatRestore

Synopsis

Restore a pattern matching model from a file.

Format void imPatRestore(Thread, FileName, ModelPtr)

Description

See also

long Thread,; Thread ID
char* FileName; File name
long* ModelPtr; Address of model ID

This function restores a previously saved model from a file, and assigns it
an identifier.

Note that the model's search parameters (including its "don't care" pixels
and any effects of preprocessing) are also restored from the file.

The Thread parameter specifies the thread to which to send
imPatRestore() for execution.

The FileName parameter specifies the name of the file from which to
restore the model.

The ModelPtr parameter specifies the address in which to return the model
identifier. If the model could not be allocated, O is returned.

imPatRead(). The imPatRead() function allows you to read several
models from the same file.

352 imPatSave

imPatSave

Synopsis

Save a model to a file.

Format void imPatSave(Thread, FileName, Model)

Description

See also

long Thread; Thread ID
char* FileName; File name
long Model; Model ID

This function saves a model to a file.

Note that the model’s search parameters (including its "don't care" pixels
and any effects of preprocessing) are also saved to the file.

The Thread parameter specifies the thread to which to send imPatSave()
for execution.

The FileName parameter specifies the name of the file in which to save the
model.

The Model parameter specifies the model to save.

imPatWrite(). The imPatWrite() function allows you to save several
models in one file.

imPatSetAcceptance 353

imPatSetAcceptance

Synopsis Set the acceptance level for a search.

Format void imPatSetAcceptance(Thread, Model, Acceptance)

Description

long Thread,; Thread ID
long Model; Model ID
double Acceptance; Acceptance level

This function sets the acceptance level for a search.

Note that the acceptance level is the match score above which a match is
considered to be found. The default acceptance level is 70%.

The Thread parameter specifies the thread to which to send
imPatSetAcceptance() for execution.

The Model parameter specifies the model that will be used in the search.

The Acceptance parameter specifies the acceptance level. It should be set
to a value greater than 0 but less than or equal to 100.

354 imPatSetAccuracy

imPatSetAccuracy

Synopsis Set the positional accuracy for a search.

Format void imPatSetAccuracy(Thread, Model, Accuracy)

Description

long Thread; Thread ID
long Model; Model ID
long Accuracy; Positional accuracy

This function sets the positional accuracy for a search.

Note that the positional accuracy specifies the degree to which the position
of afound matchis refined. The position can be refined to within + 0.5 pixels,
+ 0.25 pixels, or £ 0.1 pixels. The more accuracy you require, the longer the
search process.

The Thread parameter specifies the thread to which to send
imPatSetAccuracy() for execution.

The Model parameter specifies the model that will be used in the search.

The Accuracy parameter specifies the positional accuracy. It can be set to:

IM_LOW Low accuracy (x 0.5 pixels).

IM_MEDIUM Medium accuracy (+ 0.25 pixels). This is the default
positional accuracy.

IM_HIGH High accuracy (z 0.1 pixels).

imPatSetCenter 355

iImPatSetCenter

Synopsis Set a model’s center position (hot spot).
Format void imPatSetCenter(Thread, Model, XCen, YCen)

long Thread,; Thread ID

long Model; Model ID

double XCen; X coordinate of center
double YCen; Y coordinate of center

Description This function sets a model’s hot spot.

Note that a model’s hot spot determines the returned coordinates of a match.
Specifically, the returned coordinates of a match are the coordinates of the
model’s hot spot relative to the top-left corner of the image being searched.
By default, a model’s hot spot is its center pixel.

The Thread parameter specifies the thread to which to send
imPatSetCenter() for execution.

The Model parameter specifies the model to set.

The XCen and YCen parameters specify the x and y coordinates of the
model’s hot spot, relative to the top-left corner of the model.

356 imPatSetCertainty

imPatSetCertainty

Synopsis

Set the certainty level for a search.

Format void imPatSetCertainty(Thread, Model, Certainty)

Description

long Thread; Thread ID
long Model; Model ID
double Certainty; Certainty level

This function sets the certainty level for a search.

Note that the certainty level is the match score above which the search
algorithm can assume that it has found a match and can stop searching the
rest of the image for a better score. The default certainty level is 80%.

The Thread parameter specifies the thread to which to send
imPatSetCertainty() for execution.

The Model parameter specifies the model that will be used in the search.

The Certainty parameter specifies the certainty level. It should be set to a
value greater than 0 but less than or equal to 100.

imPatSetDontCare 357

imPatSetDontCare

Synopsis Set model pixels to the "don'’t care" state.

Format void imPatSetDontCare(Thread, Model, SrcBuf, XOff, YOff, Value)

Description

long Thread,; Thread ID

long Model; Model ID

long SrcBuf; Source buffer ID
long XOff; X offset

long YOff; Y offset

long Value; Don't care value

This function sets model pixels to the "don’t care" state. The "don’t care"
pixels of a model are ignored during the search process (they do not affect
the match score).

Note that model pixels are set to the "don’t care" state by using a region of
a specified source buffer that is equal in size to the model. Specifically, each
pixel in this region is compared against a specified value; if it has this value,
its corresponding pixel in the model is set to the "don't care" state.

The Thread parameter specifies the thread to which to send
imPatSetDontCare() for execution.

The Model parameter specifies the model whose pixels are to be set to the
"don't care" state.

The SrcBuf parameter specifies the source buffer. This mustbe an unsigned
8-bit integer buffer.

The XOff and YOff parameters specify the horizontal and vertical offset
from the top-left corner of the source buffer to the origin of the required
region. These parameters, and the size of the model, determine the source
buffer pixels that are used to set model pixels to the "don't care" state.

The Value parameter specifies the value against which to compare source
buffer pixels.

358 imPatSetNumber

imPatSetNumber

Synopsis

Set the number of matches to find.

Format void imPatSetNumber(Thread, Model, Number)

Description

long Thread; Thread ID
long Model; Model ID
long Number; Number of matches

This function sets the number of matches to find in a search.

By default, the search algorithm finds only one match (the one with the
highest match score above the acceptance level). If you specify that n
matches be found, then the n highest match scores above the acceptance
level are returned, in decreasing order of match score. You can also specify
that all matches be found, in which case all matches above the acceptance
level are returned, in decreasing order of match score.

Note that, the more matches you require, the longer the search process.

The Thread parameter specifies the thread to which to send
imPatSetNumber() for execution.

The Model parameter specifies the model that will be used in the search.

The Number parameter specifies the number of matches. To search for all
matches above the acceptance level, set this parameter to IM_ALL.

imPatSetPosition 359

iImPatSetPosition

Synopsis Set the search region for a search.

Format void imPatSetPosition(Thread, Model, XOff, YOff, XSize, YSize)

Description

long Thread; Thread ID

long Model; Model ID
long XOff; X offset

long YOff; Y offset

long XSize; Search width

long YSize; Search height
This function sets the search region for a search.

By default, the search region is the entire image being searched. To increase
search speed, however, you should make the search region as small as
possible. Since the search region is the area in which to find the model’s
center (hot spot), the search region can be even smaller than the model (as
small as a single pixel).

Note that, in general, it is better to use this function rather than a child
buffer when you want the search region to be smaller than the entire image
being searched. A child buffer can cause misleading results because the
search algorithm will not use the area outside the child buffer.

The Thread parameter specifies the thread to which to send
imPatSetPosition() for execution.

The Model parameter specifies the model that will be used in the search.

The XOff and YOff parameters specify the horizontal and vertical offset
from the top-left corner of the image being searched to the origin of the
search region.

The XSize and YSize parameters specify the width and height of the search
region.

360 imPatSetSearchParameter

iImPatSetSearchParameter

Synopsis

Set an internal search parameter.

Format void imPatSetSearchParameter(Thread, Model, Param, Value)

Description

long Thread; Thread ID

long Model; Model ID

long Param; Parameter to set
double Value; Parameter value

This function sets an internal search parameter. These search parameters
are considered "internal” since, by default, they are automatically derived
by the pattern matching algorithm, from the model’s more basic search
parameters (such as its speed and accuracy). You rarely need to explicitly
set an internal search parameter, since its automatically derived value is
suitable for most applications. If you do set an internal search parameter,
you should know how it can affect the pattern matching algorithm; see the
Genesis Native Library User Guide for details.

The Thread parameter specifies the thread to which to send
imPatSetSearchParameter() for execution.

The Model parameter specifies the model that will be used in the search.

The Param parameter specifies the search parameter to set, while the
Value parameter specifies its value. The table below lists available
parameters, and their allowable values.

Parameter Values Meaning
IM_PAT_FIRST_LEVEL 0-7 Resolution level for the initial stage
of the search.
IM_DEFAULT Determine first level automatically.

Note that Level 0 is the original image being searched. Each higher level is
half the size (and resolution) of the previous one. If the specified level does
not exist, the highest available level will be used. A higher first level speeds
up the initial search but makes it less reliable, because the model might not
retain enough distinctive features at such a low resolution.

imPatSetSearchParameter 361

IM_PAT_LAST_LEVEL 0-7 Resolution level for the final stage

of the search.
Determine last level
automatically.

IM_DEFAULT

If the specified level does not exist, the highest available level will be used.
A higher last level reduces search time but also reduces positional accuracy.
Match scores might also be less reliable for levels above 0, depending on the
characteristics of the model. Specify a last level of 0 for a positional accuracy
of roughly = 0.1 pixels, a level of 1 for a positional accuracy of + 0.25 pixels,
and a level of 2 for a positional accuracy of + 0.5 pixels.

IM_PAT_MODEL_STEP 1 or 2 Set the model step to 1 or 2 (that is,
use all or every second model pixel
in the high resolution stage of the

search).

Preprocessing determines the
model step.

IM_DEFAULT

When the model step is set to 1, all model pixels are used in the correlation.
When set to 2, only every second model pixel (in both the x and y directions)
are used. This speeds up the last (high resolution) stage of the search,
particularly for large models. The match score might be affected if the model
has many fine features, but will tend not to be affected if the model has

mainly coarse features.

IM_PAT_FAST_FIND IM_ENABLE Force fast peak finding.
IM_DISABLE Prevent fast peak finding.
IM_DEFAULT Preprocessing decides if fast peak

finding is appropriate.

When fast peak finding is disabled, the initial search (at the resolution level
determined by IM_PAT_FIRST_LEVEL) computes the correlation at every
position in the search region. This guarantees that the biggest match peak
will be found, and that it will be investigated first. If fast peak finding is
enabled, the search algorithm attempts to find the peaks without checking
every point. This is safe in most cases, but can cause matches to be missed
for models that produce very narrow peaks.

IM_PAT_SCORE_TYPE IM_DEFAULT
IM_ABSOLUTE

Clip negative match scores to 0.

Take the absolute value of match
scores. This allows you to find
negative versions of the model.

362

imPatSetSearchParameter

IM_ALL

IM_PAT OFFSET X

IM_PAT OFFSET_Y

IM_PAT REJECTION

IM_DEFAULT

any integer >0

any integer >0

Threshold value
(in percent)

IM_DEFAULT

Determine all internal search
parameters automatically.

Set the model’s allocation X offset
to the specified value. This might
be useful when the original value
is lost after rotating a model. You
can use imPatlnquire() to

inquire about the current X offset.

Set the model’s allocation Y offset
to the specified value. This might
be useful when the original value
is lost after rotating a model. You
can use imPatlnquire() to

inquire about the current y offset.

Set the rejection threshold to use
for rejecting candidate model
peaks at low resolution levels. This
can speed up the search when
some of the matches you request
do not reach the certainty
threshold, or when you request
more matches than are really
present in the image.

The rejection threshold should
usually be set much lower than the
acceptance threshold. For example,
a good level to set it to is about 20%
to 30%. Note that if itis too low, you
will not see any increase in speed.
However, if it is too high, you risk
rejecting real match peaks.

Note that the rejection threshold is
not saved and restored with the
model. So, if you always want to
use your own rejection threshold
level, you should set it each time
after restoring your model and
before calling
imPatFindModel(). Otherwise,
the default rejection threshold
value is used.

Determine the rejection threshold
automatically

imPatSetSpeed 363

imPatSetSpeed

Synopsis Set the speed for a search.

Format void imPatSetSpeed(Thread, Model, Speed)

Description

long Thread,; Thread ID
long Model; Model ID
long Speed; Search speed

This function sets the speed (high, medium, low, very low) at which to
perform a search. Note that, as you increase the speed, the likelihood of
finding the model decreases slightly. In addition, match scores and
positional accuracies might be a little less accurate.

You can search at high speed if the image being searched is of good quality
or if your model is relatively simple. However, you should not search at high
speed if you need the highest possible accuracy (search at medium or low

speed instead).

You should search at medium speed if the image being searched is of medium
quality or if your model is relatively complex. You should only search at low
or very low speeds if the image being searched is of poor quality or if you
have encountered problems at higher speeds.

The Thread parameter specifies the thread to which to send
imPatSetSpeed() for execution.

The Model parameter specifies the model that will be used in the search.

The Speed parameter specifies the search speed. It can be set to:

IM_HIGH Search at high speed.

IM_MEDIUM Search at medium speed. This is the default search
speed.

IM_LOW Search at low speed.

IM_VERY_LOW Search at very low speed.

364 imPatWrite

imPatWrite

Synopsis

Write a model to an open file.

Format void imPatWrite(Thread, FileHandle, Model)

Description

long Thread; Thread ID
FILE* FileHandle; Handle of open file
long Model; Model ID

This function writes a model to an open file.

Note that the model’s search parameters (including its "don't care" pixels
and any effects of preprocessing) are also written to the file.

The Thread parameter specifies the thread to which to send imPatWrite()
for execution.

The FileHandle parameter specifies the handle of the open file (opened
with fopen()). The model is written starting at the current file position.
After writing, the file remains open and is positioned immediately after the
model just written.

The Model parameter specifies the model to write to the file.

imRleDecode 365

imRIleDecode

Synopsis

Decode (decompress) a run-length encoded image and write into a buffer.

Format void imRleDecode(Thread, Buf, CompBuf, Control, OSB)

Description

long Thread,; Thread ID

long Buf; Decompressed buffer 1D
long CompBuf; Compressed buffer ID
long Control; Control Buffer ID (or 0)
long OSB OSB ID (or 0)

This function decompresses a run-length encoded image from the specified
1-dimensional buffer (CompBuf) and writes the result into another buffer
(Buf).

The Thread parameter specifies the thread to which to send
imRleDecode() for execution.

The Buf parameter specifies the buffer in which to place the decompressed
image. This buffer can have a depth of 1 or 8 bits. The decompressed buffer
must be exactly the right size for the image data.

The CompBuf specifies the identifier of the compressed buffer. This buffer
must be 1-dimensional and have a depth of 8 bits. This buffer can be larger
than necessary; decoding will stop once the decompressed buffer (Buf) is
completely filled.

The Control parameter specifies the control buffer with which to control
decoding (decompression). Relevant fields for imRleDecode() are listed
below, with default values in bold-face. Note that if the Control parameter
is set to O or if certain fields are not added to the control buffer, the default
values are used.

Field Value Description

IM_RLE_BACK_COLOR 0to255 Color to use for background
runs. The default is 0.

IM_RLE_COLOR 0 to 255 Color to use for foreground

runs. The default is 255.

366 imRleDecode

Field Value Description

IM_RLE_MODE IM_BINARY Compression mode. Currently
only IM_BINARY is
supported. Accordingly, pixels
with a 0 value are treated as
background pixels, and all
non-zero pixels are treated as
foreground pixels.

IM_RLE_START <integer> Starting position, in bytes,
within CompBuf. The default
is 0.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function.

Note The size of the decompressed buffer must be an exact fit for the image data,
since no size information is recorded in the compressed buffer.

imRleEncode 367

imRIeEncode

Synopsis Run-length encode (compress) an image and write the contents into a

1-dimensional buffer.

Format void imRleEncode(Thread, Buf, CompBuf, Control, OSB)

Description

long Thread,; Thread ID

long Buf; Uncompressed buffer 1D
long CompBuf; Compressed buffer ID
long Control; Control Buffer ID (or 0)
long OSB OSB ID (or 0)

This function run-length encodes (compresses) the image and writes the
contents into a 1-dimensional buffer (CompBuf). After calling this function,
the actual size of the compressed image can be determined by reading the
IM_RLE_SIZE field from the control buffer. You can use this value to allocate
achild buffer and limit operations on the compressed buffer (such as saving)
to the compressed data.

Note that the compressed buffer contains no header information. Therefore,
it is necessary to keep track of the dimensions of the original image so that
a suitable buffer can be allocated for any subsequent decoding
(decompression) operation.

The Thread parameter specifies the thread to which to send
imRIleEncode() for execution.

The Buf parameter specifies the buffer to compress. This buffer can be a 1-
or 8-bit buffer.

The CompBuf specifies the identifier of the compressed buffer. This buffer
must be one-dimensional, have a depth of 8 bits, and be large enough to hold
the entire compressed image.

368

imRleEncode

The Control parameter specifies the control buffer with which to control
encoding (compression). Relevant fields for imRIeEncode() are listed
below, with default values in bold-face. Note that if the Control parameter
is set to O or if certain fields are not added to the control buffer, the default

values are used.

Field
IM_RLE_MODE

IM_RLE_START

Value

IM_BINARY

<integer>

Description

Compression mode. Currently only
IM_BINARY is supported.
Accordingly, pixelswith a0 value are
treated as background pixels, and all
non-zero pixels are treated as
foreground pixels.

Starting position, in bytes, within
CompBuf. This allows several
compressed images to be appended to
the same buffer. The default is 0.

After compression, the following field can be read to determine the size of
the compressed image:

IM_RLE_SIZE

<integer>

The size of the compressed
image (in bytes). The value
returned for IM_RLE_SIZE
will be correct even if the
compressed buffer is too
large or too small to hold
the entire image.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to O,
in which case no status information is stored for this function.

imSyncAlloc 369

ImSyncAlloc [Sync | [Gen-LC]

Synopsis Allocate an operation status block.

