
March 1, 2000

Manual no. 10512-701-0610

Matrox Imaging Library
version 6.1

Command Reference

Matrox® is a registered trademark of Matrox Electronic Systems Ltd.

Microsoft®, Windows®, and Windows NT® are registered trademarks of
Microsoft Corporation.

PC/104-Plus™ is a trademark of the PC/104 Consortium.

CompactPCI™ is a trademark of PCI Industrial Computer
Manufacturers’ Group.

Intel®, Pentium®, and Pentium II® are registered trademarks of Intel
Corporation.

Texas Instruments™ is a trademark of Texas Instruments Incorporated.

All other nationally and internationally recognized trademarks and
tradenames are hereby acknowledged.

© Copyright Matrox Electronic Systems Ltd., 2000. All rights reserved.

Disclaimer: Matrox Electronic Systems Ltd. reserves the right to make
changes in specifications at any time and without notice. The
information provided by this document is believed to be accurate and
reliable. However, no responsibility is assumed by Matrox Electronic
Systems Ltd. for its use; nor for any infringements of patents or other rights
of third parties resulting from its use. No license is granted under any
patents or patent rights of Matrox Electronic Systems Ltd.

PRINTED IN CANADA

 Contents
Chapter 1 : Programming with MIL. 7

A MIL overview .8

Starting your MIL application 9

Header file and libraries10

MIL object manipulation concepts 10

Error handling .11

Tracing an application12

A quick command reference 13

The application allocation and control
module .13

The blob analysis module14

The buffer allocation and access module. . .15

The calibration module18

The code module .19

The digitizer allocation and control
module .19

The display allocation and control
module .20

The basic data generation module.21

The basic graphics module21

The basic image processing module 22

The measurement module 25

The optical character recognition module . .26

The basic pattern recognition module27

The system allocation and inquiry
module .29

Chapter 2: The command reference descriptions . . . 31

The reference description notes 32

Appendix A: The default setup configuration file . . . 509

The default setup configuration file 510

When you do not want to use defaults 514

 Appendix B: The MIL Function Developer’s
Toolkit . 517

The MIL Function Developer’s Toolkit 518

An example using the
Function Developer’s Toolkit 518

MIL Function Developer’s Toolkit
Command Reference 521

Appendix C: Troubleshooting . 547

Error reporting. 548

Error messages explained. 549

Driver error messages explained. 562

Index

Product Support

Note: For information about using MIL, see MIL User Guide.

Note: For information about using MIL with your specific board, see
MIL/MIL-Lite Board-specific Notes.

Chapter 1 : Programming with
MIL

8 Chapter 1 : Programming with MIL

A MIL overview
The MIL user model The Matrox imaging library (MIL) is a hardware-independent

library divided into different modules based on functionality.

MIL basic objects

MIL

Image
processing

module

Optical
Character

Recognition
module

Code
module

Pattern
matching
module

Data
allocation

and access
module

System,
Digitizer

and Display
allocation

and control
modules

Application
allocation

and control
module

Measurement
module

Graphic
and data

generation
modules

User
application

program

Hardware
device

Calibration
module

Blob
analysis
module

Hardware
driver

A MIL overview 9

Usage The MIL User Guide describes how to solve typical applications
using the library. Code examples are also provided.

Starting your MIL application

Application and system
initialization

At the beginning of each MIL application, you need to:

1. Allocate your application with MappAlloc(). This will
create a control and execution environment for your
application. Once you have finished using an application,
you should free it with MappFree().

2. Allocate your hardware system with MsysAlloc(). This will
open communication channels and initialize the hardware
resources. Once Host communication has been established
with a system, you can allocate its memory resources,
display, and input capabilities.

For typical setups, you will only need to use one system,
whereas for more sophisticated setups, you might need to
allocate more than one. You can use their system identifiers
to select between them.

Once you have completely finished using a system, you
should free the device, using MsysFree().

10 Chapter 1 : Programming with MIL

Default initialization If the required system is mapped to the default location
specified in the milsetup.h file, you can perform the above steps
by making a single call to MappAllocDefault(). Review the
milsetup.h file to make sure that the default setup
configuration matches your system configuration (refer to
Appendix A: The default setup configuration file for more
information on this file). The MappAllocDefault() macro can
also allocate a default display, digitizer and image buffer. Use
the MappFreeDefault() macro to free the defaults allocated.

❖ Note, for more information about added functionality and
hardware limitations specific to your target system, refer to
the MIL/MIL-Lite Board-Specific Notes.

Header file and libraries

The required header
file

To compile a MIL application program, you must include the
mil.h header file, in addition to the required standard C include
files. This mil.h file includes all constant definitions, type
definitions, and function prototypes. It also includes any
required macro files (for example, the milsetup.h file for the
MappAllocDefault() macro).

Linking to the MIL
library

After you have compiled your application program, you will
have to link it with the appropriate libraries or import libraries
for your operating system, compiler, and target board. The MIL
libraries are located in the MATROX IMAGING (OR
USER-SPECIFIED)\MIL\LIBRARY\WINNT\MSC\DLL
directory.

MIL object manipulation concepts

Data objects MIL manipulates different types of objects. Objects must be
allocated by MIL before they can be used. Besides allocating
your MIL application and system (discussed in the previous
section), the following objects must also be allocated:

■ Displays

■ Digitizers

■ Buffers

A MIL overview 11

Displays and digitizers With MIL, display and digitizer objects provide a way to
communicate or control dedicated hardware resources. Note,
several of these devices can be allocated at the same time;
you use their identifiers to select between them. Once you have
finished using a device, you should free it, using MdigFree()
or MdispFree(). In the MIL User Guide, refer to Chapter 20:
Grabbing with your digitizer for more information on digitizers
and Chapter 18: Displaying an image for more information on
display controllers.

Buffers Buffers are simply storage locations for data. The most
generally used buffers, referred to as data buffers, are allocated
with MbufAllocColor(), MbufAlloc1d() or MbufAlloc2d();
whereas, other data buffer, such as pattern matching model
buffers, are allocated with commands that are specific to that
MIL module and are only used by that module.

You can manipulate portions of data buffers by allocating sub
buffers or child buffers. Any manipulation performed on the
child buffer directly affects the parent buffer and vice versa.
Any operation that can be performed on the parent buffer can
also be performed on the child buffer. In the MIL User Guide,
refer to Chapter 16 : Specifying and managing your data buffers
for more information on allocating buffers.

Error handling

Error reporting When calling a function, it is a good idea to provide detection
and handling of errors, especially when allocating buffers and
devices. Otherwise, your program might produce unexpected
results. Note, every allocation returns an identifier; M_NULL is
returned if the allocation was unsuccessful.

With MIL, you can detect errors by having them reported to the
Host screen, and by checking the system error code for them.
You enable or disable error reporting to the screen with
MappControl(). By default, errors are reported to the screen.

12 Chapter 1 : Programming with MIL

You can determine the success of a command, using
MappGetError(), then handle the outcome accordingly. Using
MappHookFunction(), you can attach (or detach) a
user-defined function to MIL errors when they occur. Using
MappGetError(), you can also get any associated error
messages. Refer to Appendix D: Troubleshooting for further
information on handling error messages.

Tracing an application

Debugging an
application

When developing an application, it is often useful to trace the
command calls made by the application in order to debug it.

MIL supports an automatic tracing mechanism that can be
enabled or disabled with MappControl(). When the MIL
tracing mechanism is enabled, as each command is processed
its function name and parameters are reported to the screen.
By default, the tracing mechanism is disabled.

You can attach or detach a user-defined function to the start or
end of all subsequent MIL function calls, using
MappHookFunction().

A quick command reference 13

A quick command reference
This section lists and provides a quick reference description of
the commands of each MIL module. It also discusses each
module, giving a brief overview of the capabilities of the library.
For a complete description of the syntax and use of each
command refer to the Command references description chapter.

The application allocation and control module
The application allocation and control module supports the MIL
allocation and environment control functions. These include
MIL initialization, error reporting, and application tracing
functions.

MIL allocation and
control commands

Command parameters Description

MappAlloc() InitFlag, ApplicationIdPtr Allocate a MIL application.

MappAllocDefault() InitFlag, ApplicationIdPtr,
SystemIdPtr, DisplayIdPtr,
DigIdPtr, ImageBufIdPtr

Allocate MIL application
defaults.

MappControl() ControlType, ControlValue Control an application
environment setting.

MappControlThread() ControlId, ControlType,
ControlValue, ControlVarPtr

Allocate/control MIL
application thread(s) or events.

MappFree() ApplicationId Free a MIL application.

MappFreeDefault() ApplicationId, SystemId, DisplayId,
DigId, ImageBufId

Free MIL application defaults.

MappGetError() ErrorType, ErrorPtr Get error codes and related
information.

MappGetHookInfo() EventId, InfoType, UserVarPtr Get information about a
hooked event.

MappHookFunction() HookType, HookHandlerPtr,
UserDataPtr

Hook a function to an event.

MappInquire() InquireType, UserVarPtr Inquire about the application
parameter setting.

MappModify() FirstMILId, SecondMILId,
ModificationType, ModificationFlag

Modify specified MIL object(s).

MappTimer() ControlValue, TimePtr Control the MIL timer.

14 Chapter 1 : Programming with MIL

The blob analysis module
The blob analysis module is a set of functions that can measure
a wide assortment of blob (or object) features, such as the blob
area, perimeter, Feret diameter at a given angle, minimum
bounding box, and compactness.

Blob analysis
commands

Command parameters Description

MblobAllocFeatureList() SystemId, FeatureListIdPtr Allocate a blob analysis feature
list.

MblobAllocResult() SystemId, BlobResIdPtr Allocate a blob analysis result
buffer.

MblobCalculate() BlobIdentImageId, GrayImageId,
FeatureListId, BlobResId

Perform blob analysis
calculations.

MblobControl() BlobResId, ControlType, ControlValue Control a blob analysis
processing mode setting.

MblobFill() BlobResId, DestImageBufId, Criterion,
Value

Fill blobs that meet a given
criteria.

MblobFree() BlobId Free the blob analysis result
buffer or the feature list.

MblobGetLabel() BlobResId, XPos, YPos, LabelVarPtr Get the label value of a blob at
a specific position.

MblobGetNumber() BlobResId, CountVarPtr Get the number of currently
included blobs.

MblobGetResult() BlobResId, Feature, TargetArrayPtr Read feature values of the
included blobs.

MblobGetResultSingle() BlobResId, LabelVal, Feature,
TargetVarPtr

Read the feature value of a
single blob.

MblobGetRuns() BlobResId, LabelVal, ArrayType,
RunXPtr, RunYPtr, RunLengthPtr

Get the blob run-length
encoding information.

MblobInquire() BlobResId, InquireType, UserVarPtr Inquire about a blob analysis
processing mode.

MblobLabel() BlobResId, DestImageBufId, Mode Draw a labeled image.

MblobReconstruct() SrcImageBufId, SeedImageBufId,
DestImageBufId, Operation, ProcMode

Reconstruct blobs (or blob
holes) in an image buffer.

MblobSelect() BlobResId, Operation, Feature,
Condition, CondLow, CondHigh

Select blobs for calculations
and result retrieval.

A quick command reference 15

The buffer allocation and access module

The data buffer allocation and access module is a group of
functions that supports all the MIL data buffer manipulations.
These tools include those that can allocate, read from, and write
to general data buffers.

MblobSelectFeature() FeatureListId, Feature Select feature(s) to be
calculated.

MblobSelectFeret() FeatureListId, Angle Add Feret angle to the feature
list.

MblobSelectMoment() FeatureListId, MomType, XMomOrder,
YMomOrder

Add specified moment to the
feature list.

Blob analysis
commands

Command parameters Description

Data allocation and
access commands

Command parameters Description

MbufAlloc1d() SystemId, SizeX, Type, Attribute,
BufIdPtr

Allocate a 1D data buffer.

MbufAlloc2d() SystemId, SizeX, SizeY, Type,
Attribute, BufIdPtr

Allocate a 2D data buffer.

MbufAllocColor() SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, BufIdPtr

Allocate a color data buffer.

MbufChildColor() ParentBufId, Band, BufIdPtr Allocate a child data buffer within
a color parent buffer.

MbufChildColor2d() ParentBufId, Band, OffX, OffY,
SizeX, SizeY, BufIdPtr

Allocate a child data buffer within
a color parent buffer.

MbufChild1d() ParentBufId, OffX, SizeX, BufIdPtr Allocate a 1D child data buffer.

MbufChild2d() ParentBufId, OffX, OffY, SizeX,
SizeY, BufIdPtr

Allocate a 2D child data buffer.

MbufClear() DestImageBufId, Color Clears a buffer to a specified color.

MbufControl() BufId, ControlType, ControlValue Control specified buffer features.

MbufControlNeighborhood()

BufId, OperationFlag,
OperationValue

Change the value of an operation
flag associated with a custom
kernel or structuring element.

MbufCopy() SrcBufId, DestBufId Copy data from one buffer to
another.

16 Chapter 1 : Programming with MIL

MbufCopyClip() SrcBufId, DestBufId, DestOffX,
DestOffY

Copy buffer clipping data outside
destination buffer.

MbufCopyColor() SrcBufId, DestBufId, Band Copy one or all bands of an image
buffer.

MbufCopyColor2d() SrcBufId, DestBufId, SrcBand,
SrcOffX, SrcOffY, DestBand,
DestOffX, DestOffY, SizeX, SizeY

Copy a 2D region of one or all
bands of an image buffer to
another buffer.

MbufCopyCond() SrcBufId, DestBufId, CondBufId,
Condition, CondValue

Copy conditionally the source
buffer to the destination buffer.

MbufCopyMask() SrcBufId, DestBufId, MaskValue Copy buffer with mask.

MbufCreateColor() SystemId, SizeBand, SizeX, SizeY,
Attribute, ControlFlag, Pitch,
ArrayOfDataPtr, BufIdPtr

Create a color data buffer.

MbufCreate2d() SystemId, SizeX, SizeY, Type,
Attribute, ControlFlag, Pitch,
DataPtr, BufIdPtr

Create a two-dimensional data
buffer.

MbufDiskInquire() FileName, InquireType,
UserVarPtr

Inquire about the buffer data in a
file.

MbufExport() FileName, FileFormatBufId,
SrcBufId

Export a data buffer to a file.

MbufExportSequence() FileName, FileFormatId,
BufArrayPtr, NumberOfImages,
FrameRate, ControlFlag

Export a sequence of image buffers
to an AVI file.

MbufFree() BufId Free a data buffer.

MbufGet() SrcBufId, UserArrayPtr Get data from a buffer and place it
in a user-supplied array.

MbufGetColor() SrcBufId, DataFormat, Band,
UserArrayPtr

Get data from one or all bands of a
buffer and place it in a
user-supplied array.

MbufGetColor2d() SrcBufId, DataFormat, Band, OffX,
OffY, SIzeX, SizeY, UserArrayPtr

Get data from a region of one of all
bands of a buffer and place it in a
user-supplied array.

MbufGetLine() ImageBufId, StartX, StartY, EndX,
EndY, Mode, NumPixelsPtr,
UserArrayPtr

Read a series of pixels within
specified coordinates, count them,
and store them in a user-defined
array.

MbufGet1d() SrcBufId, OffX, SizeX,
UserArrayPtr

Get data from a 1D area of a buffer
and place it in a user-supplied
array.

Data allocation and
access commands

Command parameters Description

A quick command reference 17

MbufGet2d() SrcBufId, OffX, OffY, SizeX, SizeY,
UserArrayPtr

Get data from a 2D area of a buffer
and place it in a user-supplied
array.

MbufImport() FileName, FileFormatBufId,
Operation, SystemId, BufIdPtr

Import data from a file into a data
buffer.

MbufImportSequence() FileName, FileFormatId,
Operation, SystemId, BufArrayPtr,
StartImage, NumberOfImages,
ControlFlag

Import a sequence of images from
an *.avi file into separate image
buffers.

MbufInquire() BufId, InquireType, UserVarPtr Inquire about a data buffer
parameter setting.

MbufLoad() FileName, BufId Load MIL file format data from a
file into a data buffer.

MbufPut() DestBufId, UserArrayPtr Put data from a user-supplied
array into a data buffer.

MbufPutColor() DestBufId, DataFormat, Band,
UserArrayPtr

Put data from a user-supplied
array into one or all bands of a
data buffer.

MbufPutColor2d() DestBufId, DataFormat, Band,
OffX, OffY, SizeX, SizeY,
UserArrayPtr

Put data from a user-supplied
array into a region of one of all
bands of a data buffer.

MbufPutLine() ImageBufId, StartX, StartY, EndX,
EndY, Mode, NbPixelsPtr,
UserArrayPtr

Write a specified series of pixels
within specified coordinates on a
line.

MbufPut1d() DestBufId, OffX, SizeX,
UserArrayPtr

Put data from a user-supplied
array into a 1D area of a buffer.

MbufPut2d() DestBufId, OffX, OffY, SizeX, SizeY,
UserArrayPtr

Put data from a user-supplied
array into a 2D area of a buffer.

MbufRestore() FileName, SystemId, BufIdPtr Restore Mil file format data from a
file into an automatically allocated
data buffer.

MbufSave() FileName, BufId Save a data buffer in a file using
the MIL output file format.

Data allocation and
access commands

Command parameters Description

18 Chapter 1 : Programming with MIL

The calibration module
The calibration module consists of a set of functions that allow
you to map pixel coordinates to real-world coordinates. This
mapping can be used to get results from other modules in
real-world units. The mapping can also be used to physically
correct an image’s distortions.

Calibration commands Command parameters Description
McalAlloc() Mode, ModeFlag, CalibrationIdPtr Allocate a calibration object.

McalAssociate() CalibrationId, ImageOrDigitizerId,
ControlFlag

Associate/disassociate a
calibration object to/from an
image or digitizer.

McalControl() CalibrationId, ControlType,
ControlValue

Control a calibration object
parameter setting.

McalFree() CalibrationId Free a calibration object.

McalGrid() CalibrationId, SrcImageBufId,
GridOffsetX, GridOffsetY,
GridOffsetZ, RowNumber,
ColumnNumber, RowSpacing,
ColumnSpacing, Mode, ModeFlag

Calibrate your imaging setup
using a grid.

McalInquire() CalibrationOrMilId, InquireType,
UserVarPtr

Inquire about a calibration
object setting or about the
calibration object associated
to an image or digitizer.

McalList() CalibrationId, XPixArray,
YPixArray, XWorldArray,
YWorldArray, ZWorld, NumPoint,
Mode, ModeFlag

Calibrate your imaging setup
using a list of coordinates.

McalRelativeOrigin() CalibrationId, XOffset, YOffset,
ZOffset, AngularOffset, ControlFlag

Change the origin and/or
orientation of a relative
coordinate system.

McalRestore() FileName, ControlFlag,
CalibrationIdPtr

Restore a calibration object
from a file.

McalSave() FileName, CalibrationId,
ControlFlag

Save a calibration object to a
file.

McalTransformCoordinate() CalibrationOrMilId, ResultType, X,
Y, ResXPtr, ResYPtr

Convert coordinates between
their world and pixel values.

McalTransformImage() SrcImageBufId, DestImageBufId,
CalibrationId, InterpolationMode,
OperationType, ControlFlag

Physically transform an
image to remove any
distortions.

McalTransformResult() CalibrationOrMilId, TransformType,
ResultType, Result, ResResult

Convert a result between its
world and pixel value.

A quick command reference 19

The code module
The code module allows you to read and write DataMatrix codes
as well as several types of bar codes.

The digitizer allocation and control module

The digitizer allocation and control module supports the
allocation, manipulation, and control of digitizers.

Code commands Command parameters Description
McodeAlloc() SystemId, CodeType, ControlFlag,

CodeIdPtr
Allocate a code object.

McodeControl() CodeId, ControlType, ControlValue Control a code object.

McodeFree() CodeId Free a code object.

McodeGetResult() CodeId, ResultType, ResultPtr Get a result from a read or
write operation.

McodeInquire() CodeId, InquireType, UserVarPtr Inquire about a code object
parameter setting.

McodeRead() CodeId, ImageBufId, ControlFlag Read a specific type of code in
an image.

McodeWrite() CodeId, ImageBufId, String,
ControlFlag

Encode an ASCII string.

Digitizer allocation and
control commands

Command parameters Description

MdigAlloc() SystemId, DigNum, DataFormat,
InitFlag, DigIdPtr

Allocate a digitizer.

MdigChannel() DigId, Channel Select the active input channel
of a digitizer.

MdigControl() DigId, ControlType, ControlValue Control the specified digitizer.

MdigFocus() DigId, DestImageBufId,
FocusImageRegionBufId,
FocusHookPtr, UserDataPtr,
MinPosition, StartPosition,
MaxPosition,
MaxPositionVariation, ProcMode,
ResultPtr

Adjust a camera’s lens motor to
a position which provides
optimum focus.

MdigFree() DigId Free a digitizer.

MdigGrab() DigId, DestImageBufId Grab data from an input device
into a buffer.

MdigGrabContinuous() DigId, DestImageBufId Grab data continuously from an
input device.

20 Chapter 1 : Programming with MIL

The display allocation and control module
The display allocation and control module supports the
allocation, manipulation, and control of displays.

MdigGrabWait() DigId, Flag Wait for the end of the grab in
progress.

MdigHalt() DigId Halt a continuous grab from an
input device.

MdigHookFunction() DigId, HookType,
HookHandlerPtr, UserDataPtr

Hook a function to a digitizer
event.

MdigInquire() DigId, InquireType, UserVarPtr Inquire about a digitizer
parameter setting.

MdigLut() DigId, LutBufId Copy a LUT buffer to a digitizer
LUT.

MdigReference() DigId, ReferenceType,
ReferenceLevel

Select digitization reference
level.

Digitizer allocation and
control commands

Command parameters Description

Display allocation and
control commands

Command parameters Description

MdispAlloc() SystemId, DispNum, DispFormat,
InitFlag, DisplayIdPtr

Allocate a display.

MdispControl() DisplayId, ControlType, ControlValue Control the behavior of a MIL
display window.

MdispDeselect() DisplayId, ImageBufId Stop displaying an image
buffer.

MdispFree() DisplayId Free a display.

MdispHookFunction() DisplayId, HookType,
HookHandlerPtr, UserDataPtr

Hook a function to a display
event.

MdispInquire() DisplayId, InquireType, UserVarPtr Inquire about a display
parameter setting.

MdispLut() DisplayId, LutBufId Copy a LUT buffer to a
display output LUT.

MdispOverlayKey() DisplayId, KeyMode, KeyCond,
KeyMask, KeyColor

Enable overlay keying.

MdispPan() DisplayId, XOffset, YOffset Pan and scroll a display.

A quick command reference 21

The basic data generation module

The basic data generation module provides a limited set of data
generation tools that can be used to automatically generate
predefined data in a data buffer (for example, generating ramp
in a LUT buffer).

The basic graphics module
The basic graphics module provides a limited set of graphic
primitives that can be used to create drawings and text
annotations in an image.

MdispSelect() DisplayId, ImageBufId Select an image buffer to
display.

MdispSelectWindow() DisplayId, ImageBufId,
ClientWindowHandle

Select an image buffer to
display in a user-defined
window.

MdispZoom() DisplayId, XFactor, YFactor Zoom a display.

Display allocation and
control commands

Command parameters Description

Basic data generation
commands

Command parameters Description

MgenLutFunction() LutBufId, Func, a, b, c, StartIndex,
StartXValue, EndIndex

Generate data into a LUT
buffer using a specified
standard mathematical
function.

MgenLutRamp() LutId, StartIndex, StartValue,
EndIndex, EndValue

Generate ramp data into a
LUT buffer.

MgenWarpParameter() InWarpParameter, OutXLutOrCoef,
OutYLut, OperationMode,
Transform, Val1, Val2

Generate coefficients or LUTs
for use with MimWarp().

Basic graphics
commands

Command parameters Description

MgraAlloc() SystemId, GraphContIdPtr Allocate a graphics context.

MgraArc() GraphContId, DestImageBufId,
XCenter, YCenter, XRad, YRad,
StartAngle, EndAngle

Draw an arc.

MgraArcFill() GraphContId, DestImageBufId,
XCenter, YCenter, XRad, YRad,
StartAngle, EndAngle

Draw a filled elliptic arc.

22 Chapter 1 : Programming with MIL

The basic image processing module
The basic image processing module gives the user the
possibility to do point-to-point, statistical, spatial filtering,
morphological , and geometric transformation operations.

MgraBackColor() GraphContId, BackgroundColor Sets the background color of
a graphics context.

MgraClear() GraphContId, DestImageBufId Clear an image buffer.

MgraColor() GraphContId, ForegroundColor Sets the foreground color of a
graphics context.

MgraControl() GraphContId, ControlType,
ControlValue

Control the specified graphic
context.

MgraDot() GraphContId, DestImageBufId,
XPos, YPos

Draw a dot.

MgraFill() GraphContId, DestImageBufId,
XStart, YStart

Perform a boundary-type
seed fill.

MgraFont() GraphContId, FontName Associate a text font with a
graphics context.

MgraFontScale() GraphContId, XFontScale,
YFontScale

Set the font scale of a
graphics context.

MgraFree() GraphContId Free a graphics context.

MgraInquire() GraphContId, InquireType,
UserVarPtr

Inquire about the graphic
parameters.

MgraLine() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a line.

MgraRect() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a rectangle.

MgraRectFill() GraphContId, DestImageBufId,
XStart, YStart, XEnd, YEnd

Draw a filled rectangle.

MgraText() GraphContId, DestImageBufId,
XStart, YStart, String

Write text.

Basic graphics
commands

Command parameters Description

Basic image processing
commands

Command parameters Description

MimAllocResult() SystemId, NbEntries, ResultType,
ImResultIdPtr

Allocate an image processing
 result buffer.

MimArith() Src1ImageBufId, Src2ImageBufId,
DestImageBufId, Operation

Perform a point-to-point
arithmetic operation.

A quick command reference 23

MimArithMultiple() Src1ImageBufId, Src2ImageBufId,
Src3ImageBufId, Src4ImageBufId,
Src5ImageBufId, DestImageBufId,
Operation, OperationFlag

Perform a point-to-point
arithmetic operation using
multiple source images.

MimBinarize() SrcImageBufId, DestImageBufId,
Condition, CondLow, CondHigh

Perform a point-to-point
binary-thresholding
operation.

MimClip() SrcImageBufId, DestImageBufId,
Condition, CondLow, CondHigh,
WriteLow, WriteHigh

Perform a point-to-point
clipping operation.

MimClose() SrcImageBufId, DestImageBufId,
NbIteration, ProcMode

Perform a binary or grayscale
closing-type morphological
operation.

MimConnectMap() SrcImageBufId, DestImageBufId,
LutBufId

Perform a 3 by 3 binary
connectivity mapping.

MimConvert() SrcImageBufId, DestImageBufId,
ConversionType

Perform a color conversion.

MimConvolve() SrcImageBufId, DestImageBufId,
KernelBufId

Perform a general convolution
operation.

MimCountDifference() Src1ImageBufId, Src2ImageBufId,
ImResultId

Count image differences.

MimDilate() SrcImageBufId, DestImageBufId,
NbIteration, ProcMode

Perform a binary or grayscale
dilation-type morphological
operation.

MimDistance() SrcImageBufId, DestImageBufId,
DistanceTransform

Perform a distance
transformation.

MimEdgeDetect() SrcImageBufId,
DestIntensityImageBufId,
DestAngleImageBufId, KernelId,
ControlFlag, Threshold

Perform a specific edge
detection operation and
produce a gradient intensity
and/or gradient angle image.

MimErode() SrcImageBufId, DestImageBufId,
NbIteration, ProcMode

Perform an erosion-type
morphological operation.

MimFindExtreme() SrcImageBufId,
ExtremeImResultId, ExtremeType

Find an image buffer’s
extremes (min, max).

MimFlip() SrcImageId, DestImageId,
Operation, OpFlag

Perform a horizontal or
vertical image-flipping
rotation

MimFree() ImResultId Free an image processing
result buffer.

MimGetResult() ImResultId, ResultType,
UserArrayPtr

Get values from an image
processing result buffer.

Basic image processing
commands

Command parameters Description

24 Chapter 1 : Programming with MIL

MimGetResult1d() ImResultId, OffEntry, NbEntries,
ResultType, UserArrayPtr

Get values from a 1D region of
an image processing result
buffer.

MimHistogram() SrcImageBufId, HistImResultId Generate the intensity
histogram of an image buffer.

MimHistogramEqualize() SrcImageBufId, DestImageBufId,
Method, Alpha, Min, Max

Perform a histogram
equalization of an image.

MimInquire() BufId, InquireType, UserVarPtr Inquire about an image
processing result buffer
parameter setting.

MimLabel() SrcImageBufId, DestImageBufId,
ProcMode

Label objects in an image
buffer.

MimLocateEvent() SrcImageBufId, EventImResultId,
Condition, CondLow, CondHigh

Find pixel coordinates or
values that satifies a specified
condition.

MimLutMap() SrcImageBufId, DestImageBufId,
LutBufId

Perform a point-to-point
LUT-mapping operation.

MimMorphic() SrcImageBufId, DestImageBufId,
StructElemBufId, Operation,
NbIteration, ProcMode

Perform a morphological
transformation using a
user-defined kernel.

MimOpen() SrcImageBufId, DestImageBufId,
NbIteration, ProcMode

Perform a binary or grayscale
opening-type morphological
operation.

MimPolarTransform() SrcImageBufId, DestImageBufId,
CenterPosX, CenterPosY,
StartRadius, EndRadius,
StartAngle, EndAngle,
OperationMode, InterpolationMode,
DestSizeXPtr, DestSizeYPtr

Perform a
polar-to-rectangular or
rectangular-to-polar
transform.

MimProject() SrcImageBufId, ProjImResultId,
ProjAngle

Project a 2D image into 1D.

MimRank() SrcImageBufId, DestImageBufId,
StructElemBufId, Rank, ProcMode

Perform a rank filter on the
pixels in an image.

MimResize() SrcImageBufId, DestImageBufId,
ScaleFactorX, ScaleFactorY,
InterpolationMode

Resize an image.

MimRotate() SrcImageBufId, DestImageBufId,
Angle, SrcCenX, SrcCenY, DstCenX,
DstCenY, InterpolationMode

Rotate an image.

MimShift() SrcImageBufId, DestImageBufId,
BitsToShift

Perform a point-to-point bit
shift.

Basic image processing
commands

Command parameters Description

A quick command reference 25

The measurement module

The basic measurement module is a set of functions that can
be used to take measurements using spatial reference positions
in images.

MimThick() SrcImageBufId, DestImageBufId,
NbIteration, ProcMode

Perform a binary or grayscale
thickening operation on an
image.

MimThin() SrcImageBufId, DestImageBufId,
NbIteration, ProcMode

Perform a binary or grayscale
thinning operation on an
image.

MimTransform() SrcImageRBufId, SrcImageIBufId,
DestImageRBufId,
DestImageIBufId, TransformType,
ControlFlag

Perform a Fast Fourier
transform (FFT) or a Discrete
Cosine transform (DCT).

MimTranslate() SrcImageBufId, DestImageBufId,
XDisplacement, YDisplacement,
InterpolationMode

Translate an image in X
and/or Y displacement.

MimWarp() SrcImageId, DestImageId,
WarpParam1Id, WarpParam2Id,
OperationMode, InterpolationMode

Perform a warping.

MimWatershed() SrcImageId, MarkerImageId,
DestImageId, MinimumVariation,
ControlFlag

Perform a watershed
transformation.

MimZoneOfInfluence() SrcImageBufId, DestImageBufId,
OperationFlag

Perform a zone of influence
detection.

Basic image processing
commands

Command parameters Description

Measurement
commands

Command parameters Description

MmeasAllocContext() SystemId, ControlFlag,
ContextIdPtr

Allocate a measurement
context.

MmeasAllocMarker() SystemId, MarkerType, ControlFlag,
MarkerIdPtr

Allocate a measurement
marker.

MmeasAllocResult() SystemId, ResultType,
MeasResultIdPtr

Allocate a measurement
result buffer.

MmeasCalculate() ContextId, Marker1Id, Marker2Id,
MeasResultId, MeasurementList

Calculate measurements
using two markers.

MmeasControl() ContextId, ControlType,
ControlValue

Control a measurement
parameter setting.

MmeasFindMarker() ContextId, ImageBufId, MarkerId,
MeasurementList

Find a marker in an image
and take its measurements.

26 Chapter 1 : Programming with MIL

The optical character recognition module
The optical character recognition module is a set of function s
that can be used to read and verify character strings in images.

MmeasFree() MeasId Free a measurement buffer
(marker, result, or context).

MmeasGetResult() MarkerOrMeasResultId,
ResultType, FirstResultArrayPtr,
SecondResultArrayPtr

Get the results of
measurements taken.

MmeasGetResultSingle() MarkerOrMeasResultId,
ResultType, FirstResultArrayPtr,
SecondResultArrayPtr, ResultIndex

Get a single result from a
multiple marker’s result
array.

MmeasInquire() MeasId, InquireType,
FirstUserVarPtr, SecondUserVarPtr

Inquire about a marker,
result, or context buffer.

MmeasRestoreMarker() FileName, SystemId, ControlFlag,
MarkerIdPtr

Restore a marker from disk.

MmeasSaveMarker() FileName, MarkerId, ControlFlag Save a marker to disk.

MmeasSetMarker() MarkerId, CharacteristicToSet,
FirstValue, SecondValue

Set a marker characteristic
parameter.

Measurement
commands

Command parameters Description

Optical character
recognition commands

Command parameters Description

MocrAllocFont() SystemId, FontType, CharNumber,
CharBoxSizeX, CharBoxSizeY,
CharOffsetX, CharOffsetY,
CharSizeX, CharSizeY,
CharThickness, StringLength,
InitFlag, FontIdPtr

Allocate an OCR font buffer.

MocrAllocResult() SystemId, InitFlag, OcrResultIdPtr Allocate an OCR result
buffer.

MocrCalibrateFont() ImageBufId, FontId, String,
TargetCharSizeXMin,
TargetCharSizeXMax,
TargetCharSizeXStep,
TargetCharSizeYMin,
TargetCharSizeYMax,
TargetCharSizeYStep, Operation

Calibrate font character size
to match a sample image.

MocrControl() FontId, ControlType, ControlValue Control an OCR parameter
setting.

MocrCopyFont() ImageBufId, FontId, Operation,
CharListString

Copy a font character to or
from an image buffer.

A quick command reference 27

The basic pattern recognition module
The basic pattern recognition or pattern matching module is a
set of pattern location functions that can be used for alignment,
measurement, and inspection.

MocrFree() FontOrResultId Free an OCR font or result
buffer.

MocrGetResult() OcrResultId, ResultToGet, ResultPtr Read results from an OCR
result buffer.

MocrHookFunction() FontId, HookType, HookHandlerPtr,
UserDataPtr

Hook a function to an event.

MocrImportFont() FileName, FileFormat, Operation,
CharListString, FontId

Import font data from file on
disk.

MocrInquire() FontId, InquireType, UserVarPtr Inquire about font character
information.

MocrModifyFont() FontId, Operation, ControlValue Invert or resize a font to
match the target image
characters.

MocrReadString() ImageBufId, FontId, OcrResultId Read an unknown string
from an image.

MocrRestoreFont() FileName, Operation, SystemId,
FontIdPtr

Restore a font from disk.

MocrSaveFont() FileName, Operation, FontId Save an existing font to disk.

MocrSetConstraint() FontId, CharPos, CharPosType,
CharValidString

Set character position
constraints.

MocrVerifyString() ImageBufId, FontId, String,
OcrResultId

Verify a known string in an
image.

Optical character
recognition commands

Command parameters Description

Basic pattern
recognition commands

Command parameters Description

MpatAllocAutoModel() SystemId, SrcImageBufId, SizeX,
SizeY, PosUncertaintyX,
PosUncertaintyY, ModelType, Mode,
ModelIdArrayPtr

Automatically allocate a
unique pattern matching
model from a source image.

MpatAllocModel() SystemId, SrcImageBufId, OffX,
OffY, SizeX, SizeY, ModelType,
ModelIdPtr

Allocate a pattern matching
model from a source image.

MpatAllocResult() SystemId, NbEntries,
PatResultIdPtr

Allocate a pattern matching
result buffer.

28 Chapter 1 : Programming with MIL

MpatAllocRotatedModel() SystemId, SrcModelId, Angle,
InterpolationMode, ModelType,
NewModelIdPtr

Rotate a pattern matching
model.

MpatCopy() ModelId, DestImageBufId,
CopyMode

Copy a pattern matching
model to an image buffer.

MpatFindModel() ImageBufId, ModelId, PatResultId Find a pattern matching
model in the target image
buffer.

MpatFindMultipleModel() ImageBufId, ModelIdArray,
PatResultIdArray, NumModels,
SearchMode

Find multiple pattern
matching models in the
target image buffer.

MpatFindOrientation() ImageBufId, ModelId, FindResultId,
ResultRange

Find the orientation of an
image or of an object in an
image.

MpatFree() PatId Free a pattern matching
buffer (model or result
buffer).

MpatGetNumber() PatResultId, CountPtr Get the number of model
occurrences in the target
image.

MpatGetResult() PatResultId, ResultType,
UserArrayPtr

Get the pattern matching
result values.

MpatInquire() PatId, ParamToInquire, UserVarPtr Inquire about the pattern
matching model or the result
buffer parameter setting.

MpatPreprocModel() TypicalImageBufId, ModelId, Mode Preprocess a pattern
matching model.

MpatRead() SystemId, FileHandle, ModelIdPtr Read a pattern matching
model from an open file.

MpatRestore() SystemId, FileName, ModelIdPtr Restore a pattern matching
model from disk.

MpatSave() FileName, ModelId Save a pattern matching
model to disk.

MpatSetAcceptance() ModelId, AcceptanceThreshold Set the pattern matching
acceptance level.

MpatSetAccuracy() ModelId, Accuracy Set the pattern matching
positional accuracy.

MpatSetAngle() ModelId, ControlType, ControlValue Set the angular search
control parameters of a
model.

Basic pattern
recognition commands

Command parameters Description

A quick command reference 29

The system allocation and inquiry module
The system allocation and inquiry module supports the
allocation and inquiry of systems.

MpatSetCenter() ModelId, OffX, OffY Set the pattern matching
model center.

MpatSetCertainty() ModelId, CertaintyThreshold Set the pattern matching
certainty level.

MpatSetDontCare() ModelId, ImageBufId, OffX, OffY,
Value

Set the pattern matching
model’s "don’t care" pixels.

MpatSetNumber() ModelId, NbOccurrences Set the expected number of
occurrences.

MpatSetPosition() ModelId, OffX, OffY, SizeX, SizeY Set the pattern matching
search position.

MpatSetSearchParameter() PatId, Parameter, Value Set a pattern matching
internal search parameter.

MpatSetSpeed() ModelId, SpeedFactor Set pattern matching search
speed.

MpatWrite() FileHandle, ModelId Write a pattern matching
model to an open file.

Basic pattern
recognition commands

Command parameters Description

System allocation and
inquiry commands

Command parameters Description

MsysAlloc() SystemTypePtr, SystemNum,
InitFlag, SystemIdPtr

Allocate a system.

MsysControl() SystemId, ControlType,
ControlValue

Control system behavior.

MsysFree() SystemId Free a system.

MsysInquire() SystemId, InquireType, UserVarPtr Inquire about a system
parameter setting.

30 Chapter 1 : Programming with MIL

Chapter 2: The command
reference descriptions

32 Chapter 2: The command reference descriptions

The reference description notes
The command descriptions are presented in alphabetical order.
Consequently, related commands are grouped together because
of their nomenclature. For example, all the data buffer
allocation and access module commands begin with the letters
Mbuf.

The M_ prefix All predefined MIL constants have been prefixed with M_ to
avoid conflicts with any previously defined user names.

Parameters All MIL parameters that end with Id expect an allocated MIL
object identifier. The letters preceding the Id indicate the
module with which to allocate the identifier. For example, the
variable BufId must be a buffer identifier created with
MbufAlloc...(). If the identifier can be any MIL object identifier
(that is, created with any MIL module), it is prefaced simply
with the sequence "MIL", for example MILId.

Examples The Matrox Imaging Library User Guide describes how the
MIL commands are used in typical applications. Code examples
are also provided.

Command limitations Some command descriptions have a Status section. This section
describes any software or hardware limitation that is currently
imposed on the command. Some limitations should be corrected
in future revisions, but not necessarily.

Word usage All the MIL documentation uses the words function and
command interchangeably since most of the commands in MIL
are C functions. Digitizer and frame grabber are also used
interchangeably. Finally, in general, Host refers to the
principal CPU in one’s computer, while system refers to your
Matrox imaging board and its associated resources.

The reference description notes 33

In addition, some of these commands are implemented as
macros. If you are interested in the definition of the macros,
you can find them or their file names in the mil.h or milsetup.h
header file.

The use of the words board-specific or system-specific indicates
that the current subject might be valid only when using certain
boards or systems.

Fonts All commands and parameters are presented in bold so that
you can quickly scan for them. Predefined constants are
presented in a smaller font.

MappAlloc 35

MappAlloc

Synopsis Allocate a MIL application.

Format MIL_ID MappAlloc(InitFlag, ApplicationIdPtr)

Description This function allocates a MIL application. A MIL application must be
allocated prior to using any other MIL functions. The MIL functions use the
first application that was user-allocated.

The InitFlag parameter specifies the type of initialization to perform on
the MIL application. This parameter should be set to one of the following
values:

The ApplicationIdPtr parameter specifies the address of the variable in
which the application identifier is to be written. Since the MappAlloc()
function also returns the application identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

In multi-thread environments, the application is shared by all threads and
Mapp...() function calls from any thread apply to all threads unless
specifically localized to that thread by specifying an M_THREAD_CURRENT
flag when calling the function. However, if a new MIL application is
allocated within a thread, using MappAlloc(), this thread will be isolated
from the shared application and all application controls and hooks will be
independent. For example, turning off the error print in the new thread,
using MappControl(), will not affect the printing of errors by the original
shared application; nor will such a command called from a thread attached
to the original application affect the new application.

Note, upon allocation of a MIL application, a default system
(M_SYSTEM_HOST) is automatically allocated. This default Host system can
be used in MIL function calls by specifying M_DEFAULT_HOST wherever a
system identifier is required.

long InitFlag; Initialization flag
MIL_ID *ApplicationIdPtr; Storage location for application identifier

M_DEFAULT Default initialization.
M_QUIET Suppress the displaying of error messages during the

allocation of the application.

36 MappAlloc

In addition, a default graphic context is also allocated upon allocation of a
MIL application. This default graphic context can be used in MIL graphic
function calls by specifying M_DEFAULT wherever a graphic context
identifier is required.

In multi-thread applications, a default graphic context is allocated for each
thread in order to avoid inter-thread interference.

Return value The returned value is the application identifier. If allocation fails, M_NULL
is returned as the identifier.

See also MappFree(), MappAllocDefault()

MappAllocDefault 37

MappAllocDefault

Synopsis Allocate MIL application defaults.

Format void MappAllocDefault(InitFlag, ApplicationIdPtr,
 SystemIdPtr, DisplayIdPtr,
 DigIdPtr, ImageBufIdPtr)

Description This macro sets up the requested MIL and processing environments using
the defaults specified in the milsetup.h file. It can allocate and initialize a
MIL application, allocate the system to receive the MIL commands, allocate
the digitizer and display, and allocate and clear a displayable image buffer
on this target system, depending on what is requested.

The InitFlag parameter specifies the type of initialization setup to perform
and is used principally to initialize the default system. This parameter can
be set to one of the following:

M_PARTIAL should only be selected if the required resident software has
already been downloaded. This option is particularly useful when debugging
since resident software generally needs to be downloaded once after
power-up (or rebooting the system) and the downloading process can take
a substantial amount of initialization time on certain systems.

long InitFlag; Initialization flag
MIL_ID *ApplicationIdPtr; Storage location for application identifier
MIL_ID *SystemIdPtr; Storage location for system identifier
MIL_ID *DisplayIdPtr; Storage location for display identifier
MIL_ID *DigIdPtr; Storage location for digitizer identifier
MIL_ID *ImageBufIdPtr; Storage location for image buffer identifier

M_COMPLETE Perform a complete initialization of the MIL
environment: initialize MIL to its default state and
download any system’s required resident software. At
least one complete initialization is necessary after you
power-up your system.

M_PARTIAL Initialize MIL to its default state, but do not download
any system’s resident software.

M_SETUP Set InitFlag to one of the above, based on the default
state requested when the installation utility was run
(refer to the milsetup.h file to determine what these
setup defaults are).

38 MappAllocDefault

The ApplicationIdPtr parameter specifies the address of the variable in
which the application identifier is to be written. Upon execution of this
function, the default application specified in the milsetup.h file is allocated
and its identifier returned. Instead of using MappAllocDefault(), you can
use MappAlloc() to allocate an application. Note, an application must be
allocated in order to allocate any other object in MIL.

The SystemIdPtr parameter specifies the address of the variable in which
the system identifier is to be written. Upon execution of this function, the
default system specified in the milsetup.h file is allocated and its identifier
returned. Instead of using MappAllocDefault(), you can use MsysAlloc()
to allocate a system. MappAlloc() will also allocate a default Host system.
Note, a system must be allocated in order to allocate any other objects on it
(display, digitizer or data buffers).

The DisplayIdPtr parameter specifies the address of the variable in which
the display identifier is to be written. If this parameter is set to M_NULL, a
display is not allocated; otherwise, the default display specified in the
milsetup.h file is allocated and its identifier returned.

The DigIdPtr parameter specifies the address of the variable in which the
digitizer identifier is to be written. If this parameter is set to M_NULL, a
digitizer is not allocated; otherwise, the default digitizer specified in the
milsetup.h file is allocated and its identifier returned.

The ImageBufIdPtr parameter specifies the address of the variable in
which the image buffer identifier is to be written. If this parameter is set to
M_NULL, an image buffer is not allocated; otherwise, the default image
buffer specified in the milsetup.h file is allocated and its identifier returned.
It is then cleared and displayed on the system’s display screen.

The installation utility modifies the milsetup.h header file to create the
appropriate macros and customize the default setup. If the installation
utility is not executed, the default state supported will be undefined.

After installation, if you want to change the default state of
MappAllocDefault(), edit milsetup.h to suit your needs.

Note, if a digitizer is specified and the default camera type
(M_DEF_DIGITIZER_FORMAT) in the milsetup.h file is a 3-band color (RGB)
type, then a 3-band image buffer will be allocated by default; otherwise, a
1-band image buffer will be allocated.

MappAllocDefault 39

Example For example, a typical default setup for a Genesis board in its power-up
state with one input device (RS-170 camera) and one default image buffer
(full-screen size) on the display is:

If, for example, you don’t need to acquire data from the camera but want to
perform the rest of the above setup, you would make the following call:

Note, upon execution of this function, a default graphics context is
automatically allocated. This default graphics context can be used in MIL
graphic function calls by specifying M_DEFAULT wherever a graphic context
identifier is required.

See also MappFreeDefault(), MappAlloc(), MsysAlloc(), MdispAlloc(),MdigAlloc(),
MbufAllocColor(),MbufAlloc1d(), MbufAlloc2d()

MappAllocDefault(M_COMPLETE, &System, &Display, &Digitizer, &ImageBuffer);

MappAllocDefault(M_COMPLETE, &System, &Display, M_NULL, &ImageBuffer)

40 MappControl

MappControl

Synopsis Control an application environment setting.

Format void MappControl(ControlType, ControlValue)

Description This function controls the output of error messages to the screen, the output
of function names and parameters to the screen at the start and end of MIL
functions, and parameter checking at the start of MIL functions. It also
controls the processing and memory compensation modes.

The ControlType and ControlValue parameters specify the type of event
to control and the flag with which to control the event. These parameters
should be set according to the following combinations:

long ControlType; Type of event to control
long ControlValue; Flag to control event

ControlType ControlValue Result
M_ERROR M_PRINT_ENABLE Enable printing of error

messages (default)
M_ERROR M_PRINT_DISABLE Disable printing of error

messages
M_TRACE M_PRINT_ENABLE Enable printing of function

names and parameters
M_TRACE M_PRINT_DISABLE Disable printing of function

names and parameters (default)
M_PARAMETER M_CHECK_ENABLE Enable checking of parameters

(default)
M_PARAMETER M_CHECK_DISABLE Disable checking of parameters
M_PROCESSING M_COMPENSATION_ENABLE Enable processing

compensation; if your system
cannot perform a certain
processing operation due to its
limitations, processing will be
done by the Host. (default)

M_PROCESSING M_COMPENSATION_DISABLE Disable processing
compensation.

MappControl 41

In multi-thread environments, an MappControl() call applies to all
application threads running MIL unless specifically limited to the calling
thread by adding M_THREAD_CURRENT to the ControlType parameter.
For example, MappControl(M_TRACE, M_PRINT_ENABLE) called from
any application thread enables trace printing in all threads running MIL.
However, MappControl(M_TRACE+M_THREAD_CURRENT,
M_PRINT_ENABLE) will enable trace printing in the currently running
thread only and ignore calls from other threads. To restore all-thread trace
printing, within the same thread call
MappControl(M_TRACE+M_THREAD_CURRENT, M_DEFAULT).

If error printing is disabled, you can still check for error, using
MappGetError().

Note, if parameter checking is disabled to accelerate an application,
unpredictable behavior can be expected when passing invalid parameters
to a function.

See also MappGetError(), MappHookFunction(), MappInquire()

M_MEMORY M_COMPENSATION_ENABLE Enable memory compensation; if
your system cannot perform a
certain memory (buffer)
allocation due to insufficient
memory (default).

M_MEMORY M_COMPENSATION_DISABLE Disable memory compensation.

ControlType ControlValue Result

42 MappControlThread

MappControlThread

Synopsis Allocate/control MIL application thread(s) or events.

Format long MappControlThread(ControlId, ControlType,
 ControlValue, ControlVarPtr)

Description This function allocates/controls MIL application threads or events.

A MIL thread is a command stream used to send MIL commands to the
various allocated MIL systems. MIL automatically allocates a MIL thread
for each existing HOST thread that is using MIL. MappControlThread()
allows you to synchronize MIL threads running on the Host and/or various
MIL systems.

A MIL event is a marker that can be inserted between commands sent to a
given thread. Its state can be set to either M_SIGNALED or
M_NOT_SIGNALED in a given thread and can be inquired about or waited
for (MappControlThread(Event, M_EVENT_WAIT,...)), until in
M_SIGNALED state, by other threads in order to monitor the execution of
commands.

The event can be one of the following reset types:

MIL_ID ControlId Thread or Event identifier
long ControlType; Type of control set on thread or event
long ControlValue; Value of control setting
long *ControlVarPtr; Storage location for returned value

Auto-Reset: Calling MappControlThread(Event, M_EVENT_SET,...), sets or
resets the event state to M_SIGNALED or M_NOT_SIGNALED. When
in M_SIGNALED state, the event is automatically reset to
M_NOT_SIGNALED when a call to MappControlThread(Event,
M_EVENT_WAIT, M_DEFAULT,...) returns. This type of event is
useful in applications where only one thread waits on a specific
event.

Manual-Reset: Calling MappControlThread(Event, M_EVENT_SET,...), sets or
resets the event state to M_SIGNALED or M_NOT_SIGNALED. The
event state remains unchanged until an explicit call to
MappControlThread(Event, M_EVENT_SET,...) is issued. This
type of event is useful when multiple threads wait on a specific
event.

MappControlThread 43

The ControlId parameter specifies the identifier of the thread or event to
be controlled. If set to M_DEFAULT, it uses the default MIL thread/event
identifier associated with the Host thread. The thread or event can be
user-allocated using the M_THREAD_ALLOC or M_EVENT_ALLOC
ControlType of MappControlThread().

The ControlType and ControlValue parameters specify the thread or
event control operation to be performed. These parameters can be set to the
following combinations:

 Thread
 ControlType ControlValue Result
M_THREAD_ALLOC M_DEFAULT Create a new selectable MIL thread on

a multi-thread system (such as Genesis)
and return its MIL_ID. Under Windows
NT, MIL automatically allocates a default
MIL thread for each existing Host thread.
Note, ControlId must be set to
M_DEFAULT.

M_THREAD_FREE M_DEFAULT Free an existing MIL thread.
Note that default MIL threads will be
automatically freed. *

M_THREAD_SELECT M_DEFAULT Select the MIL thread to which
subsequent MIL commands will be sent.*

M_THREAD_WAIT M_DEFAULT Synchronize commands sent to a thread.
Force a wait for completion of all
commands currently executing in the
thread. Useful for commands sent to
systems allowing an immediate return
(before execution is actually completed).*

M_THREAD_MODE M_SYNCHRONOUS MIL commands sent to the thread are
completed (execution terminated) before
returning.*

 M_ASYNCHRONOUS MIL commands sent to the thread return
immediately (when the system and
command allow an immediate return).
(default) *

44 MappControlThread

M_THREAD_IO_MODE M_SYNCHRONOUS MIL commands MbufGet...() and
MbufPut...() sent to the thread wait,
before executing, for the completion of
previous MIL commands sent in the
thread (default).*

M_ASYNCHRONOUS MIL commands MbufGet...() and
MbufPut...() sent to the thread execute
immediately.*

* No return value is required. ControlVarPtr should be set to M_NULL.

 Thread
 ControlType ControlValue Result

 Event
 ControlType ControlValue Result
M_EVENT_ALLOC (any of the values listed below) Create a new MIL

synchronization event and
return its MIL ID.
Note, ControlId must be set
to M_DEFAULT.

M_DEFAULT or
M_NOT_SIGNALED+M_AUTO_RESET

Event is initialized as
M_NOT_SIGNALED and as an
Auto-Reset type.

M_SIGNALED+M_AUTO_RESET Event is initialized as
M_SIGNALED and and as an
Auto-Reset type.

M_NOT_SIGNALED+M_MANUAL_RESET Event is initialized as
M_NOT_SIGNALED and as an
Manual-Reset type.

M_SIGNALED+M_MANUAL_RESET Event is initialized as
M_SIGNALED and and as an
Manual-Reset type.

M_EVENT_FREE M_DEFAULT Free an existing MIL event.*
M_EVENT_SET M_SIGNALED or

M_NOT_SIGNALED
Set a MIL event to the
specified state.*

M_EVENT_WAIT M_DEFAULT Wait for the specified event to
be in an M_SIGNALED state. If
the event is auto-reset, resets
to M_NOT_SIGNALED after
the wait call is returned.*

MappControlThread 45

The ControlVarPtr parameter specifies a pointer to the user variable
where the return value is to be written. Specify M_NULL if no return value
is required (see footnotes of control tables).

Example mthread.c

Return value The returned value is the requested event state, cast to a long. If no
information was requested (controls were only set), the returned value is
not valid.

M_EVENT_STATE M_DEFAULT Inquire the state of the MIL
event. The return value can
be: M_SIGNALED or
M_NOT_SIGNALED.

 * No return value is required. ControlVarPtr should be set to M_NULL.

 Event
 ControlType ControlValue Result

46 MappFree

MappFree

Synopsis Free a MIL application.

Format void MappFree(ApplicationId)

Description This function deallocates a MIL application previously allocated with
MappAlloc().

Prior to freeing a MIL application, ensure that all allocated systems, buffers,
displays, and digitizers are freed. MappFree() must be the last function
called in a MIL application; no other MIL command can be executed after
a call to this function.

Note, if you use MappAllocDefault() to allocate the default MIL
application, you must use MappFreeDefault() to free the application.

The ApplicationId parameter specifies the application to free.

See also MappAlloc(), MappFreeDefault()

MIL_ID ApplicationId; Application identifier

MappFreeDefault 47

MappFreeDefault

Synopsis Free MIL application defaults.

Format void MappFreeDefault(ApplicationId, SystemId, DisplayId,
 DigId, ImageBufId)

Description This macro frees the MIL application defaults that were allocated with the
MappAllocDefault() macro (located in milsetup.h). Note, this command
does not affect what is being displayed on the system’s display; if you want
to clear the display, you should do so, using MdispDeselect(), before calling
MappFreeDefault().

The ApplicationId parameter specifies the identifier of the application to
deallocate.

The SystemId parameter specifies the identifier of the system to deallocate.

The DisplayId parameter specifies the identifier of the display to
deallocate. If set to M_NULL, no display is deallocated.

The DigId parameter specifies the identifier of the digitizer to deallocate.
If set to M_NULL, no digitizer is deallocated.

The ImageBufId parameter specifies the identifier of the image buffer to
deallocate. If set to M_NULL, no buffer is deallocated.

See also MappAllocDefault(), MappFree(),MsysFree(), MdispFree(), MdigFree(),
MbufFree()

MIL_ID ApplicationId; Application identifier
MIL_ID SystemId; System identifier
MIL_ID DisplayId; Display identifier
MIL_ID DigId; Digitizer identifier
MIL_ID ImageBufId; Image buffer identifier

48 MappGetError

MappGetError

Synopsis Get error codes and related information.

Format long MappGetError(ErrorType, ErrorPtr)

Description This function obtains current or global system error codes, subcodes,
messages, submessages, function codes and function names. This function
allows you to check for errors after each MIL function call or to get the first
error that occurred after a series of MIL function calls.

A typical use of this function is to check whether a buffer allocation call was
successful (MbufAllocColor(), MbufAlloc1d(), and MbufAlloc2d()).

This function can also be used when error-reporting to the screen has been
disabled, using MappControl(), and you want to obtain information about
a detected error.

In multi-thread environments, an MappGetError() call returns the error
of the current thread or, if none, checks for errors in the other threads
running MIL. To return only errors in the current thread, add
M_THREAD_CURRENT to the ErrorType parameter
(M_CURRENT+M_THREAD_CURRENT).

The ErrorType parameter specifies the error type. This parameter can be
set to one of the following:

long ErrorType; Error type
void *ErrorPtr; Storage location for information

ErrorType Description
M_CURRENT Get the error code returned by the last

command call. The system current-error code is
reset to M_NULL_ERROR before each MIL
function call and is set to a specific error code if
an error occurs while trying to execute the
function.

M_CURRENT_SUB_NB Get the number of error subcodes associated
with the current error.

M_CURRENT_SUB_1...3 Get the nth error subcode returned by the last
command call. Note, when there is no error, the
error subcode(s) is set to M_NULL_ERROR.

M_CURRENT_FCT Get the function code associated with the
current error.

MappGetError 49

M_CURRENT+
M_MESSAGE

Get the error message associated with the
current error. The system current- error
message is reset to "NULL" before each MIL
function call and is set to a specific error
message if an error occurs while trying to
execute the function.

M_CURRENT_SUB_1...3+
M_MESSAGE

Get the nth error submessage associated with
the current error.

M_CURRENT_FCT+
M_MESSAGE

Get the function name associated with the
current error.

M_GLOBAL Get the error code of the first error that has
occurred since the last call to
MappGetError(M_GLOBAL...). The global
system-error code is reset to M_NULL_ERROR
after each MappGetError() call with this
setting.

M_GLOBAL_SUB_NB Get the number of error subcodes associated
with the first error that occurred since the last
call to MappGetError(M_GLOBAL...).

M_GLOBAL_SUB_1...3 Get the nth error subcode of the first error that
has occurred
since the call to
MappGetError(M_GLOBAL...). Note, when
there is no error, the error subcode(s) is set to
M_NULL_ERROR.

M_GLOBAL_FCT Get the function code associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL+
M_MESSAGE

Get the error message associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

M_GLOBAL_SUB_1...3+
M_MESSAGE

Get the nth error submessage associated with
the first error that has occurred since the last
call to MappGetError(M_GLOBAL...).

M_GLOBAL_FCT+
M_MESSAGE

Get the function name associated with the first
error that has occurred since the last call to
MappGetError(M_GLOBAL...).

ErrorType Description

50 MappGetError

The ErrorPtr parameter specifies the address of the variable in which the
requested information is to be written. If the error code is read and it is
equal to M_NULL_ERROR, no error has occurred. Since the
MappGetError() function also returns the error code or subcode, you can
set this parameter to M_NULL.

This variable should be a pointer to a long when getting error codes,
subcodes, number of subcodes, and function codes. This variable should be
a pointer to a string when getting messages, submessages and function
names. The string must be at least M_ERROR_MESSAGE_SIZE characters
in size.

Return value The returned value is the requested error code or subcode. When getting
error messages, submessages, and function names, the returned value is
the associated error code.

Example mshift.c

MappGetHookInfo 51

MappGetHookInfo

Synopsis Get information about a hooked event.

Format long MappGetHookInfo(EventId, InfoType, UserVarPtr)

Description This function retrieves information about the event that caused the
hook-handler function to be called. This function should only be called
within the scope of a hook-handler function call (see
MappHookFunction()).

The EventId parameter specifies the event identifier received from the
hook-handler function.

The InfoType parameter specifies the type of information to get.

If the hook handler was called with an M_ERROR_CURRENT HookType,
supported values for InfoType are:

MIL_ID EventId; Event identifier received from the hook-handler
function

long InfoType; Type of information to get
void *UserVarPtr; Storage location for the information

InfoType Description
M_CURRENT Error code.
M_CURRENT_SUB_NB Number of error subcodes.
M_CURRENT_SUB_1 Error subcode 1.
M_CURRENT_SUB_2 Error subcode 2.
M_CURRENT_SUB_3 Error subcode 3.
M_CURRENT_FCT Function code that caused an error.
M_MESSAGE+M_CURRENT Error message.
M_MESSAGE+M_CURRENT_SUB_1 Error submessage 1.
M_MESSAGE+M_CURRENT_SUB_2 Error submessage 2.
M_MESSAGE+M_CURRENT_SUB_3 Error submessage 3.
M_MESSAGE+M_CURRENT_FCT Name of the function that caused an

error.

52 MappGetHookInfo

If the hook-handler function was called with an M_ERROR_GLOBAL
HookType, supported values for InfoType are:

If the hook-handler function was called with an M_TRACE_START or
M_TRACE_END HookType, supported values for InfoType are:

InfoType Description
M_GLOBAL Error code.
M_GLOBAL_SUB_NB Number of error subcodes.
M_GLOBAL_SUB_1 Error subcode 1.
M_GLOBAL_SUB_2 Error subcode 2.
M_GLOBAL_SUB_3 Error subcode 3.
M_GLOBAL_FCT Function code that caused an error.
M_MESSAGE+M_GLOBAL Error message.
M_MESSAGE+M_GLOBAL_SUB_1 Error submessage 1.
M_MESSAGE+M_GLOBAL_SUB_2 Error submessage 2.
M_MESSAGE+M_GLOBAL_SUB_3 Error submessage 3.
M_MESSAGE+M_GLOBAL_FCT Function name that caused an error.

InfoType Description
M_CURRENT_FCT Code of the function that just started or

ended.
M_MESSAGE+M_CURRENT_FCT Name of the function that just started

or ended.
M_PARAM_NB Number of parameters associated to the

function call.
M_PARAM_TYPE+n. Data type of the nth parameter. This

can be: M_TYPE_LONG,
M_TYPE_SHORT, M_TYPE_CHAR,
M_TYPE_DOUBLE, M_TYPE_PTR,
M_TYPE_MIL_ID, or M_TYPE_STRING.
(The pointer to a string is invalid after
exiting the hook function. For future
use, copy and save it.)

M_PARAM_VALUE+n Value of the nth parameter.

MappGetHookInfo 53

If the hook handler was called with an M_MODIFIED_BUFFER HookType,
supported values for InfoType are:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written.

UserVarPtr should be a pointer to a long when getting error codes,
subcodes, number of subcodes, function codes and parameter types. It
should be a pointer to a string when getting error messages, submessages,
and function names. The string must be at least M_ERROR_MESSAGE_SIZE
characters in size. When getting parameter values, UserVarPtr should be
a pointer to the type specified by the returned value of an M_PARAM_TYPE+n
request in a previous call to this function.

Return value The returned value is M_NULL if successful; on error, no regular MIL errors
are logged.

See also MappHookFunction()

InfoType Description
M_MODIFIED_BUFFER
+M_BUFFER_ID

MIL identifier of the modified buffer.

M_MODIFIED_BUFFER
+M_REGION_OFFSET_X

X offset, of the modified region in the buffer,
as a long value.

M_MODIFIED_BUFFER
+M_REGION_OFFSET_Y

Y offset, of the modified region in the buffer,
as a long value.

M_MODIFIED_BUFFER
+M_REGION_SIZE_X

Width, of the modified region in the buffer, as
a long value.

M_MODIFIED_BUFFER
+M_REGION_SIZE_Y

Height, of the modified region in the buffer,
as a long value.

54 MappHookFunction

MappHookFunction

Synopsis Hook a function to an event.

Format void MappHookFunction(HookType, HookHandlerPtr,
 UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified application event. Once a hook-handler function is defined and
hooked to an event, it is automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MappHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.

The user can obtain information concerning the event, using
MappGetHookInfo(), and take appropriate action before returning
control to the application.

This function is typically used to trap errors that occur in an application
without checking every MIL command execution with MappGetError() or
to detect the start or end of certain MIL commands.

In multi-thread environments, an MappHookFunction() call hooks or
unhooks the function specified by HookHandlerPtr to all application
threads running MIL, unless specifically limited to the calling thread by
adding M_THREAD_CURRENT to the HookType parameter (for example,
to call the hook-handler function only for errors occurring in the current
thread, specify M_ERROR_CURRENT+M_THREAD_CURRENT as the
HookType parameter).

long HookType; Type of event to hook
MAPPHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void *UserDataPtr; User data pointer

MappHookFunction 55

The HookType parameter specifies the event type. This parameter can be
set to one of the following:

HookType Description
M_ERROR_CURRENT Call the hook-handler function each time an

error occurs.
M_ERROR_GLOBAL Call the hook-handler function when the first

error occurs in a series of MIL calls.
M_TRACE_START Call the hook-handler function at the start of

each MIL function.
M_TRACE_END Call the hook-handler function at the end of

each MIL function.
M_MODIFIED_BUFFER
+(BufId)

Call the hook-handler function each time the
specified buffer is modified at the end of a MIL
function.

M_ERROR_FATAL Call the hook-handler function before a
fatal-error exit.

M_UNHOOK
+M_ERROR_CURRENT

Detach the hook-handler function being called
each time an error occurs.

M_UNHOOK
+M_ERROR_GLOBAL

Detach the hook-handler function being called
when the first error occurs in a series of MIL
calls.

M_UNHOOK
+M_TRACE_START

Detach the hook-handler function being called
at the start of each MIL function.

M_UNHOOK
+M_TRACE_END

Detach the hook-handler function being called
at the end of each MIL function.

M_UNHOOK
+M_MODIFIED_BUFFER
+(BufId)

Detach the hook-handler function being called
each time the specified buffer is modified at the
end of a MIL function.

M_UNHOOK
+M_ERROR_FATAL

Detach the hook-handler function being called
before a fatal-error exit.

56 MappHookFunction

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MAPPHOOKFCTPTR, MFTYPE and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype of this function has been kept for backwards
compatibility. However, because of the current chaining method, the
function always returns null.

See also MappGetHookInfo(), MappControl(), MappGetError()

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Event identifier to pass to
MappGetHookInfo() when inquiring
about the hooked event

void MPTYPE *UserDataPtr; user data pointer

MappInquire 57

MappInquire

Synopsis Inquire about the application parameter setting.

Format long MappInquire(InquireType, UserVarPtr)

Description This function inquires about the specified application control, processing
mode, or memory setting.

The InquireType parameter specifies the type of information to inquire
about. This parameter can be set to one of the following values. See
MappControl() for more information about these values. In multi-thread
environments, you can inquire the status of a control from any thread;
however, to inquire the status of a thread-specific parameter, add
M_THREAD_CURRENT to the InquireType parameter
(M_ERROR+M_THREAD_CURRENT).

long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_CURRENT_APPLICATION Identifier of the current MIL application, if

any. Returns 0, without generating an error,
if no application is allocated.

M_ERROR Error printing mode (M_PRINT_ENABLE or
M_PRINT_DISABLE).

M_TRACE Trace printing mode (M_PRINT_ENABLE or
M_PRINT_DISABLE).

M_PARAMETER Parameter checking mode
(M_CHECK_ENABLE or
M_CHECK_DISABLE).

M_PROCESSING Processing compensation mode
(M_COMPENSATION_ENABLE or
M_COMPENSATION_DISABLE).

M_MEMORY Memory compensation mode
(M_COMPENSATION_ENABLE or
M_COMPENSATION_DISABLE).

M_VERSION Version of MIL library.

58 MappInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MappInquire()
function also returns the requested information, you can set this parameter
to M_NULL. The variable should be a pointer to a long, unless you are using
M_VERSION, in which case it should be a pointer to a double.

Return value The returned value is the requested system information cast to long.

See also MappControl()

M_OBJECT_TYPE+(MILId) Type of the specified MIL object.
(M_APPLICATION, M_SYSTEM, M_LUT,
M_DISPLAY, M_DIGITIZER, M_IMAGE,
M_KERNEL, M_STRUCT_ELEMENT,
M_HIST_LIST, M_EXTREME_LIST,
M_PROJ_LIST, M_EVENT_LIST,
M_COUNT_LIST, M_BLOB_OBJECT,
M_PAT_OBJECT, M_GRAPHIC_CONTEXT,
M_OCR_OBJECT, M_USER_OBJECT_1, or
M_USER_OBJECT_2)

InquireType Description

MappModify 59

MappModify

 Synopsis Modify specified MIL object(s).

Format void MappModify(FirstMILId, SecondMILId,
 ModificationType, ModificationFlag)

Description This function modifies the specified MIL object(s) according to the specified
operation.

The FirstMILId parameter specifies the identifier of the first MIL object
to be modified.

The SecondMILId parameter specifies the identifier of the second MIL
object (if applicable) to be modified.

The ModificationType parameter specifies the desired operation. This
parameter should be set to the following value:

The ModificationFlag parameter should be set to M_NULL.

MIL_ID FirstMILId; First MIL object identifier
MIL_ID SecondMILId; Second MIL object identifier
long ModificationType; Type of modification
long ModificationFlag; Modification flag

M_SWAP_ID Exchange the identifiers of the first and second
specified MIL objects

60 MappTimer

MappTimer

Synopsis Control the MIL timer.

Format void MappTimer(ControlValue, TimePtr)

Description This function controls the MIL timer. This is useful for benchmarking
operations in a MIL application. The MIL timer resolution varies according
to the hardware and operating system used.

The ControlValue parameter specifies the control to exert on the MIL
timer. It can be set to one of the following:

The TimerPtr parameter specifies the address of the variable in which to
store the timer information produced by the M_TIMER_READ or
M_TIMER_RESOLUTION controls. For the M_TIMER_WAIT control,
TimerPtr specifies the variable from which to read the timer information.
For M_TIMER_RESET, set TimerPtr to M_NULL.

Example mpatrot.c

long ControlValue; Type of modification
double *TimePtr; Storage location for time

ControlValue Description
M_TIMER_RESET Resets a MIL timer to zero.
M_TIMER_READ Reads the time (in seconds) of the MIL timer,

since the last reset.
M_TIMER_RESOLUTION Reads the MIL timer resolution (in seconds).
M_TIMER_WAIT Wait for the specified period of time (in

seconds) before returning.

MblobAllocFeatureList 61

 MblobAllocFeatureList

 Synopsis Allocate a blob analysis feature list.

Format MIL_ID MblobAllocFeatureList(SystemId, FeatureListIdPtr)

Description This function allocates a feature list. The feature list holds
the feature(s) to be calculated by MblobCalculate(). You must specify
which feature(s) to calculate, using MblobSelectFeature(),
MblobSelectFeret(), and MblobSelectMoment(). Immediately after
allocation, no features are selected in the feature list. When the feature list
is no longer required, release it, using MblobFree().

The SystemId parameter specifies the system on which the feature list will
be allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The FeatureListIdPtr parameter specifies the address of the variable in
which the feature list identifier will be written. Since the
MblobAllocFeatureList() function also returns the feature list identifier,
you can set this parameter to M_NULL.

Return value The returned value is the feature list identifier that you will use to select
features to be calculated.

Example mblob.c

See also MblobSelectFeature(), MblobSelectMoment(),MblobSelectFeret(),
MblobCalculate(), MblobFree()

MIL_ID SystemId; System identifier
MIL_ID *FeatureListIdPtr; Storage location for feature list identifier

62 MblobAllocResult

MblobAllocResult

 Synopsis Allocate a blob analysis result buffer.

Format MIL_ID MblobAllocResult(SystemId, BlobResIdPtr)

Description This function allocates a result buffer used to store blob analysis results.

Each blob creates a separate result entry in the blob analysis result buffer.
You can retrieve blob analysis results from a result buffer, using
MblobGetResult() or MblobGetResultSingle(). Use the latter to obtain
results for a single blob. For more specific results, you can call
MblobGetLabel() and MblobGetRuns(). When the result buffer is no
longer required, release it, using MblobFree().

The SystemId parameter specifies the system on which the feature list will
be allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The BlobResIdPtr parameter specifies the address of the variable in which
the blob analysis result buffer identifier is to be written. Since the
MblobAllocResult() function also returns the blob analysis result buffer
identifier, you can set this parameter to M_NULL.

The default processing modes for the result buffer are as follows:

Use MblobControl() to change these values if necessary.

MIL_ID SystemId; System identifier
MIL_ID *BlobResIdPtr; Storage location for blob analysis result

buffer identifier

Processing Mode Default Value
M_BLOB_IDENTIFY M_INDIVIDUAL

M_LATTICE M_8_CONNECTED

M_FOREGROUND_VALUE M_NONZERO

M_NUMBER_OF_FERETS 8

M_PIXEL_ASPECT_RATIO 1.0

M_IDENTIFIER_TYPE M_GRAYSCALE

MblobAllocResult 63

Return value The returned value is a blob analysis result buffer identifier that you will
use in calculations and results inquiry.

See also MblobFree(), MblobControl(), MblobCalculate(), MblobGetNumber(),
MblobGetResult(), MblobGetResultSingle(), MblobGetLabel(),
MblobGetRuns()

64 MblobCalculate

MblobCalculate

 Synopsis Perform blob analysis calculations.

Format void MblobCalculate(BlobIdentImageId, GrayImageId,
 FeatureListId, BlobResId)

Description This function calculates the features specified in the given feature list for
all currently included blobs in the blob identifier image and stores results
in the specified result buffer. Features are added to the feature list with
MblobSelectFeature(), MblobSelectFeret(), and
MblobSelectMoment(). Specific blobs can be selected using
MblobSelect().

Calculations on binary features (such as M_AREA) are performed using only
the BlobIdentImageId parameter. If a grayscale feature (such as
M_MAX_PIXEL) is to be calculated, an image buffer must be specified for the
GrayImageId parameter. In this case, the blob identifier image will be used
to identify the blobs and the pixel values in the grayscale image are used to
calculate the features.

If several calls are made to MblobCalculate() with the same image and
result buffer, features calculated in one call remain in the result buffer and
are not recalculated in subsequent calls. However, if you then use a result
buffer with different images or if you change its processing mode with
MblobControl(), any results already in the buffer become invalid and will
be discarded. Therefore, it is more efficient to use a result buffer exclusively
in one processing mode with one blob identifier image (or one
identifier/grayscale image pair if grayscale features are needed).

The BlobIdentImageId parameter specifies the blob identifier image that
will be used in calculations. The blob identifier image identifies each blob
as a group of touching pixels in the current foreground state (zero or
non-zero, depending on the value assigned to M_FOREGROUND_VALUE
processing mode in MblobControl()). The current M_LATTICE processing

MIL_ID BlobIdentImageId; Blob identifier image identifier
MIL_ID GrayImageId; Optional grayscale image identifier
MIL_ID FeatureListId; Feature list identifier
MIL_ID BlobResId; Blob analysis result buffer identifier

MblobCalculate 65

mode (also set with MblobControl()), determines when to consider pixels
as touching. The blob identifier image must be an unsigned, single band,
packed binary, 8-bit or 16-bit grayscale image buffer.

If the identifier image has previously been binarized so that it contains only
two extreme values (0 and 1 for 1-bit images,
0 and 0xff for 8-bit images, and 0 and 0xffff for 16-bit images), blob analysis
can be performed a little faster. However, you must first change the
M_IDENTIFIER_TYPE to M_BINARY, using MblobControl(), to let MIL
know that the identifier image has only two states.

Depending on the M_BLOB_IDENTIFICATION mode (set with
MblobControl()), MblobCalculate() either treats each blob individually
(M_INDIVIDUAL), groups all blobs together (M_WHOLE_IMAGE), or groups
blobs according to their actual pixel value in the blob identifier image
(M_LABELED).

The GrayImageId parameter specifies the grayscale
image (not a binary buffer) that will be used to calculate grayscale features.
If this parameter is set to M_NULL, grayscale features, such as
M_SUM_PIXEL, cannot be calculated. This parameter is ignored when
calculating only binary type features. The grayscale image must be a single
band, 8-bit or 16-bit unsigned grayscale image buffer.

The FeatureListId parameter specifies the identifier of
the feature list buffer, previously allocated with
MblobAllocFeatureList(), that specifies the feature(s) to calculate.

The BlobResId parameter specifies the identifier of a blob analysis result
buffer, previously allocated with MblobAllocResult(), in which to store
calculated results.

Note This function is optimized for packed binary buffers.

Example mblob.c

See also MblobControl(), MblobAllocFeatureList(), MblobAllocResult(),
MblobSelectFeature(), MblobSelectFeret(),MblobSelectMoment(),
MblobSelect(), MblobGetNumber(), MblobGetResult(),
MblobGetResultSingle(), MblobGetLabel(), MblobGetRuns()

66 MblobControl

MblobControl

 Synopsis Set a blob analysis processing control.

Format void MblobControl(BlobResId, ControlType, ControlValue)

Description This function changes the processing control associated with the specified
blob analysis result buffer. It is normally called immediately after allocating
a blob analysis result buffer, using MblobAllocResult(), but can be called
later (in which case, already calculated results are discarded). If not called,
default processing controls and values are used in calculations.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer.

The ControlType parameter specifies the processing control.

The ControlValue parameter specifies the value associated with the
processing control.

Possible processing controls and associated values are listed below (defaults
are shown in bold):

MIL_ID BlobResId; Blob analysis result buffer identifier
long ControlType; Processing control to set
double ControlValue; Value associated with processing control

ControlType ControlValue Description
M_BLOB_IDENTIFICATION M_INDIVIDUAL All blobs are measured individually.

M_WHOLE_IMAGE All blobs are grouped together.
M_LABELED Blobs with the same label value are

grouped together.
M_LATTICE M_8_CONNECTED Each pixel has 8 neighbors.

M_4_CONNECTED Each pixel has 4 neighbors.
M_PIXEL_ASPECT_RATIO value (default is 1.0) Pixel width/pixel height
M_NUMBER_OF_FERETS value between

M_MIN_FERETS
and
M_MAX_FERETS
(default is 8).

The first Feret angle used is always
0°, and the difference between
successive angles is
180° / number of Ferets.

M_FOREGROUND_VALUE M_NONZERO Blobs consist of non-zero pixels.
M_ZERO Blobs consist of zero pixels.

MblobControl 67

If the identifier image is already binarized (for example, pixel values for an
8-bit image are either 0 or 0xff), you can change the identifier type to
M_BINARY to calculate features faster.

Note, you can use MblobInquire() to perform inquiries on specific
processing controls associated with a blob analysis result buffer.

Example mblob.c

See also MblobInquire(), MblobCalculate(), MblobAllocResult()

M_IDENTIFIER_TYPE M_GRAYSCALE Non-zero pixels can have any value.
M_BINARY Non-zero pixels must have the

maximum value of the buffer (for
example, 0xff for an 8-bit image).

M_SAVE_RUNS M_ENABLE Calls to MblobCalculate() will save,
in the result buffer, run information
from the blob identifier image.

M_DISABLE Disabling saves time in performing
the first call to MblobCalculate()
and reduces the memory requirements
for the result buffer. However, you
cannot use MblobFill(),
MblobGetLabel(),
MblobGetRuns(),or MblobLabel().
In addition you cannot calculate the
chained pixels feature (M_CHAINS),
using MblobSelectFeature().

ControlType ControlValue Description

68 MblobFill

MblobFill

 Synopsis Draw blobs that meet a specified fill criterion.

Format void MblobFill(BlobResId, DestImageBufId, Criterion, Value)

Description This function draws, in an image, those blobs that meet a specified fill
criterion with the specified fill value. Note, only those that meet the criterion
are drawn; other blobs and background pixels are not drawn.

This function is often used to remove unwanted (excluded or deleted) blobs
from the identifier image (by drawing them with the background color), or
to highlight included blobs in a different color. Therefore, an appropriate
destination image is the blob identifier image (or a copy of it) associated
with the result buffer, or another image buffer that has been cleared.

MblobCalculate() must have been called prior to using this function.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer. This must be a single band, packed binary, 8, or 16-bit
unsigned buffer. Note, this buffer need not be the same size as the original
identifier image used to calculate the blobs.

The Criterion parameter specifies which blobs to draw with the specified
value. This parameter can be set to one of the following values:

The status of the blobs (included or excluded) is taken from the blob analysis
result buffer. By default, all blobs in the result buffer are included for future
operations. To change the status of a blob, useMblobSelect().

MIL_ID BlobResId; Blob analysis result buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long Criterion; Fill criterion
long Value; Fill value

M_INCLUDED_BLOBS Draws all currently included blobs with the
specified fill value.

M_EXCLUDED_BLOBS Draws all currently excluded blobs with the
specified fill value.

M_ALL_BLOBS Draws all blobs with the specified fill value.

MblobFill 69

To fill only the blob’s borders, add M_CONTOUR to the specified criterion.
M_CONTOUR uses the coordinates obatianed from chained pixels to draw
the borders; therefore, if you have already calculated M_CHAINS with
MblobCalculate(), M_CONTOUR will operate faster.

The Value parameter specifies the value with which to fill the blobs that
meet the specified criterion. If the destination buffer is binary, this value
must be 0 or 1.

Note This function is optimized for packed binary buffers.

 See also MblobCalculate(), MblobSelect()

70 MblobFree

MblobFree

 Synopsis Free the blob analysis result buffer or the feature list.

Format void MblobFree(BlobId)

Description This function deletes the specified blob analysis result buffer or feature list
and releases any memory associated with it.

The BlobId parameter specifies the identifier of the blob analysis result
buffer or feature list buffer to free. The buffer must have been successfully
allocated, using MblobAllocResult() or MblobAllocFeatureList(), prior
to calling this function.

See also MblobAllocResult(), MblobAllocFeatureList()

MIL_ID BlobId; Blob analysis result buffer identifier or feature list
buffer identifier

MblobGetLabel 71

MblobGetLabel

 Synopsis Get the label value of a blob at a specified position.

Format long MblobGetLabel(BlobResId, XPos, YPos, LabelVarPtr)

Description This function gets the label value of a specified blob. Label values are used,
for example, to obtain calculation results for single blobs
(MblobGetResultSingle()). Blob label values must have been generated
by calling MblobCalculate().

The BlobResId parameter specifies the identifier of the blob analysis result
buffer where the labels are stored. Note, this function cannot obtain the
label values of blobs that have been deleted from the result buffer with
MblobSelect().

The XPos and YPos parameters specify the coordinates of
the blob.

The LabelVarPtr parameter specifies the address of the variable in which
the label value is to be written. Since MblobGetLabel() also returns the
label value, you can set this parameter to M_NULL.

Return value The returned value is the label value of the specified blob. If there is no blob
at the specified location, the blob has been deleted, or if the blob’s Xpos and
Ypos lie outside the original identifier image, M_NULL is returned instead
of the label value.

See also MblobCalculate(), MblobGetResult(), MblobGetRuns()

MIL_ID BlobResId; Blob analysis result buffer identifier
long XPos; X coordinate of the blob
long YPos; Y coordinate of the blob
long *LabelVarPtr; Storage location for the label value

72 MblobGetNumber

MblobGetNumber

 Synopsis Get the number of currently included blobs.

Format long MblobGetNumber(BlobResId, CountVarPtr)

Description This function reads the number of currently included blobs from the
specified blob analysis result buffer. All blobs are included unless their
status is changed, using MblobSelect(). Included blobs will be included in
future operations and result retrievals.

This function must be used to determine the number of blob results that
will be returned by MblobGetResultSingle().

A call to MblobCalculate() must have been made prior to using this
function.

The BlobResId parameter specifies the identifier of the blob analysis
result buffer.

The CountVarPtr parameter specifies the address of the variable in which
the count is to be written. Since MblobGetNumber() also returns the
number of selected blobs, you can set this parameter to M_NULL.

Return value The returned value is the number of selected blobs in the specified result
buffer.

Example mblob.c

See also MblobCalculate(), MblobGetResult(), MblobSelect()

MIL_ID BlobResId; Blob analysis result buffer identifier
long *CountVarPtr; Storage location for the count

MblobGetResult 73

MblobGetResult

 Synopsis Read feature values of the included blobs.

