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Chapter 1: Introduction

This chapter explains the features of the Matrox Genesis 
Native Library, and introduces various concepts related 
to the Genesis boards.
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The Matrox Genesis Native Library
The Native Library for Matrox Genesis is a board-specific 
library that consists of an extensive set of functions for image 
processing and specialized operations such as the scheduling 
and synchronization of parallel operations. It provides explicit 
control over grabbing, processing, transferring to the Host, and 
displaying. The library was designed for the efficient use of the 
Matrox Genesis board, as well as for fast application 
development.

The Matrox Genesis C-callable library (C-binding) that runs on 
the Host platform is simply a set of small stub functions, one 
for each function supported by the board. Each function 
prepares a "message" that consists of an operation code (opcode) 
and various optional parameters. Messages are sent to the 
board to perform a specific operation. 

Using MIL versus the
Genesis Native
Library

In general, we recommend that you first consider using the 
hardware-independent Matrox Imaging Library (MIL), rather 
than the Genesis Native Library, to develop your applications. 
There will, however, be circumstances that will require the 
Genesis Native Library. These are as follows:

■ When MIL does not have the required functionality. For 
example, MIL does not use some of the more specialized 
features of the grab module and display section.

■ When MIL requires using more calls than the Genesis Native 

Library to perform the required operation. Some Genesis 
functions perform several operations with only one call (for 
example, imIntTriadic()). Using these functions can increase 
the speed of your application. 

■ When you want to run a particularly complicated, real-time 
application that requires several operations run in parallel.
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■ When you want to port your application to the Matrox 
Genesis local TMS320C80 (MVP) processor (which we will be 
referring to as the ’C80).

■ When you want to develop your application under an 
environment not supported by MIL (that is, another 
operating system or compiler).

Using both libraries MIL allows you to mix native (board-specific) code with its own 
code. Therefore, if only a portion of your application meets one 
(or more) of the first three criteria, you can generally use MIL 
to develop the bulk of the application, then integrate Genesis 
Native Library function calls where necessary. The main 
benefit of proceeding in this manner is that it makes your 
application as portable as possible. If you want to move the 
application to a different Matrox board, you will only have to 
change a small portion of code.



16      Chapter 1: Introduction

The Matrox Genesis imaging boards
The Genesis main board
The Matrox Genesis main board is a single-slot, PCI board with 
on-board processing, optional grab module, and optional 
display section. The optional grab module provides real-time 
acquisition (analog and digital). The optional display section 
provides high-resolution display for monochrome and color 
applications, and includes non-destructive overlay graphics. 
Processing power is scalable by connecting one or more Matrox 
Genesis main boards or processor boards.

Host interface The Matrox Genesis main board can be a PCI bus master, and 
can exchange data with the Host at up to the full PCI bandwidth 
of 132 MBytes/sec. The actual data transfer rate that can be 
sustained in practice is host-dependent, but 80 MBytes/sec is 
attainable on a typical system.

Processing Processing is performed by the Texas Instruments TMS320C80 
(also known as the ’C80) running at 50 MHz. This single-chip, 
digital signal multiprocessor contains five powerful, fully 
programmable processors: a RISC master processor (MP) and 
four parallel processors (PPs). The ’C80 is much more flexible 
than most custom processing ASICs.

An optional Matrox-designed ASIC (the Neighborhood 
Operations Accelerator or NOA) can further accelerate 
neighborhood operations such as convolutions and morphology.
There is up to 64 MBytes of on-board processing memory. 
Genesis addresses this memory as a single bank of linear 
memory. This means that there are no inherent hardware 
restrictions on items like image dimensions and pixel depth. 
Applications requiring more memory can use Host system RAM 
and transfer data to/from the board over the PCI bus at very 
high speed when needed.
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Display section The optional display section has an 8-bit overlay frame buffer 
and either an 8-bit monochrome or a 24-bit true color main 
(underlay) frame buffer (depending on whether you have the 
monochrome or color version of the display section). The overlay 
and main frame buffers can be displayed at a maximum 
resolution of 1600 x 1200. The main frame buffer will use the 
same resolution as the overlay. Display memory is physically 
distinct from processing memory, and transfers between 
processing and display memory are performed in hardware by 
a custom chip: the Video Interface ASIC (VIA). To maintain a 
live display of processed images, transfers can occur in parallel 
with processing.

Grab module Images can be grabbed directly into processing memory, display 
memory, Host memory, or any other memory mapped onto the 
PCI bus (you can also grab to two or more of these destinations 
at the same time). Grabbing is totally independent of processing 
operations, so an image can be acquired while a different one 
is being processed. This makes real-time operations much more 
flexible and easier to realize.

Processor boards Genesis processor boards can be added to increase system 
performance. A typical processor board (which requires one 
extra PCI slot) has two ’C80s, each with additional memory, 
VIA, and optional NOA.

❖ A processor board can also have only one ’C80, along with 
additional memory, VIA, and optional NOA. 
Routing data Matrox Genesis can send image data along various paths.

■ The grab module broadcasts input data to all the video 
interface ASICs (VIAs) in the system, and each VIA can write 
to its local memory bank: processing memory (SDRAM) or 
display memory (WRAM).

■ Using the VMChannel, Genesis can transfer data from any 
Genesis memory bank in a system to any other Genesis 
memory bank in the system. This is most commonly used to 
send images from processing memory to the display. The 
VMChannel can also transfer data from a Genesis memory 
bank to an external (non-Matrox) VM device.



The Matrox Genesis imaging boards      19

■ Using the PCI bus, Genesis can copy data between any two 
Genesis memory banks in a system, between a Genesis 
memory bank and the Host, and between a Genesis memory 
bank and any other memory mapped onto the PCI bus. The 
PCI bus is the only route that can be used to send data to/from 
the Host. It is also used for general communication between 
multiple ’C80s, and as the secondary route to transfer 
processing data between processing nodes.

The Genesis processor board

The Matrox Genesis processor board is basically the main board 
with no on-board grab module or display section. The processor 
board is most commonly connected to a Genesis main board, 
but can be used on its own. It can also be used with any other 
grab and/or display hardware that can send or receive data over 
the PCI bus or VMChannel, or that can send data over the grab 
port. A typical processor board has two ’C80s, each with 
additional memory, VIA, and optional NOA.

Grab port interface

3232

Genesis Processor Board

PCI
I/F

Grab VM

'C80
port

VIA

PCI
I/F

Grab VM

'C80
port

VIA

VMChannel
❖ You will find more detail on some of the above components in 
the Genesis Installation and Hardware Reference.

PCI I/F

Host 32-bit PCI local bus

PCI-to-PCI
bridge

64 64

Secondary 32-bit PCI bus

NOA NOA

TMS320C80
('C80)

TMS320C80
('C80)

SDRAM
buffer

8, 16, 32,
or 64 MB

SDRAM
buffer

8, 16, 32,
or 64 MB
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The Genesis-LC
The Matrox Genesis-LC is a low-cost version of the main board. 
Basically, it is the main board without a processing section. In 
general, this manual does not explicitly refer to the Genesis-LC 
because any discussion of the main board also applies to the 
Genesis-LC, except for discussion of the processing section.
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Basic software concepts
You need to know very little about Genesis hardware to write 
simple applications. However, you should not expect to write a 
highly optimized, real-time application without knowing the 
basic architecture of the system. Refer to the Genesis 
Installation and Hardware Reference for more information.

When this manual refers to resources, we mean any digitizers 
and displays, as well as processing nodes, threads, and buffers 
that you will allocate and use in your application.

Systems Genesis uses the concept of "system" to mean a group of Genesis 
boards (main board(s) and/or processor board(s)) connected to 
each other by the grab port and the VM port. Systems are not 
considered resources as such.

Nodes Genesis uses the concept of "node" to define the combination of 
a processor (the ’C80), a video interface ASIC (the VIA), and 
processing memory. A node can also include a NOA. The first 
step in any application is to assign a device ID to each "node" 
that you wish to use. When you do so, the Genesis shell 
(’C80 code) is downloaded to the node, if it is not already loaded. 
The Host is then responsible for sending functions to the node.

Node 0 Node 1 Node 2 Node 0Disp 0 Disp 0Dig 0 Dig 0

System 0

Main board Second main boardProcessor board

System 1
Host

Grab

PCI bus

VMChannel

imDevAlloc(1, 0, ..., &dev4);imDevAlloc(0, 0, ..., &dev1);

imDevAlloc(0, 1, ..., &dev2);

imDevAlloc(0, 2, ..., &dev3);

VIA

SDRAM

Grab

VM

PCI

NOA

'C80

Grab

VM

PCI

VIA MGA

WRAM
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Threads A thread, quite simply, is an execution queue. In the Genesis 
Native Library, all functions are sent to a specified thread, and 
execute on the node associated with this thread. Functions sent 
to the same thread execute serially (that is, in the order in 
which they are issued). 

Typically, a real-time application has several parts that must 
run concurrently: acquisition, processing, transfer of data to 
the Host and/or display, etc. Since each thread carries out its 
sequence of functions independently of the others, you can 
allocate several threads to handle a multitasking application.

Note that there are synchronization functions to synchronize 
threads, when necessary.

Buffers Buffers are used to hold any type of data, for example, image 
data, histogram results, LUT values, etc. They can be allocated 
on-board (in processing or display memory) or on the Host. For 
more information on buffers, see Chapters 2 and 9.
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A word about examples
In an effort to simplify concepts and help you get started 
quickly, various examples have been provided throughout this 
manual. The complete source code of these examples can be 
found in Appendix B. To compile these examples, refer to the 
readme.txt file in the \GENESIS\DOC directory. Note that there 
might be more up-to-date or new examples in the 
\GENESIS\EXAMPLES directory.

All examples have a comment describing the minimum 
hardware configuration required for them to run. The 
expression "basic Genesis hardware" refers to one ’C80, one 
VIA, and processing memory (SDRAM).

The examples that grab data assume that the camera is 8-bit 
monochrome and that it was specified during installation. The 
camera should be connected to the default input channel of the 
digitizer. 

Some systems cannot run some of the examples because they 
do not have the hardware capability or enough memory. You 
should skip these examples or modify them to suit your 
particular hardware configuration.
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Chapter 2: Getting started

This chapter describes the basics required to create an 
application.
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Getting started
Once you have properly installed the Genesis Native Library, 
you are ready to grab, process, and display images. This chapter 
covers the basics of acquisition, processing, transfer, and 
display. Subsequent chapters look at these topics in greater 
detail.

Basic steps

Although the main design goal of the Genesis Native Library 
was the ability to handle demanding real-time applications, it 
was also designed to be easy to learn and use. After reading this 
chapter, you should be able to follow most of the examples in 
this manual and create a simple application.

A typical Genesis application involves the following:

1. Allocate the required resources (processing node, execution 
threads, image buffers, etc.).

2. Acquire an image (from a file, camera, or other input 
source).

3. Process the image.

4. Transfer the results to the Host and/or the display.

5. Free the allocated resources.
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A simple example
To familiarize you with the functions of the Genesis Native 
Library, we have included a simple example that writes a 
message in a buffer, and then displays the contents of this 
buffer on the screen. The example:

1. Assigns a device ID to the processing node that it uses. This 
is the first step of any application. You use imDevAlloc() to 
allocate a node on a system.

2. Allocates a thread. You must allocate at least one thread 
before you can send functions to the board. You use 
imThrAlloc() to allocate a thread.

3. Allocates a full screen display buffer, using imBufChild(), 
then clears this buffer, using imBufClear().

4. Allocates a two-dimensional processing buffer, using 
imBufAlloc2d(), then clears this buffer, using imBufClear().

5. Draws a rectangle (that is the size of the box that will 
contain the message) in the processing buffer. You use 
imGraRect() to draw a rectangle in a buffer.

6. Writes the required message ("Matrox Genesis") in the 
rectangle of the buffer, using imGraText().

7. Copies the contents of the processing buffer to the display, 
using imBufCopy(). 

8. Frees the allocated resources. Freeing resources makes 

them available for other applications. The last resources to 
be freed are the thread and the device, in that order.
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The example Note that this code is part of the first.c program and requires 
the Genesis display section. See Appendix B for the complete 
first.c program.  

�NQPI�&GXKEG�������)GPGUKU�FGXKEG���
�NQPI�6JTGCF�������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
�NQPI�2TQE$WH������$WHHGT�CNNQECVGF�KP�RTQEGUUKPI�OGOQT[���
�NQPI�&KUR$WH������$WHHGT�CNNQECVGF�KP�FKURNC[�OGOQT[���

����

���#NNQECVG�VJG�DQCTF�CPF�C�VJTGCF���
�KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
�KO6JT#NNQE
&GXKEG������6JTGCF��

���#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
�KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���&KUR$WH��
�KO$WH%NGCT
6JTGCF��&KUR$WH��������

���#NNQECVG�C�RTQEGUUKPI�DWHHGT���
�KO$WH#NNQE�F
6JTGCF������������+/A7$;6'��+/A241%���2TQE$WH��

���%NGCT�VJG�DWHHGT�CPF�VJGP�YTKVG�VGZV�KP�KV���
�KO$WH%NGCT
6JTGCF��2TQE$WH��������
�KO)TC4GEV
6JTGCF�����2TQE$WH����������������������
�KO)TC6GZV
6JTGCF�����2TQE$WH�������������/CVTQZ�)GPGUKU���

���%QR[�KV�VQ�VJG�FKURNC[���
�KO$WH%QR[
6JTGCF��2TQE$WH��&KUR$WH��������

����

���%NGCP�WR���
�KO$WH(TGG
6JTGCF��&KUR$WH��
�KO$WH(TGG
6JTGCF��2TQE$WH��
�KO6JT(TGG
6JTGCF��
�KO&GX(TGG
&GXKEG���
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Your resources
Before performing any processing, you should allocate all the 
resources that you will be using with your application.

Note that the allocation functions are synchronous, that is, they 
do not return control to the Host until they have executed and 
their newly allocated ID is available. However, most other 
Genesis Native Library functions are asynchronous, that is, 
they simply queue their command to the hardware and then 
immediately return control to the Host.

Allocating resources

Nodes Since other resources are allocated on nodes, the first resource 
to allocate is a node. Use imDevAlloc() to allocate a node.

Threads Before you can send any functions to the board, you must 
allocate at least one thread. Use imThrAlloc() to allocate a 
thread. Functions sent to a thread execute on the node 
associated with that thread.

Buffers After allocating nodes and threads, you should allocate the 
various buffers you will need for your application. A buffer can 
hold any type of data: image data, histogram results, LUT 
values, etc. It must be allocated before it can be used by a 
function. You can allocate buffers on-board (in processing 
memory or display memory) or on the Host. Use imBufAlloc(), 
imBufAlloc1d(), or imBufAlloc2d() to allocate a buffer.
Note that the source buffers of a processing function must be 
in local processing memory, that is, in processing memory on 
the same node as the thread which will execute the processing 
function. For maximum efficiency, the destination buffer of a 
processing function should also be in local processing memory.

Child buffers When you need to process a rectangular region of a buffer or a 
specific band of a multi-band buffer, you can use a child buffer. 
Child buffers are discussed in Chapter 9.

Tag buffers When you need to process a non-rectangular region of a buffer, 
you can use a tag buffer. See Chapter 3 for details.
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Control buffers A control buffer refers to a buffer whose control fields are used 
to specify certain options of a function. The Genesis Native 
Library uses control buffers because some functions have so 
many options that it is impractical to have these options as 
parameters of the function. Instead, you specify the options you 
want performed by adding the required control fields to a buffer 
and passing this buffer to the function.

Each control field (or simply "field") holds a single value 
(integer or floating-point). A field is identified by a unique "tag". 
The tag itself is just an integer value.

For more information on control buffers, see Chapter 9.

Freeing allocated resources

Once you have finished using a particular resource, you should 
free it. Use imDevFree(), imThrFree(), or imBufFree(), 
depending on the resource.

❖ The last two resources to be freed must be the thread and the 
device, in that order.

It is important to free resources since they are then available 
to other applications running under a multi-tasking Host 
operating system, such as Windows NT. Note that several Host 
applications can use the Genesis system at the same time, 
provided they do not hoard the board’s resources and adhere to 
certain guidelines (see the Running multiple applications 
section).
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Displaying an image
The following is an overview of how to display images on the  
display section of the Matrox Genesis. You will find more 
information in Chapter 11.

❖ If you have not purchased the display section, you can still 
display images by transferring them to the Host and using 
your display hardware. See the next section for information 
about transferring data to/from the Host.  

Display memory On Matrox Genesis, processing memory and display memory 
are physically distinct. Although the destination buffer of a 
processing function can be located in display memory, it is more 
efficient if it is in the memory directly attached to the ’C80 (that 
is, the SDRAM) and then copied to the display when necessary. 
In this case, display memory is being used to hold a second copy 
of a buffer. Therefore, you should not allocate memory in the 
main or overlay frame buffer of the display section. Instead, you 
should use imBufChild() to create a child buffer on the screen 
(at the location you wish to display the image) and then copy 
the processed buffer to this on-screen child buffer when you 
need to see it; see the example in the Getting started section.

Grayscale and color 
images

Note that there are two versions of the display section: a 
monochrome version and a color version. When you set the Buf 
parameter of imBufChild() to IM_DISP, the resulting on-screen 
child buffer will automatically have one band on the 

monochrome version and three bands on the color version.

Copying a buffer to
the display

To copy a buffer in processing memory to the display, use 
imBufCopy(). You can also use imBufCopyVM() or 
imBufCopyPCI(). imBufCopyVM() and imBufCopyPCI() are 
specialized functions that can format data in a variety of ways 
during the copy; see Chapter 9 for details.

Allocating a display If you have more than one display in your system, you must 
allocate each one, so you can later specify to functions that have 
a "display" parameter which display you want to use. Use 
imDispAlloc() to allocate a display. If you have just one display, 
there is no need to allocate it because functions that have a 
"display" parameter will use it by default.
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Transferring to/from the Host
Transferring data to/from the Host can be used to read back 
results (such as histogram results) and to load values into 
buffers (such as kernel and LUT buffers). It can also be used if 
you have not purchased the display section of the Genesis and 
need to use the Host display hardware to view images.