Format void imSyncAlloc(Thread, OSBPtr)

Description

long Thread,; Thread ID
long* OSBPtr; Address of OSB ID

This function allocates an operation status block (OSB).

Upon allocation, an OSB is in auto reset mode and is initialized to the
IM_WAITING state. To change an OSB’s mode of operation, use
imSyncControl().

The Thread parameter specifies the thread to which to send
imSyncAlloc() for execution. The OSB is allocated on the device associated
with this thread.

The OSBPtr parameter specifies the address in which to return the OSB
identifier. If the OSB could not be allocated, 0 is returned.

370 imSyncControl

imSyncControl [Async| [Gen-LC]

Synopsis

Change the state or mode of operation of an OSB.

Format void imSyncControl(Thread, OSB, Item, Value)

Description

long Thread; Thread ID
long OSB; OSB ID

long Item; Item to set
double Value; Value for Item

This function changes the state or mode of operation of an operation status
block (OSB). You can use an OSB in either auto reset or manual reset mode.
In auto reset mode, an OSB's state is automatically changed, according to
the state of the function to which it is associated. In manual reset mode, you
must explicitly change an OSB’s state, using imSyncControl().

Auto-reset OSBs are the most widely used. Once in the completed (signalled)
state, they remain there only until the Host or another thread waits on them
(with imSyncHost() or imSyncThread()). As soon as the wait condition
is satisfied, the waiting task is released and the OSB is automatically reset
to the waiting (non-signalled) state. You can then immediately re-use the
OSB, if desired, in another command. Only one task at a time should wait
on an auto-reset OSB. Note that only the OSB state is reset; any associated
error code is retained until the next time the completed state is reached,
then it is overwritten.

Manual-reset OSBs remain signalled until explicitly reset, so several tasks
can wait on them.

You can also set a timeout on an OSB that is independent of the normal
application timeout. Each OSB has its own associated timeout value (the
default value is infinity). It is easier to recover from an OSB timeout than
from an application timeout. For example, to detect the presence of a
camera, try to grab using an OSB with a short timeout value. Then, wait on
the OSB and see if the wait completed normally or timed-out. If the wait
timed-out, then the camera is not being recognized on the system.

The Thread parameter specifies the thread to which to send
imSyncControl() for execution.

The OSB parameter specifies the OSB whose state or mode to change.

imSyncControl 371

The Item parameter specifies whether to change the OSB's state or mode,
while the Value parameter specifies its new state or mode. Possible values
for Item and Value are listed below (default values, if any, are in bold-face).

IM_OSB_STATE IM_WAITING (also known as IM_NON_SIGNALLED)
IM_EXECUTING
IM_READY
IM_STARTED
IM_COMPLETED (also known as IM_SIGNALLED)
IM_OSB_MODE IM_AUTO_RESET
IM_MANUAL_RESET

You can set an OSB'’s timeout value using the following control item.

Item Value Meaning
IM_OSB_TIMEOUT a floating point value > 0 Timeout value in
seconds.

IM_INFINITE No timeout.

372 imSyncFree

ImSyncFree Async| | Gen-LC

Synopsis Free an operation status block.

Format void imSyncFree(Thread, OSB)

Description

long Thread; Thread ID
long OSB; OSB ID

This function deallocates a previously allocated operation status block
(OSB). Note that, if the OSB has been associated with a function, you should
not free the OSB until that function has finished executing.

The Thread parameter specifies the thread towhich tosend imSyncFree()
for execution.

The OSB parameter specifies the OSB to deallocate.

imSyncGetError 373

ImSyncGetError Sync | [Gen-LC

Synopsis

Format

Description

Check a function for errors.
long imSyncGetError(Thread, OSB, Item, ValuePtr)

long Thread,; Thread ID

long OSB; OSB ID

long Item; Error item to retrieve

void* ValuePtr; Address in which to return error item (or NULL)

This function checks a specific function for errors.

Note that errors can only be detected for functions that have finished
executing. Therefore, you must ensure that the required function has
completed before calling imSyncGetError().

The Thread parameter specifies the thread to which to send
imSyncGetError() for execution.

The OSB parameter specifies the operation status block associated with the
function that you are checking.

The Item parameter specifies the error item to retrieve. It can be set to:

IM_ERR_CODE The error code.

IM_ERR_MSG The error message (maximum size of string:
IM_ERR_MSG_SIZE bytes).

IM_ERR_FUNC The name of the offending function (maximum size

of string: IM_ERR_FUNC_SIZE bytes).

IM_ERR_MSG_FUNC The error message and the name of the offending
function (maximum size of string: IM_ERR_SIZE
bytes).

The ValuePtr parameter specifies the address in which to return the error
item. If you are retrieving IM_ERR_MSG, IM_ERR_FUNC, or
IM_ERR_MSG_FUNC, ValuePtr should be the address of a char; if you are
retrieving IM_ERR_CODE, ValuePtr should be the address of a long.

Since imSyncGetError() also returns the error code, ValuePtr can be set
to NULL when you are retrieving the error code.

imSyncGetError

Error code
IM_SUCCESS
IM_ERR_BUFFER
IM_ERR_DEVICE
IM_ERR_FILE
IM_ERR_HALTED
IM_ERR_MEMORY

IM_ERR_NOT_PRESENT
IM_ERR_OPCODE
IM_ERR_OSB
IM_ERR_PARAMETER

IM_ERR_RESTRICTION

IM_ERR_SYSTEM
IM_ERR_TIMEOUT

IM_ERR_THREAD

IM_ERR_BUF _ATTRIBUTE

IM_ERR_MISC

Return value The returned value is the error code.

Meaning

No error.

Invalid buffer ID.

Invalid device ID, or no such device.
File access error.

Function halted by imThrHalt().

Insufficient memory to carry out the
operation.

Referenced item not present.
Invalid opcode received.
Invalid OSB ID.

Parameter (other than an ID-type parameter)
invalid or unacceptable.

Operation unable to execute due to a
restriction.

No such system.

Device unable to respond during timeout
period.

Invalid thread ID.

Unacceptable buffer attribute (size, data
type, etc.).

Miscellaneous error (the error message string
will provide details on the cause of the error).

imSyncHost 375

ImSyncHost | Sync | | Gen-LC |
Synopsis Synchronize the Host with a function.
Format long imSyncHost(Thread, OSB, State)
long Thread,; Thread ID
long OSB; OSB ID (or 0)
long State; State to wait for
Description This function halts execution on the Host, until a specified function is in a

specified state, or until all functions in a specified thread have completed.
Alternatively, this function can be used when you simply want the current
state of a function, without halting Host execution.

The Thread parameter specifies the thread towhich to send imSyncHost()
for execution.

The OSB parameter specifies the operation status block associated with the
function for which you are waiting. To wait for the completion of all functions
in the specified thread, set this parameter to 0.

The State parameter specifies the OSB state for which to wait. If you simply
want the current state of the specified function, without halting Host
execution, set State to IM_INQUIRE. If you are waiting for all functions in
a thread to complete (i.e. have set OSB to 0), set State to IM_COMPLETED.
If you are waiting on a specific OSB, State can be set to:

IM_EXECUTING Wait until the function has started
executing.

IM_COMPLETED (also known as Wait until the function has completed.
IM_SIGNALLED)

IM_LINE_INT +n Wait until the grab line count is greater
than or equal to n. This setting only
applies if line interrupts were enabled.
An OSB must have been passed to the
imDigGrab() command.

IM_READY Wait until the function is ready to send
or receive data.
IM_STARTED Wait until the function has started to

send or receive data.

Note that IM_READY and IM_STARTED apply only to certain functions (see
individual function descriptions).

376

imSyncHost

Example The following code shows how to inquire about the current grab line when

line interrupts are enabled.

Line = imSyncHost(Thread, 0SB, IM LINE INT + IM INQUIRE);

Return value The returned value indicates the current state of the specified OSB. The

returned value can be one of the following:

IM_EXECUTING Function is executing.

IM_COMPLETED Function has completed.
IM_SIGNALLED Synonym for IM_COMPLETED.
IM_WAITING Function has not started to execute.
IM_NON_SIGNALLED Synonym for IM_WAITING.

IM_READY Function is ready to receive data.
IM_STARTED Function has started to receive data.
IM_ERR_TIMEOUT Wait ended because the OSB timed-out.

Awaitcanonly time out if you explicitly set the OSB timeout value by calling
imSyncControl() (there is no timeout by default).

Note that noerror is logged when an OSB times out because you might want
to return from a wait after a maximum time, but you cannot detect the
timeout condition through the error handling functions. For example, you
might want to do some useful work, then continue waiting on the OSB later.
To do so, you should explicitly test the return value of imSyncHost() to
detect if the OSB timed-out. If you want to continue waiting after a timeout,
just call imSyncHost() again with the same parameters. You can always
try the wait operation again because the OSB'’s state is not affected by a
wait that times out.

The timeout period starts once the imSyncHost() command begins
executing on-board, which might be some time after the function is called
if other commands are queued ahead of it in the same thread.

imSyncThread 377

ImSyncThread Async| | Gen-LC

Synopsis Synchronize a thread with an operation in another thread.

Format void imSyncThread(Thread, OSB, State)

Description

Note

long Thread,; Thread ID
long OSB; OSB ID
long State; State to wait for

This function halts execution of a thread, until an operation in another
thread is in a specified state.

The Thread parameter specifies the thread to halt.

The OSB parameter specifies the operation status block with which to
synchronize. To synchronize with a function when you do not have its
OSB identifier, send the imThrNop() function to the same thread as the
function, and synchronize with imThrNop() instead.

The State parameter specifies the OSB state for which to wait. This
parameter can be set to:

IM_EXECUTING Wait until the function is executing.
IM_COMPLETED (also known as Wait until the function has
IM_SIGNALLED) completed.

IM_LINE_INT +n Wait until the grab line count is

greater than or equal to n. This
setting only applies if line interrupts
were enabled. An OSB must have
been passed to the imDigGrab()

command.

IM_READY Wait until the function is ready to
send or receive data.

IM_STARTED Wait until the function has started to

send or receive data.

Note that IM_READY and IM_STARTED apply only to certain functions (see
individual function descriptions).

This function also halts execution of a thread during an OSB timeout
(imSyncControl()). One use for this is to implement a delay in the
execution of commands queued to a thread. To do so, set the timeout period

378 imSyncThread

of an OSB that is not used by any other function, and then call
imSyncThread(). The specified thread will be blocked from executing
other functions for the timeout period.

The timeout period starts once the function begins executing on-board,
which might be some time after the function is called if other functions are
queued ahead of it in the same thread.

imSysClock 379

ImSysClock [Sync | [Gen-LC]

Synopsis

Format

Description

Return value

Example

Read the system clock.
double imSysClock(Thread, Offset)

long Thread,; Thread ID
double Offset; Offset to subtract from current time

This function returns the current on-board clock value, minus a specified
offset.

The on-board clock value is specified in seconds as a double precision
number. As the clock value is of very high resolution, this function can
accurately time short intervals, such as the execution time of one function.

The Thread parameter specifies the thread to which to send imSysClock()
for execution.

The Offset parameter specifies the offset to subtract from the current
on-board clock value. Express this parameter in seconds.

The returned value is the current on-board clock value minus the specified
offset.

The following code uses imSysClock() to measure the execution time of one
function. All functions are sent to the same thread to ensure proper
synchronization.

InitialTime = imSysClock(Thread, 0.0);
imIntConvolve(Thread, Src, Dst, IM SMOOTH, 0, 0); /* Operation to measure */
Time = imSysClock(Thread, InitialTime);

Note that the time measured above includes the overhead of imSysClock().
If you are timing very short intervals where this overhead might be
significant, you should first determine the overhead (with two successive
calls to imSysClock()) and then subtract it from the measured interval.

380 imSyslnquire

ImSyslInquire [Sync | [Gen-LC]
Synopsis Inquire about a system attribute.
Format long imSyslnquire(System, Item, ValuePtr)
long System; System number
long Item; Attribute about which to inquire
void* ValuePtr; Address of return value (or NULL)
Description This function inquires about an attribute of a specified system.

Return value

The System parameter specifies the number of the system (0, 1, 2, etc.).

The Item parameter specifies the attribute about which to inquire. It can
be set to:

IM_SYS_NUM_NODES Number of processing nodes.
IM_SYS_NUM_DIGITIZERS Number of digitizers.
IM_SYS_NUM_DISPLAYS Number of displays.

IM_SYS_NUM_SYSTEMS Number of systems. Note that, in this case,
the System parameter is ignored.

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imSyslInquire() also returns this value,
ValuePtr can be set to NULL.

The returned value is the value of the inquired attribute.

imSysTimeStamp 381

ImSysTimeStamp

Synopsis

Format

Description

Write a time stamp (current time minus offset) to the specified buffer field.

long imSysTimeStamp(Thread, Buf, Tag, Offset)

long Thread; Thread ID

long Buf; Buffer ID

long Tag; Tag of field

double Offset; Offset to subtract from current time

Thisfunction writes a time stamp (current time minus offset) to the specified
buffer field. Later, in a non time-critical part of your application, the time
stamp can be read by calling imBufGetFieldDouble().

The on-board clock value is measured in seconds as a double precision
number. As the clock value is of very high resolution, this function can
accurately time short intervals, such as the execution time of one function.

Similar functionality is provided by imSysClock(), but
imSysTimeStamp() is more flexible because it is asynchronous. That is,
it does not block Host execution. For example, you can queue a series of
functions and calls to imSysTimeStamp() using a different field for each
time stamp; once the functions are queued, Host activity will not affect
timing.

The Thread parameter specifies the thread to which to send
imSysTimeStamp() for execution.

The Buf parameter specifies the buffer into which to put the field. This
buffer can be of any data type, and can have any size.

The Tag parameter specifies the buffer field in which to write the time
stamp. Any non-zero tag value can be specified, but normally the value
specified is one of the reserved user-defined fields (1 to 9999).

The Offset parameter specifies the offset to subtract from the current time
(in seconds).

382 imThrAlloc

imThrAlloc Sync | [Gen-LC

Synopsis Allocate a thread.

Format void imThrAlloc(Dev, Control, ThreadPtr)

long Dev; Device ID
long Control; Control buffer ID (or 0)
long* ThreadPtr; Address in which to return thread ID

Description This function allocates a thread on the specified device.

The Dev parameter specifies the device on which to allocate the thread.
Note that you allocate a device using imDevAlloc().

The Control parameter specifies the control buffer with which to perform
the function. Relevantfields for imThrAlloc() are listed below, with default
values in bold-face. Note that if the Control parameter is set to O or if
certain fields are not added to the control buffer, the default values are used.
(You can later change the values of these fields, except for the stack size,
using imThrControl()).

Field Values Meaning

IM_THR_ACCELERATOR IM_ENABLE Allow functions sent to this
thread to use the NOA,
when possible.

IM_DISABLE Don't allow functions to use

the NOA.

IM_THR_MAX_PPS IM_ALL Allow functions sent to this
thread to use all available
parallel processors (if

needed).
1-n Limit functions to at most n
parallel processors.
IM_THR_PRIORITY 1-15 Thread priority (high

(default: 8) priority threads might be
serviced faster than low
priority threads).

IM_THR_STACK_SIZE 4096 - 65536 Stack size of thread (in
bytes).

imThrAlloc 383

IM_THR_VERIFY IM_ENABLE Verify the command

parameters of functions sent
to this thread.

IM_DISABLE Don't verify the command
parameters.

The ThreadPtr parameter specifies the address in which to return the
thread identifier. If the thread could not be allocated, 0 is returned.

384 imThrCancel

iImThrCancel Async| [Gen-LC

Synopsis

Cancel all commands queued to a specified thread.

Format void imThrCancel(Thread)

Description

long Thread; Thread ID

This function cancels all commands queued to a specified thread. The
function does not affect the currently executing command; use imThrHalt()
to stop it if necessary.

The Thread parameter specifies the thread.

imThrControl 385

ImThrControl [Async] [Gen-LC]

Synopsis Set a thread attribute.

Format void imThrControl(Thread, Item, Value)

Description

long Thread,; Thread ID
long Item; Attribute to set
double Value; Attribute value

This function sets an attribute of a specified thread.
The Thread parameter specifies the thread.

The Item parameter specifies the attribute, while the Value parameter
specifies the value for this attribute. The table below lists those attributes
that can be set, and their allowable values. See imThrAlloc() for the default
values of these attributes.

Item Values Meaning

IM_THR_ACCELERATOR IM_ENABLE Allow functions sent to this
thread to use the NOA, when

possible.
IM_DISABLE Don’t allow functions to use the
NOA.
IM_THR_MAX_PPS IM_ALL Allow functions sent to this

thread to use all available
parallel processors (if needed).

1-n Limit functions to at most n
parallel processors.
IM_THR_PRIORITY 1-15 Thread priority (high priority

threads might be serviced faster
than low priority threads).
IM_THR_VERIFY IM_ENABLE Verify the command parameters
of functions sent to this thread.
IM_DISABLE Don't verify the command
parameters.

386 imThrFree

ImThrFree | Async| | Gen-LC |

Synopsis Free a thread.
Format void imThrFree(Thread)
long Thread; Thread ID
Description This function deallocates a previously allocated thread.

The thread is only deallocated once imThrFree() reaches the head of its
gueue. Therefore, all functions sent to this thread before imThrFree() will
execute.

The Thread parameter specifies the thread to deallocate.

imThrGetError 387

ImThrGetError Sync | [Gen-LC
Synopsis Check a thread for errors.
Format long imThrGetError(Thread, Item, ValuePtr)
long Thread,; Thread ID
long Item; Error item to retrieve
void* ValuePtr; Address in which to return error item
Description This function returns error information about the specified thread. The

returned information pertains to the first error to occur in the thread since
error information about the thread was last cleared. You clear error
information by adding an IM_ERR_RESET flag to the Item parameter.