Format void MblobGetResult(BlobResId, Feature, TargetArrayPtr)

Description This function obtains the results for a specified feature from the blob
analysis result buffer.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer from which to get results.

The Feature parameter specifies the feature for which
results will be retrieved. See MblobSelectFeature(),
MblobSelectFeret(), and MblobSelectMoment() for pre-defined values.
The specified feature must have already been calculated with
MblobCalculate().

Some features may have been calculated with two results (grayscale and
binary). Specifying the feature alone reads the grayscale result. Specifying
the feature + M_BINARY reads the binary result. Unless a feature actually
has two results, the result (whether grayscale or binary) is read simply by
specifying the feature alone.

Results are normally returned in the target array as type "double". If you
want results to be returned as a different type, combine the specified feature
with M_TYPE_CHAR, M_TYPE_SHORT, M_TYPE_LONG, or M_TYPE_FLOAT
(for example, M_AREA+M_TYPE_LONG).

The TargetArrayPtr parameter specifies the address of the array in which
to write results. Each blob creates a separate result entry. Only results for
blobs that are currently included are obtained. The size of the target array
must be large enough to hold the number of currently included blobs. This
number can be obtained, using MblobGetNumber().

MIL_ID BlobResId; Blob analysis buffer identifier
long Feature; Type of feature for which to get results
void *TargetArrayPtr; Array in which to return results

74 MblobGetResult

The target array must be of the correct data type ("double" by default, or
whatever type you specified). Results that represent units of measure are
expressed in pixels or degrees. If the pixel aspect ratio is not equal to 1,
results that represent a position or length are expressed in units of "pixel
height".

See also MblobAllocResult(), MblobGetNumber(), MblobCalculate(), MblobSelect(),
MblobSelectFeature(), MblobSelectFeret(), MblobSelectMoment()

MblobGetResultSingle 75

MblobGetResultSingle

 Synopsis Read the feature value of a single blob.

Format void MblobGetResultSingle(BlobResId, LabelVal, Feature,
 TargetVarPtr)

Description This function obtains the result for a specified feature, for a specific blob,
from the blob analysis result buffer. The blob for which to obtain the result
is determined by its label value.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer from which to get the result.

The LabelVal parameter specifies the label value of the blob for which to
get the result. The label value can be obtained, using MblobGetLabel() or
MblobGetResultSingle(). Note, you cannot obtain results for blobs that
have been deleted from the result buffer, using MblobSelect().

The Feature parameter specifies the feature for which results should be
retrieved. The specified feature must have already been calculated with
MblobCalculate(). See MblobSelectFeature(), MblobSelectFeret(),
and MblobSelectMoment() for pre-defined values.

Some features may have been calculated with two results (grayscale and
binary). Specifying the feature alone reads the grayscale result. Specifying
the feature + M_BINARY reads the binary result. Unless a feature actually
has two results, the result (whether grayscale or binary) is read simply by
specifying the feature alone.

Results are normally returned in the target array as type "double". If you
want results to be returned as a different type, combine the specified feature
with M_TYPE_CHAR, M_TYPE_SHORT, M_TYPE_LONG, or M_TYPE_FLOAT
(for example, M_AREA+M_TYPE_LONG).

The TargetVarPtr parameter specifies the address of the variable in which
to write the result retrieved from the blob analysis result buffer.

MIL_ID BlobResId; Blob analysis result buffer identifier
long LabelVal Label value of the blob
long Feature; Type of feature for which to get a result
void *TargetVarPtr; Variable in which to return result

76 MblobGetResultSingle

The target variable must be of the correct data type ("double" by default, or
whatever type you specified). Results that represent units of measure are
expressed in pixels or degrees. If the pixel aspect ratio is not equal to 1,
results that represent a position or length are expressed in units of "pixel
height".

See also MblobAllocResult(), MblobGetLabel(), MblobGetResult(),
MblobCalculate(), MblobSelect(), MblobSelectFeature(),
MblobSelectFeret(), MblobSelectMoment()

MblobGetRuns 77

MblobGetRuns

 Synopsis Get the blob run-length encoding information.

Format void MblobGetRuns(BlobResId, LabelVal, ArrayType, RunXPtr,
 RunYPtr, RunLengthPtr)

Description This function obtains the coordinate and length of each run (unbroken
horizontal sequence of foreground pixels) in a specified blob from the blob
analysis result buffer. Prior to using this function, M_NUMBER_OF_RUNS
must have been added to the feature list (MblobSelectFeature()) and a
call to MblobCalculate() must have been made.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer.

The LabelVal parameter specifies the label value of the blob for which to
get run information. The label value for a blob can be obtained, using
MblobGetLabel() or MblobGetResult(). You cannot obtain run-encoding
information for blobs that have been deleted from the result buffer.

The ArrayType parameter specifies the type of the arrays in which the
coordinate and length of the runs for a blob will be returned. The following
array types can be used; M_TYPE_CHAR, M_TYPE_SHORT, or
M_TYPE_LONG.

The RunXPtr parameter specifies the address of the array in which to write
the X-coordinate of the start (leftmost pixel) of each run in the specified blob.

The RunYPtr parameter specifies the address of the array in which to write
the Y-coordinate of the start of each run in the specified blob.

The RunLengthPtr parameter specifies the address of the array in which
to write the length of each run in the specified blob.

MIL_ID BlobResId; Blob analysis result buffer identifier
long LabelVal; Label value of the blob
long ArrayType; Type of the arrays in which results will be

returned.
void *RunXPtr; Array in which to return the X-coordinate of each

run
void *RunYPtr; Array in which to return the Y-coordinate of each

run
void *RunLengthPtr; Array in which to return the length of each run

78 MblobGetRuns

Note, if either the RunXPtr, RunYPtr, or RunLengthPtr parameter is
set to M_NULL, no data will be written in that particular array.

The coordinate and length buffers must be large enough to hold information
for all runs in the specified blob. The number of runs for a blob can be
obtained, using MblobGetResult() or MblobGetResultSingle(). The
number of runs as well as the run-length encoding results are given in raw
pixel values and are not affected by the pixel aspect ratio.

See also MblobSelectFeature(), MblobCalculate(), MblobGetLabel(),
MblobGetResult(), MblobGetResultSingle()

MblobInquire 79

MblobInquire

 Synopsis Inquire about a blob analysis processing mode.

Format void MblobInquire(BlobResId, InquireType, UserVarPtr)

Description This function performs an inquiry on the specified processing mode
associated with the blob analysis result buffer.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer.

The InquireType parameter specifies the processing mode about which to
inquire. Refer to MblobControl() for a list of processing modes about which
you can inquire. This parameter can also be set to M_OWNER_SYSTEM to
inquire the identifier of the system on which the result buffer is allocated,
or to M_MAX_LABEL to inquire about the maximum label value given to any
blob in the result buffer. Label values for blobs are generated when a call to
MblobCalculate() is made. The maximum label value is not necessarily
the same as the total number of blobs, because some label values may not
be used, depending on the blob’s shape. One of the uses for obtaining the
maximum label value is to determine if an 8 or 16-bit image buffer is needed
for MblobLabel().

The UserVarPtr parameter specifies the address of the variable in which
the inquiry result will be written. By default, the result is written as type
"double". If you want results to be written as type "long" or "double", combine
the specified processing mode with M_TYPE_LONG or M_TYPE_DOUBLE,
respectively (for example, M_BLOB_IDENTIFICATION+M_TYPE_LONG).

You can use MblobControl() to change a processing mode associated with
a result buffer.

See also MblobControl(), MblobCalculate(), MblobLabel()

MIL_ID BlobResId; Blob analysis result buffer identifier
long InquireType; Parameter about which to inquire
void *UserVarPtr; Storage location for inquiry result

80 MblobLabel

MblobLabel

 Synopsis Draw a labeled image.

Format void MblobLabel(BlobResId, DestImageBufId, Mode)

Description This function draws a labeled image in which each blob existing in the
specified result buffer is represented with its own unique label value.

The label values are taken from the blob analysis result buffer. A call to
MblobCalculate() must have been made to generate label values for an
image. Blobs that have been deleted from the result buffer are not drawn.

The BlobResId parameter specifies the identifier of the blob analysis result
buffer.

The DestImageBufId parameter specifies the identifier of the destination
(labeled) image buffer. This must be a single band, 8 or 16-bit unsigned
buffer.

Note, this buffer need not be the same size as the original identifier image
used to calculate the blobs, but must be 16 bits deep if the maximum label
value exceeds 255. To determine if a 16-bit buffer is necessary, perform an
M_MAX_LABEL inquiry, using MblobInquire(). The number of blobs alone
does not tell you the maximum label value (label values are not necessarily
contiguous).

The Mode parameter specifies whether or not to clear the destination image
buffer before drawing the labeled image into it. This parameter can be set
to one of the following:

See also MblobCalculate(), MblobFill()

MIL_ID BlobResId; Blob analysis result buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long Mode; Write mode

M_CLEAR Clear the destination image buffer before placing the
labeled image into it.

M_NO_CLEAR Do not clear the destination image buffer before placing
the labeled image into it (background pixels will be
unchanged).

MblobReconstruct 81

MblobReconstruct

 Synopsis Reconstruct blobs (or blob holes) in an image buffer.

Format void MblobReconstruct(SrcImageBufId, SeedImageBufId,
 DestImageBufId, Operation, ProcMode)

Description This function copies (or reconstructs) blobs or blob holes from the source to
the destination buffer, according to the specified operation and processing
mode. By default, all non-zero pixels in the source buffer are considered to
be part of a blob. Use the M_FOREGROUND_ZERO processing mode to
inverse this behaviour.

The SrcImageBufId parameter specifies the identifier of the source image
buffer.

The SeedImageBufId parameter specifies the identifier of the image
buffer to use as a seed image. A seed image is needed to perform an
M_RECONSTRUCT_FROM_SEED type of operation. For any other operation
type, set this parameter to M_NULL.

The DestImageBufId specifies the identifier of the destination (processed
blobs) image buffer.

The source, destination, and seed images must be single band, packed
binary, 8, or 16-bit unsigned buffers.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID SeedImageBufId; Seed image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long Operation; Type of operation to perform
long ProcMode; Processing mode

82 MblobReconstruct

The Operation parameter specifies the type of operation to perform. This
parameter can be set to one of the following values:

Operation Description
M_RECONSTRUCT_FROM_SEED All blobs in the source buffer that have at least one

corresponding foreground seed pixel in the seed buffer are copied
to the destination buffer, according to the selected processing
mode. Blobs that are not seeded are replaced according to the
selected processing mode.

Note that when the M_GRAYSCALE and M_FOREGROUND_ZERO
processing modes are selected, blobs in the source image that are
not seeded are filled with the average grayscale value of the
background.

M_ERASE_BORDER_BLOBS Blobs that touch the border are erased. Pixels of the erased blobs
are replaced according to the selected processing mode. All blobs
that do not touch the borders of the source image are copied to
the destination image buffer according to the selected processing
mode.

Note that when the M_GRAYSCALE and M_FOREGROUND_ZERO
processing modes are selected, the border blobs are filled with
the average grayscale pixel value of the background. This
operation is similar to a "border kill".

Binary Grayscale

Source image Seed image Source image Seed image

Source image Seed imageSource image Seed image

with M_FOREGROUND_ZERO

Binary Grayscale

with M_FOREGROUND_ZERO

MblobReconstruct 83

M_FILL_HOLES All blobs in the source buffer are copied to the destination buffer
according to the selected processing mode, and those blobs with
holes are filled according to the processing mode. A hole must
not touch the border of the image in order to be considered a
hole.

Note that when the M_GRAYSCALE processing mode is selected,
holes are filled with the average grayscale pixel value of the
corresponding blob.

M_EXTRACT_HOLES All holes within the blobs of the source buffer are copied to the
destination buffer with their pixel values set to their
corresponding blob’s pixel values, according to the selected
processing mode. A hole cannot touch any borders in order to be
considered a hole.

Note that, in the M_GRAYSCALE processing mode, the pixel
values of holes copied to the destination buffer are set to the the
blob’s average grayscale pixel value in the source buffer. Also,
when the M_GRAYSCALE and M_FOREGROUND_ZERO processing
modes are selected, the blobs are filled with the average
grayscale pixel value of the background.

Operation Description

with M_FOREGROUND_ZERO

Binary Grayscale

Binary Grayscale

with M_FOREGROUND_ZERO

84 MblobReconstruct

The ProcMode parameter specifies the processing mode to use. It can be
set to any combination of the following four sets of flags. It can also be set
to M_DEFAULT, in which case the default flag from each set is used. If no
flag from a set is specified, its default flag is used.

Note ■ Note, in general, the M_BINARY processing mode is faster.

■ This function is optimized for packed binary buffers.

See also MimErode()

M_BINARY (default) or M_GRAYSCALE For M_BINARY, non-zero pixel values copied to the
destination buffer will be set to the maximum value
of that buffer (for example, 0xff for an 8-bit buffer).
For M_GRAYSCALE, the pixel values copied to the
destination buffer will be set to the corresponding
pixel value in the source buffer.

M_8_CONNECTED (default) or
M_4_CONNECTED

For M_8_CONNECTED, the blobs are computed on
an eight connected lattice.
For M_4_CONNECTED, the blobs are computed on
a four connected lattice.

M_FOREGROUND_ZERO
(by default not selected)

The pixel values of blobs will consist of zero values
and the pixels of the background will consists of
non-zero values; that is, the inverse of the usual
blob pixel value definition.

M_SEED_PIXELS_ALL_IN_BLOBS
(by default not selected)

Use this flag to optimize the reconstruction process
only if all seed pixels have corresponding blob pixels
in the source image. This condition often exists
when the seed image is an eroded (see
MimErode()) version of the source image.

MblobSelect 85

MblobSelect

 Synopsis Select blobs for calculations and result retrieval.

Format void MblobSelect(BlobResId, Operation, Feature, Condition,
 CondLow, CondHigh)

Description This function selects blobs that meet a specified criterion. These blobs will
be included in or excluded from future operations (calculations or result
retrieval), or deleted entirely from the result buffer.

If this function is not called at least once, all blobs are included by default.
If there is more than one call to this function, the effect of the calls is
cumulative unless M_INCLUDE_ONLY or M_EXCLUDE_ONLY is specified as
the operation to perform.

Once a blob has been excluded, it can normally be re-included only by
specifying M_INCLUDE or M_INCLUDE_ONLY in a future call to this function
(with the correct criterion). However, if you change the processing mode of
a result buffer (with MblobControl()), or use the result buffer with
different images (in a call to MblobCalculate()), all results in the buffer
are discarded and all blobs are re-included.

The BlobResId parameter specifies the identifier of the blob analysis
result buffer to be used in the blob selection process.

The Operation parameter specifies the operation to perform on the
specified blobs as follows:

MIL_ID BlobResId; Blob analysis result buffer identifier
long Operation; Operation to perform on specified blobs
long Feature; Feature to be used for selection
long Condition; Conditional operator for selection
double CondLow; Low compare value for the condition
double CondHigh; High compare value for the condition

Operation Description
M_INCLUDE Include all blobs that meet the specified condition.
M_EXCLUDE Exclude all blobs that meet the specified condition.
M_INCLUDE_ONLY Include only those blobs that meet the specified

condition (and exclude all others).

86 MblobSelect

Note, M_INCLUDE affects only the status of currently excluded blobs and
M_EXCLUDE affects only currently included blobs. M_DELETE removes
blobs permanently from the result buffer and, consequently, prevents these
blobs from being re-included.

Including only (M_INCLUDE_ONLY) or excluding only (M_EXCLUDE_ONLY)
those blobs that meet the specified condition does not take into consideration
the present status of blobs (whether they are included or excluded), except
for blobs that have been deleted (M_DELETE).

The Feature parameter specifies the feature to use as part of the selection
criterion. See MblobSelectFeature(), MblobSelectFeret(), and
MblobSelectMoment() for a list of features. The specified result buffer
must already contain the results for the specified feature.

Some features may have been calculated with two results (grayscale and
binary). Specifying the feature alone uses the grayscale result. Specifying
the feature + M_BINARY uses the binary result. Unless a feature actually
has two results, the result (whether grayscale or binary) is used simply by
specifying the feature alone.

You can also use the Feature parameter to specify a group
of blobs (M_ALL_BLOBS, M_INCLUDED_BLOBS or M_EXCLUDED_BLOBS) to
include, exclude, or delete from future calculations and result retrieval. For
example, you can delete all currently excluded blobs from the list of blobs
to be operated on.

The Condition parameter specifies the condition for the feature selection.
This parameter can be set to one of two types of condition.

■ Conditions that use two limits (CondLow and CondHigh):
M_OUT_RANGE, M_IN_RANGE

■ Conditions that use one limit (CondLow):
M_EQUAL, M_NOT_EQUAL, M_GREATER, M_LESS,
M_GREATER_OR_EQUAL, M_LESS_OR_EQUAL

M_EXCLUDE_ONLY Exclude only those blobs that meet the specified
condition (and include all others).

M_DELETE Delete included blobs that meet the specified
condition.

Operation Description

MblobSelect 87

When M_OUT_RANGE is selected, blobs with values for the specified feature
less than CondLow, or greater than CondHigh, are included, excluded, or
deleted from future operations on the specified result buffer.

When M_IN_RANGE is selected, blobs with values for the specified feature
in the range CondLow to CondHigh, inclusive, are included, excluded, or
deleted from future operations on the specified result buffer.

Any of the other conditions use the CondLow parameter to include,
exclude, or delete blobs from future operations on the specified result buffer.

The CondLow and CondHigh parameters specify the upper and lower
limits of the selected condition. If the condition uses only one limit, set the
CondLow parameter to the required limit and set the CondHigh
parameter to M_NULL.

Example mblob.c

See also MblobSelectFeature(), MblobSelectMoment(), MblobSelectFeret(),
MblobCalculate(), MblobGetNumber(), MblobGetResultSingle()

88 MblobSelectFeature

MblobSelectFeature

 Synopsis Select feature(s) to be calculated.

 Format void MblobSelectFeature(FeatureListId, Feature)

Description This function selects the feature(s) to be calculated by MblobCalculate()
when using the specified feature list.

Calculations for binary features are performed using the blob identifier
image. Grayscale feature calculations are performed using both the blob
identifier image and grayscale image. Features that have both binary and
grayscale definitions are calculated using both the blob identifier image and
the grayscale image (see MblobCalculate()).

In general, when the blob identifier image is calibrated, features are
calculated in calibrated units; otherwise they are calculated in pixel units.
When calculated in pixel units, the pixel aspect ratio, specified with
MblobControl(), is taken into account horizontally. Results are returned
in units of "pixel height" since the pixel width is adjusted to be equal to the
pixel height. Note, all positional results are relative to the top-left pixel in
the target image or the origin of the coordinate system of the calibrated
image.

Also, note that you can change the number of Feret angles, for those features
requiring them in calculations, using MblobControl().

The FeatureListId parameter specifies the identifier of the feature list
buffer.

The Feature parameter specifies the feature to add to the feature list. To
add several features, you must call this function for each feature you want
to add to the list (certain commonly used groups of features can be selected
in a single call).

In the table that follows, features which are calculated only in pixel units
are marked with the letter p, and those which can be calculated in either
pixel or calibrated units are marked with the letters p/c.

MIL_ID FeatureListId; Feature list identifier
long Feature; Feature to be selected

MblobSelectFeature 89

Three features can be assigned as sorting keys. To specify a feature as a
sorting key, you add either M_SORT#_UP or M_SORT#_DOWN to the
selected feature, where the numbers 1, 2, or 3 replace the # to indicate the
sorting precedence.

Note that for features that have both grayscale and binary definitions, the
grayscale image is used as the sorting key by default. To override this
default, you must specify the M_BINARY flag for the feature selected as a
sorting key.

The following group of features do not use grayscale pixel values; they are
calculated using only the blob identifier image:

Feature Description Units
M_LABEL_VALUE This is the label value for each blob in an image.

This is a positive integer (>= 1) that is unique
for each blob. This feature is always calculated;
you do not need to select it.

p

M_AREA This is the number of foreground pixels in a blob
(holes are not counted).

p/c

M_NUMBER_OF_CHAINED_PIXELS This is the number of chained pixels for all blobs
or a specified blob.

p

M_CHAIN_INDEX These are the indices which differentiate each
chain’s pixels within a specified blob. The blob’s
bordering chain is identified as index 1. Chained
pixels that delimit holes in blobs are identified
by subsequent indexes for each chain.

p

M_CHAIN_Y, M_CHAIN_X These are the x and y coordinates of each
chained pixel in the specified blob, for all chains
contained within the blob.

p

M_PERIMETER This is the total length of edges in a blob
(including the edges of any holes), with an
allowance made for the staircase effect that is
produced when diagonal edges are digitized
(inside corners are counted as 1.414, rather than
2.0). A single pixel blob (area = 1) has a
perimeter of 4.0.

p/c

M_BOX_X_MIN, M_BOX_Y_MIN,
M_BOX_X_MAX, M_BOX_Y_MAX

These are the coordinates of the extreme left,
top, right, and bottom pixels, respectively, of a
blob.

p/c

M_FIRST_POINT_X, M_FIRST_POINT_Y Together, these define a unique point for each
object, that is always on the perimeter of the
object. The Y coordinate is that of the topmost
line of the object, and the X coordinate is that of
the leftmost pixel on that line.

p/c

90 MblobSelectFeature

M_FERET_X, M_FERET_Y These are the dimensions of the minimum
bounding box of a blob in the horizontal and
vertical directions (respectively); that is,
M_BOX_X_MAX - M_BOX_X_MIN + 1,
and similarly for the Y direction.

p/c

M_FERET_MIN_DIAMETER This is the smallest Feret diameter found after
checking a certain number of angles. More
angles will give a more accurate result, but will
take longer to calculate. Even with the
maximum number of angles
(M_MAX_FERETS), this feature will not be very
accurate for long thin blobs. However, you can
get an accurate measure of the breadth of long
thin blobs more quickly by using M_BREADTH.

p/c

M_FERET_MIN_ANGLE This is the angle at which the minimum Feret
diameter is found. The value is in degrees, with
positive values indicating a counter-clockwise
displacement from the positive X-axis.

p/c

M_FERET_MAX_DIAMETER This is the largest Feret diameter found after
checking a certain number of angles. More
angles will give a more accurate result, but will
take longer to calculate. However, the maximum
Feret diameter is not very sensitive to the
number of angles, and 8 usually gives an
accurate result.

p/c

M_FERET_MAX_ANGLE This is the angle at which the maximum Feret
diameter is found. The value is in degrees, with
positive values indicating a counter-clockwise
displacement from the positive X-axis.

p/c

M_FERET_MEAN_DIAMETER This is the average Feret diameter at all the
angles checked.

p/c

M_FERET_ELONGATION This is a measure of the shape of a blob. It is

equal to

It is accurate for reasonably compact objects, but
becomes less accurate for very elongated objects
(because M_FERET_MIN_DIAMETER becomes
less accurate). For very elongated objects, you
should probably use M_ELONGATION.

p

M_CONVEX_PERIMETER This is an approximation of the perimeter of the
convex hull of a blob. It is derived from several
Feret diameters; so, a larger number of Ferets
gives a more accurate result.

p/c

M_X_MIN_AT_Y_MIN,
M_X_MAX_AT_Y_MAX,
M_Y_MIN_AT_X_MAX ,
M_Y_MAX_AT_X_MIN

These values, together with the four box
coordinates, give four contact points on the
convex perimeter of the object.

p/c

Feature Description Units

M_FERET_MAX_DIAMETER
M_FERET_MIN_DIAMETER
--

MblobSelectFeature 91

M_COMPACTNESS This value is a minimum for a circle (1.0) and is
derived from the perimeter (p) and area (A). The
more convoluted the shape, the greater the
value. It is equal to

p

M_NUMBER_OF_HOLES This value is equal to the number of
holes in a blob. Holes that intersect the edge of
the image are not counted (they may not be
holes). This value is equal to
1 - M_EULER_NUMBER and is therefore a true
hole count only in M_INDIVIDUAL processing
mode.

p

M_NUMBER_OF_RUNS This value is equal to the total number of runs in
a blob. A run is defined as a horizontal string of
consecutive foreground pixels.

p

M_ROUGHNESS This is a measure of how rough a blob is and is
equal to
M_PERIMETER / M_CONVEX_PERIMETER.
A smooth convex object will have the minimum
roughness of 1.0

p

M_EULER_NUMBER This is:
the number of blobs - number of holes. This
value is more useful for M_WHOLE_IMAGE
than for M_INDIVIDUAL processing mode.

p

M_LENGTH This is a measure of the true length of an object,
although it can only be applied to certain object
types because it is derived from the perimeter
(P) and area (A) assuming that
P = 2(length + breadth) and
A = length x breadth. It complements
M_FERET_MAX_DIAMETER because it is
accurate for different blob types (for example,
long thin ones). Note, it is calculated much
faster than the maximum Feret diameter.

p/c

M_BREADTH This is a measure of the true breadth of an
object, with the same advantages and
disadvantages as M_LENGTH.

p/c

M_ELONGATION This value is equal to
M_LENGTH / M_BREADTH
It is similar to M_FERET_ELONGATION,
except that it should be used for long thin
objects.

p

Feature Description Units

p
2

4πA()

92 MblobSelectFeature

M_INTERCEPT_0 This is the number of times a transition from
background to foreground (not vice versa) occurs
in the horizontal direction for the entire blob. In
other words, it is equal to the number of times
the neighborhood configuration [B, F] occurs in a
blob, where B is a background pixel and F is a
foreground pixel.

p

M_INTERCEPT_45 This is the number of times that the

neighborhood configuration occurs in a

blob, where F is a foreground pixel, B is a
background pixel and a dot can be any pixel
value.

p

M_INTERCEPT_90 This is the number of times that the

neighborhood configuration occurs in a blob.

p

M_INTERCEPT_135 This is the number of times that the

neighborhood configuration occurs in a

blob.

p

The following features require grayscale pixel values, and can only be calculated if you provide a
grayscale image:
M_SUM_PIXEL This is the sum of all pixel values in a blob. p
M_MIN_PIXEL This is the minimum pixel value found in a blob. p
M_MAX_PIXEL This is the maximum pixel value found in a blob. p
M_MEAN_PIXEL This is the mean pixel value in a blob. It is equal

to
M_SUM_PIXEL / M_AREA.

p

M_SIGMA_PIXEL This is the standard deviation of pixel values in

a blob. It is equal to

where N = number of pixels and p = pixel value.

p

M_SUM_PIXEL_SQUARED This is the sum of the squares of each pixel value
in a blob.

p

Feature Description Units

. F

B .

F

B

F .

. B

Σpi
2 Σpi()2

N⁄–

N
--

MblobSelectFeature 93

The following features have two different definitions: a binary definition, where all pixels are
considered equal, and a grayscale, where pixels are weighted by their value in the gray image (the
grayscale version is much slower to calculate).

If you don’t provide a grayscale image, only the binary version can be calculated. If you do provide a
grayscale image, both versions are calculated. However, if you want a feature to be calculated in
one version only, you can combine the selected feature with M_BINARY or M_GRAYSCALE (for
example, M_CENTER_OF_GRAVITY_X + M_BINARY).
M_CENTER_OF_GRAVITY_X This is the X position of the center of gravity of a

blob. The grayscale version is
M_MOMENT_X1_Y0 / M_SUM_PIXEL.
The binary version uses M_AREA instead
of M_SUM_PIXEL.

p/c

M_CENTER_OF_GRAVITY_Y This is the Y position of the center of gravity of a
blob. The grayscale version is
M_MOMENT_X0_Y1 / M_SUM_PIXEL.
The binary version uses M_AREA instead
of M_SUM_PIXEL.

p/c

M_MOMENT_X0_Y1, M_MOMENT_X1_Y0,
M_MOMENT_X1_Y1, M_MOMENT_X0_Y2,
M_MOMENT_X2_Y0,
M_MOMENT_CENTRAL_X0_Y2,
M_MOMENT_CENTRAL_X2_Y0,
M_MOMENT_CENTRAL_X1_Y1

Moments have the syntax M_MOMENT_Xn_Ym
and are defined as

where pi = value of a pixel (always 1 for binary
moments), xi = its X coordinate and
yi = its Y coordinate. For central moments,
coordinates are relative to each blob’s center of
gravity. Ordinary moments use coordinates
relative to the image origin (top-left corner).
Calculate higher moments by calling
MblobSelectMoment().

p

M_AXIS_PRINCIPAL_ANGLE This is the angle at which a blob has the least
moment of inertia (the axis of symmetry). For
elongated blobs, it is aligned with the longest
axis. The result is always between -90° and
+90°, measured in a counter-clockwise direction
from the positive X-axis. It is calculated as:

p/c

When the blob identifier image is calibrated this
feature is calculated in calibrated units;
otherwise they are calculated in pixel units

Feature Description Units

xi
n

yi
m

pi

i

∞

∑

0.5*
(2 * M_MOMENT_CENTRAL_X1_Y1)

M_MOMENT_CENTRAL_X2_Y0-M_MOMENT_CENTRAL_X0_Y2
--atan–

94 MblobSelectFeature

Example mblob.c

See also MblobSelectMoment(), MblobSelectFeret(), MblobCalculate(),
MblobControl()

M_AXIS_SECONDARY_ANGLE This is the angle perpendicular to
M_AXIS_PRINCIPAL_ANGLE. It is always
between -90° and +90°.

p/c

The following predefined values allow you to select groups of features in a single call.
M_BOX Adds all 4 box features plus X and Y Ferets. p
M_CONTACT_POINTS Adds first point and other contact features

(M_X_MIN_AT_Y_MIN,
M_X_MAX_AT_Y_MAX, M_Y_MIN_AT_X_MAX
and M_Y_MAX_AT_X_MIN).

p

M_CENTER_OF_GRAVITY Adds both X and Y coordinates of the center of
gravity.

p

M_ALL_FEATURES Adds all features (except general Feret and
general moment).

p

M_NO_FEATURES Removes all features (except label value). p
M_CHAINS Adds all 4 chain features. Note that the chain

code is computed depending on the lattice and
foreground values set with MblobControl().

You can add the following sorting defines to a feature to specify it as a sorting key for the result
retrieval
M_SORT1_UP When added to a feature, this define specifies

the feature as the first sorting key (in ascending
order).

M_SORT1_DOWN When added to a feature, this define specifies
the feature as the first sorting key (in
descending).

M_SORT2_UP When added to a feature, this define specifies
the feature as the second sorting key (in
ascending order).

M_SORT2_DOWN When added to a feature, this define specifies
the feature as the second sorting key (in
descending).

M_SORT3_UP When added to a feature, this define specifies
the feature as the third sorting key (in
ascending order).

M_SORT3_DOWN When added to a feature, this define specifies
the feature as the third sorting key (in
descending).

M_NO_SORT When added to a feature, this define removes
the specified sorting key.

Note that only one feature can be selected as the first, second, or third sorting key.

Feature Description Units

MblobSelectFeret 95

MblobSelectFeret

 Synopsis Add Feret angle to the feature list.

Format void MblobSelectFeret(FeatureListId, Angle)

Description This function adds M_GENERAL_FERET at the specified angle to the feature
list. The Feret diameter is then calculated at this angle, using
MblobCalculate(). Results for this calculation can be obtained with
MblobGetResult() or MblobGetResultSingle(), specifying
M_GENERAL_FERET as the feature.

The FeatureListId parameter specifies the identifier of the feature list
buffer.

The Angle parameter specifies the angle, in degrees, to be used for
calculating the general Feret. It overrides any previous angle specified for
the general Feret in this feature list. Note, the Feret diameters at 0° and
90° are calculated more efficiently with MblobSelectFeature() (the
features are called M_FERET_X and M_FERET_Y respectively).

To select the general Feret as a sorting key for the result retrieval, add
M_SORT#UP or M_SORT#DOWN to the Angle parameter. The numbers
1, 2, or 3 can be assigned to the number sign to indicate the sorting
precedence of the feature.

See also MblobSelectFeature(), MblobCalculate(), MblobGetResult(),
MblobGetResultSingle()

MIL_ID FeatureListId; Feature list identifier
double Angle; Angle at which to calculate Feret

96 MblobSelectMoment

MblobSelectMoment

 Synopsis Add specified moment to the feature list.

Format void MblobSelectMoment(FeatureListId, MomType, XMomOrder,
 YMomOrder)

Description Moment calculations other than those supported by
MblobSelectFeature() must be specified with this function. This function
adds the general moment with the specified parameters to the feature list.
The general moment will be calculated by MblobCalculate(). Results for
this calculation can be obtained by using MblobGetResult() or
MblobGetResultSingle(), specifying M_GENERAL_MOMENT as the
feature. Moments directly supported by MblobSelectFeature() (for
example, M_MOMENT_X0_Y2) are calculated faster by selecting them
through that function.

A call to this function overrides any previous values specified for
M_GENERAL_MOMENT in the feature list.

The FeatureListId parameter specifies the identifier of the feature list
buffer.

The MomType parameter specifies the moment type, either M_CENTRAL
or M_ORDINARY. If the calculation is done on a binary image, only a binary
version of the result is calculated. If you provide a grayscale image, both
grayscale and binary versions are calculated. However, if you want only one
specific version of the results, you can combine the selected moment with
M_BINARY or M_GRAYSCALE.

The XMomOrder and YMomOrder parameters specify, respectively, the
X and Y order of the moment. The X and Y order of the moment must be
greater than or equal to 0.

MIL_ID FeatureListId; Feature list identifier
long MomType; Moment type
long XMomOrder; X order of the moment
long YMomOrder; Y order of the moment

MblobSelectMoment 97

To select the general moment as a sorting key for the result retrieval, add
M_SORT#UP or M_SORT#DOWN to the MomType parameter. The
numbers 1, 2, or 3 can be assigned to the number sign to indicate the sorting
precedence of the feature.

See also MblobSelectFeature(), MblobCalculate(), MblobGetResultSingle(),
MblobGetResultSingle()

98 MbufAlloc1d

MbufAlloc1d

Synopsis Allocate a 1D data buffer.

Format MIL_ID MbufAlloc1d(SystemId, SizeX, Type, Attribute, BufIdPtr)

Description This function allocates a one-dimensional one-band data buffer on the
specified system.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError() or by verifying that the buffer identifier
returned is not M_NULL. When a buffer is no longer required, release it,
using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeX parameter specifies the buffer width in the units appropriate for
the selected type of buffer attributes. For example, if the buffer has a LUT
buffer attribute, specify the number of LUT entries to allocate.

The Type parameter specifies a combination of two values: the depth and
type of the data. Express the depth in bits and give the data range as one
of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

MIL_ID SystemId; System identifier
long SizeX; X dimension
long Type; Data depth and data type
long Attribute; Buffer attribute
MIL_ID *BufIdPtr; Storage location for buffer identifier

Data type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

MbufAlloc1d 99

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
For example, to allocate a LUT buffer, you should set the Attribute
parameter to M_LUT. Set this parameter to one of the following:

When allocating an image buffer (M_IMAGE), you must also specify the
intended purpose of this buffer by combining M_IMAGE with one or more of
the following:

The maximum (total) number of grab (M_GRAB) buffers that can be
allocated is restricted by the total amount of DMA memory that was
specified at the time of installation.

For sytems with on-board processors, the total number of M_GRAB buffers
and M_PROC buffers is limited by the amount of on-board memory.

Attribute Description
M_IMAGE Image data.
M_LUT Lookup table.
M_KERNEL Convolution kernel for convolution functions.
M_STRUCT_ELEMENT Structuring element for morphology functions.
M_ARRAY Array of data. Note that some functions take an

M_ARRAY buffer rather than a user-defined
array.

Usage Specifiers Description
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data. This type

of buffer is usually allocated in physically
contiguous, non-paged memory.

M_PROC An image buffer that can be processed.
M_COMPRESS An image buffer that can hold compressed data.

Note that a buffer with this attribute cannot have
the M_SIGNED data type.

100 MbufAlloc1d

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAlloc1d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

Compression specifiers: Description Supported data
formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or
16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band 8-bit data.

Board-dependent internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).

Board-dependent location specifiers:
M_ON_BOARD Force the buffer in the on-board memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_OVR Force the buffer in the overlay frame buffer.
M_NON_PAGED Force the buffer in non-pageable memory.

MbufAlloc1d 101

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

Status Current limitation:

■ For M_KERNEL and M_LUT data buffers, the data type must be 8, 16, or
32-bit integer or floating point.

■ For M_STRUCT_ELEMENT data buffers, the data type must be 32-bit
integer or floating point.

See also MbufAlloc2d(), MbufAllocColor(), MbufFree()

102 MbufAlloc2d

MbufAlloc2d

Synopsis Allocate a 2D data buffer.

Format MIL_ID MbufAlloc2d(SystemId, SizeX, SizeY, Type, Attribute,
BufIdPtr)

Description This function allocates a two-dimensional one-band data buffer on the
specified system.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError() or by verifying that the buffer identifier
returned is not M_NULL. When a buffer is no longer required, release it,
using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, specify the width and
height in pixels.

MIL_ID SystemId System identifier
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data depth and data type
long Attribute; Buffer attributes
MIL_ID *BufIdPtr; Storage location for buffer identifier

MbufAlloc2d 103

The Type parameter specifies a combination of two values: the depth and
type of the data. Express the depth in bits and give the data range as one
of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
This parameter should be set to one of the following:

When selecting an M_IMAGE attribute, it should be set to M_IMAGE +
specifier. For example, to allocate an image buffer that can be processed and
displayed, you should set the Attribute parameter to M_IMAGE + M_PROC
+ M_DISP. The specifier can be one or more of the following:

The maximum (total) number of grab (M_GRAB) buffers that can be
allocated is restricted by the total amount of DMA memory that was
specified at the time of installation.

Data type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

M_IMAGE Image data.
M_LUT Lookup table.
M_KERNEL Convolution kernel for convolution functions.
M_STRUCT_ELEMENT Structuring element for morphology functions.
M_ARRAY Array of data. Note that some functions take an

M_ARRAY buffer rather than a user-defined
array.

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data. This type of

buffer is usually allocated in physically contiguous,
non-paged memory.

M_PROC An image buffer that can be processed.
M_COMPRESS An image buffer that can hold compressed data.

Note that a buffer with this attribute cannot have
the M_SIGNED data type.

104 MbufAlloc2d

For boards with on-board processors, the total number of M_GRAB buffers
and M_PROC buffers is limited by the amount of on-board memory.

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

Compression specifiers: Description Supported data
formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or
16-bit data.

M_JPEG_LOSSLESS_INTERLACED The buffer will be
used to hold JPEG
lossy data.

1-band, 8- or
16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band 8-bit data.

M_JPEG_LOSSY_INTERLACED The buffer will be
used to hold JPEG
lossy data in
separate fields.

1-band 8-bit data.

Board-dependent internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).

MbufAlloc2d 105

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAlloc2d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

Status Current limitation:

■ For M_KERNEL and M_LUT data buffers, the data type must be 8, 16, or
32-bit integer or floating point.

■ For M_STRUCT_ELEMENT data buffers, the data type must be 32-bit
integer or floating point.

See also MbufAlloc1d(), MbufAllocColor(), MbufFree()

Board-dependent location specifiers:
M_ON_BOARD Force the buffer in the on-board memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_OVR Force the buffer in the overlay frame buffer.
M_NON_PAGED Force the buffer in non-pageable memory.

106 MbufAllocColor

MbufAllocColor

Synopsis Allocate a color data buffer.

Format MIL_ID MbufAllocColor(SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, BufIdPtr)

Description This function allocates a data buffer with multiple color bands on the
specified system. This type of buffer allows the representation of color
images (for example, RGB).

This function creates buffers that have a two-dimensional surface for each
specified color band. You can use MbufAlloc1d() and MbufAlloc2d() to
create single band one- or two-dimensional data buffers, respectively.

After allocating a buffer, we recommend that you check if the operation was
successful, using MappGetError(), or by verifying that the buffer
identifier returned is not M_NULL.

When a buffer is no longer required, release it, using MbufFree().

The SystemId parameter specifies the system on which the buffer will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (it can be the Host system or any already allocated
system).

The SizeBand parameter specifies the number of (xy) surfaces (also called
color bands) to allocate to the buffer. Specify one band for each color
component the buffer will need to store for the image. Monochrome images
require one band; RGB color images require three color bands. This
parameter can be set to any non-zero integer value. However, in general,
only 1- and 3-band buffers are allowed.

MIL_ID SystemId System identifier
long SizeBand; Number of color bands
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data type and data depth per band
long Attribute; Buffer attributes
MIL_ID *BufIdPtr; Storage location for buffer identifier

MbufAllocColor 107

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth per band. Express the depth in bits and give the data type as
one of the following:

For example, when allocating an 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

Note, you cannot allocate a 1-bit (binary) LUT buffer.

The Attribute parameter defines the buffer usage. The system uses this
information to determine where to allocate the buffer in physical memory.
This parameter should be set to M_LUT, or to M_IMAGE + specifier. For
example, to allocate an image buffer that can be processed and displayed,
you should set the Attribute parameter to M_IMAGE + M_PROC + M_DISP.
The specifier can be one or more of the following:

The maximum (total) number of grab (M_GRAB) buffers that can be
allocated is restricted by the total amount of DMA memory that was
specified at the time of installation.

For boards with on-board processors, the total number of M_GRAB buffers
and M_PROC buffers is limited by the amount of on-board memory.

Data type Description Depth/band (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which data can be grabbed. This type

of buffer is usually allocated in physically contiguous,
non-paged memory.

M_PROC An image buffer that can be processed.
M_COMPRESS An image buffer that can hold compressed data. Note

that a buffer with this attribute cannot have the
M_SIGNED data type.

108 MbufAllocColor

For an M_COMPRESS type of image buffer, one of the following must be
added to indicate the type of compressed data. The image buffer’s data
format dictates which compression type will be performed. If nothing is
added, M_JPEG_LOSSY is assumed.

MIL automatically selects the most appropriate internal storage format
according to the specified intended usage attribute. For general processing,
MIL will convert the data when the function requires a different format. If
the default internal storage format is not appropriate and you want to avoid
conversion during a time critical operation, you can add one of the following:

For the following specifiers, the buffer must be an 8-bit multi-band color
buffer. See MIL/MIL-Lite Board-Specific Notes to verify which formats
are supported on your board.

Compression specifiers: Description Supported data formats

M_JPEG_LOSSLESS The buffer will be
used to hold JPEG
lossless data.

1-band, 8- or 16-bit data,
and 3-band fomats:
M_RGB24, and M_RGB48.

M_JPEG_LOSSLESS_INTERLACED The buffer will be
used to hold JPEG
lossy data.

1-band, 8- or 16-bit data.

M_JPEG_LOSSY The buffer will be
used to hold JPEG
lossless data in
separate fields.

1-band 8-bit, and the 3-band
8-bit formats:
M_RGB24, M_YUV24,
M_YUV12, M_YUV9,
M_YUV16 + M_PLANAR, and
M_YUV16 + M_PACKED.

M_JPEG_LOSSY_INTERLACED The buffer will be
used to hold JPEG
lossy data in
separate fields.

1-band 8-bit, and the 3-band
8-bit format:
M_YUV16 + M_PACKED.

Internal storage format specifiers:
M_DDRAW Force the buffer to be a DDraw surface.
M_DIB Force the buffer to be a DIB buffer.
M_FLIP Force the buffer to be top down (DIB).
M_NO_FLIP Force the buffer to be top up.

MbufAllocColor 109

Note that it might be slower to use buffers that have been forced with one
of these attributes. Although there is no right or wrong storage format to
use, certain operations are optimized for some formats.

Internal storage format specifiers for color buffers:
M_PACKED Buffer bands to be packed (color buffer

only).
M_PLANAR Force the buffer bands to be planar (color

buffer only).
M_RGB3 + M_PLANAR 3-bit (RGB 1:1:1) planar pixels.
M_RGB15+M_PACKED 16-bit packed pixels (XRGB 1:5:5:5). Note

that when accessing an
M_RGB15+M_PACKED buffer as a 3-band
8-bit buffer, the least significant bits are set
to 0.

M_RGB16+M_PACKED 16-bit packed pixels (RGB 5:6:5). Note that
when accessing an M_RGB16+M_PACKED
buffer as a 3-band 8-bit buffer, the least
significant bits are set to 0.

M_BGR24+M_PACKED 24-bit (BGR) packed pixels.
M_RGB24+M_PLANAR 24-bit (RGB 8:8:8) planar pixels.
M_BGR32+M_PACKED 32-bit (BGR) packed pixels.
M_RGB48+M_PLANAR 48-bit (RGB 16:16:16) planar pixels.
M_RGB96+M_PLANAR 96-bit (RGB 32:32:32) planar pixels.
M_YUV9+M_PLANAR YUV9 planar standard.
M_YUV12+M_PLANAR YUV12 planar standard.
M_YUV16+M_PLANAR YUV16 planar (4:2:2) standard.
M_YUV16+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_UYVY+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_YUYV+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV24+M_PLANAR YUV24 planar standard.

Location specifiers:
M_ON_BOARD Force the buffer in the on-board video memory.
M_OFF_BOARD Force the buffer in the Host memory.
M_OVR Force the buffer in the overlay frame buffer.
M_PAGED Force the buffer in pageable memory.
M_NON_PAGED Force the buffer in non-pageable memory.

110 MbufAllocColor

Note that you can allocate one M_DISP+M_ON_BOARD buffer and one
M_OVR+M_ON_BOARD buffer.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufAllocColor() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufAlloc1d(), MbufAlloc2d(), MbufFree()

MbufChildColor 111

MbufChildColor

Synopsis Allocate a color-band child data buffer within a color parent buffer.

Format MIL_ID MbufChildColor(ParentBufId, Band, BufIdPtr)

Description This function allocates a child data buffer within the specified, previously
allocated, color parent data buffer. It selects one of the color bands of the
data buffer and allocates the band as a child of that buffer.

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A color child buffer is considered a data buffer in its own right. It can be any
color band of its parent buffer, and can be used in the same circumstances
as its parent buffer. A child buffer inherits its type and attributes from the
parent buffer.

To allocate a child in one specific band, or specifically in all bands, use
MbufChildColor2d() instead of MbufChildColor().

When this buffer is no longer required, release it, using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.
The parent buffer cannot have an M_COMPRESS attribute.

The Band parameter specifies the index of the color band of the parent data
buffer from which to allocate the child data buffer. This parameter can be
set to a value from 0 to (number of bands of the parent buffer - 1). For RGB
parent buffers, band 0 corresponds to the red band, band 1 corresponds to
the green band, and band 2 corresponds to the blue band. The specified color
band should be valid in the parent buffer.

For RGB parent buffers, Band can be also be set to: M_RED, M_GREEN,
M_BLUE. For HLS parent buffers, Band can be set to: M_HUE,
M_LUMINANCE, or M_SATURATION.

MIL_ID ParentBufId; Parent buffer identifier
long Band; Index of the color band
MIL_ID *BufIdPtr; Storage location for child buffer identifier

112 MbufChildColor

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChildColor()
function also returns the child buffer identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufAllocColor(), MbufChild2d(), MbufCopyColor(),MbufChildColor2d(),
MbufFree()

MbufChildColor2d 113

MbufChildColor2d

Synopsis Allocate a child data buffer within a color parent buffer.

Format MIL_ID MbufChildColor2d(ParentBufId, Band, OffX, OffY, SizeX,
SizeY, BufIdPtr)

Description This function allocates a child data buffer within the specified, previously
allocated, color parent data buffer. It selects a two-dimensional region in
one or all of the color bands of the parent data buffer and allocates the region
as a child of that buffer.

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A color child buffer is considered a data buffer in its own right. It can be
used in the same circumstances as its parent buffer. A child buffer inherits
its type and attributes from the parent buffer.

When this buffer is no longer required, release it, using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.
The parent buffer cannot have an M_COMPRESS attribute unless the Band
parameter is set to M_ALL_BAND.

The Band parameter specifies the index of the color band of the parent data
buffer from which to allocate the child data buffer. This parameter can be
set to a value from 0 to (number of bands of the parent buffer - 1). For RGB
parent buffers, band 0 corresponds to the red band, band 1 corresponds to
the green band, and band 2 corresponds to the blue band. The specified color
band should be valid in the parent buffer.

MIL_ID ParentBufId; Parent buffer identifier
long Band; Index of the color band
long OffX; X pixel offset relative to parent buffer
long OffY; Y pixel offset relative to parent buffer
long SizeX; X dimension
long SizeY; Y dimension
MIL_ID *BufIdPtr; Storage location for child buffer identifier

114 MbufChildColor2d

For RGB parent buffers, Band can be also be set to: M_RED, M_GREEN,
M_BLUE. For HLS parent buffers, Band can be set to: M_HUE,
M_LUMINANCE, or M_SATURATION.

To allocate a child buffer with the same number of bands as the parent
buffer, specify M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the child buffer, relative to the parent buffer’s top-left pixel. The
offsets must be within the width and height of the parent buffer,
respectively.

The SizeX and SizeY parameters specify the width and height of the child
buffer, respectively.

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChildColor2d()
function also returns the child buffer identifier, you can set this parameter
to M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufAllocColor(), MbufChild1d(), MbufChild2d() MbufChildColor(),
MbufCopyColor2d(), MbufFree()

MbufChild1d 115

MbufChild1d

Synopsis Allocate a 1D child data buffer.

Format MIL_ID MbufChild1d(ParentBufId, OffX, SizeX,BufIdPtr)

Description This function allocates a one-dimensional child data buffer within the
specified, previously allocated parent data buffer. If the parent buffer is
multi-band, this function allocates a multi-band child buffer; the child is
allocated within the specified one-dimensional region in each color band. To
allocate a child in one specific band, or specifically in all bands, use
MbufChildColor2d() instead of MbufChild1d().

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Therefore, any modification to the child buffer affects the
parent and vice versa. Note, a parent buffer can have several child buffers.

A child buffer is considered a data buffer in its own right, and can be used
in the same circumstances as its parent buffer. A child buffer inherits its
type and attributes from the parent buffer.

When this buffer is no longer required, it can be released using MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.

The OffX parameter specifies the offset of the child buffer relative to the
parent buffer’s top-left pixel. The offset must be within the width of the
parent buffer.

The SizeX parameter specifies the width of the child buffer.

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChild1d() function
also returns the child buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufChild2d(), MbufChildColor(), MbufFree()

MIL_ID ParentBufId; Parent buffer identifier
long OffX; X pixel offset relative to parent buffer
long SizeX; Child buffer width
MIL_ID *BufIdPtr; Storage location for child buffer identifier

116 MbufChild2d

MbufChild2d

Synopsis Allocate a child buffer within a specific region of a parent buffer.

Format MIL_ID MbufChild2d(ParentBufId, OffX, OffY, SizeX, SizeY,
 BufIdPtr)

Description This function allocates a two-dimensional child buffer within a region of the
specified, previously allocated data buffer. If the parent buffer is multi-band,
this function allocates a multi-band child buffer; the child is allocated within
the specified region in each color band. To allocate a child region in one
specific band, or specifically in all bands, use MbufChildColor2d() instead
of MbufChild2d().

The child buffer is not allocated its own memory space; it remains part of
the parent buffer. Any modification to the child buffer affects the parent and
vice versa. Note, a parent buffer can have several child buffers.

A child buffer is considered a data buffer in its own right, and can be used
in the same circumstances as its parent buffer. A child buffer inherits its
type and attributes from the parent buffer.

When this buffer is no longer required, it can be released, using
MbufFree().

The ParentBufId parameter specifies the identifier of the parent buffer.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the child buffer’s top-left pixel, relative to the parent buffer’s
top-left pixel. The given offsets must be within the width and height of the
parent buffer.

The SizeX and SizeY parameters specify the width and height of the child
buffer.

MIL_ID ParentBufId; Parent buffer identifier
long OffX; X pixel offset relative to the parent buffer
long OffY; Y pixel offset relative to the parent buffer
long SizeX; Child buffer width
long SizeY; Child buffer height
MIL_ID *BufIdPtr; Storage location for child buffer identifier

MbufChild2d 117

The BufIdPtr parameter specifies the address of the variable in which the
child buffer identifier is to be written. Since the MbufChild2d() function
also returns the child buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the child buffer identifier. If allocation fails, M_NULL
is returned.

See also MbufChild1d(), MbufChildColor(), MbufChildColor2d(), MbufFree()

118 MbufClear

MbufClear

Synopsis Clears a buffer to a specified color.

Format void MbufClear(DestImageBufId, Color)

Description This function clears the entire specified buffer to the specified color.

The DestImageBufId parameter specifies the identifier of the image buffer
to clear.

The Color parameter specifies the grayscale or RGB color value with which
to clear the buffer. Set this parameter as follows:

■ To clear a 1-band buffer, set this parameter to any value. This value will
be cast to the type of the destination buffer.

■ To clear a multi-band buffer to a grayscale value, set this parameter to
any value. This value will be cast to the type of the destination buffer’s
bands and replicated in each band.

■ To clear an 8-bit 3-band buffer to an RGB color, set this parameter using
the following macro:

M_RGB888(red component, green component, blue component)

■ To clear a 16-bit or 32-bit multi-band buffer to a color value, use
MgraControl().

See also MgraClear()

MIL_ID DestImageBufId; Destination image buffer identifier
double Color; Color with which to clear buffer

MbufControl 119

MbufControl

Synopsis Control specified buffer features.

Format void MbufControl(BufId, ControlType, ControlValue)

Description This function allows you to control certain buffer features.

The BufId parameter specifies the identifier of the buffer.

The ControlType and ControlValue parameters specify the buffer
feature to control and the value needed for the control. These two
parameters should be set to one of the following:

MIL_ID BufId; Buffer identifier
long ControlType; Type of buffer feature to control
double ControlValue; Value associated with control type

ControlType ControlValue Description
M_ASSOCIATED_LUT LUT buffer

identifier
Associate a LUT buffer with the specified
image buffer. The image buffer must be a
1-band 8-bit buffer.
If and when the image buffer is selected to
the display, the required changes occur to
produce the display effect of the LUT, unless
the display is also associated with a custom
LUT (MdispLut()). In single-screen mode,
MIL indirectly programs the physical output
LUTs with the image’s associated LUT
(through the use of a Windows palette). In
dual-screen mode, the associated LUT is
automatically copied to the physical output
LUTs.
MIL checks the target system to determine
whether or not a LUT is supported. If not, an
error is generated.
To deassociate a LUT buffer from an image
buffer, set ControlValue to M_DEFAULT.

120 MbufControl

For buffers with an M_IMAGE + M_COMPRESS attribute, ControlType and
ControlValue can also be set to one of the following.

Note that, if the buffer contains any data, setting one of these control types
automatically deletes the data. This is because, for MIL to decompress the
buffer’s data, it must know the control values that were used in the
compression. If you change one of these controls, MIL will be unable to
decompress the data and the data is therefore irrelevant.

M_MODIFIED M_DEFAULT Signal MIL that the buffer content was
modified without using MIL. This control
must be used to ensure that MIL updates its
internal information on the buffer. For
example, if a display buffer was modified
outside MIL, the display will not be updated
until you use this control. Note, if only a
certain region of the buffer was modified,
specify an appropriate child buffer as BufId.

M_WINDOW_DC_ALLOC M_DEFAULT Allocate a Windows display context (DC) for
drawing. Determine the DC handle (HDC)
using MbufInquire().
When using this control type, the buffer must
be internally stored in M_DIB or M_DDRAW
format, and cannot be a child buffer.
The display context must be allocated and
used only for a very short period of time; free
it as soon as possible.

M_WINDOW_DC_FREE M_DEFAULT Free a Windows display DC.

ControlType ControlValue Description

ControlType ControlValue Description
M_HUFFMAN_AC ID of buffer with

M_ARRAY attribute
Associate an AC Huffman
table to the buffer. Only used
for lossy compressions. If the
buffer is 3-band, the same
table is applied to all bands.

M_HUFFMAN_AC_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate an AC Huffman
table to the buffer. Only used
for lossy compressions of YUV
buffers. The table is applied
only to the Y band.

MbufControl 121

M_HUFFMAN_AC_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate an AC Huffman
table to the buffer. Only used
for lossy compressions of YUV
buffers. The table is applied to
the U and V bands.

M_HUFFMAN_DC ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table
to the buffer. If the buffer is
3-band, the same table is
applied to all bands.

M_HUFFMAN_DC_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table
to the buffer. Only available for
YUV buffers. The table is
applied only to the Y band.
Can only be used if the
compressed image buffer is of a
lossy type.

M_HUFFMAN_DC_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate a DC Huffman table
to the buffer. Only available for
YUV buffers. The table is
applied to the U and V bands.
Can only be used if the
compressed image buffer is of a
lossy type.

M_PREDICTOR 0, 1 (default), or 2 For lossless compressions, use
predictor #0 (no prediction),
predictor #1 (the
"pixel-to-the-left" predictor), or
predictor #2 (the ”pixel-above”
predictor). If the buffer is
3-band, the same predictor is
applied to all bands.

M_Q_FACTOR integer value
between 1 and 99;
default value is 50

Quantization factor for lossy
compressions. The higher the
factor, the more the
compression, but the lower the
image quality. If the buffer is
3-band, the same factor is
applied to all bands.

M_Q_FACTOR_LUMINANCE integer value
between 1 and 99;
default value is 50

Quantization factor for lossy
compressions of YUV images.
The higher the factor, the more
the compression, but the lower
the image quality. The factor is
applied only to the Y band.

ControlType ControlValue Description

122 MbufControl

Note The ControlType M_ASSOCIATED_LUT is not available with 32-bit or
floating-point buffers.

See also MbufLoad(), MbufRestore(), MbufImport(), MbufExport(), MbufSave()

M_Q_FACTOR_CHROMINANCE integer value
between 1 and 99;
default value is 50

Quantization factor for lossy
compressions of YUV images.
The higher the factor, the more
the compression, but the lower
the image quality. The factor is
applied to the U and V bands.

M_QUANTIZATION ID of buffer with
M_ARRAY attribute

Associate a quantization table
to the buffer. Only used for
lossy compressions. If the
buffer is 3-band, the same
table is applied to all bands.

M_QUANTIZATION_LUMINANCE ID of buffer with
M_ARRAY attribute

Associate a quantization table
to the buffer. Only used for
lossy compressions of YUV
buffers. The table is applied
only to the Y band.

M_QUANTIZATION_CHROMINANCE ID of buffer with
M_ARRAY attribute

Associate a quantization table
to the buffer. Only used for
lossy compressions of YUV
buffers. The table is applied to
the U and V bands.

M_RESTART_INTERVAL any integer value;
default value is 8

Place restart markers after
every n rows of data (for
lossless compressions) or after
every n 8x8 blocks of data (for
lossy compressions).

ControlType ControlValue Description

MbufControlNeighborhood 123

MbufControlNeighborhood

Synopsis Change the value of an operation flag associated with a custom kernel or
structuring element.

Format void MbufControlNeighborhood(BufId, OperationFlag,
 OperationValue)

Description This function changes the value of an operation flag associated with a
custom kernel or structuring element. Neighborhood operations not
specifically altered by this function use the default values. After calling this
function, any neighborhood operation using the specified kernel or
structuring element will apply the specified change. Call this function for
each operation flag you want to modify.

The BufId parameter specifies the identifier of the custom-kernel buffer or
structuring-element buffer. You must have already allocated this buffer,
using MbufAlloc1d() or MbufAlloc2d().

The OperationFlag parameter specifies the action to perform on a
neighborhood operation when using the specified buffer.

The OperationValue parameter specifies the value associated with the
operation flag.

The following table lists the possible values that can be specified for each
operation flag:

MIL_ID BufId; Kernel or structuring element buffer identifier
long OperationFlag; Operation flag
long OperationValue; Operation value

Operation flag Operation value Description
M_NORMALIZATION_FACTOR Any numerical

value
The result is normalized by the
specified value (factor).

M_DEFAULT The result is normalized by a
factor of 1.

M_ABSOLUTE_VALUE M_ENABLE The absolute value of the result
is taken.

M_DISABLE The absolute value of the result is
not taken.

M_DEFAULT Same as M_DISABLE.

124 MbufControlNeighborhood

M_SATURATION M_ENABLE Saturation is performed on the
result. That is, a result that
overflows or underflows will be
set to the maximum or minimum
value (respectively) that can be
represented in the destination
buffer.

M_DISABLE Saturation is not performed on
the result. Therefore, the results
that overflow are undefined.

M_DEFAULT Same as M_DISABLE.
M_OVERSCAN M_DEFAULT MIL-selected method to optimize

speed and logic in function of both
the operation required and the
current processing system.

M_MIRROR Operations will be performed on
the bordering pixels of the source
buffer with overscan
neighborhood pixel values which
mirror the source buffer pixel
values. That is, the overscan
neighborhood pixel values will be
a mirror copy of the source
buffer’s borders.

M_REPLACE Operations will be performed on
the bordering pixels of the source
buffer with the overscan
neighborhood pixel values set to
the overscan replace value.

 M_TRANSPARENT Operations will be performed on
the bordering pixels of the source
buffer using transparent overscan
neighborhood pixel values. That
is, the overscan neighborhood
pixel values will be those of the
parent buffer. If they are not
available, a mirror type overscan
is used instead

M_DISABLE Overscan is disabled.

Operation flag Operation value Description

MbufControlNeighborhood 125

For a structuring element buffer, you cannot specify a normalization factor
or take the absolute value of a result.

If the saturation, normalization, and absolute value options are specified
for a kernel buffer, the saturation is performed after the normalization
factor and the absolute values have been applied.

The M_OVERSCAN_REPLACE_VALUE flag is only applicable if associating
an M_OVERSCAN with an M_REPLACE value to a buffer.

Example mconvol.c

See also MimConvolve(), MimMorphic(), MimRank(), MbufAlloc1d(), MbufAlloc2d(),
MbufPut()

M_OVERSCAN_REPLACE_VALUE Any numerical
value

Value of the overscan
neighborhood pixels.

M_REPLACE_MAX The overscan neighborhood pixel
values will be set to the maximum
value of the source buffer.

M_REPLACE_MIN The overscan neighborhood pixel
values will be set to the minimum
value of the source buffer

M_DEFAULT Zero will be used as the value of
the overscan neighborhood pixels.

M_OFFSET_CENTER_X Any value from
0...(sizeX-1)

Position X of the center of the
kernel or structuring element
from the top-left corner.

M_DEFAULT The top-left pixel of the central
element in a neighborhood.

M_OFFSET_CENTER_Y Any value from
0...(sizeY-1)

Position Y of the center of the
kernel or structuring element
from the top-left corner.

M_DEFAULT The top-left pixel of the central
element in a neighborhood.

M_DEFAULT M_NULL Default values (as indicated above
for each operation flag) will be
used.

Operation flag Operation value Description

126 MbufCopy

MbufCopy

Synopsis Copy data from one buffer to another.

Format void MbufCopy(SrcBufId, DestBufId)

Description This function copies the specified source buffer data to the specified
destination buffer. If the source and destination buffers are of different data
types, MIL converts the data automatically.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied into the destination.
If the destination depth is greater than that of the source, the source data
is zero or sign-extended (depending on the type of the source) when copied
into the destination. If the destination is larger in size than the source,
exceeding areas of the buffer are unaffected.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.
When copying a binary buffer to a buffer of a different depth, each bit is
copied into the least-significant bit of a different destination pixel. The
remaining bits of the destination pixel are set to 0; to propagate the bit value
to all bits, use MimBinarize().

When copying from a floating-point buffer to an integer buffer, the values
are truncated.

If the source buffer has an M_COMPRESS specifier and the destination buffer
does not, the data will be automatically decompressed. If the destination
buffer has an M_COMPRESS specifier and the source buffer does not, the
data will be automatically compressed. If both buffers have M_COMPRESS
specifiers but different compression types, the data will be re-compressed
according to the settings in the destination buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

Note This function is optimized for packed binary buffers.

See also MbufCopyClip(), MbufCopyCond(), MbufCopyMask(), MbufCopyColor(),
MbufCopyColor2d().

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier

MbufCopyClip 127

MbufCopyClip

Synopsis Copy buffer, clipping data outside the destination buffer.

Format void MbufCopyClip(SrcBufId, DestBufId, DestOffX, DestOffY)

Description This function copies the source buffer data to the destination buffer starting
at the specified offset. Data outside of the destination buffer is not copied
(it is clipped).

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.
When copying a binary buffer to a buffer of a different depth, each bit is
copied into the least-significant bit of a different destination pixel. The
remaining bits of the destination pixel are set to 0; to propagate the bit value
to all bits, use MimBinarize().

When copying from a floating-point buffer to an integer buffer, the values
are truncated.

If the source buffer has an M_COMPRESS specifier and the destination buffer
does not, the data will be automatically decompressed. If the destination
buffer has an M_COMPRESS specifier and the source buffer does not, the
data will be automatically compressed. If both buffers have M_COMPRESS
specifiers but different compression types, the data will be re-compressed
according to the settings in the destination buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The DestOffX and DestOffY parameters specify the horizontal and vertical
pixel offsets of the destination buffer area at which to start copying data.
Specify offsets relative to the top-left corner of the destination buffer (0,0).

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long DestOffX; X pixel offset relative to destination buffer
long DestOffY; Y pixel offset relative to destination buffer

128 MbufCopyClip

These two parameters can be set to negative values and can be specified
anywhere outside the destination buffer. Data extending beyond the limits
of the destination buffer is not copied (it is clipped).

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyCond(), MbufCopyMask()

MbufCopyColor 129

MbufCopyColor

Synopsis Copy one or all bands of an image buffer.

Format void MbufCopyColor(SrcBufId, DestBufId, Band)

Description This function copies one or all color bands of the specified source buffer to
the specified destination buffer. It can also be used to insert or extract a
color component from a color image.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to (number of bands of the
buffer - 1), where band 0 is red, band 1 is green, and band 2 is blue, or to
one of the following:

The Band parameter gives the index of the color band to extract or insert.
If the source is a monochrome buffer and the destination is a multi-band
(color) buffer, the unique source buffer band is inserted into the specified
band of the destination buffer. If the source is a multi-band buffer and the
destination is a monochrome buffer, the specified source buffer band is
extracted from the source buffer and written to the destination buffer. If
both are multi-band buffers, the specified band(s) is copied from the source
to the destination.

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long Band; Index of the color band to copy

M_RED Copy to/from the red color band.
M_GREEN Copy to/from the green color band.
M_BLUE Copy to/from the blue color band.
M_ALL_BAND Copy all color bands.

130 MbufCopyColor

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination. Also, the buffers must have the same number of bands if
all bands are to be copied.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyCond(), MbufCopyMask()

MbufCopyColor2d 131

MbufCopyColor2d

Synopsis Copy a two-dimensional region of one or all bands of an image buffer to
another buffer.

Format void MbufCopyColor2d(SrcBufId, DestBufId, SrcBand, SrcOffX,
 SrcOffY, DestBand, DestOffX, DestOffY, SizeX, SizeY)

Description This function copies a two-dimensional region of one or all color bands of
the specified source buffer to the specified color band(s) of the destination
buffer. It can also be used to insert or extract a color component from a color
buffer.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The SrcBand and DestBand parameters specify the index of the source
and destination color bands. These parameters can be set to any index from
0 to (number of bands of the buffer - 1), where band 0 is red, band 1 is green,
and band 2 is blue or to one of the following:

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long SrcBand; Index of the source color band to copy
long SrcOffX; X pixel offset relative to the source parent buffer
long SrcOffY; Y pixel offset relative to the source parent buffer
long DestBand; Index of the destination color band to copy
long DestOffX; X pixel offset relative to the destination parent

buffer
long DestOffY; Y pixel offset relative to the destination parent

buffer
long SizeX; X dimension
long SizeY; Y dimension

M_RED Copy to/from the red color band.
M_GREEN Copy to/from the green color band.
M_BLUE Copy to/from the blue color band.
M_ALL_BAND Copy all color bands.

132 MbufCopyColor2d

If the source is a monochrome buffer and the destination is a multi-band
(color) buffer, the unique source buffer band is inserted into the specified
band of the destination buffer. If the source is a multi-band buffer and the
destination is a monochrome buffer, the specified source buffer band is
extracted from the source buffer and written to the destination buffer. If
both are multi-band buffers, the specified band(s) is copied from the source
to the destination.

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination. Also, the buffers must have the same number of bands if
all bands are to be copied.

Note, when copying from a non-binary buffer to a binary buffer, all non-zero
pixels in the source buffer are represented as ones (1) in the binary buffer.

The SrcOffX parameter specifies the horizontal pixel offset of the region to
read relative to the source buffer starting coordinate. The offset must be
within the width of the source buffer.

The SrcOffY parameter specifies the vertical pixel offset of the region to
read relative to the source buffer starting coordinate. The offset must be
within the height of the source buffer.

The DestOffX parameter specifies the horizontal pixel offset of the region
to write relative to the destination buffer starting coordinate. The offset
must be within the width of the destination buffer.

The DestOffY parameter specifies the vertical pixel offset of the region to
write relative to the destination buffer starting coordinate. The offset must
be within the height of the destination buffer.

The SizeX parameter specifies the width of the region to be copied, starting
from the specified offset (SrcOffX, DestOffX).

The SizeY parameter specifies the height of the region to be copied, starting
from the specified offset (SrcOffY, DestOffY).

MbufCopyColor2d 133

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyColor(), MbufCopyCond(),
MbufCopyMask()

134 MbufCopyCond

MbufCopyCond

Synopsis Copy conditionally the source buffer to the destination buffer.

Format void MbufCopyCond(SrcBufId, DestBufId, CondBufId,
 Condition, CondValue)

Description This function copies the source buffer data to the destination buffer,
modifying only those pixels of the destination buffer that have a
corresponding pixel in the conditional buffer that satisfies the specified
condition. Other pixels are unchanged. If the source and destination buffers
are of different data types, MIL converts the data automatically.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The CondBufId parameter specifies the identifier of the condition buffer.

Note that if a one-band condition buffer is used with a three-band
destination buffer, the one band of the condition buffer will be used for each
destination band.

The Condition parameter specifies the condition for which the condition
buffer is tested. This parameter can be set to one of the following:

The CondValue parameter specifies the pixel value for the specified
condition. Even though this value is of type ‘ long’, it is treated as if it had
the same type and depth as the condition buffer. If M_DEFAULT is used,
CondValue is ignored. If the condition buffer is binary, this value must be
0 or 1.

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
MIL_ID CondBufId; Condition buffer identifier
long Condition; Processing condition
double CondValue; Condition value

M_EQUAL Modify destination buffer pixels corresponding to
condition buffer pixels that are equal to CondValue.

M_NOT_EQUAL Modify destination buffer pixels corresponding to
condition buffer pixels that are not equal to
CondValue.

M_DEFAULT Modify destination buffer pixels corresponding to
condition buffer pixels that are non-zero.

MbufCopyCond 135

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Note This function is optimized for packed binary buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyMask()

136 MbufCopyMask

MbufCopyMask

Synopsis Copy buffer with mask.

Format void MbufCopyMask(SrcBufId, DestBufId, MaskValue)

Description This function copies the specified source buffer data to the specified
destination buffer, modifying only the bits of the destination that have a
non-zero corresponding bit in the mask.

The SrcBufId and DestBufId parameters specify the identifiers of the
source and destination data buffers.

The MaskValue parameter specifies the mask value. Even though this
value is of type ’long’, it is treated as if it had the same depth as the
destination buffer; the most-significant bits that are not required are
ignored. If the destination buffer is binary, the value must be 0 or 1.

If the source buffer depth is greater than that of the destination, the most
significant bits are truncated when the data is copied to the destination. If
the destination depth is greater than that of the source, the source data is
zero or sign-extended (depending on the type of the source) when copied to
the destination.

Status Not available on floating-point buffers.

See also MbufCopy(), MbufCopyClip(), MbufCopyCond()

MIL_ID SrcBufId; Source buffer identifier
MIL_ID DestBufId; Destination buffer identifier
long MaskValue; Mask value to apply to the destination buffer

MbufCreate2d 137

MbufCreate2d

Synopsis Create a two-dimensional data buffer.

Format MIL_ID MbufCreate2d(SystemId, SizeX, SizeY,
Type, Attribute, ControlFlag, Pitch,
DataPtr, BufIdPtr)

Description This function creates a two-dimensional data buffer that maps to a
user-specified data array and associates it with a specific MIL system. This
function should be used with caution because, when using physical
addresses, they provide direct manipulation of any of your PC’s
memory mapped devices; when using logical addresses, memory
protection errors could result. It is generally better to leave buffer
allocation, data loading, and memory control to MIL
(MbufAlloc2d(),MbufGet2d(), MbufPut2d()), since MIL might require
special memory attributes (such as non-paged memory) or alignment in
order to associate the buffer with a particular target system.

The appropriate memory must be allocated by the user before calling
MbufCreate2d() and freed when no longer required, after calling
MbufFree().

The SystemId parameter specifies the MIL system with which the buffer
will be associated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system with which to
associate the buffer (it can be the Host system or any already allocated
system).

MIL_ID SystemId System identifier
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data type and data depth
long Attribute; Buffer attributes
long ControlFlag; Creation control flag
long Pitch; Value of pitch if necessary
void *DataPtr Pointer to data
MIL_ID *BufIdPtr; Storage location for buffer identifier

138 MbufCreate2d

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth. Express the depth in bits and give the data range as one of the
following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter defines the buffer usage. This parameter should
be set to one of the following:

When selecting an M_IMAGE attribute, it should be set to M_IMAGE +
specifier. For example, to create an image buffer that can be processed and
displayed, you should set the Attribute parameter to M_IMAGE + M_PROC
+ M_DISP. The specifier can be one or more of the following:

Data Type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

M_IMAGE Image data.
M_LUT Lookup table.
M_KERNEL Convolution kernel for convolution functions.
M_STRUCT_ELEMENT Structuring element for morphology functions.
M_ARRAY Array of data. Note that some functions take an

M_ARRAY buffer rather than a user-defined
array.

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data from input

devices. To specify this attribute, the memory must
usually be physically contiguous, non-paged memory.

M_PROC An image buffer that can be processed.
M_COMPRESS An image buffer that can hold compressed data. See

MbufAlloc...() for a list of compression specifiers.
Note that a buffer with this attribute cannot have the
M_SIGNED data type.

MbufCreate2d 139

You must specify the appropriate internal storage format of the buffer; MIL
needs this information to manipulate the data.

The ControlFlag parameter specifies the physical nature of the buffer. It
can be set to one of the following:

The Pitch parameter specifies the pitch in pixels or bytes (as determined
by ControlFlag) or M_DEFAULT. The pitch is the length of the buffer’s
memory (not data) line.

The DataPtr parameter is a pointer to the data array to which to map the
created MIL buffer.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufCreate2d() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

This function is optimized for packed binary buffers.

Return value The returned value is the buffer identifier. If allocation fails, an identifier
of 0 is returned.

Board-dependent location specifiers:
M_PAGED Buffer is in pageable memory.
M_NON_PAGED Buffer is in non-pageable memory.

Board-dependent internal storage format specifiers:
M_FLIP The buffer is top down (DIB).
M_NO_FLIP The buffer is top up.

ControlFlag Description
M_DEFAULT Same as +M_PITCH. The pitch is the width

(size X) of the buffer.
M_HOST_ADDRESS
+M_PITCH

DataPtr is the Host address of the data buffer.
The pitch is in pixels.

M_HOST_ADDRESS
+M_PITCH_BYTE

DataPtr is the Host address. The pitch is in
bytes.

M_PHYSICAL_ADDRESS
+M_PITCH

DataPtr is the physical address of the data
buffer in memory. The pitch is in pixels.

M_PHYSICAL_ADDRESS
+M_PITCH_BYTE

DataPtr is the physical address of the data
buffer. The pitch is in bytes.

140 MbufCreate2d

Status Current limitation:

■ For M_KERNEL data buffers, the data type must be 8-bit signed or
unsigned.

■ For M_STRUCT_ELEMENT data buffers, the data type must be 32-bit
signed or unsigned. If signed, the range is -32768 to +32767. If unsigned,
the range is 0 to +65535.

See also MbufAlloc2d(), MbufGet2d(), MbufPut2d(), MbufFree()

MbufCreateColor 141

MbufCreateColor

Synopsis Create a color data buffer.

Format MIL_ID MbufCreateColor(SystemId, SizeBand, SizeX, SizeY,
Type, Attribute, ControlFlag,
Pitch,ArrayOfDataPtr, BufIdPtr)

Description This function creates a color data buffer that maps to a user-specified data
array and associates it with a specific MIL system. This function should
be used with caution because, when using physical addresses, they
provide direct manipulation of any of your PC’s memory mapped
devices; when using logical addresses, memory protection errors
could result. It is generally better to leave buffer allocation, data loading,
and memory control to MIL (MbufAllocColor(), MbufGetColor(),
MbufPutColor()), since MIL might require special memory attributes
(such as non-paged memory) or alignment in order to associate the buffer
with a particular target system. MbufInquire() can be used to get the
pointer to a MIL allocated buffer.

The appropriate memory must be allocated by the user before calling
MbufCreateColor() and freed when no longer required, after calling
MbufFree().

The SystemId parameter specifies the MIL system with which the buffer
will be associated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify

MIL_ID SystemId System identifier
long SizeBand; Number of color bands
long SizeX; X dimension
long SizeY; Y dimension
long Type; Data type and data depth per band
long Attribute; Buffer attributes
long ControlFlag; Creation control flag
long Pitch; Value of pitch, if necessary
void **ArrayOfDataPtr Array of data buffer pointers
MIL_ID *BufIdPtr; Storage location for buffer identifier

142 MbufCreateColor

M_DEFAULT, MIL will select the most appropriate system with which to
associate the buffer (it can be the Host system or any already allocated
system).

The SizeBand parameter specifies the number of (xy) surfaces (also called
color bands) that the buffer should have in order to represent the color
components of an object. When acquiring or processing monochrome images,
the buffer requires only one color band. For RGB color images, it requires
three color bands. The possible range for this parameter is 1 to n. However,
there are generally either 1 or 3 bands.

The SizeX and SizeY parameters specify the buffer width and height,
respectively, in the units appropriate for the selected buffer attribute. For
example, if the buffer has an image buffer attribute, width and height are
specified in pixels.

The Type parameter specifies a combination of two values: data type and
data depth per band. Express the depth in bits and give the data range as
one of the following:

For example, when allocating a 8-bit unsigned buffer, you would set the
Type parameter to (8 + M_UNSIGNED).

The Attribute parameter specifies the buffer usage. This parameter should
be set to M_LUT, or to M_IMAGE + specifier. For example, to create an image
buffer that can be processed and displayed, you should set the Attribute
parameter to M_IMAGE + M_PROC + M_DISP. The specifier can be one or
more of the following:

Data Type Description Depth (in bits)
M_SIGNED Signed data 8, 16, or 32
M_UNSIGNED Unsigned data (default) 1, 8, 16, or 32
M_FLOAT Floating point data 32

Usage specifiers:
M_DISP An image buffer that can be displayed.
M_GRAB An image buffer in which to grab data from input

devices. To specify this attribute, the memory must
usually be physically contiguous, non-paged memory.

M_PROC An image buffer that can be processed.
M_COMPRESS An image buffer that can hold compressed data. See

MbufAllocColor() for a list of compression specifiers.
Note that a buffer with this attribute cannot have the
M_SIGNED data type.

MbufCreateColor 143

You must specify the appropriate internal storage format of the buffer; MIL
needs this information to manipulate the data. For example, you do not want
MIL to interpret a packed data buffer as a planar.

Board-dependent location specifiers:
M_PAGED Buffer is in pageable memory.
M_NON_PAGED Buffer is in non-pageable memory.

Board-dependent internal storage format specifiers:
M_FLIP The buffer is top down (DIB).
M_NO_FLIP The buffer is top up.
M_PACKED The buffer bands are packed.
M_PLANAR The buffer bands are planar.

For the following specifiers, the buffer must be an 8-bit multi-band
buffer. See MIL/MIL-Lite Board-Specific Notes to verify which formats
are supported on your board.
Note that it might be slower to use buffers that have been forced with one
of these attributes. Although there is no right or wrong storage format to
use, certain operations are optimized for some formats.
M_RGB15+M_PACKED 16-bit packed pixels (XRGB 1:5:5:5). Note

that when accessing an
M_RGB15+M_PACKED buffer as a 3-band
8-bit buffer, the least significant bits are set
to 0.

M_RGB16+M_PACKED 16-bit packed pixels (RGB 5:6:5). Note that
when accessing an M_RGB16+M_PACKED
buffer as a 3-band 8-bit buffer, the least
significant bits are set to 0.

M_BGR24+M_PACKED 24-bit (BGR) packed pixels.
M_BGR32+M_PACKED 32-bit (BGR) packed pixels.
M_RGB24+M_PLANAR 24-bit (RGB) planar pixels
M_YUV9+M_PLANAR YUV9 planar standard.
M_YUV12+M_PLANAR YUV12 planar standard.
Board-dependent internal storage format specifiers:
M_YUV16+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_UYVY+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV16_YUYV+M_PACKED YUV16 packed (4:2:2) standard.
M_YUV24+M_PLANAR YUV24 planar standard.

144 MbufCreateColor

The ControlFlag parameter specifies the physical nature of the buffer. It
can be set to one of the following:

The Pitch parameter specifies the pitch in pixels or bytes (as determined
by ControlFlag) or M_DEFAULT. The pitch is the number of pixels or bytes
(as specified by the ControlFlag) between the beginnings of any two
adjacent lines of the buffer data. Note that when creating an
M_BGR24 + M_PACKED buffer, you should use M_PITCH_BYTE instead of
M_PITCH because the latter might not be able to take into account internal
padding.

The ArrayOfDataPtr parameter is the address of an array of pointers.
These pointers address the data buffers to which to map the created MIL
buffer. When pointing to a planar buffer, one pointer per band must be
provided. Pointers to a 3-band planar buffer must be ordered R-G-B or Y-U-V
in the array. When pointing to a single-band buffer or a packed buffer, a
pointer to the packed data must be provided.

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufCreateColor() function
also returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to compress and
decompress images. This is not a restriction under MIL.

This function is optimized for packed binary buffers.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufAllocColor(), MbufGetColor(), MbufPutColor(), MbufFree()

ControlFlag Description
M_DEFAULT Same as +M_PITCH. The pitch is the width

(size X) of the buffer.
M_HOST_ADDRESS
+M_PITCH

The data pointer is the Host address of the
data buffer. The pitch is in pixels.

M_HOST_ADDRESS
+M_PITCH_BYTE

The data pointer is the Host address.
The pitch is in bytes.

M_PHYSICAL_ADDRESS
+M_PITCH

The data pointer is the physical address of the
data buffer in memory. The pitch is in pixels.

M_PHYSICAL_ADDRESS
+M_PITCH_BYTE

The data pointer is the physical address of the
data buffer in memory. The pitch is in bytes.

MbufDiskInquire 145

MbufDiskInquire

Synopsis Inquire about the buffer data in a file.

Format long MbufDiskInquire(FileName, InquireType, UserVarPtr)

Description This function inquires about the buffer data in the specified file on disk.

The FileName parameter specifies the file name. Note, an error occurs if
the file does not have a known file format or the file format isn’t supported.

The supported file types include all the formats supported by the
MbufExport() and MbufExportSequence() functions. Since a "RAW"
data file does not have any information regarding size or type, you can only
use MbufDiskInquire() to determine the file format of this type of file.

The InquireType parameter specifies the parameter about which to
inquire. This parameter can be set to one of the following values:

char *FileName; File name
long InquireType; Type of information about which to inquire
void *UserVarPtr; Storage location for inquiry result

InquireType Description
M_SIZE_X Width of the data in the file.
M_SIZE_X+M_LUT Width of the LUT associated with the

image in the file. When there is no LUT
associated with the image, returns
M_INVALID.

M_SIZE_Y Height of the data in the file.
M_SIZE_BAND Number of color bands in the file.
M_SIZE_BAND+M_LUT Number of bands of the LUT associated

with the image in the file. When there
is no LUT associated with the image,
returns M_INVALID.

M_TYPE File data type and depth (size in bits +
M_SIGNED, M_UNSIGNED or
M_FLOAT).

M_SIZE_BIT File data depth in bits.
M_SIGN File data range (M_SIGNED or

M_UNSIGNED).
M_ATTRIBUTE File attribute.

146 MbufDiskInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MbufDiskInquire()
function also returns the requested information, you can set this parameter
to M_NULL.

M_FILE_FORMAT MIL identifier (MIL_ID) of the file
format. See MbufExport() and
MbufExportSequence() for all
supported file formats.

M_LUT_PRESENT Presence of LUT data in the file.
(M_YES or M_NO)

M_ASPECT_RATIO Aspect ratio of the image in the file.
(default is 1:1)

M_NUMBER_OF_IMAGES Number of images in an *.avi file.
M_FRAME_RATE Frame rate (number of images/second)

of an *.avi file.
M_COMPRESSION_TYPE Returns the compression type of the image

in the file. Returns M_NULL if the image is
not compressed (for example, in a BMP file
format). See MbufAllocColor() for all
possible compression formats.