To transfer data from a buffer to the Host, use imBufGet(), 
imBufGet1d(), or imBufGet2d(). When using one of these 
functions, you must first allocate Host memory to which to send 
your data, and specify the Host memory address to which to 
send it. 

To transfer data from the Host, use imBufPut(), imBufPut1d(), 
or imBufPut2d. Note that these are synchronous functions 
because the Host performs the transfer.

❖ If you have allocated a buffer directly on the Host (using 
imBufAlloc...()), it is faster to use imBufCopy() to transfer 
data to/from the Host. See Chapter 9 for details.

An example The following code transfers histogram results from a 
processing buffer to the Host. Note that this code is part of the 
process.c program and requires only the basic Genesis 
hardware. See Appendix B for the complete process.c program.

�NQPI�*KUV$WH���������������*KUVQITCO�TGUWNV�DWHHGT���
�NQPI�*KUV8CNU=���?���������*QUV�CTTC[�VQ�JQNF�JKUVQITCO�TGUWNV���

����
���#NNQECVG�JKUVQITCO�TGUWNV�DWHHGT����
KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���*KUV$WH��

���2GTHQTO�C�JKUVQITCO�CPF�TGCF�KV�DCEM�VQ�VJG�*QUV���
�KO+PV*KUVQITCO
6JTGCF��5TE$WH��*KUV$WH��+/A&'(#7.6�����
�KO$WH)GV
6JTGCF��*KUV$WH��*KUV8CNU��
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Grabbing an image
With the Genesis Native Library, you can grab images from a 
wide variety of input sources. The following is an overview of 
how to grab images with the Genesis Native Library. You will 
find more information in Chapter 10.

❖ Since the most common input source is a video camera, the 
words input source and camera are used interchangeably in 
this manual.

Grabbing To grab an image with the Genesis Native Library, you must 
first allocate a camera definition that matches your camera 
type, using imCamAlloc(). If you have more than one digitizer 
in your system, you must also allocate the digitizer with which 
to grab, using imDigAlloc(). You then pass the camera 
definition identifier and if required, the digitizer identifier, to 
the grab command (imDigGrab()). 

Note that the buffer in which to grab can be located anywhere 
in your system (in processing or display memory on any node). 
In addition, you can grab a specific number of lines, fields, or 
frames, or you can continuously grab frames until you call 
imThrHalt().

The camera
definition

The imCamAlloc() function takes a file that specifies the 
parameters of your camera and returns an ID. The camera 
definition or digitizer configuration file (.dcf) includes such 
information as pixel rate, timings of synchronization signals, 

channel number, and gain and offset settings. If the camera 
definition file is given as NULL to imCamAlloc(), an ID is 
returned for the default camera definition file that you specified 
during software installation.

Note that several predefined camera definition files are 
available for you to choose from when installing (in the 
\GENESIS\DCF directory). If none of these match your camera 
type, you can use Matrox INTELLICAM to create a custom 
camera definition file.
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Grabbing to two or
more buffers

With the Genesis Native Library, you can grab to two or more 
buffers, allocated in different memory banks, at the same time. 
This can be useful when you want to grab to all nodes in your 
system, or when you want to simultaneously grab to processing 
and display memory.

Grab options When you call imDigGrab(), you can specify a number of options 
(such as zooming and subsampling) through the control buffer 
passed to this function. Many of these options are particularly 
useful when grabbing to the display.

An example The following code continuously grabs frames into a display 
buffer, until halted by the user. Note that this code is part of 
the grab.c program and requires the Genesis grab module and 
display section. See Appendix B for the complete grab.c 
program.

�NQPI�&GXKEG�����������������)GPGUKU�FGXKEG���
�NQPI�6JTGCF�����������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU����
�NQPI�&KUR$WH����������������$WHHGT�CNNQECVGF�KP�FKURNC[�OGOQT[���
�NQPI�%COGTC�����������������%COGTC���
�NQPI�5K\G:��5K\G;�����������+OCIG�5K\G���

����

���#NNQECVG�VJG�DQCTF��C�VJTGCF�CPF�C�ECOGTC���
�KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
�KO6JT#NNQE
&GXKEG������6JTGCF���
�KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��

���&GVGTOKPG�VJG�KOCIG�UK\G���
�KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A:���5K\G:��
�KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A;���5K\G;��

���#NNQECVG�C�DWHHGT�CV�C�URGEKHKE�NQECVKQP�QP�VJG�FKURNC[���

�KO$WH%JKNF
6JTGCF��+/A&+52��������5K\G:��5K\G;���&KUR$WH��

���5VCTV�C�EQPVKPWQWU�ITCD�KPVQ�VJG�FKURNC[�DWHHGT���
�KO&KI)TCD
6JTGCF�����%COGTC��&KUR$WH��+/A%106+07175��������

���*CNV�YJGP�VJG�WUGT�JKVU�'PVGT���
�RTKPVH
�2TGUU��'PVGT �VQ�UVQR���
�IGVEJCT
��
�KO6JT*CNV
6JTGCF��+/A(4#/'��



Error reporting      35

 

Error reporting
Most functions in the Genesis Native Library are 
asynchronous, that is, they queue their command to the 
hardware and then immediately return control to the Host. As 
such, the return values of most functions cannot indicate 
whether the function performed successfully. Synchronous 
functions could return a meaningful error value, but this would 
be tedious to check after each call. For these reasons, errors are 
only reported when requested and not through the return 
values of functions.

One way to check for errors is to use imThrGetError(). This 
function returns the first error detected in a thread since error 
information about the thread was last cleared. You can also use 
imAppCatchError() or imAppGetError() to check for errors. 
imAppCatchError() establishes a user-defined error handler, 
that is, establishes a user-defined function that is called 
automatically once an error in the application is detected. 
imAppGetError() returns the first error detected in an 
application since error information about the application was 
last cleared.

Note that the error messages provided with the Genesis Native 
Library functions are function-specific and intended to be 
self-explanatory.

Places to check for
errors

To some degree, the placement of the error checking functions 
imAppGetError() and imThrGetError() is 

application-dependent. However, there are a few places where 
they should normally be used: 

■ After the initialization section of the application, where 
buffers and other resources are usually allocated. 

■ At the end of the application, just before freeing buffers and 
other resources.

For more information on error reporting and mechanisms, see 
Chapter 12.
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Synchronization
In the Genesis Native Library, all functions are sent to a 
specified thread, and execute on the node associated with this 
thread. Functions sent to the same thread execute serially. 
Threads execute independently of one another, allowing 
operations to run in parallel. However, you can use an 
Operation Status Block (OSB) to synchronize two different 
threads or to determine the state of a particular asynchronous 
function.

Operation Status 
Block

An OSB is a block of memory that you allocate using 
imSyncAlloc(). All asynchronous functions have an "OSB" 
parameter. You can set this parameter to 0 or you can pass an 
OSB ID. If you pass an OSB ID, status information will be 
written about that function in that OSB. You can then use 
imSyncHost() to halt execution on the Host until that function 
is in a specified state (for example, until that function has 
completed). You can also use imSyncThread() to synchronize 
two different threads. The imSyncThread() function halts 
execution on one thread until a function in another thread is in 
a specified state.

Re-using OSBs An OSB can be re-used with another function after the previous 
one has completed, and after the OSB has been reset to the 
waiting state (using imSyncControl()). Note that the OSB state 
is automatically reset after its function completes if the Host 
or another thread is waiting for it.
An example The following code grabs and processes in parallel. Since an 
image must be grabbed before it can be processed, an OSB is 
associated with the grab command and then imSyncHost() is 
used to ensure that this OSB is in the required state 
(IM_COMPLETED) before processing. Note that this code is part 
of the tfilter.c program and requires the Genesis grab module. 
See Appendix B for the complete tfilter.c program. 
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Running multiple applications
It can be very useful to run several applications simultaneously 
on your Genesis system. For example, if you want to display 
several images at once, you can write a very simple application 
that loads and displays just one image, and then run multiple 
copies of this application simultaneously. If you have a 
real-time processing application and occasionally need to 
display the input image, you can write a small, separate 
application that simply grabs into display memory, then run 
this application simultaneously with the real-time application 
(when necessary).

In general, the ability to run several applications 
simultaneously allows you to write a series of small, simple, 
re-usable applications, rather than a large, complex 
application. However, when you run applications 
simultaneously, you need to follow certain guidelines to ensure 
that the resources of the Genesis system are shared properly.

General guidelines The following are some general guidelines you should follow if 
you run applications simultaneously:

■ When you allocate a device (using imDevAlloc()), set the 
ShellFile parameter to NULL and the Mode parameter to 
IM_DEFAULT. This will ensure that the device is not 
initialized more than once, even though it is allocated by each 
application.
■ Write the applications so that they "fail gracefully" (that is, 
clean up after themselves) if there are not enough resources 
for them to run. This involves checking for errors. Note that, 
to reduce the likelihood of failure, you should not allocate 
more resources than are necessary. In addition, you should 
free all allocated resources before the application terminates, 
since they are not freed automatically.

■ Avoid queuing more commands to the board than necessary. 
If an application requires a loop, try to include a synchronous 
function within the loop (such as imSyncHost()). This can 
prevent the command queue on the board from filling up 
(refer to Chapter 4 for details).
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Other guidelines For guidelines that deal specifically with the display or 
digitizer, see Chapter 10 or 11, respectively. Some of these 
guidelines also ensure that the applications will run regardless 
of the display mode or camera type.
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Chapter 3: Processing 
functions

This chapter gives an overview of the processing functions 
available with the Matrox Genesis Native Library.
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General overview                                   
The Genesis Native Library includes a wide variety of 
processing and statistical operations. The functions that can 
perform these operations are organized according to the data 
type that they support. Specifically, functions that can perform 
these operations on packed binary buffers, integer buffers, and 
floating-point buffers are the imBin...() functions, the imInt...() 
functions, and the imFloat...() functions, respectively.

In general, all buffers passed to a processing function should 
have the same size. If they do not, only the area intersected by 
all the buffers, starting from the top-left corner, will be 
processed.

Processing operations Processing operations result in a new image. There are three 
main types of processing operations:  

■ Point-to-point

■ Neighborhood

■ Geometric

Statistical operations Statistical operations extract information from an image. A 
histogram is an example of a statistical operation.

Color processing Many processing functions can operate on multi-band (color) 
buffers. Specifically, if the source and destination buffers have 
the same number of bands, the function processes 

corresponding source bands and writes results to the 
corresponding destination band. If one of the source buffers has 
only one band while the other(s) have several bands, the 
function uses that one source band as many times as is needed.

When a function does not support multiple bands, you can 
create a child buffer for each band, using imBufChildBand(), 
and process the bands individually.
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Basic architecture of the ’C80
Most processing and statistical operations on the Genesis are 
performed by Texas Instrument’s ’C80. This is a single-chip 
multiprocessor device. It includes:

■ Four parallel processors (PP0 - 3). These are advanced, 32-bit 
integer DSPs.

■ A 32-bit RISC master processor (MP) with an IEEE-754 
floating-point unit (FPU).

■ A transfer controller (TC). This manages transfers between 
on-chip and off-chip RAM. 

■ A high-speed bus switching network between the processors 
and on-chip RAM (the crossbar network).  

PP3

RAM RAM RAM RAM RAM

PP2 PP1 PP0 FPU

MP

TC

64

Simplified block diagram of the TMS320C80 MVP

crossbar network
Because it is fully programmable, the ’C80 is much more 
flexible than custom ASICs or other specialized hardware, so 
in those few cases where the MIL and Native Library functions 
are insufficient, you can program the ’C80 directly. To do so, you 
need to use the optional Genesis Developer’s Toolkit, in 
conjunction with Texas Instruments’ TMS320C8x software 
development tools. Note that the ’C80 is a complex chip, so 
programming it should not be undertaken lightly, even though 
it gives you complete access to all features of the board.  
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Data types                                               
The Genesis Native Library supports the following data types:

■ Packed binary

■ Integer

■ Floating-point

Processing In general, the fewer bits per pixel in the buffer(s), the faster 
the processing function. Therefore, when possible, you should 
use binary buffers for binary data (rather than, say, 8-bit 
integer buffers with only the values 0 and 0xFF). This will not 
only speed up binary processing, it will also maximize your 
storage space (in packed binary format, pixels are packed 1 bit 
per pixel, that is, in a format eight times smaller than an 8-bit 
image). You should only use integer buffers for binary data 
when the required function does not support packed binary 
buffers.

When using integer buffers, use 8 bits per pixel when possible, 
16 bits per pixel if necessary, and 32 bits per pixel only as a last 
resort. When you need extra precision or greater dynamic 
range, you can use floating-point buffers.

❖ If you want to display an image, it must be limited to 8 bits 
per pixel per band. If necessary, convert the image before 
copying it to the display, or use either imBufCopyVM() or 
imBufCopyPCI() to format the image during the copy. 

Converting between data types is discussed in the next 
section; imBufCopyVM() and imBufCopyPCI() are discussed 
in Chapter 9.
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RGB packed In addition to the above data types, the Genesis Native Library 
allows you to perform a limited number of operations on data 
that is in a RGB packed format. In the RGB packed format, 
there are no color bands; rather, the color components of each 
pixel are interleaved, as shown below:

The Genesis Native Library does not provide functions to 
process and/or display the RGB format directly. However, once 
you have grabbed or loaded your RGB-packed image into a 
buffer, you can automatically unpack it for display by copying 
it to a 3-band display buffer, using imBufCopy().

Converting between types
The following functions convert between the supported data 
types:

■ imBinConvert()

■ imFloatConvert()

■ imIntConvert()

imBinConvert() Use imBinConvert() to convert between integer and packed 
binary buffers. For integer to binary, the conversion result is 1 
when a specified threshold condition is true, and 0 otherwise. 
For binary to integer, 0s are converted to a specified value, and 
1s to a second specified value.

RGBRGBRGBRGBRGBRGB ...
RGBRGBRGBRGBRGBRGB ...
RGBRGBRGBRGBRGBRGB ...
RGBRGBRGBRGBRGBRGB ...
imFloatConvert() Use imFloatConvert() to convert between integer and 
floating-point buffers. For floating-point to integer, you can 
round towards zero or round to the nearest integer. Overflows 
or underflows are set to the maximum or minimum value, 
respectively, of the destination buffer’s data type.
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imIntConvert() Use imIntConvert() to convert from one integer data type to 
another. When converting to a larger pixel size, data is 
sign-extended. Sign extension propagates the sign bit 
(most-significant bit) if the source buffer is a signed type; if not, 
it propagates 0. When converting to a smaller pixel size, the 
higher bits are discarded.

When you use imIntConvert(), you can clip values to the 
dynamic range of the destination buffer (after sign-extending 
if necessary). Alternatively, you can take the absolute value and 
clip to the dynamic range of the destination buffer (after 
sign-extending if necessary).
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Processing a specific region of an image
Rectangular region
There will be times when you won’t want to process your entire 
image. To restrict processing to a rectangular region, you can 
create a child buffer, using imBufChild(). For more on child 
buffers, see Chapter 9.

Non-rectangular region
You can restrict processing to a non-rectangular region by:

■ Processing the entire area, then using either 
imBufCopyPCI() or imBufCopyVM() with a tag buffer (see 
below), or using imIntTriadic() to merge the source and 
destination buffers (see Chapter 4). You can only use 
imBufCopyPCI() or imBufCopyVM() if you are copying 
between different memory banks, for example, between 
processing and display memory. If you are copying within the 
same memory bank, you must use imIntTriadic().

Result
(after copy)

Source buffer Destination buffer
(before copy)

Tag buffer
■ Packing the required region using imBufPack(), processing 
the packed buffer, and then, if necessary, unpacking it (also 
using imBufPack()). Packing copies selected pixels of a buffer 
to a one-dimensional destination buffer. Unpacking copies 
pixels from a one-dimensional buffer to selected positions in 
a destination buffer. A tag buffer controls which pixels of the 
buffer to copy (when packing), or which pixels of the 
destination buffer to overwrite (when unpacking). If you use 
the same tag buffer to pack a buffer and then to unpack the 
resulting buffer, the packed pixels will be written to their 
original positions.

❖ Tag buffers are explained in detail in Chapter 9.
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More on packing Any type of processing can be used on the one-dimensional 
packed buffer, provided it can be performed on the buffer’s data 
type. However, only point-to-point operations are useful, since 
these operations do not produce results based on neighborhood 
information.

Packing vs. copying In general, it is faster to use imBufPack() because only the 
required region, and not the entire buffer, is processed. 
However, the time required to pack and unpack might exceed 
the extra processing time if, for example, you need to process a 
large region or if you require just one function to perform the 
required processing.

An example The following code uses imBufPack() to process a 
non-rectangular region of an image. Note that this code is part 
of the process.c program and requires only the basic Genesis 
hardware. See Appendix B for the complete process.c program.
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Point-to-point processing
The Genesis Native Library supports flexible point-to-point 
operations. A point-to-point operation (unlike a neighborhood 
operation) does not use a pixel’s neighbors when determining 
the pixel’s new values. Examples of point-to-point operations 
are LUT mappings, arithmetic operations, logical operations, 
and thresholds.

I/O bound Point-to-point operations tend to be I/O bound. Therefore, 
smaller data types are usually processed faster.

In-place supported In-place operation, but not partially overlapping source and 
destination buffers, is supported for point-to-point functions. 

Mixed data types

As mentioned, not all functions in the Genesis Native Library 
support all data types. However, the commonly used 
point-to-point functions imIntMonadic() and imIntDyadic() do 
support all integer types, in all combinations. 

For these functions, source operands are cast to an internal 
processing type: by sign extension for signed operands, and by 
zero extension for unsigned operands. When applicable, 
saturation is performed on results that overflow or underflow 
the range of the internal processing type. Final results are cast 
to the destination type (if necessary) by discarding the high bits.

The internal processing type is chosen as follows:
■ Take the smallest type that can represent the full range of 
both source operands (this is bound to be a signed type if 
either source is signed). If one operand is constant, the rule 
still applies.