The Thread parameter specifies the thread on which to return error
information.

The Item parameter specifies the type of error information to retrieve. It
can be set to:

IM_ERR_CODE The error code.

IM_ERR_MSG The error message (maximum size of string:
IM_ERR_MSG_SIZE bytes).

IM_ERR_FUNC The name of the offending function (maximum size

of string: IM_ERR_FUNC_SIZE bytes).

IM_ERR_MSG_FUNC The error message and the name of the offending
function (maximum size of string: IM_ERR_SIZE
bytes).

To clear error information, add IM_ERR_RESET to the Item parameter (for
example, IM_ERR_CODE + IM_ERR_RESET). Adding IM_ERR_RESET will
simultaneously clear all error items (IM_ERR_CODE to IM_SUCCESS, and
IM_ERR_MSG, IM_ERR_FUNC, and IM_ERR_MSG_FUNC to NULL). Note that
you should only clear error information when retrieving the last required
error item. This ensures that, at any time, all error items pertain to the
same detected error.

388 imThrGetError

Return value

The ValuePtr parameter specifies the address in which to return the error
information. If you are retrieving IM_ERR_MSG, IM_ERR_FUNC, or
IM_ERR_MSG_FUNC, ValuePtr should be the address of a character string;
if you are retrieving IM_ERR_CODE, ValuePtr should be the address of a

long.

Since imThrGetError() also returns the error code,ValuePtr can be set
to NULL when you are retrieving the error code.

The returned value is the error code.

Error code
IM_SUCCESS
IM_ERR_BUFFER
IM_ERR_DEVICE
IM_ERR_FILE
IM_ERR_HALTED
IM_ERR_MEMORY

IM_ERR_NOT_PRESENT
IM_ERR_OPCODE
IM_ERR_OSB
IM_ERR_PARAMETER

IM_ERR_RESTRICTION

IM_ERR_SYSTEM
IM_ERR_TIMEOUT

IM_ERR_THREAD
IM_ERR_BUF _ATTRIBUTE

IM_ERR_MISC

Meaning

No error.

Invalid buffer ID.

Invalid device ID, or no such device.
File access error.

Function halted by imThrHalt().

Insufficient memory to carry out the
operation.

Referenced item not present.
Invalid opcode received.
Invalid OSB ID.

Parameter (other than an ID-type
parameter) invalid or unacceptable.

Operation unable to execute due to a
restriction.

No such system.

Device unable to respond during timeout
period.

Invalid thread ID.

Unacceptable buffer attribute (size, data
type, etc.).

Miscellaneous error (the error message

string will provide details on the cause of
the error).

Example The following code checks a thread for errors, then prints the error message.

char Error[IM ERR SIZE];

if (imThrGetError(Thr, IM ERR MSG FUNC + IM_ERR RESET, Error))

printf(“%s\n", Error);

imThrHalt 389

imThrHalt Async| | Gen-LC

Synopsis Halt the current function.

Format void imThrHalt(Thread, Mode)

Description

long Thread; Thread ID
long Mode; Operation mode

This function halts the function currently executing on the specified thread.
When halting a grab or a function that executes for several iterations, you
can halt immediately or at the end of the current frame or iteration.

The Thread parameter specifies the thread whose current function to halt.
The Mode parameter specifies the mode of operation. Mode can be set to:

IM_NOW Halt immediately. Use this mode setting to halt
any function.

IM_FRAME Halt at the end of the current frame or iteration.
Use this mode setting to halt a grab or an
iterating function.

When you are only performing grabs, you can set the Mode parameter to:

IM_URGENT Halt the current grab and also any queued grabs
that have advanced too far to be caught by
imThrCancel(). Note that if you use the
IM_NOW mode when more than two grabs have
been queued, there is a chance that one grab will
be in a state that causes it to be unaffected by
both imThrCancel() and imThrHalt().

Note that if you set Mode to IM_NOW or IM_URGENT, the results of the
halted function are undefined.

390 imThrinquire

iImThrinquire Sync | [Gen-LC

Synopsis

Format

Description

Return value

Inquire about a thread.
long imThrinquire(Thread, Item, ValuePtr)

long Thread; Thread ID
long Item; Attribute about which to inquire
void* ValuePtr; Address of return value

This function inquires about an attribute of a specified thread.
The Thread parameter specifies the thread.

The Item parameter specifies the attribute about which to inquire. It can
be set to:

IM_THR_ACCELERATOR Whether functions sent to this thread can use
the NOA, if present (IM_ENABLE or

IM_DISABLE).

IM_THR_MAX_PPS The maximum number of parallel processors
that functions sent to this thread are allowed
to use.

IM_THR_PRIORITY The thread’s priority.

IM_THR_OWNER_ID The ID of the device on which the thread was
allocated.

IM_THR_STACK_SIZE The stack size of the thread, in bytes.

IM_THR_VERIFY Whether the command parameters of

functions sent to this thread are verified.

The ValuePtr parameter specifies the address in which to return the value
of the inquired attribute. Unless otherwise stated, ValuePtr should be the
address of a long. Note that, since imThrinquire() also returns this value,
ValuePtr can be set to NULL.

The returned value is the value of the inquired attribute, cast to long if
necessary.

imThrNop 391

IMThrNo Async| | Gen-LC
P

Synopsis No operation.

Format wvoid imThrNop(Thread, OSB)

Description

long Thread; Thread ID
long OSB; OSB ID (or 0)

This function performs no operation; it is simply sent to a thread and, once
it reaches the head of that thread’s queue, is considered to have executed.

imThrNop() exists for synchronization purposes. Specifically, if you want
to synchronize with a function that does not accept an OSB parameter or
with a function whose OSB ID you do not know, you should send
imThrNop() immediately afterwards to the same thread this function was
sent, then synchronize with the OSB passed to imThrNop().

The Thread parameter specifies the thread to which to send imThrNop()
for execution. For synchronization purposes, this should be the same thread
as the function with which you want to synchronize.

The OSB parameter specifies the operation status block in which to write
status information regarding this function. This parameter can be set to 0,
in which case no status information is stored for this function. For

synchronization purposes, however, a valid OSB identifier should be given.

392 imThrNop

Appendix A: Glossary

This appendix defines some of the specialized terms used
in the Genesis documentation.

394

Appendix A: Glossary

= ALU

Arithmetic and Logic Unit. The hardware used to perform
arithmetic and logical operations.

ASIC

Application-specific integrated circuit. A custom-made
integrated circuit made to meet the requirements of a specific
application by integrating several digital and/or analog
functions into a single die. Integrating the functions into a
singledie results in areduction in cost, board area, and power
consumption, while improving performance when compared
to an equivalent implementation using off-the-shelf
components.

Asynchronous function

A function that queues its command to the hardware and
then immediately returns control to the caller.

See also synchronous function.
Backplane

A circuit board that acts as a pathway between multiple
Genesis boards. If a backplane is inserted between the grab
ports of Genesis boards and one is inserted between the
VMChannels of these boards, the boards are part of the same
system and can share data through their VMChannel and
grab port interface.

Band

One of the surfaces of a buffer. A grayscale image requires
just one band. A color image requires three bands, one for
each color component.

Bandwidth

A term describing the capacity to transfer data. Greater
bandwidth is needed to sustain a higher transfer rate.
Greater bandwidth can be achieved, for example, by using a
wider bus.

Appendix A: Glossary 395

» Bicubic interpolation

An interpolation mode that takes a weighted average of the
sixteen pixels nearest a point. The pixels closest to the point
are given the most weight. Bicubic interpolation produces
more accurate results than bilinear interpolation but is
slower.

« Bilinear interpolation

An interpolation mode that takes a weighted average of the
four pixels nearest a point. The pixels closest to the point are
given the most weight. Bilinear interpolation produces less
accurate results than bicubic interpolation (it tends to blur
the image slightly). However, it is faster than bicubic
interpolation.

= Binarize
To convert data to one of two values.
= Bit

A digit of a binary number. An image is referred to as 1-bit,
8-bit, 16-bit, etc., meaning that many bits are available to
store the value of each pixel in the image.

=« Broadcast

To send data to multiple memory banks at the same time. On
Matrox Genesis, this can be done for data passing through
the grab port and the VMChannel, but not for data passing
through the PCI bus.

« Blanking period

The portion of a video signal after the end of a line or frame,
and before the beginning of a new line or frame. During this
period, the video signal is "blank" so that a scan line can be
brought back to the beginning of the new line or frame. The
portion of a video signal after the end of a line and before the
beginning of a new line is known as the horizontal blanking
period. The portion of a video signal after the end of a frame
and before the beginning of a new frame is known as the
vertical blanking period.

396

Appendix A: Glossary

=« Blob

An area of touching pixels that have the same value.
Horizontally and vertically adjacent pixels are considered
touching. Usually, you can specify whether diagonally
adjacent pixels are considered touching. Pixels in the image
that are not part of a blob make up the background.

Also known as a connected region.
Buffer pitch

The number of bytes from a pixel to its neighboring pixel on
the line below. Note that a buffer’s pitch is not necessarily
the same as its width in bytes, since the buffer could be a
child buffer or could have been allocated with some padding
at the end of each line.

Also known as line pitch or pitch.
Byte-aligned

Describes a packed binary buffer which starts on an 8-bit
boundary, that is, whose first pixel represents bit 0 of a data
byte. Note that packed binary buffers are byte-aligned when
allocated; the only way to have a misaligned packed binary
buffer is to create a child buffer with an origin that is not a
multiple of 8.

'C80

A single-chip multiprocessor device that performs most of the
processing on the Genesis board. It includes four parallel
processors (these are advanced, 32-bit integer DSPs), a 32-bit
RISC master processor with an IEEE-754 floating-point unit,
and a transfer controller (this transfers data between
external and internal memory). The 'C80 is much more
flexible than custom ASICs or other specialized hardware
because it is fully programmable.

Also known as the TMS320C80.
C-binding

The set of functions, callable from a Host C (or C++)
application, available for controlling the Genesis system.

Appendix A: Glossary 397

Child buffer

A buffer corresponding to a rectangular region within
another buffer, or to a specific band of a multi-band buffer.
Child buffers are therefore useful when you want to restrict
processing to a rectangular region of a buffer, or to a band of
a buffer.

Clip

To replace overflows (or underflows) in an operation with the
highest (or lowest) possible value that can be held in the
destination buffer of the operation.

Closing

A dilation followed by an erosion.
See also opening.

Color component

One of the components that make up a color space. Typically,
each component of a color image is stored in a separate band
of a multi-band buffer.

Color space

The way color information in a color image is represented.
Common color spaces are RGB and HSL.

Composite sync

A synchronization signal made up of two components: one
horizontal and one vertical.

Compression ratio

The ratio of the uncompressed data size of an image to its
compressed data size.

Compute bound

Describes a function whose performance is limited strictly by
the speed at which the 'C80 can process the data, and not by
other factors such as how fast the data can be accessed in
memory.

See also 170 bound.

398

Appendix A: Glossary

Connected region
See blob.
Contiguous memory

A block of memory occupying a single, unbroken series of
addresses.

Control buffer

A buffer whose control fields specify certain options of a
function. The Genesis Native Library uses control buffers
because some functions have so many options that it is
impractical to have these options as parameters of the
function. Instead, you specify the options youwant performed
by adding the required control fields to a buffer and passing
this buffer to the function.

Control field

A field that is used to specify a certain option of a function.
The option is performed by adding the field to the function’s
control buffer. A field holds a single value (integer or
floating-point) and is identified by a unique "tag". The tag
itself is just an integer value.

Convolution

A neighborhood operation that determines the new value for
a pixel based on the weighted sum of the pixel and the pixel’s
neighboring values.

Dilation

A morphological operation that adds layers to objects in an
image. Ingeneral, thisis done by changing background pixels
that touch object pixels into object pixels.

See also erosion.
Display artifacts

Unwanted visual effects sometimes seen when the transfer
of data to display memory is not synchronized with the
reading of display memory by the RAMDAC.

Appendix A: Glossary 399

Display buffer
See main frame buffer.
Double buffering

Alternating the destination of an operation between two
buffers. Double buffering allows you to, for example, process
one buffer while grabbing into the other buffer.

DSP

Digital Signal Processor. Microprocessor designed for
high-speed processing of digital signals.

Dual-screen mode

A display configuration using two monitors; one to display
images from the Genesis display memory, and another to
display the Host operating system'’s user interface.

See also multi-display mode and single-screen mode.
Dynamic range

The range of values present in a buffer. An unsigned 8-bit
buffer, for example, has an allowable range of 0 to 255; its
dynamic range can be any range within these values.

Erosion

A morphological operation that peels layers from objects in
an image. In general, this is done by changing object pixels
that touch background pixels into background pixels.

See also dilation.
Exposure signal

The signal generated by one of the programmable timers of
the grab module. The exposure signal can be used to control
external hardware. For example, it can be fed to the camera
to control its exposure time or used to fire a strobe light.

Exposure time

Refers to the period during which the image sensor of a
camera is exposed to light. As the length of this period
increases, so does the image brightness.

400

Appendix A: Glossary

« Field

One of the two halves that together make up the image
grabbed from an interlaced camera. One half consists of the
image’s odd lines (known as the odd field); the other half
consists of the image’s even lines (known as the even field).

Fixed-point

A format for representing non-integer values that contains a
fixed number of digits for the integer and fractional parts. A
16-bit fixed-point buffer, for example, might contain 8 integer
bits and 8 fractional bits. Fixed-point buffers are a
compromise between floating-pointand integer buffers, since
they offer the speed of integer processing with some of the
precision of floating-point processing.

Floating-point

A format for representing numbers that contains two parts:
a mantissa and an exponent. The mantissa specifies the
digits in the number, while the exponent expresses the
magnitude of the number. This format provides a constant
number of significant digits of precision over a very large
dynamic range. Floating-point buffers take longer to process
than integer buffers.

Frame
A single image grabbed from a video camera.
Gain level

The factor by which an analog input signal is scaled. The gain
affects the brightness and contrast of the resulting image.

Gain and offset correction

To offset and multiply each pixel in an image by specified
values:

new pixel value = (old pixel value - offset) gain.

The offset and gain values can be constant for the whole
image, or they can be different for each pixel. The latter can
be useful when performing shading corrections.

Appendix A: Glossary 401

Geometric operation

A processing operation that repositions pixels in an image.
Grab

To acquire an image from a camera.

Histogram

A statistical operation that measures the frequency with
which each pixel value occurs in an image.

Histogram equalization

A point-to-point operation that changes each pixel value in
animage so as to reshape the image’s histogram in a specified
way. A histogram equalization operation can be used to
improve the contrast or brightness of an image.

Horizontal blanking period

The portion of a video signal after the end of a line and before
the beginning of a new line. During this period, the video
signal is "blank".

See also vertical blanking period.
Horizontal sync

The part of a video signal that indicates the end of a line and
the start of a new one.

See also vertical sync.
HSL

A color space that represents color using components of hue,
saturation, and luminance. The hue component describes the
actual color of a pixel. The saturation component describes
the concentration of that color. The luminance component
describes the combined brightness of the primary colors.

In-place operation

Describes a processing operation in which the results
overwrite one of the source buffers.

402

Appendix A: Glossary

Interlaced scanning

Describes a transfer of data in which the odd-numbered lines
of the source are written to the destination buffer first, and
then the even-numbered lines (or vice-versa).

See also progressive scanning.
Interpolation

A neighborhood operation that estimates the intensity at a
point in an image between pixel positions. To estimate the
intensity, the operation takes a weighted-sum of the point's
neighboring pixel values. Two common interpolation modes
are bicubic interpolation and bilinear interpolation.

1/0 bound

Describes a function whose performance is limited by the
speed at which it can access data in memory.

See also compute bound.
JPEG

Joint Photographic Experts Group. A standard for
compressing images.

Kernel
The setof numbers that are used by a neighborhood operation

to determine new pixel values. The type of neighborhood
operation determines how the kernel is used.

Also known as a structuring element (particularly for
morphological operations).

Keying

A display effect that switches between two display sources
depending on the pixel values in one of the sources. On
Genesis, keying is usually used to make portions of the
overlay frame buffer transparent so that corresponding areas
of the main frame buffer can show through it.

Latency

The time from when an operation is started to when the final
result is produced.

Appendix A: Glossary 403

Line pitch

See buffer pitch.

Live processing

See real-time processing.
LUT mapping

Look-up table mapping. A point-to-point operation that uses
a table to define a replacement value for each possible pixel
value in an image.

Main frame buffer

The buffer whose contents are displayed by the display
section of Matrox Genesis. If keying is enabled, those areas
of the overlay frame buffer that have a specified color allow
the main frame buffer to show through.

Also known as the display buffer.
Message

The operation code and its various optional parameters that
a C-binding function sends to the board so that the board can
execute the function.

MGA

Matrox Graphics Architecture. As part of Matrox Genesis’s
display section, it allows you to draw into the overlay buffer
using the graphics functions of the Host operating system.

Morphological operation

A neighborhood operation that determines the new value for
a pixel based on the results of a comparison between the
pixel's neighborhood and the operation’s kernel, or based on
the extreme values in the pixel's neighborhood.

Multi-display mode

A multi-board configuration that uses Genesis boards and/or
MGA Millennium boards to create one large desktop on two,
three, or four screens.

404

Appendix A: Glossary

»« Multi-processing

Executing two or more operations in parallel.
Also known as parallel processing.
Neighborhood operation

A processing operation that replaces a pixel's value according
to the values of its surrounding pixels (called its
neighborhood). The size of the neighborhood is determined
by the operation’s kernel. The type of operation determines
how the new pixel value is determined. Convolutions and
morphological operations are two types of neighborhood
operations.

NOA

Neighborhood Operations Accelerator. A Matrox-designed
ASIC that can accelerate neighborhood operations such as
convolutions and morphology.

Node

The basic building block of a Genesis system; it consists of
the TMS320C80 ('C80), the VIA, and processing memory. A
node can also include a NOA.