For M_KERNEL and M_STRUCT_ELEMENT data buffers only (see
MbufControlNeighborhood() for possible values)
M_OVERSCAN Overscan type. (M_TRANSPARENT,

M_REPLACE, M_MIRROR or
M_DISABLE)

M_OVERSCAN_REPLACE_VALUE Overscan replace value.
M_OFFSET_CENTER_X Offset center X coordinate.
M_OFFSET_CENTER_Y Offset center Y coordinate.
For M_KERNEL data buffers only (see
MbufControlNeighborhood() for possible values)
M_ABSOLUTE_VALUE Absolute value flag.
M_SATURATION Saturation flag.
M_NORMALIZATION_FACTOR Normalization factor.

InquireType Description

MbufDiskInquire 147

The UserVarPtr parameter should be a pointer to a long. Certain
exceptions apply when InquireType is set to one of the following:

■ When M_FILE_FORMAT is specified, this parameter should be a pointer
to a MIL_ID.

■ When M_ASPECT_RATIO or M_FRAME_RATE is specified, this
parameter should be a pointer to a double value.

Return value The returned value is the value that represents the setting for the requested
information, cast to long. If the requested information is not available,
M_INVALID is returned.

See also MbufLoad(), MbufImport()

148 MbufExport

MbufExport

Synopsis Export a data buffer to a file.

Format void MbufExport(FileName, FileFormatBufId, SrcBufId)

Description This function exports a data buffer to a file, using the specified output file
format.

Note, you can also save a buffer in an M_MIL file format, using MbufSave().
The M_MIL file format is TIFF compatible.

To export an image with a LUT (color palette), associate the LUT to the
image, using MbufControl(). Upon export, the image is saved with its
associated color palette (MIM, TIFF and BMP file formats).

If you are exporting uncompressed data to a file with an M_JPEG_xx file
attribute, this function will automatically compress the data, according to
the file format. The buffer does not need an M_COMPRESS attribute. If you
are exporting compressed data to an uncompressed file format, this function
will automatically decompress the data.

The FileName parameter specifies the name of the file in which to store
the data buffer. If the file already exists, it will be overwritten.

The FileFormatBufId parameter specifies the identifier of the information
buffer containing the file conversion format. Predefined file format
identifiers are available for the most commonly used file formats:

char *FileName; Destination file name
MIL_ID FileFormatBufId; File format specification identifier
MIL_ID SrcBufId; Source data buffer identifier

FileFormatBufId Description
M_MIL Save the buffer contents in MIL file

format (a regular TIFF 6.0 file format
with extra information included in the
comment field. It uses TIFF "chunky"
mode to save color images.)

M_TIFF Save the buffer contents in TIFF file
format (only available for image
buffers and saved in "chunky" mode
for color images). The TIFF file format
that is used respects the TIFF 6.0
specification.

MbufExport 149

Note that, except for the M_MIL and M_RAW file formats, the source buffer
must have an M_IMAGE attribute.

If you are saving a non 8-bit buffer in M_BMP, M_JPEG_LOSSY,
M_JPEG_LOSSY_RGB or M_JPEG_LOSSY_INTERLACED format, only the 8
least-significant bits are saved. This is because these formats are restricted
to 8 bits per band. If you are saving an a non 8-bit or a non 16-bit buffer in

FileFormatBufId Description
M_BMP Save the buffer contents in BMP file

format. The BMP file format that is
used is the standard Windows format.

M_JPEG_LOSSLESS Save the buffer contents in a
JPEG-lossless file format. If the buffer
is 3-band, the data will be stored in
RGB format.

M_JPEG_LOSSY Save the buffer contents in a
JPEG-lossy file format. If the buffer is
3-band and does not have an
M_COMPRESS attribute, the data will
be stored in YUV16 packed format;
otherwise, it will be stored in the same
color format as the buffer.

M_JPEG_LOSSLESS_INTERLACED Save an interlaced JPEG-lossless
image, to a file in the same
compression format. If the buffer is
3-band, the buffer will be stored in
RGB format.

M_JPEG_LOSSY_INTERLACED Save an interlaced JPEG-lossy image,
to a file in the same compression
format. If the buffer is 3-band, the
data will always be stored in YUV16
packed format.

M_JPEG_LOSSY_RGB Save a 3-band buffer in a JPEG-lossy
file format and store the data in RGB
format. This attribute is only
applicable to uncompressed image
buffers.

M_RAW Save the buffer contents in raw file
format. The contents are dumped
directly (byte stream) into the file and
no header is added. If the buffer is
multi-band, all bands are dumped one
after the other.

150 MbufExport

the M_JPEG_LOSSLESS or M_JPEG_LOSSLESS_INTERLACED
formats, only the 8 least significant or 16 least significant bits, respectively,
are saved.

By default, most color buffers are saved in packed (chunky) format (in
accordance with TIFF 6.0 specifications). Color binary buffers are saved in
1-bit per pixel format (data is stored in 3-bands, packed binary format).
When a color buffer is saved in a raw file format, its bands are saved in a
planar format (one band after another). Note, however, that with M_MIL or
M_TIFF file formats, M_PLANAR can be added (for example,
M_TIFF+M_PLANAR) in order to save a color image in planar, rather than
packed, mode.

The SrcBufId parameter specifies the identifier of the data buffer to save.

Note This function is optimized for packed binary buffers.

Under MIL-Lite, dedicated hardware is required to export compressed
images. This is not a restriction under MIL.

See also MbufImport(), MbufSave(), MbufLoad(), MbufRestore(), MbufControl().

MbufExportSequence 151

MbufExportSequence

Synopsis Export a sequence of image buffers to an .avi file.

Format void MbufExportSequence(FileName, FileFormatId, BufArrayPtr,
NumberOfImages, FrameRate,
ControlFlag)

Description This function exports a sequence of image buffers to an audio video
interleave (*.avi) file.

The FileName parameter specifies the name of the file in which to export
the image buffers.

The FileFormatId parameter specifies the format of the file. It can be set
to:

char *FileName; File name
MIL_ID FileFormatId; File format
MIL_ID *BufArrayPtr; Array of image buffer identifiers
long NumberOfImages; Number of image buffers
double FrameRate; Frame rate
long ControlFlag; Control flag

M_AVI_MJPG An AVI format used to hold JPEG lossy interlaced,
YUV16 packed image buffers. The image buffers must
be in this format or in a non-compressed 8-bit format
before calling this function (in the latter case, they will
be converted appropriately). If the image buffers are in
any other format, they will not be exported and an
error will be generated.

M_AVI_DIB An AVI format used to hold non-compressed 8-bit
image buffers. If necessary, the image buffers will be
converted to a non-compressed 8-bit format before
exporting.

M_AVI_MIL An AVI format used to hold image buffers in their MIL
format. This saves images in the format in which they
are sent to this function. Since the images are saved
"as is", no loss is introduced in the images. This type of
sequence might not be readable by Windows NT’s
Media Player.

M_DEFAULT MIL automatically decides the appropriate format.

152 MbufExportSequence

The BufArrayPtr parameter specifies the address of the array containing
the MIL identifiers of the image buffers to export.

The NumberOfImages parameter specifies the number of image buffers
to export. If the supplied array is larger than this number, the remaining
buffer identifiers are ignored.

The FrameRate parameter specifies the frame rate (number of image
buffers/second) of the sequence.

The ControlFlag parameter specifies whether to append the image buffers
to the *.avi file, if the file already exists, or overwrite the file. It can be set to:

Note Under MIL-Lite, dedicated hardware is required to export compressed
sequences. This is not a restriction under MIL.

See also MbufImportSequence()

M_DEFAULT Overwrite the file. The file will be opened, written into,
and then the file will be closed.

M_OPEN Open the AVI file for writing, and set the pointer to the
beginning of the file. If M_OPEN+M_APPEND is
specified, the file is opened and the file pointer is set to
the end of the file. BufArrayPtr, NumberOfImages,
and FrameRate should be set to M_NULL.

M_WRITE Write the specified number of images in the files
starting from the current file pointer position. After
the write operation, the file pointer is left at the end of
the file, ready for the next M_WRITE operation.
BufArrayPtr, NumberOfImages, and FrameRate
should be set to the appropriate values.

M_CLOSE Close the AVI file. BufArrayPtr, NumberOfImages,
and FrameRate should be set to M_NULL.

M_APPEND Append the image buffers to the file. The file will be
opened, the specified images will be appended, and
then the file will be closed.

MbufFree 153

MbufFree

Synopsis Free a data buffer.

Format void MbufFree(BufId)

Description This function deallocates a previously allocated data buffer. The memory
reserved for the specified buffer is released.

Child buffers associated to a parent buffer must be deallocated, using
MbufFree(), prior to deallocating the parent buffer.

The BufId parameter specifies the identifier of the data buffer to deallocate.

See also MbufAlloc1d(), MbufAlloc2d(), MbufAllocColor(), MbufChild1d(),
MbufChild2d(), MbufChildColor()

MIL_ID BufId; Buffer identifier to deallocate

154 MbufGet

MbufGet

Synopsis Get data from a buffer and place it in a user-supplied array.

Format void MbufGet(SrcBufId, UserArrayPtr)

Description This function copies data from a specified MIL source buffer to a
user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy source buffer data. Ensure that the user array is large enough
to accommodate the data from the source buffer. MbufGet() assumes that
the array is of the same data type and depth as the source buffer’s bands.

Note, for multi-band buffers, MbufGet() behaves like
MbufGetColor(SrcBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr).
Refer to MbufGetColor() for more details.

Note This function is optimized for packed binary buffers.

See also MbufGet1d(), MbufGet2d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier
void *UserArrayPtr; Destination user array

MbufGetColor 155

MbufGetColor

Synopsis Get data from one or all bands of a buffer and place it in a user-supplied
array.

Format void MbufGetColor(SrcBufId, DataFormat, Band, UserArrayPtr)

Description This function copies data from one or all color bands of a specified MIL
source buffer to a user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer. The
internal data format of the source buffer need not match the specified data
format of the user-supplied array; an internal conversion will be performed
if necessary. Note, however, if the formats do match the operation will be
much faster.

The DataFormat parameter specifies the data format to use to save the
data in the user array. Note that Sx and Sy denote the source width and
height, respectively. This parameter must be set to one of the following
values:

MIL_ID SrcBufId; Source buffer identifier
long DataFormat; Data format of the user array
long Band; Color band of source buffer
void *UserArrayPtr; Destination user array

DataFormat Description
M_SINGLE_BAND Copy a single color band. The user array must be

of the same type as the source buffer and have a
size of Sx x Sy.

M_BGR24+M_PACKED Copy three bands in an interleaved manner
(BGRBGR). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 3 bytes (Sx x Sy x 3char).

M_BGR32+M_PACKED Copy three bands in an interleaved manner
(BGRXBGRX). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 4 bytes (Sx x Sy x long).

M_RGB15+M_PACKED Copy three bands in an interleaved manner (RGB
5:5:5). The source buffer must be a three-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

156 MbufGetColor

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to n-1 (number of bands of the
source buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The UserArrayPtr parameter specifies the address of the user array in
which to copy data from the source buffer. Ensure that the user array is
large enough to accommodate the data from the source buffer in the format
specified.

Note This function is optimized for packed binary buffers.

See also MbufGet(), MbufGet1d(), MbufGet2d(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

M_RGB16+M_PACKED Copy three bands in an interleaved manner (RGB
5:6:5). The source buffer must be a three-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same data type as the source buffer and have a
size of Sx x Sy x number of color bands of the
source buffer, where Sx and Sy denote the source
width and height, respectively. This format is to
be used when copying from all color bands of the
source buffer.

M_RED Copy from the red color band.
M_GREEN Copy from the green color band.
M_BLUE Copy from the blue color band.
M_ALL_BAND Copy from all color bands.

DataFormat Description

MbufGetColor2d 157

MbufGetColor2d

Synopsis Get data from a region of one or all bands of a buffer and place it in a
user-supplied array.

Format void MbufGetColor2d(SrcBufId, DataFormat, Band, OffX, OffY,
SizeX, SizeY, UserArrayPtr)

Description This function copies data from a specific region of one or all color bands of
a specified MIL source buffer to a user-supplied array.

The SrcBufId parameter specifies the identifier of the source buffer. The
internal data format of the source buffer need not match the specified data
format of the user-supplied array; an internal conversion will be performed
if necessary. Note however, if the formats do match the operation will be
much faster.

The DataFormat parameter specifies the data format to use to save the
data in the user array. Note that Sx and Sy denote the source width and
height, respectively. This parameter must be set to one of the following
values:

MIL_ID SrcBufId; Source buffer identifier
long DataFormat; Data format of the user array
long Band; Color band of source buffer
long OffX; X pixel offset relative to the source buffer
long OffY; Y pixel offset relative to the source buffer
long SizeX; Source buffer region width
long SizeY; Source buffer region height
void *UserArrayPtr; Destination user array

DataFormat Description
M_SINGLE_BAND Copy a single color band. The user array must be

of the same type as the source buffer and have a
size of Sx x Sy.

M_BGR24+M_PACKED Copy three bands in an interleaved manner
(BGRBGR). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 3 bytes (Sx x Sy x 3char).

158 MbufGetColor2d

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band to copy. This
parameter can be set to any index from 0 to n-1 (number of bands of the
source buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets (relative to the top-left source buffer coordinate) of the source buffer
region in which to get the data.

The SizeX and SizeY parameters specify the width and height of the source
buffer region in which to get the data.

M_BGR32+M_PACKED Copy three bands in an interleaved manner
(BGRXBGRX). The source buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Sx x Sy x 4 bytes (Sx x Sy x long).

M_RGB15+M_PACKED Copy three bands in an interleaved manner (RGB
5:5:5). The source buffer must be a three-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

M_RGB16+M_PACKED Copy three bands in an interleaved manner (RGB
5:6:5). The source buffer must be a three-band,
8-bit buffer and the user array must have a size of
Sx x Sy x 2 bytes (Sx x Sy x 2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same type as the source buffer and have a size of
Sx x Sy x number of color band of the source
buffer. This format is to be used when copying all
color bands of the source buffer.

M_RED Copy from the red color band.
M_GREEN Copy from the green color band.
M_BLUE Copy from the blue color band.
M_ALL_BAND Copy from all color bands.

DataFormat Description

MbufGetColor2d 159

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data. Ensure that there are enough entries in the user
array to receive the data of the specified source buffer region.

Note This function is optimized for packed binary buffers.

See also MbufGet(), MbufGet1d(), MbufGet2d(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor(), MbufPutColor2d()

160 MbufGetLine

MbufGetLine

Synopsis Read the pixels along a specified theoretical line, count the pixels, and store
them in a user-defined array.

Format void MbufGetLine(ImageBufId, StartX, StartY, EndX, EndY,
 Mode, NbPixelsPtr, UserArrayPtr)

Description This function reads the series of pixels between specified coordinates
(theoretical line) in a specified source image and stores the pixels in a
user-defined array. The Bresenham algorithm is used to determine the
theoretical line.

The ImageBufId parameter specifies the identifier of the source image
buffer. This must be a single-band (monochrome) buffer.

The StartX and StartY parameters specify the horizontal and vertical pixel
offsets of the starting position of the line, relative to the top-left pixel of the
source buffer.

The EndX and EndY parameters specify the horizontal and vertical pixel
offsets of the finishing position of the line, relative to the top-left pixel of the
source buffer.

The Mode parameter specifies the operation mode. This parameter must
be set to M_DEFAULT.

The NbPixelsPtr parameter specifies the address of the variable in which
to write the number of pixels found along the theoretical line. You can set
this parameter to M_NULL if you don’t want this value to be evaluated.

MIL_ID ImageBufId; Image buffer identifier
long StartX; X start position of the line
long StartY; Y start position of the line
long EndX; X end position of the line
long EndY; Y end position of the line
long Mode; Operation mode
long *NbPixelsPtr; Number of pixels
void *UserArrayPtr; Destination user array

MbufGetLine 161

The UserArrayPtr parameter specifies the address of the user array in
which to store the pixels from the image buffer. MbufGetLine() assumes
that the array is of the same data type as the source buffer. Ensure that the
user array is large enough to accommodate the data to be stored. To
determine the required size of the array, you can set this parameter to
M_NULL and pass a non-null address to NbPixelsPtr. In this case, nothing
is read from the image buffer.

See also MbufPutLine()

162 MbufGet1d

MbufGet1d

Synopsis Get data from a 1D area of a buffer and place it in a user-supplied array.

Format void MbufGet1d(SrcBufId, OffX, SizeX, UserArrayPtr)

Description This function copies data from a specified one-dimensional area of a MIL
source buffer to a user-supplied array.

Note, for multi-band buffers, this function linearly copies the data from the
one-dimensional region of each band (RRR...GGG...BBB...).

The SrcBufId parameter specifies the identifier of the source buffer.

The OffX parameter specifies the horizontal offset (in pixels) of the required
area, relative to the top-left pixel of the source buffer.

The SizeX parameter specifies the width of the required area of the source
buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data from the source buffer. Ensure that the user array
is large enough to accommodate the data to be copied from the source buffer.
MbufGet1d() assumes that the array is of the same data type as the source
buffer.

See also MbufGet(), MbufGet2d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier
long OffX; X offset relative to source buffer origin
long SizeX; Width of source buffer area from which to get data
void *UserArrayPtr; Destination user array

MbufGet2d 163

MbufGet2d

Synopsis Get data from a 2d area of a buffer and place it in a user-supplied array.

Format void MbufGet2d(SrcBufId, OffX, OffY, SizeX, SizeY, UserArrayPtr)

Description This function copies data from a specified two-dimensional region of a MIL
source buffer to a user-supplied array.

Note, for multi-band buffers, this function linearly copies the data from the
specified two-dimensional region of each band (RRR...GGG...BBB...).

The SrcBufId parameter specifies the identifier of the source buffer.

The OffX parameter specifies the horizontal offset (in pixels) of the required
area, relative to the top-left pixel of the source buffer. The OffY parameter
specifies the vertical offset.

The SizeX and SizeY parameters specify the width and height of the
required area of the source buffer.

The UserArrayPtr parameter specifies the address of the user array in
which to copy the data from the source buffer. Ensure that the user array
is large enough to accommodate the data to be copied. MbufGet2d()
assumes that the array is of the same data type as the source buffer.

See also MbufGet(), MbufGet1d(), MbufGetColor(), MbufPut(), MbufPut1d(),
MbufPut2d(), MbufPutColor()

MIL_ID SrcBufId; Source buffer identifier
long OffX; X pixel offset relative to source buffer region
long OffY; Y pixel offset relative to source buffer region
long SizeX; Width of required data area
long SizeY; Height of required data area
void *UserArrayPtr; Source user array

164 MbufImport

MbufImport

Synopsis Import data from a file into a data buffer.

Format MIL_ID MbufImport(FileName, FileFormatBufId, Operation,
 SystemId, BufIdPtr)

Description This function imports data, of the specified format, from a file into a MIL
data buffer on the specified system. The buffer can be an existing data buffer,
or an automatically allocated buffer.

Note, you can also import data using MbufLoad() or MbufRestore();
however, these functions try to determine the format from the data rather
than allowing you to specify the data type.

If you are importing uncompressed data into a buffer with an M_COMPRESS
attribute, this function will automatically compress it, according to the
compression settings found in the buffer. If you are importing compressed
data into a buffer with an M_IMAGE attribute (but not an M_COMPRESS
attribute), this function will automatically decompress it. If necessary, the
data in the file will be transformed to fit into the buffer. If you are not sure
what type of compressed data the file contains, use M_DEFAULT as the file
format rather than M_JPEG_xx; the data will be read correctly.

When a buffer is automatically allocated during a restore operation, it is
allocated with the same attributes as the original buffer, with the exception
of M_IMAGE buffers. In the case of an M_IMAGE type buffer, the
MbufImport() function tries to allocate an image buffer so that it can be
used for acquisition (M_GRAB), display (M_DISP), and processing (M_PROC)
operations. If there is insufficient appropriate memory to allocate such a
buffer, it tries to allocate one that can be used in all of the above operations
except for acquisition (M_GRAB). If it is still unsuccessful, it tries to remove
the M_DISP attribute, then the M_PROC attribute, leaving the buffer with
the M_IMAGE attribute only. If it still cannot allocate the image buffer, it
generates an error. If this happens, you can use MbufImport() with
M_LOAD to load the image into a previously allocated buffer.

char *FileName; Source file name
MIL_ID FileFormatBufId; File format specification identifier
long Operation; Import operation
MIL_ID SystemId; System identifier
MIL_ID *BufIdPtr; Buffer identifier (returned or given)

MbufImport 165

When importing a compressed file into an automatically allocated buffer,
the buffer will have an M_COMPRESS attribute.

When importing an image file that has been saved with an associated LUT
(color palette), the LUT is also imported and associated with the resulting
image buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

Similarly, when loading a monochrome image file that has been saved with
an associated LUT (color palette) into a single-band buffer, the LUT is also
imported and associated with the resulting image buffer.

❖ Note that the associated LUT will be automatically selected on the display
(MdispLut()) if the image buffer is selected on a display and the default
LUT has not been overidden by a former call to MdispLut().

When loading an image file that has been saved with an associated LUT
(color palette) into a 3-band 8-bit image buffer, the LUT is automatically
applied to the data to generate 3-band image data. In this case, a LUT buffer
is not created and, therefore, is not associated to the 3-band 8-bit buffer.

The FileName parameter specifies the name of the file from which to get
the data.

The FileFormatBufId parameter specifies the identifier of the information
buffer containing the file conversion format. Predefined file format
identifiers are available for the most commonly used file formats:

M_MIL Import data that is in MIL file
format.

M_TIFF Import data that is in TIFF file
format (only available for image
buffers). The TIFF 6.0 specification is
used.

M_BMP Import data that is in BMP file
format (only available for image
buffers). The standard Windows BMP
format is used.

M_RAW Import data that is in RAW file
format.

M_JPEG_LOSSLESS Import a JPEG-lossless image.
M_JPEG_LOSSY Import a JPEG-lossy image.

166 MbufImport

The Operation parameter specifies the import operation. This parameter
can be set to one of the following:

After restoring a buffer, we recommend that you check if the operation was
successful, by using MappGetError(), or by verifying that the returned
buffer identifier is not M_NULL.

Note, you cannot restore (M_RESTORE) a RAW data file (M_RAW) because
its dimensions are unknown.

Using MbufDiskInquire(), you can inquire about the dimensions of a
buffer saved in a file (except for RAW files) without importing it.

The SystemId parameter specifies the system on which the MIL buffer will
be allocated. This parameter must be given a valid system identifier or it
can be set to M_DEFAULT_HOST. In the latter case, the default Host system
of the current MIL application is used. You can also specify M_DEFAULT, in
which case MIL selects the most appropriate system on which to allocate
the buffer (either the Host system or any currently allocated system).

Set SystemId to M_NULL if M_LOAD is specified as the operation.

M_JPEG_LOSSLESS_INTERLACED Import a JPEG-lossless image stored
in two separate fields. If the buffer is
3-band, the buffer will be stored in
RGB format. Only available for image
buffers.

M_JPEG_LOSSY_INTERLACED Import a JPEG-lossy image stored in
two separate fields. If the buffer is
3-band, the data will always be stored
in YUV16 packed format. Only
available for image buffers.

M_JPEG_LOSSY_RGB Import a 3-band JPEG-lossy image
that is in RGB format.

M_DEFAULT Automatically determine the file
format. If the file format is not
supported, its data will be treated in
RAW file format.

M_RESTORE Data from the specified file is imported into an
automatically allocated MIL data buffer.

M_LOAD Data from the specified file is imported into a
previously allocated MIL data buffer.

MbufImport 167

The BufIdPtr parameter specifies the address of the variable that either
gives or receives a data buffer identifier, depending on the setting of the
Operation parameter. When Operation is set to M_RESTORE,
MbufImport() returns the buffer identifier and stores it at the specified
variable address. Since MbufImport() also returns the buffer identifier,
you can set this parameter to M_NULL. If allocation fails, M_NULL is written
as the identifier.

When a buffer identifier is given, the buffer must be large enough in depth
and dimensions to hold the data; if not, some data is clipped. For example,
if the data is deeper than the buffer, the most-significant bits of the data
are not written. If, however, the buffer is larger in depth or dimensions than
the data, excess areas are unaffected.

Note Under MIL-Lite, dedicated hardware is required to import compressed
images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier (for an M_RESTORE operation
only). If allocation fails, M_NULL is returned.

Status This function supports the baseline TIFF 6.0 format for grayscale and RGB
images.

See also MbufDiskInquire(), MbufExport(), MbufSave(), MbufLoad(),
MbufRestore(), MbufControl().

168 MbufImportSequence

MbufImportSequence

Synopsis Import a sequence of images from an *.avi file into separate image buffers.

Format void MbufImportSequence(FileName, FileFormatId, Operation,
SystemId, BufArrayPtr, StartImage,
NumberOfImages, ControlFlag)

Description This function imports a sequence of images from an *.avi file into separate
image buffers. MbufImportSequence() can automatically allocate the
necessary buffers or you can use previously allocated buffers. In the latter
case, the BufArrayPtr parameter should point to an array containing the
buffer identifiers. In the former case, MbufImportSequence() will write
the identifiers of the new buffers into the array pointed to by BufArrayPtr.

The FileName parameter specifies the name of the file.

The FileFormatId parameter specifies the format of the file. It can be set
to:

The Operation parameter specifies whether to import the sequence into
automatically allocated buffers or previously allocated buffers. It can be set
to:

char *FileName; File name
MIL_ID FileFormatId; File format
long Operation; Operation mode
MIL_ID SystemId; Target system
MIL_ID *BufArrayPtr; Array of image buffer identifiers
long StartImage; Start image
long NumberOfImages; Number of image buffers
long ControlFlag; Control flag

M_AVI_MJPG An AVI format containing compressed images.
M_AVI_DIB An AVI format containing non-compressed images.
M_AVI_MIL An AVI format containing images in their MIL

format.
M_DEFAULT MIL automatically determines the file format.

M_LOAD Import the sequence into previously allocated buffers.
M_RESTORE Import the sequence into automatically allocated buffers.

MbufImportSequence 169

The SystemId parameter specifies the system on which to allocate the
buffers for an M_RESTORE operation. This parameter must be set to a valid
system identifier, M_DEFAULT_HOST, or M_DEFAULT. To use the default
Host system of the current MIL application, specify M_DEFAULT_HOST. If
you specify M_DEFAULT, MIL will select the most appropriate system on
which to allocate the buffer (it can be the Host system or any already
allocated system).

For an M_LOAD operation, set the SystemId parameter to M_NULL.

The BufArrayPtr parameter specifies the address of the array containing
the buffer identifiers (for an M_LOAD operation) or the address of the array
in which to store the new buffer identifiers (for an M_RESTORE operation).

For an M_LOAD operation, the destination buffers should be large enough
to hold the imported images. If you are importing compressed images into
buffers with only an M_IMAGE specifier, the images will be automatically
decompressed. If you are importing decompressed images into buffers with
an M_IMAGE+M_COMPRESS specifier, the images will be automatically
compressed.

For an M_RESTORE operation, the destination buffers will be allocated with
an appropriate size and type to hold the images. For example, if you are
importing compressed images, the destination buffers will have an
M_IMAGE+M_COMPRESS specifier. If an M_RESTORE operation fails, zero
will be written for the buffer identifiers.

The StartImage parameter specifies the first image in the sequence to
import. Images start at 0.

The NumberOfImages parameter specifies the number of images, starting
at StartImage, to import. The array pointed to by BufArrayPtr should be
at least as big as this number. Note that you can inquire about the number
of images in an *.avi file using MbufDiskInquire().

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to one of the following:

ControlFlag Description
M_DEFAULT Open the AVI file, read the specified images,

and then close the file.
M_OPEN Open the AVI file for reading, and set the

pointer to the first image. BufArrayPtr,
NumberOfImages, and StartImage should
be set to M_NULL.

170 MbufImportSequence

Note Under MIL-Lite, dedicated hardware is required to import compressed
sequences. This is not a restriction under MIL.

See also MbufDiskInquire(), MbufExportSequence()

M_READ Read the specified images in the AVI file,
starting at the specified StartImage position.
To read the image at the current read position,
set StartImage to M_DEFAULT. After the read
operation, the file pointer is left at the position
of the next image, ready for the next M_READ
operation.

M_CLOSE Close the AVI file after reading, and (re)set the
pointer position to the first image.
BufArrayPtr, NumberOfImages, and
FrameRate should be set to M_NULL.

ControlFlag Description

MbufInquire 171

MbufInquire

Synopsis Inquire about a data buffer parameter setting.

Format long MbufInquire(BufId, InquireType, UserVarPtr)

Description This function inquires about a specified MIL buffer parameter setting. This
function is useful, for example, to check the size of a buffer restored from
disk.

The BufId parameter specifies the identifier of the source buffer.

The InquireType parameter specifies the buffer parameter setting about
which to inquire. This parameter can be set to one of the following values:

MIL_ID BufId; Source buffer identifier
long InquireType; Type of information about which to inquire
void *UserVarPtr; Storage location for requested information

InquireType Description
M_SIZE_X Width of the buffer.
M_SIZE_Y Height of the buffer.
M_SIZE_BAND Number of buffer color bands.
M_SIZE_BIT Depth per band, in bits.
M_SIZE_BYTE Size of the buffer, in bytes.
M_SIZE_BYTE_PER_PIXEL Depth per pixel, in bytes.
M_TYPE Buffer data type and depth (size in bits +

M_SIGNED, M_UNSIGNED, or M_FLOAT).
M_SIGN Buffer range (M_SIGNED or M_UNSIGNED).
M_ATTRIBUTE Buffer attribute.
M_OWNER_SYSTEM Identifier of the system on which the buffer has

been allocated.
M_OWNER_SYSTEM_TYPE Type of system on which the buffer was

allocated.
M_PITCH* The number of pixels between the beginnings

of any two adjacent lines of the buffer data.
M_PITCH_BYTE* The number of bytes between the beginnings of

any two adjacent lines of the buffer data.
*Note: when inquiring the pitch of an M_BGR24 + M_PACKED buffer, you should use
M_PITCH_BYTE instead of M_PITCH because the latter might not be able to take into
account internal padding.

172 MbufInquire

M_HOST_ADDRESS Host pointer to the buffer or M_NULL. If a
planar, 3-band buffer is being used, M_NULL
will be returned. However, the Host address
can be determined by allocating a child buffer
for the required band and then using
M_HOST_ADDRESS to determine its Host
address. If available, this pointer can be used
to directly access the data of a MIL buffer with
the Host CPU.

M_PHYSICAL_ADDRESS Physical address of the buffer
or M_NULL. Available only for a non-paged
buffer mapped to the Host. This type of buffer
is used only for access by bus masters other
than the Host CPU.

M_PARENT_ID Identifier of parent buffer. (returns same as
BufId if no parent buffer)

M_PARENT_OFFSET_X X offset relative to the parent buffer.
M_PARENT_OFFSET_Y Y offset relative to the parent buffer.
M_PARENT_OFFSET_BAND Band offset relative to the parent buffer.
M_ANCESTOR_ID MIL identifier of the ancestor buffer (returns

same as BufId if no ancestor buffer). An
ancestor buffer is a buffer from which other
buffers originated.
It must have been allocated with
MbufAlloc1d(), MbufAlloc2d(), or
MbufAllocColor() and does not have a parent
buffer.

M_ANCESTOR_OFFSET_X X offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_Y Y offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_BAND Band offset relative to the ancestor buffer.
M_ANCESTOR_OFFSET_BIT Bit offset relative to the ancestor buffer.

InquireType Description

MbufInquire 173

M_MODIFICATION_COUNT Returns the current value of the modification
counter of the image buffer. The modification
counter is intialized to a number that is unique
to the image buffer and is given its own unique
range. If the image buffer is freed, this number
will not be reassigned to a new image buffer.
This number is incremented by one each time
the image buffer is modified.
If the image buffer is accessed externally, for
example, when using MbufCreateColor() or
MbufCreate2d(), MbufControl() with
M_MODIFIED must be called to indicate that
the image buffer’s contents have been modified.
Calling this function will increment the
counter.
This feature is useful for optimization. For
example, you can avoid repeating certain
computations (for example, analysis
computations) if you know that the image
buffer has not been modified. In this case,
inquire the count before the first computation
in the sequence of computations, and then
inquire it again before repeating the same
sequence. If no modifications have been made
to the image buffer, you can avoid repeating the
sequence unnecessarily.

M_ASSOCIATED_LUT Identifier of the LUT buffer associated with the
image buffer. (returns M_DEFAULT if no LUT)

M_NATIVE_ID The native identifier (handle) of the buffer.
This identifier can be used when operating in
the system native library.

M_WINDOW_DDRAW_SURFACE Pointer (LPDIRECTDRAWSURFACE) to the
DirectDraw surface associated with the MIL
buffer (if any) or M_NULL.

M_WINDOW_DIB_HEADER Pointer (LPBITMAPINFO) to the header of the
DIB associated with the MIL buffer (if any) or
M_NULL.

M_WINDOW_DC Windows display context handle (HDC)
(MbufControl()) or M_NULL.

InquireType Description

174 MbufInquire

M_FORMAT This setting accesses information about the
buffer format. See MbufAlloc...() for all
possible return values. Note, it is also possible
to extract the internal format of the buffer by
adding the M_INTERNAL_FORMAT mask to the
resulting M_FORMAT value.

For M_KERNEL and M_STRUCT_ELEMENT data buffers only
(see MbufControlNeighborhood() for possible values):
M_OVERSCAN Overscan type.
M_OVERSCAN_REPLACE_VALUE Overscan replace value.
M_OFFSET_CENTER_X Offset center X coordinate.
M_OFFSET_CENTER_Y Offset center Y coordinate.
For M_KERNEL data buffers only
(see MbufControlNeighborhood() for possible values):
M_ABSOLUTE_VALUE Absolute value flag.
M_SATURATION Saturation flag.
M_NORMALIZATION_FACTOR Normalization factor.
For M_IMAGE+M_COMPRESS image buffers
(see MbufAlloc...() for possible values):
M_COMPRESSION_TYPE Type of compression. See MbufAlloc...() for

possible values.
M_SIZE_BYTE Size of compressed buffer in bytes. The buffer

size will be zero if the buffer has not been
initialized with data.

M_RESTART_INTERVAL Number of lines between restart markers (for
lossless compressions) or number of 8x8 blocks
of data between restart markers (for lossy
compressions).

M_HUFFMAN_DC Identifier of the array buffer containing the DC
Huffman table which is associated with the
image buffer. For YUV buffers, only the
identifier of the array buffer associated with
the luminance band (Y) is returned.

InquireType Description

MbufInquire 175

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSY or M_JPEG_LOSSY_INTERLACED:
M_HUFFMAN_AC Identifier of the array buffer containing the AC

Huffman table which is associated with the
image buffer. For YUV buffers, only the
identifier of the array buffer associated with
the luminance band (Y) is returned.

M_HUFFMAN_AC_LUMINANCE Identifier of the array buffer containing the AC
Huffman table which is associated with the Y
band of a YUV image buffer. If the image buffer
is not YUV, M_ERROR is returned.

M_HUFFMAN_AC_CHROMINANCE Identifier of the array buffer containing the AC
Huffman table which is associated with the U
and V bands of a YUV image buffer. If the
image buffer is not YUV, M_ERROR is returned.

M_HUFFMAN_DC_LUMINANCE Identifier of the array buffer containing the DC
Huffman table which is associated with the Y
band of a YUV image buffer. If the image buffer
is not YUV, M_ERROR is returned.

M_HUFFMAN_DC_CHROMINANCE Identifier of the array buffer containing the DC
Huffman table which is associated with the U
and V bands of a YUV image buffer. If the
image buffer is not YUV, M_ERROR is returned.

M_Q_FACTOR Quantization factor. For YUV buffers, only the
quantization factor associated with the
luminance band (Y) is returned.

M_Q_FACTOR_LUMINANCE Quantization factor for the Y band of a YUV
image buffer. If the image buffer is not YUV,
M_ERROR is returned.

M_Q_FACTOR_CHROMINANCE Quantization factor for the U and V bands of a
YUV image buffer. If the image buffer is not
YUV, M_ERROR is returned.

M_QUANTIZATION Identifier of the array buffer containing the
quantization table which is associated with the
image buffer. For YUV buffers, only the
identifier of the array buffer associated with
the luminance band (Y) is returned.

InquireType Description

176 MbufInquire

To extract the internal format of the buffer, use the M_INTERNAL_FORMAT
mask to isolate it from the other flags. For example:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. The variable must be of type
long, except when the InquireType is set to one of the following:

■ M_PARENT_ID

■ M_OWNER_SYSTEM

■ M_ANCESTOR_ID

■ M_HUFFMAN...

■ M_QUANTIZATION...

In which case, the UserVarPtr parameter requires a pointer to a MIL_ID.

Since the MbufInquire() function also returns the requested information,
you can set this parameter to M_NULL.

Return value The returned value is the value that represents the setting of the requested
MIL buffer attribute, cast as long.

M_QUANTIZATION_LUMINANCE Identifier of the array buffer containing the
quantization table which is associated with the
Y band of a YUV image buffer. If the image
buffer is not YUV, M_ERROR is returned.

M_QUANTIZATION_CHROMINANCE Identifier of the array buffer containing the
quantization table which is associated with the
U and V bands of a YUV image buffer. If the
image buffer is not YUV, M_ERROR is returned.

For M_IMAGE+M_COMPRESS image buffers with compression type set to
M_JPEG_LOSSLESS or M_JPEG_LOSSLESS_INTERLACED:
M_PREDICTOR Type of predictor.

InquireType Description

$WHHGT(QTOCV�/DWH+PSWKTG
$WH+F��/A(14/#6�����
KH�

$WHHGT(QTOCV�/A+06'40#.A(14/#6���/A$)4���
]
���
_

MbufLoad 177

MbufLoad

Synopsis Load data from a file into a data buffer.

Format void MbufLoad(FileName, BufId)

Description This function loads data from a file into a previously allocated data buffer.
The function detects the file format from the data.

Note, you can perform the same operation as MbufLoad() using
MbufImport(), which uses the specified file format to open the file instead
of trying to determine the format from the data.

The FileName parameter specifies the name of file from which to load the
data buffer.

The BufId parameter specifies the identifier of the destination buffer. This
buffer must be big enough in depth and dimensions to hold the data; if not,
some data is clipped. For example, if the data is deeper than the buffer, the
most-significant bits of the data are truncated when loaded into the buffer.
If the buffer depth is greater than that of the data, the data is zero or
sign-extended (depending on the data type) when loaded into the buffer. If
the buffer is larger in size than the data, exceeding areas of the buffer are
unaffected.

When loading an image file that was saved with an associated LUT (color
palette), the LUT is also loaded and associated with the destination image
buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

Note Under MIL-Lite, dedicated hardware is required to load compressed images.
This is not a restriction under MIL.

See also MbufImport(), MbufExport(), MbufSave(), MbufRestore(), MbufInquire(),
MbufControl()

char *FileName; Source file name
MIL_ID BufId; Destination buffer identifier

178 MbufPut

MbufPut

Synopsis Put data from a user-supplied array into a data buffer.

Format void MbufPut(DestBufId, UserArrayPtr)

Description This function copies data from a user-supplied array to a specified MIL
destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the destination buffer. MbufPut() assumes
that the array is of the same data type and depth as the destination buffer’s
bands.

Note, for multi-band buffers, MbufPut() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr). See
MbufPutColor() for more details.

Example mconvol.c

See also MbufPut1d(), MbufPut2d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier
void *UserArrayPtr; Source user array

MbufPutColor 179

MbufPutColor

Synopsis Put data from a user-supplied array into one or all bands of a data buffer.

Format void MbufPutColor(DestBufId, DataFormat, Band, UserArrayPtr)

Description This function copies data from a user-supplied array to one or all bands of
a specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.
The internal data format of the destination buffer need not match the
specified data format of the user-supplied array; an internal conversion will
be performed if necessary. Note, however, if the formats do match the
operation will be much faster.

The DataFormat parameter specifies the data format of the user-supplied
array; this information is required to properly copy the data. Note that Dx
and Dy denote the destination width and height, respectively. This
parameter must be set to one of the following values:

MIL_ID DestBufId; Destination buffer identifier
long DataFormat; Data format of source user array
long Band; Color band in destination buffer
void *UserArrayPtr; Source user array

DataFormat Description
M_SINGLE_BAND Copy to a single color band. The user array must

be of the same type as the destination buffer and
have a size of Dx x Dy.

M_BGR24+M_PACKED Copy to three bands in an interleaved manner
(BGRBGR). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 3 bytes (Dx x Dy x 3char).

M_BGR32+M_PACKED Copy to three bands in an interleaved manner
(BGRXBGRX). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 4 bytes (Dx x Dy x long).

M_RGB15+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:5:5). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

180 MbufPutColor

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band in which to copy.
This parameter can be set to any index from 0 to (number of bands of the
destination buffer - 1) or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the color band of the destination buffer.

See also MbufPut(), MbufPut1d(), MbufPut2d(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

M_RGB16+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:6:5). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same type as the destination buffer and have a
size of Dx x Dy x number of color band of the
destination buffer. This format is to be used when
copying to all color bands of the destination buffer.

M_RED Copy to the red color band.
M_GREEN Copy to the green color band.
M_BLUE Copy to the blue color band.
M_ALL_BAND Copy to all color bands.

DataFormat Description

MbufPutColor2d 181

MbufPutColor2d

Synopsis Put data from a user-supplied array into a region of one or all bands of a
data buffer.

Format void MbufPutColor2d(DestBufId, DataFormat, Band, OffX, OffY,
 SizeX, SizeY, UserArrayPtr)

Description This function copies data from a user-supplied array to a specified region in
one or all bands of a specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.
The internal data format of the destination buffer need not match the
specified data format of the user-supplied array; an internal conversion will
be performed if necessary. Note, however, if the formats do match the
operation will be much faster.

The DataFormat parameter specifies the data format of the user-supplied
array; this information is required to properly copy the data. Note that Dx
and Dy denote the destination width and height, respectively. This
parameter must be set to one of the following values:

MIL_ID DestBufId; Destination buffer identifier
long DataFormat; Data format of source user array
long Band; Color band in destination buffer
long OffX; X pixel offset relative to the parent buffer
long OffY; Y pixel offset relative to the parent buffer
long SizeX; Destination buffer region width
long SizeY; Destination buffer region height
void *UserArrayPtr; Source user array

DataFormat Description
M_SINGLE_BAND Copy to a single color band. The user array must

be of the same type as the destination buffer and
have a size of Dx x Dy.

M_BGR24+M_PACKED Copy to three bands in an interleaved manner
(BGRBGR). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 3 bytes (Dx x Dy x 3char).

182 MbufPutColor2d

To interpret the array data as top-down (DIB), add M_FLIP to the
DataFormat parameter.

The Band parameter specifies the index of the color band in which to copy.
This parameter can be set to any index from 0 to (number of bands of the
destination buffer - 1), or to one of the following values:

If the source buffer is in a HLS (hue, luminance, and saturation) format,
the band can be set to: M_HUE, M_LUMINANCE, M_SATURATION, or
M_ALL_BAND.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the destination buffer region in which to put the data, relative to
the destination buffer’s top-left pixel.

The SizeX and SizeY parameters specify the width and height of the
destination buffer region in which to put the data.

M_BGR32+M_PACKED Copy to three bands in an interleaved manner
(BGRXBGRX). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 4 bytes (Dx x Dy x long).

M_RGB15+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:5:5). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_RGB16+M_PACKED Copy to three bands in an interleaved manner
(RGB 5:6:5). The destination buffer must be a
three-band, 8-bit buffer and the user array must
have a size of Dx x Dy x 2 bytes (Dx x Dy x
2 unsigned char).

M_PLANAR Copy the bands one after the other
(RRR...GGG...BBB...). The user array must be the
same type as the destination buffer and have a
size of Dx x Dy x number of color band of the
destination buffer. This format is to be used when
copying to all color bands (M_ALL_BAND) of the
destination buffer.

M_RED Copy to the red color band.
M_GREEN Copy to the green color band.
M_BLUE Copy to the blue color band.
M_ALL_BAND Copy to all color bands.

DataFormat Description

MbufPutColor2d 183

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified region of the destination buffer.

See also MbufPut(), MbufPut1d(), MbufPut2d(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor(), MbufGetColor2d()

184 MbufPutLine

MbufPutLine

Synopsis Write a specified series of pixels along a specified theoretical line.

Format void MbufPutLine(ImageBufId, StartX, StartY, EndX, EndY,
 Mode, NbPixelsPtr, UserArrayPtr)

Description This function reads a series of pixels from a user-defined array and writes
them to the specified image, along the theoretical line defined by specified
coordinates. The Bresenham algorithm is used to determine the theoretical
line.

The ImageBufId parameter specifies the identifier of the destination
image buffer. This must be a single-band (monochrome) buffer.

The StartX and StartY parameters specify the horizontal and vertical pixel
offsets of the starting position of the line, relative to the top-left pixel of the
source buffer.

The EndX and EndY parameters specify the horizontal and vertical pixel
offsets of the finishing position on the line, relative to the top-left pixel of
the source buffer.

The Mode parameter specifies the operation mode. This parameter must
be set to M_DEFAULT.

The NbPixelsPtr parameter specifies the address of the variable in which
to write the number of pixels found along the theoretical line. You can set
this parameter to M_NULL if you don’t want this value to be evaluated.

MIL_ID ImageBufId; Image buffer identifier
long StartX; X start position on the line
long StartY; Y start position on the line
long EndX; X end position on the line
long EndY; Y end position on the line
long Mode; Operation mode
long *NbPixelsPtr Number of pixels
void *UserArrayPtr; Source user array

MbufPutLine 185

The UserArrayPtr parameter specifies the address of the user array
containing the pixels to insert in the image buffer. MbufPutLine() assumes
that the array is of the same data type as the destination buffer. Ensure
that the user array contains all the pixels to be inserted. To determine the
number of pixel values required, you can set this parameter to M_NULL and
pass a non-null address to NbPixelsPtr. In this case, nothing is written to
the image buffer.

See also MbufGetLine()

186 MbufPut1d

MbufPut1d

Synopsis Put data from a user-supplied array into a 1D area of a buffer.

Format void MbufPut1d(DestBufId, OffX, SizeX, UserArrayPtr)

Description This function copies data from a user-supplied array to a one-dimensional
area of the specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The OffX parameter specifies the horizontal offset of the destination buffer
area in which to put data, relative to the destination buffer’s top-left pixel.

The SizeX parameter specifies the width of the destination buffer area in
which to copy the data (starting from the specified offset OffX).

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified destination buffer area.
MbufPut1d() assumes that the array is of the same data type as the
destination buffer.

Note, for multi-band buffers, MbufPut1d() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr), but
puts the data in the specified one-dimensional region. Refer to
MbufPutColor() for more details.

See also MbufPut(), MbufPut2d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier
long OffX; X pixel offset relative to destination buffer origin
long SizeX; Width of destination buffer area in which to put

data
void *UserArrayPtr; Source user array

MbufPut2d 187

MbufPut2d

Synopsis Put data from a user-supplied array into a 2d area of a buffer.

Format void MbufPut2d(DestBufId, OffX, OffY, SizeX, SizeY, UserArrayPtr)

Description This function copies data from a user-supplied array to a two-dimensional
area of the specified MIL destination buffer.

The DestBufId parameter specifies the identifier of the destination buffer.

The OffX and OffY parameters specify the horizontal and vertical pixel
offsets of the destination buffer area in which to put the data, relative to
the destination buffer’s top-left pixel.

The SizeX and SizeY parameters specify the width and height of the
destination buffer area in which to copy the data (starting from the specified
offsets OffX and OffY).

The UserArrayPtr parameter specifies the address of the user array from
which to copy data into the destination buffer. Ensure that there are enough
entries in the user array to fill the specified destination buffer area.
MbufPut2d() assumes that the array is of the same data type as the
destination buffer.

Note, for multi-band buffers, MbufPut2d() behaves like
MbufPutColor(DestBufId, M_PLANAR, M_ALL_BAND, UserArrayPtr), but
puts the data in the specified two-dimensional region. Refer to
MbufPutColor() for more details.

See also MbufPut(), MbufPut1d(), MbufPutColor(), MbufGet(), MbufGet1d(),
MbufGet2d(), MbufGetColor()

MIL_ID DestBufId; Destination buffer identifier
long OffX; X pixel offset relative to destination buffer origin
long OffY; Y pixel offset relative to the destination buffer

origin
long SizeX; Width of destination buffer area in which to put

data
long SizeY; Height of destination buffer area in which to put

data
void *UserArrayPtr; Source user array

188 MbufRestore

MbufRestore

Synopsis Restore data from a file into an automatically allocated data buffer.

Format MIL_ID MbufRestore(FileName, SystemId, BufIdPtr)

Description This function restores the data from the specified file and loads it into an
automatically allocated buffer. It tries to detect the file format from the data.
If the file is in a M_MIL file format, the buffer is allocated with the same
attributes as the original buffer, with the exception of M_IMAGE buffers.

In the case of an M_IMAGE type buffer, the MbufRestore() function tries
to allocate the buffer so that it can be used for acquisition (M_GRAB), display
(M_DISP), and processing (M_PROC) operations. If there is insufficient
appropriate memory to allocate such a buffer, this function tries to allocate
one that can be used in all of the above operations except for acquisition
(M_GRAB). If it is still unsuccessful, it tries to remove the M_DISP attribute,
then the M_PROC attribute, leaving the buffer with the M_IMAGE attribute
only. If it still cannot allocate the image buffer, it generates an error. If this
happens, you can use MbufLoad() to load the image in a previously
allocated buffer.

When restoring an image file that was saved with an associated LUT (color
palette), the LUT is also restored and associated with the restored image
buffer. You can obtain the identifier of the associated LUT, using
MbufInquire().

After restoring a buffer, we recommend that you check that the operation
was successful by using MappGetError() or by checking that the buffer
identifier returned is not M_NULL.

Note, you can perform the same operation as MbufRestore() by using
MbufImport(), which uses the specified file format to restore the data
instead of trying to determine the format from the data.

The FileName parameter specifies the name of the file from which to
restore the data buffer.

char *FileName; Source file name
MIL_ID SystemId; System identifier
MIL_ID *BufIdPtr; Storage location for MIL buffer identifier

MbufRestore 189

The SystemId parameter specifies the system on which the MIL buffer will
be allocated. This parameter must be given a valid system identifier or can
be set to M_DEFAULT_HOST. In the latter case, the default Host system of
the current MIL application is used. You can also specify M_DEFAULT, in
which case MIL selects the most appropriate system on which to allocate
the buffer (either the Host system or any currently allocated system).

The BufIdPtr parameter specifies the address of the variable in which the
buffer identifier is to be written. Since the MbufRestore() function also
returns the buffer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Note Under MIL-Lite, dedicated hardware is required to restore compressed
images. This is not a restriction under MIL.

Return value The returned value is the buffer identifier. If allocation fails, M_NULL is
returned.

See also MbufLoad(), MbufSave(), MbufExport(), MbufImport(), MbufInquire(),
MbufControl()

190 MbufSave

MbufSave

Synopsis Save a data buffer in a file, using the MIL output file format.

Format void MbufSave(FileName, BufId)

Description This function saves a previously allocated data buffer in a file, using the
MIL output file format (a regular TIFF file format with extra information
included in the comment field). The buffer attributes and data type are also
saved in the file.

When saving an image buffer (M_IMAGE) that has an associated LUT buffer
(color palette), the content of the LUT is also saved with the image.

Note, you can perform the same operation as MbufSave() by using
MbufExport() with its FileFormatBufId parameter set to M_MIL.

The FileName parameter specifies the name of the file in which to save the
data buffer. If this file already exists, it will be overwritten.

The BufId parameter specifies the identifier of the data buffer to save.

Note This function is optimized for packed binary buffers.

See also MbufLoad(), MbufRestore(), MbufExport(), MbufImport(), MbufControl()

char *FileName; Destination file name
MIL_ID BufId; Source buffer

McalAlloc 191

McalAlloc

Synopsis Allocate a calibration object.

Format MIL_ID McalAlloc(Mode, ModeFlag, CalibrationIdPtr)

Description This function allocates a calibration object. Use McalGrid() or McalList()
to define the pixel-to-world mapping for the calibration object.

The Mode parameter specifies the default calibration mode. It can be set to:

The ModeFlag parameter specifies the function’s operation flag. This
parameter must be set to M_DEFAULT.

The CalibrationIdPtr parameter specifies the address in which to return
the identifier of the calibration object. Since McalAlloc() also returns the
identifier, you can set this parameter to M_NULL.

Return value The returned value is the identifier of the calibration object if the operation
was successful; M_NULL if the operation failed.

Example mcalib.c

See also McalGrid(), McalList()

long Mode; Operation mode
long ModeFlag; Operation flag
MIL_ID *CalibrationIdPtr; Address of calibration object identifier

M_LINEAR_INTERPOLATION Piecewise linear interpolation.
M_PERSPECTIVE_TRANSFORMATION Perspective transformation.
M_DEFAULT Same as

M_LINEAR_INTERPOLATION.

192 McalAssociate

McalAssociate

Synopsis Associate/disassociate a calibration object to/from an image or digitizer.

Format void McalAssociate(CalibrationId, ImageOrDigitizerId,
ControlFlag)

Description This function associates a calibration object to an image or digitizer. It can
also be used to disassociate a calibration object from an image or digitizer.
Note that you do not have to first disassociate a calibration object from an
image or digitizer in order to associate a different calibration object to it.

The calibration object gets associated to the image, not to the buffer
containing the image. This implies that if you copy or process the image,
the operation will copy the image’s calibration settings to the destination
image.

When you grab an image with a calibrated digitizer, the calibration object
currently associated to the digitizer gets associated to the grabbed image.

When you associate a calibration object to an image (either with a call to
McalAssociate() or a grab with a calibrated digitizer), the image receives
a copy of the calibration object’s current relative coordinate system and
current relative camera position and a reference to the calibration object for
all other settings. When you associate a calibration object to a digitizer, the
digitizer only receives a reference to the calibration object.

When a calibrated image is used within a MIL module, results from this
module can be returned in pixel units or in real-world units; use the
calibration object’s M_OUTPUT_COORDINATE_SYSTEM control to specify
your preference. This control is set by McalControl(). By default, this
control is set to return results in real-world units.

Note that a few results are always returned in pixel units. If a result can be
returned in either real-world or pixel units, it will be stated in the command
description.

The CalibrationId parameter specifies the identifier of the calibration
object you want to associate. To disassociate a calibration object from an
image or digitizer, set this parameter to M_NULL.

MIL_ID CalibrationId; Calibration object identifier
MIL_ID ImageOrDigitizerId; Image or digitizer identifier
long ControlFlag; Control flag

McalAssociate 193

The ImageOrDigitizerId parameter specifies the identifier of the image
or digitizer.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

Example mcalib.c

194 McalControl

McalControl

Synopsis Control a calibration object parameter setting.

Format void McalControl(CalibrationId, ControlType, ControlValue)

Description This function changes a setting of a calibration object.

The CalibrationId parameter specifies the identifier of the calibration
object.

The ControlType parameter specifies the setting to change, while the
ControlValue parameter specifies its new value. The table below lists those
settings that can be changed and their allowable values.

Example mcalib.c

MIL_ID CalibrationId; Calibration object identifier
long ControlType; Setting to change
double ControlValue; New value

ControlType ControlValue Meaning
M_CAMERA_POSITION_X any value Relative X position of the

camera, in world units. (default
= origin)

M_CAMERA_POSITION_Y any value Relative Y position of the camera
in world units. (default = origin)

M_CAMERA_POSITION_Z M_NULL Relative Z position of the camera
in world units. (default = origin)

M_OUTPUT_COORDINATE_SYSTEM M_WORLD or M_PIXEL Coordinate system in which to
return results from operations
on calibrated images. The
default setting is M_WORLD.

M_FOREGROUND_VALUE M_FOREGROUND_WHITE,
M_FOREGROUND_BLACK,
or M_DEFAULT

Whether the grid’s circles, used
with McalGrid(), are lighter or
darker than the background.
M_DEFAULT automatically
determines the appropriate
setting.

M_TRANSFORM_CACHE M_ENABLE or M_DISABLE Whether to enable or disable a
cache used to accelerate the
McalTransformImage()
function. The default value is
M_ENABLE. Disabling the cache
saves memory but slows down
subsequent calls to
McalTransformImage().

McalFree 195

McalFree

Synopsis Free a calibration object.

Format void McalFree(CalibrationId)

Description This function frees a calibration object.

The CalibrationId parameter specifies the identifier of the calibration
object.

MIL_ID CalibrationId; Calibration object identifier

196 McalGrid

McalGrid

Synopsis Calibrate your imaging setup using a grid.

Format void McalGrid(CalibrationId, SrcImageBufId, GridOffsetX,
GridOffsetY, GridOffsetZ, RowNumber,
ColumnNumber, RowSpacing, ColumnSpacing,
Mode, ModeFlag)

Description This function uses an image of a user-defined grid of circles and the world
description of this grid to calibrate your imaging setup. The mapping is
stored with the specified calibration object.

To create an accurate (sub-pixel) mapping, your physical grid should meet
the following guidelines (at the working resolution):

■ The radius of the grid’s circles should range between 6 and 10 pixels.

■ The center-to-center distance between the grid’s circles should range from
18 to 32 pixels (22 pixels recommended).

■ The minimum distance between the edges of the circles should be 6 pixels.

■ The grid should be large enough to cover the area of the image from which
you want real-world results.

■ The grid image should have high contrast.

The CalibrationId parameter specifies the identifier of the calibration
object.

MIL_ID CalibrationId; Calibration object identifier
MIL_ID SrcImageBufId; Grid image identifier
double GridOffsetX; X offset
double GridOffsetY; Y offset
double GridOffsetZ; Z offset
long RowNumber; Number of rows
long ColumnNumber; Number of columns
double RowSpacing; Spacing between rows
double ColumnSpacing; Spacing between columns
long Mode; Operation mode
long ModeFlag; Operation flag

McalGrid 197

The SrcImageBufId parameter specifies the identifier of the image
containing the grid. This image must be 8- or 16-bit unsigned, with 1 or 3
bands.

The GridOffsetX, GridOffsetY, and GridOffsetZ parameters specify the
X, Y, and Z offset, respectively, from the top-left circle to the origin of the
real-world coordinate system. GridOffsetZ must be set to M_NULL.

The RowNumber and ColumnNumber parameters specify the number
of rows and columns, respectively, in the calibration grid. The minimum
number of rows or columns is 2.

The RowSpacing and ColumnSpacing parameters specify the number
of world units between rows and columns, respectively.

The Mode parameter specifies the calibration mode. It can be set to:

The ModeFlag parameter specifies the type of grid used. It can be set to:

To specify the orientation of the Y-axis, you can add one of the following to
the ModeFlag parameter.

Example mcalib.c

M_DEFAULT Use the mode selected at
allocation of the calibration
object.

M_LINEAR_INTERPOLATION Use piecewise linear
interpolation.

M_PERSPECTIVE_TRANSFORMATION Use perspective transformation.

M_CIRCLE_GRID Grid of circles.
M_DEFAULT Same as M_CIRCLE_GRID.

M_Y_AXIS_UP The positive Y-axis is orientated 90° counter-clockwise
with respect to the positive X-axis.

M_Y_AXIS_DOWN The positive Y-axis is orientated 90° clockwise with
respect to the positive X-axis (default).

198 McalInquire

McalInquire

Synopsis Inquire about a calibration object setting or about the calibration object
associated to an image or digitizer.

Format long McalInquire(CalibrationOrMilId, InquireType, UserVarPtr)

Description This function inquires about a setting of a calibration object. It can also be
used to inquire about the calibration object associated to an image or
digitizer.

The CalibrationOrMilId parameter specifies the identifier of the
calibration object, image, or digitizer.

The InquireType parameter specifies the setting about which to inquire.
The setting for InquireType depends on whether you are inquiring about
a calibration object, calibrated image, or calibrated digitizer.

For a calibration object, InquireType can be set to:

MIL_ID CalibrationOrMilId; Calibration object, image, or digitizer
identifier

long InquireType; Setting to inquire about
void *UserVarPtr; Address of return value

InquireType Description
M_CAMERA_POSITION_X Relative X position of the

camera.
M_CAMERA_POSITION_Y Relative Y position of the

camera.
M_CAMERA_POSITION_Z Relative Z position of the

camera.
M_OUTPUT_COORDINATE_SYSTEM Coordinate system used to

return results.
M_RELATIVE_ORIGIN_X X-coordinate of the origin of the

relative coordinate system.
M_RELATIVE_ORIGIN_Y Y-coordinate of the origin of the

relative coordinate system.
M_RELATIVE_ORIGIN_Z Z-coordinate of the origin of the

relative coordinate system.
M_RELATIVE_ORIGIN_ANGLE Angle, in degrees, at which the

relative coordinate system is
orientated.

McalInquire 199

M_TRANSFORM_CACHE Whether the cache used to
accelerate,
McalTransformImage() is
enabled or disabled.

M_PIXEL_SIZE_X Average pixel size in the X
direction.

M_PIXEL_SIZE_Y Average pixel size in the Y
direction.

M_ASPECT_RATIO Average aspect ratio.
M_CALIBRATION_SUCCESSFUL Whether the last call to

McalGrid() or McalList() was
successful (M_TRUE or
M_FALSE).

M_NUMBER_OF_CALIBRATION_POINTS Number of calibration points
found by McalGrid() or passed
to McalList().

M_CALIBRATION_MODE Calibration mode:
M_LINEAR_INTERPOLATION or
M_PERSPECTIVE_TRANSFORMATIO
N.

M_CALIBRATION_IMAGE_POINTS_X X coordinates of the image
points.*

M_CALIBRATION_IMAGE_POINTS_Y Y coordinates of the image
points.*

M_CALIBRATION_WORLD_POINTS_X X coordinates of the real-world
points.*

M_CALIBRATION_WORLD_POINTS_Y Y coordinates of the real-world
points.*

* These settings can be used to determine whether the image points were
correctly mapped to their real-world points. The user array should be
large enough to hold the total number of points. You can inquire about the
number of points using M_NUMBER_OF_CALIBRATION_POINTS.

The following settings only apply if McalGrid() was used to perform the
calibration.
M_GRID_ORIGIN_X X-coordinate of the position

within the absolute coordinate
system associated to the circle in
the top-left corner of the grid
image.

200 McalInquire

For a calibrated image or digitizer, InquireType can be set to:

M_GRID_ORIGIN_Y Y-coordinate of the position
within the absolute coordinate
system associated to the circle in
the top-left corner of the grid
image.

M_GRID_ORIGIN_Z Z-coordinate of the position
within the absolute coordinate
system associated to the circle in
the top-left corner of the grid
image.

M_ROW_NUMBER Number of rows in the
calibration grid.

M_COLUMN_NUMBER Number of columns in the
calibration grid.

M_ROW_SPACING Number of world units between
rows.

M_COLUMN_SPACING Number of world units between
columns.

M_FOREGROUND_VALUE Whether the grid circles are
lighter or darker than the
background.

The following settings only apply to an
M_PERSPECTIVE_TRANSFORMATION calibration.
M_AVERAGE_PIXEL_ERROR Average calibration error, in

pixels.
M_AVERAGE_WORLD_ERROR Average calibration error, in

world units.
M_MAXIMUM_PIXEL_ERROR Maximum calibration error, in

pixels.
M_MAXIMUM_WORLD_ERROR Maximum calibration error, in

world units.

InquireType Description
M_ASSOCIATED_CALIBRATION Identifier of its associated calibration

object.
M_CORRECTION_STATE Whether the image has been physically

corrected using
McalTransformImage() (M_TRUE or
M_FALSE).

McalInquire 201

The UserVarPtr parameter specifies the address in which to return the
value of the inquired setting. By default, the value is returned as type
double. To have it returned as a different type, add one of the following to
the InquireType parameter.

Since McalInquire() also returns the value of the inquired setting, you can
set UserVarPtr to M_NULL.

Return value The returned value is the value of the inquired setting, cast to long.

M_TYPE_CHAR Return as type char.
M_TYPE_SHORT Return as type short.
M_TYPE_LONG Return as type long.
M_TYPE_FLOAT Return as type float.
M_TYPE_DOUBLE Return as type double (default).

202 McalList

McalList

Synopsis Calibrate your imaging setup using a list of coordinates.

Format void McalList(CalibrationId, XPixArray, YPixArray, XWorldArray,
YWorldArray, ZWorld, NumPoint, Mode,
ModeFlag)

Description This function uses a list of pixel coordinates and their associated world
coordinates to calibrate your imaging setup. The mapping is stored with the
specified calibration object.

The CalibrationId parameter specifies the identifier of the calibration
object.

The XPixArray and YPixArray parameters specify the addresses of the
arrays containing the X and Y pixel coordinates.

The XWorldArray and YWorldArray parameters specify the addresses of
the arrays containing the X and Y world coordinates.

The ZWorld parameter specifies the Z world coordinate. This parameter
must be set to M_NULL.

The NumPoint parameter specifies the number of coordinates in the
supplied arrays. For a piecewise linear interpolation calibration mode, the
minimum number of coordinates is 3. For a perspective transformation
calibration mode, the minimum number of coordinates is 4. Note, the
specified pixel coordinates should cover the area of the image from which
you want real-world coordinates (the working area).

MIL_ID CalibrationId; Calibration object identifier
double *XPixArray; X pixel coordinates
double *YPixArray; Y pixel coordinates
double *XWorldArray; X world coordinates
double *YWorldArray; Y world coordinates
double *ZWorld; Z world coordinate
long NumPoint; Number of coordinates
long Mode; Operation mode
long ModeFlag; Operation flag

McalList 203

The Mode parameter specifies the calibration mode. It can be set to:

The ModeFlag parameter specifies the function’s operation flag. This
parameter must be set to M_DEFAULT.

M_DEFAULT Use the mode selected at
allocation of the calibration
object.

M_LINEAR_INTERPOLATION Use piecewise linear
interpolation.

M_PERSPECTIVE_TRANSFORMATION Use perspective transformation.

204 McalRelativeOrigin

McalRelativeOrigin

Synopsis Change the origin and/or orientation of a relative coordinate system.

Format void McalRelativeOrigin(CalibrationId, XOffset, YOffset, ZOffset,
AngularOffset, ControlFlag)

Description This function changes the origin and/or orientation of a calibration object’s
relative coordinate system.

Note that real-world positional results are returned in the relative
coordinate system.

The CalibrationId parameter specifies the identifier of the calibration
object.

The XOffset, YOffset, and ZOffset parameters specify the X, Y, and Z
offsets, respectively, from the absolute coordinate system origin to the
relative coordinate system origin. The ZOffset parameter must be set to
M_NULL.

The AngularOffset parameter specifies the angle, in degrees, at which to
orient the relative coordinate system. This angle is taken at a
counter-clockwise direction relative to the X-axis of the absolute coordinate
system.

Note that setting the XOffset, YOffset, ZOffset, and AngularOffset
parameters to 0 has the effect of resetting the relative coordinate system to
that of the absolute coordinate system.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

MIL_ID CalibrationId; Calibration object identifier
double XOffset; X offset
double YOffset; Y offset
double ZOffset; Z offset
double AngularOffset; Angular offset
long ControlFlag; Control flag

McalRestore 205

McalRestore

Synopsis Restore a calibration object from a file.

Format MIL_ID McalRestore(FileName, ControlFlag, CalibrationIdPtr)

Description This function restores a calibration object from a file and assigns it an
identifier.

The FileName parameter specifies the name of the file containing the
calibration object.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

The CalibrationIdPtr parameter specifies the address in which to return
the identifier of the calibration object. Since McalRestore() also returns
the identifier, you can set this parameter to M_NULL.

Return value The returned value is the identifier of the calibration object if the operation
was successful; M_NULL if the operation failed.

char *FileName; File name
long ControlFlag; Control flag
MIL_ID *CalibrationIdPtr; Address of calibration object identifier

206 McalSave

McalSave

Synopsis Save a calibration object to a file.

Format void McalSave(FileName, CalibrationId, ControlFlag)

Description This function saves a calibration object to a file.

The FileName parameter specifies the name of the file in which to save the
calibration object. If the file contains any data, it is overwritten.

The CalibrationId parameter specifies the calibration object to save.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

char *FileName; File name
MIL_ID CalibrationId; Calibration object identifier
long ControlFlag; Control flag

McalTransformCoordinate 207

McalTransformCoordinate

Synopsis Convert coordinates between their world and pixel values.

Format void McalTransformCoordinate(CalibrationOrMilId,
ResultType, X, Y, ResXPtr,
ResYPtr)

Description This function converts a pair of coordinates from their pixel value to their
world value (or vice versa). The conversion can be performed according to a
calibration object, calibrated image, or corrected image.

Note that, if you changed the origin and/or orientation of the relative
coordinate system (using McalRelativeOrigin()), world coordinates will
be returned, or assumed to be given, in this relative coordinate system.

The CalibrationOrMilId parameter specifies the identifier of the
calibration object, calibrated image, or corrected image.

Note that, to convert coordinates from a child image, you must set the
CalibrationOrMilId parameter to the identifier of the corresponding child
buffer.

The ResultType parameter specifies whether to perform a pixel-to-world
or world-to-pixel conversion. It can be set to:

The X and Y parameters specify the X and Y coordinates, respectively, of
the input.

The ResXPtr and ResYPtr parameters specify the addresses in which to
place the X and Y coordinates, respectively, of the output.

See also McalTransformResult()

MIL_ID CalibrationOrMilId; Calibration object or image identifier
long ResultType; Type of conversion
double X; X coordinate of input
double Y; Y coordinate of input
double *ResXPtr; Address of output’s X coordinate
double *ResYPtr; Address of output’s Y coordinate

M_PIXEL_TO_WORLD Convert from pixel to world.
M_WORLD_TO_PIXEL Convert from world to pixel.

208 McalTransformImage

McalTransformImage

Synoposis Physically transform an image to remove any distortions.

Format void McalTransformImage(SrcImageBufId, DestImageBufId,
CalibrationId, InterpolationMode,
OperationType, ControlFlag)

Description This function removes distortions in an image by physically tranforming it
according to a specified calibration object.

The image is transformed such that:

■ It has an aspect ratio of 1.

■ Its relative coordinate system is aligned with its image coordinate system.

■ All of its pixels fit in the destination image, in accordance with the above
two points.

Note that an image can only be transformed once. If you pass a transformed
image to McalTransformImage(), it will just be copied to the destination
image.

The SrcImageBufId parameter specifies the identifier of the source image
buffer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer. This buffer should be at least as large as the source image, so
that it has at least the same number of pixels to represent all the information
in the source image.

The CalibrationId parameter specifies the identifier of the calibration
object.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
MIL_ID CalibrationId; Calibration object identifier
long InterpolationMode; Interpolation mode
long OperationType; Operation type
long ControlFlag; Control flag

McalTransformImage 209

The InterpolationMode parameter specifies the type of interpolation to
perform when associating destination pixels to source points. It can be set to:

To specify how to determine the value of a destination pixel when its
associated point falls outside the source buffer, you can add one of the
following defines to the InterpolationMode parameter. The default is
M_OVERSCAN_DISABLE.

The OperationType parameter specifies the function’s operation type.
This parameter must be set to M_DEFAULT.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

Example mcalib.c

M_DEFAULT Same as M_NEAREST_NEIGHBOR.
M_NEAREST_NEIGHBOR Nearest-neighbor interpolation.
M_BILINEAR Bilinear interpolation.
M_BICUBIC Bicubic interpolation.

M_OVERSCAN_ENABLE If the associated point falls outside the source
buffer, use pixels from the source buffer’s
ancestor buffer. If the source buffer is not a
child buffer or if the associated point falls
outside the ancestor buffer, leave the
destination pixel as is.

M_OVERSCAN_DISABLE If the associated point falls outside the source
buffer, leave the destination pixel as is.

M_OVERSCAN_CLEAR If the associated point falls outside the source
buffer, set the destination pixel to 0.

210 McalTransformResult

McalTransformResult

Synopsis Convert a result between its world and pixel value.

Format void McalTransformResult(CalibrationOrMilId, TransformType,
ResultType, Result, ResResult)

Desription This function converts a specific result (a length, area, or angle) from its
pixel-to-world value or from its world-to-pixel value. The conversion can be
performed according to a calibration object, calibrated image, or corrected
image. However, since this function uses the average pixel size to perform
the conversion, results will be more accurate if you use a corrected image.

The CalibrationOrMilId parameter specifies the identifier of the
calibration object, calibrated image, or corrected image.

The TransformType parameter specifies whether to perform a
pixel-to-world or world-to-pixel conversion. It can be set to:

The ResultType parameter specifies the type of result the given input
value represents. It can be set to:

MIL_ID CalibrationOrMilId; Calibration object or buffer identifier
long TransformType; Type of transform
long ResultType; Type of result
double Result; Input value
double *ResResult; Output value

M_PIXEL_TO_WORLD Convert from pixel to world.
M_WORLD_TO_PIXEL Convert from world to pixel.

M_LENGTH The given value represents a length (for example, the
perimeter of an object).

M_LENGTH_X The given value represents a length in the X direction
only.

M_LENGTH_Y The given value represents a length in the Y direction
only.

M_AREA The given value represents an area.
M_ANGLE The given value represents an angle.

McalTransformResult 211

The Result parameter specifies the input value.

The ResResult parameter specifies the address in which to place the output
value.

See also McalTransformImage(), McalTransformCoordinate()

212 McodeAlloc

McodeAlloc

Synopsis Allocate a code object.

Format MIL_ID McodeAlloc(SystemId, CodeType, ControlFlag, CodeIdPtr)

Description This function allocates a code object. A code object is used to read or write
a specific type of code. The control settings of the code object can be set using
McodeControl().

The SystemId parameter specifies the system on which to allocate the
object. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the object (it can be the Host or any already allocated system).

The CodeType parameter specifies the type of code to read or write. It can
be set to one of the following.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

The CodeIdPtr parameter specifies the address in which to return the
identifier of the code object. Since the function also returns the identifier,
this parameter can be set to M_NULL.

MIL_ID SystemId; System identifier
long CodeType; Type of code
long ControlFlag; Control flag
MIL_ID *CodeIdPtr; Storage location for code identifier

M_DATAMATRIX DataMatrix code (2D).
M_EAN13 EAN-13 code.
M_CODE39 Code 39.
M_INTERLEAVED25 Interleaved code.
M_CODE128 Code 128.
M_CODABAR Codabar.
M_BC412 BC412.
M_PDF417 PDF417 (2D).

McodeAlloc 213

Return value The returned value is the identifier of the code object if the allocation was
successful; M_NULL if allocation failed.

Example mcode.c

See also McodeFree()

214 McodeControl

McodeControl

Synopsis Control a code object.

Format void McodeControl(CodeId, ControlType, ControlValue)

Description This function changes a setting of a specified code object.

The CodeId parameter specifies the identifier of the code object.

The ControlType parameter specifies the setting to change while the
ControlValue parameter specifies its new value. The table below lists those
settings that can be changed and their allowable values. The R and W
columns indicate with an “X” whether the control types apply to
McodeRead() (R) and/or McodeWrite() (W) operations.

MIL_ID CodeId; Code identifier
long ControlType; Setting to change
double ControlValue; New value

ControlType ControlValue Description R W

M_SEARCH_ANGLE 0.0 – 360.0 or M_DEFAULT Search at the specified angle.
M_DEFAULT is equivalent to
0.0.

X

M_SEARCH_ANGLE_DELTA_NEG 0.0 – 180.0 or M_DEFAULT Negative angle range of the
search.
M_DEFAULT is equivalent to
5.0. *

X

M_SEARCH_ANGLE_DELTA_POS 0.0 – 180.0 or M_DEFAULT Positive angle range of the
search.
M_DEFAULT is equivalent to
5.0. *

X

* The search is performed between the range of angles defined by:
(M_SEARCH_ANGLE - M_SEARCH_ANGLE_DELTA_NEG) to
(M_SEARCH_ANGLE + M_SEARCH_ANGLE_DELTA_POS)

McodeControl 215

M_CELL_SIZE_MIN 1... n or M_DEFAULT Minimum cell size, in pixels.
For a read operation,
M_DEFAULT is equivalent to
1. For a write operation,
M_DEFAULT causes the code
to be resized so as to just fit
into the source image of the
operation.

X X

M_CELL_SIZE_MAX 1...n or M_DEFAULT Maximum cell size, in pixels.
M_DEFAULT automatically
selects an appropriate value.

X

M_CELL_NUMBER_X 1... n or M_ANY Number of cells in the X
direction of a 2-D code.
M_ANY (the default setting)
searches for code with any
number of cells.

X X

M_CELL_NUMBER_Y 1... n or M_ANY Number of cells in the Y
direction of a 2-D code.
M_ANY (the default setting)
searches for code with any
number of cells.

X X

* The cell number is only used for 2-dimensional symbology (M_DATAMATRIX and M_PDF417
type codes), not for bar codes.

M_SPEED M_VERY_LOW, M_LOW,
M_MEDIUM, M_HIGH, or
M_VERY_HIGH

Search speed. The faster the
search speed, the less robust
the read operation. The
default setting is
M_MEDIUM.

X

M_THRESHOLD any value or M_DEFAULT Threshold value.
M_DEFAULT automatically
selects the best threshold
value.

X

M_STRING_SIZE any value or M_DEFAULT Size of string for which to
search. M_DEFAULT searches
for any size.

X

ControlType ControlValue Description R W

216 McodeControl

M_ERROR_CORRECTION Type of error correction. The possible values depend on the
code type:

■ M_DATAMATRIX: M_ECC_NONE, M_ECC_050, M_ECC_080,
M_ECC_100, M_ECC_140, M_ECC_200, or M_ANY
(automatically detect the error correction type; valid for write

operations with M_PDF417 type codes only).

■ M_EAN13: M_ECC_CHECK_DIGIT only

■ M_CODE39: M_ECC_NONE or M_ECC_CHECK_DIGIT

■ M_INTERLEAVED: M_ECC_NONE or
M_ECC_CHECK_DIGIT

■ M_CODE128: M_ECC_CHECK_DIGIT only

■ M_CODABAR: M_ENC_NONE only

■ M_BC412: M_ENC_NONE only

■ M_PDF417: M_REED_SOLOMON_1 through
M_REED_SOLOMON_8 type error correction, or M_ANY.

X X

M_ENCODING Type of encoding. The possible values depend on the code
type:

■ M_DATAMATRIX: M_ENC_NUM, M_ENC_ALPHA,
M_ENC_ALPHANUM, M_ENC_ALPHANUM_PUNC,
M_ENC_ASCII, M_ENC_ISO8, or M_ANY* (automatically
detect the encoding type)

■ M_EAN13: M_ENC_NUM only

■ M_CODE39: M_ENC_STANDARD or M_ENC_ASCII

■ M_INTERLEAVED25: M_ENC_NUM only

■ M_CODE128: M_ENC_ASCII only

■ M_CODABAR: M_ENC_STANDARD only.

■ M_BC412: M_ENC_STANDARD only.

■ M_PDF417: M_ENC_STANDARD only.

* M_ANY is not a valid setting for a write operation.

X X

ControlType ControlValue Description R W

McodeControl 217

Example mcode.c

See also McodeInquire()

M_DOT_SPACING Distance, in pixels, between 2 dots in a matrix code
composed of dots.

X

M_FOREGROUND_VALUE M_FOREGROUND_WHITE or
M_FOREGROUND_BLACK

Color of the code. The default
setting is
M_FOREGROUND_BLACK.

X X

ControlType ControlValue Description R W

218 McodeFree

McodeFree

Synopsis Free a code object.

Format void McodeFree(CodeId)

Description This function frees a code object.

The CodeId parameter specifies the identifier of the code object.

MIL_ID CodeId; Code identifier

McodeGetResult 219

McodeGetResult

Synopsis Get a result from a read or write operation.

Format void McodeGetResult(CodeId, ResultType, ResultPtr)

Description This function retrieves a result from a read or write operation.

The CodeId parameter specifies the identifier of the code object used in the
read or write operation.

The ResultType parameter specifies the type of result to retrieve. It can
be set to:

MIL_ID CodeId; Code identifier
long ResultType; Type of result
void *ResultPtr; Address of array

M_STATUS Status of a read/write operation. For a read
operation, possible return values are
M_STATUS_OK, M_STATUS_CRC_FAILED,
M_STATUS_ECC_UNKNOWN,
M_STATUS_ENC_UNKNOWN or
M_STATUS_NOT_FOUND. For a write
operation, possible return values are
M_STATUS_WRITE_OK or
M_STATUS_WRITE_FAILED.

M_SCORE Confidence score of a read operation.
M_STRING_SIZE Length of the decoded string.
M_STRING Decoded string. (The size required for the

result array can first be determined using
M_STRING_SIZE).

M_ANGLE Angle at which the code was read.
M_CELL_SIZE Cell size of the code that was read.
M_CELL_NUMBER_X Number of cells in the x direction of a 2-D

code.
M_CELL_NUMBER_Y Number of cells in the y direction of a 2-D

code.
M_THRESHOLD Threshold value used to internally binarize

the source image of a read operation.

220 McodeGetResult

The ResultPtr parameter specifies the address of the array in which to
place the specified result. By default, the result is returned as type double.
To have it returned as type long, add M_TYPE_LONG to the
ParamToInquire parameter.

Example mcode.c

M_ERROR_CORRECTION Type of error correction. Possible return
values are those listed by McodeControl(),
as well as M_ECC_UNKNOWN (unknown
error correction type).

M_ENCODING Type of encoding. Possible return values are
those listed by McodeControl(), as well as
M_ENC_UNKNOWN (unknown encoding
type).

M_WRITE_SIZE_X Minimum width required for the destination
image of a write operation.

M_WRITE_SIZE_Y Minimum height required for the
destination image of a write operation.

McodeInquire 221

McodeInquire

Synopsis Inquire about a code object setting.

Format void McodeInquire(CodeId, InquireType, UserVarPtr)

Description This function inquires about a setting of a specified code object.

The CodeId parameter specifies the identifier of the code object.

The InquireType parameter specifies the setting about which to inquire.
It can be set to one of the settings listed below. See McodeControl() or
McodeAlloc() for the possible return values.

The UserVarPtr parameter specifies the address in which to return the
value of the inquired setting. By default, the value is returned as type
double. To have it returned as type long, add M_TYPE_LONG to UserVarPtr.

MIL_ID CodeId; Code object identifier
long InquireType; Setting to inquire about
void *UserVarPtr; Address of return value

M_CODE_TYPE Type of code.
M_DOT_SPACING Distance, in pixels, between 2 dots.

M_SEARCH_ANGLE Angle at which to search.
M_SEARCH_ANGLE_DELTA_POS Positive angle range of the search.
M_SEARCH_ANGLE_DELTA_NEG Negative angle range of the search.
M_CELL_SIZE_MIN Minimum cell size, in pixels.
M_CELL_SIZE_MAX Maximum cell size, in pixels.
M_CELL_NUMBER_X Number of cells in the x direction of a

DataMatrix code.
M_CELL_NUMBER_Y Number of cells in the y direction of a

DataMatrix code.
M_SPEED Search speed.
M_THRESHOLD Threshold value used to internally

binarize the source image of a read
operation.

M_STRING_SIZE Size of string for which to search.
M_ERROR_CORRECTION Type of error correction.
M_ENCODING Type of encoding.
M_FOREGROUND_VALUE Color of the code.

222 McodeInquire

For a given code object and string, you can inquire about the minimum
buffer size required by first calling McodeWrite() with ImageBufId set to
M_NULL and then calling McodeGetResult() to retrieve the minimum
width (M_WRITE_SIZE_X) and height (M_WRITE_SIZE_Y) required for the
image.

See also McodeControl()

McodeRead 223

McodeRead

Synopsis Read a specific type of code in an image.

Format void McodeRead(CodeId, ImageBufId, ControlFlag)

Description This function searches for a specific type of code in an image. The control
settings of the specified code object determine how to perform the operation.
Retrieve results using McodeGetResult().

The CodeId parameter specifies the identifier of the code object.

The ImageBufId parameter specifies the image buffer in which to search.
This buffer must be 8-bit unsigned.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

Before performing a read operation, certain controls might have to be set in
McodeControl(), specifically:

Example mcode.c

See also McodeGetResult(), McodeControl()

MIL_ID CodeId; Code object identifier
MIL_ID ImageBufId; Source image
long ControlFlag; Control flag

M_FOREGROUND_VALUE This control is essential for all code types,
and the image will not be decoded if the
foreground value is not correctly set.

M_ENCODING For code types where M_ANY is not sup-
ported.

M_ERROR_CORRECTION For code types where M_ANY is not sup-
ported.

M_CELL_NUMBER_X For M_PDF417, the cell size must be speci-
fied.

M_CELL_NUMBER_Y For M_PDF417, the cell size must be speci-
fied.

M_STRING_SIZE For M_BC412, the string size must be speci-
fied.

M_SEARCH_ANGLE
M_SEARCH_ANGLE_DELTA_NEG
M_SEARCH_ANGLE_DELTA_POS

If the code to read is not within 5 degrees
of the horizontal axis.