■ If the chosen type has fewer bits than the destination type, 
promote the type to the same size as the destination. (The 
destination sign is not taken into account).
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Saturation and
clipping

For certain operations, imIntDyadic() supports both clipping 
and saturation. Note that clipping is performed when results 
overflow or underflow the range of the destination buffer; 
saturation is performed when results overflow or underflow the 
range of the internal processing type. Therefore, saturation and 
clipping do not produce the same results when the destination 
buffer type is different from the internal processing type (for 
example, when the sources are unsigned 8-bit and the 
destination is signed 8-bit).

LUT mappings
The Genesis Native Library supports LUT mappings in 
software, using imIntLutMap(). The imIntLutMap() function 
maps an integer image from a source buffer (Src) through a 
specified look-up table (LUT) and stores the results in a 
specified destination buffer (Dst). Such mappings can reduce a 
multi-step or complex operation to a single-step LUT mapping. 
They can also be used to perform operations not supported by 
the Genesis Native Library.

Mapping a displayed 
image 

Note that, in single-screen mode, the overlay frame buffer uses 
all the LUTs in the RAMDAC. Therefore, to map the contents 
of the main frame buffer in single-screen mode, you must use 
imIntLutMap(). For the details, see Chapter 11.

Generating a LUT To generate a LUT, allocate a one-dimensional buffer using 
imBufAlloc1d() and then load data into this buffer in one of two 
ways:
■ Use imGen1d() (or any other processing function) to generate 
the data.

■ Generate the data on the Host, and then transfer the data to 
the buffer, using imBufPut().

❖ None of the source pixel values can exceed the size of the 
table; that is, the number of entries in the LUT. For example, 
if the LUT is size 1024, the maximum source pixel value 
should be 1023. Pixel values above 1023 will not wrap 
around; instead, they might cause an invalid memory access.
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An example The following code maps an image through a LUT. Note that 
this code is part of the process.c program and requires only the 
basic Genesis hardware. See Appendix B for the complete 
process.c program.

LUT performance

The ’C80 performs LUT mappings very efficiently when the 
LUT fits entirely in on-chip RAM. When the LUT is larger, 
performance drops and becomes data-dependent, that is, varies 
with the image being processed. Therefore, to guarantee 
maximum speed when using imIntLutMap(), you should 
always use the smallest possible LUT. For example, 10-bit data 
must be stored in a 16-bit buffer, but only requires a LUT of 

size 210 = 1024.

A note about notation In the following sections, the notation x:y means that x-bit data 
is being mapped to y-bit data. For example, a 12:32 mapping 
means that 12-bit data is being mapped to 32-bit data. Note 
that, in this case, the required LUT size is: 
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212 * 4 Bytes = 16 KBytes.

(number of entries) * (data depth) = LUT size

In the equations used to describe LUT mapping operations, Src 
refers to the source buffer, Lut refers to the LUT buffer, and 
Dst refers to the destination buffer, respectively, that is used 
in a LUT mapping operation.
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Small LUTs

LUTs smaller than 4 KBytes (for example, 12:8, 11:16, and 
10:32) fit entirely in each PP’s internal memory. In this case, 
performance is not data-dependent, that is, performance 
depends only on the size of the table and on how fast the input 
data can be accessed. 

Medium size LUTs

LUTs bigger than 4 KBytes but smaller than 16 KBytes (for 
example, 12:32, 13:16, and 14:8) can still fit on chip, but each 
PP cannot have its own copy of the LUT. In this case, 
performance is slightly data-dependent. Specifically, execution 
times increase slightly when the image pixels are concentrated 
in a small range of values. For most other images, execution 
times should be fairly constant.

Large LUTs

LUTs bigger than 16 KBytes (for example, 15:8, 16:8, and 16:32) 
cannot fit entirely on chip. You can process such tables by 
applying a mapping mode that uses either a non-interpolated 
LUT or an interpolated LUT. 

Mapping with a non-interpolated LUT
A mapping operation that is performed with a non-interpolated 
LUT does not subsample the LUT buffer, so the actual values 
in the LUT buffer are used. The imIntLutMap() function 
provides three non-interpolated modes:
■ Basic mode

■ Shift & mask mode

■ Clip mode

Basic mode 

The basic non-interpolated mode uses the transfer controller of 
the ’C80 to process large LUTs. This occurs when no control 
fields are added to the LUT buffer to specify a different mode. 
The operation used is simply:

Dst = Lut[Src]
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In this basic mode, the source pixel is used directly as an index 
into the LUT and it is your responsibility to make sure that no 
pixel value in the source buffer exceeds the size of the LUT 
buffer. For example, if you pass a LUT buffer with 1024 entries, 
it is assumed that the source buffer contains 10-bit unsigned 
data, and you should ensure that all pixel values in the source 
buffer are between 0 and 1023 (inclusive). In this mode, the 
source buffer can be 8-, 16-, or 32-bit. 

Be aware that when the source contains negative values, you 
must force the unwanted sign bits to 0. For example, the 
difference of two 8-bit unsigned values lies in the range [-255, 
+255], but if you then want to apply a LUT with only 512 values, 
you must first mask (AND) the pixels with 0x01ff (511) to 
prevent negative numbers from being considered as very large 
positive values. 

For LUTs bigger than 16 KBytes, the function can be quite slow 
in this basic mode because the LUT can not fit entirely in 
on-chip RAM. In this case, the function can work in one of two 
ways internally, depending on whether it uses the default or PP 
option.

The default option Using the default option, large LUTs are processed using the 
transfer controller of the ‘C80, making the operation strongly 
data-dependent. 

The PP option Using the PP option, you can increase the speed of the operation 
for LUTs that are bigger than 16 KByte in a way that makes 

multiple passes with the PPs, but still uses the basic 
non-interpolated LUT mode. This option requires a large 
temporary work buffer for temporary data storage. 
Performance drops if this work buffer is too small, so be sure 
that you have enough memory for a large work buffer. Keep in 
mind that the results of the mapping operation will be the same 
as those obtained when using the default option, and the work 
buffer will not necessarily improve the speed in all cases.

You can have this work buffer automatically allocated, or you 
can supply it yourself. To specify whether you want an 
automatically-allocated or user-supplied work buffer, you have 
to add the IM_CTL_WORK_BUF field to the LUT buffer passed 
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to imIntLutMap(). When you add this field to the LUT buffer, 
imIntLutMap() will use the PP option for LUTs bigger than
16 KBytes; otherwise, it will use the default option. 

Default vs. PP option When you use the default option, performance is strongly 
data-dependent. Specifically, images tend to the best case when 
the image pixel values change slowly along a line, and tend to 
the worst case when the pixel values vary rapidly. Since typical 
images tend to be closer to the worst case than the best case, it 
is generally better to use the PP option, which is not very 
data-dependent. However, for 16:32 mappings, the default 
option is generally better than the PP option.

Other non-interpolated 
LUT mapping modes

To increase performance with large LUTs, it is also possible to 
apply one of the two other types of mapping modes that use a 
non-interpolated LUT.

Shift & Mask mode

The shift and mask mode is a non-interpolated LUT mode of 
imIntLutMap() that allows source values to be right shifted 
and/or masked before indexing the LUT. The operation 
performed is:

Dst = Lut[(Src >> shift) & mask]

This mode is particularly useful when the source buffer 
contains negative values (it saves a separate masking 
operation), or when you want to increase the speed of the 
operation by using a smaller LUT (it saves a separate right shift 

operation). To select this mode, you need to specify the dynamic 
range of the source pixels with the IM_CTL_INPUT_BITS field. 
In this mode, the source buffer can be 16- or 32-bit. Note that 
because of the shift, the source’s dynamic range can not be 
deduced from the size of the LUT buffer. Instead, the shift and 
mask are deduced from the difference between the number of 
input bits and the size of the LUT buffer. For example, a LUT 
mapping with 15-bit source data and a 10-bit LUT (1024 input 
bits) would lead to a right shift of 5 bits (15 - 10), and a mask 
value of 0x03ff (1023), which is useful if the source buffer is 
signed and there are any negative input values. The value given 
for the IM_CTL_INPUT_BITS field must lie in the range 9-16 
for a 16-bit source buffer, and 17-32 for a 32-bit source buffer.
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Clip mode

A third non-interpolated mode of this function allows you to 
have large values clipped to the maximum value that the LUT 
can handle. The operation performed is:

Dst = Lut[clip(Src)]

This is useful when you have large values in the source buffer 
(values larger than the LUT you want to use). To select this 
mode, you need to enable clipping (set the IM_CTL_CLIP field 
of the LUT buffer to IM_ENABLE). Keep in mind that unsigned 
clipping is performed. That is, only values above the upper limit 
are clipped, so you should not have any negative values in your 
source buffer. There is no right shift in this mode; therefore, the 
dynamic range of the source data is always deduced from the 
LUT’s size, and the clipping value is equal to (Size of LUT - 1). 
For example, 1023 for a 1024-entry (10-bit) LUT. Note that 
when you want this mode, you should not add the 
IM_CTL_INPUT_BITS field to the LUT buffer as well.

Mapping with an interpolated LUT

Interpolated LUT 
mappings

If you are performing a 16:8 or 16:32 mapping, you can improve 
performance by using an interpolated LUT mapping. An 
interpolated LUT mapping subsamples the LUT buffer to 
reduce its size to 16 KBytes (a 16:8 LUT is therefore 
subsampled by 4 and a 16:32 LUT by 16). The output for each 
16-bit input is then determined by linearly interpolating 
between two values of the subsampled LUT. 
output

input
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

255

65531 65535

LUT mapping function

A 16:8 mapping before subsampling

. . . . . .

output

input
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

255

65531 65535

After subsampling

. . . . . . . . .
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To specify an interpolated LUT mapping, add the 
IM_CTL_RESAMPLE field to the LUT buffer passed to 
imIntLutMap(). Note that final results will be equal to the 
actual results when the mapping function varies linearly 
between the sampled points. Since even a fairly high-order 
polynomial function varies almost linearly over a range of 16 
consecutive input values, final results will usually be very close 
to the actual results. 

Since a 16:32 mapping is usually used to display an image in 
pseudo-color, a 32-bit destination buffer is always assumed to 
be in RGBa format, and each of the three 8-bit color bands is 
interpolated separately.

If necessary, input values from the source buffer can be clipped 
to avoid reading beyond the end of the subsampled LUT. When 
clipping is enabled (IM_CTL_CLIP is set to IM_ENABLE), these 
large input values are clipped to the maximum value that the 
subsampled LUT can handle. Similarly, if you want to disable 
clipping (usually because your input data is already clipped), 
set the IM_CTL_CLIP field to IM_DISABLE.

When you perform an interpolated LUT mapping, you might 
prefer to provide the LUT already subsampled, since it will be 
quicker to generate and load. However, you then need to specify 
the size of your input data, since this cannot be inferred from 
the LUT size (if you provide a LUT of 16K entries, the function 
would normally assume you have 14-bit data, when in fact you 
have 16-bit data). 
To specify the input data size, use the IM_CTL_INPUT_BITS 
field. 

The above descriptions assume that you are using an 
interpolated LUT (IM_CTL_RESAMPLE field is set to 
IM_INTERPOLATE). The IM_CTL_INPUT_BITS and 
IM_CTL_CLIP control fields have different meanings when you 
use a non-interpolated LUT.

Use smaller mappings Instead of working with large LUTs, you should always try to 
use several smaller LUT mappings; performance will often be 
better. For example, a 14:32 mapping is considerably faster if 
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done as three separate 14:8 mappings. Note that a 14:32 
mapping can be used to convert a grayscale image to 
pseudo-color.

Histogram equalization
Using imIntHistogramEqualize(), you can perform a histogram 
equalization on an integer image, or generate a LUT from a 
specified histogram equalization operation. In the former case, 
a histogram is performed on the source image, the histogram 
is transformed into a LUT using the specified equalization 
operation, and then this LUT is used to transform the source 
image. In the latter case, a histogram is transformed into a LUT 
from the specified equalization operation; the histogram can be 
of the source image or user-supplied.
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Neighborhood processing
The Genesis Native Library supports a variety of neighborhood 
operations. A neighborhood operation replaces a pixel’s value 
according to the values of its surrounding pixels (called its 
neighborhood). The size of the neighborhood is determined by 
the operation’s kernel. The type of operation determines how 
the kernel is used to determine new pixel values.

Compute bound Neighborhood operations are usually compute-bound, but the 
type of data can still affect performance. This is because each 
of the parallel processors of the ’C80 can often process four 8-bit 
or two 16-bit pixels as quickly as one 32-bit pixel. Speed also 
depends on the size of your kernel.

In-place not
supported

In-place operation, as well as partially overlapping source and 
destination buffers, are not supported for neighborhood 
functions, unless otherwise stated.

Predefined kernels vs. 
custom kernels

In general, you can use your own kernel or a predefined kernel. 
The predefined kernels will normally execute faster, although 
they might not always meet your requirements. If you use your 
own kernel, you can generally control the center pixel of the 
kernel, as well as other aspects of the operation.

When the NOA is not used (either not present or disabled), 
nearly all functions support a maximum kernel size of 15x15, 
except for binary pattern matching, which  has no kernel size 
limit. When using the NOA for binary morphology, the largest 

kernel supported is 32x32, (again, except for binary pattern 
matching). However, the NOA can only operate on aligned 
binary data (an image which starts on a byte boundary and has 
a width which is a multiple of 16 pixels). If you do pass a 
non-aligned buffer, the operation will be carried out by the ’C80 
instead of the NOA, and the 15x15 maximum kernel size will 
apply.

Main types There are two main types of neighborhood operations:

■ Spatial filtering (convolution) operations.

■ Morphological operations.
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Spatial filtering operations
A spatial filtering (convolution) operation determines the new 
value for a pixel based on the weighted sum of the pixel and the 
pixel’s neighboring values. You perform convolutions using 
imIntConvolve().

Using your own
kernel

If you use your own kernel with imIntConvolve(), you can shift, 
take the absolute value of, and/or clip the results of the 
convolution.

Note that, if clipping is enabled, it is to the range specified by 
the IM_CTL_OUTPUT_BITS field (by default, it is to the full 
range of the destination buffer). 

Processing speed Depending on the kernel values, you might be able to increase 
the speed at which imIntConvolve() is performed by setting its 
IM_CTL_COMPUTATION field to IM_FAST. This will cause 
approximations to be made, if possible, so as to increase 
operation speed. Note, however, that some rounding errors 
(usually small) can occur if you set this field. 

You might also be able to increase operation speed by setting 
IM_CTL_INPUT_BITS to the number of bits actually in the 
source buffer. For example, if a 16-bit source buffer contains 
only 10-bit data, operation speed might be increased if you set 
IM_CTL_INPUT_BITS to 10 (again, whether operation speed can 
actually be increased depends on the kernel values).

Note that imIntConvolve() runs slower if you shift, take the 

absolute of, or clip results. You should only use these options if 
really necessary.
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Morphological operations
The Genesis Native Library supports the following 
morphological operations:

■ Erosion.

■ Dilation.

■ Thinning.

■ Thickening.

■ Binary template matching.

■ Hit-or-miss transformation.

■ Distance transform.

Erosion and dilation

There are two types of erosion/dilation operations: binary and 
grayscale.

Binary erosion and 
dilation 

To perform binary erosion or dilation, use imBinMorphic().

■ In binary erosion, if the kernel does not match the 
neighborhood exactly, the center pixel is set to zero; 
otherwise, it remains unchanged.

■ In binary dilation, if any of the elements of the neighborhood 
match the corresponding kernel value, the center pixel is set 
to 1; otherwise, it remains unchanged. 
Note that any kernel value other than 0 or 1 is considered a 
"don’t care" value, that is, it is ignored during the operation.
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Grayscale erosion
and dilation

To perform grayscale erosion or dilation, use 
imIntErodeDilate(). The kernel must be grayscale. A kernel 
value of IM_DONT_CARE causes the corresponding pixel in the 
neighborhood to be ignored during the operation.

Grayscale erosions and dilations are done in two steps.

The erosion operation:

1. Subtracts each kernel value from the corresponding pixel 
value in the neighborhood.

2. Replaces the center pixel of the neighborhood with the 
minimum value from the resulting neighborhood values.

The dilation operation:

1. Adds each kernel value to the corresponding neighborhood 
pixel.

2. Replaces the center pixel of the neighborhood with the 
maximum value from the resulting neighborhood values.
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Thinning and thickening

In thinning and thickening operations, the value of the center 
pixel is determined by whether an exact match of the 
neighborhood and the kernel is found.

There are two versions of thinning and thickening: binary and 
grayscale. For either version, any kernel value other than 0 or 
1 is considered a "don’t care" value, that is, it is ignored during 
the operation.

Binary thinning
and thickening

Use imBinThin() to perform a fast binary thinning operation.

■ Binary thinning: This operation replaces the center pixel by 
the value 0 if a pixel’s neighborhood matches the kernel 
exactly. If the neighborhood does not match, the pixel value 
remains unchanged.

Use imBinMorphic() to perform a binary thickening operation.

■ Binary thickening: This operation replaces the center pixel 
by the value 1 if the pixel’s neighborhood matches the kernel 
exactly. If the neighborhood does not match, the pixel value 
remains unchanged.

❖ Note that it is also possible to use imBinMorphic() to perform 
a binary thinning operation, although processing will be 
slower.

When performing binary operations using imBinMorphic(), the 
NOA can only directly process buffers which are byte aligned, 

and have a width which is a multiple of 16 pixels.  If a buffer 
does not respect these restrictions, processing will be slower 
(either because the NOA will not be used, or an aligned copy of 
the buffer will be made first). Note that this restriction only 
applies to child buffers, since buffers are always initially 
allocated with the proper alignment.

Grayscale thinning
and thickening

Use imIntThickThin() to perform a grayscale thinning or 
thickening operation.
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■ Grayscale thinning:
if MAX(0) < center pixel <= MIN(1)
  center pixel = MAX(0)
else
  center pixel is unchanged.