Normalized grayscale correlation

A neighborhood operation that determines the new value for
a pixel (r), based on a specified kernel (model):

A/[NZIZ_HZIEF}[NZMZ_HZMEF}

where M = the value of a model pixel and | = the value of the
underlying image pixel. Note that the above equation reaches
its maximum value of 1 where the image and model match
exactly, gives 0 where the image and model are uncorrelated,
and is negative where the similarity is less than might be
expected by chance (reaching -1 when the image is a negative
version of the model). Normalized grayscale correlation is
widely used in industry for pattern matching applications.

Appendix A: Glossary 405

Normalization

Adjusting the results of a processing operation so that they
have the correct magnitude. After multiplying an image by a
fixed-point integer, for example, normalization is needed to
right-shift results to remove the fractional bits.

Off-screen display memory

Memory that is allocated in the main or overlay frame buffer
(in Matrox Genesis's display section) that is not visible on the
screen.

Opening

An erosion followed by a dilation.
See also closing.

Operand

One of the terms of an arithmetic or logical operation. In the
arithmetic operation A + B, for example, the operands are A
and B. In the Genesis Native Library, one of the operands of
an arithmetic or logical operation must be a buffer; the
other(s) can be buffers or constants. Note that the buffers can
hold any type of data, for example, image data, LUT values,
and kernel values.

Overflows

Results of a processing operation that are above the range of
the destination buffer. For example, in an unsigned 8-bit
destination buffer, overflows are those results above 255.

See also underflows.
Overlay frame buffer

The buffer used to annotate the main frame buffer. On
Genesis, portions of the overlay frame buffer that have a
specified color allow the corresponding areas of the main
frame buffer to show through (if keyingis enabled). Note that,
in single-screen mode, the overlay frame buffer is also used
to display the Host operating system’s user interface.

Parallel processing

See multi-processing.

406

Appendix A: Glossary

Pitch
See buffer pitch.
Point-to-point operation

A processing operation that does not use a pixel's neighbors
when determining the pixel’s new value. Examples of
point-to-point operations are LUT mappings, arithmetic
operations, and logical operations.

Processing operation

An operation that results in a new image. Examples of
processing operations are geometric operations,
point-to-point operations, and neighborhood operations.

See also statistical operation.
Progressive scanning

Describes a transfer of data in which the lines of the source
are written sequentially into the destination buffer.

See also interlaced scanning.
RAMDAC

Random Access Memory Digital-to-Analog Converter. A chip
that converts data from digital to analog so that it can be
displayed on a monitor. The RAMDAC can also implement
various display effects.

Rank filter operation

A neighborhood operation that sorts a pixel's neighborhood
values in increasing order, and then replaces the pixel's value
with the nth highest value in the list. A median filter is a type
of rank filter that uses the middle value in the list.

Real-time processing

The processing of an image as quickly as the next image is
grabbed.

Also known as live processing.

Appendix A: Glossary 407

Reference levels

The zero and full-scale levels of an analog-to-digital
converter. Voltages below ablack reference level are converted
to a zero pixel value; voltages above a white reference level
are converted to the maximum pixel value. Together with the
analog gain factor, the reference levels affect the brightness
and contrast of the resulting image.

RGB

A color space that represents color using the primary colors
(red, green, and blue) as components.

RISC

Reduced Instruction Set Computing. A microprocessor design
that focuses on efficiently processing a small set of
instructions.

ROI

Region of interest. The area of a buffer that is processed. The
region of interest can be the entire buffer or a rectangular
portion of the buffer.

Run

A horizontal sequence of consecutive pixels with the same
value. Often used in blob analysis, since each blob can be
efficiently described as a list of runs.

Saturate

To replace overflows (or underflows) in an operation with the
highest (or lowest) possible value that can be held in the
destination buffer of the operation.

Scalability

Describes a board whose configuration is designed to include
additional modules, if desired. The Genesis main board, for
example, can include a display section and/or grab module.
In addition, one or more processor boards can be added to
increase performance.

408

Appendix A: Glossary

=« SDRAM

Synchronous Dynamic Random Access Memory. A type of
memory used for processing. SDRAM allows the 'C80 to
access data as fast as possible, which is important for
1/0-bound functions.

Shearing

A geometric operation that translates pixels along only one
axis, by anamount proportional to the distance from that axis
(see below).

+y shearing

-x shearing original +x shearing
image

-y shearing
Signed

Describes a buffer that can have negative values. A signed
8-bit buffer, for example, has values between -128 and 127.

See also unsigned.
Sign-extension

To extend a value from one data type to a larger data type by
copying the sign bit of the source type to all the higher bits
of the destination (that is, by copying 1's if the value is
negative; O's if the value is positive).

See also zero-extension.

Appendix A: Glossary 409

Single-screen mode

A display configuration using a single monitor to display both
the Host operating system’s user interface and images from
the Genesis display memory.

See also dual-screen mode and multi-display mode.
Spatial filtering operation

See convolution.

Statistical operation

An operation that extracts information from an image. A
histogram is an example of a statistical operation.

See also processing operation.
Structuring element

See kernel.

Synchronous function

A function that does not return control to the caller until it
has finished executing.

See also asynchronous function.
System

A group of Genesis boards (main board(s) and/or processor
board(s)) connected to each other by the grab port and the
VM port.

Temporal filtering

An operation that takes a weighted sum of the currently
grabbed frame and the previous output of the filter operation.
Temporal filtering is often used to remove the effects of
random noise because it acts as an averaging filter.

Thickening

A morphological operation that converts background pixels
into object pixels when the neighborhood exactly matches a
kernel. Thickening is similar to dilation except that itis more
selective because, when iterated, it will not convert all pixels
to object pixels. Instead, it will eventually reach a steady
state (known as idempotence).

410

Appendix A: Glossary

Thinning

A morphological operation that converts object pixels into
background pixels when the neighborhood exactly matches a
kernel. Thinning is similar to erosion except that it is more
selective because, when iterated, it will not convert all pixels
to background pixels. Instead, it will eventually reach a
steady state (known as idempotence).

Thread

An execution queue. In the Genesis Native Library, all
functions are sent to a specified thread, and execute on the
node associated with this thread. Threads execute
independently of one another, allowing operations to run in
parallel.

Threshold

A point-to-point operation that converts pixels whose values
are above, below, and/or within a specified range, to a
specified value.

TMS320C80
See 'C80.
Translation

A geometric operation that displaces an image vertically
and/or horizontally.

Underflows

Results of a processing operation that are below the range of
the destination buffer. For example, in an unsigned 8-bit
destination buffer, underflows are those results below 0.

See also overflows.
Unsigned

Describes a buffer that can have only positive values. An
unsigned 8-bit buffer, for example, has values between 0 and
255.

See also signed.

Appendix A: Glossary 411

Vertical blanking period

The portion of a video signal after the end of a frame and
before the beginning of a new frame. During this period, the
video signal is "blank".

See also horizontal blanking period.
Vertical sync

The part of a video signal that indicates the end of a frame
and the start of a new one.

See also horizontal sync.
VIA

Video Interface ASIC. A custom ASIC that connects all the
data buses on Matrox Genesis (the grab, VMChannel, 'C80
and PCI bus) to one another, and directs and monitors data
flow "traffic" throughout the system. It is a video interface
that provides various ways of inputting and outputting data.

VMChannel

Vesa Media Channel. An industry standard 32-bit bus
designed for carrying video data. On Genesis, it is used
primarily to copy images between nodes or from processing
to display memory.

WRAM

Window Random Access Memory. A type of dual-ported
memory used for displays.

Zero-extension

To extend a value from one data type to a larger data type by
copying O’s into all the higher bits of the destination.

See also sign-extension.

412 Appendix A: Glossary

Appendix B: Examples

This appendix gives the complete source code of each
example referenced in this manual. To compile these
examples, refer to the readme.txt file in the
\GENESIS\DOC directory. Note that there might be more
up-to-date or other examples in the \GENESIS\EXAMPLES
directory.

414 Appendix B: Examples

blob.c

Demonstrate the use of the BLOB module.

(Note that if you are running in single screen mode under Windows,
you will not see anything in the Genesis image buffer until you
enable keying with a separate program).

* % ok ok N F

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include “imapi.h"

/* Maximum blobs to draw */
#define MAX BLOBS 20

/* List of supported functions */

#define COUNT 0

#define BOX 1

#define FILTER 2

void main(int argc, char **argv)

{
Tong Device; /* Genesis device */
Tong Thread; /* Thread to execute all

* functions */

Tong IdentBuf’; /* Blob identifier image */
long DispBuf; /* Display buffer */
Tong FeatlList; /* Blob feature 1ist */
Tong Result; /* Blob result buffer */
Tong SizeX = 512, SizeY = 512;/* Image Size */
Tong Func = 0; /* The function to use */
char Error[IM ERR SIZE]; /* String to hold error message */
Tong 1i;

/* Check arguments */
if (argc < 2 || *argv[l] == '?")
{

printf(“Usage: BLOB func\n");
printf(“func = %2d Count number of blobs\n", COUNT);

printf(" %2d Find bounding box of each blob\n", BOX);
printf(" %2d Filter unwanted blobs\n", FILTER);
exit(l);

3
if (argc > 1)
sscanf(argv[1], "%1i", &Func);

blob.c

415

/* Allocate a device and a thread */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread):

/* Allocate the blob identifier image */

imBufAlloc2d(Thread, SizeX, SizeY, IM UBYTE, IM PROC, &IdentBuf);

/* Allocate a full-screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &DispBuf);
imBufClear(Thread, Dispbuf, 0, 0);

/* Draw random blobs in the identifier image */
imBufClear (Thread, IdentBuf, 0, 0);
imBufPutField(Thread, IdentBuf, IM GRA COLOR, 150);
for (i = 0; i < MAX BLOBS; i++)

imGraArcFil1(Thread, IdentBuf, IdentBuf, rand() % SizeX,
rand() % SizeY, rand() % 30 + 15,
rand() % 30 + 15, 0, 360);
}

/* Copy the image to the display */
imBufCopy(Thread, IdentBuf, DispBuf, 0, 0):

/* Perform the selected processing operation */
switch (Func)

{
case COUNT:
printf("Count the number of blobs...\n");
/* Allocate a blob feature 1list and result buffer */
imBlobAllocFeatureList(Thread, &FeatList);
imBlobAllocResult(Thread, &Result);

/* Increase speed by not saving runs */

imBlobControl(Thread, Result, IM BLOB SAVE RUNS, IM DISABLE);

/* Count the blobs */
imBlobCalculate(Thread, IdentBuf, 0, FeatList, Result,
IM CLEAR, 0);

/* Get the number */
printf("There are %11 blobs\n", imBlobGetNumber(Thread,
Result, NULL));

/* Free the feature list and result buffer */
imBlobFree(Thread, FeatList);
imBlobFree(Thread, Result);

break;

416 Appendix B: Examples

case BOX:
printf("Find the bounding box of each blob...\n");

Tong Number; /* Number of blobs */
IM BLOB GROUP1 ST *Groupl; /* Results */

/* Allocate a blob feature list and result buffer */
imBTobAllocFeatureList(Thread, &FeatlList);
imBTobAllocResult(Thread, &Result);

/* Select box feature for calculation */
imBlobSelectFeature(Thread, FeatlList, IM BLOB BOX,
IM DEFAULT);

/* Increase speed by not saving runs */
imBlobControl(Thread, Result, IM BLOB SAVE RUNS, IM DISABLE);

/* Calculate selected features */
imBlobCalculate(Thread, IdentBuf, 0, FeatList, Result,
IM CLEAR, 0);

/* Get the number of blobs */
imBTobGetNumber (Thread, Result, &Number);

/* Allocate enough memory for the results */
Groupl = (IM BLOB GROUP1 ST *)
malloc(Number * sizeof(IM BLOB GROUP1 ST));

/* Get the results */
imBlobGetResult(Thread, Result, IM BLOB GROUP1,
IM_DEFAULT, Groupl);

/* Mark the bounding boxes */
for (i = 0; i < Number; i++)
imGraRect(Thread, 0, IdentBuf, Groupl[i].box x min,
Groupl[i].box y min, Groupl[i].box x max,
Groupl[i].box_y max);

/* Display the result */
imBufCopy(Thread, IdentBuf, DispBuf, 0, 0);:

/* Free the feature list and result buffer */
free(Groupl);
imBlobFree(Thread, FeatList);
imBlobFree(Thread, Result);

break;

blob.c 417
case FILTER:
printf("Find convex blobs that don't touch the edge of
the image...\n");

/* Allocate a blob feature list and result buffer */
imBTobAllocFeatureList(Thread, &FeatList);
imBTobAllocResult(Thread, &Result);

/* Select the required features for calculation */
imBlobSelectFeature(Thread, FeatlList, IM BLOB BOX,

IM DEFAULT);
imBlobSelectFeature(Thread, Featlist,
IM BLOB ROUGHNESS, IM DEFAULT);

/* Calculate selected features */
imBlobCalculate(Thread, IdentBuf, 0, FeatList, Result,

IM_CLEAR, 0);
/* Exclude blobs that touch any edge of the image */

imBlobSelect(Thread, Result, IM EXCLUDE,

IM BLOB BOX X MIN, IM DEFAULT, IM EQUAL, 0, 0);
imBlobSelect(Thread, Result, IM EXCLUDE,

IM BLOB BOX X MAX, IM DEFAULT, IM EQUAL,

SizeX - 1, 0);
imBlobSelect(Thread, Result, IM EXCLUDE,

IM BLOB BOX Y MIN, IM DEFAULT, IM EQUAL, 0, 0);

imBlobSelect(Thread, Result, IM_EXCLUDE,
IM_BLOB BOX_Y MAX, IM DEFAULT, IM EQUAL,
SizeY - 1, 0):

/* Exclude blobs that are too rough */
imBlobSelect(Thread, Result, IM EXCLUDE,
IM BLOB ROUGHNESS, IM DEFAULT, IM GREATER,
1.04, 0);

/* Fill the two groups of blobs with different colours */
imBlobFi11(Thread, Result, IdentBuf, IM EXCLUDED BLOBS,
150, 0);
imBlobFi11(Thread, Result, IdentBuf, IM INCLUDED BLOBS,
255, 0);

/* Display the result */
imBufCopy(Thread, IdentBuf, DispBuf, 0, 0);

/* Free the feature list and result buffer */
imBlobFree(Thread, FeatList);
imBlobFree(Thread, Result);

break;

}

default:
printf ("Unsupported function\n");
break;

418 Appendix B: Examples

/* Wait for everything to finish, then check for errors */
imSyncHost(Thread, 0, IM COMPLETED);
if (imAppGetError(IM ERR MSG _FUNC, Error))
printf("%s\n", Error);

/* Clean up */
imBufFree(Thread, IdentBuf);
imBufFree(Thread, DispBuf);
imThrFree(Thread) ;
imDevFree(Device);

first.c 419

first.c

A very simple Genesis program.
If anything goes wrong, an error message will be printed.

(Note that if you are running in single screen mode under
Windows, you will not see anything in the Genesis image buffer
until you enable keying with a separate program).

EE

#include <stdio.h>
#include “imapi.h"

/* Prototype for error handler function */
void ErrHandler(void *Param);

void main(void)

{
Tong Device; /* Genesis device */
Tong Thread; /* Thread to execute all functions */
Tong ProcBuf; /* Buffer allocated in processing memory */
long DispBuf; /* Buffer allocated in display memory */

Tong Success = 1; /* Flag to record success or failure */
printf(“Allocating the Genesis system...\n");

/* Establish an error handler */
imAppCatchError (IM _DEFAULT, ErrHandler, (void *) &Success);

/* Allocate the board and a thread */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread):

/* Allocate a full screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &DispBuf);
imBufClear(Thread, DispBuf, 0, 0);

/* Allocate a processing buffer */
imBufAlloc2d(Thread, 512, 512, IM UBYTE, IM PROC, &ProcBuf);

420

Appendix B: Examples

/* Clear the buffer and then write text in it */
imBufClear(Thread, ProcBuf, 0, 0);
imGraRect(Thread, 0, ProcBuf, 180, 230, 335, 285);
imGraText(Thread, 0, ProcBuf, 200, 250, "Matrox Genesis");

/* Copy it to the display */
imBufCopy(Thread, ProcBuf, DispBuf, 0, 0):

/* Synchronize to give all errors a chance to be reported */
imSyncHost(Thread, 0, IM COMPLETED);

/* If no errors occurred, report success */
if (Success)
printf(“Completed successfully\n");

/* Clean up */
imBufFree(Thread, DispBuf);
imBufFree(Thread, ProcBuf);
imThrFree(Thread) ;
imDevFree(Device);

void ErrHandler(void *Success)

char Error[IM ERR SIZE];
/*
* Get the error messsage and print it. Don't reset the error
* because we only want the first to be printed.
*/
imAppGetError(IM ERR MSG FUNC, Error);
printf("%s\n", Error);

/* Record that the error occurred */
*(Tong *)Success = 0;

grab.c 421
grab.c
/
*
* Grab an image, and optionally save it.
*
* (Note that if you are running in single screen mode under
* Windows, you will not see anything in the Genesis image buffer
* until you enable keying with a separate program).
*
/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include “imapi.h"

void main(int argc, char **argv)

{

Tong Device; /* Genesis device */

Tong Thread; /* Thread to execute all functions */
long DispBuf; /* Buffer allocated in display memory */
Tong ScreenBuf; /* Display buffer full size of screen */
Tong Camera; /* Camera */

Tong SizeX, SizeY; /* Image Size */

char Error[IM _ERR SIZE];/* String to hold error message */

int Save = 0, 1; /* Miscellaneous variables */

/* Check arguments */

if (argc > 1 &% *argv[l] == '?")