224 McodeWrite

McodeWrite

Synopsis Encode an ASCII string.

Format void McodeWrite(CodeId, ImageBufId, String, ControlFlag)

Description This function encodes a null-terminated string into an image. The control
settings of the specified code object determine how to perform the operation:

■ M_ENCODING specifies the type of encoding to use.

■ M_ERROR_CORRRECTION specifies the type of error correction.

■ M_CELL_SIZE_MIN specifies the cell size, in pixels, of a unit of the code.
If this setting is set to M_DEFAULT, the code will be resized so as to just
fit into the destination image.

■ M_CELL_NUMBER_X and M_CELL_NUMBER_Y will be used if specified. If
set to M_ANY, the cell numbers will be selected to minimize the code
written.

■ M_FOREGROUND_VALUE specifies the color (black or white) in which to
write the code.

The other control settings in the code object are ignored. Note that
M_ENCODING and M_ERROR_CORRECTION must be specified but cannot
be set to M_ANY for a write operation, except for the M_PDF417 format
whereby the best suitable Reed Solomon level will be automatically selected
when performing error correction.

Results of a write operation can be retrieved using McodeGetResult().

The CodeId parameter specifies the identifier of the code object.

The ImageBufId parameter specifies the image buffer in which to write
the string. This buffer must be 8-bit unsigned. In addition, it should be large
enough to hold the encoded string. For a given code object and string, you
can inquire about the minimum buffer size required by first calling
McodeWrite() with ImageBufId set to M_NULL and then calling
McodeGetResult() to retrieve the minimum width (M_WRITE_SIZE_X) and
height (M_WRITE_SIZE_Y) required for the image.

MIL_ID CodeId; Code object identifier
MIL_ID ImageBufId; Destination image
char* String; Null terminated string
long ControlFlag; Control flag

McodeWrite 225

The String parameter specifies the address of the string.

The ControlFlag parameter specifies the function’s control flag. This
parameter must be set to M_DEFAULT.

See also McodeGetResult()

226 MdigAlloc

MdigAlloc

Synopsis Allocate a digitizer.

Format MIL_ID MdigAlloc(SystemId, DigNum, DataFormat, InitFlag,
 DigIdPtr)

Description This function allocates a digitizer on the specified system so that it can be
used by subsequent MIL digitizer functions.

A digitizer on the target system must be allocated in order to acquire data
from an input device.

Upon execution of this command, MIL ensures that the digitizer is present
before allocating it and generates an error if it is not.

The default input channel is determined by the selected input device data
format (generally, M_CH0). Some digitizers have multiple input channels.
You can switch to another channel by using MdigChannel().

When you have completely finished using a digitizer, you should free it,
using MdigFree().

The SystemId parameter specifies the identifier of the system on which the
digitizer will be allocated. This parameter must be given a valid system
identifier.

The DigNum parameter specifies the number (or rank) of the digitizer that
is required. This parameter can be set to one of the following:

The DataFormat parameter specifies the name of the data format or the
name of the file in which the data format of the input device can be found.
Depending on the target system, different data formats can be supported.

MIL_ID SystemId; System identifier
long DigNum; Digitizer number
char *DataFormat; Data format name or file name
long InitFlag; Initialization flag
MIL_ID *DigIdPtr; Storage location for digitizer identifier

M_DEFAULT Default digitizer (the same as M_DEV0).
M_DEV0 The first digitizer on the specified system.
... The nth digitizer on the specified system.
M_DEV15 The sixteenth digitizer on the specified system.

MdigAlloc 227

See the appendix in this manual that applies to your specific board, the
read.me file of the MIL drivers, or the user guide of your specific board for
the valid values. This parameter can also be set to M_CAMERA_SETUP,
which indicates to MIL to use the camera format specified in the milsetup.h
file.

The InitFlag parameter specifies the type of initialization you want to
perform on the digitizer. This parameter should be set to M_DEFAULT.

The DigIdPtr parameter specifies the address of the variable in which the
digitizer identifier is to be written. Since the MdigAlloc() function also
returns the digitizer identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the digitizer identifier. If allocation fails, M_NULL is
returned.

See also MdigFree(), MappAllocDefault()

228 MdigChannel

MdigChannel

Synopsis Select the active input channel of a digitizer.

Format void MdigChannel(DigId, Channel)

Description This function selects the active input channel (if any) for the specified
digitizer. If the digitizer does not have the specified channel, an error is
generated and the last selected channel remains effective. The default
channel is the one specified in the data format selected upon digitizer
allocation, using MdigAlloc().

The DigId parameter specifies the identifier of the digitizer.

The Channel parameter specifies the channel on which the digitizer is to
input data (signal and sync). This parameter can be set to one of the
following values, depending on the number of channels available for the
specified digitizer’s data format.

If your digitizer has only one channel that supports the selected data format,
Channel can only be set to M_DEFAULT.

To select a sync channel only, add M_SYNC to the required channel (M_CH...)
parameter (for example, M_CH0+M_SYNC).

To select a signal channel only, add M_SIGNAL to the required channel
(M_CH...) parameter (for example, M_CH0+M_SIGNAL).

See also MdigAlloc()

MIL_ID DigId; Digitizer identifier
long Channel; Input channel

M_DEFAULT Corresponds to the default channel for the specified
digitizer data format or M_CH0.

M_CH0 Channel 0
M_CH1 Channel 1
M_CH2 Channel 2
M_CH3 Channel 3
M_RGB RGB input source (if present). The RGB signal is on

channels 0, 1, and 2. The sync is on channel 3. This
selection can be used only for RGB input.

MdigControl 229

MdigControl

Synopsis Control the specified digitizer feature.

Format void MdigControl(DigId, ControlType, ControlValue)

Description This function allows you to control various digitizer settings.

The DigId parameter specifies the identifier of the digitizer.

The ControlType and ControlValue parameters specify, respectively, the
digitizer feature to control and the value to assign to the digitizer feature.

MIL_ID DigId; Digitizer identifier
long ControlType; Control Type
double ControlValue; Control value

ControlType Description & ControlValue
M_GRAB_SCALE Control the vertical and horizontal scaling factor when

grabbing data with MdigGrab() or
MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).
For example, if
ControlValue is set to 0.5,
the source image height and
width are reduced by a
factor of two.

M_FILL_DESTINATION The scaling factor is
calculated to fill the
destination buffer, if the
hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab is scaled to fit the size
of the display, if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

230 MdigControl

M_GRAB_SCALE_X Control the horizontal scaling factor when grabbing data
with MdigGrab() or MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).

M_FILL_DESTINATION The scaling factor is
calculated to fill the width
of the destination buffer, if
the hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab width is scaled to fit
the size of the display, if the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

M_GRAB_SCALE_Y Control the vertical scaling factor when grabbing data with
MdigGrab() or MdigGrabContinuous().
Values of 0.25, 0.5, and 1.0 are
typically supported

The ControlValue
specifies the scaling factor
(reduction or enlargement).

M_FILL_DESTINATION The scaling factor is
calculated to fill the height
of the destination buffer, if
the hardware supports it.

M_FILL_DISPLAY The scaling factor is 1, but
during a continuous grab
operation with the buffer
selected on the display, the
grab height is scaled to fit
the size of the displayif the
hardware supports it.
Therefore, this only affects
the copy of the destination
buffer in display memory.

M_GRAB_WINDOW_RANGE Limit the range of pixel values between 10 and 245:
M_ENABLE or M_DISABLE.

M_SOURCE_OFFSET_X Set the X offset of the input signal capture window.
M_SOURCE_OFFSET_Y Set the Y offset of the input signal capture window.
M_SOURCE_SIZE_X Set the width of the input signal capture window.
M_SOURCE_SIZE_Y Set the height of the input signal capture window.

ControlType Description & ControlValue

MdigControl 231

M_GRAB_MODE Control the synchronization when grabbing data with
MdigGrab().
M_SYNCHRONOUS
(default)

Synchronize your
application with the end of
a grab operation (that is,
wait until a grab has
finished before returning
from the grab command).

M_ASYNCHRONOUS Do not synchronize your
application with the end of
a grab operation, but return
immediately after initiating
the start of a grab. This
allows other operations to
be performed while waiting
for MdigGrab() to be
executed. However, only one
MdigGrab() command can
be queued; a call to another
MdigGrab() before the
current grab has finished
will cause your application
to wait until the current
grab has finished.
Note, in this mode, you can
use MdigGrabWait() to
force your application to
wait until a grab that is in
progress has finished.

M_ASYNCHRONOUS_QUEUED Do not synchronize your
application with the end of
a grab operation, but return
immediately after initiating
the start of the grab. Queue
the grab on-board if another
grab is issued before the
first one has finished. This
allows other operations to
be performed while waiting
for the next MdigGrab() to
be executed, but in this case
more than one MdigGrab()
command can be queued.
See MIL/MIL-Lite Board
Specific Notes for
exceptions.

ControlType Description & ControlValue

232 MdigControl

M_GRAB_FIELD_NUM Control the number of fields to grab when grabbing data
with MdigGrab().

M_GRAB_FRAME_NUM Control the number of frames to grab when grabbing data
with MdigGrab().

M_GRAB_START_MODE Set the grab start mode to odd, even or any field:
M_FIELD_START_ODD, M_FIELD_START_EVEN
(M_DEFAULT), or M_FIELD_START.

M_GRAB_HALT_ON_NEXT_FIELD Stop grabbing at the end of the current field, rather than at
the end of the frame. M_ENABLE, M_DISABLE or
M_DEFAULT (same as M_DISABLE).

M_GRAB_TRIGGER_SOURCE Set the source of the grab trigger.
M_NULL The trigger is inactive.
M_DEFAULT Same as DCF file (if any) or

M_NULL.
M_SOFTWARE Use software trigger.
M_HARDWARE_PORT0 Use hardware trigger

connected to port 0 (the
most common connection
for analog). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT1 Use hardware trigger
connected to port 1 (the
most common connection
for digital). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT_CAMERA Use hardware trigger
connected to the same port
as the selected camera
(MIL-determined). See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HSYNC Trigger on each Hsync
signal.

M_VSYNC Trigger on each Vsync
signal.

M_TIMER1 Trigger on timer 1 signal.
M_TIMER2 Trigger on timer 2 signal.

ControlType Description & ControlValue

MdigControl 233

M_GRAB_TRIGGER_MODE Set the hardware trigger activation mode.
M_EDGE_RISING Low to high signal variation

(valid with exposure).
M_EDGE_FALLING High to low signal variation

(valid with exposure).
M_LEVEL_LOW Minimum signal level (not

valid with exposure).
M_LEVEL_HIGH Maximum signal level (not

valid with exposure).
M_DEFAULT The trigger mode in the

DCF file or, if none,
M_EDGE_RISING.

M_GRAB_TRIGGER Set the grab trigger detection state.
M_ENABLE Enable trigger detection.
M_DISABLE Disable trigger detection.
M_DEFAULT The trigger state from the

DCF file or, if none,
M_DISABLE.

M_ACTIVATE Start the grab immediately
(for software trigger). An
asynchronous or continuous
grab must be in progress.

M_GRAB_EXPOSURE_BYPASS
(If the board supports exposures; See
Matrox Board Specific Notes)

Activate the manual or automatic exposure model (see
Grabbing with triggers in the Matrox Imaging Library User
Guide):
M_ENABLE Manual exposure model.
M_DISABLE Automatic exposure model.
M_DEFAULT Same as M_DISABLE.

For the following M_GRAB_EXPOSURE... control types, you can add M_TIMER1 or M_TIMER2 in manual
exposure mode, to control the different on-board exposure timers. When omitted, Timer1 is assumed.

M_GRAB_EXPOSURE
(If the board supports exposures; See
Matrox Board Specific Notes)

When using a software trigger source, use this control type
to activate the specified grab exposure timer. When using a
non-software trigger source, enable or disable the specified
grab exposure timer. Note, the M_GRAB_EXPOSURE control
type has no effect when grabbing using the automatic
exposure model.
M_ACTIVATE Activate a software trigger

for the specified exposure
timer.

M_ENABLE Enable exposure timer.
M_DISABLE Disable exposure timer.
M_DEFAULT same as .dcf (non-software

trigger source).

ControlType Description & ControlValue

234 MdigControl

M_GRAB_EXPOSURE_TIME
(If the board supports exposures; See
Matrox Board Specific Notes)

Set the time (in nsec) for the active portion of the exposure
signal (that is, the exposure time). M_DEFAULT has the
same effect as the setting in the digitizer’s DCF.
When using the automatic exposure model, if a single timer
cannot generate the required exposure time, MIL
automatically sets up connections with the second timer to
generate the requested exposure time length. If
ControlValue is set to 0, exposure is disabled and the grab
is performed immediately.
Note, an error is returned if the specified exposure time
cannot be generated.

M_GRAB_EXPOSURE_MODE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Set the exposure signal’s polarity:
M_LEVEL_HIGH

M_LEVEL_LOW

M_DEFAULT Same as DCF.
M_GRAB_EXPOSURE_TIME_DELAY
(If the board supports exposures; See
MIL/MIL-Lite Specific Notes)

Set the delay (in nsec) between the trigger and the start of
exposure. If M_DEFAULT, same value as DCF.
Note, an error is returned if the specified delay cannot be
generated.

M_GRAB_EXPOSURE_TRIGGER_MODE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Set the trigger activation mode for specified timer.

M_DEFAULT Same as the .dcf file.
M_EDGE_RISING Low-to-high signal

variation.
M_EDGE_FALLING High-to-low signal

variation.
M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See
MIL/MIL-Lite Board Specific Notes)

Select the trigger source for the specified exposure timer if
the hardware supports it.
The M_GRAB_EXPOSURE_SOURCE control type has no effect
when grabbing using the automatic exposure model.
M_DEFAULT Same as the .dcf file.
M_NULL Disable specified exposure

timer. This has no effect
when grabbing using
automatic exposure model.

M_SOFTWARE Use software trigger. The
exposure signal is
generated when
MdigControl() with
M_GRAB_EXPOSURE +
M_TIMERn and
M_ACTIVATE is called.

ControlType Description & ControlValue

MdigControl 235

Note If using a software trigger, setting M_GRAB_TRIGGER to M_ACTIVATE starts
a grab immediately; if using a hardware trigger, setting M_GRAB_TRIGGER
to M_DISABLE temporarily stops a continuous grab.

See also MdigGrab(), MdigGrabContinuous(), MdigGrabWait()

M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See
Matrox Board Specific Notes)
(cont.)

M_HARDWARE_PORT0 Connect hardware trigger
to port 0. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT1 Connect hardware trigger
to port 1. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_HARDWARE_PORT2 Connect hardware trigger
to port 2. See the
MIL/MIL-Lite Board
Specific Notes manual.

M_VSYNC Use vertical sync signal.
M_HSYNC Use horizontal sync signal.
M_TIMER1 Use exposure signal

generated by Timer1. Use
only if setting trigger source
for Timer2.

M_TIMER2 Use exposure signal
generated by Timer2. Use
only if setting trigger source
for Timer1.

M_CONTINUOUS No actual trigger. Run
selected exposure timer in
periodic mode.
Automatically reset timer
after each exposure signal
is output. Exposure signal
loops between delay and
active mode.

ControlType Description & ControlValue

236 MdigFocus

MdigFocus

Synopsis Adjust a camera’s lens motor to a position which provides optimum focus.

Format void MdigFocus(DigId, DestImageBufId, FocusImageRegionBufId,
FocusHookPtr, UserDataPtr, MinPosition,
StartPosition, MaxPosition,
MaxPositionVariation, ProcMode, ResultPtr)

Description This function adjusts the lens motor of the camera, attached to the specified
digitizer, to a position which produces optimum focus. MdigFocus()
determines the optimum focus position by grabbing an image at an initial
lens position, analyzing the focus quality of the grabbed image, calling a
user-defined function that changes the position of the lens motor, then
grabbing and analyzing another image. The process repeats until the
optimum focus position is found.

A specified search strategy determines how the position of the lens motor
is updated (in which direction and by how much) between grabs. These
strategies are described in your user guide.

By default, before an image is analyzed, it is subsampled and filtered.

The DigId parameter specifies the identifier of the digitizer. If you want
the hook function to perform the grab, as well as move the lens motor, set
this parameter to M_NULL.

MIL_ID DigId; Digitizer ID
MIL_ID DestImageBufId; Destination buffer ID
MIL_ID FocusImageRegionBufId; Child buffer ID
MFOCUSHOOKFCTPTR FocusHookPtr; Pointer to hook function
void *UserDataPtr; User data
long MinPosition; Minimum position
long StartPosition; Starting position
long MaxPosition; Maximum position
long MaxPositionVariation; Positional increment
long ProcMode; Processing mode
long *ResultPtr; Address of optimum position or

focus indicator

MdigFocus 237

The DestImageBufId parameter specifies the identifier of the buffer in
which to place the grabbed images. This buffer should be of an appropriate
type to hold the grabbed images. This buffer cannot be signed 3-band or
32-bit.

The FocusImageRegionBufId parameter specifies the identifier of a child
buffer of the destination buffer. Analysis of each grabbed image is limited
to the region specified by this buffer. If you want the entire image analyzed,
set this parameter to M_DEFAULT.

The FocusHookPtr parameter specifies the address of the user-defined
function to call before each grab. This function must be declared as follows:

The UserDataPtr parameter specifies the address of the data that you
want to make available to the user-defined function. If your function does
not require data, set this parameter to M_DEFAULT.

The MinPosition parameter specifies the minimum focus position of the
search. Specify the position in lens motor steps. M_DEFAULT is equal to 0.

The StartPosition parameter specifies the starting focus position of the
search. Specify the position in lens motor steps. M_DEFAULT is equal to the
value specified by MinPosition.

The MaxPosition parameter specifies the maximum focus position of the
search. Specify the position in lens motor steps. M_DEFAULT is equal to 255.

The MaxPositionVariation parameter specifies the positional increment
to use in a smart scan strategy. M_DEFAULT is equal to 1/16 of the value
specified by MaxPosition.

long MFTYPE FocusHook(HookType, Position, UserDataPtr)

long HookType; Indicates whether the optimum focus position was
found or whether a new position needs to be
analyzed:

M_CHANGE Change the focus position to
the value specified by the
Position parameter.

M_ON_FOCUS The optimum focus position
was found and is specified by
the Position parameter.

long Position; Focus position

void *UserDataPtr; Pointer to data

238 MdigFocus

The ProcMode parameter specifies the mode of operation. It can be set to:

To skip the subsampling and/or filtering of each image grabbed by
MdigFocus(), add M_NO_SUBSAMPLING and/or M_NO_FILTER to the
ProcMode parameter.

The ResultPtr parameter specifies the address in which to return the
optimum focus position or the focus indicator value, depending on the mode
of operation.

M_BISECTION Use a bisection search strategy.
M_REFOCUS Use a refocus search strategy. The default number of

positions used to verify a peak is 2 but can be changed
by adding the number to M_REFOCUS.

M_SCAN_ALL Use a scan_all search strategy.
M_SMART_SCAN Use a smart_scan search strategy. The default

number of positions used to verify a peak is 2 but can
be changed by adding a number to M_SMART_SCAN.

M_EVALUATE Return the focus indicator value for the image passed
to DestImageBufId. To evaluate only a region of this
image, pass a valid child buffer identifier of the image
to FocusImageRegionBufId. To grab an image at
the current lens position into DestImageBufId and
evaluate this image, pass a valid digitizer identifier to
DigId.

M_DEFAULT Same as M_SMART_SCAN.

MdigFree 239

MdigFree

Synopsis Free a digitizer.

Format void MdigFree(DigId)

Description This function deallocates a digitizer previously allocated with MdigAlloc().

The DigId parameter specifies the identifier of the digitizer.

See also MdigAlloc().

MIL_ID DigId; Digitizer identifier

240 MdigGrab

MdigGrab

Synopsis Grab data from an input device into a buffer.

Format void MdigGrab(DigId, DestImageBufId)

Description This function uses the specified digitizer to acquire data from an input
device (generally a camera) and stores this data in the destination image
buffer.

When grabbing in color, all bands will be filled simultaneously. Note, the
destination image buffer must have the same number of color bands (in
general three) as the digitizer.

When acquiring data from a line-scan type of input device, each line of the
destination image buffer is filled from top to bottom or a single line is
grabbed, depending on the data format specification passed to MdigAlloc().
The operation will only end when the entire buffer has been filled.

When acquiring data from an interlaced camera, both the odd and even
fields are grabbed.

You can use MdigGrabContinuous() to grab multiple frames of data.

The DigId parameter specifies the identifier of the digitizer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

See also MdigGrabContinuous(), MdigControl()

MIL_ID DigId; Digitizer identifier
MIL_ID DestImageBufId; Destination image buffer identifier

MdigGrabContinuous 241

MdigGrabContinuous

Synopsis Grab data continuously from an input device.

Format void MdigGrabContinuous(DigId, DestImageBufId)

Description This function uses the specified digitizer to continuously acquire frames of
data from the specified input device (generally a camera) and stores this
data in the destination image buffer, until MdigHalt() is called.

When acquiring data from a line-scan type of input device, each line of the
destination image buffer is filled from top to bottom or a single line is
grabbed, depending on the data format specification passed to MdigAlloc().
The operation will only end when the entire buffer has been filled.

When grabbing in color, the destination image buffer must have the same
number of color bands (in general three) as the digitizer; all bands will be
filled simultaneously.

The DigId parameter specifies the identifier of the digitizer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

Status Hardware limitations:

On certain platforms, the next MIL command called after
MdigGrabContinuous() must be MdigHalt(); otherwise, errors can
occur.

Examples mdispovr.c, mwindisp.c, mfocus.c, mdbproc.c, mgrabhk.c, mgrabseq.c,
msubtrac.c, msurvey.c

See also MdigHalt(), MdigGrab(), MdigControl()

MIL_ID DigId; Digitizer identifier
MIL_ID DestImageBufId; Destination image buffer identifier

242 MdigGrabWait

MdigGrabWait

Synopsis Wait for the end of the grab in progress.

Format void MdigGrabWait(DigId, Flag)

Description This function allows you to temporarily override a grab mode of
M_ASYNCHRONOUS on the specified digitizer (see MdigControl()). Using
this function allows your application to wait for the grab in progress to end,
before continuing.

The DigId parameter specifies the identifier of the digitizer.

The Flag parameter specifies the digitizer flag to set. This parameter must
be set to one of the following:

The M_GRAB_END flag should not be used when grabbing data with
MdigGrabContinuous().

Some of these flags are not supported on all platforms.

See also MdigControl(), MdigGrab()

MIL_ID DigId; Digitizer identifier
long Flag; Digitizer flag

M_GRAB_END Wait for the end of the current grab.
M_GRAB_NEXT_FRAME Wait for the end of the current frame grab.
M_GRAB_NEXT_FIELD Wait for the end of the current field grab.

MdigHalt 243

MdigHalt

Synopsis Halt a continuous grab from an input device.

Format void MdigHalt(DigId)

Description This function stops the specified digitizer from grabbing data. It should be
used when performing a continuous grab with MdigGrabContinuous().

This function will wait for the end of the current frame before returning, to
ensure the last frame is always valid. To override this, use MdigControl()
with M_GRAB_HALT_ON_NEXT_FIELD set to M_ENABLE.

The DigId parameter specifies the identifier of the digitizer.

Examples mdispovr.c, mwindisp.c

See also MdigGrabContinuous(), MdigControl()

MIL_ID DigId; Digitizer identifier

244 MdigHookFunction

MdigHookFunction

Synopsis Hook a function to a digitizer event.

Format void MdigHookFunction(DigId, HookType,
 HookHandlerPtr, UserDataPtr)

Description This function allows you to attach or detach a user-defined function to a
specified digitizer event. Once a hook-handler function is defined and
hooked to an event, it is automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MdigHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.This function is not supported on all
systems. See MIL/MIL-Lite Board-Specific Notes to verify if this function
is supported on your board.

The DigId parameter specifies the identifier of the digitizer.

The HookType parameter specifies the event type. This parameter can be
set to one of the values in the following tables. Note, these defines can be
combined with M_UNHOOK to unhook the function.

MIL_ID DigId; Digitizer identifier
long HookType; Type of event to hook
MDIGHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void *UserDataPtr User data pointer

Hook Type Description
M_GRAB_START Hook to the start of each grab.
M_GRAB_END Hook to the end of each grab.
M_GRAB_FRAME_START Hook to the start of grabbed frames.
M_GRAB_FRAME_END Hook to the end of grabbed frames.
M_GRAB_FIELD_END Hook to the end of grabbed fields.
M_GRAB_FIELD_END_ODD Hook to the end of grabbed odd fields.
M_GRAB_FIELD_END_EVEN Hook to the end of grabbed even fields.

MdigHookFunction 245

When a camera is connected, but not grabbing, the parameter can be set to
one of the following:

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

Upon successful completion, the hook-handler function should return
M_NULL. Note, MDIGHOOKFCTPTR and MPTYPE are reserved MIL
predefined types for function and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype of this function has been kept for backwards
compatibility. However, because of the current chaining method, the
function always returns null.

Examples mgrabhk.c

See also MdigControl()

M_FRAME_START Hook to the start of the incoming signal’s
frames.

M_FIELD_START Hook to the start of the incoming signal’s
fields.

M_FIELD_START_ODD Hook to the start of the incoming signal’s
odd fields.

M_FIELD_START_EVEN Hook to the start of the incoming signal’s
even fields.

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Event identifier (currently set to null)

void MPTYPE *UserDataPtr; User data pointer

246 MdigInquire

MdigInquire

Synopsis Inquire about a digitizer parameter setting.

Format long MdigInquire(DigId, InquireType, UserVarPtr)

Description This function inquires about the specified digitizer parameter setting.

The DigId parameter specifies the identifier of the digitizer.

The InquireType parameter specifies the digitizer parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID DigId; Digitizer identifier
long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_OWNER_SYSTEM The MIL identifier (MIL_ID)

of the system on which the digitizer has
been allocated (MdigAlloc()).

M_NATIVE_ID The native identifier of the digitizer (if
any).

M_NUMBER Digitizer rank in the system
(MdigAlloc()).

M_FORMAT Digitizer data format (MdigAlloc()).
M_FORMAT_SIZE Number of characters in the digitizer data

format string.
M_INIT_FLAG Digitizer initialization flag

(MdigAlloc()).
M_CHANNEL Current channel of the digitizer

(MdigChannel()).
M_CHANNEL+M_SYNC Current synchronization channel of the

digitizer (MdigChannel()).
M_CHANNEL+M_SIGNAL Current signal channel of the digitizer

(MdigChannel()).
M_CHANNEL_NUM Number of available channels of the

device (MdigChannel()).
M_LUT_ID MIL identifier (MIL_ID) of the LUT

associated with the digitizer (MdigLut()).
M_BLACK_REF Digitizer black reference level

(MdigReference()).
M_WHITE_REF Digitizer white reference level

(MdigReference()).

MdigInquire 247

M_HUE_REF Digitizer hue reference level
(MdigReference()).

M_SATURATION_REF Digitizer saturation reference level
(MdigReference()).

M_BRIGHTNESS_REF Digitizer brightness reference level
(MdigReference()).

M_COLOR_MODE
See the Matrox Board Specific Notes to determine
which mode applies to your particular board.

Monochrome or color input:
M_MONOCHROME
M_RGB,
M_MONO8_VIA_RGB
M_COMPOSITE,
M_EXTERNAL_CHROMINANCE

M_CONTRAST_REF Digitizer contrast reference level
(MdigReference()).

M_GRAB_SCALE_X Digitizer horizontal and vertical scaling
factor (MdigControl()).

M_GRAB_SCALE_X Digitizer horizontal scaling factor
(MdigControl()).

M_GRAB_SCALE_Y Digitizer vertical scaling factor
(MdigControl()).

M_GRAB_MODE Grab synchronization
(M_SYNCHRONOUS, M_ASYNCHRONOUS,
or M_ASYNCHRONOUS_QUEUED.)
(MdigControl()).

M_GRAB_FRAME_NUM Number of frames grabbed when
MdigGrab() is called (MdigControl()).

M_GRAB_FIELD_NUM Number of fields grabbed when
MdigGrab() is called. (MdigControl()).

M_GRAB_START_MODE Type of field on which to grab.
M_GRAB_HALT_ON_NEXT_FIELD Whether to stop grabbing as soon as

possible, whether the last frame is valid
or not (MdigControl()).

M_GRAB_TRIGGER_SOURCE Grab trigger source (MdigControl()).
M_GRAB_TRIGGER_MODE Hardware trigger activation mode

(MdigControl()).
M_GRAB_TRIGGER Grab trigger state (M_ENABLE,

M_DISABLE, M_START_GRAB or
M_DEFAULT (same as .dcf, if any, or
M_DISABLE) (MdigControl()).

M_GRAB_WINDOW_RANGE State of limiting the range of the grabbed
pixel values: M_ENABLE or M_DISABLE.

M_SIZE_X Digitizer input width.
M_SIZE_Y Digitizer input height.
M_SIZE_BAND Number of input color bands of the

digitizer.

InquireType Description

248 MdigInquire

M_SIZE_BAND_LUT Number of input color bands of the input
LUT (if any) associated with the digitizer.

M_SIZE_BIT Number of bits of the digitizer.
M_SIGN Digitizer data range (M_SIGNED or

M_UNSIGNED).
M_TYPE Digitizer data type (number of bits +

M_SIGNED or M_UNSIGNED).
M_SOURCE_SIZE_X Width of the input-signal capture window.
M_SOURCE_SIZE_Y Height of the input-signal capture

window.
M_SOURCE_OFFSET_X X offset of the input-signal capture

window.
M_SOURCE_OFFSET_Y Y offset of the input signal capture

window.
M_SCAN_MODE Scan mode (M_INTERLACE,

M_PROGRESSIVE, or M_LINESCAN).
M_INPUT_MODE Analog or digital input (M_ANALOG or

M_DIGITAL).
M_GRAB_EXPOSURE_BYPASS
(If the board supports exposures; See Matrox Board
Specific Notes)

The exposure model that is activated
(manual or automatic).

For the following M_GRAB_EXPOSURE... inquire types, you can add M_TIMER1 or M_TIMER2 in
manual exposure mode, to control the different on-board exposure timers. When omitted, Timer1 is
assumed.

M_GRAB_EXPOSURE
(If the board supports exposures; See Matrox Board
Specific Notes)

Exposure timer state for non-software
trigger source:
M_ENABLE or M_DISABLE.

M_GRAB_EXPOSURE_MODE
(If the board supports exposures; See Matrox Board
Specific Notes)

Exposure signal’s polarity:
M_LEVEL_HIGH or M_LEVEL_LOW.

M_GRAB_EXPOSURE_SOURCE
(If the board supports exposures; See Matrox Board
Specific Notes)

The trigger source for the specified
exposure timer if the hardware supports
it.

M_GRAB_EXPOSURE_TIME
(If the board supports exposures; See Matrox Board
Specific Notes)

Time (in nsec) for the active portion of the
exposure signal (that is, the exposure
time). M_DEFAULT has the same effect as
the setting in the digitizer’s DCF.

M_GRAB_EXPOSURE_TIME_DELAY
(If the board supports exposures; See Matrox Board
Specific Notes)

The delay (in nsec) between the trigger
and the start of exposure.

M_GRAB_EXPOSURE_TRIGGER_MODE
(If the board supports exposures; See Matrox Board
Specific Notes)

Trigger activation mode for specified
timer: M_EDGE_RISING or
M_EDGE_FALLING.

InquireType Description

MdigInquire 249

You can inquire about the reference level on a specific input channel by
adding one of the following predefined values to M_BLACK_REF and
M_WHITE_REF.

For example M_BLACK_REF+M_CH1_REF.

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. Since the MdigInquire()
function also returns the requested information, you can set this parameter
to M_NULL.

The UserVarPtr parameter should be a pointer to a long, except when
InquireType is set to one of the following:

■ M_OWNER_SYSTEM and M_LUT_ID, in which case it should be a pointer
to a MIL_ID.

■ M_FORMAT, in which case it should be a pointer to a character array.

■ M_GRAB_SCALE_X and M_GRAB_SCALE_Y, in which case it should be a
pointer to a double.

Return value Except for the M_FORMAT inquire type, the returned value is the setting of
the requested digitizer attribute, cast to long. For the M_FORMAT inquire
type, the returned value is M_NULL.

See also MdigAlloc(), MdigChannel(), MdigControl(), MdigReference()

M_CH0_REF Inquire about reference level on channel 0 (default).
M_CH1_REF Inquire about reference level on channel 1.
M_CH2_REF Inquire about reference level on channel 2.
M_CH3_REF Inquire about reference level on channel 3.

250 MdigLut

MdigLut

Synopsis Copy a LUT buffer to a digitizer LUT.

Format void MdigLut(DigId, LutBufId)

Description This function copies a LUT buffer to the specified digitizer LUT. MIL uses
the data format of the digitizer to determine whether a LUT is supported.
If it is not, an error is generated.

The DigId parameter specifies the identifier of the digitizer.

The LutBufId parameter specifies the identifier of a previously allocated
LUT buffer (with an M_LUT attribute). The LUT buffer pixel depth and
number of entries must match those of the digitizer, and the LUT buffer
must either have a single color band or match the number of color bands of
the digitizer. If the LUT buffer has a single color band, its data is loaded
into the LUTs of each of the digitizer’s color bands. You can set this
parameter to M_DEFAULT to associate the default pass-through LUT (or
transparent LUT) with the digitizer.

See also MdigAlloc(), MbufAlloc1d()

MIL_ID DigId; Digitizer identifier
MIL_ID LutBufId; LUT buffer identifier

MdigReference 251

MdigReference

Synopsis Select digitization reference level.

Format void MdigReference(DigId, ReferenceType, ReferenceLevel)

Description This function sets (if available) the reference levels used to digitize the
analog signal received from an input device (generally a camera). This
function is specific to analog input devices. Depending on the type of
digitizer and input signal, some reference types are not applicable.

The DigId parameter specifies the identifier of the digitizer on which to set
the reference level. An error is generated if the specified digitizer does not
support the type of programmable digitization reference levels specified.

The ReferenceType parameter specifies the reference level type to adjust
for the specified digitizer. This parameter can be set to one of the following:

MIL_ID DigId; Digitizer identifier
long ReferenceType; Reference type
long ReferenceLevel; Reference level

M_BLACK_REF Set the input signal’s digitization black
reference level (0).

M_WHITE_REF Set the input signal’s digitization white
reference level (eg: 0xff for 8-bit digitization).

M_BRIGHTNESS_REF Set the brightness level for composite input
signals.

M_CONTRAST_REF Set the contrast level for composite input
signals.

M_HUE_REF Set the hue level for composite input signals.
M_SATURATION_REF Set the saturation level for composite input

signals.

252 MdigReference

On many digitizers, when using RGB input and setting ReferenceType to
M_BLACK_REF or M_WHITE_REF, you can control the reference level of a
specific input channel by combining it with one of the following:

The ReferenceLevel parameter specifies the level of reference. This
parameter can be set to a value between M_MIN_LEVEL and M_MAX_LEVEL,
inclusive. The value may be expressed as an integer within this range, or
as M_MIN_LEVEL + n or M_MAX_LEVEL - n. If you set this parameter to
M_DEFAULT, the reference levels are set to the default levels for the specified
digitizer data format.

To calculate the value to pass to MdigReference(), use the following equation
with the appropriate voltages specified in the MIL Board-specific notes for
your particular board.The smallest voltage increment supported by your

board can differ such that consecutive reference-level settings might
produce the same result.

Note, some digitizers might take a few milliseconds before the reference
level stabilizes.

See also MdigAlloc()

M_CH0_REF Set the reference level on input channel 0.
M_CH1_REF Set the reference level on input channel 1.
M_CH2_REF Set the reference level on input channel 2.
M_CH3_REF Set the reference level on input channel 3.
M_ALL_REF Set the reference level on all input channels.

 (This is the default setting).

Voltage needed - minimum voltage

maximum voltage - minimum voltage

M_MAX_LEVEL - M_MIN_LEVEL

=
Value to pass to
MdigReference()

MdispAlloc 253

MdispAlloc

Synopsis Allocate a display.

Format MIL_ID MdispAlloc(SystemId, DispNum, DispFormat, InitFlag,
 DisplayIdPtr)

Description This function allocates a display on the specified system so that it can be
used by subsequent MIL display functions.

A display on the target system must be allocated in order to display an image
buffer.

When you have completely finished using a display, you should free it, using
MdispFree().

The SystemId parameter specifies the system on which the display is
allocated. This parameter must be given a valid system identifier.

The DispNum parameter specifies the number (or rank) of the display that
is required. This parameter can be set to one of the following:

The DispFormat parameter specifies the name of the display format or the
name of the file in which the display format is to be found. Under Windows
in single-screen mode, DispFormat must be set to M_DEFAULT, which
when displaying from an imaging system with an on-board display, sets the
display resolution of the main (underlay) frame buffer to that of the overlay
(VGA) frame buffer. Under Windows in dual-screen mode, DispFormat can
be set to a string that specifies the required display resolution; see the
MIL/MIL-Lite Board-Specific Notes manual for the formats supported by

MIL_ID SystemId; System identifier
long DispNum; Display number
char *DispFormat; Display format name or file name
long InitFlag; Initialization flag
MIL_ID *DisplayIdPtr; Storage location for the display identifier

M_DEFAULT Any available display.
M_DEV0 The first display on the specified system.
...,
M_DEV15 The sixteenth display on the specified system.

254 MdispAlloc

your board. Under Windows in dual-screen mode, DispFormat can also be
set to M_DEFAULT, which indicates that MIL should use the format specified
in the milsetup.h file.

The InitFlag parameter specifies the display mode of your system.
Depending on your system’s display configuration, InitFlag will have a
different default. This parameter can be set to one of the following:

M_WINDOWED The display has a window associated
with it. The image buffer selected for
display purposes is presented (on-screen)
in its own window. The display window is
tracked and updated with the image
buffer selected for display; that is, if the
window moves or is occluded, the
window is updated with the image buffer
accordingly. For each system that has
been allocated, you can allocate and
select up to a maximum of 64 windowed
displays.
This mode is the default allocation mode
in a single-screen configuration
(M_DEFAULT). If your board has a
display section and you are using it in a
dual-screen configuration, you can still
choose not to use it, and display an
image, even a live grabbed image, in
windowed mode. In this case, the display
is on your Windows desktop.

M_NON_WINDOWED The display has no window associated
with it. You are responsible for moving
and tracking this type of display, if
required. This is the default for
dual-screen mode. In single-screen mode,
only 1 non-windowed display can be
allocated in the underlay. In dual-screen
mode, 2 non-windowed displays can be
allocated; one can be allocated in the
underlay and one can be allocated in the
overlay.
Note that this mode is only available on
frame grabbers that have an on-board
VGA adapter.

MdispAlloc 255

MIL automatically selects the most appropriate display architecture, but
you can force a particular display architecture by adding one of the following
initialization flags to M_WINDOWED. See the MIL User Guide for a
detailed description of these architectures.

In windowed mode, when using a 256-color Windows display resolution, you
can control the Windows display function that MIL uses for display by
adding one of the following to InitFlag. To independently control the display
of 8-bit and 3-band 8-bit images, add both an M_DISPLAY_8... and
M_DISPLAY_24... display initialization to InitFlag.

M_OVR Force the display architecture to an
overlay/regular display. An
overlay/regular display architecture is
particularly useful, because, in general,
you can associate a LUT with this type of
display (Refer to MdispLut() for more
details). When in dual-screen mode, your
buffer must be allocated with an
M_IMAGE+M_OVR+... attribute before it
can be selected to an M_OVR display.

M_UND Force the display architecture to a
dedicated underlay display.

M_DDRAW_UND Force the display architecture to a
DirectDraw underlay-surface display.

Display initialization Description
M_DISPLAY_ENHANCED
M_DISPLAY_8_ENHANCED
M_DISPLAY_24_ENHANCED (default)

When using an enhanced
initialization, the MIL display calls
the Microsoft Video for Windows
DrawDIBDraw() function to
display image buffers. This
function’s use of dithering
particularly improves the display
of 3-band 8-bit images under a
256-color display resolution.
Note, with enhanced
initializations, the actual display
color values are selected, on a
best-match basis, from the logical
palette’s available display colors.
Therefore, effects such as those of
an inverse LUT are not possible.
This is the default display
initialization for an 8-bit 3-band
image buffer.

256 MdispAlloc

M_DISPLAY_BASIC
M_DISPLAY_8_ BASIC (default)
M_DISPLAY_24_BASIC

When using a basic with
optimization initialization, the
MIL display calls the Windows API
StretchDIBits(), StretchBlt(), or
DirectDrawBlt() function to
display image buffers. When 8-bit
images are displayed, the pixel
values are used, as much as
possible, to index the physical
LUTs. When 3-band 8-bit images
are displayed in a 256-color display
resolution, the display uses an
algorithm optimized for speed.
This algorithm converts 24 bits to
8 bits by taking the
most-significant bits of each
component: 3 bits each are taken
from the red and green
components, and 2 bits from the
blue. This produces an 8-bit DIB
with 3:3:2 RGB values for display;
it is these values that are used to
address the physical LUTs. This is
the best possible combination
when you are not aware of the color
content of the image buffer.

M_DISPLAY_WINDOWS
M_DISPLAY_24_WINDOWS

When using a basic without
optimization initialization, the
MIL display calls the Windows API
StretchDIBits(), StretchBlt() or
DirectDrawBlt() function to
display image buffers; however no
optimization for speed is done
when displaying a 3-band 8-bit
image in a 256-color display
resolution. This can result in slow
performance.
This display initialization is a
combination of
M_DISPLAY_8_BASIC and
M_DISPLAY_24_WINDOWS.

Display initialization Description

MdispAlloc 257

You can add one of these values to the InitFlag to control the Windows
zoom type that MIL uses for the display:

The DisplayIdPtr parameter specifies the address of the variable in which
to write the display identifier. Since the MdispAlloc() function also returns
the display identifier, you can set this parameter to M_NULL. If allocation
fails, M_NULL is written as the identifier.

Return value The returned value is the display identifier. If allocation fails, M_NULL is
returned.

See also MdispControl(), MdispFree(), MappAllocDefault()

Zoom initialization Description
M_ZOOM_ENHANCED When using an enhanced initialization,

the DrawDIBDraw() function is called
to perform a zoom. Although zooming
might be a little slower than using the
basic initialization option, it does not
alter the dithering quality, providing a
better quality zoom. This option is the
default and is only available when
M_DISPLAY_XXX_ENHANCED is used.
When adding a zoom initialization type, the
default is M_ZOOM_ENHANCED. If you
select only M_DISPLAY_ENHANCED,
M_ZOOM_ENHANCED is assumed.

M_ZOOM_BASIC When using a basic initialization,
Windows (Windows API functions) is
called to perform a zoom. Note, if
M_DISPLAY_XXX_ENHANCED is used,
this zoom might alter the quality of the
DrawDIBDraw() dithering.

258 MdispControl

MdispControl

Synopsis Control the MIL display.

Format void MdispControl(DisplayId, ControlType, ControlValue)

Description This function allows you to control the specified MIL display; it does this by
setting the state of the display’s individual features.

The DisplayId parameter specifies the identifier of the target display.

The ControlType and ControlValue parameters specify the display
feature to modify and the new value to assign to the feature, respectively.
The control types for M_WINDOWED displays can control the default MIL
or user-specified window of a display (MdispSelect() or
MdispSelectWindow()).

The corresponding combinations for the ControlType and ControlValue
parameters are:

MIL_ID DisplayId; Display identifier
long ControlType; Window feature to change
long ControlValue; Value of the window feature

ControlType Description and ControlValue
The following controls are only available with M_WINDOWED displays.
M_DESKTOP_CHANGE Allow the update of the Windows desktop:

M_ENABLE or M_DISABLE.
Note: M_DISABLE (stop desktop update) should be used
carefully and for only short periods of time or undesirable
results can occur.

M_DESKTOP_LOCK_TIMEOUT Control the Windows desktop lock timeout. When
debugging an application using DIRECTDRAW, the
desktop locks when a breakpoint is found in the code. A
timeout value for the lock can be specified as follows: any
value in milliseconds, M_DEFAULT (a generally acceptable
value), or M_INFINITE (no timeout value is assigned).
The default ControlValue is M_INFINITE.

M_THREAD_PRIORITY Thread priority.

Range: Priority class:

1 - 6 Idle.

7 - 10 Normal.

11 - 15 High.

16 - 31 Real-time.

MdispControl 259

M_VIEW_BIT_SHIFT The number of bits by which to shift when M_VIEW_MODE
is set to M_BIT_SHIFT. Should be set to the number of
significant bits in the buffer minus 8. For example, if a
16-bit buffer contains data grabbed from a 10-bit digitizer,
a shift of 2 should be used.

M_VIEW_MODE Controls how a buffer gets remapped to the display;
especially useful when displaying a non 8-bit buffer.
M_BIT_SHIFT Bit-shift the pixel values of the buffer

by the specified number of bits upon
updating the display. Specify the
number of bits with
M_VIEW_BIT_SHIFT.

M_AUTO_SCALE The pixel values are remapped to the
display such that the minimum and
maximum values in the image (not
the full range of the buffer) are set to
0 and 255, respectively. If the image
buffer contains a single value, its
corresponding displayed value is
determined by linearly re-mapping
the full range of the buffer (for
example, 0 to 64K) to 0 through 255.
This control value is only available
when using a windowed display.

M_MULTI_BYTES Display each byte of the buffer in
separate display pixels. In other
words, each pixel of a 16-bit buffer
will occupy two consecutive display
pixels. Each pixel of a 32-bit buffer
will occupy four consecutive display
pixels. This mode is primarily useful
when grabbing from a multi-tap
camera.

M_DEFAULT MIL automatically selects the
appropriate mode, depending on the
buffer depth:
1-bit M_BIT_SHIFT (0 shift)
8-bit M_BIT_SHIFT (0 shift)
16-bit M_AUTO_SCALE
32-bit M_AUTO_SCALE
32-bit float M_AUTO_SCALE

ControlType Description and ControlValue

260 MdispControl

M_WINDOW_BUF_WRITE Allow direct access (destructive annotation) to the copy of
the buffer stored in the frame buffer, after an
MdispSelect() operation: M_ENABLE or M_DISABLE
(default).
If enabled, the MIL identifier of this buffer can be
inquired, using MdispInquire().
If disabled, the buffer is invalid.
Note, this control is only supported on systems with an
on-board display section (and are using it for display), and
on systems using a Matrox VGA board.

M_WINDOW_COLOR Force a window update to fill with a constant background
color rather than with the selected buffer: M_ENABLE or
M_DISABLE.

M_WINDOW_COLOR_CHANGE Set a background color, in Windows’ COLORREF format.
It is used when M_WINDOW_COLOR is enabled.

M_WINDOW_INITIAL_POSITION_X Set the window client area’s initial leftmost X coordinate.
M_WINDOW_INITIAL_POSITION_Y Set the window client area’s initial topmost Y coordinate.
M_WINDOW_KEYBOARD_USE Activate the keys associated with the display window:

M_ENABLE (default) or M_DISABLE.
The default key usage is:
+ Increase the x and y zoom factors.
- Decrease the x and y zoom factors.
Pg-up Scroll the buffer up to the previous

display section.
Pg-dn Scroll the buffer down to the next

display section.
Up arrow Scroll the buffer up to the previous

line.
Dn arrow Scroll the buffer down to the next

line.
Left arrow Pan the buffer left by one pixel.
Right arrow Pan the buffer right by one pixel.
Ctrl Up arrow Scroll the buffer up to the previous

display section.
M_WINDOW_MAXBUTTON Make the window’s maximize button visible: M_ENABLE or

M_DISABLE.
M_WINDOW_MENU_BAR Make the window’s menu bar visible:

M_ENABLE or M_DISABLE.
M_WINDOW_MENU_BAR_CHANGE Allow toggling the menu bar presence:

M_ENABLE or M_DISABLE.
M_WINDOW_MINBUTTON Make the window’s minimize button visible: M_ENABLE or

M_DISABLE.
M_WINDOW_MOVE Allow window movement: M_ENABLE or M_DISABLE

ControlType Description and ControlValue

MdispControl 261

M_WINDOW_OVERLAP Allow window to be overlapped by another:
M_ENABLE or M_DISABLE (keep window on top).

M_WINDOW_OVR_DESTRUCTIVE The overlay shown on top of the buffer is allowed to
overwrite the buffer’s content (to increase display speed or
save memory): M_ENABLE or M_DISABLE (default).

M_WINDOW_OVR_FLICKER The overlay shown on top of the buffer is allowed some
flicker (to increase display speed or save memory):
M_ENABLE or M_DISABLE (default).

M_WINDOW_PAINT Force the window’s update and paint the whole region:
M_DEFAULT or M_NULL.

M_WINDOW_PALETTE_NOCOLLAPSE M_ENABLE The Windows palette manager
attempts the best color usage of the
logical palette when realizing the
output LUTs. It tries to map colors
from the logical palette into the
currently-realized output LUTs to
reduce the number of requested new
entries.

M_DISABLE
(default)

The Windows palette manager loads
each component of the logical palette
directly “as is” in the ocrresponding
output LUT. This can result in a color
occurring more than once in the
output LUTs.

M_WINDOW_RANGE Inform the display that the displayed buffer values will be
restricted to between 10 and 245. This allows the
optimization of display update. M_ENABLE or M_DISABLE
(default).

M_WINDOW_RESIZE Allow window resizing:M_ENABLE (or M_NORMAL_SIZE),
M_DISABLE, or M_FULL_SIZE (to force a full-size display)

M_WINDOW_SCROLLBAR Make the window's scroll bars visible:
M_ENABLE or M_DISABLE.

M_WINDOW_SNAP_X Restrict the leftmost X coordinate of window client area to
a given multiple of the screen's absolute coordinate.
Permissible values are positive or negative integers.
Positive snap values adjust the X coordinate to the closest
right pixel; negative ones adjust it to the closest left pixel.

M_WINDOW_SNAP_Y Restrict the topmost Y coordinate of the window client area
to a given multiple of the screen's absolute coordinate.
Permissible values are positive or negative integers.
Positive snap values adjust the Y coordinate to the closest
upper pixel; negative ones adjust it to the closest lower
pixel.

M_WINDOW_SYSBUTTON Make the window's system button visible:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_BAR Make the window's title bar visible:
M_ENABLE or M_DISABLE.

ControlType Description and ControlValue

262 MdispControl

M_WINDOW_TITLE_BAR_CHANGE Allow toggling the title bar presence:
M_ENABLE or M_DISABLE.

M_WINDOW_TITLE_NAME Set the display window title to a specified string (the string
must be casted to long).

M_WINDOW_UPDATE Allow updating of the window display: M_ENABLE or
M_DISABLE.

M_WINDOW_UPDATE_ON_PAINT M_ENABLE Update the display on reception of a
WM_PAINT message in Windows.

M_DISABLE Update the display on reception of a
WM_ERASEBKGND message in
Windows.

 M_DEFAULT Allow MILto decide which message to
receive before updating the display.

M_WINDOW_ZOOM Allow window zooming: M_ENABLE or M_DISABLE

The following controls are only available with windowed displays, and non-windowed displays on
a Matrox imaging board with a display section:
M_WINDOW_OVR_LUT Associate a LUT with the overlay buffer. Set

ControlValue to the LUT buffer’s identifier.
M_WINDOW_OVR_SHOW Show the overlay buffer: M_ENABLE (default) or

M_DISABLE.
M_WINDOW_OVR_WRITE Allow annotating the displayed image non-destructively,

using MIL’s overlay-display mechanism. When enabled in
windowed mode, the display is associated with a
temporary overlay buffer whenever a buffer is selected on
the display. When enabled in non-windowed mode, the
display is immediately associated with a temporary
overlay buffer. This overlay buffer will annotate the
underlying image with an effect called keying, which
makes portions of the overlay show through.
In windowed mode, the overlay buffer has the same
number of bands and is the same size as the selected image
buffer. A new temporary overlay buffer is created when a
new buffer is selected on the display.
In non-windowed mode, the overlay buffer is the same size
as the display. The overlay buffer is not modified whenever
a new buffer is selected on the display, and is freed when
deselecting the image buffer from the display.
The MIL identifier of this buffer can be inquired, using
MdispInquire().
If your board does not have two frame buffer surfaces, a
simulated version of the overlay effect is produced through
software
M_ENABLE Enable MIL’s overlay-display

mechanism.
M_DISABLE
(default)

Disable MIL’s overlay-display
mechanism.

ControlType Description and ControlValue

MdispControl 263

Example mdispovr.c

See also MdispInquire()

The following controls are only available with an M_WINDOWED display on a Matrox MGA
display card or a Matrox imaging board with a display section.
M_HARDWARE_PAN Use your system’s hardware pan options (M_ENABLE) or

the software pan options of the display’s window
(M_DISABLE). The default is M_DISABLE.

M_HARDWARE_ZOOM Use your system’s hardware zoom options (M_ENABLE) or
the software zoom options of the display’s window
(M_DISABLE). The default is M_DISABLE.

ControlType Description and ControlValue

264 MdispDeselect

MdispDeselect

Synopsis Stop displaying an image buffer.

Format void MdispDeselect(DisplayId, ImageBufId)

Description This function stops displaying the specified image buffer on the specified
display. In windowed mode, the display is closed. In non-windowed mode,
the display is blanked.

Note, when displaying a parent buffer, you cannot remove one of its child
buffers from the display.

Note, you do not have to use MdispDeselect() before selecting another
buffer for display; just use MdispSelect().

The DisplayId parameter specifies the identifier of the display from which
to remove the image buffer.

The ImageBufId parameter specifies the identifier of the buffer to remove
from the display. This buffer must be an image buffer, with an M_DISP
attribute, that is currently displayed.

See also MdispSelect()

MIL_ID DisplayId; Display identifier
MIL_ID ImageBufId; Image buffer identifier

MdispFree 265

MdispFree

Synopsis Free a display.

Format void MdispFree(DisplayId)

Description This function deallocates a display previously allocated with MdispAlloc().

The DisplayId parameter specifies the identifier of the display.

See also MdispAlloc(), MappFreeDefault()

MIL_ID DisplayId; Display identifier

266 MdispHookFunction

MdispHookFunction

Synopsis Hook a function to a display event.

Format MDISPHOOKFCTPTR (MdispHookFunction(DisplayId, HookType,
 HookHandlerPtr, UserDataPtr))

Description This function allows you to attach or detach a user-defined function to a
specified display event. Once a hook-handler function is defined and hooked
to an event, it is automatically called when the event occurs.

You can hook more than one function to an event by making separate calls
to MdispHookFunction()) for each function that you want to hook. MIL
automatically chains and keeps an internal list of all these hooked functions.
When a function is hooked, this new function is added to the end of the list.
When the event happens, all user-defined functions in the list will be
executed in the same order that they were hooked to the event. You can also
remove any function from the list; in this case, MIL preserves the order of
the remaining functions in the list.The DisplayId parameter specifies the
identifier of the target display for the hook.

The HookType parameter specifies the display event type. This parameter
can be set to the following:

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The hook-handler function, pointed to by HookHandlerPtr, must be
declared as follows:

MIL_ID DisplayId Display identifier
long HookType; Type of event to hook
MDISPHOOKFCTPTR HookHandlerPtr; Pointer to hook function
void MPTYPE *UserDataPtr; User data pointer

M_FRAME_START Call the hook-handler function each time a new frame
is displayed.

long MFTYPE HookHandler(HookType, EventId, UserDataPtr);

long HookType; Type of event hooked

MIL_ID EventId; Reserved for future use

void MPTYPE *UserDataPtr; Pointer that was passed by MdispHookFunction()

MdispHookFunction 267

Upon successful completion, the hook-handler function should return
M_NULL. Note, MDISPHOOKFCTPTR, MFTYPE and MPTYPE are
reserved MIL predefined types for functions and data pointers.

The UserDataPtr parameter specifies the address of the user data that
you want to make available to the hook-handler function. This address is
passed to the hook-handler function, through its UserDataPtr parameter,
when the specified event occurs. Set this parameter to M_NULL if not used.

Return value The original prototype structure of this function has been kept for
backwards compatibility. However, because of the current chaining method,
the function always returns null.

See also MdispControl(), MdispInquire()

268 MdispInquire

MdispInquire

Synopsis Inquire about a display parameter setting.

Format long MdispInquire(DisplayId, InquireType, UserVarPtr)

Description This function inquires about a specified display parameter setting.

The DisplayId parameter specifies the identifier of the display.

The InquireType parameter specifies the display parameter about which
to inquire. This parameter can be set to one of the following values:

MIL_ID DisplayId; Display identifier
long InquireType; Display parameter to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_DISPLAY_MODE Display mode. M_WINDOWED if the display

object is bounded by a movable frame or
M_NON_WINDOWED.

M_FORMAT Display data format (MdispAlloc()).
M_FORMAT_SIZE Number of characters in the data format

string (MdispAlloc()).
M_FRAME_START_HANDLER_PTR Handler pointer hooked using

MdispHookFunction() to the start of a
displayed frame (MdispSelect()).

M_FRAME_START_HANDLER_USER_PTR User pointer hooked using
MdispHookFunction() to the start of a
displayed frame (MdispSelect()).

M_INIT_FLAG Display initialization flag (MdispAlloc()).
M_KEY_COLOR Keying color (MdispOverlayKey()).
M_KEY_CONDITION Keying condition (MdispOverlayKey()).
M_KEY_MASK Keying mask (MdispOverlayKey()).
M_KEY_MODE State of keying mode

(MdispOverlayKey()).
M_KEY_SUPPORTED System support of true keying (M_YES or

M_NO).
M_LUT_ID The identifier of the LUT associated with

the display (MdispLut()).
M_LUT_SUPPORTED Whether a LUT is supported on the

specified display (MdispLut()).
M_NATIVE_ID The display’s native identifier, if any.

MdispInquire 269

M_NUMBER Display rank in the system
(MdispAlloc()).

M_OWNER_SYSTEM The identifier of the system on which the
display has been allocated (MdispAlloc()).

M_PAN_X Pan X pixel offset (MdispPan()).
M_PAN_Y Pan Y pixel offset (MdispPan()).
M_SELECTED The identifier of the image buffer currently

displayed. M_NULL is returned if no buffer
is currently being displayed.
(MdispSelect()).

M_SIGN Display data range (M_UNSIGNED).
M_SIZE_BAND The number of color bands the display is

capable of displaying. In windowed mode, 3
will be returned; in non-windowed mode, 1
or 3 will be returned.

M_SIZE_BAND_LUT Number of color bands of the output LUT
(if any) associated with the display.

M_SIZE_BIT Number of bits (depth) of the display.
M_SIZE_X Display width.
M_SIZE_Y Display height.
M_THREAD_PRIORITY Thread priority.
M_TYPE Display data type (number of bits +

M_UNSIGNED).
M_VGA_PIXEL_FORMAT Pixel format of the current VGA display

resolution. Allocating a display buffer with
the same format will ensure maximum
performance with regard to display
updates.

M_ZOOM_X Zoom factor in X (MdispZoom()).
M_ZOOM_Y Zoom factor in Y (MdispZoom()).

The following inquire types are only available with M_WINDOWED displays:
M_VIEW_BIT_SHIFT The number of bits by which the buffer

data gets shifted when M_VIEW_MODE is
set to M_BIT_SHIFT.

M_VIEW_MODE How a buffer gets remapped to the display:
M_BIT_SHIFT, M_AUTO_SCALE, or
M_MULTI_BYTES.

M_WINDOW_BUF_ID Identifier of the copy of the buffer stored in
the frame buffer (display memory) or
M_NULL.

M_WINDOW_BUF_WRITE Whether direct access to the copy of the
buffer stored in the frame buffer is enabled
(M_ENABLE or M_DISABLE).

InquireType Description

270 MdispInquire

M_WINDOW_CLIP_LIST Window clip list pointer (LPRGNDATA).
M_WINDOW_CLIP_LIST_SIZE Window clip list size to allocate.
M_WINDOW_COLOR Force a constant background color

(M_ENABLE or M_DISABLE).
M_WINDOW_COLOR_CHANGE Current constant color.
M_WINDOW_DDRAW_SURFACE Pointer to the DirectDraw primary surface

(LPDIRECTDRAWSURFACE) used by a
display window (if any) or M_NULL.

M_WINDOW_DIB_HEADER Pointer to the header (LPBITMAPINFO) of
the DIB buffer associated with the display
window (if any) or M_NULL.

M_WINDOW_HANDLE Windows handle (HWND) of the display
window.

M_WINDOW_MAXBUTTON Maximize button presence
(M_ENABLE or M_DISABLE).

M_WINDOW_MENU_BAR Menu bar presence (M_ENABLE or
M_DISABLE).

M_WINDOW_MENU_BAR_CHANGE State of menu bar changing (M_ENABLE or
M_DISABLE).

M_WINDOW_MINBUTTON Minimize button presence (M_ENABLE or
M_DISABLE).

M_WINDOW_MOVE State of display window moving
(M_ENABLE or M_DISABLE).

M_WINDOW_OFFSET_X Display window client area offset X,
relative to the top left of the screen.

M_WINDOW_OFFSET_Y Display window client area offset Y,
relative to the top left of the screen.

M_WINDOW_OVERLAP State of display window overlapping
(M_ENABLE or M_DISABLE).

M_WINDOW_PALETTE_NOCOLLAPSE Whether the Windows palette is forced to
be non-collapsed:
M_ENABLE or M_DISABLE.

M_WINDOW_PAN_X Display window horizontal scroll bar
position.

M_WINDOW_PAN_Y Display window vertical scroll bar position.
M_WINDOW_RANGE Inform the display that the displayed

buffer values will be restricted to between
10 and 245. This allows the optimization of
display update. M_ENABLE or M_DISABLE
(default).

M_WINDOW_RESIZE State of display window resizing
(M_ENABLE, M_DISABLE, M_FULL_SIZE or
M_NORMAL_SIZE).

InquireType Description

MdispInquire 271

M_WINDOW_SCROLLBAR Scroll bar presence (M_ENABLE or
M_DISABLE).

M_WINDOW_SIZE_X Display window client area width.
M_WINDOW_SIZE_Y Display window client area height.
M_WINDOW_SYSBUTTON System button presence (M_ENABLE or

M_DISABLE).
M_WINDOW_TITLE_BAR Title bar presence (M_ENABLE or

M_DISABLE).
M_WINDOW_TITLE_BAR_CHANGE State of title bar changing

(M_ENABLE or M_DISABLE)
M_WINDOW_TITLE_NAME Window title string pointer.
M_WINDOW_TITLE_NAME_SIZE Number of characters in the window’s title

string.
M_WINDOW_UPDATE State of window update (M_ENABLE or

M_DISABLE).
M_WINDOW_ZOOM State of display window zooming

(M_ENABLE or M_DISABLE).
M_WINDOW_ZOOM_X Window zoom X factor (controlled by zoom

buttons).
M_WINDOW_ZOOM_Y Window zoom Y factor (controlled by zoom

buttons).

The following inquire types are only available with windowed displays, and
non-windowed displays on a Matrox imaging board with a display section:
M_WINDOW_OVR_BUF_ID Identifier of the overlay buffer associated

with the display or M_NULL.
M_WINDOW_OVR_DISP_ID Identifier of the overlay display associated

with the underlay display or M_NULL.
M_WINDOW_OVR_LUT LUT associated with the overlay buffer of

the display.
M_WINDOW_OVR_SHOW Visible state of the overlay (M_ENABLE or

M_DISABLE).
M_WINDOW_OVR_WRITE Whether or not the overlay-display

mechanism has been enabled.
(M_ENABLE or M_DISABLE).

The following inquire types are only available with an M_WINDOWED display on a
Matrox MGA display card or a Matrox imaging board with a display section.
M_HARDWARE_PAN Whether your system’s hardware pan

options are enabled or disabled.
M_HARDWARE_ZOOM Whether your system’s hardware zoom

options are enabled or disabled.

InquireType Description

272 MdispInquire

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. If MdispInquire() also returns
the requested information, you can set this parameter to M_NULL instead
of passing the address of the variable.

This parameter should be a pointer to a long except when InquireType is
set to one of the following:

■ M_OWNER_SYSTEM, M_SELECTED, and M_LUT_ID, in which case it
should be a pointer to a MIL_ID.

■ M_FORMAT, in which case it should be a pointer to a character array.

Return value Except for the M_FORMAT inquire type, the returned value is the setting of
the requested display attribute, cast to long. For the M_FORMAT inquire
type, the returned value is M_NULL.

See also MdispAlloc(), MdispControl(), MdispSelect(), MdispPan(),
MdispOverlayKey(), MdispZoom()

MdispLut 273

MdispLut

Synopsis Associate a LUT buffer to a display.

Format void MdispLut(DisplayId, LutBufId)

Description This function associates a LUT buffer to the specified display. If and when
the display is selected, the change required to produce the display (LUT)
effect occurs. In dual-screen mode, the LUT buffer is loaded into the physical
LUTs. In single-screen mode, MIL indirectly programs the physical output
LUTs through the use of a Windows palette. MIL checks the target display
to determine whether or not a LUT is supported. If not, an error is generated.
See Chapter 17:Lookup tables and Chapter 18:Displaying an image in the
MIL User Guide for more details on using LUTs.

The DisplayId parameter specifies the identifier of the display to which
the LUT buffer is copied.

The LutBufId parameter specifies the identifier of a previously allocated
LUT buffer (with an M_LUT attribute). The LUT buffer can be the default
LUT (M_DEFAULT), the pseudo LUT (M_PSEUDO), or a custom LUT buffer:

■ The default LUT (M_DEFAULT)

If you set LutBufId to M_DEFAULT in windowed mode, MIL provides a
good default logical palette for the realization of the physical output LUTs.
MIL takes into consideration the displayed image, the Windows display
driver used, and the VGA physical output LUT capabilities, and produces
the best "portability versus visual quality" compromise possible.

By default in non-windowed mode, MIL generates a ramp in the physical
output LUTs, which uses the full range of available intensities. This type
of mapping is also referred to as a pass-through LUT mapping (or
transparent LUT mapping).

■ A pseudo-color LUT (M_PSEUDO)

If you set LutBufId to M_PSEUDO in windowed mode, the data is loaded
in each component of the logical palette. In non-windowed mode, the data
is loaded into the physical output LUTs of the display.

MIL_ID DisplayId; Display identifier
MIL_ID LutBufId; LUT buffer identifier

274 MdispLut

■ A custom LUT buffer identifier

You can associate a custom LUT (allocated with MbufAlloc1d() or
MbufAllocColor()) with the display by setting LutBufId to the LUT’s
buffer identifier (a buffer having the M_LUT attribute).

If you associate a one-band LUT buffer with a windowed-mode display
and then select the display (MdispSelect()), the same data is loaded in
each component of the logical palette. In non-windowed-mode, the same
data is loaded into each of the physical output LUTs.

If you associate a three-band color LUT buffer (RGB) with a windowed
mode display and then select the display, each band of the LUT buffer is
loaded into its corresponding component of the logical palette. If you
associate a three-band color LUT buffer (RGB) with a non-windowed mode
display, each LUT buffer color band is loaded in a different physical output
LUT (if a different LUT is available for each display output channel).

Refer to both Chapter 17: Look-up tables (LUTS), as well as Chapter 18:
Displaying an image in the MIL User Guide for a detailed description of
managing LUT buffers and achieving the appropriate display effect.

LUT buffers used for display have the following restrictions:

■ If the LUT buffer values are changed while the image is selected on the
display, the changes will not take effect until the next call is made to
MdispLut(). That is, the LUT is not automatically updated when the
LUT buffer is modified.

■ In general, the LUT buffer will not be used when displaying a 3-band 8-bit
image under a non-8-bit display resolution.

■ In general, a LUT buffer cannot be associated with an M_UND display.

■ The LUT buffer must have one or three bands. Note that the number of
LUT buffer entries must be the same as the maximum number of
intensities that can be represented in the displayed buffer. In other words,
if you want to invert an 8-bit grayscale image (that is, an image that can
have 256 intensities), your LUT must also have 256 entries.

Note To obtain good results, the specified color values must be carefully selected
to provide the best color match for displaying your image. If the specified
values closely match the RGB values that occur frequently in the image to
be displayed, very good results can be obtained.

MdispLut 275

Status Hardware limitations:

Some hardware systems do not support display LUTs.

See also MbufAlloc1d(), MbufAllocColor(), MgenLutRamp(), MgenLutFunction(),
MbufPut(), MbufPut1d()

276 MdispOverlayKey

MdispOverlayKey

Synopsis Enable overlay keying for the specified display.

Format void MdispOverlayKey(DisplayId, KeyMode, KeyCond,
 KeyMask, KeyColor)

Description This function enables overlay keying, an operation that makes portions of
the overlay buffer transparent so that underlying areas of the displayable
image show through. This function only has an effect when the MIL
overlay-display mechanism is enabled with MdispControl(). Note, keying
is only supported in non-windowed mode if you are using a system with an
on-board display section.

The DisplayId parameter specifies the identifier of the display.

The KeyMode parameter specifies the keying mode. It can be set to one of
the following:

The KeyCond parameter specifies the keying condition when keying is
enabled. If keying is enabled (M_KEY_ON_COLOR), set this parameter to one
of the following:

Otherwise, set the KeyCond to M_NULL.

MIL_ID DisplayId; Display identifier
long KeyMode; Mode for keying
long KeyCond; Keying condition
long KeyMask; Keying mask to apply before comparison
long KeyColor; Keying color with which to compare

M_KEY_OFF Display the overlay buffer only (no keying).
M_KEY_ON_COLOR Display the image buffer selected on the display

only where the pixels of the overlay buffer are
equal to KeyColor.

M_KEY_ALWAYS Display the image buffer selected on the display
only.

M_EQUAL Display the image buffer where the overlay
buffer’s pixels equal the value of the KeyColor.

M_NOT_EQUAL Display the image buffer where the overlay
buffer’s pixels do not equal the value of the
KeyColor.

MdispOverlayKey 277

The KeyMask parameter specifies the mask to apply to the overlay pixels,
before performing the comparison and when keying is enabled
(M_KEY_ON_COLOR).

When keying is not enabled, set KeyMask to M_NULL.

The KeyColor parameter specifies the keying color when keying is enabled
(M_KEY_ON_COLOR). When in an 8-bit display mode (display depth), set
this parameter to the required 8-bit color index. When in any other display
mode, you can set this parameter to:

■ An 8-bit grayscale value. This value will be used for each band.

■ An RGB value using the following macro:

M_RGB888(red component, green component, blue component)

When keying is not enabled, set KeyColor to M_NULL.

Example The following portion of MIL code will display the main frame buffer when
the overlay frame buffer color is equal to 10.

MdispOverlayKey(DisplayId, M_KEY_ON_COLOR, M_EQUAL, 0xffL, 10L)

278 MdispPan

MdispPan

Synopsis Pan and scroll a display.

Format void MdispPan(DisplayId, XOffset, YOffset)

Description This function associates pan and scroll values with the specified display.
When an image buffer is selected for display, it will be panned and scrolled
on the display according to these values.

The DisplayId parameter specifies the identifier of the display.

The XOffset and YOffset parameters specify the number of pixels by which
to pan and scroll, respectively, an image buffer when it is displayed. Specify
the pan and scroll in relation to the top-left corner of the image buffer.
Specify a positive XOffset value to pan the image to the left, a positive
YOffset value to scroll the image upwards.

Note, the offsets are in image pixels (not screen pixels), so they are not
affected by the current zoom factor. For example, if the display has an
associated zoom factor 4, panning by an offset of one image pixel results in
panning by 4 on the display.

Status Hardware limitations:

Some hardware systems do not support panning and some only support
certain panning values.

See also MdispZoom(), MdispControl()

MIL_ID DisplayId; Display identifier
long XOffset; X pixel offset relative to top-left corner of buffer
long YOffset; Y pixel offset relative to top-left corner of buffer

MdispSelect 279

MdispSelect

Synopsis Select an image buffer to display.

Format void MdispSelect(DisplayId, ImageBufId)

Description This function outputs the specified image buffer contents to the specified
MIL display. You can only display one buffer at a time on a specific display.

The DisplayId parameter specifies the identifier of the display.

The ImageBufId parameter specifies the image buffer to display. To be
displayable, this buffer must be an image buffer that has an M_IMAGE +
M_DISP attribute.

If the specified image buffer is smaller in size than the display size, the
border outside the image is blanked out (if the hardware supports this). If
the specified buffer is larger in size than the system display, the right and
bottom portion of the buffer, the part that exceeds the display size, is not
displayed.

Note By default, under Windows, a call to MdispSelect() creates a window
surrounding the image.

See also MdispDeselect()

MIL_ID DisplayId; Display identifier
MIL_ID ImageBufId; Image buffer identifier

280 MdispSelectWindow

MdispSelectWindow

Synopsis Select an image buffer to display in a user-defined window.

Format void MdispSelectWindow(DisplayId, ImageBufId,
 ClientWindowHandle)

Description This function displays the specified image buffer contents in the specified
user window, using the specified MIL display.

This function is valid only in a Windows environment.

The DisplayId parameter specifies the identifier of the display.

The ImageBufId parameter specifies the image buffer to display. To be
displayable, this buffer must be an image buffer that has an M_IMAGE +
M_DISP attribute.

If the specified image buffer is smaller in size than the target window size,
the border outside the image is not modified. If the specified buffer is larger
in size than the target window, the right and bottom portion of the buffer,
the part that exceeds the window, is not displayed.

The ClientWindowHandle parameter specifies the handle of the
user-defined window or child window. This window must have been created
with the Windows API functions. If this parameter is set to zero, this
function behaves like MdispSelect().

Example mwindisp.c, mdispmfc.dsp

See also MdispSelect(), MdispDeselect()

MIL_ID DisplayId; Display identifier
MIL_ID ImageBufId; Image buffer identifier
HWND ClientWindowHandle; User-defined window handle

MdispZoom 281

MdispZoom

Synopsis Zoom a display.

Format void MdispZoom(DisplayId, XFactor, YFactor)

Description This function associates a zoom factor with the specified display. When an
image buffer is selected for display, it will be zoomed according to this factor
(if this feature is supported by the target system). The image buffer will be
displayed starting from its top-left corner, unless it has been panned and/or
scrolled, using MdispPan().

The DisplayId parameter specifies the identifier of the display.

The XFactor and YFactor parameters specify the X and Y zoom factor,
respectively. You can only zoom an image by integer factors; zoom factors
between -16 and 16, inclusive (except 0), are supported.

Status Hardware limitations:

■ Some hardware systems do not support zooming and some only support
certain zoom factors.

Example mmultdis.c

See also MdispPan(), MdispControl()

MIL_ID DisplayId; Display identifier
long XFactor; X zoom factor
long YFactor; Y zoom factor

282 MgenLutFunction

MgenLutFunction

Synopsis Generate data into a LUT buffer using a specified standard mathematical
function.

Format void MgenLutFunction(LutBufId, Func, a, b, c, StartIndex,
 StartXValue, EndIndex)

Description This function generates data in the specified LUT buffer area (StartIndex
to EndIndex inclusive) according to the function specified by Func and
using the LUT location index and the StartXValue as the X value in the
equation.

The LutBufId parameter specifies the identifier of the LUT in which to
generate values. This parameter must be given a valid LUT buffer identifier.
Allocate a LUT buffer, using MbufAlloc1d() or MbufAllocColor(). If the
LUT is a multi-band LUT (allocated with MbufAllocColor()), the same
data is written to all bands.

The Func parameter specifies the function to use for calculations. This
parameter can be set to one of the following:

MIL_ID LutBufId; LUT buffer identifier
long Func; Function to use for calculations
double a; Function constant a
double b; Function constant b
double c; Function constant c
long StartIndex; First LUT index
double StartXValue; Initial X value
long EndIndex; Last LUT index

M_LOG alogb (x) + c

M_EXP ab x + c
M_SIN asin(bx) + c
M_COS acos(bx) + c
M_TAN atan(bx) + c
M_QUAD ax2 + bx + c

MgenLutFunction 283

The a, b, c parameters specify function constants. For M_SIN, M_COS, and
M_TAN, X is considered to be in degrees. All results are converted to integer
by truncation, except when using a floating-point LUT buffer. Note, if the
given parameters cause an overflow or underflow, indeterminate
results will be written in the destination LUT.

The StartIndex and EndIndex specify the first and last LUT index entries
for which to generate values. The StartIndex value must be less than or
equal to the EndIndex value.

The StartXValue parameter specifies the initial value of X in the function.

See also MgenLutRamp(), MbufPut1d(), MbufPutColor(), MbufAlloc1d(),
MbufAllocColor().

284 MgenLutRamp

MgenLutRamp

Synopsis Generate ramp data into a LUT buffer.

Format void MgenLutRamp(LutId, StartIndex, StartValue, EndIndex,
 EndValue)

Description This function generates a ramp, inverse ramp, or a constant in the specified
LUT buffer region (StartIndex to EndIndex). The increment between
LUT entries is the difference between StartValue and EndValue, divided
by the number of entries.

If you need to generate a more complex LUT, use MgenLutFunction() or
generate the values with your Host system and load them into a MIL LUT
buffer, using MbufPut1d() or MbufPutColor().

The LutId parameter specifies the identifier of the LUT in which to
generate values. This parameter must be given a valid LUT buffer identifier.
Allocate a LUT buffer, using MbufAlloc1d() or MbufAllocColor().

The StartIndex and EndIndex parameters specify the first and last LUT
index entry for which to generate values. StartIndex must be less than or
equal to EndIndex.

The StartValue and EndValue parameters specify the extreme values
from which the increment is calculated. StartValue is the first LUT entry.
If both values are the same, the entire LUT range is filled with this value.
If EndValue is smaller than StartValue, an inverse ramp is generated.
These parameters accept only integer values, except when using a
floating-point LUT buffer.

Examples mdispovr.c, mnatfct.c

See also MgenLutFunction(), MbufPut1d(), MbufPutColor(), MbufAlloc1d(),
MbufAllocColor()

MIL_ID LutId; LUT identifier
long StartIndex; First LUT index
double StartValue; Start value of input range
long EndIndex; Last LUT index
double EndValue; End value of input range

MgenWarpParameter 285

MgenWarpParameter

Synopsis Generate coefficients or LUTs for use with MimWarp().

Format void MgenWarpParameter(InWarpParameter, OutXLutOrCoef,
OutYLut, OperationMode, Transform,
Val1, Val2)

Description This function can generate:

■ Coefficients (or LUTs) for a first-order polynomial warping
(M_WARP_POLYNOMIAL OperationMode).

■ Coefficients (or LUTs) for perspective warpings that map an arbitrary
quadrilateral onto a rectangle (M_WARP_4_CORNER OperationMode) or
that map a rectangle onto an arbitrary quadrilateral
(M_WARP_4_CORNER_REVERSE OperationMode).

■ Look-up tables (LUTs) for 3x3 matrix-defined warpings (M_WARP_LUT
OperationMode).

For a first-order polynomial warping, coefficients can be generated for a
rotation, a scaling, a shearing, or a translation. To combine coefficients (for
example, to generate coefficients for a rotation and translation), you need
to use separate calls to this function, using the previous output buffer as
your current input buffer. After all coefficients are generated, pass the
coefficient buffer to MimWarp().

MIL_ID InWarpParameter; Input buffer or M_NULL

MIL_ID OutXLutOrCoef; Output buffer for coefficients or x-LUT
entries

MIL_ID OutYLut; Output buffer for y-LUT entries or M_NULL

long OperationMode; Operation mode
long Transform; Type of first-order polynomial warping or

M_DEFAULT

double Val1; Constant or M_NULL

double Val2; Constant or M_NULL

286 MgenWarpParameter

Note that you can perform a first-order polynomial warping using LUTs. To
generate the required LUTs, use LUT buffers for your output rather than a
coefficient buffer while generating the last set of coefficients. In this case,
the coefficients will not be saved. If you need to save the coefficients, use
MgenWarpParameter() in M_WARP_LUT mode after you have generated
all coefficients.

After generating coefficients for perspective warpings, you need to call
MgenWarpParameter() in M_WARP_LUT mode, in order to generate the
LUTs required by MimWarp(). Alternatively, you can have the LUTs
generated on the first call, by using LUT buffers for your output rather than
a coefficient buffer. In this case, the coefficients will not be saved.

A 3x3 matrix-defined warping is performed by associating each pixel
position of the destination buffer, (xd, yd), with a specific point in the source

buffer, (xs, ys), according to the following equation:

 where

To perform a 3x3 matrix-defined warping, you must supply the 3x3
coefficients (a0...a2, b0...b2, c0...c2) to MgenWarpParameter(), which will
generate the LUTs required by MimWarp() to perform the warping.

The InWarpParameter parameter specifies the input buffer from which
to generate coefficients or LUT entries.

When generating coefficients for a first-order
polynomial warping, set InWarpParameter to M_NULL if this is your first
call to MgenWarpParameter(). If you are combining coefficients and this
is a second (or later) call, set InWarpParameter to the identifier of the
previous output buffer.

When generating coefficients for perspective
warpings that map an arbitrary quadrilateral onto a rectangle or that map
a rectangle onto an arbitrary quadrilateral, InWarpParameter must be

x

y

w

a0 a1 a2

b0 b1 b2

c0 c1 c2

xd

yd

1

=

xs
x
w

a0xd a1yd a2+ +

c0xd c1yd c2+ +
--= =

ys
y
w

b0xd b1yd b2+ +

c0xd c1yd c2+ +
--= =

MgenWarpParameter 287

set to the identifier of a one-dimensional floating-point buffer with an
M_ARRAY attribute. The buffer must contain 12 entries; each entry
corresponds to one of the following points.

When generating LUTs for a 3x3 matrix-defined warping,
InWarpParameter must be set to the identifier of a 3x3 floating-point
buffer that has an M_ARRAY attribute. The first row specifies the an
coefficients, the second row specifies the bn coefficients, and the third row
specifies the cn coefficients.

The OutXLutOrCoef parameter specifies the buffer in which to place
generated coefficients or x-LUT entries.

For coefficients (either those for a polynomial warping or a perspective
warping), the buffer must be a 3x3 floating-point buffer with an M_ARRAY
attribute.

entry [0] = X1 entry [8] = Xstart
entry [1] = Y1 entry [9] = Ystart
entry [2] = X2 entry [10] = Xend
entry [3] = Y2 entry [11] = Yend
entry [4] = X3
entry [5] = Y3
entry [6] = X4
entry [7] = Y4

288 MgenWarpParameter

For x-LUT entries, the buffer must be signed 16- or 32-bit integer, have the
same x and y size as the destination buffer that you will eventually pass to
MimWarp(), and have a M_LUT attribute.

The OutYLut parameter specifies the buffer in which to place y-LUT
entries. This buffer must be signed 16- or 32-bit integer, have the same x
and y size as the destination buffer that you will eventually pass to
MimWarp(), and have a M_LUT attribute.

If you are not generating LUTs, set the OutYLut parameter to M_NULL.

The OperationMode parameter specifies the mode of operation. It can be
set to:

When using LUT buffers for your output, you can add M_FIXED_POINT + n
to the OperationMode parameter, to specify the number of fractional bits
for the source address (xs, ys). The default value is 0.

The Transform parameter specifies the type of first-order polynomial
warping for which to generate coefficients. It can be set to:

M_WARP_POLYNOMIAL Generate coefficients for a first-order
polynomial warping.

M_WARP_4_CORNER Generate coefficients for a perspective
warping that maps an arbitrary
quadrilateral onto a rectangle.

M_WARP_4_CORNER_REVERSE Generate coefficients for a perspective
warping that maps a rectangle onto an
arbitrary quadrilateral.

M_WARP_LUT Generate LUTs for a 3x3 matrix-defined
warping.

M_ROTATE Generate coefficients for a counter-clockwise rotation
around (0,0) by Val1°.

M_SCALE Generate coefficients for an image scaling, by a factor
of Val1 in the x direction and by a factor of Val2 in
the y direction.

M_SHEAR_X Generate coefficients for a shearing in the x direction,
by a factor of Val1.

M_SHEAR_Y Generate coefficients for a shearing in the y direction,
by a factor of Val1.

M_TRANSLATE Generate coefficients for a translation by Val1 pixels
in the x direction and by Val2 pixels in the y
direction.

MgenWarpParameter 289

If you are not generating coefficients for a first-order polynomial warping,
set the Transform parameter to M_DEFAULT.

The Val1 and Val2 parameters specify transform constants. If these
parameters are not being used, set them to M_NULL.

Example mwarp.c

290 MgraAlloc

MgraAlloc

Synopsis Allocate a graphics context.

Format MIL_ID MgraAlloc(SystemId, GraphContIdPtr)

Description This function allocates a graphics context, which specifies drawing and text
parameters for use in subsequent MIL graphic functions.

Upon allocation of a graphics context, the drawing and text parameters are
set to the following default values:

You can modify these values, using MgraColor(), MgraBackColor(),
MgraFont(), and MgraFontScale(), or inquire about the current values,
using MgraInquire().

You can set the attributes of the graphic context (for example, background
transparency), using MgraControl().