■ Grayscale thickening:
if MAX(0) <= center pixel < MIN(1)
  center pixel = MIN(1)
else
  center pixel is unchanged.

where MAX(0) is the maximum of all pixels in the 
neighborhood that correspond to zero in the kernel, and 
MIN(1) is the minimum of all pixels in the neighborhood that 
correspond to one in the kernel.

Multi-band kernels Since it is common to thin or thicken with a series of different 
kernels (one applied after the other), you can provide a 
multi-band kernel to imBinMorphic() or imIntThickThin(). 
Each band of the kernel will be applied to the result of the 
previous one, allowing you to perform a series of operations 
with one call to the function.

An example The following code is an example of thinning to skeleton. Note 
that this code is part of the process.c program and requires only 
the basic Genesis hardware. See Appendix B for the complete 
process.c program.
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Binary template matching

Binary template matching allows you to determine how similar 
certain areas of a binary image are to a pattern (specified by a 
kernel). Binary template matching produces resulting pixels 
that are a count of the number of matches between the 
neighborhood and kernel values (therefore, the result is a 
grayscale image). Any kernel value other than 0 or 1 is 
considered a "don’t care" value, that is, it is ignored during the 
operation.

Use imBinMorphic() to perform binary template matching. 

Hit-or-miss transformations

A hit-or-miss operation determines which pixels have 
neighborhoods that match a pattern exactly. When the 
neighborhood of a source image’s pixel matches the pattern 
exactly, the value of the corresponding pixel in the destination 
image is set to 1. When the neighborhood does not match 
exactly, the pixel value is set to 0. Any kernel value other than 
0 or 1 is considered a "don’t care" value, that is, it is ignored 
during the operation.

Use imBinMorphic() to perform hit-or-miss operations. 
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Distance transform

You can produce a distance transform using imIntDistance(). 
This function determines the minimum distance from each 
foreground (non-zero) pixel to a background (zero) pixel, and 
assigns this distance to the foreground pixel. It produces a type 
of contour mapping of an image’s foreground (object) pixels.

You can calculate the minimum distance using one of three 
transforms. 

The City Block
transform

The City Block transform (IM_CITY_BLOCK) determines the 
minimum distance using only horizontal or vertical steps. Each 
step counts as 1.

The Chessboard
transform

The Chessboard transform (IM_CHESSBOARD) determines the 
minimum distance using horizontal, vertical, or diagonal steps. 
Each step counts as 1.
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The Chamfer 3-4
transform

The Chamfer 3-4 transform (IM_CHAMFER_3_4), like the 
Chessboard transform, determines the minimum distance 
using horizontal, vertical, or diagonal steps. However, 
horizontal and vertical steps are counted as 3 and diagonal 
steps as 4. This allows the transform to better approximate the 
true (Euclidean) distance between two pixels. However, it 
requires that the destination buffer be large enough to hold a 
number at least three times the maximum distance from a 
foreground to a background pixel.

With the Chamfer 3-4 transform, you can normalize results. 
Normalization will divide results by 3 so that each horizontal 
or vertical step is counted as 1. Note, however, that you still 
need a destination buffer that is large enough to hold a number 
at least three times the maximum distance from a foreground 
to a background pixel.
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Defining your own kernel
If the predefined kernels do not meet your requirements, you 
can define your own kernel, as follows:

1. Allocate a kernel buffer using, for example, imBufAlloc2d(). 
The dimensions of the kernel determine the size of the 
neighborhood used in the operation.

The result of the neighborhood operation is stored in the 
destination buffer at the location corresponding to the 
kernel’s center pixel. By default, the coordinates of the 
kernel’s center pixel are: 

(int (Xsize-1)/2, int (Ysize-1)/2)

where Xsize by Ysize are the dimensions of the kernel 
buffer. For most functions, however, you can use any pixel 
of the kernel as the center pixel, by setting the 
IM_KER_CENTER_X and IM_KER_CENTER_Y fields.

2. Load the kernel values into this kernel buffer, using 
imBufPut() or any processing function that might be 

Neighborhoods and their default center pixel

C C C C
C

appropriate.
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An example The following code performs a convolution with a user-defined 
kernel. Note that this code is part of the process.c program and 
requires only the basic Genesis hardware. See Appendix B for 
the complete process.c program.
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Specifying the overscan pixels
In a neighborhood operation, the neighborhood of some pixels 
will fall outside of the source buffer. To determine the new 
values for these pixels, "extra" source pixels are required. These 
are known as the overscan pixels of the neighborhood operation.

With the Genesis Native Library, you can use either 
"transparent overscan" or "replace overscan" to perform a 
neighborhood operation.

Transparent overscan If you choose transparent overscan, the pixels of the source 
buffer’s parent buffer are used as the overscan pixels. If the 
parent buffer can’t provide overscan pixels (for example, if the 
source buffer is not a child buffer or if it touches one of the edges 
of its parent buffer), then the pixel values used will be 

C

Kernel

= source buffer pixel

= overscan pixel 
undefined (leading to unpredictable results).

Replace overscan If you choose replace overscan, the overscan pixels are set to a 
specified constant value. 

Transparent vs.
replace

In general, use transparent overscan when the source buffer is 
a child buffer. This will ensure that the overscan pixels are 
related to the pixels that border the source buffer. Use replace 
overscan if the source buffer is not a child buffer, if the source 
buffer touches one of the edges of its parent buffer, or if the 
source buffer is unrelated to its parent buffer.
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Connectivity mapping
The imIntConnectMap() function calculates a connectivity code 
for each pixel in a binary source image and then maps these 
codes through a LUT buffer.

The connectivity code is obtained by linking the elements of a 
pixel’s 3x3 neighborhood into a string, forming a single 9-bit 
number. Neighborhood pixels are linked in the following order:

     where ni is either 0 or 1

The pixels are connected and mapped as follows:

Connectivity code = 

Result = LUTMAP (connectivity code)

Program the LUT with values that produce the desired result 
for each possible neighborhood configuration. Since each 
connectivity code has 9 bits, you should supply a LUT buffer 

with at least 29 = 512 entries.

n3 n2 n1

n4 n8 n0

n5 n6 n7

2
i
ni

i 0=
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Geometric processing
The Genesis Native Library provides basic geometric functions 
(imIntFlip(), imIntScale(), imIntSubsample(), and 
imIntZoom()), as well as general, more flexible geometric 
functions (imIntWarp...()). The more general functions are 
discussed in Chapter 4. The basic geometric functions are faster 
than the general warping functions but cannot produce complex 
geometrical transforms.

Support for 32-bit
floating-point 

Although the geometric functions are intended for integer 
images, most can operate on 32-bit floating-point data if no 
interpolation is specified. 

In-place not
supported

Note that in-place operation is not supported for the geometric 
functions.

Flip/rotate
The imIntFlip() function allows you to:

■ Flip horizontally (left to right) or vertically (top to bottom). 
Note that flipping horizontally allows you to get a mirror copy 
of your original image.

■ Rotate 90, 180, or 270° counter-clockwise.

Scale by integer factors

The imIntSubsample() function minifies (subsamples) an 
image by an integer factor. When no interpolation is specified, 

the function takes a single sample from each block of the source 
buffer; when interpolation is specified, the function takes the 
average value of the block. The size of the block determines the 
factor by which the source buffer is minified.

The imIntZoom() function magnifies (zooms) an image by an 
integer factor. It replicates each pixel of the source buffer into 
a block of the same value. An averaging filter can then be 
applied to the result, thereby producing an interpolated zoom. 
The size of the block determines the factor by which the source 
buffer is magnified.
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You can also use the imIntScale() function to scale an image by 
integer factors in non-interpolated mode and in interpolated 
mode. imIntScale() has more restrictions than 
imIntSubsample() or imIntZoom(); however, it is the fastest 
way to perform an interpolated scaling by an integer factor 
(especially for factors of 2, 4, and 8). 

Scale by non-integer factors

The imIntScale() function can also scale an image by a 
non-integer factor in interpolated or non-interpolated mode. In 
non-interpolated mode, the exact scale factor that is specified 
is used. In interpolated mode, the actual scale factor used might 
be slightly different from the one requested. This is done in the 
interest of speed. However, non-integer factors that can be 
expressed as the ratio of two small integers (such as 1.5 = 3/2) 
will also be used exactly as specified. In interpolated mode, the 
scale factors are used exactly as specified when:

scaling factor = n/m, 

where n and m are integers between 1 and 16 (inclusive). 

You can specify the x and y scaling factors yourself, or you can 
have them automatically chosen such that the re-scaled image 
will just fill the destination buffer.
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Color processing
Many processing functions can operate on multi-band (color) 
buffers. Specifically, if the source and destination buffers have 
the same number of bands, the function processes 
corresponding source bands and writes results to the 
corresponding destination band. If one of the source buffers has 
only one band while the other(s) have several bands, the 
function uses that one source band as many times as is needed.

When a function does not support multiple bands, you can 
create a child buffer for each band, using imBufChildBand(), 
and process the bands individually.

Choosing a color space

When processing color images, you can take advantage of the 
extra information available in the color image without greatly 
increasing the processing time required and without occupying 
more memory than is necessary. The key is to select the right 
color space.

The color spaces supported by the Genesis Native Library are 
RGB and HSL.

RGB color space In the RGB color space, color is represented as a combination 
of red, green, and blue. This color space is generally used for 
most display hardware since it best matches the three colored 
phosphors of display monitors. It is also the direct output color 
space of many cameras and input devices. The color space does 

have drawbacks, however:

■ Processing in this color space is not intuitive. Small changes 
in one component can have large visible effects.

■ In general, the color component values are highly correlated. 
This redundancy can lead to wasted computation.
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HSL color space In the HSL color space, color is represented as a combination 
of hue, saturation, and luminance. The hue corresponds to the 
wavelength of the main color. It is represented as an angular 
position on a circular color disk. The luminance corresponds to 
the brightness of the color, while the saturation can be thought 
of as the measure of color purity or concentration.

The HSL color space is similar to the human way of describing 
colors. Each color has its own hue value (such as red, orange, 
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or green). Once the hue value is chosen, changes to the 
saturation or the luminance alter only the color quality, not the 
basic color.

Converting between 
RGB and HSL

You can convert between the RGB and HSL color spaces, using 
imIntConvertColor(). For efficiency, when converting from a 
3-band (RGB) buffer, you can calculate just the hue (H) 
component of the HSL color space into a 1-band buffer. You can 
also use this function to extract the luminance (intensity) from 
an RGB image, or to copy the luminance component of an image 
into a three-band buffer, to create a monochromatic (gray) RGB 
buffer. 
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In addition, you can perform a custom matrix-defined 
conversion. To perform an arbitrary matrix-defined color 
conversion, you must also pass a 3x3 or 3x1 floating point 
coefficient buffer. For a matrix-defined conversion, the 
coefficient buffer should be 3x3 if both source and destination 
are 3-band buffers. If the source buffer has 3 bands and the 
destination buffer has 1 band, then the coefficient buffer should 
be 3x1.

For 3x3 Coef buffers:

each band of the destination is calculated from the source bands 
as follows:

Dst[0] = a.Src[0] + b.Src[1] + c.Src[2]

Dst[1] = d.Src[0] + e.Src[1] + f.Src[2]

Dst[2] = g.Src[0] + h.Src[1] + i.Src[2]

By default, underflows and overflows are not clipped; the input 
format is the same as that of the source buffer, and the output 
format is the same as that of the destination buffer. 

You can control whether clipping is enabled, as well as the data 
type of input (source)  and output (destination) bands, by adding 
control fields to the coefficient buffer. When IM_CTL_CLIP is set 
to IM_ENABLED, underflows and overflows are clipped to the 

a b c

d e f

g h i
output range [0, 255] for unsigned outputs, and [-128, 127] for 
signed outputs. 

It is also possible to set IM_CTL_INPUT_FORMAT and 
IM_CTL_OUTPUT_FORMAT to IM_UNSIGNED or IM_SIGNED to 
control the data type of the input and/or output bands, 
respectively. Note that the first band is always unsigned. 
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Statistical processing
In addition to the processing operations, the Genesis Native 
Library provides a variety of statistical operations. For 
example, you can:

■ Take the histogram of an image, using imIntHistogram().

■ Locate pixels that satisfy a specified condition, using 
imIntLocateEvent().

■ Count the differences between two images, using 
imIntCountDifference().

■ Find the minimum and/or maximum pixel value in an image, 
using imIntFindExtreme().

The statistical functions write results either to a field of a buffer 
(for example, imIntCountDifference(), where only one value is 
returned), or into a buffer itself (for example, imIntHistogram(), 
where multiple values are returned). 

Once you have completed your statistical operations and want 
to read back the results, use imBufGet() or imBufGet1d() if the 
results are written into a buffer; use imBufGetField() if the 
result is written into a field of a buffer.

❖ Statistical functions do not support packed binary buffers.
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Histograms
When you perform a histogram, speed is dependent on data 
type. To guarantee maximum speed, the result buffer should be 
no larger than necessary. For example, 10-bit data must be 
stored as a 16-bit image, but only requires a result buffer of size 

210 = 1024.

In order to speed up the time required to generate the 
histogram, you can specify certain options (described below). 
These options are mainly useful for deep input data. In such a 
case, the result buffer is normally too large to fit in on-chip RAM 
and the operation is much slower than normal.

Skip input pixels You can specify that the histogram be generated using only 

every xth column and/or every yth row of the source buffer. To 
do so, use the IM_CTL_SUBSAMP_X and/or 
IM_CTL_SUBSAMP_Y fields. The histogram will have 
approximately the same shape but the total number of counts 
will be less.

Scale data You can scale the input data, if the number of input bits exceeds 
the size of the result buffer. For example, if 16-bit data is used 

with a result buffer of size 210 = 1024, all input pixels can be 
right shifted by 6 bits. The operation will be much faster than 

with a full result buffer (size 216 = 65536), although there will 
be some approximations to the shape of the histogram since 
fewer bins are used. 
In order to scale input data when the number of input bits 
exceeds the size of the result buffer, use the 
IM_CTL_INPUT_BITS field to indicate the input data size.

Note that, by default, the number of input bits is deduced from 
the size of the result buffer. For example, when the source buffer 

is 16-bit and the result buffer is of size 210, the input data is 
assumed to be only 10-bit and is therefore not right-shifted. 
However, if the IM_CTL_INPUT_BITS field is set to 16, input 
pixels are right shifted by 6 bits. 

❖ The IM_CTL_INPUT_BITS field only applies when the source 
buffer is 16-bit, since no right shift is needed for 8-bit buffers.



Chapter 4: Advanced 
processing 

This chapter describes some of the more advanced 
processing functions of the Matrox Genesis Native Library.
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Three-input arithmetic and logical 
operations
With the Genesis Native Library, you can perform arithmetic 
and logical operations on up to three input operands, using 
imBinTriadic() or imIntTriadic(). Working with three operands 
rather than two can reduce the number of function calls 
required to perform an operation. For example, merging 
operands A and B based on operand C, 
 (A&C) | (B&~C), can be performed in a single call to 
imIntTriadic() rather than three calls to imIntDyadic(). 

Note that the operation (A&C) | (B&~C) passes A where C is 
0xFFFFFFFF, and passes B where C is 0.

(A & C) | (B & ~C)A B C
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More on the
Triadic functions

Besides providing pre-defined operators, imBinTriadic() and 
imIntTriadic() allow you to control the type of arithmetic or 
logical operation performed by allowing you to specify the 
actual PP ALU opcode. By specifying opcodes directly, you can 
perform any type of arithmetic or logical operation that the
PP ALU supports. Note, however, that you only need to derive 
opcodes if you cannot perform the required operation using a 
pre-defined opcode or using another arithmetic and logical 
function.     

Deriving opcodes for 
Triadic functions

The following example outlines how to derive the opcode for a 
logical operation. Most arithmetic operations exist as 
pre-defined opcodes; if you ever need to derive the opcode for 
an arithmetic operation, you can contact Texas Instruments for 
their TMS320C80 (MVP) Parallel Processor’s User Guide. (You 
will need to derive the 32-bit part of the PP opcode that resides 
in register d0 for the instruction class EALU || ROTATE).

1 1 1

10 0
10 0

1 0 0

1 1 0
1 10

000

1 10

A B C A & C    B & ~C

CB = 00 CB = 01 CB = 11 CB = 10

First step:
Derive the result of
the operation for all
combinations of
A, B, and C 

Operation: (A & C) | (B & ~C) i.e. pass A when C is 1; pass B when C is 0

Deriving the proper opcode for a logical operation

0
0
1
0
0
1
1
1

( ( ((
F0 F2

F1 F3

F4

F5

F6

F7

0

1

01

0 1 1

0A = 0

A = 1

Second step:
Represent results
in this table 

F7 F6 F5 F4 F3 F2 F1 F0

Last step:
Left-shift by 19 bits 10101100 << 19   

1 1 1 10 0 0 0
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The opcode for (A&C) | (B&~C) is therefore
10101100 << 19 = 0x5600000. The appropriate function calls 
for imBinTriadic() and imIntTriadic() would be:

Note, however, that (A&C) | (B&~C) exists as a pre-defined 
opcode: IM_PP_MERGE.

❖ The distinction between arithmetic and logical operations 
lies in whether the operation produces any carry-outs (for 
example, A + B produces a carry-out for 1 + 1). If there are 
no carry-outs (for any combination of A, B, and C) the 
operation is logical and its opcode can be derived according 
to the above steps. If there are carry-outs, the operation is 
arithmetic and its opcode must be derived using a different 
method; see the TMS320C80 (MVP) Parallel Processor’s User 
Guide.

KO$KP6TKCFKE
VJT��DWHC��DWHD��DWHE��FGUVDWH���Z������������
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Live processing
Grabbing a sequence of frames in real-time
To grab a sequence of frames in real-time, simply use successive 
calls to imDigGrab() in the same thread:  

No frames will be missed as long as you use compatible camera 
definitions for each call and as long as no other applications are 
also grabbing to the same memory bank. Frames could be 
missed if the camera definitions are different, since the 
digitizer has to be re-programmed for each grab. Frames could 
also be missed if two or more applications grab to the same 
memory bank, since each memory bank has just one VIA 
capable of writing grabbed data to memory.   