{
printf(“"Usage: GRAB [file.tif] [-x] [-y]l\n");
printf(" -x size\t Image X size\n");
printf(" -y size\t Image Y size\n"):
exit(l);

}

if (argc > 1 &% *argv[l] I= '-")
Save = 1;

/* Allocate the board, a thread and a camera */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread):
imCamATloc(Thread, NULL, IM DEFAULT, &Camera);

/* Determine the image size */
imCamInquire(Thread, Camera, IM DIG SIZE X, &SizeX);
imCamInquire(Thread, Camera, IM DIG SIZE Y, &SizeY);

422 Appendix B: Examples

/* Check if the user requested a different size */
for (i =1; i < argc; i++)

if (Istremp(argv[i], "-x"))
sscanf(argv[i+l], "%1i", &SizeX);
else if (Istremp(argv[il, "-y"))
sscanf(argv[i+l], "%1i", &SizeY);
}

printf(“Image size is %¥1ix%¥1i\n", SizeX, SizeY);

/* Allocate a full screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &ScreenBuf);
imBufClear(Thread, ScreenBuf, 0, 0);

/* Allocate a buffer at a specific Tocation on the display */
imBufChild(Thread, IM DISP, 0, 0, SizeX, SizeY, &DispBuf);

/* Start a continuous grab into the display buffer */
imDigGrab(Thread, 0, Camera, DispBuf, IM CONTINUOUS, 0, 0);

/* Halt when the user hits Enter */
printf(“Press <Enter> to stop");
getchar();
imThrHalt(Thread, IM FRAME);

/* Optionally save the image */
if (Save)

if (imCamInquire(Thread, Camera, IM DIG NUM BANDS, NULL) == 3)

/* Save all bands if colour */
imBufSave(Thread, argv[1], IM TIFF, DispBuf);
}

else

/* Save just the first band of the display if not colour */
Tong MonoBuf;

imBufChildBand(Thread, DispBuf, 0, &MonoBuf);
imBufSave(Thread, argv[1], IM TIFF, MonoBuf);
imBufFree(Thread, MonoBuf);

}

/* Wait for everything to finish, then check for errors */
imSyncHost(Thread, 0, IM COMPLETED);
if (imAppGetError(IM _ERR MSG FUNC, Error))
printf("%s\n", Error);

/* Clean up */
imCamFree(Thread, Camera);
imBufFree(Thread, DispBuf);
imBufFree(Thread, ScreenBuf);
imThrFree(Thread) ;
imDevFree(Device);

jpeg.c

423

jpeg.c

/

*

* Demonstrate the use of the JPEG module.

*

* (Note that if you are running in single screen mode under Windows,
* you will not see anything in the Genesis image buffer until you

* enable keying with a separate program).

*

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include “imapi.h"

/* List of supported functions */
#define COMPRESS 0
#define DECOMPRESS 1

void main(int argc, char *#*argv)

{
Tong Device; /* Genesis device */
Tong Thread; /* Thread to execute all functions */
Tong ImageBuf’; /* Uncompressed image */
long JpegBuf'; /* Compressed image */
long DispBuf; /* Display buffer */
Tong Func; /* The function to use */
char Error[IM _ERR SIZE];/* String to hold error message */
char InFile[100]; /* Name of input image file */
char OutFile[100]; /* Name of output image file */

/* Check arguments */
if (argc < 3 || *argv[l] == '?")
{

printf("Usage: JPEG infile outfile [func]\n");
printf("func = ¥2d Load TIFF file, compress, and save JPEG
file\n", COMPRESS);

printf(" %2d Load JPEG file, decompress, and save TIFF
file\n", DECOMPRESS);
printf(" (default is determined from file types)\n");

printf("\n");

printf(“Ex. JPEG file.tif file.jpg will compress\n");
printf(" JPEG file.jpg jpeg.tif will decompress\n”);
exit(l);

}
strepy(InFile, argv[1]);
strcpy(OutFile, argv[2]);

424

Appendix B: Examples

/* Determine whether to compress or decompress */
if (argc > 3)
sscanf(argv[3], "%¥1i", &Func);
else

if ((strstr(InFile, ".tif") || strstr(InFile, ".TIF")) &&
(strstr(OutFile, ".jpg") || strstr(OutFile, ".JPG")))
Func = COMPRESS;

else if ((strstr(InFile, ".jpg") || strstr(InFile, ".JPG")) &&
(strstr(OutFile, ".tif") || strstr(OutFile, ".TIF")))
Func = DECOMPRESS;

else

printf(“Cannot determine what to do from file names
alone\n");
exit(1);

}

/* Allocate a device and a thread */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread):

/* Perform the selected processing operation */
switch (Func)

{
case COMPRESS:

printf(“Load TIFF file, compress, and save JPEG file\n");

/* Allocate a JPEG buffer */
imJpegAlloc(Thread, 0, &JpegBuf):

/* Select lossless mode */
imJpegControl(Thread, JpegBuf, IM_JPEG MODE, IM_LOSSLESS);

/* Load the uncompressed image into a processing buffer */
imBufRestore(Thread, InFile, IM TIFF, IM PROC, &ImageBuf);

/* Compress the image */
imJpegEncode(Thread, ImageBuf, JpegBuf, 0):

/* Save the compressed image */
imJpegSave(Thread, OutFile, JpegBuf);:

/* Free the JPEG buffer */
imJpegFree(Thread, JpegBuf):

break;

jpeg.c 425

case DECOMPRESS:
printf(“Load JPEG file, decompress, and save TIFF file\n");

/* Load the compressed image into a JPEG buffer */
imJpegRestore(Thread, InFile, &JpegBuf):

/* Allocate a processing buffer of the same size */
imBufAlloc(Thread, imJpegInquire(Thread, JpegBuf,
IM JPEG SIZE X, NULL),
imJpegInquire(Thread, JpegBuf,
IM JPEG SIZE Y, NULL),
imJpegInquire(Thread, JpegBuf,
IM _JPEG_NUM BANDS, NULL),
imJpegInquire(Thread, JpegBuf,
IM JPEG TYPE, NULL),
IM_PROC, &ImageBuf);

/* Decompress the image */
imJpegDecode(Thread, ImageBuf, JpegBuf, 0):

/* Save the decompressed image */
imBufSave(Thread, OutFile, IM TIFF, ImageBuf);

/* Free the JPEG buffer */
imJpegFree(Thread, JpegBuf):

break;

}

default:
printf(“Unsupported function\n");
break;

}

/* Allocate a full screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &DispBuf);
imBufClear(Thread, DispBuf, 0, 0);

/* Copy the uncompressed image to the display */
imBufCopy(Thread, ImageBuf, DispBuf, 0, 0);:

/* Wait for everything to finish, then check for errors */
imSyncHost(Thread, 0, IM COMPLETED);
if (imAppGetError(IM ERR MSG FUNC, Error))
printf("%s\n", Error);

/* Clean up */
imBufFree(Thread, ImageBuf);
imBufFree(Thread, DispBuf);
imThrFree(Thread) ;
imDevFree(Device);

426 Appendix B: Examples

pat.c
/
*
* Demonstrate the use of the PAT module.
*
* (Note that if you are running in single screen mode under Windows,
* you will not see anything in the Genesis image buffer until you
* enable keying with a separate program).
*

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include “imapi.h"

/* List of supported functions */
#define SAVE 0

#define RESTORE 1

void main(int argc, char **argv)

{
Tong Device; /* Genesis device */
Tong Thread; /* Thread to execute all functions */
Tong ImageBuf’; /* Model or target image */
long DispBufl; /* Display buffer */
long DispBuf2; /* Display buffer */
Tong ScreenBuf'; /* Display buffer full size of screen */
Tong Model; /* Pattern matching model */
Tong Result; /* Pattern matching result buffer */
Tong SizeX, SizeY; /* Image Size */
Tong Func = 0; /* The function to use */

char Error[IM ERR SIZE];/* String to hold error message */
char *ImageFile = "board.mim"; /* Name of image file */
char *ModelFile = "model.mod"; /* Name of model file */
Tong Mode10ffX = 272, ModelOffY = 112;

Tong Model1SizeX = 128, ModelSizeY = 128;

/* Check arguments */
if (argc < 2 || *argv[l] == '?")
{

printf("Usage: PAT func\n");

printf("func = ¥2d Define and save model\n", SAVE);
printf(" %2d Restore and find model\n", RESTORE);
exit(1);

3
if (argc > 1)
sscanf(argv[1], "%¥1i", &Func);

/* Allocate a device and a thread */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread):

pat.c

427

/* Load the image into a processing buffer */
imBufRestore(Thread, ImageFile, IM TIFF, IM PROC, &ImageBuf);

/* Allocate two display buffers of the same size */
imBufInquire(Thread, ImageBuf, IM BUF SIZE X, &SizeX);
imBufInquire(Thread, ImageBuf, IM BUF SIZE Y, &SizeY);
imBufChild(Thread, IM DISP, 0, 0, SizeX, SizeY, &DispBufl);
imBufChild(Thread, IM DISP, SizeX, 0, SizeX, SizeY, &DispBuf2);

/* Allocate a full screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &ScreenBuf);
imBufClear(Thread, ScreenBuf, 0, 0);

/* Copy the image to the display */
imBufCopy(Thread, ImageBuf, DispBufl, 0, 0);

/* Perform the selected processing operation */
switch (Func)

{

case SAVE:
{

printf(“Define model and save\n");

/* Allocate a pattern matching model */
imPatAllocModel(Thread, ImageBuf, ModelOffX,
Mode10ffY, ModelSizeX,
Mode1SizeY, IM NORMALIZED, &Model);

/* Preprocess the model for a faster search */
imPatPreprocModel (Thread, 0, Model, IM DEFAULT, 0);

/* Select medium speed and high accuracy */
imPatSetSpeed(Thread, Model, IM MEDIUM);
imPatSetAccuracy(Thread, Model, IM HIGH);

/* Save the model */
imPatSave(Thread, ModelFile, Model);

/* Free the model */
imPatFree(Thread, Model);

break;

}

case RESTORE:

{
printf(“Restore model and find in target image\n");
long TempBuf; /* Temporary buffer */
IM_PAT RESULT ST Res; /* A1l match results */
IM_PAT INQUIRE ST Ing; /* A1l model parameters */

/* Restore the model */
imPatRestore(Thread, ModelFile, &Model);

428

Appendix B: Examples

/* Inquire all parameters */
imPatInquire(Thread, Model, IM ALL, &Inq);

/* Allocate a pattern matching result buffer */
imPatAllocResult(Thread, 1, &Result):

/* Search for the model */
imPatFindModel(Thread, ImageBuf, Model, Result, 0);

/* Get all results */
imPatGetResult(Thread, Result, IM ALL, &Res);

/* Check if a match was found */
if (Res.number == 0)

printf("Model could not be found\n");
}

else

/* Print the match position and score */

printf("Model found at (%.2f, %.2f) with score of
%.1f%%\n", Res.position x, Res.position_y,
Res.score);

/* Mark the match position */

imGraLine(Thread, 0, ImageBuf, (long) (Res.position x-10),
(Tong) (Res.position y),
(Tong) (Res.position x+10),
(Tong) (Res.position y));

imGraLine(Thread, 0, ImageBuf, (long) (Res.position x),
(Tong) (Res.position y-10),
(Tong) (Res.position x),
(Tong) (Res.position_y+10));

imGraRect (Thread, 0, ImageBuf,
(Tong) (Res.position_x - Ing.center x),
(long) (Res.position_y - Ing.center_y),
(Tong) (Res.position_x - Inq.center x +
Inq.size x),
(long) (Res.position_y - Inq.center_y +
Inq.size y));

imBufCopy(Thread, ImageBuf, DispBufl, 0, 0);:

}

/* Copy the model to a temporary buffer, then to the display */
imBufAlloc2d(Thread, Ing.size x, Inq.size y, IM UBYTE, IM PROC,
&TempBuf) ;
imPatCopy(Thread, Model, TempBuf, IM DEFAULT, 0);
imBufCopy(Thread, TempBuf, DispBuf2, 0, 0);:
imBufFree(Thread, TempBuf);

/* Free the model and result buffer */
imPatFree(Thread, Model);
imPatFree(Thread, Result);

break;

pat.c

429

default:
printf(“Un
break;

}

/* Wait for everyth
imSyncHost (Thread,
if (imAppGetError(

printf("%s\n",

/* Clean up */
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imThrFree(Thread) ;
imDevFree(Device);

supported function\n");

ing to finish, then check for errors */
0, IM COMPLETED);

IM_ERR MSG FUNC, Error))

Error);

ImageBuf) ;
DispBufl);
DispBuf2);
ScreenBuf) ;

430 Appendix B: Examples

process.c

Load a TIFF file and perform a variety of processing operations.
Most operations will work on either monochrome or colour images.

The purpose is simply to illustrate the usage of processing functions
that are non-trivial to use for the first time without an example.

(Note that if you are running in single screen mode under Windows,
you will not see anything in the Genesis image buffer until you
enable keying with a separate program).

*ok ok ko kA F F

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include “imapi.h"

/* Prototype for error handler function */
void ErrHandler(void *Param);

/* List of supported functions */
#define CONVOLVE
#define ROTATE
#define MERGE
#define LUT
#define MORPHIC
#define FFT
#define BUFMAP
#define PLOT
#define WARPMATRIX
#define PACK
#define WARPLUT
#define SHADING

RPOWoO~NOUTA_RWNRFO

[E Y

void main(int argc, char **argv)

{
Tong Device; /* Genesis device */
Tong Thread; /* Thread to execute all functions */
Tong SrcBuf; /* Source buffer (original image) */
Tong DstBuf; /* Destination buffer (processed image) */
long SrcDispBuf; /* Display buffer for original image */
long DstDispBuf; /* Display buffer for processed image */
Tong ScreenBuf'; /* Display buffer full size of screen */
Tong SizeX, SizeY; /* Image size */
Tong NumBands; /* Number of bands in image */

Tong Func = 0; /* The function to use */

process.c 431

/* Check arguments */
if (argc < 2 || *argv[l] == '?")
{

printf(“Usage: PROCESS file.tif [func]\n");
printf(“func = %2d User-defined convolution\n”, CONVOLVE);

printf(" %2d Image rotation\n", ROTATE);

printf(" %2d Three-input ALU operation\n“, MERGE);

printf(" %2d LUT generation and mapping\n“, LUT):

printf(" %2d Binary morphology\n“, MORPHIC);

printf(" %2d Fourier Transform\n“, FFT);

printf(" %2d Host access to image buffer\n", BUFMAP);

printf(" %2d Plot histogram with graphics functions\n”,
PLOT);

printf(" %2d Matrix-defined warping\n“, WARPMATRIX):

printf(" %2d Non-rectangular ROIs\n", PACK);

printf(" %2d LUT-defined warping\n“, WARPLUT):

printf(" %2d Shading correction\n", SHADING);

exit(1);

3
if (argc > 2)
sscanf(argv[2], "%1i", &Func);

/* Establish an error handler */
imAppCatchError (IM DEFAULT, ErrHandler, NULL);

/* Allocate a device and a thread */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread):

/* Load the image into a processing buffer */
imBufRestore(Thread, argv[1], IM TIFF, IM PROC, &SrcBuf);

/* Inquire the image size and number of bands */
imBufInquire(Thread, SrcBuf, IM BUF SIZE X, &SizeX);
imBufInquire(Thread, SrcBuf, IM BUF SIZE Y, &SizeY);
imBufInquire(Thread, SrcBuf, IM BUF NUM BANDS, &NumBands);

/* Allocate two display buffers (they may be clipped to fit on the
/* screen) */
imBufChild(Thread, IM DISP, 0, 0, SizeX, SizeY, &SrcDispBuf);
imBufChild(Thread, IM DISP, SizeX, 0, SizeX, SizeY, &DstDispBuf);

/* Allocate a full screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &ScreenBuf);
imBufClear(Thread, ScreenBuf, 0, 0);

/* Copy the original image to the display */
imBufCopy(Thread, SrcBuf, SrcDispBuf, 0, 0);

/* Clone the image buffer since some functions can't work in-place */
imBufClone(Thread, SrcBuf, IM PROC, &DstBuf);

432

Appendix B: Examples

/* Perform the selected processing operation */
switch (Func)

{

case CONVOLVE:
{
printf(“User-defined convolution\n");
Tong KerBuf; /* Kernel buffer */
short KerVals[9] = /* Array of kernel values */
{
-1, -1, -1,
-1, 9, -1,
-1, -1, -1
1

/* Allocate kernel buffer */
imBufAlloc2d(Thread, 3, 3, IM SHORT, IM PROC, &KerBuf);

/* Set kernel values */
imBufPut(Thread, KerBuf, KerVals);

/* Specify absolute value and clip */
imBufPutField(Thread, KerBuf, IM_KER ABSOLUTE, IM_ENABLE);
imBufPutField(Thread, KerBuf, IM_KER CLIP, IM _ENABLE);

/* Perform the convolution */
imIntConvolve(Thread, SrcBuf, DstBuf, KerBuf, 0, 0);

/* Free the kernel buffer */
imBufFree(Thread, KerBuf);
break;

}
case ROTATE:

printf(“Image rotation\n");
Tong CoefBuf; /* Coefficient buffer (also control buffer) */

/* Allocate warp coefficient buffer */
imBufAlloc2d(Thread, 3, 2, IM_FLOAT, IM_PROC, &CoefBuf);

/* Generate coefficients for 30 degree rotation about centre */
imGenWarplstOrder (Thread, CoefBuf, IM TRANSLATE, -SizeX/2,
-SizeY/2, IM_CLEAR, 0);
imGenWarplstOrder (Thread, CoefBuf, IM ROTATE, 30.0, 0.0,

IM_NO_CLEAR, 0);
imGenWarplstOrder(Thread, CoefBuf, IM TRANSLATE, SizeX/2,
SizeY/2, IM_NO_CLEAR, 0);