When a graphics context is no longer required, release it, using
MgraFree().

The SystemId parameter specifies the system on which the graphics
context will be allocated. This parameter must be set to a valid system
identifier, M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST
to allocate on the default Host system of the current MIL application.
Specify M_DEFAULT to have MIL select the most appropriate system on
which to allocate the graphics context (it can be the default Host system or
any already allocated system).

The GraphContIdPtr parameter specifies the address of the variable in
which the graphics context identifier is to be written. Since the MgraAlloc()
function also returns the buffer identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

MIL_ID SystemId; System identifier
MIL_ID *GraphContIdPtr; Storage location for graphics context

identifier

Foreground color 0xFFFFFFFF
Background color 0x00000000
Font M_FONT_DEFAULT_SMALL

Font scale X = 1.0, Y = 1.0

MgraAlloc 291

Note, upon allocation of an application, a default graphics context is
automatically allocated. Rather than using MgraAlloc() to allocate a
graphics context, you can use this default graphics context, by specifying
M_DEFAULT wherever a graphics context identifier is required.

Return value The returned value is the graphics context identifier. If allocation fails,
M_NULL is returned.

See also MgraFree(), MgraColor(), MgraBackColor(), MgraFont(), MgraFontScale(),
MgraInquire()

292 MgraArc

MgraArc

Synopsis Draw an arc.

Format void MgraArc(GraphContId, DestImageBufId, XCenter, YCenter,
 XRad, YRad, StartAngle, EndAngle)

Description This function draws an elliptic arc based on an ellipse centered at (XCenter,
YCenter) with radii XRad and YRad. The arc is defined by the start angle
StartAngle and the end angle EndAngle. The arc is drawn with the
foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the image buffer
in which to draw.

The XCenter and YCenter parameters specify the X and Y coordinates of
the arc center, relative to the top-left corner of the specified target buffer.

The XRad and YRad parameter specify the elliptic arc radii. The radii
should be given in pixels and must be greater than 0.

The StartAngle and EndAngle specify the angles at which to start and
end drawing the arc, respectively, moving in a counter-clockwise direction.
Express angles in degrees in relation to the positive X-axis.

If part of the arc falls outside of the specified target buffer, that part is
clipped off.

Examples mfft.c, mmeas.c

See also MgraArcFill()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XCenter; X-coordinate of arc center
long YCenter; Y-coordinate of arc center
long XRad; Horizontal radius of elliptic arc
long YRad; Vertical radius of elliptic arc
double StartAngle; Starting angle relative to the positive X-axis
double EndAngle; Ending angle relative to the positive X-axis

MgraArcFill 293

MgraArcFill

Synopsis Draw a filled elliptic arc.

Format void MgraArcFill(GraphContId, DestImageBufId, XCenter,
 YCenter, XRad, YRad, StartAngle, EndAngle)

Description This function draws a filled elliptic arc based on an ellipse centered at
(XCenter, YCenter) with radii XRad and YRad. The arc is defined by the
start angle StartAngle and end angle EndAngle. The arc is drawn and
filled with the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application will be used.

The DestImageBufId parameter specifies the identifier of the image buffer
in which to draw.

The XCenter and YCenter parameters specify the X and Y coordinates of
the arc center relative to the top-left corner of the specified target buffer.

The XRad and YRad parameters specify the elliptic arc radii. The radii
should be given in pixels and must be greater than 0.

The StartAngle and EndAngle specify the angles at which to start and
end drawing the arc, respectively, moving in a counter-clockwise direction.
Express angles in degrees in relation to the positive X-axis.

If part of the arc falls outside of the specified target buffer, that part is
clipped off.

Example mdisplay.c

See also MgraArc(), MgraFill()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XCenter; X-coordinate of arc center
long YCenter; Y-coordinate of arc center
long XRad; Horizontal radius of elliptic arc
long YRad; Vertical radius of elliptic arc
double StartAngle; Starting angle relative to the positive X-axis
double EndAngle; Ending angle relative to the positive X-axis

294 MgraBackColor

MgraBackColor

Synopsis Sets the background color of a graphics context.

Format void MgraBackColor(GraphContId, BackgroundColor)

Description This function sets the background color of a specified graphics context.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the background color. This parameter can
be set to M_DEFAULT, in which case the default graphics context of the
current MIL application is used.

The BackgroundColor parameter specifies the background color. Set this
parameter as follows:

■ When using the graphics context to draw in a 1-band buffer, set this
parameter to any value. This value will be cast to the type of the
destination buffer.

■ When using the graphics context to draw in a multi-band buffer with a
grayscale background value, set this parameter to any value. This value
will be cast to the type of the destination buffer’s bands and replicated in
each band.

■ When using the graphics context to draw in an 8-bit 3-band buffer with
an RGB background value, set this parameter using the following macro:

M_RGB888(red component, green component, blue component)

■ When using the graphics context to draw in a 16-bit or 32-bit multi-band
buffer with a color background value, use MgraControl().

Example mcode.c

See also MgraColor(), MgraAlloc(), MgraInquire(), MgraControl()

MIL_ID GraphContId; Graphics context identifier
double BackgroundColor; Background drawing and text color

MgraClear 295

MgraClear

Synopsis Clear an image buffer to a specified foreground color.

Format void MgraClear(GraphContId, DestImageBufId)

Description This function clears the entire specified buffer to the foreground color
specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer to
clear. This parameter must be given a valid image buffer identifier.

See also MgraColor()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier

296 MgraColor

MgraColor

Synopsis Sets the foreground color of a graphics context.

Format void MgraColor(GraphContId, ForegroundColor)

Description This function sets the foreground color of a specified graphics context.

The GraphContId parameter specifies the identifier of the graphics
context with which to associate the foreground color. This parameter can be
set to M_DEFAULT, in which case the default graphics context of the current
MIL application is used.

The ForegroundColor parameter specifies the foreground color. Set this
parameter as follows:

■ When using the graphics context to draw in a 1-band buffer, set this
parameter to any value. This value will be cast to the type of the
destination buffer.

■ When using the graphics context to draw in a multi-band buffer with a
grayscale foreground value, set this parameter to any value. This value
will be cast to the type of the destination buffer’s bands and replicated in
each band.

■ When using the graphics context to draw in an 8-bit 3-band buffer with
an RGB foreground value, set this parameter using the following macro:

M_RGB888(red component, green component, blue component)

■ When using the graphics context to draw in a 16-bit or 32-bit multi-band
buffer with a color foreground value, use MgraControl().

Examples mblob.c, mcalib.c, mcode.c, mdisplay.c, mmeas.c, mmeasmul.c,
mocrread.c, mwarp.c

See also MgraBackColor(), MgraAlloc(), MgraInquire(), MgraControl()

MIL_ID GraphContId; Graphics context identifier
double ForegroundColor; Foreground drawing and text color

MgraControl 297

MgraControl

Synopsis Control the specified graphic context.

Format void MgraControl(GraphContId, ControlType, ControlValue)

Description This function allows you to set the attributes of a graphic context.

The GraphContId parameter specifies the identifier of the graphic context
(MgraAlloc()). To control the default graphic context of the current MIL
application, set this parameter to M_DEFAULT.

The ControlType and ControlValue parameters specify the graphic
features to control and the values needed for the control. These two
parameters can be set to one of the following combinations:

For M_COLOR and M_BACKCOLOR, specify a ControlValue as follows:

■ When using the graphics context to draw in a 1-band buffer, set
ControlValue to any value. This value will be cast to the type of the
destination buffer.

MIL_ID GraphContId; Graphic context identifier
long ControlType; Control type
double ControlValue; Control value

ControlType Description & ControlValue
M_BACKGROUND_MODE Controls the setting of the background color on

the drawing surface.
M_OPAQUE Fill background with the

current background color
before drawing text. This is
the default value
(M_DEFAULT).

M_TRANSPARENT Do not change background
before drawing text. This
creates a transparent
background for printed
characters.

M_COLOR Sets the foreground color of a specified graphics
context.

M_BACKCOLOR Sets the background color of a specified
graphics context.

298 MgraControl

■ To specify a grayscale value when using the graphics context to draw in
a multi-band buffer, set ControlValue to any value. This value will be
cast to the type of the destination buffer’s bands and replicated in each
band.

■ To specify an RGB value when using the graphics context to draw in an
8-bit 3-band buffer, set ControlValue using the following macro:

M_RGB888(red component, green component, blue component)

■ To specify a color value when using the graphics context to draw in a 16-bit
or 32-bit multi-band buffer, you must call MgraControl() for each color
component (R,G, and B). Add M_RED, M_GREEN, or M_BLUE to M_COLOR
or M_BACKCOLOR to specify the component. Set ControlValue to any
value; this value will be cast to the type of the destination buffer’s bands.
For example, you would make the following call to set the red color
component:

MgraControl(M_DEFAULT, M_COLOR+M_RED, red color component)

Note that you can use the M_RED, M_GREEN, and M_BLUE constants even
when using the graphics context to draw in an 8-bit multi-band buffer.

Examples mcalib.c, mdispovr.c

See also MgraAlloc(), MgraBackColor(), MgraColor()

MgraDot 299

MgraDot

Synopsis Draw a dot.

Format void MgraDot(GraphContId, DestImageBufId, XPos, YPos)

Description This function draws a dot at the specified drawing position, using the
foreground color specified in the graphics context .

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XPos and YPos parameters specify the X and Y coordinates of the
drawing position. The given coordinate is relative to the top-left corner of
the specified target buffer. It should be valid in the specified image buffer;
otherwise, nothing will be drawn.

See also MbufPut2d(), MbufPutColor()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XPos; X position of dot
long YPos; Y position of dot

300 MgraFill

MgraFill

Synopsis Perform a boundary-type seed fill.

Format void MgraFill(GraphContId, DestImageBufId, XStart, YStart)

Description This function performs a boundary-type seed fill. It fills in an area of the
target buffer, with the foreground color specified in the graphics context,
starting from the specified seed position. Filling occurs on adjacent pixels
(vertically and horizontally to original seed pixel) that have the same value
as the original seed pixel.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the X and Y coordinates of the
seed position. If the specified point is not within an enclosed area, filling
occurs until the boundaries of the buffer are encountered. The given
coordinate is relative to the top-left corner of the specified target buffer. It
should be valid in the specified image buffer; otherwise, the operation is not
performed.

See also MgraArcFill(), MgraRectFill()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of seed position
long YStart; Y-coordinate of seed position

MgraFont 301

MgraFont

Synopsis Associate a text font with a graphics context.

Format void MgraFont(GraphContId, FontName)

Description This function associates a character font with the specified graphics context
for use with subsequent MgraText() function calls.

The GraphContId parameter specified the identifier of the graphics
context with which to associate the character font. This parameter can be
set to M_DEFAULT, in which case, the default graphics context of the current
MIL application is used.

The FontName parameter specifies the font with which to write text. This
parameter can be set to one of the following:

Examples mocrfont.c, mocrread.c

See also MgraFontScale(), MgraAlloc(), MgraText(), MgraInquire()

MIL_ID GraphContId; Graphics context identifier
void *FontName; Character font

M_FONT_DEFAULT_LARGE Default font with 16x32 pixel wide
characters.

M_FONT_DEFAULT_MEDIUM Default font with 12x24 pixel wide
characters.

M_FONT_DEFAULT_SMALL Default font with 8x16 pixel wide
characters.

M_FONT_DEFAULT In general corresponds to
M_FONT_DEFAULT_SMALL.

302 MgraFontScale

MgraFontScale

 Synopsis Set the font scale of a graphics context.

Format void MgraFontScale(GraphContId, XFontScale, YFontScale)

Description This function sets the font scale of the specified graphics context for use
with subsequent MgraText() function calls.

The GraphContId parameter specifies the identifier of the graphics
context for which to set the font scale. This parameter can be set to
M_DEFAULT, in which case the default graphics context of the current MIL
application is used.

The XFontScale and YFontScale parameters are used to multiply the
width and height of the font characters, respectively. Each of these
parameters can be independently set to any positive floating point value.
The default X and Y scale factors are 1.0.

Note, using a font with a scale of 1.0 accelerates text drawing.

Example mocrfont.c

See also MgraFont(), MgraAlloc(), MgraText(), MgraInquire()

MIL_ID GraphContId; Graphics context identifier
double XFontScale; Font scaling factor in X
double YFontScale; Font scaling factor in Y

MgraFree 303

MgraFree

Synopsis Free a graphics context.

Format void MgraFree(GraphContId)

Description This function deallocates a graphics context previously allocated with
MgraAlloc().

The GraphContId parameter specifies the identifier of the graphics
context to deallocate. If M_DEFAULT is specified, an error will occur.

See also MgraAlloc()

MIL_ID GraphContId; Graphics context identifier

304 MgraInquire

MgraInquire

Synopsis Inquire about the graphics parameters.

Format void MgraInquire(GraphContId, InquireType, UserVarPtr)

Description This function inquires about a graphic parameter in the specified graphics
context.

The GraphContId parameter specifies the identifier of the graphics
context on which to perform the inquiry. This parameter can be set to
M_DEFAULT, in which case the default graphics context of the current MIL
application is used.

The InquireType parameter specifies the graphic parameter about which
to inquire. This parameter can be set to one of the following values:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. This variable should be defined
as follows:

MIL_ID GraphContId; Graphics context identifier
long InquireType; Graphic parameter to inquire
void *UserVarPtr; Storage location for inquiry result

InquireType Description
M_COLOR Foreground color.
M_BACKCOLOR Background color.
M_BACKGROUND_MODE Background mode.
M_FONT Character font.
M_FONT_X_SCALE Font scaling factor in X.
M_FONT_Y_SCALE Font scaling factor in Y.
M_OWNER_SYSTEM MIL identifier (MIL_ID) of the system on

which the graphics context has been
allocated (MgraAlloc()).

InquireType Pointer to a:
M_COLOR double
M_BACKCOLOR double
M_BACKGROUND_MODE long
M_FONT void

MgraInquire 305

See also MgraColor(), MgraBackColor(), MgraFont(), MgraFontScale()

M_FONT_X_SCALE double
M_FONT_Y_SCALE double
M_OWNER_SYSTEM MIL_ID

InquireType Pointer to a:

306 MgraLine

MgraLine

 Synopsis Draw a line.

Format void MgraLine(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a line starting and ending at the specified coordinates,
using the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case, the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of one line
extremity, while XEnd and YEnd specify the coordinates of the other. The
given coordinates are relative to the top-left corner of the specified target
buffer. They should be valid in the specified buffer; otherwise, the line is
clipped outside the buffer boundaries.

Examples mblob.c, mcalib.c, mmeas.c, mmeasmul.c, mpatrot.c, mwarp.c

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of start of line position
long YStart; Y-coordinate of start of line position
long XEnd; X-coordinate of end of line position
long YEnd; Y-coordinate of end of line position

MgraRect 307

MgraRect

Synopsis Draw a rectangle.

Format void MgraRect(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a rectangle starting from the specified top-left
coordinate to the specified bottom-right corner. The rectangle is drawn in
the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the top-left
corner of the rectangle, XEnd and YEnd specify the coordinates of the
bottom-right corner. The given coordinates are relative to the top-left corner
of the specified target buffer. They should be valid in the specified buffer;
otherwise, the rectangle is clipped outside the buffer boundaries.

Examples mmeas.c, mmeasmul.c, mrestmod.c, msearch.c, mshift.c

See also MgraRectFill()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of top-left rectangle corner
long YStart; Y-coordinate of top-left rectangle corner
long XEnd; X-coordinate of bottom-right rectangle corner
long YEnd; Y-coordinate of bottom-right rectangle corner

308 MgraRectFill

MgraRectFill

Synopsis Draw a filled rectangle.

Format void MgraRectFill(GraphContId, DestImageBufId, XStart, YStart,
 XEnd, YEnd)

Description This function draws a filled rectangle starting from the specified top-left
coordinate to the specified bottom-right corner. The rectangle is drawn and
filled in the foreground color specified in the graphics context.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to draw. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the top-left
corner of the rectangle, XEnd and YEnd specify the coordinates of the
bottom-right corner. The given coordinates are relative to the top-left corner
of the specified target buffer. They should be valid in the specified buffer;
otherwise, the rectangle is clipped outside the buffer boundaries.

See also MgraRect(), MgraFill()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of top-left rectangle corner
long YStart; Y-coordinate of top-left rectangle corner
long XEnd; X-coordinate of bottom-right rectangle corner
long YEnd; Y-coordinate of bottom-right rectangle corner

MgraText 309

MgraText

Synopsis Write text.

Format void MgraText(GraphContId, DestImageBufId, XStart, YStart,
 String)

Description This function writes the specified ASCII string to the specified buffer
starting at the specified writing position, using the parameters (colors, font,
and size) defined in the graphics context. Use MgraFont() and
MgraFontScale() to modify the font and size. Use MgraControl() to
obtain a transparent background for printed characters.

The GraphContId parameter specifies the identifier of the graphics
context. This parameter can be set to M_DEFAULT, in which case, the default
graphics context of the current MIL application is used.

The DestImageBufId parameter specifies the identifier of the buffer in
which to write. This parameter must be given a valid image buffer identifier.

The XStart and YStart parameters specify the coordinates of the position
at which to start writing the top-left corner of the first character. The given
coordinates are relative to the top-left corner of the buffer. They should be
valid in the specified buffer; otherwise, the text is clipped.

The String parameter specifies the address of the string that must be
written in the destination buffer. There is no restriction on the length of the
string, except that the string must be null (\0) terminated.

Examples mcalib.c, mcode.c, mdispovr.c, mocrfont.c, mocrread.c, mstart.c, mthread.c,
mwindib.c, mwindisp.c

See also MgraFont(), MgraFontScale(), MgraControl()

MIL_ID GraphContId; Graphics context identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long XStart; X-coordinate of writing position
long YStart; Y-coordinate of writing position
char *String; Null terminated ASCII string

310 MimAllocResult

MimAllocResult

Synopsis Allocate an image processing result buffer.

Format MIL_ID MimAllocResult(SystemId, NbEntries, ResultType,
 ImResultIdPtr)

Description This function allocates a result buffer with the specified number of entries,
for use with the image processing module statistical functions.

When the result buffer is no longer required, you should release its memory,
using MimFree().

The SystemId parameter specifies the system on which the result buffer
will be allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST to allocate
on the default Host system of the current MIL application. Specify
M_DEFAULT to have MIL select the most appropriate system on which to
allocate the result buffer (it can be the default Host system or any already
allocated system).

The NbEntries parameter specifies the number of buffer entries of the
specified result buffer type, ResultType.

The ResultType parameter specifies the type of data that will be stored in
this result buffer. This parameter can be set to one of the following:

By default, the result buffer is of type long. A floating-point result buffer
can be allocated for the M_PROJ_LIST, M_EXTREME_LIST and
M_EVENT_LIST types, by appending M_FLOAT to the ResultType (for
example, M_PROJ_LIST + M_FLOAT).

MIL_ID SystemId; System identifier
long NbEntries; Number of result buffer entries
long ResultType; Type of result buffer
MIL_ID *ImResultIdPtr; Storage location for image processing result

buffer identifier

M_HIST_LIST For MimHistogram() results.
M_PROJ_LIST For MimProject() results.
M_EXTREME_LIST For MimFindExtreme() results.
M_EVENT_LIST For MimLocateEvent() results.
M_COUNT_LIST For MimCountDifference() results.

MimAllocResult 311

The ImResultIdPtr parameter specifies the address of the variable in
which the image processing result buffer identifier is to be written. Since
MimAllocResult() also returns the image processing result buffer
identifier, you can set this parameter to M_NULL. If allocation fails, M_NULL
is written as the identifier.

Note This function is optimized for packed binary buffers for the M_COUNT_LIST
results only.

Return value The returned value is the image processing result buffer identifier. If
allocation fails, M_NULL is returned.

Examples mcount.c, mhist.c

See also MsysAlloc(), MimGetResult(), MimGetResult1d(), MimFree()

312 MimArith

MimArith

Synopsis Perform a point-to-point arithmetic operation.

Format void MimArith(Src1ImageBufId, Src2ImageBufId,
 DestImageBufId, Operation)

Description This function performs the specified point-to-point operation on two images,
an image and a constant, an image, or a constant, storing results in the
specified destination image buffer.

The Src1ImageBufId parameter specifies the data source of the first
operand. This parameter can be given an image buffer identifier or a
constant. When using a constant, it will be considered to have the same type
as the destination buffer.

The Src2ImageBufId parameter specifies the data source of the second
operand. This parameter can be given an image buffer identifier or a
constant. If the selected operation uses only one operand, set this parameter
to M_NULL. When using a constant, it will be considered to have the same
type as the destination buffer.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The Operation parameter specifies the operation to perform. This
parameter should be set in accordance to the operands. Operations using
two image buffer operands are the following:

double Src1ImageBufId; Source 1 image buffer identifier or a constant
double Src2ImageBufId; Source 2 image buffer identifier or a constant
MIL_ID DestImageBufId; Destination image buffer identifier
long Operation; Operation to perform

M_ADD M_SUB M_AND

M_NAND M_OR M_XOR

M_NOR M_XNOR M_MIN

M_MAX M_DIV M_MULT

M_SUB_ABS M_DIV+M_FIXED_POINT

MimArith 313

The following are operations that use an image buffer operand and a
constant. If the operation is not commutative, you must give the constant
as either the first or second operand, as can be determined from the
predefined operation name.

Operations using only one image buffer operand are the following:

The operation using only a constant is the following:

Operations with the suffix ABS take the absolute value of the operation
result. Operations that use the M_FIXED_POINT attribute provide the result
in an 0.8 fixed-point format (where the eight most-significant bits are the
integer portion and the eight least-significant bits are the fractional portion)
for an 8-bit destination. That is, the 8 bits comprise only the fractional
portion of the value, and no interger portion. When the destination is 16-bit,
operations that use the M_FIXED_POINT attribute provide the result in a
8.8 fixed-point format. For a 32-bit destination, the result is in a 16.16
fixed-point format.

Logical operations (listed below) cannot be performed on a floating-point
buffer.

M_ADD_CONST M_SUB_CONST M_CONST_SUB

M_AND_CONST M_NAND_CONST M_OR_CONST

M_XOR_CONST M_NOR_CONST M_XNOR_CONST

M_MIN_CONST M_MAX_CONST M_MULT_CONST

M_DIV_CONST M_CONST_DIV M_DIV_CONST+M_FIXED_POINT

M_CONST_DIV+M_FIXED_POINT

M_NOT M_NEG M_ABS M_PASS

M_CONST_PASS (fills the destination with a constant).

M_OR M_AND M_XOR

M_NOR M_NAND M_XNOR

M_OR_CONST M_AND_CONST M_XOR_CONST

M_NOR_CONST M_NAND_CONST M_XNOR_CONST

M_NOT M_CONST_DIV+M_FIXED_POINT

M_DIV+M_FIXED_POINT M_DIV_CONST+M_FIXED_POINT

314 MimArith

To force certain operations to saturate when the resulting value overflows
or underflows add M_SATURATION to the operation name (for example,
M_ADD+M_SATURATION). The following operations can be used this way:

Note This function is optimized for packed binary buffers.

When performing a division operation using M_DIV, M_DIV +
M_FIXED_POINT, or any other M_DIV_xx attribute, dividing a value by 0 will
generate a destination pixel with a value that is impossible to predict.
However, an error is not generated.

Status In-place processing is supported (source equals destination), but the source
and destination image buffers cannot partially overlap (a situation that can
only occur when using child buffers).

Examples mcolor.c, mcount.c, mperim.c, msegment.c, mthread.c

M_ADD M_ADD_CONST M_SUB

M_SUB_ABS M_SUB_CONST M_CONST_SUB

M_MULT M_MULT_CONST

MimArithMultiple 315

MimArithMultiple

Synopsis Perform a point-to-point arithmetic operation using multiple source images.

Format void MimArithMultiple(Src1ImageBufId, Src2ImageBufId,
 Src3ImageBufId, Src4ImageBufId,
 Src5ImageBufId, DestImageBufId,
 Operation, OperationFlag)

Description This function performs the specified point-to-point operation requiring
multiple images, images and constants, or constants, storing results in the
specified destination image buffer. Note also, that this function does not
take 1-bit buffers in any of its parameters.

The Src...ImageBufId parameters specify the data sources of the
operands. These parameters can be given an image buffer identifier or a
constant. If the selected operation does not require all of the possible
operands, set the excess source buffer parameters to M_NULL.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

double Src1ImageBufId; Source 1 image buffer identifier or a constant
double Src2ImageBufId; Source 2 image buffer identifier or a constant
double Src3ImageBufId; Source 3 image buffer identifier or a constant
double Src4ImageBufId; Source 4 image buffer identifier or a constant
double Src5ImageBufId; Source 5 image buffer identifier or a constant
MIL_ID DestImageBufId; Destination image buffer identifier
long Operation; Operation to perform
long OperationFlag; Flag associated with the Operation argument

316 MimArithMultiple

The Operation parameter specifies the operation to perform. The following
table lists the valid multiple operation names, their equations, and their
descriptions, as well as their requirements for the sources of the operands:

To force the operations to saturate when the resulting value overflows or
underflows add M_SATURATION to the operation name (for example,
M_OFFSET_GAIN+M_SATURATION). In the case of M_OFFSET_GAIN (with
unsigned buffers), an additional saturation to 0 is performed after the
subtraction in order to avoid negative underflows.

The OperationFlag parameter must be set to M_DEFAULT.

Status In-place processing is supported (source equals destination), but the source
and destination image buffers cannot partially overlap (a situation that can
only occur when using child buffers).

Operation, Equation, and
Description

Source
1

Source
2

Source
3

Source
4

Source
5

M_OFFSET_GAIN
((Src1 - Src2) * Src3) / Src4
Apply per-pixel gain and offset correction
to an image.

image* image* image*
constant
and
power
of 2

M_NULL

* These image buffers must be of the same type.

M_WEIGHTED_AVERAGE
((Src1 - Src3) / Src2) + Src3
Apply a weighted averaging to an image
and place the results in an accumulator.

image*
constant
and
power of
2

image* M_NULL M_NULL

* These image buffers must be of the same type.

M_MULTIPLY_ACCUMULATE_1
((Src1 * Src2) + Src3) / Src4
Apply the stated equation to the specified
image.

image constant* constant
*

constant*
and
power
of 2

M_NULL

* These constants are cast in the same type as the source 1 image buffer.

M_MULTIPLY_ACCUMULATE_2
((Src1 * Src2) + (Src3 * Src4)) / Src5
Apply the stated equation to the specified
images.

image* constant* image* constant*
constant
and power
of 2

* The image buffers and the constants must be of the same type (signed or unsigned).

MimBinarize 317

MimBinarize

 Synopsis Perform a point-to-point binary thresholding operation.

Format long MimBinarize(SrcImageBufId, DestImageBufId,
 Condition, CondLow, CondHigh)

Description This function performs binary thresholding on the specified image. Each
pixel that meets the specified condition is set to the highest unsigned
destination buffer value, while other pixels are set to 0. For example, the
highest buffer value for an 8-bit buffer is 0xff (regardless if the source buffer
is signed).

MIL can automatically determine the threshold values (CondLow and/or
CondHigh) from the source image’s histogram. In this case, the two highest
peaks in the image’s histogram are located and the threshold value is set to
the minimum value between these peaks. This option can only be used for
8-bit and 16-bit source images. If desired, this function can just return the
threshold value, without binarizing the source image.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

If you want MimBinarize() to just return the source image’s automatically
determined threshold value, without binarizing the source image, set the
DestImageBufId parameter to M_NULL.

The Condition parameter specifies the thresholding condition. This
parameter can be set to one of two types of conditions.

■ Conditions that use two limits (CondLow and CondHigh):
M_OUT_RANGE, M_IN_RANGE

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long Condition; Conditional operator for selection
double CondLow; Low compare value for the condition
double CondHigh; High compare value for the condition

318 MimBinarize

■ Conditions that use one limit (CondLow):
M_EQUAL, M_NOT_EQUAL, M_GREATER, M_LESS,
M_GREATER_OR_EQUAL, M_LESS_OR_EQUAL.

When the M_OUT_RANGE condition is selected, pixels with values less than
CondLow, or greater than CondHigh, are set to the highest buffer value,
while other pixels are set to zero (0).

When the M_IN_RANGE condition is selected, pixels with values from
CondLow to CondHigh, inclusive, are set to the highest buffer value,
while other pixels are set to zero (0).

When you select any of the other conditions, if the condition applied to the
pixel is true, that pixel is set to the highest buffer value, while other pixels
are set to zero (0).

If a floating point destination buffer is specified, pixels that meet the
condition are set to one (1).

The CondLow and CondHigh parameters specify the upper and lower
limits of the selected condition. To have one of these parameters
automatically determined from the image’s histogram, set it to M_DEFAULT.
If the condition uses only one limit, set the CondLow parameter to the
required limit (or to M_DEFAULT) and set CondHigh to M_NULL. If the
source buffer is binary, CondLow and CondHigh must be equal to 0 or 1.

Note that the values for CondLow and CondHigh are casted to the source
buffer’s data type and depth.

Return value The returned value is the value used for the CondLow parameter (either
the automatically selected value or the manually chosen value).

Note This function is optimized for packed binary buffers.

Status In-place processing is supported (source equals destination), but the source
and destination image buffers cannot partially overlap (a situation that can
only occur when using child buffers).

Examples mblob.c, mmultdis.c, mopen.c, mperim.c

See also MimClip()

MimClip 319

MimClip

 Synopsis Perform a point-to-point clipping operation.

Format void MimClip(SrcImageBufId, DestImageBufId, Condition,
 CondLow, CondHigh, WriteLow, WriteHigh)

Description This function clips each image pixel that meets the specified condition. If
the condition has one clipping point, each pixel that satisfies this condition
is replaced with the specified WriteLow value. If it has two clipping points,
they are either replaced with the WriteLow or WriteHigh value depending
on the condition. Pixels that do not satisfy the condition are not affected.

The SrcImageBufId parameter specifies the identifier of the image data
source.

The DestImageBufId parameter specifies the identifier of the destination
image buffer.

The Condition parameter specifies the clipping condition. This parameter
can be set to one of two types of conditions.

■ Conditions with two clipping points:

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long Condition; Clipping condition
double CondLow; Low clipping point
double CondHigh; High clipping point
double WriteLow; Value written if low clipping condition

satisfied
double WriteHigh; Value written if high clipping condition

satisfied

M_OUT_RANGE Replace pixel values less than CondLow with
WriteLow and those greater than CondHigh with
WriteHigh.

M_IN_RANGE Replace pixel values in the range of CondLow and
CondHigh, inclusive, with WriteLow.

320 MimClip

■ Conditions with one clipping point:

The CondLow and CondHigh parameters specify the upper and lower
clipping points of the selected condition. If the condition uses only one limit,
set the CondLow parameter to the required limit and set CondHigh to
M_NULL. These parameters are cast to the source buffer’s data type and
interpreted accordingly. Note, if the source buffer is binary, CondLow and
CondHigh must be equal to 0 or 1.

The WriteLow and WriteHigh parameters specify the values to write to
the destination buffer when a pixel satisfies the specified clipping condition.
The condition determines whether WriteLow or WriteHigh is written.
When WriteHigh is not used, you should set it to M_NULL. These
parameters are cast to the destination buffer’s data type. Note, if the
destination buffer is binary, WriteLow and WriteHigh must be equal to 0
or 1.

Note This function is optimized for packed binary buffers.

Status In-place processing is supported (source equals destination), but the source
and destination image buffers cannot partially overlap (a situation that can
only occur when using child buffers).

Examples mcolor.c, msegment.c

See also MimBinarize()

M_EQUAL Replace pixel values equal to CondLow with
WriteLow.

M_NOT_EQUAL Replace pixel values not equal to CondLow
with WriteLow.

M_GREATER Replace pixel values greater than CondLow
with WriteLow.

M_LESS Replace pixel values less than CondLow with
WriteLow.

M_GREATER_OR_EQUAL Replace pixel values greater than or equal to
CondLow with WriteLow.

M_LESS_OR_EQUAL Replace pixel values less than or equal to
CondLow with WriteLow.

MimClose 321

MimClose

Synopsis Perform a binary or grayscale closing-type morphological operation.

Format void MimClose(SrcImageBufId, DestImageBufId,
 NbIteration, ProcMode)

Description This function performs a binary or grayscale closing operation on the given
source image for the specified number of iterations. A closing is a dilation
followed by an erosion.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The NbIteration parameter specifies the number of times to iterate the
operation.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

In binary mode, this function uses a 3 x 3 full rectangular structuring
element; in grayscale mode, a 3 x 3 empty one.

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Example mblob.c

See also MimOpen(), MimDilate(), MimErode()

MIL_ID SrcImageBufId; Source image buffer
MIL_ID DestImageBufId; Destination image buffer identifier
long NbIteration; Number of operation iterations
long ProcMode; Processing mode

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have
the maximum value of the unsigned buffer (for example,
0xff for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing.

322 MimConnectMap

MimConnectMap

Synopsis Perform a 3 by 3 binary connectivity mapping.

Format void MimConnectMap(SrcImageBufId, DestImageBufId, LutBufId)

This function performs a 3 x 3 binary connectivity mapping. It calculates a
connectivity code for each pixel in the source image, then maps the codes
through the specified LUT buffer.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier. The
source pixels are treated as binary (that is, all non-zero pixels are treated
as 1). Pixel connectivity codes are determined in the following order:

where ni is either 0 or 1

Connectivity code =

Result = LUTMAP (connectivity code)

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The LutBufId parameter specifies the identifier of the LUT buffer. As each
connectivity code has 9 bits, you should supply a LUT buffer with at least

512 (29) entries; otherwise unpredictable results can occur.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
MIL_ID LutBufId; LUT buffer identifier

n3 n2 n1

n4 n8 n0

n5 n6 n7

2
i
ni

i 0=

8

∑

MimConnectMap 323

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

324 MimConvert

MimConvert

 Synopsis Perform a color conversion.

Format MIL_ID MimConvert(SrcImageId, DestImageId,
 ConversionType)

Description This function performs a color conversion on the source image and places
the result in the destination buffer.

The SrcImageBufId parameter specifies the identifier of the source image
buffer. Source buffer values must be positive. If specifying a floating-point
buffer, the values of the buffer must be normalized between 0 and 1 before
calling this function.

The DestImageBufId parameter specifies the identifier of the destination
image buffer. If specifying a floating-point buffer, the values generated will
be normalized between 0 and 1.

The ConversionType parameter specifies the type of conversion to
perform. This parameter can be set to one of the following values:

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long ConversionType; Type of conversion to perform

ConversionType Description
M_RGB_TO_HLS An RGB to HLS conversion. The hue, luminance

(intensity) and saturation are calculated from the
source buffer. Both the source and destination
image buffers must be 3-band image buffers
allocated with MbufAllocColor().

M_HLS_TO_RGB A HLS to RGB conversion. The Red, Green and
Blue components are calculated from the source
buffer. Both the source and destination image
buffers must be 3-band image buffers allocated
with MbufAllocColor().

M_RGB_TO_L An RGB to L (luminance) conversion. The
luminance (intensity) is calculated from the source
buffer. The source image must be a 3-band image
buffer allocated with MbufAllocColor() and the
destination buffer must be a
1-band image buffer allocated with
MbufAlloc2d().

MimConvert 325

The values generated will be normalized to the range of values in the
destination buffer. For example, the hue values from 0 to 360 degrees will
generate the values from 0 to 255 in an 8-bit destination buffer. Negative
values in signed buffers will return invalid results. Note that for a floating
point destination buffer, the values generated will be normalized between
0 and 1.

Example mconvert.c

See also MbufAllocColor(), MbufAlloc2d()

M_L_TO_RGB An L (luminance) to RGB conversion. The Red,
Green and Blue components are calculated from
the source buffer. The luminance (intensity) is
repeated in each color band of the destination
buffer, creating a monochromatic (gray) RGB
buffer. The source buffer must be a 1-band image
buffer allocated with MbufAlloc2d()) and the
destination buffer must be a 3-band image buffer
allocated with MbufAllocColor().

M_RGB_TO_Y An RGB to Y conversion, where Y represents the
luminance of the YUV color space. The source
buffer must have 3 bands. The destination buffer
can have 1 or 3 bands. If it has 3 bands, only the
first band is overwritten.

ConversionType Description

326 MimConvolve

MimConvolve

 Synopsis Perform a general convolution operation.

Format void MimConvolve(SrcImageBufId, DestImageBufId,
 KernelBufId)

Description This function performs a general convolution operation on the source buffer
using the specified kernel, storing results in the specified destination buffer.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The KernelBufId parameter specifies the identifier of the kernel buffer.
This parameter can be given a custom or predefined kernel identifier. If you
use a custom kernel, you must have previously allocated it with
MbufAlloc1d() or MbufAlloc2d() and loaded it with values, using
MbufPut().

Operation flags associated with custom kernels can be modified in order to
control the behavior of the convolution operation. By using
MbufControlNeighborhood() you can control how the operation handles
the borders of an image (overscan), whether or not the absolute value of the
result is taken, which division factor to apply to the result, whether or not
to saturate the result, and the position of the kernel’s center.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
MIL_ID KernelBufId; Kernel buffer identifier

MimConvolve 327

The following is a list of predefined kernel buffer identifiers:

Default identifiers Corresponding kernels and their associated
operation parameters

M_SMOOTH

M_SHARPEN

M_SHARPEN2

M_HORIZ_EDGE

M_VERT_EDGE

M_EDGE_DETECT

M_EDGE_DETECT2

M_LAPLACIAN_EDGE

M_LAPLACIAN_EDGE2

1 2 1

2 4 2

1 2 1

16⁄

1– 1– 1–

1– 9 1–

1– 1– 1–

0 1– 0

1– 5 1–

0 1– 0

2 2 2

0 0 0

2– 2– 2–

2– 0 2

2– 0 2

2– 0 2

1 2 1

0 0 0

1– 2– 1–

1– 0 1

2– 0 2

1– 0 1

+

 
 
 
 
 

2⁄

1 1 1

0 0 0

1– 1– 1–

1– 0 1

1– 0 1

1– 0 1

+

 
 
 
 
 

2⁄

0 1– 0

1– 4 1–

0 1– 0

1– 1– 1–

1– 8 1–

1– 1– 1–

328 MimConvolve

Operation flags associated to predefined kernels have the following default
states: transparent overscan, results are saturated (saturation enabled), the
kernel’s center pixel is the top left pixel of the central element in a
neighborhood.

You can temporarily disable overscanning by adding
M_OVERSCAN_DISABLE to a predefined kernel. For example,
M_SMOOTH+M_OVERSCAN_DISABLE. This accelerates the convolution on
certain platforms if the overscan data is not important in the resulting
buffer.

If the source and destination are multi-band buffers then the same kernel
is applied to every band of the source buffer.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Examples mconvol.c, mcount.c, mopen.c, mthread.c

See also MbufControlNeighborhood(), MbufAlloc1d(), MbufAlloc2d(), MbufPut()

MimCountDifference 329

MimCountDifference

 Synopsis Count the number of pixels that differ in each image.

Format void MimCountDifference(Src1ImageBufId, Src2ImageBufId,
 ImResultId)

Description This function finds the number of differences between the two specified
source buffers and stores the resulting number in the specified result buffer.

You can read the number of differences from the result buffer, using
MimGetResult1d() or MimGetResult(), specifying M_VALUE as the
result type.

The Src1ImageBufId parameter specifies the identifier of the first image
data source. This parameter can be given an image buffer identifier. The
image buffer must be one-band.

The Src2ImageBufId parameter specifies the identifier of the second
image data source. This parameter can only be given an image buffer
identifier. The image buffer must be one-band.

The ImResultId parameter specifies the identifier of the buffer in which
to store the differences. This parameter must be given the identifier of an
image processing result buffer that was allocated with MimAllocResult()
and has an M_COUNT_LIST type. The buffer needs only one entry.

Note This function is optimized for packed binary buffers.

See also MimAllocResult(), MimGetResult(), MimGetResult1d()

MIL_ID Src1ImageBufId; Source 1 image buffer identifier
MIL_ID Src2ImageBufId; Source 2 image buffer identifier
MIL_ID ImResultId; Image processing result buffer identifier

330 MimDilate

MimDilate

 Synopsis Perform a binary or grayscale dilation-type morphological operation.

Format void MimDilate(SrcImageBufId, DestImageBufId, NbIteration,
 ProcMode)

Description This function performs a binary or grayscale dilation on the given source
image for the specified number of iterations.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The NbIteration parameter specifies the number of times to iterate the
operation.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

In binary mode, this function uses a 3 x 3 full rectangular structuring
element; in grayscale mode, a 3 x 3 empty one.

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Example mperim.c

See also MimErode(), MimOpen(), MimClose()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long NbIteration; Number of operation iterations
long ProcMode; Processing mode

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have
the maximum value of the unsigned buffer (for
example, 0xff for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing
and the resulting buffer will also contain gray values.

MimDistance 331

MimDistance

 Synopsis Perform a distance transformation.

Format void MimDistance(SrcImageBufId, DestImageBufId,
 DistanceTransform)

Description This function determines the shortest distance between each blob pixel and
the blob’s background, and assigns this distance to the pixel. It produces a
type of contour mapping of a blob.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the resulting image. This parameter must be given an image buffer
identifier.

The DistanceTransform parameter specifies the way in which the
minimum distance from blob pixel to background pixel is calculated. This
parameter approximates the true distance from blob pixel to background
pixel using a 3 x 3 distance matrix and can be set to one of the following:

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long DistanceTransform; Distance transformation to perform

Transform 3x3 Distance Matrix Description
M_CHAMFER_3_4 Determines the minimum

distance using horizontal,
vertical or diagonal pixel
steps. Horizontal and
vertical steps are counted as
3; diagonal steps are
counted as 4. This transform
provides the best
approximation to Euclidean
distance. However, when
using this transform, the
destination buffer must
meet certain requirements.
The requirements are
detailed below this table.

4 3 4

3 0 3

4 3 4

332 MimDistance

The M_CHAMFER_3_4 transform requires that the destination buffer be
deep enough to hold a number at least three times the maximum distance
from a blob pixel to its edge. For example, an 8-bit buffer (255 max) can be
used for a maximum distance of 85 pixels and a 16-bit buffer (65535 max)
for a maximum distance of 21845 pixels.

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Example msegment.c

M_CHESSBOARD Determines the minimum
distance using
horizontal,vertical, or
diagonal pixel steps. All
steps count as 1.

M_CITY_BLOCK Determines the minimum
distance using only
horizontal or vertical pixel
steps. Horizontal and
vertical steps count as 1.

Transform 3x3 Distance Matrix Description

1 1 1

1 0 1

1 1 1

∞ 1 ∞
1 0 1

∞ 1 ∞

MimEdgeDetect 333

MimEdgeDetect

 Synopsis Perform a specific edge detection operation and produce a gradient intensity
and/or gradient angle image.

Format void MimEdgeDetect(SrcImageBufId, DestIntensityImageBufId,
 DestAngleImageBufId, KernelId,
 ControlFlag, Threshold)

Description This function performs an edge detection operation on the specified source
image, using the specified kernel. It produces a gradient intensity image
and/or a gradient angle image in the specified image buffer(s). If one of the
destination images is not required, specify M_NULL as its image buffer
identifier.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier.

The DestIntensityImageBufId parameter specifies the identifier of the
destination of the resulting gradient intensity image. This parameter must
be given an image buffer identifier. Saturation is performed on this buffer.

The DestAngleImageBufId parameter specifies the identifier of the
destination of the resulting gradient angle image. This parameter must be
given an image buffer identifier. The angle is returned from 0° to 360°
(counter-clockwise) and mapped in the entire range of the destination buffer.
For signed data types, mapping is done in both the positive and negative
range of the buffer and represents angle values from -180° to 180°.

The maximum positive value of the angle buffer (255 for an unsigned 8-bit
buffer) maps to 360° and is reserved for undefined results produced when a
gradient threshold is used.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestIntensityImageBufId; Destination gradient intensity image

buffer identifier
MIL_ID DestAngleImageBufId; Destination gradient angle image

buffer identifier
MIL_ID KernelId; Kernel identifier
long ControlFlag; Flag to control operation
long Threshold; Threshold value for gradient

intensity

334 MimEdgeDetect

The KernelId parameter specifies the identifier of the edge detection
kernel. This parameter must be set to the predefined 3x3 kernel: M_SOBEL.
To disable overscan processing, specify
M_SOBEL+M_OVERSCAN_DISABLE). This kernel is as follows:

The ControlFlag parameter specifies the flag used to control the operation
calculations. These flags include various combinations of fast and full
gradient and angle computations.

Note that fast angle approximation introduces a maximum error of +/- 0.4°.

The ControlFlag parameter can be set to one of the following:

X gradient:

Y gradient:

Full gradient
computation

Gradient = srqt(GradientX*GradientX + GradientY*GradientY)

Fast gradient
computation

Gradient = (abs(GradientX) + abs(GradientY))/2

Full angle computation Angle = arctan(GradientY/GradientX)

ControlFlag Description
M_FAST_EDGE_DETECT Fast computation of the

gradient and angle. The
gradient is computed as an
approximation, using the
average of the absolute value
of the two directional
components (X and Y). Fast
angle approximation is used.
This is the default flag
(M_DEFAULT).

1– 0 1

2– 0 2

1– 0 1

1 2 1

0 0 0

1– 2– 1–

MimEdgeDetect 335

The Threshold parameter specifies the threshold value for calculating
gradient intensity. For a gradient value lower than the threshold value, the
angle is not computed (not considered a significative edge) and the resulting
angle pixel is set to the reserved value (the maximum positive value of the
buffer). To perform the full operation, set this parameter to zero or M_NULL.

Note This function can be performed on a floating point buffer. However, the
results are not mapped and are returned in the range of 0° to 360° The
degree of precision is equal to the precision of the floating point for regular
computation and to 0.4° for fast computation. The value for undefined
results is the maximum positive value of the floating point buffer.

Example msegment.c

M_REGULAR_EDGE_DETECT Full computation of the
gradient and angle. The
gradient is computed as the
square root of the sum of the
square of each directional
component (X and Y). This
method of calculation is
slower but more precise.

M_FAST_ANGLE+M_REGULAR_GRADIENT Full computation of the
gradient. Fast angle
approximation.

M_REGULAR_ANGLE+M_FAST_GRADIENT Fast computation of the
gradient. Full computation of
the angle.

ControlFlag Description

336 MimErode

MimErode

 Synopsis Perform an erosion-type morphological operation.

Format void MimErode(SrcImageBufId, DestImageBufId, NbIteration,
 Procmode)

Description This function performs a binary or grayscale erosion on the given source
image for the specified number of iterations.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The NbIteration parameter specifies the number of times to iterate the
operation.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

In binary mode, this function uses a 3 x 3 full rectangular structuring
element; in grayscale mode, a 3 x 3 empty one.

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

See also MimDilate(), MimOpen(), MimClose()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long NbIteration; Number of operation iterations
long ProcMode; Processing mode

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have
the maximum value of the unsigned buffer (for example,
0xff for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing
and the resulting buffer will also contain gray values.

MimFindExtreme 337

MimFindExtreme

 Synopsis Find an image buffer’s extremes (minimum and/or maximum pixel values).

Format void MimFindExtreme(SrcImageBufId,
 ExtremeImResultId, ExtremeType)

Description This function finds the maximum and/or minimum value of the specified
source image and stores results in the specified extreme result buffer.

You can read the minimum/or maximum from the result buffer, using
MimGetResult1d() or MimGetResult(), specifying M_VALUE as the
result type.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.
The buffer must be one-band.

The ExtremeImResultId parameter specifies the identifier of the buffer
in which to store the extreme values. This parameter must be given the
identifier of an image processing result buffer that was allocated with
MimAllocResult() and that has an M_EXTREME_LIST type. If just the
maximum or minimum is calculated, only one entry is needed. If both the
minimum and maximum are calculated, the result buffer must have two
entries. The minimum value is stored in the first entry and the maximum
value is stored in the second.

The ExtremeType parameter specifies whether to find the minimum
value, maximum value, or both. This parameter can be set to the following:

Example mcount.c

See also MimAllocResult(), MimGetResult1d(), MimGetResult()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID ExtremeImResultId; Extreme value image processing result

buffer identifier
long ExtremeType; Type of result to calculate

M_MIN_VALUE Find the minimum value.
M_MAX_VALUE Find the maximum value.
M_MIN_VALUE +
M_MAX_VALUE

Find the minimum and maximum values.

338 MimFlip

MimFlip

 Synopsis Perform a horizontal or vertical image-flipping operation.

Format void MimFlip(SrcImageId, DestImageId, Operation, OpFlag)

Description This function flips the source image to the destination image according to
the specified operation.

The SrcImageId parameter specifies the identifier of the source image
buffer.

The DestImageId parameter specifies the identifier of the destination
image buffer.

The Operation parameter specifies the operation to perform. This
parameter can be set to one of the following:

The OpFlag parameter must be set to M_DEFAULT.

See also MimRotate()

MIL_ID SrcImageId; Source image buffer identifier
MIL_ID DestImageId; Destination image buffer identifier
long Operation; Operation to perform
long OpFlag; Flag for the operation

M_FLIP_HORIZONTAL Flip the image in a horizontal direction (left to
right, along a vertical axis).

M_FLIP_VERTICAL Flip the image in a vertical direction (top to
bottom, along a horizontal axis).

MimFree 339

MimFree

 Synopsis Free an image processing result buffer.

Format void MimFree(ImResultId)

Description This function deallocates a result buffer previously allocated with
MimAllocResult().

The ImResultId parameter specifies the identifier of the image processing
result buffer to be released.

See also MimAllocResult()

MIL_ID ImResultId; Image processing result buffer identifier

340 MimGetResult

MimGetResult

 Synopsis Get values from an image processing result buffer.

Format void MimGetResult(ImResultId, ResultType, UserArrayPtr)

Description This function copies all the results from the specified result buffer to the
specified one-dimensional destination user array.

The ImResultId parameter specifies the identifier of the image processing
result buffer from which to get results.

The ResultType parameter specifies the type of data to read from the MIL
result buffer. This parameter can be set to one of the following:

If an M_EXTREME_LIST type result buffer contains both the minimum and
maximum value of an image, the minimum value followed by the maximum
value are written. If it contains only one of these values, this value is stored
in the first location.

The UserArrayPtr parameter specifies the address of the one-dimensional
array in which to write results read from the MIL result buffer. This array
must have at least the same number of elements as the total number of

MIL_ID ImResultId; Image processing result buffer identifier
long ResultType; Type of result to read
void *UserArrayPtr; Array in which to return results

ResultType Description
M_VALUE Read values from M_HIST_LIST, M_PROJ_LIST,

M_EXTREME_LIST, M_EVENT_LIST, or M_COUNT_LIST
type buffer.

M_POSITION_X Read image X-coordinate of values in M_EVENT_LIST
type buffer.
When the blob identifier image is calibrated, this
coordinate is in calibration units; otherwise it in pixel
units.

M_POSITION_Y Read image Y-coordinate of values in M_EVENT_LIST
type buffer.
When the blob identifier image is calibrated, this
coordinate is in calibration units; otherwise it in pixel
units.

M_NB_EVENT Read the number of occurrences in M_EVENT_LIST
type buffer. Only one value is returned.

MimGetResult 341

entries to get (NbEntries), specified at MimAllocResult() time. In
addition, the array must be of the same type as the result buffer (long or
float).

Examples mcount.c, mhist.c

See also MimAllocResult(), MimGetResult1d()

342 MimGetResult1d

MimGetResult1d

 Synopsis Get values from a 1D region of an image processing result buffer.

Format void MimGetResult1d(ImResultId, OffEntry, NbEntries,
 ResultType, UserArrayPtr)

Description This function copies the specified number of result entries from the specified
result buffer to the specified one-dimensional destination user array.

The ImResultId parameter specifies the identifier of the image processing
result buffer from which to get results.

The OffEntry parameter specifies the offset of the first result to read. The
given value must be within the number of allocated result entries.

The NbEntries parameter specifies the number of result entries to get
starting from the entry specified by OffEntry.

The ResultType parameter specifies the type of data that the MIL result
buffer contains. This parameter can be set to one of the following:

If an M_EXTREME_LIST type result buffer contains both the minimum and
maximum value of an image, the minimum is written first followed by the
second.

MIL_ID ImResultId; Image processing result buffer identifier
long OffEntry; Result entry offset
long NbEntries; Number of result entries to get
long ResultType; Type of result to read
void *UserArrayPtr; Array in which to return results

ResultType Description
M_VALUE Read values from M_HIST_LIST, M_PROJ_LIST,

M_EXTREME_LIST, M_EVENT_LIST, or M_COUNT_LIST
type buffer.

M_POSITION_X Read image X-coordinate of values in M_EVENT_LIST
type buffer.

M_POSITION_Y Read image Y-coordinate of values in M_EVENT_LIST
type buffer.

M_NB_EVENT Read the number of occurrences in M_EVENT_LIST
type buffer. Only one value is returned.

MimGetResult1d 343

The UserArrayPtr parameter specifies the address of the one-dimensional
array in which to write results from the MIL result buffer. This array must
have at least the same number of elements as the total number of entries
to get (NbEntries) specified at MimAllocResult() time. In addition, the
array must be of the same type as the result buffer (long or float).

See also MimAllocResult(), MimGetResult()

344 MimHistogram

MimHistogram

 Synopsis Generate the intensity histogram of an image buffer.

Format void MimHistogram(SrcImageBufId, HistImResultId)

Description This function calculates the histogram (or pixel intensity distribution) of
the specified source buffer and stores results in the specified histogram
result buffer.

You can read the histogram values from the result buffer, using
MimGetResult1d() or MimGetResult(), specifying M_VALUE as the
result type.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This buffer must be one-band. The buffer data will be
treated as unsigned.

The HistImResultId parameter specifies the identifier of the destination
for the histogram results. This parameter must be given the identifier of an
image processing result buffer that was allocated with MimAllocResult()
and has an M_HIST_LIST type. If the result buffer has fewer entries than
the full range of source values, the pixels that are out of range will not be
written into the histogram.

Note Floating point values will be cast as unsigned long values before performing
the histogram. Therefore, unexpected results can occur if a floating point
value is larger than the unsigned long range.

Example mhist.c

See also MimHistogramEqualize(), MimAllocResult()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID HistImResultId; Histogram image processing result buffer

identifier

MimHistogramEqualize 345

MimHistogramEqualize

 Synopsis Perform a histogram equalization of an image.

Format void MimHistogramEqualize(SrcImageBufId, DestImageBufId,
 Method, Alpha, Min, Max)

This function performs a histogram equalization of the specified source
image. Results are written to a destination buffer, which can be either an
image buffer or a LUT buffer.

This function first performs a histogram of the source image buffer. The
histogram is then used to calculate a transformation LUT that can be used
to enhance the source image (with MimLutMap()). If the destination buffer
is a LUT, the transformation LUT is copied into the destination LUT. If the
destination buffer is an image, the source buffer is remapped through the
transformation LUT to produce the destination image.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter will be treated as an unsigned image
buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer or LUT buffer
identifier.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image or LUT buffer

identifier
long Method; Type of equalization
double Alpha; Adjustment parameter
double Min; Lowest pixel value to equalize
double Max; Highest pixel value to equalize

346 MimHistogramEqualize

The Method parameter specifies the type of equalization to perform. The
following methods and their associated density functions are available:

The Alpha parameter is used with M_EXPONENTIAL and M_RAYLEIGH
methods. In the case of the M_EXPONENTIAL method, a greater Alpha yields
a lower occurrence of the most frequent pixels of the histogram in the
resulting image buffer.

In the case of the M_RAYLEIGH method, the greater the alpha is, the greater
the occurrence of the most frequent pixels of the histogram in the resulting
image buffer.

Required
distribution

Output probability density
model

Transfer functions

M_UNIFORM
Uniform

M_EXPONENTIAL
Exponential

M_RAYLEIGH
Rayleigh

M_HYPER_CUBE_ROOT
Hyperbolic cube root

M_HYPER_LOG
Hyperbolic logarithmic

The cumulative probability distribution, Pf(f), of the input image is approximated by
its cumulative histogram:

-

Refer to Digital Image Processing, William K. Pratt, United States, John Wiley & Sons,
 1978, p.318.

Pg g() 1
gmax gmin–
------------------------------=

gmin g gmax≤ ≤

g gmax gmin–[]Pf f() gmin+=

Pg g() a e
a–() g gmin–()[]

 
 =

g gmin≥

g gmin
1
α
--- 1 Pf f()–[]ln–=

Pg g()
g gmin–

α2
-------------------- e

g gmin–()2

2α2
------------------------------–

=

g gmin≥

g gmin
1
2
--- 2α2 1

1 Pf f()–

 
 
 

ln+=

Pg g() 1
3

g
2 3⁄–

gmax
3 gmin

3–
--

 
 
 
 

= g gmax
3 gmin

3– Pf f()[] gmin
3+ 

 
3

=

Pg g() 1
g gmax()ln gmin()ln–[]
--=

g gmin

gmax
gmin
------------ Pf f()=

Pf f() HF m()

m 0=

i

∑≈

MimHistogramEqualize 347

The Min and Max parameters specify the range of pixels that will be
remapped.

Note Floating point values will be cast as unsigned long values before performing
the histogram. Therefore, unexpected results can occur if a floating point
value is larger than the unsigned long range.

See also MimLutMap(), MimHistogram()

348 MimInquire

MimInquire

 Synopsis Inquire about an image processing result buffer parameter setting.

Format long MimInquire(BufId, InquireType, UserVarPtr)

Description This function inquires about a specified MIL image processing result buffer
setting. The result buffer must have been allocated with
MimAllocResult().

The BufId parameter specifies the identifier of the image processing result
buffer.

The InquireType parameter specifies the type of information about which
to inquire. This parameter can be set to one of the following values:

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. The variable must be of type long
(for M_OWNER_SYSTEM it must be a MIL_ID pointer). Since the
MimInquire() function also returns the requested information, you can set
this parameter to M_NULL.

Return value The returned value is the requested MIL buffer information, cast to long.

long BufId; Image processing result buffer identifier
long InquireType; Type of information about which to inquire
void *UserVarPtr; Storage location for requested information

InquireType Description
M_RESULT_SIZE Number of entries in the buffer.
M_RESULT_TYPE Attribute or nature of the buffer.
M_OWNER_SYSTEM The identifier of the system on which the

buffer is allocated.
M_MODIFICATION_COUNT Number of modifications made to the buffer

since it was allocated.
M_HOST_ADDRESS RAM address of the Host buffer (huge).

MimLabel 349

MimLabel

 Synopsis Label objects in an image buffer.

Format void MimLabel(SrcImageBufId, DestImageBufId, ProcMode)

Description This function labels all objects (or blobs) in the specified source image,
starting from the top-left corner, with unique consecutive values beginning
with the value 1. Each pixel in the same blob is given the same numerical
value.

If you want to distinguish between touching blobs, you should separate the
blobs. For example, you can use an erosion operation before performing the
labeling operation.

The SrcImageBufId parameter specifies identifier of the data source of
the operation. This parameter must be given an image buffer identifier. If
the source buffer is not binary, all non-zero pixels are considered as part of
an object or blob.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier. The
destination buffer should be large enough to hold the maximum number of
objects (blobs). For example, an 8-bit buffer can be used for a maximum of
254 blobs and a 16-bit buffer can be used for a maximum of 65534 blobs). If
the destination buffer depth is too small, several blobs might be given the
same value.

The ProcMode parameter specifies the type of connectivity (lattice) to use
for processing. This parameter can be set to:

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long ProcMode; Processing mode

M_8_CONNECTED Each pixel has 8 neighbors. If two blobs touch on the
vertical, horizontal, or diagonal, they are considered
one blob.

M_4_CONNECTED Each pixel has 4 neighbors. If two blobs touch on the
vertical and horizontal axis, they are considered one
blob.

350 MimLabel

If the source image is a binarized image (containing 0 or the maximum value
of the buffer, achieved for example with MimBinarize()), you can add
M_BINARY to the connectivity mode to accelerate processing, particularly if
the labeling is done by the Host. For example,
M_4_CONNECTED+M_BINARY. The default processing mode is
M_8_CONNECTED+M_GRAYSCALE.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Example mcount.c

See also MimBinarize()

MimLocateEvent 351

MimLocateEvent

 Synopsis Find pixel coordinates or values that satisfies a specified condition.

Format void MimLocateEvent(SrcImageBufId, EventImResultId,
 Condition, CondLow, CondHigh)

Description This function finds the coordinates and value of the pixels that satisfy the
specified condition in the specified source image. Results are stored in the
specified event result buffer.

Using MimGetResult() or MimGetResult1d(), specify the result type as
M_VALUE to read the values of those pixels that satisfy the specified
condition; as M_POSITION_X or M_POSITION_Y to obtain the position of
those pixels; as M_NB_EVENT to obtain the total number of pixels that
satisfy the specified condition.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.
The buffer must be one-band.

The EventImResultId parameter specifies the identifier of the buffer in
which to store the event values. This parameter must be given the identifier
of an image processing result buffer allocated with MimAllocResult() and
an M_EVENT_LIST type. The buffer must have enough entries to hold the
expected number of events.

If the number of pixels found is less than the number of event result buffer
entries, the remaining result buffer entries are set to M_INVALID. If the
number of events is bigger than the number of allocated result buffer
entries, only the first NbEntries events are kept.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID EventImResultId; Event image processing result buffer

identifier
long Condition; Event condition
double CondLow; Low compare value
double CondHigh; High compare value

352 MimLocateEvent

The Condition parameter specifies under what condition pixel values are
considered an event. This parameter can be set to one of two types of
conditions.

■ Conditions that use two limits (CondLow and CondHigh):
M_OUT_RANGE, M_IN_RANGE.

■ Conditions that use one limit (CondLow):
M_EQUAL, M_NOT_EQUAL, M_GREATER, M_LESS,
M_GREATER_OR_EQUAL, M_LESS_OR_EQUAL.

When the M_OUT_RANGE condition is selected, pixels with values less than
CondLow, or greater than CondHigh, are considered an event. When the
M_IN_RANGE condition is selected, pixels with values from CondLow to
CondHigh, inclusive, are considered an event.

When you select any of the other conditions, if the condition applied using
the CondLow is true, the pixel is considered an event.

The CondLow and CondHigh parameters specify the lower and upper
limits of the specified condition, Condition. When the upper limit is not
required, set CondHigh to M_NULL.

See also MimAllocResult(), MimGetResult(), MimGetResult1d()

MimLutMap 353

MimLutMap

 Synopsis Perform a point-to-point LUT mapping operation.

Format void MimLutMap(SrcImageBufId, DestImageBufId, LutBufId)

Description This function maps each pixel in the specified source image to values
determined by the specified look-up table (LUT).

If the source image is signed, negative numbers are treated as unsigned
values and address the LUT accordingly. For example, -1 is represented as
0xff for 8-bit image data and 0xffff for 16-bit image data and will therefore
address LUT entry 0xff or 0xffff, respectively.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The LutBufId parameter specifies the LUT through which to map source
input values. This parameter must be given a valid LUT buffer identifier.

If the LUT has fewer entries than the full range of source values, unexpected
results will occur. If the LUT buffer depth is greater than that of the
destination buffer, results will be truncated to fit the destination buffer. LUT
entries must have been previously initialized (for example, using
MgenLutRamp() or MbufPut1d()).

Note Floating point values will be cast as unsigned long values before performing
the LUT map operation. Therefore, unexpected results can occur if a floating
point value is larger than the unsigned long range.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Example mnatfct.c

See also MgenLutRamp(), MbufPut1d()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
MIL_ID LutBufId; LUT identifier

354 MimMorphic

MimMorphic

 Synopsis Perform a morphological transformation using a user-defined kernel.

Format void MimMorphic(SrcImageBufId, DestImageBufId,
 StructElemBufId, Operation,
 NbIteration, ProcMode)

Description This function performs one of several morphological transformations on the
specified source image, using a user-defined structuring element.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the resulting image. This parameter must be given an image buffer
identifier.

The StructElemBufId parameter specifies the identifier of the structuring
element buffer. The user-defined structuring element must have been
allocated, using MbufAlloc1d() or MbufAlloc2d() with an
M_STRUCT_ELEMENT Attribute, and loaded with structuring-element
values, using MbufPut(). These values can be set to M_DONT_CARE to
specify that the corresponding image pixels should not be taken into account
during the operation. You can set the overscan type and the center of the
structuring element, using MbufControlNeighborhood().

If the source and destination are multi-band buffers then the same
structuring element is applied to every band of the source buffer.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
MIL_ID StructElemBufId; Structuring element buffer identifier
long Operation; Morphological operation to perform
long NbIteration; Number of operation iterations
long ProcMode; Processing mode

MimMorphic 355

The Operation parameter specifies the operation to perform. Supported
operations are:

The NbIteration parameter specifies the number of times to iterate the
operation. For M_HIT_OR_MISS or M_MATCH operations, this parameter
must be set to 1.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot overlap (a situation that can only occur when using child
buffers).

Example mopen.c

See also MbufAlloc1d(), MbufAlloc2d(), MimDilate(), MimErode(), MimOpen(),
MimThin(), MimClose()

M_ERODE Erosion
M_DILATE Dilation
M_THIN Thinning
M_THICK Thickening
M_HIT_OR_MISS Hit or miss transformation
M_MATCH Matching

M_BINARY Non-zero pixels will be treated as ones (1) during
processing.

M_GRAYSCALE
(default value)

The source image’s gray values are used for processing
and the resulting buffer will also contain gray values.

356 MimOpen

MimOpen

 Synopsis Perform a binary or grayscale opening-type morphological operation.

Format void MimOpen(SrcImageBufId, DestImageBufId, NbIteration,
 Procmode)

Description This function performs a binary or grayscale opening operation on the given
source image for the specified number of iterations. An opening is an erosion
followed by a dilation.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The NbIteration parameter specifies the number of times to iterate the
operation.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

In binary mode, this function uses a 3 x 3 full structuring element; in
grayscale mode, a 3 x 3 empty one.

Note This function is optimized for packed binary buffers.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long NbIteration; Number of operation iterations
long ProcMode; Processing mode

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have the
maximum value of the unsigned buffer (for example, 0xff
for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing
and the resulting buffer also contains gray values.

MimOpen 357

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Examples mblob.c, mcount.c, mopen.c, mperim.c

See also MimErode(), MimDilate(), MimClose()

358 MimPolarTransform

MimPolarTransform

Synopsis Perform a polar-to-rectangular or rectangular-to-polar transform.

Format void MimPolarTransform(SrcImageBufId,DestImageBufId,
CenterPosX, CenterPosY, StartRadius, EndRadius,
StartAngle, EndAngle, OperationMode,
InterpolationType,DestSizeXPtr, DestSizeYPtr)

Description This function performs a rectangular-to-polar or polar-to-rectangular
transformation.

For a rectangular-to-polar transformation set the zone to convert by
specifying the center coordinates (CenterPosX and CenterPosY), the
start and end radius (StartRadius and EndRadius), and the start and
end angle (StartAngle and EndAngle) as follows:

MIL_ID SrcImageBufId; Source buffer identifier
MIL_ID DestImageBufId; Destination buffer identifier
double CenterPosX; X position of the center in the rectangular image
double CenterPosY; Y position of the center in the rectangular image
double StartRadius; Start radius of the zone of interest
double EndRadius; End radius of the zone of interest
double StartAngle; Start angle of the zone of interest
double EndAngle; End angle of the zone of interest
long OperationMode; Polar-to-rectangular or rectangular-to-polar

transform
long InterpolationType; Interpolation used in the conversion
double *DestSizeXPtr; Size X of the destination
double *DestSizeYPtr; Size Y of the destination

MimPolarTransform 359

The result will be mapped to the destination buffer as follows:

The increment in angle is determined by the length (in pixels) of the outside
arc, calculated as follows:

A polar-to-rectangular transform performs the reverse of the transform
described above. It takes a polar buffer and maps it to a rectangular buffer.
Use CenterPosX, CenterPosY, StartAngle, EndAngle, StartRadius,
EndRadius parameters to specify where in the destination buffer the
contents of the polar buffer will be mapped.

The SrcImageBufId parameter specifies the identifier of the source buffer.

The DestImageBufId parameter specifies the identifier of the destination
buffer. To determine the required size of the destination buffer, call the
function with DestImageBufId set to M_NULL and obtain the size in
DestSizeXPtr and DestSizeYPtr.

The CenterPosX and CenterPosY parameters specify the X and Y
coordinates of the center in the rectangular image.

The StartRadius and EndRadius parameters specify the start and end
radius of the zone of interest (in pixels).

The StartAngle and EndAngle parameters specify the start and end of
scan in the zone of interest. If the start angle is less than the end angle, the
direction of the scan will be counter clockwise. If the start angle is greater
than the end angle, the direction of the scan will be clockwise. The valid
range for StartAngle and EndAngle is between -360 to 360 degrees and the
maximum span must not exceed 360 degrees.

∆angle
endangle star gletan–()

arclength
---=

360 MimPolarTransform

The OperationMode specifies the transform to perform. This can be set to:

The InterpolationType parameter specifies the interpolation used in the
conversion. It can be set to:

To specify how to determine the value of a destination pixel when its
associated point falls outside the source buffer, you can add one of the
following defines to the InterpolationType parameter.

The default for interpolation mode and type is as follows:

The DestSizeXPtr and DestSizeYPtr parameters specify the required
width and height of the destination buffer. If these parameters are not set
to M_NULL, the width and height will be returned.

Example mpolar.c

M_RECTANGULAR_TO_POLAR Perform rectangular-to-polar transform
(default).

M_POLAR_TO_RECTANGULAR Perform polar-to-rectangular
transform.

M_NEAREST_NEIGHBOR Perform nearest neighbor interpolation.
M_BILINEAR Perform bilinear interpolation.
M_BICUBIC Perform bicubic interpolation.

M_OVERSCAN_ENABLE Use pixels from the source buffer’s ancestor
buffer. If the source buffer is not a child buffer
or if the point falls outside the ancestor buffer,
leave the destination pixel as is.

M_OVERSCAN_DISABLE Leave the destination pixel as is.
M_OVERSCAN_CLEAR Set the destination pixel to 0.

M_DEFAULT M_NEAREST_NEIGHBOR+M_OVERSCAN_ENABLE.

MimProject 361

MimProject

 Synopsis Project a 2D image into 1D.

Format void MimProject(SrcImageBufId, ProjImResultId, ProjAngle)

Description This function projects a two-dimensional buffer into a one-dimensional
buffer from the specified angle, and writes results to the specified projection
result buffer. The results are generated by adding all pixel values along each

diagonal in the image at the specified projection angle. The 90o projection

of the image is known as the row profile; the 0o projection as the column
profile.

Note that, if the sum of any diagonal is larger than the depth of the result
buffer, the result will be undefined.

The SrcImageBufId parameter specifies the identifier of the data source
of the image. This parameter must be given an image buffer identifier. The
buffer must be one-band.

The ProjImResultId parameter specifies the identifier of the destination
of the projection results. This parameter must be given the identifier of an
image processing result buffer allocated with MimAllocResult() and an
M_PROJ_LIST type. The buffer should have as many locations as there are
lines to project in the image at the specified angle.

You can read the projection values from the result buffer, using
MimGetResult1d() or MimGetResult(), specifying M_VALUE as the
result type.

The ProjAngle parameter specifies the angle of projection, in degrees.
Predefined projection angles are the following:

Status Only 0o and 90o projection angles are supported.

See also MimAllocResult(), MimGetResult(), MimGetResult1d()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID ProjImResultId; Projection image processing result buffer

identifier
double ProjAngle; Angle of projection

M_0_DEGREE 0o projection (column profile).
M_90_DEGREE 90o projection (row profile).

362 MimRank

MimRank

 Synopsis Perform a rank filter on the pixels in an image.

Format void MimRank(SrcImageBufId, DestImageBufId,
 StructElemBufId, Rank, ProcMode)

Description This function performs a rank filter operation on the specified source buffer.
It replaces each pixel with that pixel in its neighborhood whose value is the
specified rankth value in relation to others. It uses the specified structuring
element as a mask. This mask determines the neighborhood size and which
pixels in the neighborhood to ignore.

The SrcImageBufId parameter specifies the identifier of the data source
of the operator. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The StructElemBufId parameter specifies the identifier of the structuring
element that will be used as a mask. The structuring element buffer
dimensions are used as the neighborhood size. Values in the structuring
element set to M_DONT_CARE represent neighborhood pixels not to be
considered in the ranking operation. All other values in the structuring
element must be set to 1, representing neighborhood pixels to be considered
in the ranking operation. You can either define your own structuring
element to be used as a mask or you can use a predefined mask buffer.

If you use a custom structuring element, you must have previously allocated
it with MbufAlloc1d() or MbufAlloc2d() (specifying
M_STRUCT_ELEMENT as the attribute) and loaded it with values, using
MbufPut().

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
MIL_ID StructElemBufId; Identifier of a structuring element buffer to

be used as a mask
long Rank; Order of rank
long ProcMode; Processing mode

MimRank 363

The following are predefined mask buffers:

The Rank parameter specifies which of the pixel values to select after valid
neighborhood values are sorted in increasing order; valid neighborhood
pixel values are those that are not masked-out. This parameter can be given
a value in the range of 1 to the number of valid neighborhood pixels. If the
number of valid pixels is less than the given rank, it is used as the rank.

If this parameter is set to M_MEDIAN, MimRank() performs a median filter
(that is, each pixel is replaced with the median neighborhood value).

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

M_3X3_RECT Applies no mask and sets the neighborhood size to 3 x 3
pixels.

M_3X3_CROSS Applies a cross (+) mask and sets the neighborhood size
to 3 x 3 pixels. The cross mask makes the function
ignore the pixels located in the four corners of the
neighborhood.

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have
the maximum value of the unsigned buffer (for example,
0xff for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing
and the resulting buffer will also contain gray values
(default).

364 MimResize

MimResize

 Synopsis Resize an image.

Format void MimResize(SrcImageBufId, DestImageBufId, ScaleFactorX,
 ScaleFactorY, InterpolationType)

Description This function resizes the source image by the specified factors. Results are
stored in the destination buffer starting from the top-left corner.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The ScaleFactorX and ScaleFactorY parameters are used to multiply the
width and height of the source image, respectively. These parameters can
be independently set to either a non-null positive value or
M_FILL_DESTINATION. When one of these parameters is set to
M_FILL_DESTINATION, the source image is resized to fill the entire width
and/or height of the destination buffer, depending on the parameter. A factor
greater than 1.0 enlarges the source image, while a factor less than 1.0
reduces it.

The InterpolationType parameter specifies the mode of interpolation.
This parameter can be set to one of the following:

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
double ScaleFactorX; Scaling factor in X
double ScaleFactorY; Scaling factor in Y
long InterpolationType; Interpolation mode

M_NEAREST_NEIGHBOR Nearest neighbor interpolation.
M_BILINEAR Bilinear interpolation.
M_BICUBIC Bicubic interpolation.
M_AVERAGE Averaging interpolation.

MimResize 365

To specify how to determine the value of a destination pixel when its
associated point falls outside the source buffer, you can add one of the
following defines to the InterpolationType parameter:

In addition, one of the following can be added to the interpolation mode to
control the speed and precision of the interpolation.

The InterpolationType parameter can also be set to M_DEFAULT, which
is equivalent to:
M_NEAREST_NEIGHBOR+M_OVERSCAN_ENABLE+M_FAST.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

M_INTERPOLATE Interpolated resizing:
for zooming = bilinear,
for dezooming = averaging.
Gives the best speed/result compromise
for interpolated resizing.

M_OVERSCAN_ENABLE Use pixels from the source buffer’s ancestor
buffer. If the source buffer is not a child buffer
or if the point falls outside the ancestor buffer,
leave the destination pixel as is. The default is
M_OVERSCAN_ENABLE.

M_OVERSCAN_DISABLE Leave the destination pixel as is.
M_OVERSCAN_CLEAR Set the destination pixel to 0.

M_FAST Use the fast interpolation method. This method is less
precise. The default setting is M_FAST.

M_REGULAR Use the slow interpolation method. This method is more
precise.

366 MimRotate

MimRotate

 Synopsis Rotate an image.

Format void MimRotate(SrcImageBufId, DestImageBufId, Angle, SrcCenX,
 SrcCenY, DstCenX, DstCenY, InterpolationType)

Description This function rotates an image by the specified angle of rotation, using the
specified interpolation mode. The center of rotation in the source image is
determined by the specified X and Ysource rotation-center coordinates. The
rotated image will then be clipped to fit the destination buffer. It will be
placed in the destination buffer with its center positioned at the specified X
and Y destination center coordinates.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The Angle parameter specifies the angle of rotation, in degrees. When a
positive angle is specified, the function rotates the image in a
counter-clockwise direction.

The SrcCenX and SrcCenY parameters specify the X and Y coordinates to
use as the center of rotation in the source image. M_DEFAULT can be used
to rotate the image about its true center.

The DstCenX and DstCenY parameters specify X and Y coordinates in the
destination buffer. This is the location to which the specified center of the
rotated source image will be mapped. If M_DEFAULT is specified as the
coordinates, the true center of the destination buffer will be used.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
double Angle; Angle of rotation
double SrcCenX; X-coordinate of source rotation center
double SrcCenY; Y-coordinate of source rotation center
double DstCenX; X-coordinate of destination rotation center
double DstCenY; Y-coordinate of destination rotation center
long InterpolationType; Interpolation mode

MimRotate 367

The InterpolationType parameter specifies the interpolation mode. It can
be set to:

To specify how to determine the value of a destination pixel when its
associated point falls outside the source buffer, you can add one of the
following defines to the InterpolationType parameter. The default is
M_OVERSCAN_ENABLE.

Note that the InterpolationType parameter can be set to M_DEFAULT,
which is equivalent to M_NEAREST_NEIGHBOR+M_OVERSCAN_ENABLE.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

Examples mpatrot.c, mthread.c

M_NEAREST_NEIGHBOR Nearest neighbor interpolation.
M_BILINEAR Bilinear interpolation.
M_BICUBIC Bicubic interpolation.

M_OVERSCAN_ENABLE Use pixels from the source buffer’s ancestor
buffer. If the source buffer is not a child buffer
or if the point falls outside the ancestor buffer,
leave the destination pixel as is.

M_OVERSCAN_DISABLE Leave the destination pixel as is.
M_OVERSCAN_CLEAR Set the destination pixel to 0.

368 MimShift

MimShift

 Synopsis Perform a point-to-point bit shift.

Format void MimShift(SrcImageBufId, DestImageBufId, BitsToShift)

Description This function performs left or right bit-shifting on each pixel in the specified
image. The shift operation is signed or unsigned depending on the source
image buffer’s data type.

Note that, if you shift by 0, only a copy operation will be performed.

The SrcImageBufId parameter specifies the identifier of the data source
of the operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the results. This parameter must be given an image buffer identifier.

The BitsToShift parameter specifies the number of bits to shift. If the given
value is negative, each pixel in the specified image is right bit-shifted by the
specified number of bits; otherwise, it is left bit-shifted.

Note Floating point values will be cast as unsigned long values before performing
the shift operation (except when shifting by 0). Therefore, unexpected
results can occur if a floating point value is larger than the unsigned long
range.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

See also MimTranslate()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long BitsToShift; Number of bits to shift

MimThick 369

MimThick

 Synopsis Perform a binary or grayscale thickening operation on an image.

Format void MimThick(SrcImageBufId, DestImageBufId, NbIteration,
 ProcMode)

Description This function performs a binary or grayscale thickening on the specified
source image for the specified number of iterations.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the resulting image. This parameter must be given an image buffer
identifier.

The NbIteration parameter specifies the number of times to iterate the
operation. If M_TO_IDEMPOTENCE is specified, all objects are enlarged until
idempotence is reached.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

See also MimMorphic(), MimThin()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long NbIteration; Number of operation iterations
long ProcMode; Processing mode

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have
the maximum value of the unsigned buffer (for example,
0xff for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing
and the resulting buffer will also contain gray values.

370 MimThin

MimThin

 Synopsis Perform a binary or grayscale thinning operation on an image.

Format void MimThin(SrcImageBufId, DestImageBufId, NbIteration,
 ProcMode)

Description This function performs a binary or grayscale thinning on the specified source
image for the specified number of iterations.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the resulting image. This parameter must be given an image buffer
identifier.

The NbIteration parameter specifies the number of times to iterate the
operation. If M_TO_SKELETON is specified for this parameter, every object
will be reduced to its skeleton.

The ProcMode parameter specifies the processing mode to use. This
parameter can be set to the following:

Note This function is optimized for packed binary buffers.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

See also MimMorphic(), MimThick()

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long NbIteration; Number of operation iterations
long ProcMode Processing mode

M_BINARY Non-zero pixels will be treated as ones (1) during
processing and the resulting non-zero pixels will have
the maximum value of the unsigned buffer (for example,
0xff for an 8-bit buffer).

M_GRAYSCALE The source image’s gray values are used for processing
and the resulting buffer will also contain gray values.

MimTransform 371

MimTransform

Synopsis Perform a Fast Fourier transform (FFT) or a Discrete Cosine transform
(DCT).

Format void MimTransform(SrcImageRBufId, SrcImageIBufId,
DestImageRBufId, DestImageIBufId,
TransformType, ControlFlag)

Description This function performs forward and reverse FFT or DCT on an image.

The SrcImageRBufID and SrcImageIBufID parameters specify the
identifiers of the source buffers for the real and imaginary components of
the image, respectively. SrcImageIBufID can be set to M_NULL. For a
reverse transform, the source buffers must be 32-bit signed integer or
floating point buffers. For an FFT, the width and height of the source buffers
must be a power of 2 and their type and pixel depth identical. For a DCT,
the width and height of these buffers should be a multiple of 8.

The DestImageRBufID and DestImageIBufID parameters specify the
identifiers of the destination buffers for the real and imaginary components
of the image, respectively. DestImageIBufID can be set to M_NULL. For a
forward transform, the destination buffers must be 32-bit signed integer or
floating point buffers. For an FFT, the width and height of the destination
buffers must be a power of 2 and their type and pixel depth identical. For a
DCT, the width and height of these buffers should be a multiple of 8.

MIL_ID SrcImageRBufID; Source image buffer identifier (real part)
MIL_ID SrcImageIBufID; Source image buffer identifier (imaginary

part)
MIL_ID DestImageRBufID; Destination image buffer identifier (real

part)
MIL_ID DestImageIBufID; Destination image buffer identifier

(imaginary part)
long TransformType; Perform an FFT or a DCT
long ControlFlag; Perform a forward or reverse transform

372 MimTransform

The TransformType parameter specifies the type of transform to be
performed on the image.

The ControlFlag parameter specifies if the transform is a forward
transform or a reverse transform.

These optional controls can be added to the ControlFlag:

M_FFT Perform a Fast Fourier transform.
M_DCT8x8 Perform a Discrete Cosine transform on each 8x8 pixel

block in the image.
M_DEFAULT Same as M_FFT.

M_FORWARD
or
M_DEFAULT

Perform a forward transform on the image. Calculations
for integer source buffers are performed in fixed-point
format and returned to the destinations in 23.9 fixed
point format for 8-bit sources or in 25.7 fixed point format
for 16-bit sources. For 32-bit source buffers, the fixed
point format of the destination buffer will be the same as
that of the source. In this case, you must left-shift the
image prior to a forward transform. If the destination
buffer is float, the processing will be performed in
floating-point arithmatic. Note that 32-bit unsigned
buffers will be considered 32-bit signed. In an FFT, if
SrcImageIBufID is set to M_NULL, a faster version of
the forward transform will be performed.

M_REVERSE Perform a reverse transform on the image. When
performing a reverse transform into 8-bit or 16-bit
destination buffers, the format of the source buffers is
assumed to be in 23.9 and 25.7 fixed point format,
respectively. For 32-bit integer destination buffers, the
format of the source buffer will be same as that of the
destination. In this case, you must right-shift the image
after processing. If the source buffer is float, the
processing will be performed in floating-point arithmatic.
Note that 32-bit unsigned buffers will be considered
32-bit signed. In an FFT, if DestImageIBufID is set to
M_NULL, a faster version of the reverse transform will be
performed.

M_NORMALIZE Normalize results (divide the final result by 8 for DCT
and by (m x n) for FFT where m x n is the size of the
image). Usually used with fixed-point arithmetic to
avoid overflows.

M_1D_ROWS Perform a 1-D transform on all rows of the image.
M_1D_COLUMNS Perform a 1-D transform on all columns of the image.

MimTransform 373

Only M_NORMALIZE is supported with both FFT and DCT. All other controls
are supported only with the FFT.

If any of M_NORMALIZE, M_1D_ROWS, M_1D_COLUMNS or M_CENTER
controls have been specified with the forward transform, the same controls
must be specified for the reverse transform as well.

M_MAGNITUDE, M_PHASE and M_LOG_SCALE can only be used in forward
transforms processed with floating point buffers.