Real-time processing
To grab and process concurrently on Genesis, you need to 
allocate two grab input buffers. You then process one buffer 
while grabbing the next frame into the other buffer. You must 
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switch the destination of the grab between the two input buffers 
(this is commonly known as double buffering). You also need to 
synchronize the grabbing and processing so that:

■ You do not process a buffer until an entire frame has been 
grabbed into the buffer. 

■ You do not grab into a buffer until the previous frame in that 
buffer has been processed.
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There are many ways to implement real-time processing. For 
example, you could use separate threads for grabbing and 
processing, and possibly a third thread for synchronization. 
However, one of the simplest ways is to use a single thread and 
to use imDigGrab() in asynchronous mode.

Asynchronous grab
mode

When you use imDigGrab() in asynchronous mode, the thread 
to which imDigGrab() is sent will not wait for the grab to 
complete before continuing to execute. You specify 
asynchronous mode through the IM_CTL_GRAB_MODE field of 
imDigGrab(). Note that, by default, the thread will wait for 
imDigGrab() to complete before continuing.

Using imDigGrab() in asynchronous mode allows you to grab 
and process concurrently using just one thread. This can 
simplify the application code, as shown below.
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Note how the above code satisfies the two synchronization 
requirements. The first requirement (that processing wait for 
grabbing) is satisfied by using imSyncHost(). The second 
requirement (that grabbing wait for processing) is 
automatically satisfied because the grab function is called after 
the processing function in the same thread (recall that 
functions in a thread execute serially).
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A note about 
command queues

While the above code processes the same number of frames per 
second whether imSyncHost() or imSyncThread() is used, 
imSyncHost() prevents the command queue on the board from 
filling up. If imSyncThread() is used, there is nothing to stop 
the Host from executing the loop much faster than the board 
can carry out the processing. Therefore, the command queue on 
the board will quickly fill up, preventing other applications on 
the board from running properly. In addition, grabbing will 
continue even after you exit the loop (for several seconds) 
because of all the queued commands.

Note also that each command queued to the board uses a small 
amount of ’C80 time. Therefore, if you queue too many 
commands, you will significantly slow down any functions that 
are currently executing. Typically, it is safe to queue a few tens 
of commands, but hundreds would be too many. 

To inquire about the status of a command queue, use 
imDevInquire().
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Geometric warpings
In addition to the basic geometric functions described in 
Chapter 3, the Genesis Native Library contains geometric 
functions (imIntWarp...()) that allow you to warp an image. 
Warpings could be used, for example, to correct geometric 
distortions in an image.

How a warping is 
performed

The Genesis Native Library performs warpings by associating 
each pixel position of the destination buffer, (xd, yd), with a 
specific point in the source buffer, (xs, ys), and then determining 
the pixel value at (xd, yd) from its associated point and from a 
specified interpolation mode.

First-order polynomial warpings

You can perform first-order polynomial warpings using 
imIntWarpPolynomial(). A first-order polynomial warping is 
equivalent to linearly translating, rotating, resizing, and/or 
shearing an image. First-order polynomial warpings are 
performed by associating points in the source buffer with pixels 
in the destination buffer according to the following equations:

   xs = a0 + a1xd + a2yd
   ys = b0 + b1xd + b2yd

Generating
coefficients

The coefficients (a0...a2, b0...b2) required to produce a 
polynomial warping can be automatically generated (using 
imGenWarp1stOrder()) or user-supplied. When using 

imGenWarp1stOrder(), you specify how you want the warping 
performed (for example, by how much you want to rotate and 
resize an image); the function then generates the coefficients 
required to produce such a warping (see the following example).

Whether you supply the coefficients yourself or have them 
generated, they must be placed in a 32-bit floating-point buffer 
of size 3x2.
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An example The following code rotates an image by 30° about its center. 
Since rotations are performed about (0, 0), the image is 
translated to move its center to (0, 0), rotated, and then 
translated to its original position. Note that this code is part of 
the process.c program and requires only the basic Genesis 
hardware. See Appendix B for the complete process.c program.
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Using a LUT to perform a warping
You can perform warpings through look-up tables (LUTs), using 
imIntWarpLut(). Since this function associates points in the 
source buffer with pixels in the destination buffer through 
LUTs, it can perform any type of warping. For example, it can 
perform first-order polynomial warpings and perspective 
warpings, as well as warpings that arbitrarily map pixels in the 
destination buffer to points in the source buffer.

Perspective warpings A perspective warping maps an arbitrary quadrilateral onto a 
rectangle, in such a way that part of the image seems farther 
from your plane of view.

Perspective warpings are performed by associating points in 
the source buffer with pixels in the destination buffer according 
to the following equations:

      and   

Source image A perspective transformation
of the source image

xs
x
w
----= ys

y
w
----=
   where

   

   so
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c01 c11 c21
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yd

1

=

xs

c00xd c10yd c20+ +

c02xd c12yd c22+ +
----------------------------------------------------=

ys

c01xd c11yd c21+ +

c02xd c12yd c22+ +
----------------------------------------------------=
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To perform a perspective warping, you must supply the 3x3 
coefficients (c00 ... c22) to the imGenWarpLutMatrix() function. 
This function generates the LUTs required by imIntWarpLut() 
to perform the warping. The 3x3 coefficients can be 
user-supplied or automatically generated using 
imGenWarp4Corner().

Note that, if c02 and c12 are set to 0 in the equations for a 
perspective warping, the equations reduce to a first-order 
polynomial warping. You could therefore perform a first-order 
polynomial warping by generating the required coefficients 
using imGenWarp1stOrder(), passing the generated 
coefficients to imGenWarpLutMatrix(), and then passing the 
generated LUTs to imIntWarpLut(). However, it is more 
efficient to use imIntWarpPolynomial().

An example The following code performs a perspective warping on an image. 
Note that this code is part of the process.c program and requires 
only the basic Genesis hardware. See Appendix B for the 
complete process.c program.
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Another example The following code warps an image through user-supplied 
LUTs. Note that this code is part of the process.c program and 
requires only the basic Genesis hardware. See Appendix B for 
the complete process.c program.

�NQPI�:.WV$WH�����������:�CFFTGUU�.76�DWHHGT���
�NQPI�;.WV$WH�����������;�CFFTGUU�.76�DWHHGT���
�UJQTV��:.WV8CNU��������*QUV�CTTC[�VQ�JQNF�:�.76�XCNWGU���
�UJQTV��;.WV8CNU��������*QUV�CTTC[�VQ�JQNF�;�.76�XCNWGU���
�KPV�1Z��1[�������������1TKIKPCN�RKZGN�EQQTFKPCVGU���
�KPV�9Z��9[�������������9CTRGF�RKZGN�EQQTFKPCVGU���

���#NNQECVG�CFFTGUU�.76�DWHHGTU���
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%���:.WV$WH��
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%���;.WV$WH��

���#NNQECVG�JQUV�OGOQT[�KP�YJKEJ�VQ�ETGCVG�VJG�.76U���
�:.WV8CNU���
UJQTV����OCNNQE
UK\GQH
UJQTV����5K\G:���5K\G;��
�;.WV8CNU���
UJQTV����OCNNQE
UK\GQH
UJQTV����5K\G:���5K\G;��

��
���%CNEWNCVG�VJG�
:�;��UQWTEG�CFFTGUU�HQT�GCEJ�FGUVKPCVKQP�RKZGN�
���7UG�KPVGIGT�CFFTGUU�XCNWGU�HQT�PGCTGUV�PGKIJDQT�TGUCORNKPI�
���
�HQT�
1[������1[�� 5K\G;��1[

�
�]
������HQT�
1Z������1Z���5K\G:��1Z

�
������]
���������(NKR�VJG�KOCIG�KP�VJG�:�FKTGEVKQP���
�������9Z���5K\G:�������1Z�

���������#FF�C�UKPG�YCXG�QHHUGV�KP�VJG�;�FKTGEVKQP���
�������9[���1[�
�
KPV��
�������UKP
1Z����������

���������&QP	V�NGV�VJG�CFFTGUU�HCNN�QWVUKFG�VJG�UQWTEG�KOCIG���
�������KH�
9Z�� ��^^�9Z� ��5K\G:�^^�9[�� ��^^�9[� ��5K\G;�
�������]
������������9Z�����
������������9[�����
�������_
���������9TKVG�VJG�
:�;��CFFTGUU�KP�VJG�.76U���
�������:.WV8CNU=1Z�
�1[�5K\G:?���
UJQTV��9Z�
�������;.WV8CNU=1Z�
�1[�5K\G:?���
UJQTV��9[�
������_
�_



Geometric warpings      91

Interpolation modes
When you perform a warping, pixel positions in the destination 
buffer, (xd, yd), get associated with specific points in the source 
buffer, (xs, ys). The destination coordinates have integer values 
but the source coordinates, in general, do not. Therefore, the 
pixel value at (xd, yd) has to be determined from several source 
pixels that are near (xs, ys), according to a specified 
interpolation mode.

The following are some interpolation modes:

■ Nearest-neighbor. This mode determines the nearest value 
to a point, and copies that value into its associated position.

■ Bilinear. This mode takes a weighted average of the four 
pixels nearest to the point, and copies that average into its 
associated position. The pixels closest to the point are given 
the most weight.

■ Bicubic. This mode takes a weighted average of the sixteen 
pixels nearest to the point, and copies that average into its 
associated position. Again, the pixels closest to the point are 
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given the most weight.

In general, nearest-neighbor interpolation is the fastest to 
perform, and bicubic interpolation is the slowest. However, 
nearest-neighbor interpolation produces the least accurate 
results, and bicubic interpolation produces the most accurate. 
Bilinear interpolation is often the best compromise between 
speed and accuracy.
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Fourier transforms
With the Genesis Native Library, you can represent an image 
in its frequency domain by performing a fast Fourier transform 
(FFT) on the image, using imIntFFT(). In the frequency 
domain, you can easily locate any constant spatial patterns in 
an image (which can be caused, for example, by systematic 
noise). By changing an image’s frequency domain 
representation and then performing an inverse transform (also 
using imIntFFT()), you can emphasize or de-emphasize 
constant spatial patterns. 

By removing these
spots and then
performing an inverse
transform, the noise
is removed.

An image with constant
systematic noise. The
spatial frequency of this
pattern is quite different
from the image’s other
spatial frequencies.
Therefore, in the frequency
domain of this image,
it should be clearly
distinguishable.

The FFT of the image. 
The bright spots (near
the corners) represent
the spatial frequencies
of the systematic noise.
Note that imIntFFT() uses a fixed-point integer representation 
of the image. This is faster than using a floating-point 
representation. It can also be just as accurate if you left-shift 
the input image by enough bits before performing the 
transform. To avoid overflows, you should then enable 
normalization (this will right-shift results at each stage of the 
transform so that the dynamic range doesn’t get larger); see the 
following example.
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An example The following code performs an FFT on an image, then performs 
a reverse transform. Note that this code is part of the process.c 
program and requires only the basic Genesis hardware. See 
Appendix B for the complete process.c program.
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Chapter 5: Blob analysis

This chapter describes how to perform blob analysis.
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Blob analysis
Blob analysis is a branch of image analysis that allows you to 
identify connected regions of pixels (blobs) within an image, and 
then to calculate selected features of those regions. Typical 
features describe the size, shape, and location of the blobs. 
Therefore, you can use the results of blob analysis for a variety 
of purposes, for example, to distinguish between objects in an 
image, to locate objects, and to measure objects. Along a 
production line, for instance, you can use results to determine 
if parts have been manufactured within specified tolerances.

Segmentation Before you can perform blob analysis, you must segment your 
image. This is the process of separating blob pixels from the 
rest of the image. Since the blob module requires an image in 
which either the blobs or the background have the value zero, 
the minimum that you must do is threshold the image. 

The segmented image is known as the blob identifier image. If 
the background of the blob identifier image has the value zero, 
touching pixels with non-zero values are considered a blob. If 
the background has non-zero values, touching pixels with zero 
values are considered a blob. 

Binary vs. grayscale 
features

Note that most features only depend on the shape of a blob. 
These are known as binary features. Since the blob module only 
needs to identify blob pixels from background pixels to calculate 
binary features, the only image you need to provide to the blob 

module is the blob identifier image. However, there are certain 
features (such as the mean pixel value of a blob) which depend 
on the value of pixels within the blob. These are known as 
grayscale features. If you plan to calculate grayscale features, 
you need to provide two images to the blob module: the blob 
identifier image and the original grayscale image.
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General steps
The general steps to perform blob analysis are:

1. Segment your image to produce the blob identifier image. 
The minimum that you must do is threshold the image so 
that either the blobs or the background have the value zero. 

2. Allocate a blob analysis result buffer, using 
imBlobAllocResult(). A blob result buffer is used to store the 
results of blob analysis.

3. Adjust blob analysis controls, if the defaults are not 
suitable, using imBlobControl(). If, for example, the blobs 
have the value zero, you must use imBlobControl() to 
specify this (by default, the background is considered to 
have the value zero). 

4. Allocate a feature list, using imBlobAllocFeatureList(). A 
feature list specifies the features to calculate.

5. Select features for calculation by adding them to the feature 
list, using imBlobSelectFeature(), imBlobSelectFeret(), 
and/or imBlobSelectMoment().  

6. Calculate the features, using imBlobCalculate(). Note that, 
if you simply want the number of blobs, you must still 
perform this step.

7. If necessary, exclude blobs whose results don’t meet 
specified criteria, using imBlobSelect(). 
8. If necessary, repeat steps 5, 6, and 7, until you have all the 
results you need.

9. Transfer necessary results to the Host or copy necessary 
results to an on-board buffer.

10. Free the result buffer and feature list, using imBlobFree().
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An example The following code determines the bounding box of each blob in 
an image. Note that this code is part of the blob.c program and 
requires only the basic Genesis hardware. See Appendix B for 
the complete blob.c program.
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Segmentation
Segmentation is the process of separating blob pixels from 
background pixels. Since the blob module requires an image in 
which either the blobs or the background have the value zero, 
the minimum that you must do is threshold the image (using 
imIntBinarize() or imBinConvert()). Typically, this is all you 
need to do. However, if the gray-levels of the blobs are not 
different from the gray-levels of the background, you will have 
to use a more complicated segmentation algorithm. In addition, 
you will have to process the image if, for example, two blobs are 
touching (since they will be considered one blob) or if noise has 
introduced some spurious blobs.

Usually, spurious blobs consist of just a few pixels. You can 
generally remove these blobs through an erosion followed by a 
dilation (if your blobs have non-zero values) or through a 
dilation followed by an erosion (if your blobs have zero values). 
If you have touching blobs, you can try eroding the image (if 
your blobs have non-zero values) or dilating the image (if your 
blobs have zero values), until these blobs are separated. Note 
that, if your image is packed binary, you perform erosions and 
dilations using imBinMorphic(); otherwise, you use 
imIntErodeDilate().

If your image has a lot of noise, you might want to filter it before 
segmenting. For example, you might want to smooth the image 
(using imIntConvolve()) or apply a median filter to it (using 
imIntRank()).
Reducing processing To reduce processing, your image should be acquired under the 
best possible conditions. This means that blobs should not 
overlap and, if possible, not touch. In addition, the background 
should have a very different gray level from the blobs. 

If the above conditions are followed, the acquired image can 
usually be segmented with a simple threshold. 
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Processing vs.
excluding

If you need to process your image, it can affect blob calculations 
because the shape of the remaining blobs might be changed 
slightly. Instead of processing unwanted blobs out of your 
image, however, you can first perform calculations on all blobs 
in the image, and then use imBlobSelect() to exclude blobs 
based on the results. For the details, see the Selecting blobs 
section.

If you have only a few unwanted blobs, it is generally faster to 
perform calculations on all blobs and then exclude the 
unwanted ones using imBlobSelect(). However, if you have 
many unwanted blobs, blob analysis will likely be faster if you 
first process the unwanted blobs out of your image. 

Note that which method is more efficient (processing or 
excluding) ultimately depends on the content of your image. 
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Adjusting controls
You can control the following aspects of a blob analysis 
operation using imBlobControl():

■ Which pixel values (zero or non-zero) are considered blob 
pixels (IM_BLOB_FOREGROUND_VALUE). By default, 
non-zero values are considered blob pixels.

■ Whether diagonally adjacent pixels are considered touching 
(IM_BLOB_LATTICE). Recall that a blob is an area of touching 
pixels that have the same value. Horizontally and vertically 
adjacent pixels are considered touching. By default, 
diagonally adjacent pixels are also considered touching.

■ The pixel aspect ratio (IM_BLOB_PIXEL_ASPECT_RATIO). 
This setting allows you to compensate for pixels that are not 
square (see the Pixel aspect ratio section).

■ The number of Feret angles 
(IM_BLOB_NUMBER_OF_FERETS). This setting is used when 
a feature requires several Feret diameters to be calculated. 
Feret diameters are discussed later in the chapter.

■ Whether to group results (IM_BLOB_IDENTIFICATION). By 
default, separate results are produced for each blob. 
However, you can group the results of certain blobs, or group 
the results of all blobs (see the Grouping results section).

■ Whether to save, in the result buffer, a run-length encoded 
version of the blob identifier image (IM_BLOB_SAVE_RUNS). 

If you disable the saving of runs, you will reduce the memory 
required for the result buffer and might also increase the 
speed of imBlobCalculate() slightly. However, you will not be 
able to use functions which rely on run information 
(imBlobCopyRuns(), imBlobFill(), imBlobGetLabel(), 
imBlobGetRuns(), imBlobLabel()). Note that runs are defined 
in the Transferring or copying runs section.