/* Select bilinear interpolation and replace overscan */
imBufPutField(Thread, CoefBuf, IM CTL RESAMPLE, IM BILINEAR);
imBufPutField(Thread, CoefBuf, IM_CTL OVERSCAN, IM_REPLACE);

process.c 433

/* Rotate the image */
imIntWarpPolynomial (Thread, SrcBuf, DstBuf, CoefBuf,
CoefBuf, 0);

/* Free the coefficient buffer */
imBufFree(Thread, CoefBuf);

break;

case MERGE:
printf("Three-input ALU operation\n”);

Tong SrcBBuf; /* Source buffer for ALU B input */
Tong SrcCBuf; /* Source buffer for ALU C input */

/* Use a negated copy of the original image as source B */
imBufClone(Thread, SrcBuf, IM PROC, &SrcBBuf);
imIntMonadic(Thread, SrcBuf, 255, SrcBBuf, IM SUB NEG, 0);

/* Draw a circular mask in the source C buffer */
imBufAlloc2d(Thread, SizeX, SizeY, IM UBYTE, IM PROC,
&SrcCBuf) ;
imBufClear(Thread, SrcCBuf, 0, 0);
imGraArcFi11(Thread, 0, SrcCBuf, SizeX/2, SizeY/2,
SizeX/3, SizeY/3, 0.0, 360.0);

/* Copy original image inside the circle, and negated image
/* outside it */
imIntTriadic(Thread, SrcBuf, SrcBBuf, SrcCBuf, DstBuf, 0,
IM PP_MERGE, IM DEFAULT, 0);

/* Free the temporary buffers */
imBufFree(Thread, SrcBBuf);
imBufFree(Thread, SrcCBuf);

break;

}
case LUT:

printf("Lut mapping\n");

Tong LutBuf; /* LUT buffer */

double Coef[2] = {255.0, -1.0}; /* Coefficients for
/* inverse ramp */

/* Allocate LUT */
imBufAllocld(Thread, 256, IM UBYTE, IM PROC, &LutBuf);

/* Generate an inverse ramp */
imGenld(Thread, LutBuf, IM POLYNOMIAL, 0, 255, 2, Coef, 0);

/* Perform the LUT mapping */
imIntLutMap(Thread, SrcBuf, DstBuf, LutBuf, 0);

434

Appendix B: Examples

/* Free the LUT */
imBufFree(Thread, LutBuf);

break;

}
case MORPHIC:
printf(“Binary thinning\n");

Tong SkelBuf; /* Buffer for kernel */
long BinlBuf, Bin2Buf; /* Binary work buffers */

/* Define eight 3x3 kernels. "2" means "don't care" */
short SkelVals[8][9] =

{

peembdEde
eerErbebd
PrRooebeDbd
erroebebde

pepdrRrroo
pPhoederrme
PEREEEPEERE
ephhroees
Moo m=

}:

/* Allocate an 8-band kernel buffer */
imBufAlloc(Thread, 3, 3, 8, IM_SHORT, IM PROC, &SkelBuf);

/* Allocate binary work buffers */
imBufAlloc(Thread, SizeX, SizeY, NumBands, IM BINARY,
IM_PROC, &BinlBuf);
imBufAlloc(Thread, SizeX, SizeY, NumBands, IM BINARY,
IM_PROC, &Bin2Buf);

/* Set kernel values (all eight bands at once) */
imBufPut(Thread, SkelBuf, SkelVals);

/* Binarize the image ready for thinning */
imBinConvert(Thread, SrcBuf, BinlBuf, IM GREATER, 128, 0, 0);

/* Thin to a skeleton using replace overscan */
imBufPutField(Thread, SkelBuf, IM_CTL OVERSCAN, IM_REPLACE);
imBinMorphic(Thread, BinlBuf, Bin2Buf, SkelBuf, IM THIN,

IM_IDEMPOTENCE, SkelBuf, 0);

/* Convert back to an 8-bit image for display */
imBinConvert(Thread, Bin2Buf, DstBuf, IM DEFAULT, 0, 255, 0);

/* Free the temporary buffers */
imBufFree(Thread, SkelBuf);
imBufFree(Thread, BinlBuf);
imBufFree(Thread, Bin2Buf);

break;

process.c 435

case FFT:

{

printf(“Fourier Transform\n");

long IntRBuf; /* Real component in fixed point */

Tong IntIBuf; /* Imaginary component in fixed point */
Tong F1tRBuf; /* Real component in floating point */

Tong F1tIBuf; /* Imaginary component in floating point */

/* Allocate 32-bit buffers for FFT

/* (size must be a power of 2) */
imBufAlloc2d(Thread, 512, 512, IM LONG, IM PROC, &IntRBuf);
imBufAlloc2d(Thread, 512, 512, IM LONG, IM PROC, &IntIBuf);
imBufAlloc2d(Thread, 512, 512, IM FLOAT, IM PROC, &F1tRBuf);
imBufAlloc2d(Thread, 512, 512, IM FLOAT, IM PROC, &F1tIBuf);

/* Convert source from 8-bit real to 32-bit
/* fixed-point complex*/
imBufClear(Thread, IntRBuf, 0, 0); /*Clear in case bigger
* than source */
imBufClear(Thread, IntIBuf, 0, 0); /*Imaginary part is 0 */

/* Add 12 fractional bits for extra precision */
imIntMonadic(Thread, SrcBuf, 12, IntRBuf, IM SHIFT, 0);

/* Set control fields for forward transform */
imBufPutField(Thread, IntRBuf, IM CTL DIRECTION, IM FORWARD);
imBufPutField(Thread, IntRBuf, IM CTL NORMALIZE, IM ENABLE);

/* Perform the FFT (in-place to save memory) */
imIntFFT(Thread, IntRBuf, IntIBuf, IntRBuf, IntIBuf,
IntRBuf, 0);

/* Convert FFT result to floating point

/* for further processing */

imFloatConvert(Thread, IntRBuf, F1tRBuf, IM DEFAULT, 0);
imFloatConvert(Thread, IntIBuf, F1tIBuf, IM DEFAULT, 0);

/* Set control fields for reverse transform */
imBufPutField(Thread, IntRBuf, IM CTL DIRECTION, IM REVERSE);
imBufPutField(Thread, IntRBuf, IM CTL NORMALIZE, IM DISABLE);

/* Perform the reverse FFT */
imIntFFT(Thread, IntRBuf, IntIBuf, IntRBuf, IntIBuf,
IntRBuf, 0);

/* Remove fractional bits (with rounding for extra

/* precision) */
imIntMonadic(Thread, IntRBuf, 1<<11, IntRBuf, IM ADD, 0);
imIntMonadic(Thread, IntRBuf, -12, IntRBuf, IM SHIFT, 0);

/* Clip real part to 8 bits (imaginary part should be zero) */
imIntConvert(Thread, IntRBuf, DstBuf, IM CLIP, 0);

/* Display real part (it should be the same as
/* original image) */
imBufCopy(Thread, DstBuf, DstDispBuf, 0, 0);

436

Appendix B: Examples

/* Calculate power spectrum of the FFT for display */
imFloatDyadic(Thread, F1tRBuf, F1tIBuf, FI1tRBuf,
IM SQUARE_ADD, 0);
imFloatUnary(Thread, F1tRBuf, F1tRBuf, IM SQRT, 0);

/* Take square root again just to reduce the dynamic range */
imFloatUnary(Thread, F1tRBuf, F1tRBuf, IM SQRT, 0);

/* Convert back to 32-bit integer */
imFloatConvert(Thread, F1tRBuf, IntRBuf, IM TRUNCATE, 0);

/* Convert back to 8-bit integer for display */
imIntConvert(Thread, IntRBuf, DstBuf, IM CLIP, 0);

/* Histogram equalize (just to be sure something is
/* visible) */
imIntHistogramEqualize(Thread, DstBuf, DstBuf, 256,
IM_UNIFORM, 0.0, 0, 255,
IM DEFAULT, 0);

/* Free the temporary buffers */
imBufFree(Thread, IntRBuf);
imBufFree(Thread, IntIBuf);
imBufFree(Thread, F1tRBuf);
imBufFree(Thread, F1tIBuf);

break;
}
case BUFMAP:
{
printf("Map buffer on host\n");\
Tong HistBuf; /* Histogram result buffer */
Tong HistVals[256]; /* Host array to hold histogram
* result */
unsigned char *Address; /* Host address of first pixel in
* image */
Tong Pitch; /* Memory pitch of image buffer */
long NLines; /* Number of Tines mapped in host
* memory */
Tong MaxVal; /* Maximum value in histogram */
long X, y;: /* Loop counters */
unsigned char *Pointer; /* Pointer for direct access to
* buffer */

/* Allocate histogram result buffer */
imBufAllocld(Thread, 256, IM LONG, IM_PROC, &HistBuf);

/* Perform a histogram and read it back to the host */
imIntHistogram(Thread, SrcBuf, HistBuf, IM DEFAULT, 0);
imBufGet(Thread, HistBuf, HistVals);

/* Find maximum value in histogram */
imIntFindExtreme(Thread, HistBuf, HistBuf, IM MAX PIXEL, 0);
imBufGetField(Thread, HistBuf, IM RES MAX PIXEL, &MaxVal);
printf("Maximum value in histogram is %1i\n", MaxVal);

process.c 437

/* Map destination buffer into host memory */
imBufMap(Thread, DstBuf, 0, 0, (void **)&Address, &Pitch,
&NLines);

/* Clear the buffer before drawing */
imBufClear(Thread, DstBuf, 50, 0);

/* Wait for the clear to finish before accessing the buffer
/* directly */
imSyncHost(Thread, 0, IM COMPLETED);

/* Draw the histogram directly into the buffer */
for (x =0; x < 256; x++) /* draw in a 256x256 region */

/* Calculate host address of each point to set */
y = 255 - (HistVals[x] * 255 / MaxVal);
Pointer = Address + (y * Pitch) + x;

/* Write directly to the buffer */
*Pointer = 255;
}

/* Free the histogram result */
imBufFree(Thread, HistBuf);

break;

}
case PLOT:

printf(“Draw histogram with imGraPTlot()\n");

Tong XBuf; /* Buffer with X values of points to
* plot */

Tong YBuf; /* Buffer with Y values of points to
* plot */

Tong MaxVal; /* Maximum value in histogram */

double Coef[2] = {0.0, 1.0}; /* Coefficients for ramp */

/* Allocate buffers for X and Y values to plot */
imBufAllocld(Thread, 256, IM LONG, IM PROC, &XBuf);
imBufAllocld(Thread, 256, IM LONG, IM PROC, &YBuf);

/* Y values come from the histogram */
imIntHistogram(Thread, SrcBuf, YBuf, IM DEFAULT, 0);

/* X values are just sequential numbers */
imGenld(Thread, XBuf, IM POLYNOMIAL, 0, 255, 2, Coef, 0);

/* Find maximum value in histogram */
imIntFindExtreme(Thread, YBuf, YBuf, IM MAX PIXEL, 0);
imBufGetField(Thread, YBuf, IM_RES_MAX PIXEL, &MaxVal);
printf("Maximum value in histogram is %1i\n", MaxVal);

438

Appendix B: Examples

/* Scale the plot to fit image (use XBuf to hold graphic
/* context*/
imBufPutField(Thread, XBuf, IM_GRA SCALE_Y,
(double) -(SizeY- 1) / MaxVal);
imBufPutField(Thread, XBuf, IM GRA OFFSET Y, SizeY - 1);

imBufPutField(Thread, XBuf, IM_GRA SCALE X,
(double) SizeX / 256);
imBufPutField(Thread, XBuf, IM_GRA COLOR, 255);

/* Plot the histogram */
imBufClear(Thread, DstBuf, 0, 0);
imGraRect(Thread, 0, DstBuf, 0, 0, SizeX-1, SizeY-1);
imGraPlot(Thread, XBuf, DstBuf, XBuf, YBuf, 256):
imGraText (Thread, 0, DstBuf, 10, 10, "Histogram");

/* Free the X and Y buffers */
imBufFree(Thread, XBuf):
imBufFree(Thread, YBuf):

break;

}
case WARPMATRIX:

printf("Perspective transform\n");

Tong CoefBuf; /* Warp coefficient buffer */
Tong XLutBuf; /* X address LUT buffer */
Tong YLutBuf; /* Y address LUT buffer */

/* Allocate warp coefficient and address LUT buffers */
imBufAlloc2d(Thread, 3, 3, IM_FLOAT, IM_PROC, &CoefBuf);
imBufAlloc2d(Thread, SizeX, SizeY, IM SHORT, IM PROC,

&XLutBuf);
imBufAlloc2d(Thread, SizeX, SizeY, IM SHORT, IM PROC,
&YLutBuf);

/* Generate coefficients for perspective transform */
imGenWarp4Corner(Thread, CoefBuf,
0, SizeY/4, SizeX-1, SizeY/4,
3*SizeX/4, 3*SizeY/4, SizeX/4, 3*SizeY/4,
0, 0, SizeX-1, SizeY-1, IM DEFAULT, 0);

/* Generate address LUTs from the coefficients
/* (use 4 frac.bits) */
imBufPutField(Thread, XLutBuf, IM_CTL PRECISION, 4);
imGenWarpLutMatrix(Thread, XLutBuf, YLutBuf, CoefBuf,
XLutBuf, 0);

/* Select bilinear interpolation */
imBufPutField(Thread, XLutBuf, IM CTL RESAMPLE, IM BILINEAR);

/* Warp the image */
imIntWarpLut(Thread, SrcBuf, DstBuf, XLutBuf, YLutBuf,
XLutBuf, 0);

process.c 439

/* Free the coefficient and LUT buffers */
imBufFree(Thread, CoefBuf);
imBufFree(Thread, XLutBuf);
imBufFree(Thread, YLutBuf);

break;
}
case PACK:
{
printf(“Use imBufPack() to process a non-rectangular ROI\n");
Tong TagBuf; /* Binary tag buffer */
long ByteTagBuf; /* 8-bit version of tag buffer */
Tong PackedBuf; /* 1-d buffer big enough to hold tagged
* pixels */
Tong ROIBuf; /* 1-d buffer exactly the right size */
Tong NumTagged; /* Number of tagged pixels */

/* Allocate tag buffer (1-bit and 8-bit versions) */
imBufAlloc2d(Thread, SizeX, SizeY, IM BINARY, IM PROC,
&TagBuf) ;
imBufAlloc2d(Thread, SizeX, SizeY, IM UBYTE, IM PROC,
&ByteTagBuf);

/* Allocate 1-d buffer for packed pixels
/* (make sure it’'s big enough) */
imBufAlloc(Thread, SizeX*SizeY, 1, NumBands, IM UBYTE,
IM PROC, &PackedBuf);

/* Draw a circular mask in the tag buffer
/* (must use 8-bit version) */
imBufClear(Thread, ByteTagBuf, 0, 0):
imGraArcFi11(Thread, 0, ByteTagBuf, SizeX/2, SizeY/2,
SizeX/3, SizeY/3, 0.0, 360.0);

/* Make the real binary tag buffer */
imBinConvert(Thread, ByteTagBuf, TagBuf, IM GREATER,
0, 0, 0);

/* Pack the tagged pixels */
imBufPack (Thread, SrcBuf, TagBuf, PackedBuf, IM PACK 1, 0);

/* Find out how many pixels were tagged */
imBufGetField(Thread, PackedBuf, IM RES NUM PIXELS,
&NumTagged) ;
printf (“Number of tagged pixels is %1i\n", NumTagged);

/* Make a buffer with just those pixels in the
/* non-rectangular ROI */
imBufChild(Thread, PackedBuf, 0, 0, NumTagged, 1, &ROIBuf);

/* Process the non-rectangular ROI */
imIntMonadic(Thread, ROIBuf, 50, ROIBuf, IM ADD SAT, 0);

440

Appendix B: Examples

}

/* Unpack the processed pixels for display */
imBufClear(Thread, DstBuf, 0, 0);
imBufPack (Thread, ROIBuf, TagBuf, DstBuf, IM UNPACK 1, 0);

/* Free the temporary buffers */
imBufFree(Thread, TagBuf);
imBufFree(Thread, ByteTagBuf):
imBufFree(Thread, PackedBuf);
imBufFree(Thread, ROIBuf);
break;

case WARPLUT:

{

printf("LUT-defined warping\n");

Tong XLutBuf; /* X address LUT buffer */

Tong YLutBuf; /* Y address LUT buffer */

short *XLutVals; /* Host array to hold X LUT values */
short *YLutVals; /* Host array to hold Y LUT values */
int Ox, Qy; /* Original pixel coordinates */

int Wx, Wy: /* Warped pixel coordinates */

/* Allocate address LUT buffers */
imBufAlloc2d(Thread, SizeX, SizeY, IM SHORT, IM PROC,
&XLutBuf);
imBufAlloc2d(Thread, SizeX, SizeY, IM SHORT, IM PROC,
&YLutBuf);

/* Allocate host memory in which to create the LUTs */
XLutVals = (short *) malloc(sizeof(short) * SizeX * SizeY):
YLutVals = (short *) malloc(sizeof(short) * SizeX * SizeY):
if (XLutVals == NULL || YLutVals == NULL)

printf(“Couldn’'t allocate host memory\n");
break;

/*

* Calculate the (X,Y) source address for each destination
* pixel. Use integer address values for nearest neighbour
* resampling.
*/

for (Qy = 0; Oy < SizeY; Qy++)

for (Ox = 0; Ox < SizeX; Ox++)

/* Flip the image in the X direction */
Wx = SizeX - 1 - Ox;

/* Add a sine wave offset in the Y direction */
Wy = Oy + (int) (20.0 * sin(Ox * 0.03));

process.c 441

/* Don't let the address fall outside the

/* source image */

if (Wx <0 || Wx>=SizeX || Wy <0 || Wy >= SizeY)
{

Wx
Wy
}

/* Write the (X,Y) address in the LUTs */
XLutVals[0x + Qy*SizeX] = (short) Wx;
YLutVals[0x + Qy*SizeX] = (short) Wy;