Note that when the controls M_MAGNITUDE and M_PHASE are used, their
results are returned in the real and imaginary buffers respectively, thereby
overwriting the real and imaginary components of the image in the
destination buffers. A reverse transform of these buffers will not yield a
desirable result.

Example mfft.c

M_CENTER Center the real part and the imaginary part of the
spectrum. The center of the spectrum is put at the
(SizeX/2-1, SizeY/2-1).

M_MAGNITUDE Compute the magnitude of the forward transform

() and return its value in the real destination
buffer.

M_PHASE Compute the phase of the forward transform atan(I/R)
and return its value in the imaginary destination
buffer. The phase is returned in the range of -180 to 180
degrees.

M_LOG_SCALE Scale the magnitude of the forward FFT to be in the
range of 0-255.
This flag is used to scale the spectrum into a
displayable range. It is used in combination with the
M_MAGNITUDE control.

R
2

I
2

+

374 MimTranslate

MimTranslate

 Synopsis Translate an image in X and/or Y displacement.

Format void MimTranslate(SrcImageBufId, DestImageBufId,
 XDisplacement, YDisplacement, InterpolationType)

Description This function translates the source image position by the specified amount,
writing results to the destination buffer. This function can be used to align
images to subpixel accuracy before, for example, subtracting them.

The SrcImageBufId parameter specifies the source image buffer identifier.

The DestImageBufId parameter specifies the destination image buffer
identifier.

The XDisplacement and YDisplacement parameters specify the amount
by which to displace the source image. These parameters can be set to any
positive or negative value.

The InterpolationType parameter specifies the interpolation mode. This
parameter can be set to:

To specify how to determine the value of a destination pixel when its
associated point falls outside the source buffer, you can add one of the
following defines to the InterpolationType parameter.

Example msearch.c

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
double XDisplacement; Displacement in X
double YDisplacement; Displacement in Y
long InterpolationType; Interpolation mode

M_DEFAULT Bilinear interpolation (M_BILINEAR + M_OVERSCAN_ENABLE).

M_BILINEAR Bilinear interpolation (M_BILINEAR only).

M_OVERSCAN_ENABLE Use pixels from the source buffer’s ancestor buffer. If
the source buffer is not a child buffer or if the point
falls outside the ancestor buffer, leave the destination
pixel as is. This is the default.

M_OVERSCAN_DISABLE Leave the destination pixel as is.
M_OVERSCAN_CLEAR Set the destination pixel to 0.

MimWarp 375

MimWarp

Synopsis Perform a warping.

Format void MimWarp(SrcImageId, DestImageId, WarpParam1Id,
WarpParam2Id, OperationMode,
InterpolationType)

Description This function warps an image through either a first-order polynomial
mapping or through look-up tables (LUTs).

A warping associates each pixel position of the destination buffer, (xd, yd),
with a specific point in the source buffer, (xs, ys), and then determines the
pixel value of (xd, yd) from its associated point and from a specified
interpolation mode.

When using a first-order polynomial mapping, (xd, yd) gets associated with
(xs, ys) through the following equations:

xs = a0xd + a1yd + a2
ys = b0xd + b1yd + b2

In this case, WarpParam1Id specifies the required coefficients
(a0...a2, b0...b2) and WarpParam2Id must be set to M_NULL. The
coefficients can be automatically generated using MgenWarpParameter()
or can be user-supplied.

When using LUTs, xs is determined from (xd, yd) through one LUT and ys
is determined from (xd, yd) through another LUT. In this case,
WarpParam1Id specifies the LUT for xs and WarpParam2Id specifies the
LUT for ys. The LUTs can be user-supplied or, for 3x3 matrix-defined
warpings, can be automatically generated using MgenWarpParameter().

MIL_ID SrcImageId; Source buffer ID
MIL_ID DestImageId; Destination buffer ID
MIL_ID WarpParam1Id; 1st warp parameter buffer ID
MIL_ID WarpParam2Id; 2nd warp parameter buffer ID or M_NULL

long OperationMode; Operation mode
long InterpolationType; Interpolation mode

376 MimWarp

The SrcImageId parameter specifies the buffer on which to perform the
warping. This buffer can be of any type.

The DestImageId parameter specifies the buffer in which to place the
results of the warping. This buffer can be of any type.

The WarpParam1Id parameter specifies the buffer containing the
(a0...a2, b0...b2) coefficients or the LUT buffer from which xs is determined.

When WarpParam1Id specifies the (a0...a2, b0...b2) coefficients, the
coefficients must be in a single-band 32-bit floating-point buffer that has an
M_ARRAY attribute and that has dimensions 3x2 or 3x3. The first row
specifies the an coefficients and the second row specifies the bn coefficients.
If the buffer is 3x3, the third row is ignored (it is assumed to be (0, 0, 1))
since MimWarp() does not directly perform polynomial warpings of
second-order or higher.

When WarpParam1Id specifies the LUT buffer from which xs is
determined, the buffer must be signed 16- or 32-bit integer, have the same
x and y size as the destination buffer, and have a M_LUT attribute.

The WarpParam2Id parameter specifies the LUT buffer from which ys is
determined. This buffer must be signed 16- or 32-bit integer, have the same
x and y size as the destination buffer, and have a M_LUT attribute.

If you are not using LUTs to perform the warping, set WarpParam2Id to
M_NULL.

The OperationMode parameter specifies the mode of operation. It can be
set to:

When performing the warping through LUTs, you need to specify the
number of fractional bits for the source point (xs, ys). To do so, add the define
M_FIXED_POINT + n to M_WARP_LUT. If nothing is added to M_WARP_LUT,
it is assumed that there are no fractional bits in the coordinates of the source
point (and therefore interpolation is not required).

M_WARP_POLYNOMIAL Perform the warping through a first-order
polynomial mapping.

M_WARP_LUT Perform the warping through LUTs.

MimWarp 377

The InterpolationType parameter specifies the interpolation mode. It can
be set to:

To specify how to determine the value of a destination pixel when its
associated point falls outside the source buffer, you can add one of the
following defines to the InterpolationType parameter. The default is
M_OVERSCAN_ENABLE.

Note that the InterpolationType parameter can be set to M_DEFAULT,
which is equivalent to M_NEAREST_NEIGHBOR+M_OVERSCAN_ENABLE.

Example mwarp.c

See also MgenWarpParameter()

M_NEAREST_NEIGHBOR Nearest neighbor interpolation.
M_BILINEAR Bilinear interpolation.
M_BICUBIC Bicubic interpolation.

M_OVERSCAN_ENABLE Use pixels from the source buffer’s ancestor
buffer. If the source buffer is not a child buffer
or if the point falls outside the ancestor buffer,
leave the destination pixel as is.

M_OVERSCAN_DISABLE Leave the destination pixel as is.
M_OVERSCAN_CLEAR Set the destination pixel to 0.

378 MimWatershed

MimWatershed

Synopsis Perform a watershed transformation.

Format void MimWatershed(SrcImageId, MarkerImageId, DestImageId,
MinimumVariation, ControlFlag)

Description This function performs a watershed transformation on the specified source
buffer. The catchment basins of the source buffer can be determined from
extrema (minima or maxima) in the source buffer and/or from a specified
marker image. In the former case, a catchment basin is determined from an
extrema when the difference in gray levels between it and its closest
extrema is equal to or greater than the value specified by the
MinimumVariation parameter. In the latter case, each group of touching
pixels with the value zero in the marker image produces a catchment basin
in the corresponding area of the source buffer; pixels in the marker image
are considered touching if they are vertically, horizontally, or diagonally
adjacent.

You can specify that the destination buffer contain one of the following:

■ Watershed lines. The watershed lines are given the value 0 and all other
pixels are given the maximum value in the destination buffer.

■ Labelled catchment basins, without watershed lines. Each catchment
basin is given a unique grayscale value, starting at 1.

■ Labelled catchment basins and watershed lines. Each catchment basin is
given a unique grayscale value, starting at 1. Watershed lines are given
the value 0.

The SrcImageId parameter specifies the buffer on which to perform the
transform. This buffer can be 8-bit or 16-bit, signed or unsigned.

The MarkerImageId parameter specifies the buffer to use as a marker
image. This buffer can be 8-bit or 16-bit, signed or unsigned. If you are not
using a marker image, set this parameter to M_NULL.

MIL_ID SrcImageId; Source buffer ID
MIL_ID MarkerImageId; Marker buffer ID or M_NULL

MIL_ID DestImageId; Destination buffer ID
long MinimumVariation; Variation between extrema or M_NULL

long ControlFlag; Control flag

MimWatershed 379

The DestImageId parameter specifies the buffer in which to place the
results of the transformation. This buffer can be 8-bit or 16-bit, signed or

unsigned. The destination buffer can hold 2x - 5 catchment basins, where x
refers to the number of bits per pixel in the buffer. Therefore, an 8-bit
destination buffer can hold 251 catchment basins and a 16-bit destination
buffer can hold 65531 catchment basins.

The MinimumVariation parameter specifies the minimum variation in
gray-levels between extrema. If this parameter is set to M_DEFAULT (or 1),
a catchment basin is produced from each extremum in the source buffer.

If you do not want catchment basins determined from extrema in the source
buffer, that is, you only want them determined from a marker image, set
MinimumVariation to M_NULL or M_OFF.

The ControlFlag parameter specifies how to perform the transformation.
It can be set to any combination of the following five sets of flags. It can also
be set to M_DEFAULT, in which case the default flag from each set is used
(without M_SKIP_LAST_LEVEL). If no flag from a set is specified, its default
flag is used.

Example msegment.c

M_WATERSHED (default) or
M_BASIN or
M_WATERSHED+M_BASIN

Have the destination buffer contain one of
the following: watershed lines, labelled
catchment basins, or labelled catchment
basins and watershed lines.

M_MINIMA_FILL (default) or
M_MAXIMA_FILL

When determining catchment basins from
extrema in the source buffer, use the source
buffer’s minima or use its maxima.

M_REGULAR (default) or
M_STRAIGHT_WATERSHED

Trace the watershed lines exactly or force
them to be straight. Note that selecting
M_STRAIGHT_WATERSHED automatically
includes the M_SKIP_LAST_LEVEL flag.

M_SKIP_LAST_LEVEL If included, this flag prevents a extremum’s
zone of influence from extending beyond
Lmax - 1 (for a minimum) or Lmin - 1 (for a
maximum), where Lmax is the maximum
gray-level in the image and Lmin is the
minimum gray-level.

M_4_CONNECTED (default) or
M_8_CONNECTED

Use 4-connected or 8-connected watershed
lines.

380 MimZoneOfInfluence

MimZoneOfInfluence

 Synopsis Perform a zone of influence detection.

Format void MimZoneOfInfluence(SrcImageBufId, DestImageBufId,
 OperationFlag)

Description This function separates an image into zones, according to how much of a
blob’s surrounding background is within the blob’s territorial boundaries,
or "zone of influence". The image is considered to be binary, with background
pixels equal to 0 (black), and all non-zero pixels treated as blobs. It gives
every pixel in a blob’s zone of influence the same value. Each zone of
influence is numbered consecutively, beginning with 1. A blob’s zone of
influence consists of all pixels closer to that blob than to any other blob.
There are as many zones as blobs.

The SrcImageBufId parameter specifies the identifier of the source of the
operation. This parameter must be given an image buffer identifier.

The DestImageBufId parameter specifies the identifier of the destination
of the resulting image. This parameter must be given an image buffer
identifier.

The destination buffer should be deep enough to hold the maximum number

of zones (blobs). The maximum label value is 2n - 5, where n is the depth of
the destination buffer in bits. For example, an 8-bit buffer can be used for
a maximum of 251 blobs and a 16-bit buffer can be used for a maximum of
65531 blobs. Note that if the destination buffer depth is too small, several
zones might be given the same value.

MIL_ID SrcImageBufId; Source image buffer identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long OperationFlag; Operation flag

MimZoneOfInfluence 381

The OperationFlag parameter controls the type of 3x3 distance matrix
used for the operation and can be set to either M_CHESSBOARD
(M_DEFAULT) or M_CHAMFER_3_4. The following table shows each flag’s
respective 3x3 distance matrix for calculating the distance to a neighboring
pixel, which is then used for the zone of influence computation.

Status In-place processing is supported, but the source and destination image
buffers cannot partially overlap (a situation that can only occur when using
child buffers).

OperationFlag 3x3 Distance Matrix Description
M_CHESSBOARD
(or M_DEFAULT)

This operation is faster
than M_CHAMFER_3_4.

M_CHAMFER_3_4 This operation uses a
distance algorithm that
makes a better
approximation to actual
Euclidean distance, and is
therefore more accurate.

1 1 1

1 0 1

1 1 1

4 3 4

3 0 3

4 3 4

382 MmeasAllocContext

MmeasAllocContext

Synopsis Allocate a measurement context.

Format MIL_ID MmeasAllocContext(SystemId, ControlFlag, ContextIdPtr)

Description This function allocates a measurement context on the
specified system. Measurement context parameters are used
to control the behavior of measurement operations (MmeasFindMarker()
and MmeasCalculate()). When the measurement context is no longer
required, you should release its memory, using MmeasFree().

Note, upon allocation of an application, a default measurement context is
automatically allocated. Rather than using MmeasAllocContext() to
allocate a measurement context, you can use this default measurement
context, by specifying M_DEFAULT wherever a measurement context
identifier is required.

The SystemId parameter specifies the system on which the measurement
context will be allocated. This parameter must be set to a valid system
identifier, M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST
to allocate on the default Host system of the current MIL application.
Specify M_DEFAULT to have MIL select the most appropriate system on
which to allocate the graphics context (it can be the default Host system or
any already allocated system).

The ControlFlag parameter specifies the allocation control flag and must
be set to M_DEFAULT.

The ContextIdPtr parameter specifies the address of the variable in which
the measurement context identifier is to be written. If allocation fails,
M_NULL is written as the identifier. Since the MmeasAllocContext()
function also returns the marker identifier, you can set this parameter to
M_NULL.

Return value The returned value is the measurement context identifier. If allocation fails,
M_NULL is returned.

MIL_ID SystemId; System identifier
long ControlFlag; Allocation control flag
MIL_ID *ContextIdPtr; Storage location for measurement context

identifier

MmeasAllocContext 383

Default
values

Measurement context parameters are set to the following default values
upon allocation and can be changed at any time, using MmeasControl():

See also MmeasFree(), MmeasControl(), MmeasFindMarker(), MmeasCalculate()

Parameter description Default value
Pixel aspect ratio (pixel width/pixel height) 1.0
Pixel-aspect-ratio input interpretation M_CORRECTED

Pixel-aspect-ratio output interpretation M_CORRECTED

384 MmeasAllocMarker

MmeasAllocMarker

 Synopsis Allocate a measurement marker.

Format MIL_ID MmeasAllocMarker(SystemId, MarkerType, ControlFlag,
 MarkerIdPtr)

Description This function allocates a measurement marker on the specified system.
Once allocated, a marker’s characteristics can be specified, using
MmeasSetMarker(). For an edge or stripe marker, these characteristics
are used as the criteria for finding the marker in a target image. An edge
or stripe marker can be located in a target image and its measurements
taken, using MmeasFindMarker(). Once found, an edge or stripe can then
be used as a reference position in calculations involving two markers
(MmeasCalculate()). A point marker cannot be searched for, but is placed
in the required location as a reference position.When the marker is no longer
required, release its memory, using MmeasFree().

The SystemId parameter specifies the system on which the marker will be
allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST to allocate
on the default Host system of the current MIL application. Specify
M_DEFAULT to have MIL select the most appropriate system on which to
allocate the marker (it can be the default Host system or any already
allocated system).

The MarkerType parameter specifies the type of marker to allocate. This
parameter can be set to one of the following:

Any of the above types can be a multiple marker by changing the number
of occurrences (M_NUMBER) with MmeasSetMarker(). A multiple marker
is more than one instance of the same point, edge, or stripe characteristics.

MIL_ID SystemId; System identifier
long MarkerType; Type of marker
long ControlFlag; Allocation control flag
MIL_ID *MarkerIdPtr Storage location for marker identifier

MarkerType Description
M_POINT A single point.
M_EDGE An edge.
M_STRIPE A pair of edges.

MmeasAllocMarker 385

The ControlFlag parameter specifies the allocation control flag. This
parameter must be set to M_DEFAULT.

The MarkerIdPtr parameter specifies the address of the variable in which
the marker identifier is to be written. Since the MmeasAllocMarker()
function also returns the marker identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the marker identifier. If allocation fails, M_NULL is
returned.

Default
values

Marker characteristics are set to the following default values upon
allocation and can be changed at any time, using MmeasSetMarker().
Note, a characteristic with the value M_ANY will not be considered as a
criteria for finding the marker in a target image.

Characteristic Default value
Number of points, edges, or
stripes:

1

Spacing between edges or
stripes:

M_ANY

Spacing variation: M_ANY

Marker orientation: M_VERTICAL (vertical orientation)
Marker polarity: M_ANY for edge markers.

M_ANY for the first (from top-left) edge of a
stripe marker.
M_OPPOSITE (opposite polarity from the first
edge) for the second edge of a stripe marker.

Marker contrast: M_ANY
Marker contrast variation: M_ANY
Marker width: M_ANY

Marker width variation: M_ANY

Marker position: M_ANY
Marker position variation: M_ANY

Size of measurement box: M_DEFAULT (image size)
Origin of measurement
box:

Top-left corner of the image
X-coordinate = 0.0
Y-coordinate = 0.0

Measurement box’s center: M_DEFAULT (image center)
Measurement box’s angle: 0.0
Marker reference: M_DEFAULT (center of the marker)

386 MmeasAllocMarker

Examples mmeas.c, mcalib.c

See also MmeasFree(), MmeasSetMarker(), MmeasFindMarker(), MmeasCalculate()

Edge strength: M_ANY

Edge strength variation: M_ANY

Edge threshold: 2.0 (2%)
Stripe inside edges: M_ANY

Stripe inside-edge
variation:

M_ANY

Stripe inside position: M_ANY

Box angle mode: M_DISABLE

Box angle delta negative
 and
Box angle delta positive:

M_DEFAULT (180° search for a symmetrical
stripe marker; 360°, complete rotation, for
non-symmetrical)

Box angle tolerance: 5.0°
Box angle accuracy: M_DISABLE

Box angle interpolation: M_BILINEAR

Box angle reference: M_BOX_CENTER

Weight factors: Weight of 50% to the strength of an edge and
the remaining 50% to any other parameters
not set to M_ANY.

Characteristic Default value

MmeasAllocResult 387

MmeasAllocResult

 Synopsis Allocate a measurement result buffer.

Format MIL_ID MmeasAllocResult(SystemId, ResultType,
 MeasResultIdPtr)

Description This function allocates a buffer, on the specified system, to be used for
storing measurement results obtained from a MmeasCalculate()
operation. When the result buffer is no longer required, you should release
its memory, using MmeasFree(). Note, a result buffer is not required for a
MmeasFindMarker() operation.

The SystemId parameter specifies the system on which the result buffer
will be allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST to allocate
on the default Host system of the current MIL application. Specify
M_DEFAULT to have MIL select the most appropriate system on which to
allocate the buffer (it can be the default Host system or any already allocated
system).

The ResultType parameter specifies the type of result buffer to allocate
and must be set to M_CALCULATE.

The ResultIdPtr specifies the address of the variable in which the
measurement result identifier is to be written. If allocation fails, M_NULL
is returned as the identifier. Since the MmeasAllocResult() function also
returns the measurement result identifier, you can set this parameter to
M_NULL.

Return value The returned value is the measurement result identifier. If allocation fails,
M_NULL is returned.

See also MmeasFree(), MmeasCalculate(), MmeasGetResult()

MIL_ID SystemId; System identifier
long ResultType; Type of result buffer
MIL_ID *MeasResultIdPtr; Storage location for measurement result

buffer identifier

388 MmeasCalculate

MmeasCalculate

 Synopsis Calculate measurements between two markers.

Format void MmeasCalculate(ContextId, Marker1Id, Marker2Id,
 MeasResultId, MeasurementList)

Description This function calculates the specified measurements between two markers.
Edge and stripe markers must have been previously located in the target
image with MmeasFindMarker(). The position of point markers must
have been previously set, using MmeasSetMarker().

The measurement context settings will control the behavior of this function
and can be set with MmeasControl().

Results are stored in the specified measurement result buffer and can be
obtained using MmeasGetResult().

The ContextId parameter specifies the identifier of the measurement
context. This parameter must be given a valid measurement context
identifier or can be set to M_DEFAULT, in which case, the default
measurement context of the current MIL application will be used.

The Marker1Id and Marker2Id parameters specify the identifiers of the
markers to use as the first and second reference positions for calculating
measurements, respectively.

If both markers are multiple markers, then calculations are made using the
edges or stripes of the first marker and the corresponding points, edges, or
stripes in the second marker, for the entire first marker’s number of points,
edges, or stripes. The number of calculations performed is limited to the
smallest number of points, edges, or stripes held in either marker (that is,
if a marker contains only one point, edge, or stripe, then only one calculation
is performed, regardless of the number of points, edges, or stripes contained
in the first marker).

The MeasResultId parameter specifies the identifier of the result buffer
in which to place results.

MIL_ID ContextId; Measurement context identifier
MIL_ID Marker1Id; Identifier of first marker
MIL_ID Marker2Id; Identifier of second marker
MIL_ID MeasResultId; Measurement result identifier
long MeasurementList; List of measurements to calculate

MmeasCalculate 389

The MeasurementList parameter specifies which measurement(s) to
calculate. The following lists the measurements that can be calculated. To
calculate more than one measurement, add the predefined values together
(for example, M_DISTANCE+M_ANGLE):

Example mmeas.c, mmeasmul.c

See also MmeasGetResult(), MmeasSetMarker(), MmeasFindMarker()

M_DEFAULT Perform all of the calculations below.
M_ANGLE Calculate the angle of the line joining two markers,

relative to the positive X-axis. The value can be any
between 0° and 360°.

M_DISTANCE Calculate the distance between both markers.
M_LINE_EQUATION Calculate the equation of the line joining both

markers.

390 MmeasControl

MmeasControl

Synopsis Control a measurement parameter setting.

Format void MmeasControl(ContextId, ControlType, ControlValue)

Description This function sets the specified measurement context processing control.
Measurement context settings control the behavior of measurement
operations.

The ContextId parameter specifies the identifier of the measurement
context. The ControlType parameter specifies the type of processing
control to set.

The ControlValue parameter specifies the value to which to set the control.
Note, when referring to "data relative to the corrected image", this means
that the data (for example, a specified position) is given as if it were relative
to an image resized by a factor equal to the aspect ratio.

These parameters can be set to one of the following combinations:

See also MmeasAllocContext(), MmeasInquire()

MIL_ID ContextId; Measurement context identifier
long ControlType; Type of control to set
double ControlValue; Value of control parameter

ControlType Description ControlValue
M_PIXEL_ASPECT_RATIO The ratio of the width of

the image to its height.
Pixel width / pixel height
(default is 1.0)

M_PIXEL_ASPECT_RATIO_INPUT How the measurement
module interprets
specified measurement
characteristics relative to
the pixel aspect ratio.

M_CORRECTED (default):
Specified measurement
characteristics are relative
to the corrected image.
M_NORMAL: Input data is
relative to the given image.
(ratio of 1.0)

M_PIXEL_ASPECT_RATIO_OUTPUT How the measurement
module returns results
relative to the pixel
aspect ratio.

M_CORRECTED (default):
Results are relative to the
corrected image. M_NORMAL:
Output data is relative to
the given image. (ratio: 1.0)

MmeasFindMarker 391

MmeasFindMarker

Synopsis Find a marker in an image and take the specified measurements.

Format void MmeasFindMarker(ContextId, ImageBufId, MarkerId,
 MeasurementList)

Description This function finds an edge or a stripe marker in the image and takes the
measurements specified in the measurement list. The marker’s
characteristics are used to help locate the marker and can be set using
MmeasSetMarker().

Measurement context settings will control the behavior of this function and
can be set, using MmeasControl().

Results are stored with the marker (not in a result buffer), and can be
obtained using MmeasGetResult().

The ContextId parameter specifies the identifier of the measurement
context. This parameter must be given a valid measurement context
identifier or can be set to M_DEFAULT, in which case, the default
measurement context of the current MIL application will be used.

The ImageBufId parameter specifies the identifier of the image buffer in
which to locate the marker.

The MarkerId parameter specifies the identifier of the marker to be located
in the image.

The MeasurementList parameter specifies which measurement(s) to
perform. To take more than one measurement, add the predefined values
together (for example, M_POSITION+M_ANGLE). Use M_DEFAULT to select
all of the measurements.

It is recommended that the search region be set to an angle close to that of
the required marker (that is, within the marker’s particular rotational
tolerance) to ensure that the marker is found and that results are accurate:

MIL_ID ContextId; Measurement context identifier
MIL_ID ImageBufId; Image identifier
MIL_ID MarkerId; Marker identifier
long MeasurementList; List of measurements to take

392 MmeasFindMarker

the greater the angle of the marker relative to the search region, the greater
the distortion of the marker’s actual characteristics or the chance that the
marker may not be successfully located with MmeasFindMarker().

Note, all positional results are relative to the top-left pixel in the target
image or the origin of the coordinate system of a calibrated image.

The measurement list can contain the following values:

MeasurementList Description
M_DEFAULT Take all of the measurements below.
M_ANGLE Determine the angle of the marker relative to the positive

X-axis of the target image. The value can be any between
0° and 360°.

M_CONTRAST Determine the average grayscale difference between an
edge and its background. For a stripe marker, this
produces two values, one for each of the stripe marker's
edges.

M_EDGE_INSIDE Determine the number of edges located between the two
exterior edges of a stripe marker.

M_LENGTH Determine the length of the marker, in pixels or
real-world units. The length is limited to the dimensions
of the measurement box.

M_LINE_EQUATION Determine the equation of the mean line following an
edge. When performing this calculation for a stripe
marker, three line equations are calculated: the line
equation of the stripe's first edge, the line equation of the
stripe's second edge, and the mean of the line equations of
both its edges.

M_NUMBER Determines the number of edges or stripes to find in the
target image. (always selected)

M_POLARITY Determine whether the edge (or edges of a stripe marker)
are rising (positive polarity) or falling (negative polarity).

M_POSITION Determine the X and Y coordinates of the center of the
marker within the measurement box.

M_POSITION_VARIATION Determine the position variation (or uncertainty) of the
marker, in pixels or real-world units. If the marker is an
edge, the position variation is equal to half of its width. If
the marker is a stripe, the position variation is the sum of
the position variations of both of its edges.

M_WIDTH Determine the width of a marker in pixels or real-world
units. The width of an edge marker is a measure of the
transition in grayscale values. The width of a stripe
marker is the average distance between its edges and is
calculated at the angle of the measurement box.

MmeasFindMarker 393

Examples mcalib.c, mmeas.c, mmeasmul.c

See also MmeasGetResult(), MmeasSetMarker()

M_WIDTH_VARIATION Determine the width variation (or uncertainty) of a stripe
marker, in pixels or real-world units. It is the sum of the
position variations of both of its edges.

Note: The following values cannot be requested specifically. However, by specifying
M_POSITION in the measurement list, all of the following will be also be accessible through
MmeasGetResult().
M_BOX_EDGE_VALUES Determine the edge value for every possible profile value

of the measurement box. Therefore, for a vertical marker,
the number of returned values is equal to the width of the
measurement box; for a horizontal marker, the number is
equal to the height. The value is represented as a
normalized percentage of the image buffer’s maximum
possible value.

M_EDGE_STRENGTH Determine the minimum/maximum edge value along the
width of the edge marker. The value is represented as a
normalized percentage of the image buffer’s maximum
possible value.

M_ORIENTATION Determine the orientation of the marker.
M_POSITION_MAX Determine the X and Y coordinates of the maximum

position of an edge or stripe marker within the
measurement box. The maximum position is always on
the side of the measurement box furthest from the origin.

M_POSITION_MIN Determine the X and Y coordinates of the minimum
position of an edge or stripe marker within the
measurement box. The minimum position is always on
the side of the measurement box adjacent the origin,
regardless of how the measurement box is rotated.

M_SPACING Determine the inter-edge or inter-stripe spacing of a
multiple marker.

394 MmeasFree

MmeasFree

 Synopsis Free a measurement context, marker, or result buffer.

Format void MmeasFree(MeasId)

Description This function deletes the specified marker, result buffer, or context identifier
and releases any memory associated with it.

The MeasId parameter specifies the measurement identifier to free. The
identifier must have been successfully allocated with
MmeasAllocMarker(), MmeasAllocResult(), or
MmeasAllocContext() prior to calling this function.

See also MmeasAllocMarker(), MmeasAllocResult(), MmeasAllocContext()

MIL_ID MeasId; Measurement identifier

MmeasGetResult 395

MmeasGetResult

 Synopsis Get the results of measurements taken.

Format void MmeasGetResult(MarkerOrMeasResultId, ResultType,
 FirstResultArrayPtr, SecondResultArrayPtr)

Description This function obtains the measurement result of the specified type from the
specified marker or result buffer. Results should be obtained from a marker
if an MmeasFindMarker() operation was performed or from a
measurement result buffer if an MmeasCalculate() operation was
performed.

The MarkerOrMeasResultId parameter specifies the identifier of the
marker buffer (allocated with MmeasAllocMarker()) or measurement
result buffer (allocated with MmeasAllocResult()) in which results are
stored.

The ResultType parameter specifies the type of result to obtain.
FirstResultArrayPtr and SecondResultArrayPtr specify the address
of the array in which to write results. With a multiple marker, results for
each edge or stripe are held in an array. The results for each instance of the
marker will be stored in a separate element of the specified arrays. Note
that the arrays which you pass must be large enough to hold the results of
all instances of the marker. For most result types, only
FirstResultArrayPtr will be used and SecondResultArrayPtr should
be set to M_NULL.

All positional results are relative to the top-left pixel in the target image or
to the origin of the coordinate system of a calibrated image.

If results are being obtained from a marker, ResultType can be set to one
of the values specified in the table that follows. To obtain results for a specific
edge (either the first or second edge) of a stripe marker, add M_EDGE_FIRST

MIL_ID MarkerOrMeasResultId; Marker identifier or measurement
result buffer identifier

long ResultType; Type of measurement for which to get
results

void *FirstResultArrayPtr; Array in which to return first results
void *SecondResultArrayPtr; Array in which to return second

results (if any)

396 MmeasGetResult

or M_EDGE_SECOND to ResultType. For example,
M_LINE_EQUATION+M_EDGE_FIRST will return the line equation for the
first edge of a stripe marker.

Result types which return a position always return the X coordinate to
FirstResultArrayPtr and the Y coordinate to SecondResultArrayPtr.

For certain result types, two values can be returned for a stripe marker: the
value for the first edge is returned to FirstResultArrayPtr and that of the
second edge to SecondResultArrayPtr. For an edge marker, all results
are returned to FirstResultArrayPtr.

ResultType Description
M_ANGLE The angle of the marker in degrees relative

to the positive X axis. Returns a value
between 0 and 360 degrees.

M_BOX_CORNER_BOTTOM_LEFT The X and Y positions of the bottom-left
corner of the measurement box.

M_BOX_CORNER_BOTTOM_RIGHT The X and Y positions of the bottom-right
corner of the measurement box.

M_BOX_CORNER_TOP_LEFT The X and Y positions of the top-left corner
of the measurement box.

M_BOX_CORNER_TOP_RIGHT The X and Y positions of the top-right
corner of the measurement box.

M_BOX_EDGE_VALUES The edge values (as a normalized
percentage of the buffer’s maximum
possible value for every profile value of the
measurement box.) Results are returned to
FirstResultArrayPtr
as an array.

M_BOX_EDGE_VALUES_NUMBER The number of values to be returned by
M_BOX_EDGE_VALUES.

M_CONTRAST The average grayscale difference between
each marker’s edge and its background.
Returns one value for an edge marker; two
for a stripe marker.

M_EDGE_FIRST+... Results for the first exterior edge of a stripe
for the requested characteristic.
(for example, M_EDGE_FIRST+M_ANGLE)

M_EDGE_INSIDE The number of edges located between the
two exterior edges of a stripe marker.

M_EDGE_SECOND+... Results for the second exterior edge of a
stripe for the requested characteristic. (for
example, M_EDGE_SECOND+M_ANGLE)

MmeasGetResult 397

M_EDGE_STRENGTH The maximum edge value variation (as a
normalized percentage of the buffer’s
maximum possible value) of each edge of a
marker. Returns one value for an edge
marker, two for a stripe marker.

M_LENGTH The length of the marker in pixels or
real-world units.

M_LINE_EQUATION The equation of the mean line of the marker.
The slope is returned to the
FirstResultArrayPtr and the Y intercept
is returned to the SecondResultArrayPtr.

M_LINE_EQUATION_INTERCEPT The Y intercept of the line equation of the
marker.

M_LINE_EQUATION_SLOPE The slope of the line equation of the marker.
M_MAX+... Maximum value for the requested

characteristic in all the edges or stripes
found. Only one result is returned. (for
example M_MAX +M_CONTRAST).

M_MEAN+... Mean value for the requested characteristic
in all the edges or stripes found. Only one
result is returned. (for example
M_MEAN+M_EDGE_STRENGTH).

M_MIN+... Minimum value for the requested
characteristic in all the edges or stripes
found. Only one result is returned (for
example M_MIN+M_SCORE).

M_NUMBER Number of edges or stripes found in the
measurement box.

M_ORIENTATION The orientation of the marker.
M_POLARITY The polarity of the marker (either

M_NEGATIVE or M_POSITIVE). Returns one
value for an edge marker; two for a stripe
marker.

M_POSITION The X and Y coordinates of the marker
center in the image.

M_POSITION_MAX The X and Y coordinates of the maximum
position of an edge or stripe marker within
the measurement box.

M_POSITION_MIN The X and Y coordinates of the minimum
position of an edge or stripe marker within
the measurement box.

ResultType Description

398 MmeasGetResult

If results are being obtained from a measurement result buffer
(MmeasCalculate()), the ResultType can be:

M_POSITION_VARIATION The position variation of the marker, in
pixels or real-world units (+/-).

M_SCORE The confidence score for the find marker
operation (as a percentage).

M_SPACING Inter-edge or inter-stripe spacing between
consecutive edges or stripes.

M_STANDARD_DEVIATION+... Standard deviation of the values for the
requested characteristic in all the edges or
stripes found. Only one result is returned.
(for example
M_STANDARD_DEVIATION+M_WIDTH).

M_TOTAL_SCORE The average confidence score of all edges or
stripes found.

M_VALID_FLAG The flag that denotes whether or not a
marker was found (M_TRUE or M_FALSE).

M_WIDTH The width of the marker in pixels or
real-world units.

M_WIDTH_VARIATION The width variation of the stripe marker in
pixels or real-world units.

ResultType Description

ResultType Description
M_ANGLE The angle, in degrees, of the line joining the two

markers relative to the positive X axis. A value
between 0 and 360 is returned.

M_DISTANCE The distance, in pixels or real-world units,
between two markers.

M_DISTANCE_X The distance, in pixels or real-world units, on
the X axis between two markers.

M_DISTANCE_Y The distance, in pixels or real-world units, on
the Y axis between two markers.

M_LINE_EQUATION The equation of the line joining two markers.
The slope is returned to the
FirstResultArrayPtr and the Y intercept is
returned to the SecondResultArrayPtr.

M_LINE_EQUATION_INTERCEPT The Y intercept of the line equation joining two
markers.

M_LINE_EQUATION_SLOPE The slope of the line equation joining two
markers.

MmeasGetResult 399

When the equation of the line has an infinite slope, the value returned as
the slope is M_INFINITE_SLOPE (1.0E+300).Results are returned as type
"double". To have results returned as type "long", combine the result type
with M_TYPE_LONG (for example, M_VALID_FLAG+M_TYPE_LONG). Note,
M_INVALID is returned if a measurement was not calculated.

Examples mcalib.c, mmeas.c, mmeasmul.c

See also MmeasFindMarker(), MmeasCalculate(), MmeasAllocMarker(),
MmeasAllocResult()

400 MmeasGetResultSingle

MmeasGetResultSingle

 Synopsis Get a single result from a multiple marker or its result buffer.

Format void MmeasGetResultSingle(MarkerOrMeasResultId, ResultType,
FirstResultArrayPtr, SecondResultArrayPtr, ResultIndex)

Description This function obtains a specific measurement result of a specified type from
the specified identifier. A specific instance is identified by a ResultIndex
number from 0 to N-1, where N is the number of edges or stripes found or
the number of results calculated.

The number of edges or stripes should be determined first by using
M_NUMBER as the result type with MmeasGetResult() to ensure that the
index of the result to retrieve is valid.

This function is otherwise identical to MmeasGetResult(): see
MmeasGetResult() for more information, a list of result types, and their
descriptions.

Note that in general, FirstResultArrayPtr and SecondResultArrayPtr
should be single entry arrays, except when the result type returns multiple
values, for example M_BOX_EDGE_VALUES.

See also MmeasGetResult(), MmeasFindMarker(), MmeasCalculate(),
MmeasAllocMarker(), MmeasAllocResult(), MmeasGetResultSingle().

MIL_ID MarkerOrMeasResultId; Marker identifier or measurement
result buffer identifier

long ResultType; Type of measurement for which to get
results

void *FirstResultArrayPtr; Array in which to return first results
void *SecondResultArrayPtr; Array in which to return second

results (if any)
long ResultIndex; Index of the result to retrieve

MmeasInquire 401

MmeasInquire

 Synopsis Inquire about a measurement context, marker, or result buffer.

Format long MmeasInquire(MeasId, InquireType, FirstUserVarPtr,
 SecondUserVarPtr)

Description This function inquires about a specific marker characteristic,
context-control setting, or measurement result buffer type.

The MeasId parameter specifies the identifier of the marker, measurement
context, or measurement result buffer from which information will be
obtained.

The InquireType parameter specifies the particular setting to inquire
about. The FirstUserVarPtr and SecondUserVarPtr parameters specify
the addresses of the variables in which the requested information is to be
written. If only one value is to be returned, it will be returned to
FirstUserVarPtr and SecondUserVarPtr should be set to M_NULL.

When performing an inquiry on a marker (to determine the default or
user-defined value of a marker characteristic) InquireType can be set to
values listed in the table below.

For certain inquire types, two values can be returned for a stripe marker:
the value for the first edge is returned to FirstUserVarPtr and that of the
second edge to SecondUserVarPtr. For an edge marker, all results are
returned to FirstUserVarPtr.

Inquire types which return a position always return the X-coordinate to the
FirstUserVarPtr and the Y-coordinate to the SecondUserVarPtr.

MIL_ID MeasId; Identifier of a measurement context, marker,
or measurement result buffer

long InquireType; Setting to inquire
void *FirstUserVarPtr; Storage location for first value
void *SecondUserVarPtr; Storage location for second value

InquireType Description
M_BOX_ANGLE The angle of the measurement box

(MmeasSetMarker()).
M_BOX_ANGLE_ACCURACY The required precision for the

resulting angle of the marker
(MmeasSetMarker()).

402 MmeasInquire

M_BOX_ANGLE_DELTA_NEG
 and
M_BOX_ANGLE_DELTA_POS

The range of angles to be searched for
the marker: from (M_BOX_ANGLE -
M_BOX_ANGLE_DELTA_NEG) to
(M_BOX_ANGLE +
M_BOX_ANGLE_DELTA_POS)
inclusively, starting with an angle
close to that of M_BOX_ANGLE
(MmeasSetMarker()).

M_BOX_ANGLE_INTERPOLATION_MODE The type of interpolation used when
performing a search at an angle
(MmeasSetMarker()).

M_BOX_ANGLE_MODE Whether multiple-angle search is
enabled (MmeasSetMarker()).

M_BOX_ANGLE_REFERENCE The center of rotation used when
performing a search at an angle
(MmeasSetMarker()).

M_BOX_ANGLE_TOLERANCE The rotation tolerance of the marker.
This is the full range of degrees
within which a marker can be rotated
from a measurement box that is at a
specific angle and still be found. This
determines the step angle used for a
multiple-angle search
(MmeasSetMarker()).

M_BOX_CENTER The X and Y coordinates of the
measurement box’s center
(MmeasSetMarker()).

M_BOX_ORIGIN The X and Y coordinates of the
measurement box’s origin
(MmeasSetMarker()).

M_BOX_SIZE The width and height of the
measurement box
(MmeasSetMarker()). The width is
returned to FirstUserVarPtr and
the height is returned to
SecondUserVarPtr.

M_CONTRAST The contrast of a marker (one value
for an edge; two for a stripe)
(MmeasSetMarker()).

M_CONTRAST_VARIATION The contrast variation of a marker
(MmeasSetMarker()).

InquireType Description

MmeasInquire 403

M_CONTROL_FLAG The control flag given at marker
allocation time
(MmeasAllocMarker()).

M_EDGE_INSIDE The number of edges between the
external edges of a stripe marker
(MmeasSetMarker()).

M_EDGE_INSIDE_VARIATION The tolerance of the number of edges
between the external edges of a stripe
marker (MmeasSetMarker()).

M_EDGE_STRENGTH The maximum edge value variation of
the edge marker (as a percentage)
(MmeasSetMarker()).

M_EDGE_STRENGTH_VARIATION The tolerance of the maximum edge
value of the edge marker
(MmeasSetMarker()).

M_EDGE_THRESHOLD The minimum edge value in order to
consider an edge in the search. The
value is represented as a percentage
of the image buffer’s maximum
possible value (MmeasSetMarker()).

M_MARKER_REFERENCE The X and Y-offsets of the marker
reference (MmeasSetMarker()).

M_MARKER_TYPE The type of marker.
(MmeasAllocMarker()).

M_NUMBER The number of edges or stripes.
M_NUMBER_MIN The minimum number of edges or

stripes.
M_ORIENTATION The orientation of the marker

(MmeasSetMarker()).
M_POLARITY The polarity of a marker

(MmeasSetMarker()).
M_POSITION The X and Y coordinates of the

marker center
(MmeasSetMarker()).

M_POSITION_INSIDE_STRIPE Whether the specified position is
inside or outside of the stripe
(M_YES, M_NO, or M_ANY)
(MmeasSetMarker()).

M_POSITION_VARIATION The tolerance of position variation
(MmeasSetMarker()).

M_POSITION_X The X coordinate of the marker center
(MmeasSetMarker()).

InquireType Description

404 MmeasInquire

When performing an inquiry on a measurement context buffer,
InquireType can be set to one of the following values.

When performing an inquiry on a measurement result buffer, InquireType
can be set to M_RESULT_TYPE to determine the type of result buffer
allocated (MmeasAllocResult()).

Results are returned to FirstUserVarPtr and SecondUserVarPtr as type
"double".

To have results returned as type "long", combine the InquireType with
M_TYPE_LONG (for example, M_MARKER_TYPE+M_TYPE_LONG).

M_POSITION_Y The Y coordinate of the marker center
(MmeasSetMarker()).

M_SPACING The typical spacing, in pixels,
between consecutive edges or stripes
(MmeasSetMarker()).

M_SPACING_VARIATION The typical variation in spacing, in
pixels, between edges or stripes
(MmeasSetMarker()).

M_WEIGHT_FACTOR+
 M_EDGE_STRENGTH
or M_CONTRAST
or M_POSITION
or M_WIDTH
or M_EDGE_INSIDE
or M_SPACING

The specific weight assigned to the
specified characteristic (as a
percentage) (MmeasSetMarker()).

M_WIDTH The width of a stripe marker
(MmeasSetMarker()).

M_WIDTH_VARIATION The width variation of a marker
(MmeasSetMarker()).

InquireType Description

InquireType Description
M_CONTROL_FLAG The control flag given at context

allocation time
(MmeasAllocContext()).

M_PIXEL_ASPECT_RATIO The pixel aspect ratio
(MmeasControl()).

M_PIXEL_ASPECT_RATIO_INPUT The input pixel aspect ratio
interpretation mode (MmeasControl()).

M_PIXEL_ASPECT_RATIO_OUTPUT The output pixel aspect ratio mode
(MmeasControl()).

MmeasInquire 405

Return value The returned value is the requested first value buffer information, cast to
long.

See also MmeasAllocMarker(), MmeasAllocResult(), MmeasAllocContext(),
MmeasSetMarker(), MmeasControl()

406 MmeasRestoreMarker

MmeasRestoreMarker

 Synopsis Restore a marker from disk.

Format MIL_ID MmeasRestoreMarker(FileName, SystemId, ControlFlag,
 MarkerIdPtr)

Description This function restores a previously saved marker from disk and returns a
handle to it. It also restores all the marker characteristics that were in effect
when the marker was saved.

The FileName parameter specifies the marker file name. The function
internally handles the opening and closing of the file.

The SystemId parameter specifies the system on which the measurement
marker will be restored. This parameter must be set to a valid system
identifier, M_DEFAULT_HOST, or M_DEFAULT. Specify M_DEFAULT_HOST
to allocate on the default Host system of the current MIL application.
Specify M_DEFAULT to have MIL select the most appropriate system on
which to allocate the marker (it can be the default Host system or any
already allocated system).

The ControlFlag parameter specifies the restore control flag and should
be set to M_DEFAULT.

The MarkerIdPtr parameter specifies the address of the variable in which
the marker identifier is to be written. Since the MmeasRestoreMarker()
function also returns the marker identifier, you can set this parameter to
M_NULL. If allocation fails, M_NULL is written as the identifier.

Return value The returned value is the marker identifier. If allocation fails, M_NULL is
returned.

See also MmeasSaveMarker()

char *FileName; Marker file name
MIL_ID SystemId; System identifier
long ControlFlag; Control flag
MIL_ID *MarkerIdPtr; Storage location for marker identifier

MmeasSaveMarker 407

MmeasSaveMarker

 Synopsis Save a marker to disk.

Format void MmeasSaveMarker(FileName, MarkerId, ControlFlag)

Description This function saves an allocated marker to disk, including all of its current
characteristics. The marker and its characteristics can later be restored,
using MmeasRestoreMarker().

The FileName parameter specifies the name of the file in which to save the
marker. If this file already exists, it will be overwritten. The function
internally handles the opening and closing of this file.

The MarkerId parameter specifies the identifier of the marker to save.

The ControlFlag parameter specifies the save control flag and must be set
to M_DEFAULT.

See also MmeasAllocMarker(), MmeasRestoreMarker()

char *FileName; Marker file name
MIL_ID MarkerId; Marker identifier
long ControlFlag; Control flag

408 MmeasSetMarker

MmeasSetMarker

 Synopsis Set a marker characteristic parameter.

Format void MmeasSetMarker(MarkerId, CharacteristicToSet, FirstValue,
 SecondValue)

Description This function sets a marker parameter (characteristic). Marker
characteristics are used in determining the marker location in a target
image. MmeasFindMarker() locates the edge(s) or stripe(s) that best
correspond to the specified marker’s characteristics. A marker’s
characteristics should describe the marker as accurately as possible to
ensure that it will be successfully located in an image. See
MmeasAllocMarker() for the default values of these characteristics.

The MarkerId parameter specifies the identifier of the marker.

The CharacteristicToSet parameter specifies the type of characteristic to
set. The FirstValue and SecondValue parameters specify the values for
the parameter being set. The FirstValue must always be provided. The
SecondValue should only be provided when required; otherwise, it should
be set to M_NULL.

When searching for a marker, the relative importance (weight) assigned to
each of the marker characteristics is crucial to the robustness of the
operation. By default, 50% of the search weight is assigned to the edge
strength; the remaining 50% is equally divided among all characteristics
that can have a weight factor and that are set to a value other than M_ANY
(the value used to flag an “ignore” state). It is possible to override this default
by adding M_WEIGHT_FACTOR to these characteristics and specifying the
percentage of importance. When specifying weight factors it is
recommended, in order to better control the search, that you assign a weight
factor to all enabled characteristics which support weight factors to a total
of 100%. Characteristics that can be weighted in this way are
M_EDGE_STRENGTH, M_CONTRAST, M_POSITION, M_WIDTH,
M_EDGE_INSIDE, and M_SPACING.

MIL_ID MarkerId; Marker identifier
long CharacteristicToSet; Parameter to set
double FirstValue; First value
double SecondValue; Second value or M_NULL

MmeasSetMarker 409

Various marker characteristics and their possible values can be set as shown
in the following tables.

The CharacteristicToSet, FirstValue and SecondValue parameters can
be set to the following values:

CharacteristicToSet Description Values
For point, edge, and stripe markers:

M_BOX_ANGLE The angle of the measurement
box.
Note, if set to M_ANY, the
contents of the measurement box
are analyzed to determine the
angle of the marker. The
measurement box’s center of
rotation is set with
M_ANGLE_REFERENCE (default
is M_BOX_CENTER). For a
multiple point marker, the box
angle determines the angle from
which subsequent points are
placed (at the interval set with
M_SPACING), proceeding from
the coordinates defined by
M_POSITION, M_POSITION_X, or
M_POSITION_Y.

Set FirstValue to a value
from 0 to 360 degrees (default
is 0) or to M_ANY.
Set SecondValue to
M_NULL.

M_NUMBER The number of edges or stripes
to locate in the measurement
box. Unless a minimum number
(M_NUMBER_MIN) is specified,
no results will be returned if the
number of edges or stripes found
falls below M_NUMBER.

Set FirstValue to the
number of edges or stripes.
Set the SecondValue to
M_NULL. Default is M_ALL.

M_POSITION X and Y coordinates of the center
of the marker in the target
image (approximate). The
defined position must be within
the measurement box (taking
into account the angle or scope of
the angular search, if enabled).
Note, the position is ignored for
edge or stripe markers when
M_NUMBER is greater than 1.

Numerical values valid
within the target image or
M_ANY (default).
Set FirstValue to the
X coordinate.
Set SecondValue to the
Y coordinate.

M_POSITION_X X-coordinate of the marker in
the target image (approximate).
Note, the position cannot be set
for a multiple marker.

Set FirstValue to a
numerical value valid within
the target image or M_ANY.
Set SecondValue to
M_NULL.

410 MmeasSetMarker

M_POSITION_Y Y-coordinate of the marker in the
target image (approximate).
Note, the position is ignored for
edge or stripe markers when
M_NUMBER is greater than 1.

Set FirstValue to a
numerical value valid within
the target image or M_ANY.
Set SecondValue to
M_NULL.

M_SPACING The typical spacing, or distance,
between consecutive edges or
stripes.

Set FirstValue to the required
spacing in pixels. M_SAME
applies the average spacing of
all located edges or stripes.
Default is M_ANY. Set the
SecondValue to M_NULL.

For edge and stripe markers:

M_BOX_ANGLE_ACCURACY

The accuracy of the angular
search. This determines the size
of the step angle to use once the
approximate location of the
marker is found.

Set FirstValue to a value
from 0.1 to 180 degrees or
to M_DISABLE to force an
angle of accuracy equal to the
angle of tolerance.
Set SecondValue to
M_NULL.

M_BOX_ANGLE_DELTA_NEG and
M_BOX_ANGLE_DELTA_POS

The positive and negative range
of angles within which to search
for the marker: from
M_BOX_ANGLE_DELTA_NEG to
M_BOX_ANGLE_DELTA_POS
inclusively, starting with an
angle close to that of
M_BOX_ANGLE.

Set FirstValue to a value
from 0.1 to 360 degrees or to
M_DEFAULT (default of 180°
for a symmetrical stripe
marker, 360° for an edge
marker or non-symmetrical
stripe marker).
Set SecondValue to
M_NULL.

M_BOX_ANGLE_INTERPOLATION_MODE

The type of interpolation used
when M_BOX_ANGLE__MODE is
enabled.

Set FirstValue to
M_NEAREST_NEIGHBOR,
M_BILINEAR (default), or
M_BICUBIC.

M_BOX_ANGLE_MODE Enable the use of multiple-angle
search, as specified by the
settings of other
M_BOX_ANGLE... characteristics.
The angle with the highest
match score is returned.

Set FirstValue to M_ENABLE
or M_DISABLE (default,
search only at the angle
specified by M_BOX_ANGLE).
Set SecondValue to
M_NULL.

M_BOX_ANGLE_REFERENCE

The center of rotation used when
M_BOX_ANGLE is not zero.

Set FirstValue to
M_BOX_CENTER (default) or
M_BOX_ORIGIN.

CharacteristicToSet Description Values

MmeasSetMarker 411

M_BOX_ANGLE_TOLERANCE

The rotation tolerance of the
marker. This is the full range of
degrees within which a marker
can be rotated from a
measurement box that is at a
specific angle and still be found.
This determines the step angle
used for a multiple-angle search

Set FirstValue to a value
from 0.1 to 360 degrees or
to M_DEFAULT (5.0°).
Set SecondValue to
M_NULL.

M_BOX_CENTER The X and Y-coordinates of the
measurement box's center. These
coordinates are relative to the
top-left corner of the target
image.

Numerical values valid
within the target image or
M_DEFAULT. Set FirstValue
to the X coordinate;
SecondValue to the Y
coordinate. When
M_DEFAULT is specified, the
target image's corresponding
center coordinate is used.

M_BOX_ORIGIN The X and Y-coordinates of the
measurement box's top-left
corner. These coordinates are
relative to the top-left corner of
the target image.

Numerical values valid
within the target image or
M_DEFAULT. Set FirstValue
to the X coordinate;
SecondValue to the Y
coordinate. When
M_DEFAULT is specified, the
coordinate(s) [0, 0] of the
target image's top-left pixel
are used.

M_BOX_SIZE The width and height of the
measurement box.

Numerical values valid
within the target image or
M_DEFAULT. Set FirstValue
to the width and
SecondValue to the height.
When M_DEFAULT is
specified, the target image's
width and/or height is used.

CharacteristicToSet Description Values

412 MmeasSetMarker

M_CONTRAST Typical grayscale difference
between an edge and its
background. For a stripe marker
the values should be the typical
grayscale difference for each of
its edges.

Set FirstValue to a
numerical value between 0
and the maximum value of
the buffer (that is, 255 for an
8-bit buffer and 65535 for a
16-bit buffer) or to M_ANY
(default).
Set SecondValue to M_NULL
for an edge marker or, for the
second edge of a stripe
marker, to the appropriate
value, M_SAME (to specify
that the two edges of the
stripe have approximately
the same contrast), or M_ANY.

M_CONTRAST_VARIATION Used with M_CONTRAST, this
parameter specifies the contrast
variation of an edge marker. For
a stripe marker, this value
should be the average of the
contrast variation for each of its
edges.

Set FirstValue to a
numerical value between 0
and the maximum value of
the buffer (that is, 255 for an
8-bit buffer and 65535 for a
16-bit buffer) or to M_ANY
(default). Set SecondValue
to M_NULL.

M_EDGE_STRENGTH The maximum/minimum edge
value along the width of the
edge. The sign of the edge value
represents the polarity of the
edge. For example, in an 8-bit
image buffer, the maximum pixel
value is 255. Therefore, a 50%
edge strength in this buffer
represents a maximum
difference in average adjacent
profile values of 128 and a rising
edge.

Set FirstValue to a value
between 0 and 100. This
value is represented as a
normalized percentage of the
maximum pixel value
possible for the specific image
buffer. Set to M_ANY (default)
to select the strongest edge
value encountered in the
search. Set SecondValue for
second edge of a stripe or to
M_NULL.

M_EDGE_STRENGTH_VARIATION

Used with M_EDGE_STRENGTH,
this parameter specifies
the tolerance of the maximum
(+/-) edge value of the edge
marker. For a stripe marker, the
edge strength variation applies
to both edges.

Set FirstValue to a value
between 0 and 100. This
represents a normalized
percentage of the image
buffer’s maximum possible
value (for example, with an
8-bit image buffer, 10% is an
edge strength variation of
25.5).
Default setting is M_ANY.
Set SecondValue to
M_NULL.

CharacteristicToSet Description Values

MmeasSetMarker 413

M_EDGE_THRESHOLD The edge value threshold
beneath which a grayscale
variation is not considered an
edge.

Set FirstValue to a value
between 0.0 and 100.0 or
M_DEFAULT (2.0).
The value represents a
percentage of the maximum
grayscale value permissible
in the target image buffer.*

* For example, with a value of 2.0, a grayscale variation is
considered an edge only if it is greater than 2% of the maximum
value of the buffer multiplied by the box size.

To consider all grayscale variation as edges, irrespective of their
values, set FirstValue to 0.0. However, due to the increased
number of edges, MmeasFindMarker() will execute relatively
slowly.

M_MARKER_REFERENCE The X and Y-offsets of the
marker’s reference position
relative to the marker’s center.

Numerical values valid
within the target image or
M_DEFAULT. Set FirstValue
to the X offset and
SecondValue to the
Y offset. M_DEFAULT
corresponds to the marker
center (that is, X-offset = 0
and Y-offset = 0).

M_NUMBER_MIN The minimum number of edges
or stripes to locate in the
measurement box.

Set FirstValue to the
minimum number of edges or
stripes. Set the
SecondValue to M_NULL.
Default is M_NUMBER.

M_ORIENTATION The orientation of an edge or
stripe marker.

Set FirstValue to:
M_VERTICAL (default) if the
marker has a vertical
orientation.
M_HORIZONTAL if the marker
has a horizontal orientation.
M_ANY if the marker
orientation is not known.
Set SecondValue to
M_NULL.

M_POSITION_VARIATION The tolerance of position
variation.

Set FirstValue to a
numerical value valid within
the target image or M_ANY
(default). Set SecondValue
to M_NULL.

CharacteristicToSet Description Values

414 MmeasSetMarker

M_POLARITY The polarity specifies whether
an edge is a rising edge (increase
in grayscale value) or a falling
edge (decrease in grayscale
value).

When setting this parameter
for an edge marker, set
FirstValue to the polarity
and SecondValue to
M_NULL.

When setting this parameter
for a stripe marker, set
FirstValue to the polarity of
the stripe marker’s first (from
top-left) edge and set
SecondValue to the polarity
of its second edge.
M_POSITIVE: rising edge.
M_NEGATIVE: falling edge.
M_ANY: not a criteria (default
for edges and first stripe
edge).
M_OPPOSITE: the specified
edge of a stripe marker has
an opposite polarity to the
other edge. (default for
second stripe edge)
M_SAME: the specified edge of
a stripe marker has the same
polarity as the other edge.

M_SPACING VARIATION Inter-edge or inter-stripe spacing
tolerance.

Set FirstValue to the
variation in pixels, or M_ANY
to ignore variations (default).
Set the SecondValue to
M_NULL.

For weighting purposes only:

M_WEIGHT_FACTOR
+M_EDGE_STRENGTH
 or
M_WEIGHT_FACTOR
+M_CONTRAST
 or
M_WEIGHT_FACTOR
+M_POSITION
 or
M_WEIGHT_FACTOR
+M_WIDTH
or
M_WEIGHT_FACTOR
+M_SPACING
or
M_WEIGHT_FACTOR
+M_EDGE_INSIDE

Add a specific weight to the
specified characteristic.

The value assigned to each
characteristic represents the
percentage of weight assigned
to that characteristics. The
sum of values of the
M_WEIGHT_FACTOR+M...
characteristics must be 100.
Default assigns 50% to
M_EDGE_STRENGTH and 50%
to all other characteristics.

CharacteristicToSet Description Values

MmeasSetMarker 415

For stripe markers only:

M_POSITION_INSIDE_STRIPE

The location of the given position
(M_POSITION) relative to the
stripe. If the position is defined
as being within the stripe, the
search alorithm proceed
outwards in both directions from
that point. If defined as outside,
no stripe including the position
is considered.

Set FirstValue to:
M_YES if the position
is inside the stripe.
M_NO if the position is
outside the stripe.
M_ANY if the position can
be either inside or outside the
stripe.
Set SecondValue to
M_NULL.

M_EDGE_FIRST Used to set values for the first
exterior edge of a stripe for the
specified characteristic. For
example,
M_EDGE_FIRST+M_ANGLE.

Set to the required values for
the chosen characteristic.

M_EDGE_INSIDE Typical number of edges
occurring inside a stripe marker.

Set FirstValue to a
numerical value or to M_ANY.
Set SecondValue to
M_NULL.

M_EDGE_INSIDE_VARIATION

The maximum variation
(tolerance) in the number of
inside edges of a stripe.

Set FirstValue to a
numerical value or to M_ANY.
Set SecondValue to
M_NULL.

M_EDGE_SECOND Used to set values for the second
exterior edge of a stripe for the
specified characteristic. For
example,
M_EDGE_FIRST+M_ANGLE.

Set to the required values for
the chosen characteristic.

M_WIDTH Typical width of a stripe marker,
in pixels (the distance between
the marker’s edges).

Set FirstValue to a
numerical value valid within
the target image or M_ANY
(default). M_SAME applies the
average width of all located
stripes. Set SecondValue to
M_NULL.

M_WIDTH_VARIATION Used with M_WIDTH, this
characteristic specifies the
maximum variation (tolerance)
of a stripe’s width.

Set FirstValue to a
numerical value valid within
the target image or M_ANY
(default). Set SecondValue
to M_NULL.

CharacteristicToSet Description Values

416 MmeasSetMarker

Examples mcalib.c, mmeas.c, mmeasmul.c

See also MmeasAllocMarker(), MmeasFindMarker(), MmeasGetResult()

For weighting purposes only:

M_WEIGHT_FACTOR
+M_WIDTH
or
M_WEIGHT_FACTOR
+M_EDGE_INSIDE

Add a specific weight to the
specified characteristic.

The value assigned to each
characteristic represents the
percentage of weight assigned
to that characteristic. The
sum of values of the
M_WEIGHT_FACTOR+M...
characteristics must be 100.
Default assigns 50% to
M_EDGE_STRENGTH and 50%
to all other characteristics.

CharacteristicToSet Description Values

MocrAllocFont 417

MocrAllocFont

Synopsis Allocate an OCR font buffer.

Format MIL_ID MocrAllocFont(SystemId, FontType, CharNumber,
 CharBoxSizeX, CharBoxSizeY,
 CharOffsetX, CharOffsetY, CharSizeX,
 CharSizeY, CharThickness,
 StringLength, InitFlag, FontIdPtr)

Description This function allocates a new, empty font that can be used to create a custom
font. After allocation the font buffer must have its grayscale character
representations initialized using the MocrImportFont() or
MocrCopyFont() functions. If the default processing controls and
character constraints associated with the newly created font are not
satisfactory, they can be changed using MocrControl() and
MocrSetConstraint().

MIL_ID SystemId; System identifier
long FontType; Font type
long CharNumber; Number of characters in font
long CharBoxSizeX; Width of a character’s box
long CharBoxSizeY; Height of a character’s box
long CharOffsetX; X offset of a character in its box
long CharOffsetY; Y offset of a character in its box
long CharSizeX; Width of a character
long CharSizeY; Height of a character
long CharThickness; Thickness of a character
long StringLength; Length of string to read/verify
long InitFlag; Initialization flag
MIL_ID *FontIdPtr; Storage location for font identifier

418 MocrAllocFont

The main defaults for a newly created font are:

■ All font characters can appear at any position in the string.

■ No checksum is activated.

■ Target character size (X and Y) is set to the font character size.

■ Target character spacing is equal to the target character
size X.

Refer to MocrControl() for other default values.

Note that for FontTypes M_SEMI_M12_92 and M_SEMI_M13_88, the
character constraints have been set according to the SEMI font standards
and a checksum calculation is activated. The target character size and
spacing are the same as above.

When a font is no longer required, it should be freed with MocrFree().

The SystemId parameter specifies the system on which to allocate the font
buffer. This parameter must be given a valid system identifier.
Alternatively, the parameter can be set to M_DEFAULT to have MIL
automatically select the most appropriate system on which to allocate the
buffer (either on the default Host system or on another system already
allocated). If this parameter is set to M_DEFAULT_HOST, the default Host
system of the current MIL application will be chosen for the allocation.

The FontType parameter specifies the type of font being defined. Possible
values for this parameter are:

M_DEFAULT A general user-defined font.
M_SEMI_M12_92 A font respecting the SEMI M12-92 standard.
M_SEMI_M13_88 A font respecting the SEMI M13-88 standard.

MocrAllocFont 419

The CharNumber parameter determines how many characters can be
stored in the font.

The CharBoxSizeX and CharBoxSizeY parameters specify the font
character’s box width and height.

The CharOffsetX and CharOffsetY parameters specify the X and Y offsets
of a character in its character box.

The CharSizeX and CharSizeY parameters specify the font character
width and height.

The CharThickness parameter specifies the maximum thickness (stroke
width) of the font character.

The StringLength parameter specifies the maximum length of the string
that will be read/verified using the newly allocated font.

The InitFlag parameter is an initialization flag and should be set to either:

The FontIdPtr parameter specifies the address of the variable to which the
font buffer identifier is to be written. If allocation fails, M_NULL is written
as the identifier. Since the MocrAllocFont() function also returns the
buffer identifier, you can set this parameter to M_NULL.

Return value This function returns the new font identifier. If allocation fails, M_NULL is
returned as the identifier.

See also MocrCopyFont(), MocrImportFont(), MocrFree(), MocrControl(),
MocrSetConstraint()

M_FOREGROUND_WHITE The characters to read/verify are brighter
than the background.

M_FOREGROUND_BLACK The characters to read/verify are darker
than the background.

420 MocrAllocResult

MocrAllocResult

Synopsis Allocate an OCR result buffer.

Format MIL_ID MocrAllocResult(SystemId, InitFlag, OcrResultIdPtr)

Description This function allocates a result buffer and returns an identifier to it for use
with other OCR functions. When the result buffer is no longer required, you
should release it using the MocrFree() function.

The SystemId parameter specifies the system on which to allocate the OCR
result buffer. This parameter must be given a valid system identifier.
Alternatively, the parameter can be set to M_DEFAULT to have MIL
automatically select the most appropriate system on which to allocate the
buffer (either on the default Host system or on another system already
allocated). If this parameter is set to M_DEFAULT_HOST, the default Host
system of the current MIL application will be chosen for the allocation.

The InitFlag parameter is an initialization flag and should be set to
M_DEFAULT.

The OcrResultIdPtr parameter specifies the address of the variable to
which the OCR result buffer identifier is to be written. If allocation fails,
M_NULL is returned as the identifier. Since the MocrAllocResult()
function also returns the OCR result buffer identifier, you can set this
parameter to M_NULL.

Return value This function returns the OCR result buffer identifier. If allocation fails,
M_NULL is returned as the identifier.

See also MocrFree(), MocrGetResult()

MIL_ID SystemId; System identifier
long InitFlag; Initialization flag
MIL_ID *OcrResultIdPtr; Storage location for OCR result buffer

identifier

MocrCalibrateFont 421

MocrCalibrateFont

Synopsis Calibrate font character size to match a sample image.

Format void MocrCalibrateFont(ImageBufId, FontId, String,
TargetCharSizeXMin, TargetCharSizeXMax,
TargetCharSizeXStep, TargetCharSizeYMin,
TargetCharSizeYMax, TargetCharSizeYStep, Operation)

Description This function automatically calibrates the X and Y size and spacing of the
font characters to match that of the string in the sample calibration image.
The sample image must contain the string specified in the String
parameter, and its size and spacing must be representative of the images
to be read or verified with the calibrated font. The cleaner the sample image,
the better the calibration results. If a string cannot be located in the image,
an error message will be issued.

MocrCalibrateFont() should be called with new fonts or when the
character size in the target images changes. This function, which can take
several seconds to execute, determines the size and spacing of the characters
in the target image.

Note that the target character size and spacing can be set manually by
calling MocrControl() with the M_TARGET_CHAR_SIZE_X,
M_TARGET_CHAR_SIZE_Y, and M_TARGET_CHAR_SPACING parameters.

The ImageBufId parameter specifies the buffer identifier of the sample
calibration image. The characters of the string in this sample image must
be of the same type and size as that in the images to be read/verified using
the calibrated font.

MIL_ID ImageBufId; Sample calibration image identifier
MIL_ID FontId; Font buffer identifier
char *String; Character string in sample image
double TargetCharSizeXMin; Minimum width of the target character
double TargetCharSizeXMax; Maximum width of the target character
double TargetCharSizeXStep; Width increment
double TargetCharSizeYMin; Minimum height of the target character
double TargetCharSizeYMax; Maximum height of the target character
double TargetCharSizeYStep; Height increment
long Operation; Operation flag

422 MocrCalibrateFont

The FontId parameter specifies the buffer identifier of the font to be
calibrated.

The String parameter specifies the character string present in the sample
calibration image. This string must be null-terminated.

The TargetCharSizeXMin, TargetCharSizeXMax,
TargetCharSizeYMin and TargetCharSizeYMax together determine
the range in which the character size may vary in the sample image. The
increments specified by TargetCharSizeXStep and
TargetCharSizeYStep specify the precision of the calibration.

Note that if the range is too wide or the step too low, the function may take
up to several minutes to execute. In general, a range of +/- 1 pixel with a
step of 0.125 pixel provides good results in a reasonable amount of time.

The Operation parameter specifies the operation to be performed. It should
be set to M_DEFAULT.

See also MocrControl(), MocrReadString(), MocrVerifyString()

MocrControl 423

MocrControl

Synopsis Set an OCR processing control.

Format void MocrControl(FontId, ControlType, ControlValue)

Description This function sets various OCR controls for the read/verify operation, such
as inter-character spacing, etc.

The FontId parameter specifies the identifier of the font with which to
associate the control settings.

The ControlType and ControlValue parameters together specify the type
and value of control to set.

MIL_ID FontId; Font buffer identifier
long ControlType; Type of control to set
double ControlValue; Value of control parameter

ControlType Description ControlValue
M_STRING_ACCEPTANCE Minimum acceptance score

for successful
read/verification of string
(default is 1 %).

0 - 100%

M_CHAR_ACCEPTANCE Minimum acceptance score
for successful
read/verification of an
individual character (default
is 1 %).

0 - 100%

M_CHAR_INVALID Symbol for unrecognized
characters (set to M_NULL
when no special character is
desired). Default is M_NULL.

0 - 255

M_STRING_LENGTH Specifies the string length to
read. Must be less than the
string length passed at the
allocation time.

M_TARGET_CHAR_SPACING Specifies inter-character
spacing (also set by
calibration with
MocrCalibrateFont()).

> 1

M_TARGET_CHAR_SIZE_X Specifies target character
X size (also set by
calibration with
MocrCalibrateFont()).

> 1

424 MocrControl

See also MocrSetConstraint()

M_TARGET_CHAR_SIZE_Y Specifies target character Y
size (also set by calibration
with
MocrCalibrateFont()).

> 1

M_CHAR_ERASE Specifies the character
to erase from the font.

Any character
present in the
font.

M_SKIP_CONTRAST_ENHANCE Skip contrast enhancement
step
(default is M_DISABLE).

M_ENABLE or
M_DISABLE

M_SKIP_STRING_LOCATION Skip string location step
(default is M_DISABLE).

M_ENABLE or
M_DISABLE

M_SPEED Specifies the
robustness/speed factor
(default is M_MEDIUM).

M_VERY_HIGH:
-very fast but
least reliable
M_HIGH:
-fast for good
images
M_MEDIUM:
-default setting
M_LOW:
-reliable for noisy
images
M_VERY_LOW:
-most reliable but
slow

ControlType Description ControlValue

MocrCopyFont 425

MocrCopyFont

Synopsis Copy a font character to or from an image buffer.

Format void MocrCopyFont(ImageBufId, FontId, Operation,
 CharListString)

Description This function copies a grayscale representation of one, or many, font
characters to/from the specified image buffer. It can be used to initialize a
font, to change a font, or to obtain a visual representation of the font’s
characters.

The ImageBufId parameter specifies the identifier of the image buffer
to/from which characters are copied. If the image buffer is being copied to
the font, the font must be large enough to hold the representations of all the
specified characters. You can use MocrInquire() to determine the number
of characters in the font and the size of each character.

The FontId parameter specifies the identifier of the font to/from which the
characters are copied.

The Operation parameter specifies the direction of the copy operation. It
can take one of the following values:

If M_ALL_CHAR is added to M_COPY_TO_FONT or to M_COPY_FROM_FONT,
the CharListString parameter is ignored (it should be set to M_NULL) and
all font characters are copied to/from the image buffer, stacked from left to
right and from top to bottom.

MIL_ID ImageBufId; Image buffer identifier
MIL_ID FontId; Font buffer identifier
long Operation; Operation flag
char *CharListString; String containing the list of characters to copy

M_COPY_TO_FONT Copy character(s) from an image buffer to a font
buffer.

M_COPY_FROM_FONT Copy character(s) from a font buffer to an image
buffer.

426 MocrCopyFont

The CharListString parameter specifies a string containing the list of
characters to be copied. This string must be null-terminated.

If M_COPY_TO_FONT is specified and a character exists in both the list and
the font, the font character grayscale representation will be overwritten
with the data of the character from the list. New characters will be added
to the font provided that there are sufficient free entries. Note that it is
crucial that the character representation respects the foreground value as
set in MocrAllocFont(). If the foreground value of the font does not match,
the font will be unusable.

If M_COPY_FROM_FONT is specified, CharListString must point to the list
of characters to be copied from the font. The grayscale representation of font
characters specified in this list will be copied to the specified image buffer.

The CharListString parameter must be set to M_NULL if M_ALL_CHAR is
added to the Operation parameter.

See also MocrAllocFont(), MocrSaveFont(), MocrInquire(), MocrImportFont(),
MocrModifyFont()

MocrFree 427

MocrFree

Synopsis Free an OCR font or result buffer.

Format void MocrFree(FontOrResultId)

Description This function deletes the specified OCR font or result buffer identifier, and
releases any memory associated with it.

The FontOrResultId parameter specifies the identifier of the OCR font or
result buffer to free. The buffer must have been successfully allocated with
MocrAllocFont() or MocrAllocResult() prior to calling this function.

See also MocrAllocFont(), MocrAllocResult()

MIL_ID FontOrResultId; OCR font or result buffer identifier

428 MocrGetResult

MocrGetResult

Synopsis Read results from an OCR result buffer.

Format void MocrGetResult(OcrResultId, ResultToGet, ResultPtr)

Description This function reads the specified results of a read or verify operation from
an OCR result buffer.

The OcrResultId parameter specifies the identifier of the OCR result
buffer to be read. This buffer typically contains results obtained by
MocrReadString() or MocrVerifyString().

The ResultToGet parameter specifies the type of result to read from the
result buffer. It can be set to one of the following values:

MIL_ID OcrResultId; OCR result buffer identifier
long ResultToGet; Result type
void *ResultPtr; Storage location for OCR result buffer

M_STRING_VALID_FLAG Description
Read the flag that denotes the validity of the
entire string. This flag is set depending on the
user-specified acceptance score. To set the
acceptance score value above which a string
will be considered valid, call MocrControl()
with the M_STRING_ACCEPTANCE parameter.
By default, all strings with a score greater or
equal to 1 are valid.
Returned values
M_TRUE or M_FALSE

ResultPtr Type
Pointer to a double

MocrGetResult 429

M_STRING Description
Read the null-terminated string found during
the read/verify operation. By default, any
unrecognized character in the string will be
replaced by its most-likely value, even if the
confidence score for that value is lower than the
user-specified character acceptance threshold
(M_CHAR_ACCEPTANCE). If desired, the user
can replace all unrecognized characters in the
string with an invalid character marker by
setting M_CHAR_INVALID to the appropriate
value using MocrControl().
Returned Values
Null-terminated string of characters.
ResultPtr Type
Pointer to an array of char.

M_STRING_SCORE Description
Read the confidence score for the entire string
calculated during the read/verify operation.
Returned Values
Returned values range numerically from 0 to
100%. The string score will probably never
exactly reach 100%, and you should experiment
to determine the range of scores corresponding
to the desired level of confidence.
ResultPtr Type
Pointer to a double.

M_CHAR_VALID_FLAG Description
Read an array of flags listing the validity of
individual string characters. Each flag is set
depending on the user-specified acceptance
score. To set the acceptance score value above
which a character will be considered valid, call
MocrControl() with the
M_CHAR_ACCEPTANCE parameter. By default,
all characters with a score greater or equal to 1
are valid.
Returned Values
M_TRUE or M_FALSE.
ResultPtr Type
Pointer to an array of double.

430 MocrGetResult

To change the type of a returned value, the user can append one of the
following suffixes to the ResultToGet value:

As an example: M_CHAR_POSITION_X is normally returned as an array of
type double, but if you set ResultToGet to M_CHAR_POSITION_X +
M_TYPE_LONG, the X coordinates of all string characters will be written to
the array pointed to by ResultPtr as long values.

M_CHAR_SCORE Description
Read an array of confidence scores for each
individual string character.
Returned Values
Returned values range from 0% to 100%. The
string score will probably never exactly reach
100%, and you should experiment to determine
the range of scores corresponding to the desired
level of confidence.
ResultPtr Type
Pointer to an array of double.

M_CHAR_POSITION_X Description
Read an array containing the X positions of
each individual character.
Returned Values
0 to X size of image.
ResultPtr Type
Pointer to an array of double.

M_CHAR_POSITION_Y Description
Read an array containing the Y positions of
each individual character.
Returned Values
0 to Y size of image.
ResultPtr Type
Pointer to an array of double.

M_TYPE_CHAR Returns data cast to char.
M_TYPE_SHORT Returns data cast to short.
M_TYPE_LONG Returns data cast to long.
M_TYPE_FLOAT Returns data cast to float.
M_TYPE_DOUBLE Returns data cast to double.

MocrGetResult 431

The ResultPtr parameter specifies the address of the location to which the
results will be written. The type and size of the variable or array pointed to
by ResultPtr must match the default result pointer type and size specified
in the table above (unless the default has been overridden). If the variable
is an array, its size must be equal to the number of characters read or
verified, except for the M_STRING parameter which must have one extra
entry since the string is null-terminated.

See also MocrReadString(), MocrVerifyString(), MocrInquire(), MocrControl()

432 MocrHookFunction

MocrHookFunction

Synopsis Hook a function to an event.

Format MOCRHOOKFCTPTR MocrHookFunction(FontId, HookType,
 HookHandlerPtr,
 UserDataPtr)

Description This function allows you to attach or detach a user defined function to an
event when the specified font is used. A type of event to which a user defined
function can be hooked is the string validation during a read or verify
operation. When this type of event is hooked, the MocrReadString() or
MocrVerifyString() function will call the hooked function one or many
times during the operation to validate the string that was read before
writing it in the OCR result buffer. This function allows you to impose global
string constraints and can be used to implement custom checksum functions
or to reject strings that would have otherwise met the character constraints
imposed.

The FontId parameter specifies the identifier of the font.

The HookType parameter specifies the event type. This parameter can be
set to:

The HookHandlerPtr parameter specifies the address of the function that
should be called when an event occurs.

The value returned by the hook function must be a long containing the string
validity status: either M_TRUE or M_FALSE. Note that
MOCRHOOKFCTPTR, MFTYPE, and MPTYPE are reserved MIL
predefine types for function and data pointers.

MIL_ID FontId; Font identifier
long HookType; Type of event to hook
MOCRHOOKFCTPT HookHandlerPtr; Address of function to call when

an event occurs
void *UserDataPtr; User data pointer or M_NULL

M_STRING_VALIDATION Specifies to hook a function that will be called
to validate the read strings.

MocrHookFunction 433

The hook handler function, pointed to by HookHandlerPtr, must be
declared as follows:

The UserDataPtr parameter specifies a pointer to a user defined data
structure. This pointer will be passed to the hook handler function when
the event occurs. If not used, this parameter should be set to M_NULL.

Return value A pointer to the previously hooked function of the same hook type is
returned. M_NULL is returned if no previous function was hooked. This
allows you to chain hook functions and to restore the old hook functions
when unhooking.

See also MocrModifyFont(), MocrSetConstraint()

long MFTYPE HookHandler(HookType, StringPtr, UserDataPtr);
long HookType; Type of event hooked
void MPTYPE *StringPtr; Pointer to string to validate
void MPTYPE *UserDataPtr; User data pointer passed to

MocrHookFunction()

434 MocrImportFont

MocrImportFont

Synopsis Import font data from file on disk.

Format void MocrImportFont(FileName, FileFormat, Operation,
 CharListString, FontId)

Description This function imports font character representations from a file to initialize
or overwrite an existing font. This function’s main use is to initialize custom
fonts.

The FileName parameter specifies the name of the file from which to
retrieve the font character representation information.

The FileFormat parameter specifies how the data is stored in the file.
Possible formats are:

When either M_MIL or M_TIFF is selected as the file format, the characters
in the string specified by CharListString are read from the image file. The
font character data is read from this file assuming that the source image is
a grid of character representations matching the specified font size. The
character representations are read from left to right and top to bottom, and
the number of characters in the source image must equal the number of
characters in the list pointed to by CharListString.

char *FileName; Name of font data source file
long FileFormat; File format
long Operation; Operation type
char *CharListString; String containing list of characters
MIL_ID FontId; Font identifier

M_MIL MIL format image file.
M_TIFF TIFF format image file.
M_FONT_ASCII User-drawn ASCII file.

MocrImportFont 435

When M_FONT_ASCII is selected as FileFormat, font character data is to
be presented as follows:

For an example of a user-drawn ASCII file see the semi.txt file in the
\MIL\EXAMPLES directory.

The Operation parameter indicates the type of import operation to be
performed. It should be set to M_LOAD_CHARACTER.

The CharListString parameter specifies a null-terminated string giving
the list of characters to be read from the font file. The number of characters
in this list must match the number of character representations present in

File representation Comments
MIL_ASCII_FONT<CR> Specifies ASCII file format
<CR> Optional end-of-line(s)
CharValue 43<CR> Identifier of start of first character,

followed by a space, followed by the
value (generally ASCII) associated
with that character data

00
00
00
00
00
00
00

00
00
00
FF
00
00
00

00
00
00
FF
00
00
00

00
FF
FF
FF
FF
FF
00

00
00
00
FF
00
00
00

00
00
00
FF
00
00
00

00
00
00
00
00
00
00

<CR>
<CR>
<CR>
<CR>
<CR>
<CR>
<CR>

Data of character matching box size X
Data of character matching box size X
Data of character matching box size X
Data of character matching box size X
Data of character matching box size X
Data of character matching box size X
Data of character matching box size X

<CR> Optional end-of-line(s)
CharValue 44<CR> Identifier of start of next character,

followed by a space, followed by the
value (generally ASCII) associated
with that character data

etc.

436 MocrImportFont

the source image. For the M_FONT_ASCII FileFormat, this parameter is
ignored and must be set to M_NULL since the codes associated with each
character representation are already included in the file.

The FontId parameter specifies the font identifier to which character
representations will be written.

See also MocrAllocFont(), MocrCopyFont(), MocrRestoreFont(), MocrSaveFont()

MocrInquire 437

MocrInquire

Synopsis Inquire about font character information.

Format void MocrInquire(FontId, InquireType, UserVarPtr)

Description This function inquires about a specific item of an OCR’s font character
information.

The FontId parameter specifies the identifier of the font from which to read
information.

The InquireType parameter specifies the particular item of the font’s
character information to inquire about. It can be set to one of the following
values:

MIL_ID FontId Font identifier
long InquireType; Item to inquire about
void *UserVarPtr; Pointer to variable for returned value

InquireType Description
M_OWNER_SYSTEM The MIL identifier (MIL_ID) of the

system on which the font has been
allocated (MocrAllocFont()).

M_FONT_TYPE Font type (MocrAllocFont()).
M_CHAR_NUMBER The number of characters that can be

stored in the font (MocrAllocFont()).
M_CHAR_NUMBER_IN_FONT The number of characters that are

currently stored in the font.
M_CHAR_BOX_SIZE_X The font character box X size

(MocrAllocFont()).
M_CHAR_BOX_SIZE_Y The font character box Y size

(MocrAllocFont()).
M_CHAR_OFFSET_X The font character X offset

(MocrAllocFont()).
M_CHAR_OFFSET_Y The font character Y offset

(MocrAllocFont()).
M_CHAR_SIZE_X Font character X size

(MocrAllocFont()).
M_CHAR_SIZE_Y Font character Y size

(MocrAllocFont()).

438 MocrInquire

M_CHAR_THICKNESS The thickness of the font character
(MocrAllocFont()).

M_STRING_LENGTH The length of the string that the font is
trained to read/verify
(MocrAllocFont()).

M_STRING_LENGTH_MAX The maximum string length that will be
read/verified using the allocated font
(MocrAllocFont()).

M_FOREGROUND_VALUE The foreground value
(MocrAllocFont())

M_FONT_INITFLAG The initialization flag passed at font
allocation (MocrAllocFont() and
MocrModifyFont()).

M_STRING_ACCEPTANCE The minimum score for a read/verified
string to be considered valid
(MocrControl()).

M_CHAR_ACCEPTANCE The minimum score for a read/verified
character to be considered valid
(MocrControl()).

M_CHAR_INVALID The symbol used for unrecognized
characters. When no special character
has been defined by the user the
returned value is M_NULL
(MocrControl()).

M_TARGET_CHAR_SPACING Intercharacter spacing, which is the
distance between adjacent characters
(MocrCalibrateFont() and
MocrControl()).

M_TARGET_CHAR_SIZE_X The target image character X size
(MocrCalibrateFont() and
MocrControl()).