■ The maximum time allowed for imBlobCalculate() to process 
(IM_BLOB_MAX_TIME). By default, imBlobCalculate() will 
run to completion, no matter how long this takes. However, 
you can specify a maximum processing time (see the Timeout 
period section).
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■ The amount of processing time that imBlobCalculate() uses 
before it yields to other threads of equal priority 
(IM_BLOB_TIME_SLICE). By default, imBlobCalculate() uses 
all of the master processor’s (MP’s) time until it finishes. This 
means that other threads of equal priority will not be able to 
execute any new commands until imBlobCalculate() has 
finished (although threads of higher priority will be able to 
execute commands). If your application requires that 
imBlobCalculate() run in parallel with other commands, you 
can specify that it use only a certain amount of the MP’s time 
before yielding to other threads of the same priority. For 
example, if you specify a time slice of 1 ms, then 
imBlobCalculate() will yield to other threads of the same 
priority every 1 ms. Note that imBlobCalculate() will still run 
to completion, but not as quickly (the performance 
degradation will depend on how many other threads have 
commands to execute).

Pixel aspect ratio
In general, an object has the same proportions in real-life as it 
has in an image. This means that, while blob calculations are 
performed in pixels, it is relatively easy to interpret results in 
real-world units. However, if pixels in your image are not 
square, objects in the image will be distorted, and blob 
calculations will lead to incorrect interpretations.

To determine whether pixels in your image are square, you can 
measure the image's pixel aspect ratio. The pixel aspect ratio of 

an image compares the real-world size of a rectangular region 
in the image, with its size in pixels. Specifically, it is:

Note that you can measure the pixel aspect ratio by grabbing 
an image of a circle or square and then, using the blob analysis 
module, calculating the Feret diameter of the circle or square 
at 0° and 90° (IM_BLOB_FERET_X and IM_BLOB_FERET_Y). 
Since the number of real-world units in the x and y direction of 
a circle or square are the same, and since the number of pixels 
in the x and y direction correspond to IM_BLOB_FERET_X and 
IM_BLOB_FERET_Y, the pixel aspect ratio of the image is 
IM_BLOB_FERET_Y/IM_BLOB_FERET_X.

# of pixels in the region’s Y direction / # of pixels in the region’s X direction 

# of real-world units in the region’s Y direction / # of real-world units in the region’s X direction
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If the pixel aspect ratio is 1.0, pixels in the image are square. 
If the pixel aspect ratio is not 1.0, pixels are not square. 

Non-square pixels When the pixel aspect ratio is not 1.0, you should first check 
which camera definition file you are using to grab images. Note, 
for example, that an RS-170 signal produces non-square pixels 
when digitized to 512x480 pixels but produces square pixels 
when digitized to 640x480 pixels.  

If changing camera definition files is not an option, you can 
either:

■ Warp the image so that the pixel aspect ratio becomes 1.0. 
The warping functions are discussed in Chapter 4.

■ Specify what the actual pixel aspect ratio is, using 
imBlobControl(). In this case, the pixel aspect ratio is 
factored in when blob calculations are performed.  

In general, it is faster simply to specify the pixel aspect ratio. 
However, specifying the pixel aspect ratio will only produce 

Image of a circle with
a 1.0 aspect ratio.

Image of a circle with
a 1.33 aspect ratio.
correct results if non-square pixels are due to a simple 
stretching of the image (in the x or y directions). If pixels are 
not square due to a more complex distortion (such as a 
perspective distortion), you must warp the image. 
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Grouping results
By default, the Genesis Native Library produces separate 
results for each blob. There might be times, however, when you 
want to group results. For example, you might want to know 
the combined area of all blobs in your image, or you might have 
a situation where a blob is incorrectly considered two or more 
blobs because it is separated by noise. 

Grouping all blobs To group the results of all blobs, set IM_BLOB_IDENTIFICATION 
to IM_WHOLE_IMAGE. In this mode, features are calculated as 
if all blob pixels are part of the same blob.

Grouping some blobs To group the results of certain blobs, set 
IM_BLOB_IDENTIFICATION to IM_LABELLED. In this mode, 
results are grouped for those blobs in the blob identifier image 
that have the same pixel value.

Assigning particular 
label values

By default, imBlobCalculate() assigns an arbitrary label value 
to each blob. Note, however, that you can assign a particular 

1

2

2

3

4

5

These two blobs
are treated as one.
All others are treated
individually.
label value by filling each blob with a unique pixel value, using 
imGraFill(), and then setting IM_BLOB_IDENTIFICATION to 
IM_LABELLED. 

Assigning a particular label value can sometimes make it easier 
to associate blob results with specific objects in your image. 
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Timeout period
By default, imBlobCalculate() will take as long as necessary to 
complete. However, you can specify a maximum processing 
time, using imBlobControl(). In this case, imBlobCalculate() 
will timeout when the specified period expires, rather than 
running to completion. 

To determine if imBlobCalculate() timed out, call 
imBlobInquire(), setting its Item parameter to 
IM_BLOB_TIMEOUT. If imBlobCalculate() did time out, results 
will not be valid.

Setting a maximum processing time can be useful because the 
execution time of imBlobCalculate() can vary widely with the 
number of blobs in the image. For example, in an inspection 
application, the number of blobs (defects) is usually very small, 
so execution is fast. However, if an image contains many defects 
or was perhaps badly thresholded, processing time can be much 
longer than normal, possibly causing frames to be missed. You 
might prefer to set a maximum processing time that would 
reject such images. For example, assuming that processing 
normally takes 5 ms for a good image, you might want to abort 
processing after 15 ms and continue to the next image:
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Features
This section discusses some of the blob features supported by 
the Genesis Native Library. For a complete list of features, see 
the Genesis Native Library Command Reference.

Most features fall into one of four main groups:

■ Area and perimeter

■ Dimensions

■ Shape

■ Location

Area and perimeter
You can calculate the area and perimeter of a blob. Since blob 
calculations assume a pixel is 1 unit long and 1 unit wide, the 
area of a single pixel is 1 and the perimeter of a single pixel is 
4. The area of a blob is then the number of pixels in that blob, 
while the perimeter of a blob is the number of pixel sides along 
that blob. 

When calculating the perimeter, an allowance is made for the 
staircase effect (the "pixel side" of diagonally adjacent pixels is 
considered to be 1.414, rather than 2). For example, the 
following blob has a perimeter of 14.242.

1 1 1 1
1

1

1

1

1

1

1.414

1.414

1.414
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Convex perimeter In addition to the normal perimeter, you can calculate the 
convex perimeter of a blob. The convex perimeter of a blob is 
the perimeter of the blob’s convex hull.

The convex perimeter is derived from several Feret diameters 
of the blob (Feret diameters are discussed in the next section). 
You can specify the number of Feret diameters, using 
imBlobControl(). The more Feret diameters used, the more 
accurate the convex perimeter but the longer the processing 
time.  

Dimensions
The dimensions of a rectangular object are its length and width. 
Most blobs, however, are not rectangular. Therefore, to get an 
indication of a blob’s dimensions, you need to look at other 
features (such as the Feret diameter).

Feret diameter The Feret diameter of a blob is the diameter of the blob at a 
given angle. Several Feret diameters are shown below. The 

Normal
perimeter

Convex
perimeter
angle at which the Feret diameter is taken (relative to the 
horizontal axis) is specified as a subscript to the F.

F0

F90

F135

F45

Y

X
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With the Genesis Native Library, you can determine the 
minimum and maximum Feret diameter of a blob 
(IM_BLOB_FERET_MIN_DIAMETER and 
IM_BLOB_FERET_MAX_DIAMETER, respectively). The length 
of a blob can then be defined as its maximum Feret diameter 
and the width of a blob as its minimum Feret diameter.

Note that the minimum and maximum Feret diameter are 
determined after checking a specified number of Feret 
diameters. You specify the number using imBlobControl() (the 
default is 8 and is suitable for most blobs). In general, the more 
Feret diameters used, the more accurate the calculation, but 
the longer the processing time.

Different Feret
diameters

In addition to the minimum and maximum Feret diameter, you 
can calculate the Feret diameter at 0° (IM_BLOB_FERET_X), at 
90° (IM_BLOB_FERET_X), or at a specified angle (using 
imBlobSelectFeret()). 

Long, thin blobs Note that the minimum and maximum Feret diameters of a 
long, thin blob are not very representative of its dimensions 
(especially if the blob is curved). For long, thin blobs, the 
following features are better:

■ IM_BLOB_LENGTH.

■ IM_BLOB_BREADTH.

The above features are derived from a blob's area and 
perimeter, assuming that area = length*breadth and

perimeter = 2(length + breadth). These are not valid 
assumptions for most blob types, although they do hold for long, 
thin blobs (such blobs have approximately constant breadth 
along their length).
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Shape
When trying to distinguish between blobs, the shape of the 
blobs can be an important feature. This is because two blobs 
can have similar sizes but different shapes due to a different 
number of holes, curves, or edges. 

The following features will tell you something about a blob’s 
shape:

■ Compactness. This is a measure of how close pixels in the 
blob are to one another. It is derived from the blob’s area and 
perimeter. A circular blob is most compact and is defined as 
having the minimum compactness value (1.0); more 
convoluted shapes will have higher values.

■ Roughness. This is a measure of the uneveness or irregularity 
of a blob’s surface. It is the ratio of the blob’s perimeter to its 
convex perimeter. The minimum roughness value is 1.0 
because a blob’s perimeter will always be equal to or greater 
than its convex perimeter. A blob with many jagged edges will 
have a much higher roughness value because its perimeter 
will be much larger than its convex perimeter.

Number of holes In addition to compactness and roughness, the number of holes 
in a blob can be useful in distinguishing between blobs. Note, 
however, that this feature can also be misleading because a hole 
can be the result of a single noise pixel in the wrong place.



110      Chapter 5: Blob analysis

Blob location
The location of a blob can sometimes be more useful than its 
shape or size. For example, if a robotic arm needs to pick up an 
object, it can use the location of that object in an image as a 
guide. You can also use the location of a blob to determine if it 
touches any image borders. If it does touch any image borders, 
you might want to adjust the camera’s field-of-view or exclude 
the blob (since certain features, such as the area of the blob, 
would be misleading).

Blob points With the Genesis Native Library, you can determine the 
following blob points:

The center of gravity can be calculated in binary or grayscale 
mode. The former is determined from the blob identifier image, 
and the latter from the original grayscale image.

(IM_BLOB_X_MIN_AT_Y_MIN, IM_BLOB_BOX_Y_MIN) and

(IM_BLOB_FIRST_POINT_X, IM_BLOB_FIRST_POINT_Y)

(IM_BLOB_X_MAX_AT_Y_MAX, IM_BLOB_BOX_Y_MAX)

(IM_BLOB_BOX_X_MIN, IM_BLOB_Y_MAX_AT_X_MIN)

(IM_BLOB_BOX_X_MIN, IM_BLOB_BOX_Y_MIN)

(IM_BLOB_BOX_X_MIN, IM_BLOB_BOX_Y_MAX)

(IM_BLOB_BOX_X_MAX, IM_BLOB_Y_MIN_AT_X_MAX)

(IM_BLOB_BOX_X_MAX, IM_BLOB_BOX_Y_MAX)

(IM_BLOB_BOX_X_MAX, IM_BLOB_BOX_Y_MIN)

(IM_BLOB_CENTER_OF_GRAVITY_X, IM_BLOB_CENTER_OF_GRAVITY_Y)
Moments With the Genesis Native Library, you can calculate the 
moments used to find the center of gravity, as well as other 
common moments. If you need to calculate a specific moment, 
use imBlobSelectMoment().

You can calculate binary and grayscale moments (the former 
calculated from the blob identifier image and the latter from 
the original grayscale image). In addition, you can calculate 
central and ordinary moments. Central moments use 
coordinates that are relative to the center of gravity of the blob. 
Ordinary moments use coordinates that are relative to the 
top-left corner of the image, and are therefore dependent on the 
blob’s position within the image. 
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Selecting blobs
Sometimes, you will not be interested in all blobs in your blob 
identifier image. For example, you might have blobs that are 
actually noise pixels, or you might have blobs that touch the 
image borders. Unwanted blobs can sometimes be removed by 
processing the image. However, processing might affect the 
shape of the relevant blobs in your image and, therefore, the 
results of blob calculations. In addition, such processing can be 
time-consuming.

With the Genesis Native Library, you can exclude or delete 
unwanted blobs using imBlobSelect(). Blobs are excluded or 
deleted based on the result of a specified feature. Therefore, you 
select the features to calculate, calculate the features, and then 
use imBlobSelect() to exclude or delete unwanted blobs. You 
then repeat this process until the features and blobs you have 
selected produce the results you need.

❖ If you have many unwanted blobs, you can save time and 
memory by first calculating only those features that allow 
you to distinguish between unwanted and relevant blobs. 
Once unwanted blobs are excluded or deleted, calculate all 
required features.

Excluding vs. deleting Note that excluded blobs are simply ignored during subsequent 
calculations but can be re-included (using imBlobSelect()). 
Deleted blobs are removed completely from the blob result 
buffer and cannot be re-included. However, deleted blobs are 

not removed from the blob identifier image. 

If necessary, you can remove blobs from a blob identifier image 
using imBlobFill().   
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Transferring or copying results
Once blob calculations are performed, you can copy results to 
an on-board buffer using imBlobCopyResult(), or transfer 
results to the Host using imBlobGetResult(). These functions 
can retrieve results for a specific feature or for a predefined 
group of features. In the latter case, set the Feature parameter 
of imBlobCopyResult() or imBlobGetResult() to the desired 
group (for example, IM_BLOB_GROUP1); all results for features 
in that group will be returned at the same time. Note that 
retrieving results for a predefined group can reduce the number 
of function calls required to retrieve results (often, it can reduce 
it to one function call, since similar features are grouped 
together). Retrieving results for each feature individually can 
take a long time. In fact, when there are relatively few blobs 
and many features, the time to retrieve results can be a 
significant overhead when compared to the calculation time. 

To see which features are in which groups, refer to the Genesis 
Native Library Command Reference. There is some overlap of 
features between groups. For example, the label value is 
included in all groups because you might need it no matter what 
other features you calculate. Also included in each group is the 
number of blobs. This means that you do not need to call 
imBlobGetNumber() if you are sure you have allocated enough 
memory for the results.

To save memory and reduce transfer time when retrieving 
results for a predefined group, features that can easily be 

derived from others are not included in any group. For example, 
IM_BLOB_FERET_X is not included, because it is equal to 
IM_BLOB_BOX_X_MAX - IM_BLOB_BOX_X_MIN +1. Note, 
however, that these features can be retrieved individually or 
can be determined from their equations (see 
imBlobSelectFeature() in the Genesis Native Library Command 
Reference for the equations needed to derive features). 
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When you retrieve results for a predefined group, the results 
are stored in a specific data structure. There is a different data 
structure for each group; see the Genesis Native Library 
Command Reference for the definitions. In order to save 
memory and reduce transfer time to the Host, each feature is 
stored in the smallest data type that can hold it. For example, 
integer results are returned as 16-bit values if possible, and 
floating-point values are returned as 32-bit single precision 
values.   

Note that, when you retrieve results for a group of features, 
only results for features you calculated will be valid. Values for 
features not calculated will simply be undefined, and no error 
messages will be generated.     

An example The following code determines the bounding box of each blob in 
an image, then uses the results to mark each blob. Since the 
required features are all in the same group, results can be 
retrieved using a single call to imBlobGetResult(). 

��FGHKPG�/#:A$.1$5����

���#TTC[�QH�UVTWEVWTGU�VQ�JQNF�TGUWNVU���
�+/A$.1$A)4172�A56�)TQWR�=/#:A$.1$5?�

���5GNGEV�CNN�TGSWKTGF�HGCVWTGU���
�KO$NQD5GNGEV(GCVWTG
6JTGCF��(GCV.KUV��+/A$.1$A$1:��+/A&'(#7.6��

���%CNEWNCVG�UGNGEVGF�HGCVWTGU���
�KO$NQD%CNEWNCVG
6JTGCF��+FGPV$WH�����(GCV.KUV��4GUWNV��+/A%.'#4�����

���)GV�TGUWNVU�CNN�CV�QPEG���
Note that, in the above code, the maximum number of blobs is 
known, so imBlobGetNumber() is not needed to determine how 
much memory to allocate for results. However, if you are not 
sure what the maximum number of blobs will be, you should 
call imBlobGetNumber() first, then allocate the required 
memory. See the blob.c program in Appendix B.
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Multiple calls to 
imBlobGetResult() 

If for some reason you need to use several calls to 
imBlobGetResult() to transfer results, it might be more efficient 
to copy them to an on-board buffer (using multiple calls to 
imBlobCopyResult()), and then transfer them to the Host all at 
the same time (using imBufGet()). This is because 
imBlobCopyResult() is an asynchronous function while 
imBlobGetResult() is a synchronous function (asynchronous 
functions have a lower overhead than synchronous functions).

Results for a single blob If all you need is the result of a specific feature of a single blob, 
you can use imBlobGetResultSingle() instead of 
imBlobGetResult(). The imBlobGetResultSingle() function 
transfers the result of a specified feature of a specified blob.
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Transferring or copying runs
You can copy or transfer "run" information about a specified 
blob using imBlobCopyRuns() or imBlobGetRuns(). A run is 
defined as a horizontal sequence of consecutive blob pixels. 
imBlobCopyRuns() and imBlobGetRuns() copy or transfer, 
respectively, the x- and y-coordinate of each run in the blob, as 
well as the length of each run.

Note that run information can be used to calculate features that 
are not supported by the blob analysis module. 

❖ To use imBlobCopyRuns() or imBlobGetRuns(), you must not 
disable the saving of runs (using imBlobControl()). In 
addition, you must calculate the total number of runs in a 
blob (IM_BLOB_NUMBER_OF_RUNS).

(0, 0)

x-coordinate of each run = 2,  1,  5,  2

y-coordinate of each run = 2,  3,  3,  4 

length of each run  = 4,  2,  3,  6

* Blob pixels are in black.
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Chapter 6: Pattern matching

This chapter describes how to perform a pattern 
matching operation.
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Pattern matching
Pattern matching is a branch of image analysis that allows you 
to search for a pattern in an image. The pattern for which you 
are searching is called the model and the image being searched 
is called the target image.