0;
0;

}

/* Load the address LUT buffers */
imBufPut(Thread, XLutBuf, XLutVals);
imBufPut(Thread, YLutBuf, YLutVals);

/* Warp the image (using the default nearest neighbour mode)*/
imIntWarpLut(Thread, SrcBuf, DstBuf, XLutBuf, YLutBuf, 0, 0);

/* Free the LUT buffers */
imBufFree(Thread, XLutBuf);
imBufFree(Thread, YLutBuf);

/* Free host memory */

free(XLutVals);
free(YLutVals);
break;

}

case SHADING:

{

printf(“Shading correction\n");

Tong GainBuf; /* Per-pixel gain buffer */
unsigned short *GainVals; /* Host array to hold gain
* values */

Tong FracBits = 12; /* No. of fractional bits in
* gain values */
int x, y: /* Loop counters */

float DistX, DistY, Dist, Gain; /* Used in gain calculation*/

/* Allocate gain buffer */
imBufAlloc2d(Thread, SizeX, SizeY, IM USHORT, IM PROC,
&GainBuf);

/* Allocate host memory for gain values */
GainVals = (unsigned short *)

malloc(sizeof(unsigned short) * SizeX * SizeY);
if (Gainvals == NULL)

printf("Couldn't allocate host memory\n");
break;

442 Appendix B: Examples

/*
* Calculate the gain value for each pixel. Assume that the
* 1ighting is brightest in the centre of the image, and
* decreases with distance from the centre. To compensate for
* this the gain values must be biggest at the edges, and
* smallest in the centre.
*/
for (y = 0; y < SizeY; y++)
{
for (x = 0; x < SizeX; x++)
/* Calculate distance from pixel to image centre */
DistX = (float) (x - SizeX/2);
DistY = (float) (y - SizeY/2);
Dist = (float) sqrt(DistX*DistX + DistY*DistY);
/* Gain is 1.0 at centre, and 2.0 at the edges */
Gain = (float) (1.0 + (Dist / (SizeX/2)));
/* Write the gain value as a fixed point integer */
GainvVals[x + y*SizeX] = (unsigned short) (Gain *
(1 << FracBits) + 0.5);
}
}

/* Load the gain values into the gain buffer */
imBufPut(Thread, GainBuf, GainVals);

/* Apply the gain correction, and clip any overflows */
imIntGainOffset(Thread, SrcBuf, DstBuf, 0, GainBuf,
FracBits, 255, IM CLIP, 0);

/* Free the Gain buffer */
imBufFree(Thread, GainBuf);

/* Free host memory */

free(GainVals);
break;
}
default:
printf ("Unsupported function\n");
break;

}

/* Copy the processed image to the display */
imBufCopy(Thread, DstBuf, DstDispBuf, 0, 0);:

/* Give any errors a chance to be reported */
imSyncHost(Thread, 0, IM COMPLETED);

process.c

443

/* Clean up */
imBufFree(Thread, SrcDispBuf);
imBufFree(Thread, DstDispBuf);
imBufFree(Thread, ScreenBuf);
imBufFree(Thread, SrcBuf);
imBufFree(Thread, DstBuf);
imThrFree(Thread) ;
imDevFree(Device);

void ErrHandler(void *Param)
char Error[IM ERR SIZE];

/* Param is not used in this case */
if (Param) ;

/*
* Get the error messsage and print it. Don't reset the error
* because we only want the first to be printed.
*/
imAppGetError(IM ERR MSG FUNC, Error);
printf("%s\n", Error);

444

Appendix B: Examples

tfilter.c

/

*

* Temporal filtering (in monochrome or colour).

*

* This example demonstrates how grab is double-buffered

* to achieve real-time processing. Asynchronous grab mode is used

* 5o that only a single thread is needed.
*

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include <conio.h>

#include “imapi.h"

void main(int argc, char **argv)

{
Tong Device; /* Genesis device */
Tong Camera; /* Camera */
Tong Thread; /* Thread to execute all functions */
Tong Grab0SB[2]; /* 0SBs used for synchronization */
Tong InBuf[2]; /* Double-buffered input buffer */
Tong OutBuf; /* Single output buffer */
long DispBuf; /* Display buffer */
Tong GrabCtriBuf; /* Grab control buffer */
Tong VMSrcCtriBuf; /* VM source control buffer */
Tong VMDstCtri1Buf; /* VM destination control buffer */
Tong SizeX, SizeY; /* Image Size */
Tong NumBands; /* Number of bands in image */
Tong Zoom = 0; /* Whether to zoom the display */
Tong a; /* Input weight */
Tong m = 8; /* Fractional bits in 'a' */
Tong n = 4; /* Fractional bits in output */

long OutType = IM _USHORT; /* Output buffer type */
char Error[IM ERR SIZE]; /* Error message */

Tong i, frames = 0;

double time, da = 0.1;

/* Check arguments */
if (argc > 1 && *argv[1] == '?")

{
printf(“Usage: TFILTER [-a] [-x] [-y] [-zoom]\n"):
printf(" -a 0.nn\t Input weight (default %.2f)\n", da);
printf(" -x size\t Image X size\n");
printf(" -y size\t Image Y size\n"):
printf(" -zoom\t Zoom by 2\n");
exit(l);

tfilter.c 445

/* Allocate the device and a thread */
imDevATloc(0, 0, NULL, IM DEFAULT, &Device);
imThrAlloc(Device, 0, &Thread);

/* Allocate a camera */
imCamATloc(Thread, NULL, IM DEFAULT, &Camera);

/* Determine the image size and number of bands */
imCamInquire(Thread, Camera, IM DIG SIZE X, &SizeX);
imCamInquire(Thread, Camera, IM DIG SIZE Y, &SizeY);
imCamInquire(Thread, Camera, IM DIG NUM BANDS, &NumBands);

/* Check if the user specified a different size or weight */
for (i =1; i < argc; i+)

if (!strcmp(argv[i], "-a"))
sscanf(argv[i+l], "%1f", &da);

else if (Istremp(argv[i]l, "-x"))
sscanf(argv[i+l], "%1i", &SizeX);

else if (Istremp(argv[il, "-y"))
sscanf(argv[i+l], "%1i", &SizeY);

else if (Istrcmp(argv[i], "-zoom"))
Zoom = 1;

}

/* Convert weight to fixed point */
a = (long) (da * (1 <<m) + 0.5);

/* For colour use an 8-bit output buffer to reduce processing time */
if (NumBands > 1)
{
n=20;
OutType = IM _UBYTE;

/* Allocate processing and control buffers */

imBufATloc(Thread, SizeX, SizeY, NumBands, IM UBYTE,
IM PROC, &InBuf[0]);

imBufATloc(Thread, SizeX, SizeY, NumBands, IM UBYTE,
IM PROC, &InBuf[1]);

imBufAlloc(Thread, SizeX, SizeY, NumBands, OutType,
IM PROC, &O0utBuf);

imBufAllocControl (Thread, &GrabCtrlBuf):

imBufAllocControl(Thread, &VMSrcCtrilBuf);

imBufAllocControl (Thread, &VMDstCtrlBuf);

/* Allocate a full-screen display buffer and clear it */
imBufChild(Thread, IM DISP, 0, 0, IM ALL, IM ALL, &DispBuf);
imBufClear(Thread, DispBuf, 0, 0);

/* Allocate 0SBs for synchronization */
imSyncAlloc(Thread, &GrabOSB[0]);
imSyncAlloc(Thread, &GrabOSB[1]);

/* Initialize the output to 0 */
imBufClear(Thread, OutBuf, 0, 0);

446

Appendix B: Examples

/* Select asynchronous grab mode */
imBufPutField(Thread, GrabCtrl1Buf, IM CTL GRAB MODE,
IM_ASYNCHRONOUS);

/* Specify byte extraction on VM transfer if necessary */
if (n > 0)
imBufPutField(Thread, VMSrcCtri1Buf, IM CTL BYTE EXT, 8 + n);

/* Optionally zoom by 2 on VM transfer */
if (Zoom)

imBufPutField(Thread, VMDstCtr1Buf, IM_CTL_ZOOM_X, 2);
imBufPutField(Thread, VMDstCtr1Buf, IM_CTL_ZOOM_Y, 2);

}

/* First grab */

time = imSysClock(Thread, 0.0);

imDigGrab(Thread, 0, Camera, InBuf[0], 1, GrabCtrlBuf, GrabOSB[0]);
printf("Press Enter to stop\n");

i=1;
while (!imAppGetError(IM_ERR_CODE, NULL))

/* Queue next grab into other buffer */
imDigGrab(Thread, 0, Camera, InBuf[i], 1, GrabCtrlBuf,
Grab0SB[1]);

/* Switch buffers */
i=1-1;

/* Process each frame as soon as the grab completes */
imSyncHost(Thread, GrabOSB[i], IM COMPLETED);
imIntMac2(Thread, InBuf[i], OQutBuf, OutBuf, a<<n, (l<<m)-a,

m, 0);

/* Copy an 8-bit version to the display (optionally zoomed) */
imBufCopyVM(Thread, OutBuf, DispBuf, VMSrcCtrlBuf,
VMDstCtri1Buf, 0);

/* Stop when a key is hit */
frames++;
if (kbhit())
break;

}

/* Calculate processing rate */
time = imSysClock(Thread, time);
if (frames > 0)
printf(“Processing rate = %¥.1f fps\n", frames / time);

tfilter.c

447

/* Check for any errors */

if (imAppGetError(
printf(“%s\n",

/* Clean up */
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imBufFree(Thread,
imSyncFree(Thread,
imSyncFree(Thread,
imCamFree(Thread,
imThrFree(Thread) ;
imDevFree(Device);

IM_ERR MSG FUNC + IM ERR RESET, Error))
Error);

DispBuf);
QutBuf);
InBuf[0]);
InBuf[1]);
GrabCtrlBuf);
VMSrcCtri1Buf) ;
VMDstCtri1Buf);
Grab0SB[0]);
Grab0SB[1]);
Camera);

448 Appendix B: Examples

Index

A

acceptance level
default value 336
setting 353
adaptive recursive filtering 294
allocating
blob analysis feature list 44
blob analysis result buffer 45
buffers 84, 86, 88, 143
camera definitions 146
child buffers 91, 94
control buffers 90
digitizer 171
display 185
display memory (off-screen) 84, 86, 88, 143
display memory (on-screen) 91
Host memory 84, 86, 88, 143
JPEG buffers 315
node 167
OSB 369
pattern matching models 334, 336
pattern matching result buffers 338
processing memory 84, 86, 88, 143
threads 382
applications
checking for errors 25, 28
inquiring about 31
setting 27
arc (elliptical), drawing 214, 216
area, of blobs 73
arithmetic operations
on floating-point buffers 196, 198—200,
202
on integer buffers 255, 267, 283, 285, 287,
304
artifacts (on the display), avoiding 116
asynchronous functions 24
asynchronous grabs 181
auto reset OSBs 370
axis of symmetry, of blobs 79

BGR packed images, converting to 105, 112,
179
binarizing 230
binary template matching 35
bit planes, protecting 106, 115, 181, 189
black reference levels, specifying 149
blob analysis
accumulating results 46
binary features 46, 73, 78
calculating features 46
control settings 45, 48, 68
copying results 50
copying run information 54
deleting blobs 71
determine number of blobs 59
disabling runs 49
excluding blobs 71
features 73
filling blobs 56
freeing buffers 57
get label values 58
grayscale features 46, 77—78
grouping results 48
inquiring about settings 68
labelling blobs 70
obtaining results 64
re-including blobs 71
removing unwanted blobs 56
selecting blobs for calculation 71
selecting features 73
specifying pixel value of blobs 49
timeout period 49
transfer results to Host 60
transfer run information to Host 66
blob features
area 73
axis of symmetry 79
box coordinates 73
breadth 76
center of gravity 78
compactness 75
contact points 75
convex perimeter 75
elongation 76
Euler number 76

Feret diameters 74—75, 81
Feret elongation 75
intercepts 76—77

label value 73

length 76

maximum pixel value 77
mean pixel value 77
minimum pixel value 77
moments 78, 82
number of holes 75
perimeter 73

point coordinates 74
roughness 76

runs in a blob 75

standard deviation of pixel values 77

sum of pixel values 77
sum of squares of pixel values 77
blob.c program 414
board
Genesis-LC 6
main 6
processor 6
breadth, of blobs 76
buffers
allocating 84, 86, 88, 143
changing pitch 99
clearing 97

converting between color and grayscale 238
converting between integer and binary 32,

230

converting between integer and floating-

point 194

converting between integer types 237
converting between RGB and HSL 238

copying data 100, 108

copying data (with formatting) 103, 110

copying fields 102

creating 117

freeing 121

generating data into 204
inquiring about 129

loading from file 131, 143
locking in physical memory 99
mapping to Host 132

message 170

modifying dimensions/type 134
packing 136

saving to file 145

transferring from Host 138—140
transferring to Host 122—124
unlocking virtual buffers 99
unpacking 136

byte, extracting

C

during copy 107, 115
during grab 179

C80

clock speed 169
functions that use 24
inquiring about presence 169

camera definitions

allocating 146
changing 148
duplicating 147
freeing 154
inquiring about 155
saving to file 157

center of gravity, of blobs 78
certainty level

default value 336
setting 356

Chamfer 3-4 transform 253
Chessboard transform 253
child buffers

allocating 91, 94
moving 95
resizing 95

City Block transform 253
clock value, reading 379
CoffLoadOption entry 170
column profiles 290
compactness, of blobs 75
compressing images 321
connected regions

filling 218
labelling 274

connectivity mapping 235
control buffers, allocating 90
control fields

adding 141
copying 102

modifying 141

reading 125—127

removing 142
converting

between buffer types during copy 105,

112-113
between buffer types during grab 179
between color and grayscale 238
between integer and binary 32, 230
between integer and floating-point 194
between integer types 237
between RGB and HSL 238

display artifacts, avoiding 116
display memory
allocating off-screen 84, 86, 88, 143
allocating on-screen 91
inquiring about 169
distance transforms 253
DMA memory 85, 87, 89, 144
drawing
elliptical arcs 214, 216
lines 220
plots 222
rectangles 224, 226

convex perimeter, of blobs 75 E
convolution operations 241
coordinates, of blobs 73—75
copying

blob analysis results 50

buffers 100, 108

buffers (with formatting) 103, 110

fields 102

from VM device 112

over PCI bus 103

over VMChannel 110

pattern matching models 339

run information about a blob 54

to/from VM stream 110
correlations 249

edge detectors/enhancers 242
elliptical arc, drawing 214, 216
elongation, of blobs 76
erosions

on binary images 35

on integer images 258
error checking

applications 25, 28

functions 373

threads 387
error handler

! . disabling 25
count differences between images 252 enabling 25
creating buffers 117 Euler number, of blobs 76
D execution time, measuring 379, 381

Exponential histogram equalization 272
exposure time, specifying 152

decompressing images 320 extracting byte

digitizer during copy 107, 115
allocating 171 during grab 179
freeing 177 F

inquiring about 184

programming 174
dilations

on binary images 35

on integer images 258
display

fast Fourier transforms 263
Feret diameters, of blobs 74—75, 81
Feret elongation, of blobs 75

) FFTs 263

alloc_:atlng 185 fields (control)
freeing 191 adding 141
inquiring about 192 copying 102

scrolling a region 101
setting 187

modifying 141 LUT warping 308

reading 125—127 rotating 265, 310
removing 142 shearing 310
filling connected regions 218 subsampling 297, 299, 310
filtering, adaptive recursive 294 translating 310
find min/max value in image 262 zooming 297, 310, 313
first.c program 419 grab.c program 421
first-order warpings grabbing
generating coefficients for 206 continuously 178
performing 310 enabling software-triggered grabs 172, 174
flipping images 265 enabling synchronized grabs 172
Fourier transforms 263 fields 178
frame size of grab, setting 150 frames 178
free lines 178
blob analysis feature lists 57 with trigger 150
blob analysis result buffers 57 grayscale correlations 249
buffers 121 grayscale images, converting to RGB 238
camera definitions 154 H
digitizer 177
display 191
JPEG buffers 322 halting, functions 389
node 168 hardware triggers, using 150
0SB 372 . histogram equalizations 271
pattern matching models 341 histograms 269
pattern matching result buffers 341 hit-or-miss transformations 35
threads 386 horizontal edge detector 242
functions horizontal shift, between images 348
asynchronous 24 horizontal syncs, triggering with 153
halting 389 Host
nomenclature 10 allocate memory on 84, 86, 88, 143
obtaining current state of 375 transfer blob results to 60
synchronous 24) transfer blob run information to 66
that can run on Genesis-LC 24 transfer buffer data to 122—124
that support in-place 24 transfer data from 138—140
that use NOA 24 transfer JPEG tables from 326
that use parallel processors of 'C80 24 transfer JPEG tables to 323
G transfer search results to 343
hot spot
default coordinates 336
gain and offset correction 267 setting 355
gain levels, specifying 149 HSL images, converting to RGB 238
genesis.ini file 170 Hyper Cube Root histogram equalization 272
Genesis-LC 6, 24 Hyper Log histogram equalization 272

geometric operations
3x3 matrix-defined warping 211
first-order warping 310
flipping 265

imAppCatchError() 25, 158—159, 165, 365,
367

imAppControl() 27

imAppGetError() 25, 28

imApplnquire() 31

imBinConvert() 32, 231

imBinMorphic() 35, 261, 303

imBinTriadic() 40, 42, 257, 289, 307
imBlobAllocFeatureList() 44, 73
imBlobAllocResult() 45

imBlobCalculate() 44—46, 4950, 54, 58, 60,
64, 66, 69—71, 73, 8182

imBlobControl() 46, 48, 71, 74, 99
imBlobCopyResult() 50, 59, 63
imBlobCopyRuns() 49, 54, 67, 69