M_TARGET_CHAR_SIZE_Y The target image character Y size
(MocrCalibrateFont() and
MocrControl()).

M_SKIP_CONTRAST_ENHANCE The contrast enhancement flag
(MocrControl()).

M_SKIP_STRING_LOCATION The string location flag
(MocrControl()).

M_SPEED The robustness/speed factor.

InquireType Description

MocrInquire 439

The UserVarPtr parameter specifies the address in which results will be
written. This parameter should be a pointer to a double, except in the case
of the M_CONSTRAINT+n and M_CHAR_IN_FONT parameters, when it
should be a pointer to an array of characters. The type and size of the data
pointed to by UserVarPtr should match the default result pointer type and
size specified above (if not overridden). For the M_CONSTRAINT+n and
M_CHAR_IN_FONT parameters, UserVarPtr must point to an array of size
equal to the number of characters in the font plus one extra entry. This is
because the string is null-terminated.

It is possible to override the default UserVarPtr type by appending one of
the following to the InquireType parameter:

For example, setting InquireType equal to M_CHAR_SCALE_X
+M_TYPE_LONG will force the font character X size to be written to the
variable pointed by UserVarPtr as a long value.

See also MocrAllocFont(), MocrControl(), MocrSetConstraint(),
MocrCalibrateFont(), MocrModifyFont()

M_CHAR_IN_FONT The characters present in the font. A
null terminated array of character is
returned.

M_CONSTRAINT_TYPE+n The constraint character type for the
nth position (MocrSetConstraint()).

M_CONSTRAINT+n The constraint string for the nth
position in the string. A null terminated
array of characters is returned
(MocrSetConstraint()).

M_TYPE_CHAR Returns data cast to char.
M_TYPE_SHORT Returns data cast to short.
M_TYPE_LONG Returns data cast to long.
M_TYPE_FLOAT Returns data cast to float.
M_TYPE_DOUBLE Returns data cast to double.

InquireType Description

440 MocrModifyFont

MocrModifyFont

Synopsis Invert or resize a font to match the target image characters.

Format MIL_ID MocrModifyFont(FontId, Operation, ControlValue)

Description This function inverts or resizes an existing font. When inverting, this
function changes the foreground value (see MocrAllocFont()) to match
that of the target image characters. When rescaling, this function uses the
current target characters X and Y size and spacing control values. It is
typically called after MocrCalibrateFont() has determined these values
or when they have been set with MocrControl().

The user can employ MocrModifyFont() to save the time of resizing the
target image during each read/verify operation. In some cases it is faster to
resize the font once to match the size of the strings in the target images
rather than resizing each target image to match the font with each
read/verify operation.

Resizing with MocrModifyFont() can increase read/verify speed especially
when the character size in the target image is smaller than or very close to
the default font character size. If, however, the target image characters are
larger than the default font characters, the processing time might be
greater. This could occur if the actual resize time is less than the additional
processing time required by the larger font.

The FontId parameter specifies the buffer identifier of the font to invert or
scale.

The Operation parameter specifies the type of operation to perform. It can
be set to either M_INVERT or M_RESIZE.

The ControlValue parameter specifies the control value and should be set
to M_DEFAULT if Operation has been set to M_INVERT. If Operation has
been set to M_RESIZE, the ControlValue determines the mode of
interpolation and should be set to either: M_BILINEAR, M_BICUBIC, or
M_DEFAULT.

See also MocrAllocFont(), MocrCalibrateFont(), MocrControl()

MIL_ID FontId; Font identifier
long Operation; Operation
long ControlValue; Control value

MocrReadString 441

MocrReadString

Synopsis Read an unknown string from an image.

Format void MocrReadString(ImageBufId, FontId, OcrResultId)

Description This function reads an unknown string from the specified image using the
specified font. All existing font controls and constraints (which can be set
with MocrControl() and MocrSetConstraint()) are taken into account,
and results are stored in the specified result buffer. Results can be read from
the result buffer by using the MocrGetResult() function.

This function assumes that the string to be read has the same length as
specified in the font, and that the target string characters have the same
type, size, and spacing as the characters in the sample image used for
calibration (see MocrCalibrateFont()).

The ImageBufId parameter specifies the buffer identifier of the image
which contains the string to be read.

The FontId parameter specifies the buffer identifier of the font to use to
read the string in the target image.

The OcrResultId parameter specifies the result buffer in which to place
results of the read operation.

See also MocrCalibrateFont(), MocrGetResult(), MocrSetConstraint(),
MocrControl(), MocrVerifyString()

MIL_ID ImageBufId; Image buffer identifier
MIL_ID FontId; Font buffer identifier
MIL_ID OcrResultId; OCR result buffer identifier

442 MocrRestoreFont

MocrRestoreFont

Synopsis Restore a font from disk.

Format MIL_ID MocrRestoreFont(FileName, Operation, SystemId,
 FontIdPtr)

Description This function restores an OCR font previously saved with MocrSaveFont()
from a file on disk, and returns a handle to it.

The FileName parameter specifies the font file name.

The Operation parameter specifies which font data to restore. It can be set
to one of the following values:

The SystemId parameter determines the system on which the buffer will
be allocated when an M_RESTORE or M_DEFAULT operation is specified.
This parameter must be given a valid system identifier. Alternatively,
SystemId can be set to M_DEFAULT to have MIL automatically select the
most appropriate system on which to allocate the buffer (this system might
be the default Host system or another already allocated system). This
parameter can also be set to M_DEFAULT_HOST, in which case the default
Host system of the current MIL application will be selected for the
allocation.

char *FileName; Font file name
long Operation; Operation flag
MIL_ID SystemId; System identifier
MIL_ID *FontIdPtr; Storage location for font identifier

M_RESTORE Allocates a new font using the SystemId
specified, and restores all of the font’s character,
control, and constraint data. The new font ID is
written to the variable specified by the
FontIdPtr parameter.

M_LOAD_CONTROL Loads only font control data into the specified
font. The font ID is read from the variable
specified by the FontIdPtr parameter.

M_LOAD_CONSTRAINT Loads only font constraint data into the
specified font. The font ID is read from the
variable specified by the FontIdPtr parameter.

M_DEFAULT Same as M_RESTORE.

MocrRestoreFont 443

The FontIdPtr parameter specifies the address of the variable to/from
which the font buffer identifier is to be written/read.

After performing an M_RESTORE operation, the function returns the font
identifier and writes it in the variable pointed to by FontIdPtr. Since
MocrRestoreFont() also returns the font identifier, this parameter can be
set to M_NULL. If the restore operation fails, M_NULL is returned as the
identifier.

When performing an M_LOAD_CONTROL or an M_LOAD_CONSTRAINT
operation, the function reads the target font identifier from the variable
pointed to by FontIdPtr. It then loads the specified data into the existing
font buffer.

Return value This function returns the buffer identifier of the existing or newly allocated
font. If allocation fails, M_NULL is returned as the identifier.

See also MocrImportFont(), MocrSaveFont(), MocrCopyFont()

444 MocrSaveFont

MocrSaveFont

Synopsis Save an existing font to disk.

Format void MocrSaveFont(FileName, Operation, FontId)

Description This function saves an existing font to disk using the MIL font file format.
The font’s control, constraint and/or character data can all be saved; which
data is saved depends on the value of the Operation parameter.

The FileName parameter specifies the file to which font data will be saved.
If the font file already exists, its entire contents will be overwritten.

The Operation parameter specifies which data to save to disk. The font
character data contains the grayscale representation of each character in
the font. The font control data includes such settings as target character
size and spacing. The font constraint data specifies which characters can
appear at given positions in the search string. The Operation parameter
can take one of the following values:

The FontId parameter specifies the buffer identifier of the font to be saved.

See also MocrAllocFont(), MocrRestoreFont(), MocrImportFont(), MocrCopyFont(),
MocrControl(), MocrSetConstraint()

char *FileName; Font file name
long Operation; Operation flag
MIL_ID FontId; Font identifier

M_SAVE Save all font data.
M_SAVE_CONSTRAINT Save only font character constraint data.
M_SAVE_CONTROL Save only font control data.
M_DEFAULT Same as M_SAVE.

MocrSetConstraint 445

MocrSetConstraint

Synopsis Set character position constraints.

Format void MocrSetConstraint(FontId, CharPos, CharPosType,
 CharValidString)

Description This function specifies the character value constraints to apply at each
position of the string in the target image, when using the specified font. It
specifies which characters can appear at given positions in the string to be
read, and associates these constraints with the font specified in the FontId
parameter. This function can be used to increase speed and reliability when
a string has a known format and obeys certain grammatical rules.

The FontId parameter specifies the buffer identifier of the font with which
to associate the constraints.

The CharPos parameter specifies the character position in the string for
which a constraint is being set. Valid values range from zero to the length
of the string minus 1.

The CharPosType parameter, in conjunction with the CharValidString
parameter, specifies the type of character which can appear at the specified
string position. It can be set to one of the following values:

MIL_ID FontId; Font identifier
long CharPos; Character position to set
long CharPosType; Grammatical constraint parameter
char *CharValidString; String containing list of valid characters

M_DEFAULT All characters present in the font accepted.
M_DIGIT Only characters "0...9" (ASCII codes 48 to

57) accepted.
M_LETTER Only characters "A...Z", "a...z" (ASCII codes

65 to 90 and 97 to 122) accepted.
M_LETTER+M_UPPERCASE Only characters "A...Z" (ASCII codes 65 to

90) accepted.
M_LETTER+M_LOWERCASE Only characters "a...z" (ASCII codes 97 to

122) accepted.

446 MocrSetConstraint

The CharValidString parameter is an optional, null-terminated string
which gives an explicit list of valid characters for the specified position. If
this parameter is set to M_NULL, all font characters matching the
CharPosType specification will be programmed into the font as valid. If
CharValidString is not set to M_NULL, all specified characters must match
the CharPosType parameter definition and must exist in the font.

See also MocrControl()

MocrVerifyString 447

MocrVerifyString

Synopsis Verify a known string in an image.

Format void MocrVerifyString(ImageBufId, FontId, String, OcrResultId)

Description This function verifies that a known string can be properly read using the
specified font. It can be used to quickly determine whether a known string
is present in the target image, and to evaluate its quality. This operation
can be performed more quickly with MocrVerifyString() than with
MocrReadString(). After verification, the specified result buffer contains
a Pass/Fail flag and a confidence score. The user can obtain results from the
result buffer with the MocrGetResult() function.

The ImageBufId parameter specifies the buffer identifier of the target
image containing the string to be verified.

The FontId parameter specifies the buffer identifier of the font to use to
verify the string in the target image.

The String parameter contains the character string to be verified.

The OcrResultId parameter identifies the OCR result buffer in which to
place the verification results.

See also MocrReadString(), MocrGetResult()

MIL_ID ImageBufId; Image buffer identifier
MIL_ID FontId; Font buffer identifier
char *String; Character string to be verified
MIL_ID OcrResultId; OCR result buffer identifier

448 MpatAllocAutoModel

MpatAllocAutoModel

Synopsis Automatically allocate unique pattern matching models of the specified
type, from a source image.

Format MIL_ID MpatAllocAutoModel(SystemId, SrcImageBufId, SizeX,
 SizeY, PosUncertaintyX,
 PosUncertaintyY, ModelType,
 Mode, ModelIdArrayPtr)

Description This function searches for the specified number of most-suitable unique
areas, of the specified dimensions, in the model’s source image. From each
area found, the function automatically allocates a model. If none are found,
no model is allocated and an error is reported. It can take several seconds
to find the best models (more for large or small images).

To be effective, the model’s target image should be a typical target image.
Therefore, MpatAllocAutoModel() is useful, for example, when you want
to perform whole image alignment, for which allocation of a unique model
is essential.

You can determine the offset of a model’s origin relative to its source image,
using the MpatInquire() function.

If the eventual model can appear at an angle, in most cases, it is better to
allocate an M_NORMALIZED + M_CIRCULAR_OVERSCAN type of model and
then use MpatSetAngle() to specify the angular range.

You can change a model's search parameters at any time, using the
appropriate MpatSet...() command. When the model(s) is no longer
required, you should release its memory, using MpatFree().

MIL_ID SystemId; System identifier
MIL_ID SrcImageBufId; Identifier of the source image from which to

extract the model
long SizeX; Model width
long SizeY; Model height
long PosUncertaintyX; Maximum X-axis displacement
long PosUncertaintyY; MaximumY-axis displacement
long ModelType; Model type
long Mode; Mode of operation
MIL_ID *ModelIdArrayPtr; Storage location for model identifier(s)

MpatAllocAutoModel 449

The SystemId parameter specifies the system on which to allocate the
models. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the models (the Host system or any already allocated system).

The SrcImageBufId parameter specifies the identifier of the image buffer
from which to extract the models. This image should be representative of
the target images.

The SizeX and SizeY parameters define the width and height of the
required models.

The PosUncertaintyX and PosUncertaintyY parameters specify the
maximum displacement (shift) expected between the reference position of
the models in the source image and their position when found in the target
images. This information is used to select models that are far enough from
the image borders to be present in the target images. Set PosUncertaintyX
and PosUncertaintyY to the expected maximum pixel displacement in the
vertical and horizontal direction, respectively. You can set either of these
parameters to M_DEFAULT if the models can be selected from anywhere in
the whole width and/or height of the image, respectively. The default search
region of each model is automatically set using the original position of the
model, plus or minus the specified positional uncertainty.

The ModelType parameter specifies the type of the model.

M_NORMALIZED A model used to search for the position, match
score, and angle (if angular search is enabled) of a
model occurrence in the specified image, using
MpatFindModel() and
MpatFindMultipleModel().

M_NORMALIZED+
M_ORIENTATION

A model that can be used to search for the
position, match score, and angle (if angular search
is enabled) of a model occurrence with
MpatFindModel(). Alternatively, the model can
be used to find the global orientation of the model
in a target image with MpatFindOrientation().
The model’s source image should be a typical
target image.

450 MpatAllocAutoModel

You can add the following setting to the above settings:

The Mode parameter controls the speed of the allocation process:

You can add the following setting to the Mode parameter:

The ModelIdArrayPtr parameter specifies the address of the array in
which the model identifiers are to be written. The identifier is required to
use a model with other pattern matching functions. Since
MpatAllocAutoModel() also returns the model identifier, you can set this
parameter to M_NULL when allocating a single model. If allocation fails,
M_NULL is written as the identifier.

Return value The returned value is the first model identifier. If allocation fails, M_NULL
is returned.

Status ■ This function currently supports only unsigned 8-bit grayscale images.

■ You can only define models that respect the following condition:

(maxvalue * SizeX * SizeY) < 216; where maxvalue is the maximum pixel
value (typically, 255) in the target image and the model. This restriction
is imposed to avoid overflows in the internal 32-bit accumulators.

■ This function is not optimized for orientation type models. After
allocation, you should check to make sure the model contains all
significant edges of the target image.

M_CIRCULAR_OVERSCAN Extracts the model, as well as circular
overscan data from the source image. The
overscan data is determined by rotating the
area from which to extract the model, about
its center. The overscan data of an
M_CIRCULAR_OVERSCAN type model is used
if you search for an occurrence of the model at
an angle.

M_FAST (M_DEFAULT) High-speed allocation of models.
M_BEST High-precision allocation of models.

M_MULTIPLE+n Allocates several models from the same
image. Set n to the number of models to
allocate.
For example, set Mode to
M_BEST+M_MULTIPLE+4 to find and allocate
the four most unique models available in your
image. Models can overlap within the image
by half the size of the model (in x and y).

MpatAllocAutoModel 451

Default
values

Models are associated with a set of default search parameters. For an
M_NORMALIZED model type, the model’s search parameters are set to the
following defaults:

See also MpatFree(), MpatInquire(), MpatSet...(), MpatFindModel(),
MpatFindOrientation()

Search region: The default search region of each model is
automatically set using the original position of the
model, plus or minus the specified positional
uncertainty.

Positional accuracy: M_MEDIUM (typically ± 0.10 pixels)
Search number: 1
Search speed: M_MEDIUM

Acceptance level: 70%
Certainty level: 80%
Search angle: 0o

452 MpatAllocModel

MpatAllocModel

 Synopsis Allocate a pattern matching model from a source image.

Format MIL_ID MpatAllocModel(SystemId, SrcImageBufId, OffX, OffY,
 SizeX, SizeY, ModelType, ModelIdPtr)

Description This function allocates a model, using data from the specified area of the
model’s source image.

You can change a model's search parameters at any time, using the
appropriate MpatSet...() command. When the model is no longer required,
you should release its memory, using MpatFree().

When you only need the orientation of a large object and your target image
is appropriate, it is fastest to use an M_ORIENTATION type model
(MpatFindOrientation()).

For an M_NORMALIZED type model (with or without overscan data), define
the angular range in which the model can appear using MpatSetAngle().
Angular search is fastest when performed with an
M_CIRCULAR_OVERSCAN model; however, M_CIRCULAR_OVERSCAN
should only be used when the region around the model is consistant. An
example is the image of an integrated circuit. An M_NORMALIZED type
model (without overscan data) is used usually for an image with an
inconsistent surrounding region, such as an image of loose nuts and bolts
lying on a metal sheet.

MIL_ID SystemId; System identifier
MIL_ID SrcImageBufId; Source image buffer
long OffX; X-coordinate of model origin in the source

image
long OffY; Y-coordinate of model origin in the source

image
long SizeX; Model width
long SizeY; Model height
long ModelType; Model type
MIL_ID *ModelIdPtr; Storage location for model identifier

MpatAllocModel 453

When preprocessing an M_NORMALIZED model (without overscan data) for
which an angular search range is specified, rotated versions of the model
are created assigning "don’t care" pixels to regions that do not have
corresponding data in the original model.

When preprocessing an M_CIRCULAR_OVERSCAN model for which an
angular search range has been specified, a set of models is extracted from
rotated versions of the M_CIRCULAR_OVERSCAN model, creating models
that would appear upright if the target image were rotated. For this type of
model, a larger region than the one defined is extracted from the model’s
source image so as to allow creation of models at different angles.

The SystemId parameter specifies the system on which to allocate the
model. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the model (the Host system or any already allocated system).

The SrcImageBufId parameter specifies the identifier of the image buffer
from which to extract the model (that is, the model’s source image).

The OffX and OffY parameters specify the coordinates of the model origin
in the source image (SrcImageBufId).

The SizeX and SizeY parameters specify the width and height of the model.

The specified model width (SizeX), height (SizeY), and position (OffX,
OffY) must be valid in the source image.

The ModelType parameter specifies the type of the model.

M_NORMALIZED A model used to search for the position, match
score, and angle (if angular search is enabled) of a
model occurrence in a target image, using
MpatFindModel() and
MpatFindMultipleModel().

454 MpatAllocModel

You can add the following setting to the above settings:

The ModelIdPtr parameter specifies the address of the variable in which
the model identifier is to be written. This identifier is required to use the
model with other pattern matching functions. Since MpatAllocModel()
also returns the model identifier, you can set this parameter to M_NULL.

Return value The returned value is the first model identifier. If allocation fails, M_NULL
is returned.

M_ORIENTATION A model used to search for the global orientation
of the model in a target image, using
MpatFindOrientation(). Note, an
M_ORIENTATION type model is created from the
contours of the specified area in the model’s
source image.
The model’s source image should be a typical
target image and the model should contain all
significant edges of the target image. The source
and target images should have a fairly uniform
background.

M_NORMALIZED+
M_ORIENTATION

Combining the types allows the model to be used
to search for the position, match score and angle
(if angular search is enabled) of a model
occurrence with MpatFindModel().
Alternatively, it allows the model to be used to
search the global orientation of the model in the
specified image with MpatFindOrientation().

M_CIRCULAR_OVERSCAN Extracts the model, as well as circular
overscan data from the source image. The
overscan data is determined by rotating the
area from which to extract the model, about
its center. The overscan data of an
M_CIRCULAR_OVERSCAN type model is used
if you search for an occurrence of the model at
an angle.
This type of model should only be used when
the region around the model is consistant.
The model must not be extracted from a
region too close to the edge of the model’s
source image. In addition, the
M_CIRCULAR_OVERSCAN model should be
complex enough so that if models are created
from it at the required angles, they are
representative of the pattern being sought.

MpatAllocModel 455

Status ■ This function currently supports only unsigned 8-bit grayscale images.

■ You can only define models that respect the following condition:

(maxvalue * SizeX * SizeY) < 216; where maxvalue is the maximum pixel
value (typically, 255) in the target image and the model. This restriction
is imposed to avoid overflows in the internal 32-bit accumulators.

Default
values

Models are associated with a set of default search parameters. For an
M_NORMALIZED model type, the model’s search parameters are set to the
following defaults:

Examples morien2.c, mpatrot.c, msearch.c

See also MpatFree(), MpatSet...(), MpatAllocAutoModel(), MpatFindModel(),
MpatFindOrientation()

Positional accuracy: M_MEDIUM (typically ± 0.10 pixels)
Positional uncertainty
(search region):

M_ALL (full image)

Search number: 1
Search speed: M_MEDIUM

Acceptance level: 70%
Certainty level: 80%
Search angle: Disabled
Center of model
(reference position):

An integer value equal to:
((SizeX - 1) / 2, (SizeY - 1) / 2)
(relative to the model origin).

456 MpatAllocResult

MpatAllocResult

 Synopsis Allocate a pattern matching result buffer.

Format MIL_ID MpatAllocResult(SystemId, NbEntries, PatResultIdPtr)

Description This function allocates a result buffer with the specified number of entries.
When the result buffer is no longer required, release its memory, using
MpatFree().

The SystemId parameter specifies the system on which the result buffer
will be allocated. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST, or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (the Host system or any already allocated system).

The NbEntries parameter specifies the number of result entries to allocate.
This value should be greater than or equal to the number of occurrences
being sought (specified with MpatSetNumber()). If NbEntries is set to
M_DEFAULT, the number of entries will be allocated dynamically to match
the number of actual occurrences found at runtime; used in conjunction with
an M_ALL search (MpatSetNumber()), this provides an efficient method
of allocating the correct size result buffer.

The PatResultIdPtr specifies the address of the variable in which the
pattern matching result buffer identifier is to be written. Since the
MpatAllocResult() function also returns the pattern matching result
buffer identifier, you can set this parameter to M_NULL. If allocation fails,
M_NULL is written as the identifier.

Return value The returned value is the pattern matching result buffer identifier. If
allocation fails, M_NULL is returned.

Examples morien1.c, morien2.c

See also MpatFree()

MIL_ID SystemId; System identifier
long NbEntries; Number of result buffer entries
MIL_ID *PatResultIdPtr; Storage location for pattern matching

result buffer identifier

MpatAllocRotatedModel 457

MpatAllocRotatedModel

 Synopsis Rotate a pattern matching model.

Format MIL_ID MpatAllocRotatedModel(SystemId, SrcModelId, Angle,
 InterpolationMode, ModelType,
 NewModelIdPtr)

Description This function allocates a new model and initializes it with the rotated
version of the specified source model.

This function has the same effect as creating an M_NORMALIZED model
(without M_CIRCULAR_OVERSCAN) for which a single angle is specified
(that is, delta minimum and maximum are set to 0).

Note that the allocated model size is usually greater than the size of its
source, due to the rectangular shape of the model and the nature of the
rotation operation. The additional pixel locations produced by the rotation,
which have no corresponding pixels in the source model, are set to “don't
care” values. The size (X and Y) of the new model can be inquired, using
MpatInquire().

Note that the settings of the source model are copied to the new model. You
can change any of the model's search parameters (using any appropriate
MpatSet...() function), except its angle (MpatSetAngle() function).

Once you have a rotated version of a model, if you no longer require the
original source model, it can be deleted with MpatFree().

The SystemId parameter specifies the system on which to allocate the
rotated model. This parameter must
be set to a valid system identifier, M_DEFAULT_HOST or M_DEFAULT. To use
the default Host system of the current MIL application, specify

MIL_ID SystemId; System identifier
MIL_ID SrcModelId; Source model identifier
double Angle; Angle of rotation
long InterpolationMode Interpolation mode used in rotation
long ModelType Type of model to rotate
MIL_ID *NewModelIdPtr; Storage location for new rotated

model identifier

458 MpatAllocRotatedModel

M_DEFAULT_HOST. If you specify M_DEFAULT, MIL will select the most
appropriate system on which to allocate the model (the Host system or any
already allocated system).

The SrcModelId parameter specifies the identifier of the source model. It
must be an M_NORMALIZED model without overscan data. A new rotated
model is generated from this model.

The Angle parameter specifies the angle at which to rotate the model in a

counter-clockwise direction. This parameter can be set to any value from 0o

to 360o.

The InterpolationMode parameter specifies the mode of interpolation.
This parameter can be set to one of the following:

The ModelType parameter specifies the type of the new model:

The NewModelIdPtr parameter specifies the address of the variable in
which to write the rotated model identifier. Since the
MpatAllocRotatedModel() function also returns the model identifier, you
can set this parameter to M_NULL.

Return value The returned value is the new model identifier. If the rotation fails, M_NULL
is returned.

M_NEAREST_NEIGHBOR Nearest neighbor interpolation.
M_BILINEAR Bilinear interpolation.
M_BICUBIC Bicubic interpolation.
M_DEFAULT Same as M_NEAREST_NEIGHBOR.

M_NORMALIZED A model used to search for the position and match
score of a model occurrence in a target image,
using MpatFindModel() and
MpatFindMultipleModel().

MpatAllocRotatedModel 459

Default
values

Models are associated with a set of default search parameters. For an
M_NORMALIZED model type, the model’s search parameters are set to the
following defaults:

See also MpatSetPosition(), MpatSetSearchParameter(), MpatFree(),
MpatInquire(), MpatFindModel()

Positional accuracy: M_MEDIUM (typically ± 0.10 pixels)
Positional uncertainty
(search region):

M_ALL (full image)

Search number: 1
Search speed: M_MEDIUM

Acceptance level: 70%
Certainty level: 80%
Search angle: 0o
Center of model
(reference position):

An integer value equal to ((SizeX - 1) / 2,
(SizeY - 1) / 2) (relative to the model origin).

460 MpatCopy

MpatCopy

 Synopsis Copy a pattern matching model to an image buffer.

Format void MpatCopy(ModelId, DestImageBufId, CopyMode)

This function copies the specified model to the specified destination image
buffer, starting at the top-left corner of the buffer. Once the model is copied
to the destination buffer, it can then be displayed (if the destination buffer
is displayable).
By making two calls to this function, one in which M_DEFAULT is used as
the copy mode and the other in which M_DONT_CARE is used, it is possible
to achieve the effect of overlaying the "don’t care" pixels onto the original
model.

The ModelId parameter specifies the identifier of the model that you want
copied to the image buffer.

The DestImageBufId parameter specifies the identifier of the destination
image buffer in which to place the model. You must ensure that the buffer
is at least as large as the model. Note that the function only supports
unsigned 8-bit grayscale images.

The CopyMode parameter specifies how the model will be copied.

MIL_ID ModelId; Model identifier
MIL_ID DestImageBufId; Destination image buffer identifier
long CopyMode; Copy mode to use

M_DEFAULT Copies the portion of the source image from which
the model was extracted to the destination buffer.
That is, the model as it was first defined before any
"don’t care" pixels where associated with it (see
MpatSetDontCare()). Overscan data is not copied.

M_DONT_CARE Copies only the "don’t care" pixels of the model to
the destination buffer. When copied, these pixels are
given the value zero. To give these pixels a value
other than zero, add the value to the M_DONT_CARE
copy mode. Note, by default when using the
M_DONT_CARE copy mode, any pixel value other
than the "don’t care" pixels in the destination image
buffer will not be overwritten.

M_DONT_CARE+
M_CLEAR_BACKGROUND

Pixels in the resulting destination buffer that are
not "don’t care" pixels are cleared to zero.

MpatCopy 461

Example The following example demonstrates how to copy "don’t care" pixels as value
255 and set the other pixels in the destination buffer to zero.

See also MpatSetDontCare()

MpatCopy(ModelId, ImageBufId, M_DONT_CARE +255 +M_CLEAR_BACKGROUND)

462 MpatFindModel

MpatFindModel

 Synopsis Find a pattern matching model in the target image buffer.

Format void MpatFindModel(ImageBufId, ModelId, PatResultId)

Description This function finds occurrences of the specified model in the given image
and returns the position of each occurrence. The search is performed using
the model’s current search parameters. Note, this function assumes that
the model has been preprocessed (MpatPreprocModel()).

This function assumes that the model was extracted from a source image
with the same scaling as the target image. In addition, if using a normalized
grayscale non-rotational model, it assumes that the source image and the
model’s target image are of the same orientation (with approx. 5° tolerance).
For angular search, use MpatSetAngle() to set the angular search range
of the model.

The model’s search parameters specify the maximum number of occurrences
for which to look in the target image (MpatSetNumber()).

If a correlation has a match score equal or above the certainty level
(MpatSetCertainty()), it is automatically considered an occurrence
(default 80%), the remaining occurrences will be the best of those above the
acceptance level (MpatSetAcceptance()).

Results are written to the specified result buffer. Use the MpatGet..()
functions to read the results. See MpatAllocResult() for more information
on allocating result buffers.

This function returns results in decreasing match-score order. This means
that the most-likely occurrence is always returned first.

Patterns that are very close to the edge of the image might be found with
lower match scores than usual due to edge effects. For this reason, you
should use MpatSetPosition(), rather than a child buffer, to restrict the
search to a portion of the image.

The ImageBufId parameter specifies the identifier of the target image.
Note that this function only supports unsigned 8-bit grayscale images.

MIL_ID ImageBufId; Image buffer identifier
MIL_ID ModelId; Model identifier
MIL_ID PatResultId; Pattern matching result buffer identifier

MpatFindModel 463

The ModelId parameter specifies the identifier of the model for which to
search in the specified target image buffer.

The PatResultId parameter specifies the identifier of the pattern matching
result buffer in which to store results.

Examples mpatrot.c, msearch.c, mshift.c

See also MpatFindMultipleModel(), MpatGetNumber(), MpatGetResult(),
MpatPreprocModel(),MpatSetAngle()

464 MpatFindMultipleModel

MpatFindMultipleModel

 Synopsis Find multiple pattern matching models in the target image buffer.

Format void MpatFindMultipleModel(ImageBufId, ModelIdArray,
 PatResultIdArray, NumModels, SearchMode)

Description This function finds occurrences of the specified models in the given image
and returns the position of each occurrence for each model or of the best
matches from the group of models. If you want to search for several models
in a given image region, a single call to this function is more efficient than
multiple calls to MpatFindModel(). This function assumes all models have
been preprocessed.

This function assumes that each model was extracted from an image with
the same scaling as the target image. In addition, if using a normalized
grayscale non-rotational model, it assumes that the model’s source image
and the target image are at the same orientation (with approximately 5°
tolerance). For angular search, use the MpatSetAngle() function to set the
angular search range of the model.

Results are written to the specified result buffers. This function returns
results in decreasing match-score order. This means that the most-likely
occurrence is always returned first. Use the MpatGet..() functions to read
the results. See MpatAllocResult() for more information on allocating
result buffers.

Patterns that are very close to the edge of the image might be found with
lower match scores than usual due to edge effects. For this reason, you
should use MpatSetPosition(), rather than a child buffer, to restrict the
search to a portion of the image. Note that all models must use the same
search region.

The ImageBufId parameter specifies the identifier of the target image
buffer. Note that this function only supports unsigned 8-bit grayscale
images.

MIL_ID ImageBufId; Image buffer identifier
MIL_ID *ModelIdArray; List of model identifiers
MIL_ID *PatResultIdArray; List of result buffer identifiers
long NumModels; Number of models in list
long SearchMode; Search mode

MpatFindMultipleModel 465

The ModelIdArray parameter specifies the address of the one-dimensional
array that contains the identifiers of the models for which to search in the
specified target image buffer. Note, all models must be of the same size and
must use the same search region in the target image.

The PatResultIdArray parameter specifies the address of the
one-dimensional array that contains the identifiers of the pattern matching
result buffers in which to store results.

The NumModels parameter specifies the number of models.

The SearchMode parameter specifies the search mode and can be set to
one of the following:

See also MpatFindModel(), MpatGetNumber(), MpatGetResult()

M_FIND_ALL_MODELS Searches for all the specified models in the target image
and writes the result of each model search in the
corresponding buffer. The search is performed using
each model’s current search parameters. Each model’s
search parameters also determine the maximum
number of occurrences for which to look in the target
image (MpatSetNumber()). If a correlation has a
match score above the model’s certainty level
(MpatSetCertainty()), it is automatically considered
an occurrence (default 80%), the remaining occurrences
will be the best of those above the acceptance level
(MpatSetAcceptance()). Note, the results for the
model in the ModelIdArray[n] are written in the
corresponding result buffer PatResultArray[n].
Therefore, you must specify the same number of result
buffers as the number of models.

M_FIND_BEST_MODELS Searches for the specified models in the target image
and writes the results which have the highest match
scores in a single result buffer (PatResultArray[0]).
Note, the number of different matches that are found
depends on MpatSetNumber(), MpatSetCertainty(),
and MpatSetAcceptance() of the first model in the
array. The certainty, speed, angle and all other search
parameters are also specified by the first model in the
array; the search parameter settings of the other
models are ignored. The model index of the model that
generated the best match scores can be read from the result
buffer using MpatGetResult(.., M_MODEL_INDEX,...).

466 MpatFindOrientation

MpatFindOrientation

 Synopsis Find the orientation of an image or of an object in an image.

Format void MpatFindOrientation(ImageBufId, ModelId,
 FindResultId, ResultRange)

Description This function finds the orientation (angle, not position) of a whole unsigned
8-bit grayscale image or of an M_ORIENTATION-type model acquired from
an unsigned 8-bit grayscale source image.

This method finds the orientation of a whole image, based on the dominant
edges and their angular displacement from the image frame. If the image
does not have dominant edges, its orientation is not well defined. In
addition, if the image’s background contains edges, the orientation of these
edges might be found instead.

To find a specific object’s orientation, a model must be provided. This model
should be a single large object on a smooth uniform background allocated
with an M_ORIENTATION model type, using MpatAllocModel(). This
function will then search for the general contours of the object in a target
image. You can request that multiple possible angles be returned to the
result buffer, using MpatSetNumber(). Make sure you don’t search for
more matches than will fit in the result buffer. If you search for all
occurrences (M_ALL) and the result buffer is too small,
MpatFindOrientation() will return an error indicating that the buffer has
overflowed.

Note, this function is designed for images with smooth edges, usually
obtained when grabbing an image with a camera. It will not work well on
an artificially-generated image unless the lines and edges are anti-aliased.
In particular, it will not work on a nearest-neighbor resampled image, such
as the result of MimRotate() with M_NEAREST_NEIGHBOR interpolation,
unless the image is heavily smoothed.

The ImageBufId parameter specifies the identifier of an unsigned 8-bit
grayscale target image buffer.

MIL_ID ImageBufId; Image buffer identifier
MIL_ID ModelId; Model identifier
MIL_ID FindResultId; The identifier of the result buffer
long ResultRange Range of possible result angles

MpatFindOrientation 467

The ModelId parameter specifies the identifier of the model for which to
search in the specified image buffer. The model must be of type
M_ORIENTATION. If no model is specified (M_NULL), whole-image
orientation is done, using the dominant edges of the image as the major axes.

The FindResultId parameter specifies the identifier of the result buffer in
which to store results. The number of matches found can be obtained, using
MpatGetNumber(). The match angles and scores can be obtained, using
MpatGetResult().

The ResultRange parameter specifies the range in which possible result
angles can occur.

In whole-image orientation searches, edges serve as the axes for orientation
purposes. The image can have uni-directional predominant edges (such as
parallel stripes); in this case the result range should be set to
M_RESULT_RANGE_180. Alternatively, the image can have bi-directional
edges (such as an electronic wafer) whereby the two dominant edges should

be perpendicular (90o). In this case, the result range can be set to
M_RESULT_RANGE_45 or M_RESULT_RANGE_90.

In model-orientation searches, a 360o result range is necessary to include
all the rotational possibilities of the model.

The ResultRange parameter can be set to one of the following:

Examples morien1.c, morien2.c

See also MpatGetNumber(), MpatGetResult(), MpatSetNumber()

ResultRange Description
For whole-image orientation:
M_RESULT_RANGE_45 Searches and returns a value between

-45° and 45°. Only available for images
with bi-directional edges.

M_RESULT_RANGE_90 Searches and returns a value between
0° and 90°. Only available for images
with bi-directional edges.

M_RESULT_RANGE_180 Searches and returns a value between
0°and 180°. Only available for images
with uni-directional edges.

For model orientation:
M_RESULT_RANGE_360 Searches and returns a value between

0° and 360°.

468 MpatFree

MpatFree

 Synopsis Free a pattern matching model or a result buffer.

Format void MpatFree(PatId)

Description This function deletes the specified pattern matching model or result buffer
identifier and releases any memory associated with it.

The PatId parameter specifies the identifier of the pattern matching model
or result buffer to free. These must have been successfully allocated (with
MpatAllocModel(), MpatAllocAutoModel(), or MpatAllocResult())
prior to calling this function.

MIL_ID PatId; Pattern matching model or result buffer identifier

MpatGetNumber 469

MpatGetNumber

 Synopsis Get the number of model occurrences in the target image.

Format long MpatGetNumber(PatResultId, CountPtr)

Description This function is used to determine the number of matches found after
searching for a model. It returns the number of occurrences of the model
that were found with match scores equal to or above the model’s acceptance
level to a maximum of MpatSetNumber(). This number is the number of
results that will be retrieved when you call MpatGetResult().

A call to MpatGetNumber() should be made prior to checking any results
with MpatGetResult(); in the case that no occurrences of the model were
found, there would be no need to check the results. Also, the returned
number will never be bigger than the number of entries allocated in the
result buffer.

The PatResultId parameter specifies the identifier of the pattern matching
result buffer that was used to store results obtained by MpatFindModel(),
MpatFindMultipleModel(), or MpatFindOrientation().

The CountPtr parameter specifies the address of the variable in which to
write the number of occurrences. Since the MpatGetNumber() function
also returns the requested information, you can set this parameter to
M_NULL.

Return value The returned value is the number of occurrences of the model that were
found at or above the acceptance level.

Examples mpatrot.c, msearch.c, mshift.c

See also MpatSetNumber()

MIL_ID PatResultId; Pattern matching result buffer identifier
long *CountPtr; Storage location for the count

470 MpatGetResult

MpatGetResult

 Synopsis Get the pattern matching result values.

Format void MpatGetResult(PatResultId, ResultType, UserArrayPtr)

Description This function writes the match score, position of each occurrence, or angle
of orientation stored in the specified result buffer, to the specified user array.

The PatResultId parameter specifies the identifier of the pattern matching
result buffer that was used to store results obtained by MpatFindModel(),
MpatFindMultipleModel(), or MpatFindOrientation().

The ResultType parameter specifies the type of result that you want
returned for each model occurrence. This parameter can be set to one of the
following values:

The UserArrayPtr parameter specifies the address of the one-dimensional
array in which to write the specified results. The array must be big enough
to hold the number of results indicated by MpatGetNumber(). Results are
returned in the user array as type "double".

Examples morien1.c, morien2.c, mpatrot.c, mshift.c

See also MpatFindModel(), MpatFindMultipleModel(), MpatGetNumber(),
MpatAllocResult()

MIL_ID PatResultId; Pattern matching result buffer identifier
long ResultType; Type of results
double *UserArrayPtr; Array for results

ResultType Description
M_SCORE The match score of the occurrences (as a percentage).
M_POSITION_X X-coordinate of the occurrences.
M_POSITION_Y Y-coordinate of the occurrences.
M_ANGLE The angle from an MpatFindModel() search with

angle.
M_MODEL_INDEX The index of the model, in the model identifier array, for

which the occurrence was found when using
MpatFindMultipleModel with
M_FIND_BEST_MODELS.

M_ORIENTATION The angle of orientation from MpatFindOrientation().

MpatInquire 471

MpatInquire

 Synopsis Inquire about the pattern matching model or the result buffer parameter
setting.

Format void MpatInquire(PatId, ParamToInquire, UserVarPtr)

Description This function returns information about the specified model or result buffer.
It is useful to determine, for example, the size of a model that has been
restored from disk and its position in the model’s source image.

The position (M_ORIGINAL_X and M_ORIGINAL_Y) can be directly compared
with search results (by MpatFindModel() or
MpatFindMultipleModel()) , to calculate the displacement of target
images relative to the model’s source image.

The PatId parameter specifies the identifier of the model or result buffer
for which to read the information.

The ParamToInquire parameter specifies the parameter about which to
inquire. For a model identifier, this parameter can be set to one of the
following values::

MIL_ID PatId; Pattern matching model identifier or result
buffer identifier

long ParamToInquire; Parameter to inquire
void *UserVarPtr; Storage location for inquired information

ParamToInquire Description
M_ACCEPTANCE_THRESHOLD Minimum acceptable match

score to be considered as an
occurrence of the model (set
using MpatSetAcceptance()).

M_ALLOC_OFFSET_X X-offset of model's top-left corner
relative to the top-left corner of
the model’s source image (set
using MpatAlloc...()).

M_ALLOC_OFFSET_Y Y-offset of model's top-left corner
relative to the top-left corner of
the model’s source image (set
using MpatAlloc...()).

M_ALLOC_SIZE_X Model width (set using
MpatAlloc...()).

472 MpatInquire

M_ALLOC_SIZE_Y Model height (set using
MpatAlloc...()).

M_ALLOC_TYPE Model type (set using
MpatAlloc...()).

M_CENTER_X X-offset of model’s reference
position relative to the top-left
corner of model (set using
MpatSetCenter()).

M_CENTER_Y Y-offset of model’s reference
position relative to the top-left
corner of model (set using
MpatSetCenter()).

M_CERTAINTY_THRESHOLD Match score at which an
occurrence is assumed, without
looking for better matches
elsewhere in the image (set
using MpatSetCertainty()).

M_COARSE_SEARCH_ACCEPTANCE Minimum acceptable match
score at all levels except the last
level, to be considered as an
occurrence of the model (set
using
MpatSetSearchParameter()).

M_EXTRA_CANDIDATES Number of extra candidates to
consider as possible candidates
(set using
MpatSetSearchParameter()).

M_FAST_FIND Whether forcing or preventing
fast peak finding is used
(set using
MpatSetSearchParameter()).

M_FIRST_LEVEL The resolution level for the
initial stage of the search
(set using
MpatSetSearchParameter()).

M_LAST_LEVEL The resolution level for the final
stage of the search
(set using
MpatSetSearchParameter()).

ParamToInquire Description

MpatInquire 473

M_MIN_SPACING_X The minimum spacing (in X)
between two models in order for
them to be considered distinct
(set using
MpatSetSearchParameter()).

M_MIN_SPACING_Y The minimum spacing (in Y)
between two models in order for
them to be considered distinct
(set using
MpatSetSearchParameter()).

M_MODEL_STEP Whether all or every second
model pixel is used in the
high-resolution stage of the
search.
(set using
MpatSetSearchParameter()).

M_NUMBER_OF_OCCURRENCES Number of model occurrences for
which to search in the target
image (set using
MpatSetNumber()).

M_ORIGINAL_X X-offset of the model’s reference
position relative to the top-left
corner of the model’s source
image (takes into account the
MpatSetCenter() setting).

M_ORIGINAL_Y Y-offset of the model’s reference
position relative to the top-left
corner of the model’s source
image (takes into account the
MpatSetCenter() setting).

M_OWNER_SYSTEM The system on which the model
is allocated.

M_POSITION_ACCURACY Search position accuracy (set
using MpatSetAccuracy()).

M_POSITION_START_X X-coordinate of search region
origin within target image (set
using MpatSetPosition()).

M_POSITION_START_Y Y-coordinate of search region
origin within target image (set
using MpatSetPosition()).

M_POSITION_UNCERTAINTY_X Search region width (set using
MpatSetPosition()).

ParamToInquire Description

474 MpatInquire

For a result buffer identifier, this parameter can be set to the following
value:

M_POSITION_UNCERTAINTY_Y Search region height (set using
MpatSetPosition()).

M_PREPROCESSED Whether or not the model is
preprocessed (0 = no).

M_SEARCH_ANGLE The value of the initial search
angle (set using
MpatSetAngle()).

M_SEARCH_ANGLE_ACCURACY The angular accuracy
(set using MpatSetAngle()).

M_SEARCH_ANGLE_DELTA_NEG The difference that determines
the lower limit of the search
angle’s range (set using
MpatSetAngle()).

M_SEARCH_ANGLE_DELTA_POS The difference that determines
the upper limit of the search
angle’s range (set using
MpatSetAngle()).

M_SEARCH_ANGLE_INTERPOLATION_MODE The interpolation mode.
M_SEARCH_ANGLE_MODE State of angular search mode

(set using MpatSetAngle()).
M_SEARCH_ANGLE_TOLERANCE The full range of degrees within

which the pattern in the target
image can be rotated from a model
at a specific angle and still meet the
acceptance level.
(set using MpatSetAngle()).

M_SPEED Model search speed (set using
MpatSetSpeed()).

M_NUMBER_OF_ENTRIES The number of entries allocated in the result
buffer.

M_TARGET_CACHING Whether the pyramidal representation of the
buffer is kept in the result buffer (set using
MpatSetSearchParameter()).

M_OWNER_SYSTEM The system on which the result buffer is
allocated.

ParamToInquire Description

MpatInquire 475

The UserVarPtr parameter specifies the address of the variable in which
to write the requested information. Results are returned in the user variable
as type "double". If you want results to be returned as type "long", combine
the specified result type with M_TYPE_LONG (for example,
M_ORIGINAL_X+M_TYPE_LONG).

476 MpatPreprocModel

MpatPreprocModel

 Synopsis Preprocess a pattern matching model.

Format void MpatPreprocModel(TypicalImageBufId, ModelId, Mode)

This function preprocesses the specified model. It trains the system to
search for the model in the most efficient manner (optionally within a
specified typical image). The procedure is potentially quite lengthy (up to
several seconds).

Call this function after all search parameters have been set. When you save,
the model’s preprocessing changes are stored with the model. Upon
restoration, the model need not be preprocessed.

Note that if some of the model’s search parameters are changed after a call
to MpatPreprocModel(), the model must be preprocessed again. To
inquire if your model is in a preprocessed state, use MpatInquire() with
M_PREPROCESSED.

The TypicalImageBufId parameter specifies the identifier of a typical
target image. The specified typical image will be used to refine and adapt
the model to search on this typical background. You should only specify an
image buffer if the model will always appear on such a background;
otherwise, set this parameter to M_NULL.

The ModelId parameter specifies the identifier of the model to preprocess.

The Mode parameter specifies the preprocessing mode. Set this parameter
to M_DEFAULT.

Examples mpatrot.c, msearch.c

MIL_ID TypicalImageBufId; Typical background image buffer identifier
(optional)

MIL_ID ModelId; Model identifier
long Mode; Preprocessing mode

MpatRead 477

MpatRead

Synopsis Read a pattern matching model from an open file.

Format MIL_ID MpatRead(SystemId, FileHandle, ModelIdPtr)

Description This function reads a model (previously saved with MpatWrite() or
MpatSave()) from an open file and returns an identifier to it.

This function also restores all the model’s search parameters that were in
effect when the model was saved. If the model was preprocessed before
saving, you do not need to preprocess it again.

The SystemId parameter specifies the system on which the pattern
matching model resides. This parameter must be set to a valid system
identifier, M_DEFAULT_HOST or M_DEFAULT. To use the default Host
system of the current MIL application, specify M_DEFAULT_HOST. If you
specify M_DEFAULT, MIL will select the most appropriate system on which
to allocate the buffer (the Host system or any already allocated system).

The FileHandle parameter specifies the handle of the open file (opened
with the standard C function fopen()). Before calling this function, the file
pointer must be positioned just before the start of a valid pattern matching
model. After the function call, the file remains open and is positioned
immediately after the model.

The ModelIdPtr parameter specifies the address of the variable in which
the model identifier is to be written. Since the MpatRead() function also
returns the model identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the model identifier. If allocation fails, M_NULL is
returned.

See also MpatWrite(), MpatSave(), MpatRestore()

MIL_ID SystemId System identifier
FILE* FileHandle; Model file handle
MIL_ID *ModelIdPtr; Storage location for model identifier

478 MpatRestore

MpatRestore

 Synopsis Restore a pattern matching model from disk.

Format MIL_ID MpatRestore(SystemId, FileName, ModelIdPtr)

Description This function restores a model that was previously saved to a file, using
MpatSave(). If the model was preprocessed before saving, you do not need
to preprocess it again.

This function also restores all the model’s search parameters that were in
effect when the model was saved.

The SystemId parameter specifies the system on which to restore the
model. This parameter must be set to a valid system identifier,
M_DEFAULT_HOST or M_DEFAULT. To use the default Host system of the
current MIL application, specify M_DEFAULT_HOST. If you specify
M_DEFAULT, MIL will select the most appropriate system on which to
allocate the buffer (the Host system or any already allocated system).

The FileName parameter specifies the model file name. The function
handles (internally) the opening and closing of the file.

The ModelIdPtr parameter specifies the address of the variable in which
to write the model identifier. Since the MpatRestore() function also
returns the model identifier, you can set this parameter to M_NULL. If
allocation fails, M_NULL is written as the identifier.

Return value The returned value is the model identifier. If allocation fails, M_NULL is
returned.

Example mrestmod.c

See also MpatSave(), MpatRead(), MpatWrite()

MIL_ID SystemId; System identifier
char *FileName; Model file name
MIL_ID *ModelIdPtr; Storage location for model identifier

MpatSave 479

MpatSave

 Synopsis Save a pattern matching model to disk.

Format void MpatSave(FileName, ModelId)

Description This function saves all the information about the previously allocated model
to disk, including all of the model’s current search parameters values and
any effects of preprocessing. Later, this information can be reloaded, using
MpatRestore() or MpatRead().

The FileName parameter specifies the model file name. If this file already
exists, it will be overwritten. The function handles (internally) the opening
and closing of this file.

The ModelId parameter specifies the identifier of the model to save.

See also MpatRestore(), MpatWrite(), MpatRead()

char *FileName; Model file name
MIL_ID ModelId; Model identifier

480 MpatSetAcceptance

MpatSetAcceptance

 Synopsis Set the acceptance level of a model.

Format void MpatSetAcceptance(ModelId, AcceptanceThreshold)

Description This function sets the acceptance level for a match made with the specified
model when it is sought in an image. If the correlation (match score) between
the image and the model is less than this level, it is not considered a match
(an occurrence). The default acceptance is set when the model is allocated.

The ModelId parameter specifies the identifier of the model for which to
change the acceptance threshold search parameter.

The AcceptanceThreshold parameter specifies the acceptance level, as a
percentage. A perfect match is 100%, no correlation is 0%. The match score
depends on the image quality. You should experiment to decide what is a
typical match score for your application.

See also MpatSetNumber(), MpatSetCertainty()

MIL_ID ModelId; Model identifier
double AcceptanceThreshold; Minimum acceptable correlation

MpatSetAccuracy 481

MpatSetAccuracy

Synopsis Set the positional accuracy of a model.

Format void MpatSetAccuracy(ModelId, Accuracy)

Description This function sets the specified model’s search parameter for positional
accuracy and the complexity of the image. You can enhance speed
performance by selecting a lower positional accuracy. Also, whenever the
positional accuracy of a model changes, the effect of any preprocessing is
undone. Therefore, if the accuracy is changed, call MpatPreprocModel()
before searching for the model.

The positional accuracy is also slightly affected by the search speed
(MpatSetSpeed()).

The ModelId parameter specifies the identifier of the model for which to
change the positional accuracy search parameter.

The Accuracy parameter sets the required positional accuracy for the
search. Set it to one of the following values:

Note, the precision achieved is dependent on the quality of the model and
the image (the tolerances listed above are typical for high-quality, low-noise
images).

The method used to find a model with M_LOW accuracy more quickly can
also produce match scores that are slightly lower than usual. If a precise
match score is important to you, use at least medium accuracy.

Examples mpatrot.c, msearch.c

MIL_ID ModelId; Model identifier
long Accuracy; Required positional accuracy

M_LOW Low accuracy (typically ± 0.20 pixels)
M_MEDIUM Medium accuracy (typically ± 0.10 pixels)
M_HIGH High accuracy (typically ± 0.05 pixels)

482 MpatSetAngle

MpatSetAngle

 Synopsis Set the angular search parameters of a model.

Format void MpatSetAngle(ModelId, ControlType, ControlValue)

Description This function sets the specified model’s angular search parameters. Also,
whenever the angular search parameters of a model change, the effect of
any preprocessing of the model is undone. Therefore, if the search angle is
changed, call MpatPreprocModel() before searching for the model.

The ModelId parameter specifies the identifier of the model for which to
change the angular search parameter. This can be any type of model except
an M_ORIENTATION type model or a model created using
MpatAllocRotatedModel().

The ControlType and ControlValue parameters specify the type of
control to set and the value to which to set it.

By default, the ControlType M_SEARCH_ANGLE_MODE is disabled and
the search is done at 0° (no rotation). When enabled, the model is searched
at angle, respecting all search control parameters.

The following ControlType/ControlValue combinations can be selected:

MIL_ID ModelId; Model identifier
long ControlType; Type of control to set
double ControlValue; Value associated with control type

ControlType ControlValue Description
M_SEARCH_ANGLE_MODE M_ENABLE or

M_DISABLE (M_DEFAULT)
Search at angle.

M_SEARCH_ANGLE 0.0° - 360.0° or
M_DEFAULT (0.0°)

see *

M_SEARCH_ANGLE_DELTA_NEG 0.0° - 180.0° or
M_DEFAULT (0.0°)

see *

M_SEARCH_ANGLE_DELTA_POS 0.0° - 180.0° or
M_DEFAULT (0.0°)

see *

* These angles determine the range of angles to cover in the search operation:
 (M_SEARCH_ANGLE - M_SEARCH_ANGLE_DELTA_NEG) to
 (M_SEARCH_ANGLE + M_SEARCH_ANGLE_DELTA_POS) inclusively,
 starting at an angle close to M_SEARCH_ANGLE.

MpatSetAngle 483

Example mpatrot.c

See also MpatSetAcceptance(), MpatFindModel(), MpatFindMultipleModel(),
MpatFindOrientation()

M_SEARCH_ANGLE_TOLERANCE 0.1° - 180.0° or M_DEFAULT
(5.0°)

Tolerance defines the
full range of degrees
within which the
pattern in the target
image can be rotated
from a model at a
specific angle and still
meet the acceptance
level. For example, if a
model can tolerate the
target image being
offset from its search
angle by ±2.5°, specify
5°. The specified
tolerance determines
the step angle.

M_SEARCH_ANGLE_ACCURACY 0.1° - 180.0°, M_DISABLE, or
M_DEFAULT

The required precision
of
the resulting angle.
When set to
M_DISABLE or
M_DEFAULT, the
angular accuracy
equals the tolerance.

M_SEARCH_ANGLE_INTERPOLATION_MODE

M_NEAREST_NEIGHBOR
(M_DEFAULT), M_BILINEAR,
or M_BICUBIC

Determines the type of
interpolation that is
used when rotating
the model.

ControlType ControlValue Description

484 MpatSetCenter

MpatSetCenter

Synopsis Set the reference position of a model.

Format void MpatSetCenter(ModelId, OffX, OffY)

Description This function sets the reference position of the specified model. The default
reference position is equal to ((SizeX - 1) / 2.0, (SizeY - 1) / 2.0) (relative to
the model origin). All positional search results are based on this defined
model’s reference position, relative to the top-left corner of the image in
which the search is performed.

The ModelId parameter specifies the identifier of the model for which to
change the reference position.

The OffX and OffY parameters specify the offset of the new model’s
reference position relative to the model origin. Note that the reference
position need not be in the model.

MIL_ID ModelId; Model identifier
double OffX; X offset relative to model top-left corner
double OffY; Y offset relative to model top-left corner

MpatSetCertainty 485

MpatSetCertainty

Synopsis Set the certainty level of a model.

Format void MpatSetCertainty(ModelId, CertaintyThreshold)

This function sets the certainty level for a match made with the specified
model when it is sought in an image. If the correlation (match score) between
the image and the model is equal to or greater than the certainty level, a
match is assumed without looking elsewhere in the image for a better match.
The default certainty level is set when the model is allocated
(MpatAlloc...()).

The ModelId parameter specifies the identifier of the model for which to
change the certainty threshold search parameter.

The CertaintyThreshold parameter specifies the certainty level, as a
percentage. If you set the certainty level too high (close to 100%), you slow
down the search because you force the search algorithm to check the whole
search region for the best match. A good certainty level is slightly lower than
the expected score, so that the search can finish as soon as the match is
found. However, if you set the certainty level too low, false matches might
be found. Note that the certainty level must be equal to or greater than the
acceptance level (MpatSetAcceptance()).

See also MpatSetNumber(), MpatSetAcceptance(), MpatAlloc...()

MIL_ID ModelId; Model identifier
double CertaintyThreshold; Certainty level (in percent)

486 MpatSetDontCare

MpatSetDontCare

 Synopsis Set the "don’t care" pixels in a model.

Format void MpatSetDontCare(ModelId, ImageBufId, OffX, OffY, Value)

Description This function sets pixels in the specified model to a "don’t care" state. The
"don’t care" pixels of the model will not be considered when searching for
occurrences of the model in the target image (MpatFindModel() or
MpatFindMultipleModel()). To determine which model pixels to set, a
region of the specified image buffer, starting at the specified offset and equal
in size to the model, is compared with the specified "don’t care" value. If an
image pixel is equal to this value, the corresponding pixel in the model is
set to "don’t care".

Note, each time this function is called, a new set of "don’t care" pixels is
assigned to the specified model, superseding any existing set. Therefore,
multiple calls to this function do not have a cumulative effect. Also,
whenever the "don’t care" pixels in a model change, the effect of any
preprocessing of the model is undone. Therefore, if the “don’t care” pixels
are changed, call MpatPreprocModel() before searching for the model.

The ModelId parameter specifies the identifier of the model in which to set
"don't care" pixels.

The ImageBufId parameter specifies the identifier of the image buffer used
to identify which pixels in the model will be set to "don't care". This buffer
must be at least as large as the model.

MIL_ID ModelId; Model identifier
MIL_ID ImageBufId; "Don't-care" image buffer identifier
long OffX; Start of "don't care" mask in X direction
long OffY; Start of "don't care" mask in Y direction
long Value; Pixel value in image to be considered as "don't

care" value

MpatSetDontCare 487

The OffX and OffY parameters specify the X and Y offset
from the upper-left corner of the specified image buffer to the upper-left
corner of the pixel-value comparison area. The size of the comparison area
is determined by the size of the model.

The Value parameter specifies the pixel value in the image buffer that
determine the corresponding "don’t care" pixels.

See also MpatCopy(), MpatPreprocModel(), MpatFindModel(),
MpatFindMultipleModel()

488 MpatSetNumber

MpatSetNumber

 Synopsis Set the expected number of occurrences of a model.

Format void MpatSetNumber(ModelId, NbOccurrences)

Description This function sets the number of occurrences of a model for which to search
when using MpatFindModel() or MpatFindMultipleModel().
Occurrences with match scores that attain/exceed the certainty level (set
with MpatSetCertainty()) are returned, up to the number specified in
NbOccurrences. If such occurrences are fewer than the specified number,
the remaining occurrences returned are the best of those that attain/exceed
the acceptance level (set with MpatSetAcceptance()). The default is 1
(that is, find only the first occurrence with a match score that
attains/exceeds the certainty level).

The ModelId parameter specifies the identifier of the model for which to
set the expected number of occurrences.

The NbOccurrences parameter specifies the maximum number of
occurrences for which to look in the target image. The number of
occurrences should be less than or equal to the number of result buffer
entries or some results may be lost. To return all matches that attain/exceed
the acceptance level, set this parameter to M_ALL.

See also MpatSetAcceptance(), MpatSetCertainty(), MpatFindModel(),
MpatFindMultipleModel(), MpatGetNumber(), MpatGetResult()

MIL_ID ModelId; Model identifier
long NbOccurrences; Maximum number of occurrences to find

MpatSetPosition 489

MpatSetPosition

 Synopsis Set the search region of a model.

Format void MpatSetPosition(ModelId, OffX, OffY, SizeX, SizeY)

Description This function sets the specified model’s search region. It limits the area in
the target image in which to find the reference position of the model (set
with MpatSetCenter()), and consequently increases the search speed. This
function is useful when the model’s reference position is expected to be found
in a certain area. You can change the search region at any time (for example,
when tracking an object, the search region could be changed before each call
to MpatFindModel() or MpatFindMultipleModel()).

If you have redefined the model’s reference position (with
MpatSetCenter()), make sure that the search region defined by
MpatSetPosition() covers this new reference position and takes into
account the angular search range of the model.

Always use this function, rather than a child buffer, to restrict the search
region. Other methods result in edge effects, and if the search region is as
small as or smaller than the model, other methods produce invalid results.

The ModelId parameter specifies the identifier of the model for which to
change the search region.

The OffX and OffY parameters specify the coordinates of the top-left corner
of the search region in the target image.

The SizeX and SizeY parameters specify the width and height of search
region. Note, it is valid to specify a search region that is smaller than the
search model since you are setting the area in which to find the model’s
reference position.

MIL_ID ModelId; Model identifier
long OffX; X-coordinate of search region origin within target

image
long OffY; Y-coordinate of search region origin within target

image
long SizeX; Width of search region
long SizeY; Height of the search region

490 MpatSetPosition

To change some of the search parameters set with this function without
affecting others, specify M_NO_CHANGE for those you do not want to change.
For example, you can change OffX and OffY to the required values and keep
SizeX and SizeY as is by setting them to M_NO_CHANGE.

To reset the search region size to the full image, set OffX and OffY to zero
(0), and SizeX and SizeY to M_ALL.

MpatSetSearchParameter 491

MpatSetSearchParameter

 Synopsis Set the internal search parameters of a model.

Format void MpatSetSearchParameter(PatId, Parameter, Value)

Description This function is for advanced users of the pattern matching module. It need
not be used under most circumstances because the default settings usually
provide the best results for search operations. However, if the default values
do not satisfy the requirements of your application, this function can be used
to set the model’s internal search parameters. These internal search
parameters are normally derived from the speed and accuracy settings (see
MpatSetSpeed() and MpatSetAccuracy()), but this function gives the
experienced user precise control over them. Refer to Chapter 12: Searches,
models, and search parameters in the Matrox Imaging Library User Guide
to gain a clearer understanding of how the search algorithm works.

Note that if some of the model’s search parameters are changed after a call
to MpatPreprocModel(), the model must be preprocessed again. To
inquire if your model is in a preprocessed state, use the MpatInquire()
function with M_PREPROCESSED.

Note that the model’s internal parameters are all saved and restored with
the model, just like the other parameters such as search region, speed, and
accuracy.

The PatId parameter specifies the identifier of the model whose search
parameter to change, or of the result buffer.

The Parameter specifies the search parameter to set.

The Value parameter specifies the value to which to set the specified
parameter.

MIL_ID PatId; Model identifier or
result buffer identifier

long Parameter; Parameter to be set
double Value; Value to set parameter to

492 MpatSetSearchParameter

For a model identifier, this parameter can be set to one of the following
values:

Parameter Values Description
M_ALL M_DEFAULT Determine all search parameters automatically

from the current speed and accuracy settings.
M_FIRST_LEVEL 0 - 7 Resolution level for the initial stage (lowest

resolution) of the search.
M_DEFAULT Determine first level automatically.
Note: Level 0 is the original target image and each higher level is
half the size (and resolution) of the previous one. If the specified
level is not supported by the search algorithm, the highest possible
level will be used. A higher first level speeds up the initial search
but makes it less reliable, because the model might not retain
enough distinctive features at such a low resolution.

M_LAST_LEVEL 0 - 7 Resolution level for the final stage (highest
resolution) of the search.

M_DEFAULT Determine the last level automatically.
Note: If the specified level is not supported by the search algorithm,
the highest acceptable level will be used. Search score can also be
less reliable for levels above 0, depending on the characteristics of
the model.

M_MODEL_STEP 1 Use all model pixels in the correlation during the
high resolution stage of the search.

2 Use only every second model pixel (in both the X
and Y directions) in the correlation during the high
resolution stage of the search. This speeds up the
last (high resolution) stage of the search,
particularly for large models. The match score can
be affected if the model has many fine features, but
will tend not to be affected if the model has mainly
coarse features.

M_DEFAULT Determine the model step automatically.
M_FAST_FIND M_ENABLE Force fast peak finding.

The search algorithm attempts to find the peaks
without checking every point. This is safe in most
cases, but can cause matches to be missed for
models that produce very narrow peaks.

M_DISABLE Prevent fast peak finding.
The initial search (at the resolution level
determined by M_FIRST_LEVEL) computes the
correlation at every position in the search region.
This guarantees that the biggest match peak will be
found, and that it will be investigated first.

M_DEFAULT Pre-processing decides if fast peak finding is
appropriate.

MpatSetSearchParameter 493

M_ALLOC_OFFSET_X any integer Set the model’s allocation X offset to the specified
value. This might be useful when the original value
is lost after rotating a model. You can use
MpatInquire() to inquire about the current X
offset.

M_ALLOC_OFFSET_Y any integer Set the model’s allocation Y offset to the specified
value. This might be useful when the original value
is lost after rotating the model. You can use
MpatInquire() to inquire about the current Y
offset.

M_MIN_SPACING_X 1.0 to 100.0 Set the minimum spacing (in X) between two
models in order for them to be considered distinct.

M_DEFAULT Default is 75% of the model width (SizeX of
MpatAlloc...()).

M_MIN_SPACING_Y 1.0 to 100.0 Set the minimum spacing (in Y) between two
models in order for them to be considered distinct.

M_DEFAULT Default is 75% of the model height (SizeY of
MpatAlloc...()).

M_COARSE_SEARCH_ACCEPTANCE
1.0 to 100.0 Minimum acceptable match score to determine an

occurrence of a model, for all levels except the last
level.

M_DEFAULT The acceptance level of the model (as set in
MpatSetAcceptance()).

M_EXTRA_CANDIDATES integer
(default = 0)

Set number of extra candidates to consider.
Normally, the search algorithm considers only a
limited number of (best) scores as possible
candidates to a match when proceeding at the most
sub-sampled stage. This parameter allows you to
add robustness to the algorithm, by considering
more candidates, without compromising too heavily
on search speed.

Parameter Values Description

494 MpatSetSearchParameter

For a result buffer identifier, this parameter can be set to the following
value:

See also MpatSetSpeed(), MpatSetAccuracy(), MpatInquire()

Parameter Values Description
M_TARGET_CACHING M_ENABLE

M_DISABLE
When set to M_ENABLE, the pyramidal
representation of the buffer (generated when
MpatFindModel() or
MpatFindMultipleModel() is called) is
kept in the result buffer.
This pyramidal representation is re-used by
consecutive calls to MpatFindModel() and
MpatFindMultipleModel() as long as the
same result buffer is used and the image,
search region, and model size are not
modified.
When set to M_DISABLE, the pyramidal
representation of the buffer is generated each
time MpatFindModel() or
MpatFindMultipleModel() is called.
Default is M_DISABLE.

MpatSetSpeed 495

MpatSetSpeed

Synopsis Set search speed of a model.

Format void MpatSetSpeed(ModelId, SpeedFactor)

Description This function specifies the required search speed when using
MpatFindModel() or MpatFindMultipleModel(). At a higher speed, the
search takes all reasonable short cuts; therefore, the search should be
performed faster than at lower settings. Generally, the high speed setting
should be used for better quality images or when using a simple model. Note,
the high speed setting reduces positional accuracy very slightly. Try the low
speed settings only if your image quality is particularly poor and you have
encountered problems at higher speeds. Also, whenever the search speed
parameter setting of a model changes, the effect of any preprocessing of the
model is undone. Therefore, if the search speed is changed, call
MpatPreprocModel() before searching for the model.

The ModelId parameter specifies the identifier of the model for which to
change the speed parameter.

The SpeedFactor parameter specifies the search speed. Set this parameter
to one of the following:

Examples mpatrot.c, msearch.c

See also MpatPreprocModel()

MIL_ID ModelId; Model identifier
long SpeedFactor; Search speed factor

M_VERY_HIGH Very high speed
M_HIGH High speed
M_MEDIUM Medium speed
M_LOW Low speed
M_VERY_LOW Very low speed

496 MpatWrite

MpatWrite

Synopsis Write a pattern matching model to an open file.

Format void MpatWrite(FileHandle, ModelId)

Description This function writes all the information about the previously allocated
model to the current file position of an open file, including all of the model’s
current search parameter values and any effects of preprocessing. This
information can later be reloaded with MpatRead().

The FileHandle parameter specifies the handle of the open file (opened
with the standard C function fopen()). The model is written starting at the
current file position. After writing, the file remains open and is positioned
immediately after the model just written.

The ModelId parameter specifies the identifier of the model to save.

See also MpatRestore(), MpatWrite(), MpatRead()

FILE* FileHandle; Model file handle
MIL_ID ModelId; Model identifier

MsysAlloc 497

MsysAlloc

Synopsis Allocate a hardware system.

Format MIL_ID MsysAlloc(SystemTypePtr, SystemNum, InitFlag,
 SystemIdPtr)

Description This function allocates a hardware system (board set or Host system) so
that it can be used by subsequent MIL functions. Upon execution of this
function, MIL ensures that it can open communication with the system
before allocating it and generates an error if it cannot.

A system must be allocated before any buffers, displays, or digitizers can be
allocated on it. Before allocating a system, an application must be allocated,
using MappAlloc() or MappAllocDefault().

Note, upon allocation of an application, a default Host system is
automatically allocated. Rather than using MsysAlloc() to allocate a Host
system, you can use this default Host system, by specifying
M_DEFAULT_HOST wherever a Host system identifier is required.

When you no longer need a particular system, free it using MsysFree().

The SystemTypePtr parameter specifies the type of system to allocate.
This parameter is a pointer to a function that allows communication with
the specified system (board). Set this parameter to one of the following
values:

void *SystemTypePtr; Type of system to allocate
long SystemNum; System number
long InitFlag; Initialization flag
MIL_ID *SystemIdPtr; Storage location for system identifier

SystemTypePtr Type of system to allocate
M_SYSTEM_SETUP System selected in the setup utility.
M_SYSTEM_HOST Host type system.
M_SYSTEM_VGA VGA type system.
M_SYSTEM_METEOR_II Meteor-II type system.
M_SYSTEM_METEOR_II_1394 Meteor-II /1394 type system.
M_SYSTEM_METEOR_II_DIG Meteor-II /Digitial type system.
M_SYSTEM_ORION Orion type system.

498 MsysAlloc

The SystemNum parameter specifies the number (or rank) of the target
board of the specified system type. This parameter can be set to one of the
following:

The InitFlag parameter specifies the type of initialization you want to
perform on the selected system. This parameter can be set to one of the
following:

Refer to the MIL/MIL-Lite Board-Specific Notes for possible additional
information that applies to your particular system.

The SystemIdPtr parameter specifies the address of the variable in which
to write the system identifier. Since the MsysAlloc() function also returns
the system identifier, you can set this parameter to M_NULL. If allocation
fails, M_NULL is written as the identifier.

Return value The returned value is the system identifier. If allocation fails, M_NULL is
returned.

See also MsysFree()

M_SYSTEM_PULSAR Pulsar type system.
M_SYSTEM_GENESIS Genesis type system.
M_SYSTEM_CORONA Corona type system.

M_DEFAULT Default board.
M_DEV0 The first board of the specified system type.
..., The nth board of the specified system type.
M_DEV15 The sixteenth board of the specified system type.

M_COMPLETE Perform a complete initialization of the system: initialize
the system to its default state and download any required
resident software. At least one complete initialization is
necessary after you power-up your system.

M_PARTIAL Initialize the system with its default state, but do not
download any resident software (which can take a few
seconds).

M_DDRAW Enable the use of DirectDraw by the system.
M_NO_DDRAW Disable the use of DirectDraw by the system.
M_DEFAULT Same as M_COMPLETE.

SystemTypePtr Type of system to allocate

MsysControl 499

MsysControl

Synopsis Control system behavior.

Format void MsysControl(SystemId, ControlType, ControlValue)

Description This function controls the system behavior. For example, it can be used to
control where buffers allocated on the specified system will be processed.
Generally, when you allocate buffers on a specific system, processing is done
on that system or on the Host system if it is more appropriate. However, you
can use this function to force all processing on a specific system.

The SystemId parameter specifies the identifier of the system on which to
set the control.

The ControlType and ControlValue parameters specify the type of event
to control and the associated value, respectively. These parameters can be
set to any valid control type and control value combination that is supported
by the system (refer to the appropriate appendix), or to one of the following
combinations:

MIL_ID SystemId; System identifier
long ControlType; Type of event to control
long ControlValue; Flag to control event

ControlType ControlValue & Description
M_PROCESSING_SYSTEM MIL identifier of

the system to use
for processing, cast to
long.

Force the processing of buffers,
allocated on the system specified
by SystemId, to be performed by
the system specified by the
control value.

M_DEFAULT_HOST Force the processing of buffers,
allocated on the system specified
by SystemId, to be performed by
the default Host system.

M_DEFAULT Re-establish the default
processing system selected by
MIL at system allocation.

*Note, even when you force processing to be performed by a specific system, some operations
might not execute successfully if the specific system does not completely support the requested
operation. This can occur even if processing compensation is enabled.

500 MsysControl

M_PSEUDO_LIVE_GRAB Specifies whether to perform a pseudo-live grab when a
live grab is enabled but is not possible. If a live grab is
enabled, and can be performed, it will take priority over a
pseudo-live continuous grab, even if a pseudo-live grab is
enabled. A continuous grab is done pseudo-live only when
it is enabled and it is not possible to perform a live grab.
If pseudo-live grabbing is disabled and a live grab cannot
be performed, a continuous grab will be paused until
conditions under which a live grab can be performed are
achieved (or the grab times out). When grabbing to an
underlay frame buffer surface, this control type should be
left to the default setting.
M_ENABLE Pseudo-live grab is enabled

(default).
M_DISABLE Pseudo-live grab is disabled.

M_LIVE_GRAB_MOVE_UPDATE Specifies whether to copy the current image from
its previous (window) location to the location of the
displaced window before restarting the grab
operation (the grab is stopped during window
displacement). This is particularly useful when
grabbing from a triggered camera, since a trigger is
probably not issued as often as the window is
displaced. Therefore, the window will be empty
after its displacement unless
M_LIVE_GRAB_MOVE_UPDATE is enabled.
M_ENABLE Perform a copy between the

windows. (Default for triggered
cameras)

M_DISABLE Do not perform a copy between
the windows. (Default for
non-triggered cameras)

ControlType ControlValue & Description

MsysControl 501

M_LIVE_GRAB_NO_TEARING Specifies whether or not no-tearing mode is enabled with
live grabs. This mode should be enabled before selecting
any buffer to the display.
This mode requires special hardware. A Matrox G400 (or
higher) video graphics adapter should be used. In
addition, this mode can only be used when the grab buffer
is selected to a display that is under a DirectDraw
underlay-surface display architecture
(M_WINDOWED+M_DDRAW_UNDERLAY). (Note that
this is the default display mode when the hardware is
available)
M_ENABLE No-tearing mode is enabled with

live grabs.
M_DISABLE No-tearing mode is disabled with

live grabs.(default)
M_LAST_GRAB_IN_TRUE_BUFFER Specifies, when the display is in windowed mode

(M_WINDOWED), whether a snapshot grab is
automatically performed in the true grab buffer at the
end of a live grab operation. You can override this default,
in which case, the true buffer will not contain the
grabbed data. This default can be overridden by setting
the ControlType to M_DISABLE:
M_ENABLE Grab last frame in true grab

buffer (default).
M_DISABLE Don’t grab last frame in true

grab buffer.
M_NATIVE_MODE_ENTER M_DEFAULT Signal to MIL that the system is

entering the system's native
mode.

M_NATIVE_MODE_LEAVE M_DEFAULT Signal to MIL that the system is
exiting the system's native mode.

M_USE_MMX Specifies whether MMX opcodes are used when
processing is done on the specified system.
M_DEFAULT Like M_ENABLE when an MMX

processor is detected, otherwise
like M_DISABLE.

M_ENABLE Use the MMX opcodes to
accelerate processing.

M_DISABLE Never use the MMX opcodes.

ControlType ControlValue & Description

502 MsysControl

See also MappGetError(), MappHookFunction(), MappControl()

M_USE_SSE Control the use of SSE code when processing is
done on the specified system.
M_DEFAULT When an SSE processor is

detected, this control type is
similar to M_ENABLE;
otherwise, it is similar to
M_DISABLE.

M_ENABLE Use the SSE opcodes to
accelerate processing. Note,
an error will be generated if
no SSE processor is detected
or if the operating system
does not support it.

M_DISABLE Never use the SSE opcodes.
M_LIVE_GRAB Specifies whether to perform a live grab whenever

possible, or to force a pseudo-live grab, when grabbing
continuously into a displayable buffer. When grabbing to
an underlay frame buffer surface, this control type should
be left to the default setting.
M_ENABLE Live grab is enabled (default).
M_DISABLE Live grab is disabled.

ControlType ControlValue & Description

MsysFree 503

MsysFree

Synopsis Free a system.

Format void MsysFree(SystemId)

Description This function deallocates a system previously allocated with MsysAlloc().

Prior to freeing a system, ensure that all buffers, displays, and digitizers
allocated on the system are freed.

The SystemId parameter specifies the identifier of the system to free.

See also MsysAlloc()

MIL_ID SystemId; System identifier

504 MsysInquire

MsysInquire

Synopsis Inquire about a system parameter setting.

Format long MsysInquire(SystemId, InquireType, UserVarPtr)

Description This function inquires about the specified system parameter setting.

The SystemId parameter specifies the system identifier.

The InquireType parameter specifies the system parameter about which
to inquire. Some of the values are not supported by all platforms. This
parameter can be set to one of the following values:

MIL_ID SystemId; System identifier
long InquireType; Type of information to inquire
void *UserVarPtr; Storage location for inquired information

InquireType Description
M_OWNER_APPLICATION The MIL identifier (MIL_ID) of the application on

which the system has been allocated.
M_SYSTEM_TYPE The type of system allocated:

M_SYSTEM_HOST_TYPE, M_SYSTEM_VGA_TYPE,
M_SYSTEM_METEOR_II_1394_TYPE,
M_SYSTEM_METEOR_II_TYPE,
M_SYSTEM_METEOR_II_DIG_TYPE,
M_SYSTEM_ORION_TYPE,
M_SYSTEM_PULSAR_TYPE,
M_SYSTEM_GENESIS_TYPE, or
M_SYSTEM_CORONA_TYPE.

M_SYSTEM_NAME The system name. This inquire type copies the
system’s name (that is, the board type) to the
user-supplied array, as a string. Note that this
inquire type is available when using any supported
Matrox Imaging board.

M_SYSTEM_TYPE_PTR Pointer to a function that can communicate with
the system (board). This inquiry type returns the
actual system type pointer that was passed to the
MsysAlloc() function upon system allocation. It is
preferable to use M_SYSTEM_TYPE_PTR to inquire
about the type of system allocated.

M_NUMBER Board number of the system (MsysAlloc()).
M_INIT_FLAG System initialization flag (MsysAlloc()).
M_DISPLAY_NUM Number of displays available on the system.
M_DIGITIZER_NUM Number of digitizers available on the system.
M_PROCESSOR_NUM Number of processors available on the system.

MsysInquire 505

The UserVarPtr parameter specifies the address of the variable in which
the requested information is to be written. When MsysInquire() also
returns the requested information, you can set this parameter to M_NULL.

The variable should be a pointer to a long except for the following inquire
types:

■ M_OWNER_APPLICATION and M_PROCESSING_SYSTEM_TYPE, which
should be a pointer to a MIL_ID.

M_PROCESSING_SYSTEM_TYPE Processing system type used to process buffers
allocated on that system (MsysControl()). Either
M_SYSTEM_HOST_TYPE, or
M_SYSTEM_GENESIS_TYPE will be returned.

M_PROCESSING_SYSTEM Identifier of the processing system.
M_DCF_SUPPORTED Whether the system supports downloadable

digitizer configuration format (.dcf) files.
M_USE_MMX State of use of MMX code for processing on the

specified system (M_ENABLE or M_DISABLE).
M_USE_SSE State of use of SSE code for processing on the

specified system (M_ENABLE or M_DISABLE).
M_PHYSICAL_ADDRESS_VGA The physical address of the VGA frame buffer. If

the VGA is not a Matrox VGA, M_NULL is
returned.

M_COMPRESSION_SUPPORTED Whether the system supports compression and
decompression of images (M_YES or M_NO). Note
that, under MIL-Lite, dedicated hardware is
required to compress and decompress images.
Under the full version of MIL, compression and
decompression is supported, whether or not
dedicated hardware is present.

M_DUAL_SCREEN_MODE Whether the system is in dual-screen mode
(M_ENABLE or M_DISABLE).

M_LIVE_GRAB Whether the live grab is enabled (M_ENABLE or
M_DISABLE).

M_PSEUDO_LIVE_GRAB Whether the pseudo live grab is enabled
(M_ENABLE or M_DISABLE).

M_LIVE_GRAB_NO_TEARING Whether no-tearing mode is enabled with live
grabs.

M_LIVE_GRAB_MOVE_UPDATE Whether the live grab move update is enabled
(M_ENABLE or M_DISABLE).

M_LAST_GRAB_IN_TRUE_BUFFER A last grab is done to the true buffer at the end of a
continuous grab:
 M_ENABLE or M_DISABLE.

InquireType Description

506 MsysInquire

■ M_SYSTEM_NAME, which should be a pointer to a character array. The
character array must be larger enough to hold the name of the system.

■ M_SYSTEM_TYPE_PTR, which should be a void pointer.

Return value Except for M_SYSTEM_NAME, the returned value is the requested system
information, cast to long. For M_SYSTEM_NAME, the returned value is
M_NULL.

See also MsysAlloc(), MsysControl()

Appendices

Appendix A: The default
setup configuration file

This appendix discusses the main defaults specified in the
setup configuration file.

510 Appendix A: The default setup configuration file

The default setup configuration file
When you use the MappAllocDefault() macro to initialize the
global state of the library, open communication channels with
any required hardware system, download any required
resident software to this hardware, allocate an image buffer,
display controller or digitizer, the macro uses the defaults
specified in the milsetup.h file. This file is set up upon
installation with the install utility. It is an ASCII file that can
also be modified manually. You should review the contents of
this file prior to using the MappAllocDefault() macro to
ensure that the defaults are as required. You can modify these
defaults to a preferred default setup. This appendix discusses
each of the main defaults in detail so that you can modify them,
if required, by altering their predefined values. For a complete
listing of all the defaults, refer to the milsetup.h file.

The setup flag

The M_MIL_USE_SETUP default determines whether
milsetup.h has already been included. This default should
always be set to 1L.

The native mode flag

The M_MIL_USE_NATIVE default determines whether native
mode code specific to a system can be used in the MIL
application. When this default is set to 1L, MIL assumes that
native-mode code may be used and will include associated
prototypes and defines.

���
���5'672�52'%+(+'&�(.#)��
���#EVKXCVG�QT�FGCEVKXCVG�/+.�WUG�UGVWR�HNCI�����������������������
�FGHKPG�/A/+.A75'A5'672����������.

���
���0#6+8'�/1&'�241)4#//+0)�(.#)����������������������������������
���#EVKXCVG�QT�FGCEVKXCVG�PCVKXG�OQFG�RTQITCOOKPI����������������
�FGHKPG�/A/+.A75'A0#6+8'�����.

The default setup configuration file 511

Default initialization
flag

The M_SETUP default determines the type of initialization to
perform if it is specified by the MappAllocDefault() InitFlag
parameter. M_SETUP can be set to M_COMPLETE (initialize
MIL and do a complete initialization of the specified system) or
M_PARTIAL (initialize MIL but don’t fully initialize the system).
In general, set this parameter to M_COMPLETE if initialization
time is not critical.

Default system

The above defaults determine the target system (or board) that
will be allocated by MappAllocDefault(). The
MappAllocDefault() macro calls the MsysAlloc() command
to allocate the target system. M_DEF_SYSTEM_TYPE specifies
the system type, M_DEV_SYSTEM_NUM specifies its device
number in your Host system, and M_DEF_SYSTEM_SETUP can
be used later as an MsysAlloc() parameter.

Default display

The above defaults determine the display type that will be
allocated if the MappAllocDefault() DisplayIdVarPtr
parameter is not set to M_NULL. MappAllocDefault() macro
calls the MdispAlloc() command to allocate the display.