Pattern matching can be used in a variety of applications. In 
machine guidance, for example, it can be used to locate 
mounting holes on a circuit board, so that a mechanical device 
can insert screws into these holes (use an image of a typical 
mounting hole as the model, and an image of a circuit board as 
the target image). In machine vision, pattern matching can be 
used to determine the degree by which an object is misaligned 
(compare the object’s coordinates in the target image with its 
coordinates in a correctly aligned target image).    

Note that the pattern matching module operates on 8-bit 
unsigned buffers.

Comparing images 
against a pattern

If you simply want to know how similar areas of an image are 
to a pattern, you can use imBinMorphic() (for binary images) 
or imIntCorrelate() (for integer images). These functions do not 
perform the search algorithm used by the pattern matching 
module; they simply compare areas of an image to a pattern 
and write results to a destination buffer. Note that they can 
take much longer to execute than the pattern matching 
functions, particularly for large patterns.
For more on imBinMorphic() and imIntCorrelate(), see the 
Genesis Native Library Command Reference.
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General steps
The general steps to perform a pattern matching operation are:

1. Create your model, using imPatAllocModel(), or restore a 
previously saved model from disk, using imPatRestore().

2. Adjust search parameters, if the defaults are not suitable, 
using the imPatSet...() functions.

3. If necessary, preprocess the model, using 
imPatPreprocModel(), so as to increase search speed.

4. Allocate a pattern matching result buffer, using 
imPatAllocResult(). A pattern matching result buffer is 
used to store the results of a pattern matching operation.

5. Search for the model in a target image, using 
imPatFindModel(). You might want to first process the 
target image to improve its quality.  

6. Transfer necessary results to the Host, using 
imPatGetNumber() and/or imPatGetResult().

7. Repeat steps 5 and 6 for other target images, if necessary.

8. Free the model and the result buffer, using imPatFree().
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An example The following code searches for a model in an image, then 
transfers results to the Host. The model was allocated 
previously and saved in a file. Note that this code is part of the 
pat.c program and requires the Genesis display section. See 
Appendix B for the complete pat.c program.
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Creating the model
Models are created from rectangular areas of existing images 
(called model images). Before you create your model, you might 
want to process the model image to improve its quality. 

When you create a model, you should keep the following in 
mind:

■ Matches might be missed if the model has a different size or 
orientation in the target image. Therefore, do not use a model 
that might appear with a different size or orientation in the 
target image. Note that a difference in orientation of a few 
degrees or a size difference of a few percent is normally 
acceptable.

■ False matches can occur if something else in your target 
image happens to look like your model. In general, a large 
model has less chance of being confused with something else 
because more of the model has to match. In addition, large 
models are faster to find than small models due to the search 
algorithm used by the pattern matching module (although 
very large models can also be time-consuming). An efficient 
model size is approximately 128x128 pixels if you are 
searching a large area.

Note that the search algorithm is described later in the 
chapter.
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Preprocessing the model
To determine which shortcuts can be safely used during a 
search, you can preprocess the model. Preprocessing attempts 
to produce more efficient searches, without affecting results. 
However, if you have a model that is difficult to find, shortcuts 
might not be possible and the search will therefore not be faster. 

Preprocessing makes the most difference on models with just a 
few, large features. Models with many small-scale features do 
not benefit as much. In addition, if you are performing just one 
search, you might want to skip the preprocessing, since the 
preprocessing might take more time than it saves.

Typical target images When you use imPatPreprocModel(), you can provide a typical 
target image on which the model will be used. This can result 
in further shortcuts and, therefore, in even more efficient 
searches. However, you should only provide a target image if 
all target images you will be using have the same type of 
background. If the target images might have different 
backgrounds, do not provide one to imPatPreprocModel().

Saving/restoring When you save a model to disk, the preprocessing changes are 
also saved; there is no need to preprocess again after restoring 
it. Therefore, you normally need to preprocess a model just 
once, right after creating it. However, if you use 
imPatSetDontCare() (discussed in the next section), the effect 
of preprocessing is undone; in this case, you will need to 

preprocess again. 
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Adjusting search parameters
With the Genesis Native Library, you can control certain 
aspects of a pattern matching operation, using the imPatSet...() 
functions. You can control:

■ The acceptance level, using imPatSetAcceptance().

■ The number of matches to find, using imPatSetNumber(). 

■ The search region, using imPatSetPosition().

■ The positional accuracy, using imPatSetAccuracy().

■ The certainty level, using imPatSetCertainty().

■ The model’s "don’t care" pixels, using imPatSetDontCare().

■ The effective center ("hot spot") of a model, using 
imPatSetCenter().

■ The search speed, using imPatSetSpeed().

In addition to the above, you can control the search more 
precisely using imPatSetSearchParameter(). To use this 
function effectively, however, you need to understand the 
algorithm used by the pattern matching module; see The 
pattern matching algorithm section for details.

Acceptance level
A search is performed by assigning a match score to each pixel 
in the target image, based on how closely the model and the 

region around that pixel match. The acceptance level is the 
match score above which a match is considered to be found. In 
other words, if the match score of a pixel is above the acceptance 
level, there is a match at that position; if the match score is 
below the acceptance level, there is not a match.
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Note that match scores of 100% are generally impossible 
because of noise. When a region of the target image actually 
matches the model, the match score will typically be between 
80 and 100%. The default acceptance level is therefore slightly 
below this (70%). If your images have a lot of noise, you might 
have to set the acceptance level below 70%. Note, however, that 
if you set the acceptance level too low, false matches might 
occur.

Number of matches

By default, the search algorithm finds only one match: the one 
with the highest match score above the acceptance level. If 
necessary, however, you can specify that the search algorithm 
find n matches. In this case, the n highest match scores above 
the acceptance level are returned, in decreasing order of match 
score. The more matches you require, the longer the search 
process.

Note that the number of results returned might be less than 
the number you requested since only matches above the 
acceptance level are returned. Before you retrieve results using 
imPatGetResult(), you can call imPatGetNumber() to determine 
how much memory is required for the results. The 
imPatGetNumber() function returns the actual number of 
matches above the acceptance level. If you are sure you have 
allocated enough memory, however, there is no need to call 
imPatGetNumber() since imPatGetResult() can also return the 
number of matches above the acceptance level.
Best reject score

Genesis Native Library keeps track of the largest match score 
that was rejected during the search. After calling 
imPatFindModel(), you can call imPatInquire() with 
IM_PAT_BEST_REJECT_SCORE to get information about the 
highest match score that was not returned as a match result 
(either because it was below the acceptance level, or because 
you did not ask for enough matches). A situation when this 
inquiry is useful is when you expect only one match, but also 
want to know if ever there are two (or more) matches. It is faster 
to search for one match and inquire the best reject score than 
to search for two (or more) matches.
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Model’s hot spot
By default, the returned coordinates of a match are the 
coordinates of the model’s center pixel (the model’s "hot spot"), 
relative to the top-left corner of the image. There might be 
cases, however, when you want the coordinates to refer to 
something else. For example, if your model has a hole and you 
want results for this hole, use the imPatSetCenter() function to 
set the model’s hot spot to the coordinates of this hole, relative 
to the top-left corner of the model.

Search region
The search region is the area of the target image in which to 
search for the model (i.e., the area in which to find the model’s 
hot spot). By default, the search region is the entire target 
image. To increase search speed, however, you should make the 
search region as small as possible. If, for example, you know 
the model’s reference point in the target image, the search 
region can simply be the expected location plus the maximum 
amount of displacement expected.

Model Target image

Search region (area in which
to find occurence of model’s

Model’s
hot spot
❖ In general, you should not use child buffers when you want 
the search region to be smaller than the entire target image. 
Child buffers can cause misleading results because the 
search algorithm will not use the area outside the child 
buffer.

hot spot)
Area involved
in model match
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Size of search region Note that, since the search region is the area in which to find 
the model’s hot spot, the search region can be even smaller than 
the model (as small as a single pixel).

Search in one
direction

To search in only one direction (x or y), set the other dimension 
of the search area to 1 pixel. Note that, if a search region 
dimension is 1 pixel, the model will not be found to sub-pixel 
accuracy in that direction.

Positional accuracy
Once a match with a score above the acceptance level is found, 
the search algorithm can refine the position of the match to 
various degrees of accuracy. Specifically, the position can be 
refined to within ± 0.5 pixels (low accuracy), ± 0.25 pixels 
(medium accuracy), or ± 0.1 pixels (high accuracy). 

The more accuracy you require, the longer the search process.

Certainty level

The certainty level is the match score (usually higher than that 
of the acceptance level) above which the algorithm can assume 
that it has found a match and can stop searching the rest of the 
image for a better score. The certainty level is very important 
because it can greatly affect the speed of the search. To 
understand why, you need to know a little about how the search 
algorithm works.

Since a brute force correlation of the entire model, at every point 
of the image, might take several minutes, it is not practical. 

Therefore, the algorithm has to be intelligent. It first performs 
a rough but quick search to find likely match candidates, then 
checks out these candidates in more detail to see which are 
acceptable.

A significant amount of time can be saved if several candidate 
matches never have to be examined in detail. This can be done 
by setting an appropriate certainty level. A good level is slightly 
lower than the expected score. If you absolutely must have the 
best match in the image, set the level to 100%. This would be 
necessary if, for example, you expect the image to contain other 
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patterns that look similar to your model. Unwanted patterns 
might have a high score, but this will force the search algorithm 
to ignore them.

Often, you know that the pattern you want is unique in the 
image, so anything that reaches the acceptance level must be 
the match you want; therefore, you can set the certainty and 
acceptance levels to the same value.

Another common case is a pattern that usually produces very 
good scores (say above 80%), but occasionally a degraded image 
produces a much lower score (say 50%). Obviously, you must 
set the acceptance level to 50% or you will never get a match in 
the degraded image. But what value is appropriate for the 
certainty level? If you set it to 50%, you take a risk that it will 
find a false match (above 50%) in a good image before it finds 
the real match that scores 90%. A better value is about 80%, 
meaning that most of the time the search will stop as soon as 
it sees the real match, but in a degraded image (where nothing 
reaches the certainty level) it will take the extra time to look 
for the best match that reaches the acceptance level. 

"Don’t care" pixels

Model pixels that are set to the "don’t care" state are ignored 
during the search process (they do not affect the match score).

Setting model pixels to "don’t care" can be useful if your model 
contains areas that have nothing to do with the pattern for 
which you are searching. For example, if the required pattern 

is circular in shape, your model will necessarily contain some 
unwanted areas of the model image (since models must be 
rectangular). If these unwanted areas are different in the target 
image, their presence will affect the match score and could 
result in matches being missed or false matches being found. 
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Search speed
You can specify the speed (high, medium, low, very low) at which 
to perform the search algorithm using imPatSetSpeed(). Note 
that, as you increase the speed, the likelihood of finding the 
model decreases slightly. In addition, match scores and 
positional accuracies might be a little less accurate.  

High speed You can search at high speed if you have a good quality target 
image or a simple model. A high-speed search takes all possible 
shortcuts that were determined by the preprocessing. 
Searching at high speed is therefore most useful if you 
preprocessed your model using imPatPreprocModel(). 

Note that you should not search at high speed if you need the 
highest possible accuracy (search at medium or low speed 
instead). 

Medium speed You should search at medium speed (the default setting) if your 
target images are of medium quality or if your model is complex. 

Low speeds You should search at low or very low speeds only if your target 
image is of particularly poor quality or if you have encountered 
problems at higher speeds. 
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Speeding up the search
The following is a summary of the ways you can speed up a 
search. Note that most of these were discussed in previous 
sections of the chapter.

■ Search at the highest possible speed. Use imPatSetSpeed() to 
set the search speed.

■ Preprocess the model, using imPatPreprocModel().

■ Use the smallest possible search region; the search time is 
roughly proportional to the area searched. Use 
imPatSetPosition() to define the search region.

■ Use the lowest possible positional accuracy; the more 
accuracy you require, the longer the search process. Use 
imPatSetAccuracy() to set the positional accuracy.

■ Set the certainty level to the lowest reasonable value (so that 
the search can stop as soon as a good match is found). Use 
imPatSetCertainty() to set the certainty level.

■ Use an efficient model size. Large models are generally faster 
to find than small models (although very large models can 
also be time-consuming). An efficient model size is 
approximately 128x128 pixels if you are searching a large 
area. 

■ Use the fastest model allocation algorithm. If model 
allocation is time critical in your application, you can speed 

it up by passing one of the following two flag combinations 
for the Type parameter of imPatAllocModel():

❐  IM_NORMALIZED + IM_FAST, or 

❐ IM_NORMALIZED + IM_VERY_FAST. 

Note that IM_FAST allocation leads to some very small 
differences in the model, but this should not affect pattern 
matching in most applications. Passing the IM_VERY_FAST 
flag will allow the fastest possible model allocation, but is a 
bit more likely to cause problems than IM_FAST.

❖ For  a discussion of more advanced methods that allow you 
to speed up the search, refer to The pattern matching 
algorithm section of this chapter.
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Managing models
Saving/restoring You can save a model to disk using imPatSave(), as well as 

restore it from a file using imPatRestore(). Note that the model’s 
search parameters are also saved/restored. If the model was 
preprocessed, the preprocessing changes are also 
saved/restored. 

When you restore a model from file, you might want to inquire 
about the model’s search parameters. You can do so using 
imPatInquire().

Reading/writing You can read a model from an open file using imPatRead(), as 
well as write it to an open file using imPatWrite(). This can be 
useful if you want to save/restore several models to/from the 
same file. As with the save/restore functions, the 
characteristics of the model are also read/written.

Copying You can copy a model to an on-board buffer using imPatCopy(). 
This can be useful if you want to view the model. The 
imPatCopy() function can also be used to copy only the model’s 
"don’t care" pixels.

Rotating models You can rotate a model using imPatAllocRotatedModel(). This 
function can rotate a model by 0, 90, 180, or 270°. This can be 
useful if the model appears at a different angle in the target 
image.  
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The pattern matching algorithm
Normalized grayscale correlation is widely used in industry for 
pattern matching applications. Although in many cases you do 
not need to know how the search operation is performed, an 
understanding of the algorithm can sometimes help you pick 
an optimal search strategy.

Normalized Correlation

The correlation operation can be seen as a form of convolution, 
where the pattern matching model is analogous to the 
convolution kernel. In fact, ordinary (un-normalized) 
correlation is exactly the same as a convolution:

                                   

In other words, for each result, the N pixels of the model are 
multiplied by the N underlying image pixels, and these 
products are summed. Note that the model doesn’t have to be 
rectangular, because it can contain "don’t care" pixels that are 
completely ignored during the calculation. When the 
correlation function is evaluated at every pixel in the target 
image, the locations where the result is largest are those where 
the surrounding image is most similar to the model. The search 
algorithm then has to locate these peaks in the correlation 
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result, and return their positions.
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Unfortunately, with ordinary correlation, the result increases 
if the image gets brighter. In fact, the function reaches a 
maximum when the image is uniformly white, even though at 
this point it no longer looks like the model. The solution is to 
use a more complex, normalized version of the correlation 
function (the subscripts have been removed for clarity, but the 
summation is still over the N model pixels that are not "don’t 
cares"):

       

With this expression, the result is unaffected by linear changes 
(constant gain and offset) in the image or model pixel values. 
The result reaches its maximum value of 1 where the image 
and model match exactly, gives 0 where the model and image 
are uncorrelated, and is negative where the similarity is less 
than might be expected by chance. 

Normally, we are not interested in negative values, so results 

are clipped to 0. In addition, we use r2 instead of r to avoid the 
slow square-root operation. Finally, the result is converted to a 
percentage, where 100% represents a perfect match. So, the 
match score returned by imPatGetResult() is actually:

                              Score = max(r, 0)2 x 100%
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❖ If you are also interested in finding negative versions of the 
model, you can take the absolute values of the scores, rather 
than clipping negative scores to 0, using 

imPatSetSearchParameter. In this case, Score = |r|2 x 100%.
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Note that some of the terms in the normalized correlation 
function depend only on the model, and hence can be evaluated 
once and for all when the model is defined. The only terms that 
need to be calculated during the search are:

                               

This amounts to two multiplications and three additions for 
each model pixel.

A typical application might need to find a 128x128-pixel model 
in a 512x512-pixel image. In such a case, the total number of 
arithmetic operations needed for an exhaustive search is 

5x5122x1282, or over 20 billion. Even on a ’C80, this would take 
several minutes, much more than the 10 milliseconds or so the 
search actually takes. Clearly, imPatFindModel() does much 
more than evaluate the correlation function at every pixel in 
the search area and return the location of the peak scores.

Hierarchical Search
A reliable method of reducing the number of computations is to 
perform a so-called hierarchical search. Basically, a series of 
smaller, lower-resolution versions of both the image and the 
model are produced, and the search begins on a much-reduced 
scale. This series of sub-sampled images is sometimes called a 
resolution pyramid, because of the shape formed when the 
different resolution levels are stacked on top of each other.

I∑ I
2∑ IM∑, ,
Each level of the pyramid is half the size of the previous one, 
and is produced by applying a low-pass filter before 
sub-sampling. If level 0 (the original image or model) is 
512x512, then level 1 is 256x256, level 2 is 128x128, and so on. 
Therefore, the higher the level in the pyramid, the lower the 
resolution of the image and model. 

The search starts at low resolution to quickly find likely match 
candidates. It proceeds to higher and higher resolution to refine 
the positional accuracy and make sure that the matches found 
at low resolution actually were occurrences of the model. 
Because the position is already known from the previous level 
(to within a pixel or so), the correlation function need be 
evaluated only at a very small number of locations.
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Since each higher level in the pyramid reduces the number of 
computations by a factor of 16, it is usually desirable to start 
at as high a level as possible. However, the search algorithm 
must trade off the reduction in search time against the 
increased chance of not finding the pattern at very low 
resolution. Therefore, it chooses a starting level according to 
the size of the model and the characteristics of the pattern. In 
the application described earlier (128x128 model and 512x512 
image), it might start the search at level 4, which would mean 
using an 8x8 version of the model and a 32x32 version of the 
target image. You can, if desired, force a specific starting level, 
using imPatSetSearchParameter().