imBlobFill() 49, 56, 69, 71

imBlobFree() 57

imBlobGetLabel() 49, 54, 58, 64, 66, 69
imBlobGetNumber() 53, 59
imBlobGetResult() 53—55, 59—60, 67
imBlobGetResultSingle() 54-55, 64, 67
imBlobGetRuns() 49, 55, 66, 69
imBloblnquire() 68, 70

imBlobLabel() 49, 69—70

imBlobSelect() 48, 56, 59, 71
imBlobSelectFeature() 44, 51, 61, 64, 72—73,
81, 83

imBlobSelectFeret() 44, 51, 61, 64, 72, 80—81
imBlobSelectMoment() 44, 51, 61, 64, 72, 80,
82

imBufAlloc() 84, 122—124, 138—140, 324
imBufAlloc1d() 86

imBufAlloc2d() 88

imBufAllocControl() 85, 89—90

imBufChild() 85, 89, 91, 94
imBufChildBand() 93—94

imBufChildMove() 95

imBufClear() 97

imBufClone() 98

imBufControl() 135

imBufCopy() 100, 107—108, 116, 122—124,
138—140

imBufCopyField() 100, 102, 108, 110, 141
imBufCopyPCI() 100, 103, 122—124, 138—140
imBufCopyVM() 100, 110

imBufCreate() 117

imBufFree() 118, 121
imBufGet() 63, 92, 122—124
imBufGetld() 122—124
imBufGet2d() 122—123
imBufGetField() 35, 125—126, 128
imBufGetFieldDouble() 125—126, 128
imBufGetNextField() 125—127
imBuflnquire() 129
imBufLoad() 131

imBufMap() 132

imBufModify() 134
imBufPack() 136

imBufPut() 138—140
imBufPutld() 138—140
imBufPut2d() 138—140
imBufPutField() 141
imBufRemoveField() 142
imBufRestore() 131, 143
imBufSave() 145

imCamAlloc() 146
imCamClone() 147
imCamControl() 146—148, 174, 176
imCamFree() 154
imCaminquire() 155, 184
imCamSave() 157

imDevAlloc() 167, 382
imDevFree() 168
imDeviInquire() 169
imDigAlloc() 171
imDigCapture() 172
imDigControl() 174
imDigFree() 177

imDigGrab() 178
imDiglnquire() 184
imDispAlloc() 185
imDispControl() 101, 187, 192
imDispFree() 191
imDisplnquire() 192
imFloatConvert() 194
imFloatDyadic() 196, 201
imFloatMac1() 198—199
imFloatMac2() 198—199
imFloatMonadic() 197, 200
imFloatUnary() 197, 201—202
imGenld() 204, 278
imGenWarp1stOrder() 206, 212
imGenWarp4Corner() 209, 212

imGenWarpLutMatrix() 206, 211
imGraArc() 214, 217
imGraArcFill() 215—216, 219
imGraFill() 218

imGraLine() 220

imGraPlot() 221—222
imGraRect() 224, 227
imGraRectFill() 219, 225—226
imGraText() 228

imIntBinarize() 33, 230, 232
imIntConnectMap() 235
imIntConvert() 237
imIntConvertColor() 238
imIntConvolve() 241
imIntCorrelate() 249
imIntCountDifference() 252
imIntDistance() 253
imIntDyadic() 255, 289, 307
imIntErodeDilate() 258, 293, 303
imIntFFT() 263
imIntFindExtreme() 262
imIntFlip() 265, 312
imIntGainOffset() 267, 284, 286
imIntHistogram() 269, 271
imIntHistogramEqualize() 270—271
imintLabel() 274
imIntLocateEvent() 262, 276
imintLutMap() 278

imIntMac1() 268, 283, 286
imIntMac?2() 268, 284—285, 296
imIntMonadic() 257, 287, 307
imIntProject() 290

imIntRank() 291

imIntRecFilter() 294

imIntScale() 297, 300, 312, 314
imIntSubsample() 298—299, 312, 314
imIntThickThin() 301
imIntTriadic() 257, 289, 304
imIntWarpLut() 211, 308
imIntWarpPolynomial() 206, 266, 298, 300,
310, 314

imIntZoom() 298, 300, 312—313
imJpegAlloc() 315
imJpegControl() 315—316, 321
imJpegControlBand() 319, 321
imJpegDecode() 316, 320
imJpegEncode() 316, 321, 325
imJpegFree() 322

imJpegGetTable() 323
imJpeginquire() 324
imJpegPutTable() 321, 326
imJpegRead() 325, 327—328, 330
imJpegReadBuf() 328, 330
imJpegRestore() 325, 327—328, 330
imJpegSave() 331
imJpegWrite() 332
imJpegWriteBuf() 331, 333
imPatAllocModel() 334, 336
imPatAllocResult() 338
imPatCopy() 339
imPatFindModel() 340, 342—343
imPatFree() 341
imPatGetNumber() 342—343
imPatGetResult() 340, 343, 348
imPatinquire() 345, 362
imPatPreprocModel() 347, 349
imPatRead() 350—351
imPatRestore() 350—351
imPatSave() 352
imPatSetAcceptance() 347, 353
imPatSetAccuracy() 346, 354
imPatSetCenter() 346—347, 355
imPatSetCertainty() 347, 356
imPatSetDontCare() 349, 357
imPatSetNumber() 346, 358
imPatSetPosition() 346, 359
imPatSetSearchParameter() 347, 360
imPatSetSpeed() 346, 364
imPatWrite() 352, 365
imSyncAlloc() 369
imSyncControl() 369—370
imSyncFree() 372
imSyncGetError() 373
imSyncHost() 375
imSyncThread() 377
imSysClock() 379
imSysinquire() 380—381
imThrAlloc() 381

imThrCancel() 384
imThrControl() 385

imThrFree() 386
imThrGetError() 30, 387
imThrHalt() 29, 178, 384, 389
imThrinquire() 390

imThrNop() 377, 391

in-place operations 24

input channel, specifying 149 K
input line 184
inquire about

applications 31

blob analysis settings 68
buffers 129

C80 clock speed 169

camera definitions 155
digitizer 184

display 192

input line 184

JPEG buffers 324

memory 169

node 169

pattern matching models 345
pattern matching result buffers 345
presence of 'C80 169
presence of NOA 169
presence of VIA 169

system attributes 380
threads 390

timeout period 31

intercepts, of blobs 76—77

JPEG compression/decompression

allocating buffers for 315
compressing 321

control settings 316, 319
decompressing 320

freeing JPEG buffers 322
inquiring about JPEG buffers 324
loading JPEG buffers 330

modes 316

multi-band images 319

predictors 316

quality factor 316

reading compressed images 327—328
restart markers 317

saving JPEG buffers to file 331
tables 318—319

transferring tables 323, 326
writing JPEG buffers 332—333

jpeg.c program 423

keying 187, 192
L

label connected regions 274
label value, of blobs 73
Laplacian edge detector 242
length, of blobs 76
Library modules 10
lines, drawing 220
loading
buffers from a file 131, 143
JPEG buffers 330
locate specified pixels 276
logical operations
on binary images 42
on integer images 255, 287, 304
LUT mappings 271, 278
on displayed images 188
on grabbed images 149
LUT warpings 308

M

main board 6
manual reset OSBs 370
mapping buffer to Host 132
mapping through LUTs 271, 278
displayed images 188
grabbed images 149
matrix-defined warpings
generating LUTs for 211
performing 211
maximum value in image, find 262
memory
allocating 84, 86, 88, 143
inquiring about 169
message buffers 170
minimum value in image, find 262
model (pattern matching)
allocating 334, 336
copying 339
freeing 341
inquiring about 345

preprocessing 349

reading from open file 350

restoring from file 351

saving 349, 352

search parameters of 336

searching for 340

setting don’t care pixels 357

writing to open file 365
modules, of the Library 10
moments, of blobs 78, 82
morphological operations

on binary images 35

on integer images 253, 258, 301
multiply and accumulate

with floating-point buffers 198—199

with integer buffers 283, 285

N

neighborhood operations

connectivity mapping 235

convolutions 241

correlations 249

morphological operations 35, 253, 258,

301

rank filter operations 291
NOA

functions that use 24

inquiring about presence 169
node

allocating 167

freeing 168

inquiring about 169
nomenclature of functions 10
non-paged pool 85, 87, 89, 144
normalized grayscale correlation 249
number of holes, in blobs 75
number of matches

default value 336

reading 342

setting 358

@)

off-screen display memory, allocating 84, 86,
88, 143
on-screen display memory, allocating 91

OoSsB
allocating 369
freeing 372
setting 370
using in auto reset mode 370
using in manual reset mode 370
output lines, setting 175
overlay display memory, inquiring about 169

P

packing buffers 136
panning, the display 189
parallel processors of 'C80, functions that use
24
pat.c program 426
PCI bus, copying over 103
perimeter, of blobs 73
perspective warpings 209
pitch, changing 99
pixel values
find min/max in image 262
locate 276
sum along image columns/rows 290
plotting 222
point-to-point operations
adaptive recursive (temporal) filtering 294
arithmetic operations 196, 200, 202, 255,
287, 304
binarizing 230
gain and offset correction 267
histogram equalizations 271
logical operations 42, 255, 287, 304
LUT mappings 278
multiply and accumulate operations 198—
199, 283, 285
positional accuracy
default value 336
setting 354
preprocessing, models 349
Prewitt edge detector 242
process.c program 430
processing memory
allocating 84, 86, 88, 143
inquiring about 169
processing non-rectangular regions 136
processor board 6

processors (parallel) of 'C80, functions that
use 24
project 2-d images into 1-d 290

R

rank filter operation 291
Rayleigh histogram equalization 272
reading from open file

compressed images 327

pattern matching models 350
rectangles, drawing 224, 226
recursive filtering 294
reference levels, setting 149
region-of-interest, allocating 91
restart markers 317
restoring from file

compressed images 330

pattern matching models 351
RGB

converting to grayscale 238

converting to HSL 238
RGB packed, converting to BGR 105, 112, 179
RGB555/565, expanding to 3x8-bit 106, 114
Roberts edge detector 243
rotating

images 265, 310
roughness, of blobs 76
row profiles 290
RS-422 drivers, enabling 152, 175
RS-422 receivers, enabling 151, 175
runs, in a blob 75

S

saving to file

buffers 145

camera definitions 157

JPEG buffers 331

pattern matching models 349, 352
scrolling a region of the display 101
search parameters

default values 336

setting 340, 353—360, 364
search region

default value 336

setting 359

search speed
default value 336
setting 364
Sharpen edge enhancers 243
shearing images 310
shift, between images 348
Smooth operation 243
Sobel edge detector 242
software triggers, using 150, 172, 174
statistical operations
column profiles 290
count differences between images 252
find min/max pixel value in image 262
histograms 269
locating pixels 276
row profiles 290
subsample
copied data 105, 114
grabbed data 181
images 297, 299, 310
synchronization channel, using 150
synchronize
the Host with a function 375
threads 377
with functions that do not accept OSB 391
with functions whose OSB ID is unknown
391
synchronized grabs, enabling 172
synchronous functions 24
system, inquire about 380

T

template matching 35
text, writing 228
tfilter.c program 444
thickening operations
on binary images 35
on integer images 301
thinning operations
on binary images 35
on integer images 301
threads
allocating 382
cancelling commands queued to 384
checking for errors 387
freeing 386

inquiring about 390
setting 385
timeout period
inquiring about 31
setting 27
timers, on the grab 150, 152
timing, execution of a function 379, 381
transfer
blob results to Host 60
blob run information to Host 66
buffer data to Host 122—124
data from Host 138—140
JPEG tables from Host 326
JPEG tables to Host 323
search results to Host 343
transformations
generating coefficients for 206, 209
generating LUTSs for 211
translating images 310
triggered grabs 150
TTL drivers, enabling 152, 175
TTL receivers, enabling 151, 175

U

Uniform histogram equalization 272
unpacking buffers 136
user bits 152, 175

\%

vertical edge detector 243
vertical shift, between images 348
vertical syncs, triggering with 153
VIA

copy options 105, 112

grab options 179

inquiring about presence 169
VM stream, copy to/from 110, 112
VMChannel, copying over 110

w

warpings
first-order polynomial 310
generating coefficients for 206, 209
generating LUTs for 211
using LUTs 308
white reference levels, setting 149
write masks 106, 181, 189
writing text 228
writing to open file
compressed images 332—333
pattern matching models 365

zoom
copied data 106, 115
display 189
grabbed data 181
images 297, 310, 313

Product Support

Product Assistance Request Form

Name:

Company:

Address:

Phone:

Fax:

E-mail:

Hardware Specific Information

Computer:

CPU:

System memory:

PCI Chipset:

System BIOS rev:

Video card used:

Resolution:

Network Card:

Network Software:

Other cards in system:

Software Specific Information

Operating system: Rev:
Matrox SW used: Rev:
Compiler: Rev:

Describe the problem:

	Genesis Native Library 2.1 Command Reference
	Contents
	Chapter 1: Programming with the Genesis Native Library
	Overview
	A quick command reference
	The application control module
	The binary processing module
	The blob analysis module
	The buffer management module
	The camera control module
	The cursor control module
	The device control module
	The digitizer control module
	The display module
	The floating-point processing module
	The data generation module
	The graphics module
	The integer processing module
	The JPEG module
	The pattern matching module
	The run-length encoding module
	The synchronization module
	The system control module
	The thread control module

	Chapter 2: The command descriptions
	Command description notes
	imAppCatchError
	imAppControl
	imAppGetError
	imAppInquire
	imBinConvert
	imBinCountDifference
	imBinMorphic
	imBinThin
	imBinTriadic
	imBlobAllocFeatureList
	imBlobAllocResult
	imBlobCalculate
	imBlobControl
	imBlobCopyResult
	imBlobCopyRuns
	imBlobFill
	imBlobFree
	imBlobGetLabel
	imBlobGetNumber
	imBlobGetResult
	imBlobGetResultSingle
	imBlobGetRuns
	imBlobInquire
	imBlobLabel
	imBlobSelect
	imBlobSelectFeature
	imBlobSelectFeret
	imBlobSelectMoment
	imBufAlloc
	imBufAlloc1d
	imBufAlloc2d
	imBufAllocControl
	imBufChild
	imBufChildBand
	imBufChildMove
	imBufClear
	imBufClone
	imBufControl
	imBufCopy
	imBufCopyField
	imBufCopyPCI
	imBufCopyROI
	imBufCopyVM
	imBufCreate
	imBufFree
	imBufGet
	imBufGet1d
	imBufGet2d
	imBufGetField
	imBufGetFieldDouble
	imBufGetNextField
	imBufInquire
	imBufLoad
	imBufMap
	imBufModify
	imBufPack
	imBufPut
	imBufPut1d
	imBufPut2d
	imBufPutField
	imBufRemoveField
	imBufRestore
	imBufSave
	imCamAlloc
	imCamClone
	imCamControl
	imCamFree
	imCamInquire
	imCamSave
	imCurAlloc
	imCurDefine
	imCurEnable
	imCurFree
	imCurGetPosition
	imCurSelect
	imCurSetColor
	imCurSetPosition
	imDevAlloc
	imDevFree
	imDevInquire
	imDigAlloc
	imDigCapture
	imDigControl
	imDigFree
	imDigGrab
	imDigInquire
	imDispAlloc
	imDispControl
	imDispFree
	imDispInquire
	imFloatConvert
	imFloatDyadic
	imFloatMac1
	imFloatMac2
	imFloatMonadic
	imFloatUnary
	imGen1d
	imGenWarp1stOrder
	imGenWarp4Corner
	imGenWarpLutMatrix
	imGraArc
	imGraArcFill
	imGraFill
	imGraLine
	imGraPlot
	imGraRect
	imGraRectFill
	imGraText
	imIntBinarize
	imIntClip
	imIntConnectMap
	imIntConvert
	imIntConvertColor
	imIntConvolve
	imIntCorrelate
	imIntCountDifference
	imIntDistance
	imIntDyadic
	imIntErodeDilate
	imIntFindExtreme
	imIntFFT
	imIntFlip
	imIntGainOffset
	imIntHistogram
	imIntHistogramEqualize
	imIntLabel
	imIntLocateEvent
	imIntLutMap
	imIntMac1
	imIntMac2
	imIntMonadic
	imIntProject
	imIntRank
	imIntRecFilter
	imIntScale
	imIntSubsample
	imIntThickThin
	imIntTriadic
	imIntWarpLut
	imIntWarpPolynomial
	imIntZoom
	imJpegAlloc
	imJpegControl
	imJpegControlBand
	imJpegDecode
	imJpegEncode
	imJpegFree
	imJpegGetTable
	imJpegInquire
	imJpegPutTable
	imJpegRead
	imJpegReadBuf
	imJpegRestore
	imJpegSave
	imJpegWrite
	imJpegWriteBuf
	imPatAllocAutoModel
	imPatAllocModel
	imPatAllocResult
	imPatCopy
	imPatFindModel
	imPatFree
	imPatGetNumber
	imPatGetResult
	imPatInquire
	imPatPreprocModel
	imPatRead
	imPatRestore
	imPatSave
	imPatSetAcceptance
	imPatSetAccuracy
	imPatSetCenter
	imPatSetCertainty
	imPatSetDontCare
	imPatSetNumber
	imPatSetPosition
	imPatSetSearchParameter
	imPatSetSpeed
	imPatWrite
	imRleDecode
	imRleEncode
	imSyncAlloc
	imSyncControl
	imSyncFree
	imSyncGetError
	imSyncHost
	imSyncThread
	imSysClock
	imSysInquire
	imSysTimeStamp
	imThrAlloc
	imThrCancel
	imThrControl
	imThrFree
	imThrGetError
	imThrHalt
	imThrInquire
	imThrNop

	Appendix A: Glossary
	Appendix B: Examples
	blob.c
	first.c
	grab.c
	jpeg.c
	pat.c
	process.c
	tfilter.c

	Index
	Product Support