���
���&'(#7.6�56#6'�+0+6+#.+<#6+10�(.#)�����������������������������
�FGHKPG�/A5'672�������������/A%1/2.'6'

���
���&'(#7.6�5;56'/�52'%+(+%#6+10����������������������������������
�FGHKPG�/A&'(A5;56'/A6;2'���������������������/A5;56'/A27.5#4
�FGHKPG�/A&'(A5;56'/A07/����������������������/A&'8�
�FGHKPG�/A5;56'/A5'672������������������������/A&'(A5;56'/A6;2'

���
���&'(#7.6�&+52.#;�52'%+(+%#6+10���������������������������������
�FGHKPG�/A&'(A&+52.#;A07/���������������������/A&'8�
�FGHKPG�/A&'(A&+52.#;A(14/#6�������������������/A&'(#7.6�
�FGHKPG�/A&'(A&+52.#;A+0+6��������������������/A&'(#7.6
�FGHKPG�/A&+52.#;A5'672�����������������������/A&'(A&+52.#;A(14/#6
�FGHKPG�/A&'(A&+52.#;A-';A%1.14����������������.
�FGHKPG�/A&'(A&+52.#;A-';A'0#$.'A10A#..1%������.
�FGHKPG�/A&'(A&+52.#;A-';A&+5#$.'A10A(4''������.

512 Appendix A: The default setup configuration file

M_DEF_DISPLAY_NUM specifies display number on your target
system, and M_DEF_DISPLAY_FORMAT specifies the display
format. M_DEF_DISPLAY_INIT should be set to M_DEFAULT.

Default digitizer

The above defaults determine the digitizer type that will be
allocated if the MappAllocDefault() DigitizerIdVarPtr
parameter is not set to M_NULL. MappAllocDefault() macro
calls the MdigAlloc() command to allocate the digitizer.
M_DEF_DIGITIZER_NUM specifies digitizer number on your
target system, and M_DEF_DIGITIZER_FORMAT specifies the
input data format (or camera output data format).
M_DEF_DIGITIZER_INIT should be set to M_DEFAULT.

Default image buffer

The above defaults determine the image buffer that will be
allocated if the MappAllocDefault() ImageIdVarPtr
parameter is not set to M_NULL. By default, if a color digitizer
was specified upon installation, a color buffer (three bands) will
be allocated; otherwise, a monochrome buffer is allocated. The
MappAllocDefault() macro calls the MbufAlloc2d()
command to allocate a monochrome buffer or
MbufAllocColor() to allocate a color buffer. The buffer width
and height are the maximum between the default display image
dimensions M_DEF_IMAGE_SIZE_X_MIN and
M_DEF_IMAGE_SIZE_Y_MIN and the default display format
size, but never exceed M_DEF_IMAGE_SIZE_X_MAX and
M_DEF_IMAGE_SIZE_Y_MAX. M_DEF_IMAGE_TYPE specifies

���
���&'(#7.6�&+)+6+<'4�52'%+(+%#6+10�������������������������������
�FGHKPG�/A&'(A&+)+6+<'4A07/������������������/A&'8�
�FGHKPG�/A&'(A&+)+6+<'4A(14/#6����������������>>27.5#4.+$>>&%(>>4���A.1�&%(�
�FGHKPG�/A&'(A&+)+6+<'4A+0+6�����������������/A&'(#7.6
�FGHKPG�/A&'(A%#/'4#A5'672�������������������/A&'(A&+)+6+<'4A(14/#6

��
���&'(#7.6�+/#)'�$7(('4�52'%+(+%#6+10�����������������������������
�FGHKPG�/A&'(A+/#)'A07/$#0&5A/+0���������������.
�FGHKPG�/A&'(A+/#)'A5+<'A:A/+0�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A;A/+0�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A:A/#:�����������������
�FGHKPG�/A&'(A+/#)'A5+<'A;A/#:�����������������
�FGHKPG�/A&'(A+/#)'A6;2'��������������������
/A705+)0'&
�FGHKPG�/A&'(A+/#)'A#664+$76'A/+0����������/A+/#)'
/A241%

The default setup configuration file 513

the depth and range of the data buffer.
M_DEF_IMAGE_ATTRIBUTE_MIN specifies the minimum
attributes for the buffer usage.
M_DEF_IMAGE_NUMBANDS_MIN specifies the number of color
bands of the buffer.

514 Appendix A: The default setup configuration file

When you do not want to use defaults
When you do not want to use MappAllocDefault(), you can
individually specify the allocation of any MIL application,
system, digitizer, buffer, or display. The individual allocations
must respect the following:

■ You must allocate the MIL application before using any other
MIL function.

■ You must allocate the MIL system after allocating the MIL
application and before allocating any digitizer, buffer, or
display. You can allocate multiple systems within an
application.

■ You can allocate multiple digitizers, buffers, or displays
within a system.

■ When freeing (de-allocating) individually, you must respect
the reverse of the order required for allocation.

The following illustrates allocating individually, using a
modification of the mgrab.c example (appearing in Chapter 2
of the User Guide).

���(KNG�PCOG��OITCD�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�HTQO�VJG�FGHCWNV�ECOGTC�
���
�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
��/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT��������
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�������������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT������������
����������/KN%COGTC������������%COGTC�KFGPVKHKGT��������������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�������

����#NNQECVG�CP�CRRNKECVKQP����
��/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
����#NNQECVG�C�U[UVGO����
��/U[U#NNQE
/A5;56'/A/'6'14�++��/A&'8���/A%1/2.'6'��/KN5[UVGO��

���
EQPV��

When you do not want to use defaults 515

����#NNQECVG�C�FKIKVK\GT����
��/FKI#NNQE
/KN5[UVGO��/A&'8���/A%#/'4#A5'672��/A&'(#7.6���/KN%COGTC��

����#NNQECVG�C�FKURNC[����
��/FKUR#NNQE
/KN5[UVGO��/A&'8���/A&+52.#;A5'672��/A&'(#7.6�
��������������/KN&KURNC[��

����#NNQECVG�C�DWHHGT����
��/DWH#NNQE�F
/KN5[UVGO���������������/A+/#)'�
�/A241%�
�/A)4#$�
�/A&+52�
���������������/KN+OCIG��

����5GNGEV�C�FKURNC[����
��/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

����)TCD�CP�KOCIG�����
��/FKI)TCD
/KN%COGTC��/KN+OCIG��

����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
��RTKPVH
�#P�KOCIG�JCU�DGGP�ITCDDGF�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF����
��IGVEJCT
��

����4GNGCUG�VJG�DWHHGT����
��/DWH(TGG
/KN+OCIG��

����4GNGCUG�VJG�FKURNC[����
��/FKUR(TGG
/KN&KURNC[��

����4GNGCUG�VJG�FKIKVK\GT����
��/FKI(TGG
/KN%COGTC��

����4GNGCUG�VJG�U[UVGO����
��/U[U(TGG
/KN5[UVGO��

����4GNGCUG�VJG�CRRNKECVKQP���
��/CRR(TGG
/KN#RRNKECVKQP��
_

516 Appendix A: The default setup configuration file

 Appendix B: The MIL Function
Developer’s Toolkit

This chapter covers the purpose and contents of the
toolkit that provides a privileged interface with MIL.

518 Appendix B: The MIL Function Developer’s Toolkit

The MIL Function Developer’s Toolkit
The MIL Function Developer’s Toolkit provides a privileged
interface with MIL that allows MIL programmers to define
commands to extend MIL’s functionality.

You can create your own MIL-type functions (pseudo-MIL
functions) and integrate them directly into the MIL library,
where they behave like standard MIL functions (for example,
respecting error handling and tracing). This is useful to create
high-level packages on top of MIL or to extend the MIL library
function set (for example, by adding new functions with
specialized algorithms). Although pseudo-MIL functions can
also integrate native mode functions, their inclusion makes the
pseudo-MIL function non-portable to other platforms. The
toolkit provides a series of functions (Mfunc...()) designed to
facilitate the creation of pseudo-MIL functions.

An example using the
Function Developer’s Toolkit
In this example, we create a pseudo-MIL function that adds a
constant to a LUT buffer and writes the result into the same
buffer.

Code

��
���(KNG�PCOG��OPCVHEV�E�
���5[PQRUKU���6JKU�GZCORNG�UJQYU�VJG�WUG�QH�VJG�/+.�(WPEVKQP�&GXGNQRGT	U�
��������������VQQNMKV��OKZKPI�/+.�EQFG�YKVJ�WUGT�EQFG�VQ�ETGCVG�C�
��������������RUGWFQ�/+.�HWPEVKQP�VJCV�#&&U�C�EQPUVCPV�VQ�C�.76�DWHHGT�
��������������CPF�YTKVGU�VJG�TGUWNV�KPVQ�VJG�UCOG�DWHHGT�
����������0QVG��6JG�.76�OWUV�JCXG�����GPVTKGU�CPF�DG���DKV�WPUKIPGF�
���

���JGCFGTU����
�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

�FGHKPG�.76A5+<'�����������������������
�FGHKPG�.76A&'26*����������������������
�FGHKPG�&+/'05+10A'4414����������������
��
EQPV����

An example using the Function Developer’s Toolkit 519

���(WPEVKQP�FGHKPKVKQP����
XQKF�#FF%QPUV6Q.WV
/+.A+&�.WV+F��WPUKIPGF�EJCT�%QPUVCPV6Q#FF�
]
��/+.A+&��������(WPE�
��UJQTV���������P��6OR8CNWG�
��WPUKIPGF�EJCT�.WV%QPVGPV=.76A5+<'?�

�����2TGRCTG�VJG�UVCTV�QH�VJG�HWPEVKQP�CPF�TGIKUVGT�VJG�RCTCOGVGTU����
��(WPE���/HWPE#NNQE
�#FF%QPUV6Q.WV�����
��/HWPE2CTCO+F
(WPE���.WV+F�/A.76�/A+0
/A176��
��/HWPE2CTCO%JCT
(WPE���%QPUVCPV6Q#FF��

�����/CTM�VJG�UVCTV�QH�VJG�HWPEVKQP����
���KH�
/HWPE5VCTV
(WPE��
���]
��������&Q�VJG�QRGTCVKQP�WUKPI�C�EWUVQO�HWPEVKQP��
��������%JGEM�.76�UK\G�CPF�FGRVJ�KH�RCTCOGVGT�EJGEMKPI�KU�GPCDNGF���
����
������KH�

�/HWPE2CTCO%JGEM
(WPE���^^
���������

/DWH+PSWKTG
.WV+F�/A5+<'A:�/A07..�����.76A5+<'����
���������
/DWH+PSWKTG
.WV+F�/A5+<'A$+6�/A07..�����.76A&'26*���
������]
�����������4GCF�VJG�.76�EQPVGPV����
���������/DWH)GV
.WV+F�.WV%QPVGPV��

�����������#FF�VJG�EQPUVCPV����
���������HQT�
P������P���.76A5+<'��P

�
���������]
��������������%CNEWNCVG�VJG�XCNWG�VQ�YTKVG���
������������6OR8CNWG���
UJQTV�.WV%QPVGPV=P?�
�
UJQTV�%QPUVCPV6Q#FF�

��������������9TKVG�VJG�XCNWG�KH�PQ�QXGTHNQY��QT�GNUG�UCVWTCVG���
������������KH�
6OR8CNWG�����ZHH�
��������������.WV%QPVGPV=P?���
WPUKIPGF�EJCT�6OR8CNWG�
�����������GNUG�
��������������.WV%QPVGPV=P?����ZHH�
���������_

�����������9TKVG�VJG�TGUWNV�KP�VJG�.76����
���������/DWH2WV
.WV+F�.WV%QPVGPV��
������_
������GNUG�
������]
�����������4GRQTV�C�/+.�GTTQT����
���������/HWPE'TTQT4GRQTV
(WPE�/A(70%A'4414
&+/'05+10A'4414�
��������������������������.WV�FKOGPUKQPU�PQV�UWRRQTVGF���
��������������������������5K\G�KU�PQV������GPVTKGU�QT��
��������������������������&GRVJ�KU�PQV���DKV�����/A07..���
�����_
��_

�����/CTM�VJG�GPF�QH�VJG�HWPEVKQP����
���/HWPE(TGG#PF'PF
(WPE��
_������

���
EQPV������

520 Appendix B: The MIL Function Developer’s Toolkit

���/CKP��VQ�VGUV�VJG�RUGWFQ�/+.�HWPEVKQP����
XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP��������#RRNKECVKQP�+FGPVKHKGT�������
���������/KN5[UVGO�������������5[UVGO�+FGPVKHKGT������������
���������/KN&KURNC[������������&KURNC[�+FGPVKHKGT�����������
���������/KN+OCIG��������������+OCIG�DWHHGT�+FGPVKHKGT������
���������/KN.WV����������������.WV�DWHHGT�+FGPVKHKGT��������

�����#NNQECVG�FGHCWNV�CRRNKECVKQP��U[UVGO��FKURNC[�CPF�KOCIG����
���/CRR#NNQE&GHCWNV
/A%1/2.'6'���/KN#RRNKECVKQP���/KN5[UVGO�
��������������������/KN&KURNC[��/A07..���/KN+OCIG��
�������������������������������
�����.QCF�C�TGHGTGPEG�KOCIG���
���/DWH.QCF
�$QCTF�OKO���/KN+OCIG��

�����2CWUG���
���RTKPVH
�4GHGTGPEG�KOCIG�YCU�NQCFGF��RTGUU�C�MG[�>P>P���
���IGVEJCT
��

�����#NNQECVG�C�.76�DWHHGT���
���/DWH#NNQE�F
/KN5[UVGO��.76A5+<'��.76A&'26*��/A.76���/KN.WV��

�����5GV�VJG�.76�VQ�C�TCOR�
VTCPURCTGPV�����
���/IGP.WV4COR
/KN.WV��������.76A5+<'����.76A5+<'����

�����%CNN�VJG�2UGWFQ�/+.�HWPEVKQP�VQ�CFF�CP�QHHUGV�
�Z����VQ�VJG�.76����
���#FF%QPUV6Q.WV
/KN.WV���Z����

�����&Q�C�NWV�OCRRKPI�YKVJ�VJKU�PGY�.76����
���/KO.WV/CR
/KN+OCIG��/KN+OCIG��/KN.WV��

�����2CWUG���
���RTKPVH
�6JG�YJKVG�NGXGN�QH�VJG�KOCIG�YCU�CWIOGPVGF�WUKPI�UQOG>P����
���RTKPVH
�TGIWNCT�/+.�HWPEVKQPU�CPF�C�EWUVQO�RUGWFQ�/+.�HWPEVKQP�>P���
���RTKPVH
�2TGUU�C�MG[�VQ�VGTOKPCVG�>P���
���IGVEJCT
��

�����(TGG�VJG�.76�DWHHGT���
���/DWH(TGG
/KN.WV��

�����(TGG�FGHCWNVU���
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

MIL Function Developer’s Toolkit Command Reference 521

MIL Function Developer’s Toolkit
Command Reference
The MIL Function Developer’s Toolkit provides functions that
allow you to create pseudo-MIL functions. The following table
provides an overview of these functions.

MIL developer
functions

Command parameters Description

MfuncAlloc() FunctionName, ParameterNumber Allocate a pseudo-MIL
function.

MfuncAllocId() FunctionId, ObjectType, UserPtr Allocate a pseudo-MIL object
(a user-created object
associated with a MIL
identifier).

MfuncErrorReport() FunctionId, ErrorCode,
ErrorMessage, ErrorSubMessage1,
ErrorSubMessage2,
ErrorSubMessage3

Report an error message.

MfuncFreeAndEnd() FunctionId Free and end a pseudo-MIL
function.

MfuncFreeId() FunctionId, ObjectId Free the MIL identifier
associated with a pseudo-MIL
object.

MfuncGetError() FunctionId, ErrorType, ErrorVarPtr Get error code or message.

MfuncIdGetObjectType() FunctionId, ObjectId Get the object type of a
pseudo-MIL object.

MfuncIdGetUserPtr() FunctionId, ObjectId Get the user pointer
associated with a pseudo-MIL
object.

MfuncIdSetObjectType() FunctionId, ObjectId, ObjectType Assign a new object type to a
pseudo-MIL object.

MfuncIdSetUserPtr() FunctionId, ObjectId, UserPtr Assign a new user pointer to a
pseudo-MIL object.

MfuncModified() BufId Signal the modification of a
MIL buffer.

MfuncParamChar() FunctionId, ParamIndex,
ParamValue

Register a character
parameter.

MfuncParamCheck() FunctionId Read the MIL application
parameter checking flag.

MfuncParamDouble() FunctionId, ParamIndex,
ParamValue

Register a double parameter.

522 Appendix B: The MIL Function Developer’s Toolkit

MfuncParamId() FunctionId, ParamIndex,
ParamValue, ParamIs,
ParamHasAttr

Register a MIL_ID parameter.

MfuncParamLong() FunctionId, ParamIndex,
ParamValue

Register a long parameter.

MfuncParamPointer() FunctionId, ParamIndex,
ParamValue

Register a pointer parameter.

MfuncParamRegister() FunctionId Read MIL application
parameter registering flag.

MfuncParamShort() FunctionId, ParamIndex,
ParamValue

Register a short parameter.

MfuncParamString() FunctionId, ParamIndex,
ParamValue

Register a null terminated
string parameter.

MfuncStart() FunctionId Signal the start of a
pseudo-MIL function.

MIL developer
functions

Command parameters Description

MfuncAlloc 523

MfuncAlloc

 Synopsis Allocate a Pseudo-MIL function.

Format MIL_ID MfuncAlloc(FunctionName, ParameterNumber)

Description This function allows you to associate the current user-created function (that
is, the function calling MfuncAlloc()) with a MIL identifier and allocate it
as a pseudo-MIL function. This function will then be considered as a
standard MIL function, respecting all of MIL environment controls, such as
tracing and error handling.

You must establish the existence of the pseudo-MIL function (with a call to
MfuncAlloc()), before calling any other function. You must also register
each parameter of this pseudo-MIL function by calling the appropriate
MfuncParam...() function. Once this has been done, you must signal the
actual start of the pseudo-MIL function by calling MfuncStart().

Upon completion, you must signal the end of the pseudo-MIL function by
calling MfuncFreeAndEnd().

The FunctionName parameter is a null terminated string specifying the
name of the current user-created function.

The ParameterNumber parameter is the number of parameters passed
to the current user-created function.

Return value The returned value is a MIL identifier for the function; M_NULL on error.

Example
mnatfct.c

See also MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer(), MfuncParamShort(), MfuncParamString()

char *FunctionName; Function name
long ParameterNumber; Number of parameters passed

524 MfuncAllocId

MfuncAllocId

Synopsis Allocate a MIL identifier for a user-created object.

Format MIL_ID MfuncAllocId(FunctionId, ObjectType, UserPtr)

Description This function allows you to allocate a MIL identifier and associate it with a
user-created object (such as a structure, or an array). The object is then
known as a pseudo-MIL object. This permits a user-created object to be
recognized by MIL and treated as a standard MIL object, for such procedures
as tracing or error handling.

The FunctionId parameter is the identifier of the pseudo-MIL function
currently in use.

The ObjectType parameter identifies the type of MIL object being
allocated. This type is a bit encoded value and must be composed of
M_USER_OBJECT_1 or M_USER_OBJECT_2 with one of the 16 least
significant bits set (for example, M_USER_OBJECT_1 + 0x1L). You should
use different group types (M_USER_OBJECT_ 1 or M_USER_OBJECT_2) for
objects that are to be used in different MIL modules.

The UserPtr parameter specifies the address of the user-created object that
is to be associated with a MIL identifier. This object can be a structure, an
array, or any other data type.

Return value The returned value is the allocated MIL identifier; M_NULL on error.

See also MfuncFreeId(), MfuncParamId(), MfuncIdGetObjectType(),
MfuncIdSetObjectType(), MfuncIdGetUserPtr(), MfuncIdSetUserPtr()

MilId FunctionId; Function identifier
long ObjectType; Object type
void *UserPtr; Pointer to the user-created object

MfuncErrorReport 525

MfuncErrorReport

Synopsis Report an error message.

Format long MfuncErrorReport(FunctionId, ErrorCode, ErrorMessage,
 ErrorSubMessage1, ErrorSubMessage2,
 ErrorSubMessage3)

Description This function allows you to log an error message using the MIL error
handling mechanism. When this function is called, MIL will treat your error
as a normal MIL error. If error reporting is enabled, the error message will
be printed and all the information will be logged by the MIL error handler.
These errors can be read using the standard MIL error functions
(MappGetError()).

If you report an error with an error code set to M_NULL, you will reset any
pending internal error that a MIL function call, inside your pseudo-MIL
function, might have generated. This is useful if you don’t wish the MIL
error message to be reported. If you don’t clear these errors, or you don’t
report your own error, MIL will detect any pending error when executing
MfuncFreeAndEnd() and report the error message, prefixed with the
name of your pseudo-MIL function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ErrorCode parameter is the numeric code assigned to the pseudo-MIL
function’s group of error messages. It must be M_FUNC_ERROR or greater
(M_FUNC_ERROR+offset), so that it does not conflict with MIL specific
errors.

MIL_ID FunctionId; Function identifier
long ErrorCode; Error code to log
char *ErrorMessage; Error message to log
char *ErrorSubMessage1; Sub-error message 1 to log
char *ErrorSubMessage2; Sub-error message 2 to log
char *ErrorSubMessage3; Sub-error message 3 to log

526 MfuncErrorReport

The ErrorMessage parameter and its sub-messages are null terminated
strings specifying the text of your error message. If you do not want to use
one of the sub-messages, M_NULL can be passed. The error message, or any
sub-error message, must not be longer than M_ERROR_MESSAGE_SIZE
characters (including the terminating null character).

Return value The returned value is M_NULL if an error occurred during the error log
operation; otherwise, not null.

Example mnatfct.c

MfuncFreeAndEnd 527

MfuncFreeAndEnd

Synopsis Free and end a Pseudo-MIL function.

Format void MfuncFreeAndEnd(FunctionId)

Description This function signals the end of a pseudo-MIL function, and frees the
identifier associated with it. It assumes that a corresponding call to
MfuncStart() was previously made.

You must call this function to exit the pseudo-MIL function. When
MfuncFreeAndEnd() is called, MIL will treat your function end as a
standard MIL function end. Any pending error within the function will be
reported and, if trace reporting is enabled, the trace message will be printed.
You can control the trace behavior using the normal MIL trace control
function (MappControl()).

The FunctionId parameter is the MIL identifier of the function to
terminate.

See also MfuncAlloc(), MfuncStart()

MIL_ID FunctionId; Function identifier

528 MfuncFreeId

MfuncFreeId

Synopsis Free the MIL identifier associated with a pseudo-MIL object.

Format void MfuncFreeId(FunctionId, ObjectId)

Description This function frees a MIL object identifier that was allocated with the
MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object to
free.

See also MfuncAllocId()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier

MfuncGetError 529

MfuncGetError

Synopsis Get error code or message.

Format long MfuncGetError(FunctionId, ErrorType, ErrorVarPtr)

Description This function allows you to read an error code or message that was
previously reported. This function can be used to check the success of a MIL
function call inside a pseudo-MIL function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ErrorType parameter identifies the type of error you want to read. It
must be set to one of the following:

MIL_ID FunctionId; Function identifier
long ErrorType; Error type
void *ErrorVarPtr; Pointer to a variable for the error

M_INTERNAL Error code returned by the last call to any MIL
function. This code is reset to M_NULL_ERROR
before each MIL function call and is set to a
specific error code if an error occurs while
executing the function. The error code is
written in the location pointed to by
ErrorVarPtr (when not M_NULL) as a long
value and is also returned by
MfuncGetError().

M_INTERNAL_SUB_NB Returns the number of error subcodes
associated to the internal error. The number is
written in the location pointed to by
ErrorVarPtr (when not M_NULL) as a long
value and is also returned by
MfuncGetError().

M_INTERNAL_SUB_1, ...
M_INTERNAL_SUB_3

The nth error subcode associated to the
current error. The error subcode is written in
the location pointed to by ErrorVarPtr (when
not M_NULL) as a long value and is also
returned by MfuncGetError().

M_INTERNAL_FCT The function code associated to the current
error. The function code is written in the
location pointed to by ErrorVarPtr (when
ErrorVarPtr is not M_NULL) as a long value
and is also returned by MfuncGetError().

530 MfuncGetError

The ErrorVarPtr parameter is the address of the variable containing the
error code or message.

To get the M_GLOBAL or M_CURRENT error, use the regular
MappGetError() function.

Return value The returned value is an error code or sub-error code; otherwise, M_NULL.

M_INTERNAL_...+
M_MESSAGE

When M_MESSAGE is added to an
M_INTERNAL... define, the function will
return the string associated with specified
error type. The string will be written in a
character array pointed to by
ErrorVarPtr. This array must be at least
M_ERROR_MESSAGE_SIZE characters in size.

MfuncIdGetObjectType 531

MfuncIdGetObjectType

Synopsis Get the object type of a pseudo-MIL object.

Format long MfuncIdGetObjectType(FunctionId, ObjectId)

Description This function retrieves the object type of an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

Return value The returned value is the object type of the specified object. When the
MIL_ID is not valid, M_NULL is returned if the Id value is less than the
greater valid Id; M_INVALID if the Id value is greater than the greater valid
Id.

See also MfuncAllocId(), MfuncIdSetObjectType()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier

532 MfuncIdGetUserPtr

MfuncIdGetUserPtr

Synopsis Get the user pointer of a pseudo-MIL object.

Format void* MfuncIdGetUserPtr(FunctionId, ObjectId)

Description This function obtains the user pointer of an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

Return value The returned value is the user pointer of the specified object.

See also MfuncAllocId(), MfuncIdSetUserPtr()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier

MfuncIdSetObjectType 533

MfuncIdSetObjectType

Synopsis Assign a new object type to a pseudo-MIL object.

Format void MfuncIdSetObjectType(FunctionId, ObjectId, ObjectType)

Description This function assigns a new object type to an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

The ObjectType parameter is the new object type to be assigned to the
specified object. This type is a bit encoded value and must be composed of
M_USER_OBJECT_1 or M_USER_OBJECT_2 with one of the 16 least
significant bits set (for example, M_USER_OBJECT_1 + 0x1L).

See also MfuncAllocId(), MfuncIdGetObjectType()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier
long ObjectType; New object type

534 MfuncIdSetUserPtr

MfuncIdSetUserPtr

Synopsis Assign a new pointer to a pseudo-MIL object.

Format void MfuncIdSetUserPtr(FunctionId, ObjectId, UserPtr)

Description This function assigns a new user pointer to an object that was allocated with
the MfuncAllocId() function.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function in use.

The ObjectId parameter is the MIL identifier of the pseudo-MIL object.

The UserPtr parameter is the new user pointer to assign to the specified
object.

See also MfuncAllocId(), MfuncIdGetUserPtr()

MIL_ID FunctionId; Function identifier
MIL_ID ObjectId; Object identifier
Void *UserPtr; New user pointer

MfuncModified 535

MfuncModified

Synopsis Signal the modification of a MIL buffer.

Format long MfuncModified(BufId)

 Description This function must be used to signal to MIL that the identified buffer has
been modified (altered). MIL will then increment the modification count of
that MIL buffer. This count is used by some MIL functions to manage
automatic updates. The current value of the count is accessible via
MbufInquire().

The BufId parameter is the MIL identifier of the buffer that has been
modified.

Return value The returned value is M_NULL if successful; otherwise, an error was found.

MIL_ID BufId; Buffer identifier

536 MfuncParamChar

MfuncParamChar

Synopsis Register a character parameter.

Format void MfuncParamChar(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a character parameter of the current
pseudo-MIL function. The MfuncParamChar() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the character parameter.

Example mnatfct.c

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamDouble(),
MfuncParamId(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
char ParamValue; Parameter value

MfuncParamCheck 537

MfuncParamCheck

Synopsis Read the MIL application parameter checking flag.

Format long MfuncParamCheck(FunctionId)

Description This function allows you to read the MIL application parameter checking
flag, which has been set with the MappControl() function. The
MfuncParamCheck() function can be used to determine if the parameters
of the specified pseudo-MIL function must be checked. This is typically used
when you want to save the parameter checking time for a time-critical
pseudo-MIL function.

The FunctionId parameter is the identifier of the pseudo-MIL function in
use.

Return value The returned value is M_NULL if no parameter checking is required;
otherwise, checking is required.

Example mnatfct.c

See also MappControl()

MIL_ID FunctionId; Function identifier

538 MfuncParamDouble

MfuncParamDouble

 Synopsis Register a double parameter.

Format void MfuncParamDouble(FunctionId, ParamIndex, ParamValue)

 Description This function allows you to register a double parameter of the current
pseudo-MIL function. The MfuncParamDouble() function should be
called after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the double parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamCheck(),
MfuncParamId(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
double ParamValue; Parameter value

MfuncParamId 539

MfuncParamId

Synopsis Register a MIL_ID parameter.

Format void MfuncParamId(FunctionId, ParamIndex, ParamValue,
 ParamIs, ParamHasAttr)

Description This function allows you to register a MIL_ID parameter of the specified
pseudo-MIL function. The MfuncParamId() function should be called after
a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the pseudo-MIL function
that received the parameter.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the MIL_ID parameter.

The ParamIs parameter specifies the type of MIL object. It must be one, or
more, of the following types to be considered valid:

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
MIL_ID ParamValue; Parameter value
long ParamIs; Type of MIL object represented
long ParamHasAttr; Attribute the MIL object must have

M_IMAGE M_LUT M_STRUCT_ELEMENT

M_KERNEL M_HIST_LIST M_PROJ_LIST

M_EVENT_LIST M_COUNT_LIST M_EXTREME_LIST

M_DISPLAY M_DIGITIZER M_ARRAY

M_APPLICATION M_SYSTEM M_GRAPHIC_CONTEXT

M_BLOB_RESULT M_BLOB_FEATURE_LIST M_PAT_MODEL

M_PAT_RESULT M_OCR_FONT M_OCR_RESULT

M_MEAS_MARKER M_MEAS_RESULT M_MEAS_CONTEXT

M_USER_OBJECT_1 M_USER_OBJECT_2

540 MfuncParamId

The ParamHasAttr parameter specifies what kind of attribute the MIL
object must have, in order to be considered a valid MIL_ID parameter for the
specified function. Either M_IN or M_OUT (or both) must be specified, to
indicate if the buffer is used for input or output. Optionally, you can specify
one or more additional attributes from the following list: M_GRAPH, M_DISP,
M_GRAB, M_PROC.

Note that the arguments tagged as M_OUT will have their internal
modification count incremented to signal that they have been modified.

Example mnatfct.c

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamLong(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MfuncParamLong 541

MfuncParamLong

Synopsis Register a long parameter.

Format void MfuncParamLong(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a long parameter of the current
pseudo-MIL function. The MfuncParamLong() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the long parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamPointer(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
long ParamValue; Parameter value

542 MfuncParamPointer

MfuncParamPointer

Synopsis Register a pointer parameter.

Format void MfuncParamPointer(FunctionId, ParamIndex, *ParamValue)

Description This function allows you to register a pointer parameter of the current
pseudo-MIL function. The MfuncParamPointer() function should be
called after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the pointer parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamShort(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
void *ParamValue; Parameter value

MfuncParamRegister 543

MfuncParamRegister

Synopsis Read the MIL application parameter registering flag.

Format long MfuncParamRegister(FunctionId)

Description This function allows you to read the MIL application parameter registering
flag. This function can be used to know if the parameters of the specified
pseudo-MIL function must be registered. This is typically used when you
want to save the parameter registration time for some time-critical
pseudo-MIL functions.

The FunctionId parameter is the identifier of the pseudo-MIL function in
use.

Return value The returned value is M_NULL if no parameter registering is required;
otherwise, registering is required.

MIL_ID FunctionId; Function identifier

544 MfuncParamShort

MfuncParamShort

Synopsis Register a short parameter.

Format void MfuncParamShort(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a short parameter of the current
pseudo-MIL function. The MfuncParamShort() function should be called
after a call to MfuncAlloc() and before a call to MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the short parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer(), MfuncParamString()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
short ParamValue; Parameter value

MfuncParamString 545

MfuncParamString

Synopsis Register a null terminated string parameter.

Format void MfuncParamString(FunctionId, ParamIndex, ParamValue)

Description This function allows you to register a null terminated string parameter of
the current pseudo-MIL function. The MfuncParamString() function
should be called after a call to MfuncAlloc() and before a call to
MfuncStart().

The FunctionId parameter is the identifier of the current pseudo-MIL
function.

The ParamIndex parameter is the index of the parameter within the
function parameter list. The index of the first parameter is considered to be
one.

The ParamValue parameter is the value of the string parameter.

See also MfuncAlloc(), MfuncStart(), MfuncFreeAndEnd(), MfuncParamChar(),
MfuncParamDouble(), MfuncParamId(), MfuncParamLong(),
MfuncParamPointer(), MfuncParamShort()

MIL_ID FunctionId; Function identifier
long ParamIndex; Parameter index
void ParamValue; Parameter value

546 MfuncStart

MfuncStart

Synopsis Signal the start of a pseudo-MIL function.

Format long MfuncStart(FunctionId)

Description This function signals to MIL the actual start of the specified pseudo-MIL
function. When this function is called, MIL will treat your function start as
a standard MIL function start. If trace reporting is enabled, the trace
message will be printed. You can control the trace behavior using the normal
MIL trace function (MappControl()).

Note that if a MIL identifier was registered in the function parameter list
with MfuncParamId(), the validity of that identifier will be checked
during MfuncStart() execution, and a MIL error will be reported if that
identifier is not valid.

The FunctionId parameter is the MIL identifier of the pseudo-MIL
function to start.

Return value The returned value is M_NULL if an error occurred; otherwise, not null.

Example mnatfct.c

See also MfuncAlloc(), MfuncFreeAndEnd(), MfuncParamId(), MappControl()

MIL_ID FunctionId; Function identifier

Appendix C: Troubleshooting

This appendix discusses error reporting, and suggests
possible reasons for reported problems.

548 Appendix C: Troubleshooting

Error reporting
MIL has an error-reporting mechanism that is adaptable to
your application development stage. MIL can report
application errors to the screen or by using MappGetError().
During application development, it is probably best to have
errors reported to the screen so that you can quickly debug the
application. You control error reporting to the screen, using
MappControl(); by default, error reporting to the screen is
enabled.

In some circumstances, you might want your application to act
on an error. You can do this by testing for the error and acting
on it. For example, we recommend that it acts upon errors that
occur during data buffer allocation. In this case, the application
can inquire about the application error-code variable, using
MappGetError(). You can also have your application act on
errors by associating a function to them, using
MappHookFunction().

Did an error occur? MappGetError() allows you to check for the success of the
previous command call or that of a sequence of previous
command calls. If this command returns an error code other
than M_NULL_ERROR, you can use MappGetError() again to
obtain a more detailed description of the error.

The error description MappGetError() can provide the name of the function that
caused an error, a system-error message associated to the error,
and more specific sub-messages. Note, it returns the same
messages as those printed to the screen when error reporting
is enabled.

Possible solutions If the error messages do not provide sufficient information, you
should refer to the next section for possible causes for the errors
and suggested solutions. The error messages are in
alphabetical order. Note, error messages for the more specific
blob analysis and pattern recognition modules are
explained in separate sections at the end of this appendix. If
these suggestions don’t work for you, and you cannot resolve
the problem, see our website, www.matrox.com, or contact the
Matrox Customer Support Group.

Error messages explained 549

Error messages explained
☛ "Allocation error."

Error code: M_ALLOC_ERROR and M_ALLOC_ERROR_2

■ "Application already exists for this task."

You cannot allocate more than one MIL application in the
same Host environment.

■ "Buffer type not supported."

You cannot allocate the buffer because the type (e.g. LUT) or
depth (e.g. 16-bit) is not supported by the target platform.

■ "Cannot allocate system."

The application cannot allocate the requested system. This
can occur if there is insufficient memory, or communication
with the specified system cannot be established.

■ "Cannot allocate digitizer."

The application cannot allocate the requested digitizer. This
can occur if there is insufficient memory, or the digitizer
cannot be initialized as specified.

■ "Cannot allocate display."

The application cannot allocate the requested display. This
can occur if there is insufficient memory, or the display cannot
be initialized as specified.

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate a required temporary
buffer, or you have allocated the maximum number of buffers.
Free all buffers that are no longer required.

■ "Not enough host memory to allocate buffer."

There is insufficient memory on the Host to allocate the
specified buffer. Free Host memory or Host buffers that are
no longer required.

550 Appendix C: Troubleshooting

■ "Not enough host memory to do operation."

There is insufficient memory on the Host to perform the
specified operation. Free Host memory or Host buffers that
are no longer required.

■ "Not enough memory to allocate application."

There is insufficient memory to allocate and start the MIL
application.

■ "Not enough memory to allocate buffer."

There is insufficient memory in the appropriate location to
allocate the specified buffer, or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required, or allocate large buffers before smaller ones.

☛ "Application free operation error."
Error code: M_APP_FREE_ERROR

■ "Application still has system(s) associated to it."

The application cannot be freed because it still has system(s)
allocated. Free all systems allocated within the application,
then free the application.

■ "Default host system still has buffer(s) associated with
it"

The Host system cannot be freed because it still has buffer(s)
associated with it. Free all associated buffers, then free the
Host system.

☛ "Buffer access error."
Error code: M_ACCESS_ERROR

■ "Cannot export buffer."

A MIL buffer cannot be exported to a file in the specified file
format. Possible reasons for this error are:

❐ There might be insufficient Host RAM to allocate
temporary work space.

❐ There might be insufficient disk space to save the buffer.

❐ Export of this type of MIL buffer might not be supported.

Error messages explained 551

■ "Cannot import buffer."

A file cannot be imported into a MIL buffer for the same
reasons indicated in the "Cannot export buffer" error, or due
to one of the following:

❐ The specified file might not be a valid MIL file.

❐ The specified file might be corrupted.

■ "Cannot M_RESTORE a M_RAW file format buffer."

You are trying to restore a file that was stored in M_RAW
format. A file stored in raw format does not have any header
data identifying its buffer parameters. Therefore, to restore
this data file, you must allocate an appropriate MIL buffer,
then import the data, using M_LOAD.

■ "Cannot restore buffer."

A restore operation cannot be successfully completed for the
same reasons indicated in the "Cannot import buffer" error.

■ "Source buffer must be an M_IMAGE buffer."

The buffer does not have the expected M_IMAGE attribute.

☛ "Buffer free operation error."
Error code: M_BUFFER_FREE_ERROR

■ "Buffer still has child(ren) associated to it."

A MIL buffer cannot be freed because it still has child
buffer(s) associated to it. Free all associated child buffers,
then free the parent buffer.

■ "Use MnatBufDestroy() on this kind of buffer."

You are trying to use a standard MIL command to destroy a
buffer allocated in native mode with MnatBufCreate...().

552 Appendix C: Troubleshooting

☛ "Call context error"
Error code: M_CALL_CONTEXT_ERROR

■ "Cannot allocate temporary buffer in memory."

There is insufficient Host memory to allocate the temporary
buffer required for the operation, or you have allocated the
maximum number of buffers. Free Host memory or Host
buffers that are no longer required.

☛ "Child allocation error."
Error code: M_CHILD_ERROR

■ "Cannot allocate temporary child buffer in memory."

There is insufficient memory to allocate a temporary child
buffer required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "Not enough memory to allocate child buffer."

There is insufficient memory left to allocate the specified
buffer. Free all buffers that are no longer required.

☛ "Digitizer error."
Error code: M_DIGITIZER_ERROR

■ "Digitizer and buffer must belong to same system."

The grab buffer is not allocated on the same system as the
digitizer. Allocate them on the same system.

■ "Digitizer LUT dimensions are not compatible with the
user LUT."

The LUT buffer does not have the required number of entries
to map the range of possible image buffer pixel values.
Ensure that the LUT buffer and the digitizer LUTs have the
same number of entries and color bands.

☛ "Display error."
Error code: M_DISPLAY_ERROR

■ "Buffer not currently selected on display."

You cannot de-select a buffer that is not currently selected on
the display.

Error messages explained 553

■ "Cannot associate a M_PSEUDO LUT with a
monochrome display."

The target platform does not support a pseudo-color LUT
with a monochrome display.

■ "Display and buffer must belong to same system."

The buffer to display is not allocated on the same system as
the display. Allocate them on the same system.

■ "Display LUT dimensions are not compatible with the
user LUT."

The LUT buffer does not have the required number of entries
to map the range of possible image buffer pixel values.
Ensure that the LUT buffer and the target display output
LUTs have the same number of entries and color bands.

■ "Zoom factors must be between -16 and 16 inclusive
(except 0)."

You cannot zoom with a factor outside the accepted range.

☛ "File access error."
Error code: M_FILE_ERROR

■ "Cannot open input file."

The file cannot be found or access is denied.

■ "Cannot open output file."

The file cannot be found or access is denied.

■ "Cannot read file."

This can occur if the specified file is read-protected or a
disk-access error has occurred.

■ "Cannot write to file."

Write-access is denied or a disk-access error has occurred.

■ "Not a MIL file."

The specified file does not have a MIL file format.

554 Appendix C: Troubleshooting

☛ "Function start error."
Error code: M_FUNCTION_START_ERROR

■ "No application allocated yet, allocate one."

A function is called prior to a MIL application allocation. Use
MappAlloc() or MappAllocDefault() to allocate the
application before performing any other MIL operation.

☛ "Inappropriate MIL ID."
Error code: M_INVALID_NATURE

The specified MIL object does not have the appropriate
attributes for the operation. For example, it might occur when
an operation expects an image buffer identifier and it is given
LUT buffer identifier instead.

"Invalid parameter n."

The nth parameter is not valid.

☛ "Invalid attributes."
Errorcode: M_INVALID_ATTRIBUTE

■ "Invalid parameter n."

The nth parameter does not have the appropriate attribute(s).

☛ Invalid MIL ID."
Error code: M_INVALID_ID

The specified system, digitizer, display, or buffer identifier is
not valid. That is, its corresponding object was not successfully
allocated before you tried to use it. If you have performed the
object allocation, check to make sure that it was successful.

■ "Invalid parameter n."

The nth parameter is not valid.

☛ "Invalid parameter."
Error code: M_INVALID_PARAM_ERROR, M_INVALID_PARAM_ERROR_2 and
 M_INVALID_PARAM_ERROR_3

■ "Bad parameter value."

A parameter is set to an invalid value. Check that the given
value is within0 the parameter’s range.

Error messages explained 555

■ "Cannot allocate kernel deeper than 8-bits."

Only 8-bit kernels are supported.

■ "For this operation the grab mode must be
asynchronous."

You cannot do an asynchronous operation when the grab
mode setting is synchronous (see MdigControl()).

■ "For this operation, you should supply a LUT buffer
with at least 512 entries."

Your LUT buffer has an insufficient number of entries for the
target operation.

■ "Invalid interpolation type specified."

The specified interpolation type is not valid for the requested
operation. Verify the type.

■ "No graphic text fonts selected."

The specified graphics context does not specify a font to use
to draw text.

■ "One parameter does not reside within the buffer’s
limits."

A specified parameter exceeds the target buffer’s limits. This
is typically caused when you try to allocate a child partially
outside its parent.

■ "Param n not in supported list."

The specified nth parameter value is not one of the supported
values for that parameter.

■ "Pointer must be non Null."

An M_NULL pointer is passed to a function that needs to
return more than one element.

■ "Result buffer too small to hold result."

The result buffer is too small to hold all the results that the
requested function will generate.

■ "Scale factors out of supported range."

556 Appendix C: Troubleshooting

The specified scale factor is outside the supported range of
the target system, or no scaling is supported.

■ "Specified center is outside buffer."

You cannot specify a center of rotation that is outside the
specified buffer coordinates.

■ "This type of conversion requires two 3 band buffers."

"This type of conversion requires a 3-band source buffer."

"This type of conversion requires a 3-band destination
buffer."

You cannot perform a conversion between buffers that do not
have the appropriate number of bands.

☛ "Labeling error."
Error code: M_LABELLING_ERROR

■ "Maximum number of labels reached."

During a labeling operation, exceeding the maximum
number of labels permitted in the destination buffer causes
some labels to be lost.

■ "Should use a buffer of greater bit depth."

The specified buffer’s depth is too small. Use a deeper buffer.

☛ "MIL driver obsolete."
■ "Version must be (version #) or higher."

Your MIL driver is older than the specified version and is not
supported by the current version of the library.

☛ "MIL file access error."
Error code: M_MIL_FILE_ERROR, M_MIL_FILE_ERROR_2 and
 M_MIL_FILE_ERROR_3.

■ "Bad file format detected."

■ Check the file to ensure it is not corrupted.

Error messages explained 557

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "Cannot close file."

A disk-access error has occurred.

■ "Cannot open file."

The file is not found or access is denied.

■ "Cannot read file."

The specified file is read protected or a disk-access error has
occurred.

■ "Cannot seek in file."

MIL cannot read the specified file.

■ "Cannot write to file."

Write-access is denied or a disk-access error has occurred.

■ "Not a MIL file."

A MIL file format is anticipated but not found.

■ "Only 8, 16 or 32 BitsPerSample supported."

The file bit size setting is not 8, 16, or 32 bits/sample.

■ "Only compression type 1 supported."

The target file is compressed and MIL cannot read it.

■ "Only identical BitsPerSample for every sample
supported."

The bits/sample are not identical for every sample in the
TIFF file.

■ "Only PlanarConfiguration 2 supported for
multi-band images."

The PlanarConfiguration parameter is not equal to 2 in the
TIFF file. MIL only supports planar mode for color images.

558 Appendix C: Troubleshooting

■ "PhotometricInterp incompatible with
SamplePerPixel."

The photometric interpolation setting of the file is
incompatible with the sample/pixel supported by MIL (type
1 for monochrome buffers and type 2 for multi-band buffers).
This occurs when the TIFF file contains a palletized image,
since only grayscale or true color image formats are
supported.

■ "The image file does not conform to the TIFF 6.0
specification."

The image file has been created according to an older,
unsupported, TIFF specification.

■ "Up to 8 Samples Per Pixel supported."

The samples/pixel is greater than 8 in the TIFF file.

■ "Wrong Byte Order, Only INTEL Byte Ordering
supported."

The file has the wrong byte ordering. Only INTEL byte
ordering is supported by the MIL TIFF handler.

☛ "Overscan processing error."
Error code: M_OVERSCAN_ERROR

■ "Buffer too small to perform the selected overscan.

The buffer is too small to perform the selected overscan.
Disable the overscan with MbufControlNeighborhoood().

■ "Cannot allocate temporary buffer in memory.

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

Error messages explained 559

☛ "Processing error."
Error code: M_PROCESSING_ERROR

■ "All buffers do not have the same working system."

"Cannot find any working system between buffers."

"Cannot process a HOST buffer as a whole and a temporary
buffer."

The location of the specified buffers is not valid for the
requested operation.

■ "No processor on target processing system."

The specified target system does not support processing.

■ "Not enough memory or system limitation, cannot
process buffer."

When processing a buffer, there is insufficient memory or a
system limitation is encountered.

■ "Source buffers cannot overlap destination buffer."

The buffers used for the operation overlap in an unsupported
manner.

☛ "System command error."
Error code: M_COMMAND_DECODER_ERROR

■ "Operation execution failed."

The target system cannot execute the requested operation.

■ "Requested operation not supported."

The target system does not support the requested operation.

☛ "System free operation error."
Error code: M_SYSTEM_FREE_ERROR

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

560 Appendix C: Troubleshooting

■ "System still has buffer(s) associated to it."

You cannot free a system that still has buffer(s) allocated on
it. Free those buffers, then free the system.

■ "System still has digitizer(s) associated to it."

You cannot free a system that still has digitizer(s) allocated
on it. Free those digitizers, then free the system.

■ "System still has display(s) associated to it."

You cannot free a system that still has display(s) allocated on
it. Free those displays, then free the system.

☛ "TIFF file access error."
Error code: M_TIFF_ERROR and M_TIFF_ERROR_2

■ "Cannot allocate temporary buffer in memory."

There is insufficient memory to allocate the temporary buffer
required for the operation or you have allocated the
maximum number of buffers. Free all buffers that are no
longer required.

■ "Cannot close file."

A disk-access error has occurred.

■ "Cannot open file."

The TIFF file is not found or access is denied.

■ "Cannot read file."

This can occur if the specified TIFF file is read protected or
a disk-access error has occurred.

■ "Cannot write to file."

Write-access to the specified TIFF is denied or a disk-access
error has occurred.

■ "Not a TIFF file."

The specified file is not detected as a TIFF file. This can occur
if the file is of the wrong type or if it is corrupted.

Error messages explained 561

■ "Only 8, 16 or 32 BitsPerSample supported."

The file bit size setting is not 8, 16, or 32 bits/sample.

■ "Only compression type 1 supported."

The target TIFF file is compressed and MIL TIFF handler
cannot read it.

■ "Only identical BitsPerSample for every sample
supported."

The bits/sample ratio is not identical for every sample in the
TIFF file.

■ "Only PlanarConfiguration 2 supported for
multi-band images."

The PlanarConfiguration parameter is not equal to 2 in the
TIFF file. MIL only supports planar mode for color images.

■ "PhotometricInterp incompatible with
SamplePerPixel."

The photometric interpolation setting of the file is
incompatible with the sample/pixel supported by MIL (type
1 for monochrome buffers and type 2 for multi-band buffers).
This occurs when the TIFF file contains a palletized image,
since only grayscale or true color image formats are
supported.

■ "The image file does not conform to the TIFF 6.0
specification."

The image file has been created according to an older,
unsupported, TIFF specification, or it is incomplete.

■ "Up to 8 Samples Per Pixel supported."

The samples/pixel ratio is greater than 8 in the TIFF file.

■ "Wrong Byte order, only INTEL Byte Ordering
supported."

The file has the wrong byte ordering. Only INTEL byte
ordering is supported by the MIL TIFF handler.

562 Appendix C: Troubleshooting

Driver error messages explained
☛ "Asynchronous grab mode not supported."

Error code: M_ERROR_SYSTEM_START_CODE + 76L

The target system does not support asynchronous grab mode.

☛ "Board initialization failed."
Error code: M_ERROR_SYSTEM_START_CODE + 11L

Communication with the specified board cannot be established
or initialization is impossible.

☛ "Board selection failed."
Error code: M_ERROR_SYSTEM_START_CODE + 12L

The specified board cannot be selected as the target of the
requested operation. Communication is impossible or broken.

☛ "Buffer(s) still allocated on that system."
 Error code: M_ERROR_SYSTEM_START_CODE + 1L

You cannot free a system without freeing all currently allocated
system buffers.

☛ "Buffer type not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 22L

The selected buffer type is not supported by the target system.

☛ "Can not allocate digitizer."
Error code: M_ERROR_SYSTEM_START_CODE + 56L

The digitizer cannot be initialized as specified.

☛ "Can not allocate display."
Error code: M_ERROR_SYSTEM_START_CODE + 65L

The display cannot be initialized as specified.

☛ "Can not allocate LUT buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 55L

The target system does not support LUT or allocation of a
custom LUT.

Driver error messages explained 563

☛ "Can not allocate temporary buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 85L

Insufficient memory available on the system boards or on the
Host. Free any buffers that are not in use.

☛ "Can not display buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 63L

The buffer is allocated for display or the system does not
support the display of that type of buffer.

☛ "Can not grab buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 70L

The buffer is not allocated as a grab buffer or the system does
not support the grab.

☛ "Can not open specified .DCF file."
Error code: M_ERROR_SYSTEM_START_CODE + 29L

The display configuration file is not found or access is denied.

☛ "Can not undisplay buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 66L

You cannot de-select a buffer that is not selected on the display.

☛ "Can not update display."
Error code: M_ERROR_SYSTEM_START_CODE + 78L

This can occur when trying to update the display with new data.
Access to the display may be impossible.

☛ "Can not update displayed buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 64L

Access to the displayed buffer might be impossible.

☛ "Character font not supported on system"
Error code: M_ERROR_SYSTEM_START_CODE + 27L

The selected character font is not supported on the target
system.

564 Appendix C: Troubleshooting

☛ "Continuous grab must be halted before next
operation."

Error code: M_ERROR_SYSTEM_START_CODE + 14L

You cannot execute the requested command while performing
a continuous grab on the target system. Halt the grab before
issuing another command.

☛ Data format name or file name not found."
Error code: M_ERROR_SYSTEM_START_CODE + 56L

Verify the selected data format name and file name.

☛ "Device(s) still allocated on that driver."
Error code: M_ERROR_SYSTEM_START_CODE + 9L

You cannot free a system without freeing all of its devices
(digitizer or display).

☛ "Digitizer channel not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 21L

The selected digitizer channel is not supported.

☛ "Digitizer configuration error."
Error code: M_ERROR_SYSTEM_START_CODE + 13L

The digitizer cannot be initialized as specified.

☛ "Digitizer format not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 25L

The selected digitizer format is not supported.

☛ "Digitizer(s) still allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 5L

You cannot free a system without freeing all of its digitizers.

☛ Display configuration error."
Error code: M_ERROR_SYSTEM_START_CODE + 18L

The display cannot be initialized as specified.

Driver error messages explained 565

☛ Display(s) still allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 6L

You cannot free a system without freeing all of its displays.

☛ "Distance transform not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 26L

The selected distance transform is not supported on the target
system.

☛ "Error changing channel."
Error code: M_ERROR_SYSTEM_START_CODE + 71L

The selected channel is invalid or there is no digitizer connected
to that channel.

☛ "Error changing reference."
Error code: M_ERROR_SYSTEM_START_CODE + 72L

Verify whether the system supports reference level changes.

☛ "Error setting LUT."
Error code: M_ERROR_SYSTEM_START_CODE + 67L

This might be due to insufficient memory to perform the
operation.

☛ "Incompatible buffer memory organization."
Error code: M_ERROR_SYSTEM_START_CODE + 10L

The memory organization of the buffers used in the requested
operation are not compatible with each other on the target
system. This is determined by your hardware.

☛ "Input device not responding."
Error code: M_ERROR_SYSTEM_START_CODE + 16L

The digitizer is not sending data to the system. Ensure that the
digitizer is properly connected to the system.

The following errors occur when the requested item is
inappropriate or outside the supported range for your system.
Verify your system’s restrictions on the specified item.

☛ "Invalid board number."
Error code: M_ERROR_SYSTEM_START_CODE + 50L

566 Appendix C: Troubleshooting

☛ "Invalid digitizer channel."
Error code: M_ERROR_SYSTEM_START_CODE + 15L

☛ "Invalid digitizer number."
Error code: M_ERROR_SYSTEM_START_CODE + 80L

☛ "Invalid display number."
Error code: M_ERROR_SYSTEM_START_CODE + 79L

☛ "Invalid horizontal scaling factor."
Error code: M_ERROR_SYSTEM_START_CODE + 74L

☛ "Invalid initialization flag."
Error code: M_ERROR_SYSTEM_START_CODE + 28L

☛ "Invalid number of fields."
Error code: M_ERROR_SYSTEM_START_CODE + 82L

☛ ""Invalid scaling factor."
Error code: M_ERROR_SYSTEM_START_CODE + 69L

☛ "Invalid system number."
Error code: M_ERROR_SYSTEM_START_CODE + 51L

☛ "Invalid vertical scaling factor."
Error code: M_ERROR_SYSTEM_START_CODE + 75L

☛ "LUT is more than 256 elements."
Error code: M_ERROR_SYSTEM_START_CODE + 54L

☛ "LUT not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 73L

- - - - - - - - - - - end of group - - - - - - - - - - -

Driver error messages explained 567

☛ "Not enough host memory"
Error code: M_ERROR_SYSTEM_START_CODE + 2L

There is insufficient host memory available. Free all unused
buffers residing on the Host.

☛ "Not enough memory to allocate buffer."
Error code: M_ERROR_SYSTEM_START_CODE + 23L

There is insufficient memory to allocate the specified buffer on
the target system. Free all unused buffers.

☛ "Pan factor not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 19L

The requested pan factor is outside of the supported range.

☛ "Parameter to inquire not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 20L

Inquiry of this parameter is not supported or the type of inquiry
is invalid.

☛ "Synchronous grab mode not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 77L

The target digitizer does not support synchronous grab. You
must use asynchronous mode.

☛ "Too many buffers allocated on that system."
Error code: M_ERR_SYSTEM_START_CODE + 3L

You have exceeded the number of allowable system buffers.
Free unused buffers.

☛ "Too many digitizers allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 7L

You have exceeded the number of allowable system digitizers.

☛ "Too many display allocated on that system."
Error code: M_ERROR_SYSTEM_START_CODE + 8L

You have exceeded the number of allowable system displays.

568 Appendix C: Troubleshooting

☛ "Too many systems of that type allocated"
Error code: m_ERROR_SYSTEM_START_CODE + 4L

You have exceeded the number of allowable systems of the
specified type.

☛ "Type of interpolation not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 24L

The selected interpolation is not supported for the target
operation.

☛ "Zoom factor not supported."
Error code: M_ERROR_SYSTEM_START_CODE + 17L

The requested zoom factor is outside the supported range.

Index

A
absolute value

image 312
result of operation 123

acquisition
attribute 98, 102, 106, 137, 141
continuous 241
image 240

adding, image 312, 315
alignment 27
allocate

application 35
buffers 11
child buffer 111, 113, 115–116
code object 212
defaults 10, 37
digitizer 11, 226
display 11, 253
feature list 61
graphics context 290
measurement context 382
measurement marker 384
measurement result buffer 387
multi-band buffer 106
OCR result buffer 420
one-dimensional buffer 98
pattern matching model, automatic 448
pattern matching model, manual 452
pattern matching result buffer 456
processing result buffer 310
pseudo-MIL function 523
pseudo-mil identifier 524
result buffer 62
system 9, 497
thread 42
two-dimensional buffer 102

analog reference levels 251
angle

marker 392
measurement marker 389
search 482

application
allocate 35
control environment 40
control module 13
free 46
inquire environment 57
pseudo-MIL, parameter checking flag 537
pseudo-MIL, parameter registering flag 543
starting 9

architecture, display 255
arcs, draw 292
arcs, draw filled 293
area 88
arithmetic operations 312, 315
attributes, data buffer usage 98, 102,
106, 137, 141

avi files 146, 151, 168

B
background color

associate to graphics context 294
inquire 304

binarize 317
bit-shift image 368
blanking, display 264
blob analysis

calculate 64
controls 66
feature list 61
free result buffer 70
inquire 79
module 14
processing mode 66
result buffer 62
results 73, 75
run-length encoding 77
selecting blobs 85

blob chains 67, 69, 89, 94
blob identifier image

labelled 80
blobs

area 88
border-touching 81
box coordinates 88
breadth 88
center of gravity 88
compactness 88

contact points 88
control 66
convex perimeter 88
elongation 88
Euler number 88
Feret diameter 88, 95
fill 68
intercepts 88
label 80
label value 71, 88
labelling 349
length 88
maximum pixel value 88
mean pixel value 88
minimum pixel value 88
number of 72
number of holes 88
perimeter 88
pixel sum 88
reconstruction 81
roughness 88
runs 88
secondary angle 88
select 85
select feature 88
select moment 96
standard deviation 88
sum of squares 88
thickening 369
thinning 370
zone of influence 380

borders
blobs touching 81

C
calculate

blobs 64
measurements 388

camera
specification 226

cell size of code 215
character parameter

pseudo-MIL 536
characters, text 22, 309
child buffers

allocate 111, 113, 115–116
ancestor buffer 172

attributes 111, 113, 115–116
multiple dimensions 111, 113, 116
offset 111, 113, 115–116
parent buffer 172
physical space 111, 113, 115–116
purpose 11
returned coordinates 111, 113, 115–116
type 111, 113, 115–116

circles, draw 292
clear

buffer 118, 295
display 264

clipping
data 127
point-to-point 319

closing operation 321
code object, allocating 212
code results, obtaining 219
codes

allocating code object 212
inquiring about code objects 221
reading 223
setting code objects 214
types 212
writing 224

coefficients, warping 285
color band 106, 137, 141
color images

allocate buffer 106
allocate child buffer 111, 113
color conversion 324
copy 129, 131
create buffer 141
displaying 279–280
grabbing 240–241
loading 177, 190
saving 177, 190

column profile 361
command reference

order 32
quick reference 13
status section 32

commands
Function DevelopersToolkit’ 521
MIL, command summary 13
predefined constants 32
pseudo-MIL 518

communication channels 9

compactness, blob 88
comparative operations 312, 315
compensation

memory 41
processing 40

complex operations 353
connectivity

code 322
mapping 322

contact points 88
continuous grab 241
contrast

marker/background 412
contrast variation, markers 412
control

application environment settings 40
blobs 66
buffer features 119
code object 214
digitizer 229
display 258
graphic context 297
measurement context 390
messages, error 40, 42
neighborhood operation 123
parameter checking 40
processing compensation 40
system processing 499
thread 42
timer 60
trace mechanism 40

conversion
color 324
data format 148, 164

convex perimeter 88
coordinates

measurement marker 392
copy

clip, and 127
color band 129, 131
conditional 134
data 126, 129, 131, 134, 154–155,
157, 160, 178–179, 181, 186–187

data line 184
fonts, OCR 425
mask 136
model 460

D
data allocation and access module 15
data buffer

allocation 98, 102, 106, 137, 141
ancestor 172
attributes 98, 102, 106, 137, 141
clear 118, 295
clip border 127
color band 106, 137, 141
control 119
copy 126
copy color 129, 131
copy theoretical line 160
defined 11
depth 98, 102, 106, 137, 141
export data 148
free 153
import data 164
inquire 145, 171, 348
load 148
multiple dimensions 106, 141
parent 172
pseudo-MIL, modification 535
put data 178–179, 181, 186–187
range 98, 102, 106, 137, 141
restore 188
retrieve data 154–155, 157, 162–163
save 148, 190
sign 98, 102, 106, 137, 141
two-dimensional 137
type 106, 137, 141
write data 184

data format, input device 226
data generation

LUT 284
module 21

data objects, manipulation concepts 10
debugging 12
defaults

application 37
display 511
free 47
image buffer 512
initialization flag 511
input device 512
setup 510
system 511

differences
image, count 329
image, find 312, 315

digitizer
allocate 226
control 229
data format 226
event hook 244
free 239
input channel 228
inquire 246
LUT 250
number 226
reference levels 251

dilation
advanced 354
basic 330
closing operation 321
opening operation 356

DirectDraw underlay-surface display
architecture 255

display
allocation 253
architectures 255
control behavior 258
control module 20
format 253
free 265
image buffer 279–280
inquire 268
LUT 273
number 253
pan 278
scroll 278
zoom 281

display architecture 255
distance

inter-marker 389
distance transformation 331
dividing, image 312, 315
don’t care pixels 486
dots, draw 299
DrawDIBDraw()

VGA 255, 257

E
edge

detection 333
rising/falling 232–233

edge extractors
Laplacian 326

elongation, blob 88
encoding strings 224
encoding type 216
erosion

advanced 354
basic 336
closing operation 321
opening operation 356

error correction type 216
error reporting

appendix 548
code 48
hook 54, 266
message control 40, 42
messages 12, 48, 548
pseudo-MIL function 525, 529
screen 11, 548
suberror code 48
use 11

Euler number 88
event, locate 351
examples

Function DeveloppersToolkit’ 518
pseudo-function development 518

export data buffer 148
extreme value, find 337

F
feature list, blob analysis 61
Feret diameter

blob feature 88, 95
elongation 88
mean 88
minimum/maximum 88
minimum/maximum angle 88
number of 66

field grabbing 232
file format 148

files
avi 146, 151, 168
semi.txt 435

fill
blobs 68

filled-in shapes 293
boundary-type seed fill 300

filter
rank 362

find
buffer extremes 337
marker 391
model 462
multiple models 464
orientation, image/object 466

first-order polynomial warpings 285, 375
floating-point buffers

edge detection restrictions 335
font

associate to graphics context 301
inquire 304
scale 302
size 302

foreground color
associate to graphics context 22, 296
inquire 304

foreground, blobs 66
free

application 46
application defaults 47
buffer, blob analysis result 70
buffer, data 153
buffer, measurement result 394
buffer, OCR 427
buffer, pattern matching 468
code object 218
defaults 10, 47
digitizer 239
display 265
graphics context 22, 303
image processing result buffer 339
marker 394
measurement context 394
model 468
pseudo-MIL function 527
pseudo-MIL identifier 528
system 503

function
development 518
hook 12, 54, 244, 266
pseudo-MIL, allocate 523
pseudo-MIL, example 518
pseudo-MIL, free 527
pseudo-MIL, start 546

Function Developers Toolkit 517
Function DevelopersToolkit

command summary 521
example 518

functions See also, commands 32

G
Genesis

system 498
geometric transforms 22
get

blob label value 71
number of blobs 72
number of model occurrences 469
result, blob analysis 73, 75
result, code read/write 219
result, image processing 340, 342
result, pattern recognition 470

global library state 510
grab

continuous 241
halt 243
image 240
scale 229
wait 242

gradient, intensity or angle 333
graphics

arcs, draw 292
boundary type seed fill 300
buffer, clear 22, 295
circles, draw 292
dots, draw 299
filled elliptic arcs, draw 293
filled rectangles, draw 22, 308
lines, draw 22, 306
rectangles, draw 307
text, write 22, 309

graphics context
allocate 290
background color, associate 294
control 297
default 291
font scale, associate 302
foreground color, associate 22, 296
free 22, 303
inquire 304
text font, associate 301

H
halt grabbing 243
histogram

equalization 345
generate 344

hit or miss pattern matching 354
holes

extract 81
fill 81

hook
digitizer event 244
error 54, 266
get information 51
to an event 54
to OCR event 432
trace 54, 266
user-defined function 12

Host
communication 9
screen 11

host
default system 35, 38, 61–62, 98, 102,
106, 166, 290, 310, 382, 384, 387, 406,
449, 453, 456–457, 477–478, 497

system 284, 497
hue 114, 129, 132, 156, 158, 180, 182, 324

HLS 111

I
identifier, MIL objects 32
image

differences, count 329
projection 361
resizing 364
rotation 366

image buffer
clear 22, 118, 295
removing from display 264
select for display 279
select window for display 280

image processing
module 22
result buffer 310

import data 164
import font, OCR 434
initialization

default 10, 37
system 9

input device
control module 19
reference level 249

input signal 230
inquire

application environment 57
blob analysis 79
code object 221
data buffer 145, 171, 348
digitizer 246
display 268
font, OCR 437
graphics context 304
marker 401
measurement context 401
measurement result buffer 401
pattern recognition model 471
system 504

inspection, using pattern matching 27
intensity

HLS 324
intercepts 88
interpolation mode 338, 364, 367, 458

K
kernels

usage 326
keying

inquire 268

L
labelling

blobs 80, 349
Laplacian edge detection 326
lattice, blobs 66
length

blob 88
inter-marker 389

line equation
between markers 389

lines
draw 22, 306

load
data 177

logical operations 312
luminance

HLS 111, 114, 129, 132, 156, 158,
180, 182, 324

LUTs
data generation 282, 284
display 273
input 250
mapping, point-to-point 353
warping 375

M
macros 33
Mapp...() 13, 35
MappAlloc() 9, 35
MappAllocDefault() 10, 510

example 518
MappControl() 11–12, 548
MappFree() 9
MappFreeDefault() 10

example 518
MappGetError() 12, 548
MappHookFunction() 12, 548
mapping 353
MappModify() 59

marker
allocation 384
characteristics 408
contrast 412
contrast variation 412
default characteristics 385
find 391
free 394
inquire 401
measurement box 411
measuring with 388, 391
orientation 413
parameter, set 408
polarity 414
restore 406
save 407
stripe tolerance 415
stripe width 415

mask, copy 136
match, morphological 354
matrix-defined warpings

generating LUTs for 286
maximum

blob label value 79
pixel value 88

Mblob...() 14
MblobFill() 67
MblobGetLabel() 67
MblobGetRuns() 67
MblobLabel() 67
Mbuf...() 15
MbufAlloc1d() 11

example 518
MbufAlloc2d() 11
MbufAllocColor() 11
MbufExportSequence() 151
MbufFree()

example 518
MbufGet()

example 518
MbufImportSequence() 168
MbufInquire()

example 518
MbufLoad()

example 518
MbufPut()

example 518
McalAlloc() 191

McalAssociate() 192
McalControl() 192, 194
McalFree() 195
McalGrid() 191, 194, 196, 199
McalInquire() 198
McalList() 191, 199, 202
McalRelativeOrigin 204
McalRestore() 205
McalTransformCoordinate() 207, 211
McalTransformImage() 194, 199–200,
208, 211

McalTransformResult() 207, 210
McodeAlloc() 212
McodeControl() 212, 214
McodeFree() 218
McodeGetResult() 219
McodeInquire() 221
McodeRead() 223
McodeWrite() 224
Mdig...() 19
MdigAlloc() 226
MdigChannel() 228
MdigControl() 229
MdigFocus() 236
MdigFree() 11, 239
MdigGrab() 240
MdigGrabContinuous() 241
MdigGrabWait() 242
MdigHalt() 243
MdigHookFunction() 244
MdigInquire() 246
MdigLut() 250
MdigReference() 251
Mdisp...() 20
MdispAlloc() 253
MdispControl() 258
MdispDeselect() 264
MdispFree() 11, 265
MdispHookFunction() 266
MdispInquire() 268
MdispLut() 273
MdispOverlayKey() 276
MdispPan() 278
MdispSelect() 279
MdispSelectWindow() 280
MdispZoom() 281
mean pixel value 88
measurement box 411

measurement context
allocate 382
control parameter 390
default values 383
free 394
inquire 401

measurements
angle 389, 392
distance, inter-marker 389
line equation 389
markers, using 388
module 25
pattern matching 27
position 392–393
position variation 392–393
result buffer 387
result buffer, free 394
result buffer, inquire 401
results 395, 400
width variation, stripe 393
width, stripe 392

memory
compensation 41

Meteor
system 497

MfuncAlloc() 523, 536, 538–539,
541–542, 544

example 518
MfuncAllocId() 524, 531, 533–534
MfuncErrorReport() 525

example 518
MfuncFreeAndEnd() 525, 527

example 518
MfuncFreeId() 528
MfuncGetError() 529
MfuncIdGetObjectType() 531
MfuncIdGetUserPtr() 532
MfuncIdSetObjectType() 533
MfuncIdSetUserPtr() 534
MfuncModified() 535
MfuncParamChar() 536

example 518
MfuncParamCheck() 537

example 518
MfuncParamDouble() 538
MfuncParamId() 539, 546

example 518
MfuncParamLong() 541

MfuncParamPointer() 542
MfuncParamRegister() 543
MfuncParamShort() 544
MfuncParamString() 545
MfuncStart() 523, 527, 536, 538–539,
541–542, 544–546

example 518
Mgen...() 21
MgenLutFunction() 282
MgenLutRamp() 284

example 518
MgenWarpParameter() 285, 375
Mgra...() 21
MgraAlloc() 290
MgraArc() 292
MgraArcFill() 293
mgrab.c 514
MgraBackColor() 294
MgraClear() 295
MgraColor() 296
MgraControl() 297
MgraDot() 299
MgraFill() 300
MgraFont() 301
MgraFontScale() 302
MgraFree() 303
MgraInquire() 304
MgraLine() 306
MgraRect() 307
MgraRectFill() 308
MgraText() 309
MIL

file format 148
objects 32, 59
running application 9
structure 8

MIL modules
application 13
blob analysis 14
data allocation and access 15
data generation 21
digitizer control 19
display allocation 20
display control 20
graphics 21
image processing 22
measurements 25

optical character recognition 26
pattern matching 27
system device 29

mil.h 10, 33
milsetup.h 10, 37, 47, 510
Mim...() 22
MimAllocResult() 310
MimArith() 312
MimArithMultiple() 315
MimBinarize() 317
MimClip() 319
MimClose() 321
MimConnectMap() 322
MimConvert() 324
MimConvolve() 326
MimCountDifference() 329
MimDilate() 330
MimDistance() 331
MimEdgeDetect() 333
MimErode() 336
MimFindExtreme() 337

results 310
MimFlip() 338
MimFree() 339
MimGetResult() 340
MimGetResult1d() 342
MimHistogram() 344
MimHistogramEqualize() 345
MimInquire() 348
MimLabel() 349
MimLocateEvent() 351
MimLutMap() 353

example 518
MimMorphic() 354
MimOpen() 356
MimProject() 361
MimRank() 362
MimResize() 364
MimRotate() 366
MimShift() 368
MimThick() 369
MimThin() 370
MimTranslate() 374
MimWarp() 285, 375
MimWatershed() 378
minimum pixel value 88
mnatfct.c 518
Mocr...() 26

MocrAllocFont() 417, 427, 437–438, 440
MocrAllocResult() 420, 427
MocrCalibrateFont() 421, 438, 440–441
MocrControl() 418, 421, 423, 438, 440–441
MocrCopyFont() 425
MocrFree() 420, 427
MocrGetResult() 428, 441, 447
MocrHookFunction() 432
MocrImportFont() 434
MocrInquire() 437
MocrModifyFont() 438, 440
MocrReadString() 441, 447
MocrRestoreFont() 442
MocrSaveFont() 442, 444
MocrSetConstraint() 439, 441, 445
MocrVerifyString() 447
model

acceptance level 480
allocation, automatic 448
allocation, manual 452
angle of search 482
center 489
copy to image buffer 460
don’t care pixels 460, 486
find 462
find multiple 464
find orientation 466
free 468
inquire 471
number of matches 469, 488
positional accuracy 481
preprocess 476
read 477
restore 478
rotate 457
save 479, 496
search parameters 491

morphological operations
custom 354
standard 22, 354

Mpat...() 27
MpatAllocModel() 452
MpatFindModel() 462
MpatFree() 468
MpatSetAngle() 482
MpatSetCenter() 484, 489
MpatSetCertainty() 485
MpatSetSearchParameter() 491

MpatSetSpeed() 495
Msys...() 29
MsysAlloc() 9, 497
MsysControl() 499
MsysFree() 9, 503
MsysInquire() 504
multiple

operations 315
multiplying, image 312, 315

N
native mode 517

flag 510
portability 518

neighborhood
kernels 123
operations 123

normalization factor 123
number of

holes 88
model matches 469

number of cells in code 215

O
object identifier 32
object type

pseudo-MIL function 531
pseudo-MIL, assign 533

occurrences, of model 469
OCR

module 26
open communication 9
opening operation 356
operation flags 123
optical character recognition

acceptance levels 423
allocating result buffer 420
calibrating fonts 421
character constraints 445
character dimensions 424
contrast enhancement 424
copying fonts 425
erasing characters 424
freeing buffers 427
hooking functions 432
importing fonts 434

inquiring about fonts 437
inverting fonts 440
processing controls 418, 423
reading results 428
reading strings 441
resizing fonts 440
restoring fonts 442
saving fonts 444
semi.txt file 435
speeding up 424, 440
string location 424
unrecognized characters 423
verifying strings 447

orientation
image 466
marker 413
object 466

overlay/regular display architecture 255
overscan

pixels 123

P
panning, display 278
parameter

double, pseudo-MIL 538
long, pseudo-MIL 541
MIL_ID, pseudo-MIL 539
null-terminated string, pseudo-MIL 545
pointer, pseudo-MIL 542
short, pseudo-MIL 544

parameter checking control 40
parent buffer 11
pattern matching

acceptance level 480
angle of search 482
module 27
number of matches 488
positional accuracy 481
result buffer 456
results 470
search position 489

perimeter
blob 88

perspective warpings 285

pixel
aspect ratio 66, 390
don’t care 460
location 351
offset 123
sum 88

pointer
pseudo-MIL object 532
pseudo-MIL object, assign 534

point-to-point operations 22
polarity

edge/stripe 414
portability, native mode 518
position of marker 392
position variation

marker 392
positional accuracy 481
preprocess

model 476
processing

attribute 98, 102, 106, 137, 141
compensation 499
control 40
system, force 499

profile 361
projecting an image 361
pseudo-MIL commands 518
pseudo-MIL functions 518, 523
Pulsar

system 498
put data

1D data buffer 186
2D data buffer 187
data buffer 178–179, 181

R
rank filters 362
read model 477
reading codes 223
reconstruct object from seed 82
rectangles, draw 307
rectangles, draw filled 22, 308
reference level

black/white 249, 251
controls 251
digitizer 249
input channel 249

reporting errors 11
resident software, required 510
resize image 285, 364
restore

data buffer 188
fonts, OCR 442
marker 406
model 478

result buffer
blob analysis 62, 73
free 70
image processing 310, 340, 342
measurement 387, 395, 400
pattern matching 456, 470

retrieve data
1D data buffer 162
2D data buffer 163
color bands 155, 157
data buffer 154–155, 157

rotate
image 285, 366
model 457

roughness, blob 88
row profile 361

S
saturation

HLS 111, 114, 129, 132, 156, 158,
180, 182, 324

operation result 123
save

data 148, 190
fonts, OCR 444
marker 407
model 479, 496

scale, input 229
scrolling, display 278
search

parameters, set 491
position 489

seed fill, boundary-type 300
select

blob features 88
blob Feret diameter 95
blob moment 96
blobs to calculate 85

digitizer input channel 228
image to display 279

semi.txt file, OCR 435
setup flag 510
sharpen image 326
shearing images 285
shift

bits 368
image 374

spatial filtering operations
custom 326
usage 22

standard deviation 88
statistical operations 22
stop grabbing 243
structure, MIL 8
structuring elements

custom 354
morphological transformation 354

subtracting, image 312, 315
sum of squares 88
synchronization

of grab 231
with grab end 231

system
allocation 497
control behavior 499
default setup configuration 510
device 9–10
free 503
Genesis 498
Host 497
inquire 304, 504
Meteor 497
module 29
number 497
Pulsar 498
type 497
VGA 497

T
text

character font 301
character size 302
write 22, 309

theoretical data line 160, 184
thickening 354, 369
thinning 354, 370
thread

allocate or control 42
thresholding 317
TIFF file format 148
timer control 60
toolkit

Function Developers’ 517
Native Mode Programmers’ 517

trace
application 12
hook 54, 266
mechanism control 40

transformation LUT 345
transformations

generating LUTs for 286
transforming data 148, 164
translation, image 285, 374

U
underlay display architecture 255

V
VGA

system 497

W
wait, grab 242
warpings 285, 375

generating LUTs for 286
watershed transforms 378
width

stripe 392, 415
width variation 393, 415
writing codes 224

X
xfontscale, inquire 304

Y
yfontscale, inquire 304

Z
zone of influence 380
zoom

display 281

Product Assistance Request Form

Name:
Company:
Address:
Phone: Fax:
E-mail:

Hardware Specific Information
Computer: CPU:
System memory: PCI Chipset:
System BIOS rev:
Video card used: Resolution:
Network Card: Network Software:
Other cards in system:

Software Specific Information
Operating system: Rev:
Matrox SW used: Rev:
Compiler: Rev:

Describe the problem:

	Contents
	Chapter 1 : Programming with MIL
	A MIL overview
	Starting your MIL application
	Header file and libraries
	MIL object manipulation concepts
	Error handling
	Tracing an application

	A quick command reference
	The application allocation and control module
	The blob analysis module
	The buffer allocation and access module
	The calibration module
	The code module
	The digitizer allocation and control module
	The display allocation and control module
	The basic data generation module
	The basic graphics module
	The basic image processing module
	The measurement module
	The optical character recognition module
	The basic pattern recognition module
	The system allocation and inquiry module

	Chapter 2: The command reference descriptions
	The reference description notes
	MappAlloc
	MappAllocDefault
	MappControl
	MappControlThread
	MappFree
	MappFreeDefault
	MappGetError
	MappGetHookInfo
	MappHookFunction
	MappInquire
	MappModify
	MappTimer
	MblobAllocFeatureList
	MblobAllocResult
	MblobCalculate
	MblobControl
	MblobFill
	MblobFree
	MblobGetLabel
	MblobGetNumber
	MblobGetResult
	MblobGetResultSingle
	MblobGetRuns
	MblobInquire
	MblobLabel
	MblobReconstruct
	MblobSelect
	MblobSelectFeature
	MblobSelectFeret
	MblobSelectMoment
	MbufAlloc1d
	MbufAlloc2d
	MbufAllocColor
	MbufChildColor
	MbufChildColor2d
	MbufChild1d
	MbufChild2d
	MbufClear
	MbufControl
	MbufControlNeighborhood
	MbufCopy
	MbufCopyClip
	MbufCopyColor
	MbufCopyColor2d
	MbufCopyCond
	MbufCopyMask
	MbufCreate2d
	MbufCreateColor
	MbufDiskInquire
	MbufExport
	MbufExportSequence
	MbufFree
	MbufGet
	MbufGetColor
	MbufGetColor2d
	MbufGetLine
	MbufGet1d
	MbufGet2d
	MbufImport
	MbufImportSequence
	MbufInquire
	MbufLoad
	MbufPut
	MbufPutColor
	MbufPutColor2d
	MbufPutLine
	MbufPut1d
	MbufPut2d
	MbufRestore
	MbufSave
	McalAlloc
	McalAssociate
	McalControl
	McalFree
	McalGrid
	McalInquire
	McalList
	McalRelativeOrigin
	McalRestore
	McalSave
	McalTransformCoordinate
	McalTransformImage
	McalTransformResult
	McodeAlloc
	McodeControl
	McodeFree
	McodeGetResult
	McodeInquire
	McodeRead
	McodeWrite
	MdigAlloc
	MdigChannel
	MdigControl
	MdigFocus
	MdigFree
	MdigGrab
	MdigGrabContinuous
	MdigGrabWait
	MdigHalt
	MdigHookFunction
	MdigInquire
	MdigLut
	MdigReference
	MdispAlloc
	MdispControl
	MdispDeselect
	MdispFree
	MdispHookFunction
	MdispInquire
	MdispLut
	MdispOverlayKey
	MdispPan
	MdispSelect
	MdispSelectWindow
	MdispZoom
	MgenLutFunction
	MgenLutRamp
	MgenWarpParameter
	MgraAlloc
	MgraArc
	MgraArcFill
	MgraBackColor
	MgraClear
	MgraColor
	MgraControl
	MgraDot
	MgraFill
	MgraFont
	MgraFontScale
	MgraFree
	MgraInquire
	MgraLine
	MgraRect
	MgraRectFill
	MgraText
	MimAllocResult
	MimArith
	MimArithMultiple
	MimBinarize
	MimClip
	MimClose
	MimConnectMap
	MimConvert
	MimConvolve
	MimCountDifference
	MimDilate
	MimDistance
	MimEdgeDetect
	MimErode
	MimFindExtreme
	MimFlip
	MimFree
	MimGetResult
	MimGetResult1d
	MimHistogram
	MimHistogramEqualize
	MimInquire
	MimLabel
	MimLocateEvent
	MimLutMap
	MimMorphic
	MimOpen
	MimPolarTransform
	MimProject
	MimRank
	MimResize
	MimRotate
	MimShift
	MimThick
	MimThin
	MimTransform
	MimTranslate
	MimWarp
	MimWatershed
	MimZoneOfInfluence
	MmeasAllocContext
	MmeasAllocMarker
	MmeasAllocResult
	MmeasCalculate
	MmeasControl
	MmeasFindMarker
	MmeasFree
	MmeasGetResult
	MmeasGetResultSingle
	MmeasInquire
	MmeasRestoreMarker
	MmeasSaveMarker
	MmeasSetMarker
	MocrAllocFont
	MocrAllocResult
	MocrCalibrateFont
	MocrControl
	MocrCopyFont
	MocrFree
	MocrGetResult
	MocrHookFunction
	MocrImportFont
	MocrInquire
	MocrModifyFont
	MocrReadString
	MocrRestoreFont
	MocrSaveFont
	MocrSetConstraint
	MocrVerifyString
	MpatAllocAutoModel
	MpatAllocModel
	MpatAllocResult
	MpatAllocRotatedModel
	MpatCopy
	MpatFindModel
	MpatFindMultipleModel
	MpatFindOrientation
	MpatFree
	MpatGetNumber
	MpatGetResult
	MpatInquire
	MpatPreprocModel
	MpatRead
	MpatRestore
	MpatSave
	MpatSetAcceptance
	MpatSetAccuracy
	MpatSetAngle
	MpatSetCenter
	MpatSetCertainty
	MpatSetDontCare
	MpatSetNumber
	MpatSetPosition
	MpatSetSearchParameter
	MpatSetSpeed
	MpatWrite
	MsysAlloc
	MsysControl
	MsysFree
	MsysInquire

	Appendix A: The default setup configuration file
	The default setup configuration file
	When you do not want to use defaults

	Appendix B: The MIL Function Developer's Toolkit
	The MIL Function Developer's Toolkit
	An example using the Function Developer's Toolkit
	MIL Function Developer's Toolkit Command Reference
	MfuncAlloc
	MfuncAllocId
	MfuncErrorReport
	MfuncFreeAndEnd
	MfuncFreeId
	MfuncGetError
	MfuncIdGetObjectType
	MfuncIdGetUserPtr
	MfuncIdSetObjectType
	MfuncIdSetUserPtr
	MfuncModified
	MfuncParamChar
	MfuncParamCheck
	MfuncParamDouble
	MfuncParamId
	MfuncParamLong
	MfuncParamPointer
	MfuncParamRegister
	MfuncParamShort
	MfuncParamString
	MfuncStart

	Appendix C: Troubleshooting
	Error reporting
	Error messages explained
	Driver error messages explained

	Index
	Product Support