The last (lowest) level used is usually determined by the 
specified positional accuracy; however, you can set this 
explicitly, using imPatSetSearchParameter(). 

The logic of a hierarchical search accounts for a seemingly 
counter-intuitive characteristic of imPatFindModel(): large 
models tend to be found faster than small ones. This is because 
a small model cannot be sub-sampled as much without losing 
all detail. Therefore, the search must begin at fairly high 
resolution (low level), where the relatively large search area 
results in a longer search time. Thus, small models can only be 
found quickly in fairly small search areas.

Using the best reject 
score and best reject 
level

As mentioned earlier, after calling imPatFindModel(), you can 
call imPatInquire() to determine the highest match peak score 
that was rejected (not returned as a match result) during the 

search. At the same time, because the peak’s match score might 
have been rejected at a low resolution level where the score is 
not very reliable, you can also inquire the level at which the 
score was obtained. Both values can be inquired as follows:

KO2CV+PSWKTG
4GUWNV$WHHGT��+/A2#6A$'56A4','%6A5%14'���4GLGEV5EQTG��
KO2CV+PSWKTG
4GUWNV$WHHGT��+/A2#6A$'56A4','%6A.'8'.���4GLGEV.GXGN��
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Search Heuristics
Even though performed at very low resolution, the initial 
search still accounts for most of the computation time if the 
correlation is performed at every pixel in the search area. For 
most models, match peaks (pixel locations where the 
surrounding image is similar to the model and correlation 
results are largest) are several pixels wide. These can be found 
without evaluating the correlation function everywhere. 
imPatPreprocModel() analyses the shape of the match peak 
produced by the model, and determines if it is safe to try to find 
peaks faster. If the pattern produces a very narrow match peak 
(or the model was not pre-processed), an exhaustive initial 
search is performed. The search algorithm tends to be 
conservative; if necessary, force fast peak finding, using 
imPatSetSearchParameter().

Genesis Native Library also allows you to set the threshold 
level (in %) for rejecting candidate model peaks at low 
resolution levels, using imPatSetSearchParameter() with 
IM_PAT_REJECTION. Any candidates found below this 
threshold level will be rejected. This can speed up the search 
when some of the matches you request do not reach the 
certainty threshold, or when you request more matches than 
are really present in the image. The IM_PAT_REJECTION 
threshold should usually be set much lower than the acceptance 
threshold. For example, a good level to set it to is about 20% to 
30%. Note that if it is too low, you will not see any increase in 
speed. However, if it is too high, you risk rejecting real match 

peaks.

At the last (high-resolution) stage of the search, the model is 
large, so this stage can take a significant amount of time, even 
though the correlation function is evaluated at only a very few 
points. To save time, you can select high search speed, using 
imPatSetSpeed(). Only every second model pixel will be used. 
For most models, this has little effect on the score or accuracy, 
but does increase speed. However, if accuracy is your primary 
concern, you should use all model pixels, that is, avoid high 
speed or force the use of all model pixels with 
imPatSetSearchParameter(). 
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Sub-Pixel Accuracy
The highest match score occurs at only one pixel position, and 
drops off around this peak. The exact (sub-pixel) position of the 
model can be estimated from the match scores found on either 
side of the peak. A curve is fitted to the match scores around 
the peak and, from the equation of the curve, the exact peak 
position is calculated. The curve is also used to improve the 
estimate of the match score itself, which should be slightly 
higher at the true peak position than the actual measured value 
at the nearest whole pixel.

The actual accuracy that can be obtained depends on several 
factors, including the noise in the image and the particular 
pattern of the model. However, if these factors are ignored, the 
absolute limit on accuracy, imposed by the algorithm itself and 
by the number of bits of precision used to hold the correlation 
result, is about 0.05 pixels. This is the worst-case error 
measured in X or Y when an image is artificially shifted by 
fractions of a pixel. In a real application, accuracy better than 
0.1 pixel might be achieved for low-noise images; however, it is 
better not to rely on more than a 0.1 pixel accuracy. These 
numbers apply if you select high search accuracy, using 
imPatSetAccuracy(), in which case the search always proceeds 
to resolution level 0.

If you select medium accuracy (the default), the search may stop 
at resolution level 1, and hence the accuracy is about half of 
what can be attained at level 0 (0.25 pixels). Selecting low 

accuracy may cause the search to stop at level 2, so the accuracy 
is reduced by an additional factor of two (to about 0.5 pixels). 



Chapter 7: Compression

This chapter describes how to compress and decompress 
images using the run-length encoding module and the 
JPEG module.
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Introduction
Compression allows more images to be stored on-board than 
would normally be possible. In addition, it reduces the amount 
of data that must be transferred off-board when images are 
saved to file, allowing quicker transfers. There are two methods 
that the Genesis Native Library provides to compress and 
decompress images: run-length encoding and JPEG 
compression. 

The run-length encoding method can be used to compress 
images that are originally in a binary format, with 1- or 8-bit 
pixel depth. 

The JPEG compression method can be used to compress images 
that are originally in a grayscale or color format with 8- or 
16-bits per band, and from 1 to 4 bands. Note that the Genesis 
Native Library does not support all JPEG modes, so you might 
not be able to decompress a JPEG file that was compressed by 
another package (refer to the section on JPEG compatibility 
issues later in this chapter).

Run-length encoding and decoding
The run-length encoding module of the Genesis Native Library 
allows you to compress and decompress images one at a time. 
The run-length encoding module performs compression on 
binary data by encoding information about a run of connected 
background or foreground pixels in a single byte (8 bits), then 

storing it into a buffer. A run is a continuous stretch of 
connected pixels made up of foreground or background pixels. 

Supported image types The run-length encoding algorithm can compress any image 
that is in a binary format. This includes packed binary format 
(1 bit/pixel), as well as monochrome (8 bits/pixel) image data. 
For the purpose of run-length encoding, all pixels are treated 
as either 0 or non-zero. All non-zero pixels are considered to be 
foreground pixels.
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Mode of operation Run-length encoding (compression)
The run-length encoding module performs compression on 
binary data from an image buffer by storing each continuous 
run of connected pixels as a single byte (8 bits). The most 
significant bit (bit 7) is used to indicate the type of run: 1 for a 
foreground run or 0 for a background run. Each run of pixels is 
composed exclusively of background or foreground pixels. 
Pixels that have a value of 0 are considered background pixels. 
All pixels with a non-zero value are considered foreground 
pixels. 

The lower seven bits (bit 0 to bit 6) are used to indicate the 
length of the run. Since seven bits are used to indicate the 
length of a run, the maximum length of a single run is 127. 
Accordingly, a run of pixels that is larger than 127 is broken 
into multiple runs. For example, a run of 135 foreground pixels 
will be broken into two foreground runs: one run of 127 pixels, 
and the other run of 8 pixels.

It is important to note that a run can span lines. A run of pixels 
is not broken at the end of a line, but continues on to the starting 
position of the next line, as long as the type of pixel remains the 
same (See run #3 in the diagram below).

Run 1: 10 pixel background run

Run 2: 9 pixel foreground run

Run-length encoding byte compression

Background pixel (0) Foreground pixel (1)
19 pixels

135 pixel background run:

Run 3: 127 pixel

background run

Run 4: 8 pixel

background run

Bit 7 6 5 4 3 2 1 0
Run 1:0 0 0 0 1 0 1 0

.

etc.

Run 2:1 0 0 0 1 0 0 1

Run 3:0 1 1 1 1 1 1 1

Run 4:0 0 0 0 1 0 0 0

.

.

Length of run

Type of run (0 or 1)
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Keep track of original 
image dimensions

You should keep a record of the dimensions of the original 
image, so that a buffer of suitable dimensions can be allocated 
later for any subsequent decoding. This record is necessary 
because the compressed buffer does not contain any header 
information.

Important point to 
consider...

Since images that are in a packed binary (1 bit/pixel) format 
are already 8 times smaller than the typical monochrome 8-bit 
image, using run-length encoding to compress data is only 
useful if this type of compression would lead to an even greater 
compression ratio. That is, if the average run length is greater 
than 8.

Decoding run-length encoded images 
(decompression)

The run-length module performs decompression of run-length 
encoded data. Each consecutive byte can be decoded back into 
the appropriate number of 1- or 8-bit pixels. When saving 
decoded data in an 8-bit buffer, foreground pixels are set to 255 
by default. Since the encoded data does not contain any header 
information, the destination buffer must be exactly the right 
size.

General steps 
Encoding 
(compression)

To encode images, you need to follow these steps:

1. Allocate a 1-dimensional, 8-bit buffer that is large enough 

to hold the compressed data. Don’t worry if the compression 
buffer you allocate is too big because the buffer size 
necessary to contain the compressed data (in bytes) will be 
written to the IM_RLE_SIZE control field.

2. Run-length encode the image data using imRleEncode().

3. Read the size of the compressed buffer by calling 
imBufGetField() with IM_RLE_SIZE.

4. Keep a record of the dimensions of the original image, so 
that a buffer of suitable dimensions can be allocated later 
for any subsequent decoding. 
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One way to do so is to keep a record of the width (SizeX) and 
height (SizeY) of the original image buffer within the 
compressed buffer in user-defined fields.

5. If you want to append other image data to the compression 
buffer, add the required start position control field 
(IM_RLE_START) to the control buffer. Then, call 
imRleEncode() again. This time, the value written to the 
IM_RLE_SIZE control field will be that of the last 
compressed image.

Repeat steps 4 and 5 as often as is required to encode 
additional image data.

To perform a subsequent operation, such as save, with the 
encoded data, follow these steps. 

1. Allocate a child buffer (from parent compressed buffer) with 
a buffer size (IM_RLE_SIZE) corresponding to the 
compressed size of a particular run-length encoded image, 
and appropriate offset (IM_RLE_START). This child buffer 
will contain the compressed image data.

2. Use the child buffer to perform any subsequent processing 
operations or image data transfers.

Decoding 
(decompression)

To decode run-length encoded images, you need to follow these 
steps:

1.  Allocate a buffer with the original image buffer dimensions.

2. Decode the run-length encoded buffer into an image buffer, 

using imRleDecode().

Control options With the Genesis Native Library, you can control certain 
aspects of the compression/decompression process. This is done 
using the control fields of a control buffer. 

When encoding, you can control the starting position of the next 
run-length encoded byte within the buffer. This allows you to 
append images to the same compression buffer.

When decoding the image from a run-length compressed buffer, 
you have the option to control the starting position 
(IM_RLE_START in bytes) within the compression buffer to 
run-length decode. If multiple images are encoded within the 
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compression buffer, refer to your records on the size of each 
image in bytes (IM_RLE_SIZE) to determine the appropriate 
starting position within the buffer. In addition, you have the 
option to choose the foreground and/or background color. 

Example The following example allocates the appropriate image buffers, 
uses imRleEncode() to compress, and prints the size of the 
compressed buffer. The compressed buffer is then 
decompressed using imRleDecode().

NQPI�5TE$WH��&UV$WH�
NQPI�%QOR$WH��%QOR%JKNF��%QPVTQN��5K\G��5K\G:��5K\G;�

���#NNQECVG�WPEQORTGUUGF�DWHHGTU�QH�EQTTGEV�UK\G����
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%���5TE$WH��
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%���&UV$WH��

���#UUWOG�5TE$WH�EQPVCKPU�C�DKPCT[�KOCIG�VQ�DG�TWP�NGPIVJ�GPEQFGF����
������
���#NNQECVG�C���&�DWHHGT�
OQTG�VJCP�NCTIG�GPQWIJ��HQT�VJG�EQORTGUUGF�KOCIG�����
�KO$WH#NNQE�F
6JTGCF��5K\G:�5K\G;��+/A7$;6'��+/A241%���%QOR$WH��

���#NNQECVG�C�EQPVTQN�DWHHGT�����
�KO$WH#NNQE%QPVTQN
6JTGCF���%QPVTQN��
�����������������
���'PEQFG
EQORTGUU��VJG�KOCIG�FCVC��6JGP��IGV�CPF�TGRQTV�EQORTGUUGF�UK\G����
�KO4NG'PEQFG
6JTGCF��5TE$WH��%QOR$WH��%QPVTQN�����
�KO$WH)GV(KGNF
6JTGCF��%QPVTQN��+/A4.'A5+<'���5K\G��
�RTKPVH
�%QORTGUUGF�UK\G���K>P���5K\G��

���1RVKQPCN��5CXG�EQORTGUUGF�EJKNF�DWHHGT�VQ�FKUM�YKVJ�WUGT�FGHKPGF�HKGNFU
�������������VQ�UCXG�QTKIKPCN�FKOGPUKQPU��
���
�KH�
5CXG�
�]
�����KO$WH%JKNF
6JTGCF��%QOR$WH��������5K\G�����%QOR%JKNF��

�����KO$WH2WV(KGNF
6JTGCF��%QOR%JKNF�����5K\G:��
�����KO$WH2WV(KGNF
6JTGCF��%QOR%JKNF�����5K\G;��
�����KO$WH5CXG
6JTGCF��(KNG0COG��+/A0#6+8'��%QOR%JKNF��
�����KO$WH(TGG
6JTGCF��%QOR%JKNF��
�_
���

���&GEQFG�
FGEQORTGUU��VJG�EQORTGUUGF�DWHHGT����
�KO4NG&GEQFG
6JTGCF��&UV$WH��%QOR$WH��%QPVTQN�����
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JPEG Compression
The JPEG module of the Genesis Native Library also allows 
you to compress and decompress images. 

Modes of operation The module can compress images using the JPEG lossless 
algorithm or the JPEG lossy algorithm (baseline sequential 
mode). The JPEG lossless algorithm compresses images 
without any loss of information. Typically, the JPEG lossless 
algorithm compresses images by a factor of 2:1, although a 
factor of 4:1 can sometimes be achieved. The JPEG lossy 
algorithm introduces some loss of information but compresses 
images by a variable factor. The higher the specified factor, the 
more the compression, but the lower the image quality.

Note that lossless mode is the only mode supported by the NOA, 
so it is the fastest way to do JPEG compression on Matrox 
Genesis. 

Supported types The JPEG lossless algorithm can compress 8-bit or 16-bit 
buffers, with up to four bands. The JPEG lossy algorithm can 
compress 8-bit buffers, with up to four bands.

Control options With the Genesis Native Library, you can control certain 
aspects of the compression/decompression. For example, you 
can use your own compression/decompression tables, or you can 
compress an image piece by piece if it is too large to be held 
entirely in memory. 
File format and
restrictions

When the Genesis Native Library compresses an image, it adds 
some Genesis-specific markers to the resulting image. Most 
other packages will ignore these markers and therefore be able 
to decompress the file. The Genesis Native Library itself 
ignores unrecognized application-specific markers when it 
decompresses a file. However, the Genesis Native Library can 
still decompress a standard JFIF (JPEG File Interchange 
Format) file that contains just a grayscale image. If the JFIF 
file contains a multi-band image, the Genesis Native Library 
can decompress it only if each band is stored separately in the 
file (if the bands are stored in an interleaved fashion, the 
Genesis Native Library cannot decompress it).
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General steps
Compression To compress images, you need to follow these steps:

1. Allocate a JPEG buffer, using imJpegAlloc(). JPEG buffers 
are used to store compressed images. 

2. Add the required controls to the JPEG buffer, if the defaults 
do not meet your needs.

3. Compress the image, using imJpegEncode().

4. If necessary, save the compressed image from the JPEG 
buffer to disk, using imJpegSave(). Alternatively, write the 
data from the JPEG buffer to an ordinary (contiguous) 
buffer, using imJpegWriteBuf(), and then save the data to 
disk in whatever way is fastest on your system. 

Decompression To decompress images, you need to follow these steps:

1. Load the compressed image into a JPEG buffer, using 
imJpegRestore(), imJpegRead(), or imJpegReadBuf(). 
imJpegRestore() and imJpegRead() load compressed 
images from files. imJpegReadBuf() loads compressed 
images from ordinary (contiguous) buffers. 

2. Decompress the JPEG buffer into an image buffer, using 
imJpegDecode().

Note that the buffer to which you write the decompressed 
image should be compatible with the original image buffer 

(same size, number of bands, and data type). If you do not 
know what these buffer parameters should be, you can use 
imJpegInquire(). This function inquires about a specified 
attribute of a JPEG buffer (such as the data type of the 
original image), and returns the value of this attribute.

Freeing JPEG buffers Once a JPEG buffer is no longer needed, you should free the 
memory allocated to it using imJpegFree().
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Control options When a buffer is allocated using imJpegAlloc(), the default 
values for all control settings are stored in that buffer. These 
default values are suitable for most applications. However, you 
can change these settings to meet your needs, using 
imJpegControl(), imJpegControlBand(), and/or 
imJpegPutTable(). Note that you must use imJpegControl() to 
specify lossless compression (the default is lossy compression).

Some control settings only apply to JPEG lossless compressions 
and some only apply to JPEG lossy compressions. JPEG 
lossless controls are discussed in the section Controlling JPEG 
lossless compression. 

Note that, when loading a compressed image, all controls that 
were used to perform the compression are copied to the JPEG 
buffer. These should not be changed before decompressing 
because, for the reconstructed image to match the original 
image, the same controls must be used to decompress.

For a complete list of control settings and their default values, 
see the Genesis Native Library Command Reference. 

A compression
example

The following code compresses (encodes) an image using the 
lossless mode. Note that this code is part of the jpeg.c program 
and requires only the basic Genesis hardware. See Appendix B 
for the complete jpeg.c program. 

�NQPI�,RGI$WH�������%QORTGUUGF�KOCIG���

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JTGCF������,RGI$WH��
���5GNGEV�NQUUNGUU�OQFG���
�KO,RGI%QPVTQN
6JTGCF��,RGI$WH��+/A,2')A/1&'��+/A.155.'55��

���.QCF�VJG�WPEQORTGUUGF�KOCIG�KPVQ�C�RTQEGUUKPI�DWHHGT���
�KO$WH4GUVQTG
6JTGCF��+P(KNG��+/A6+((��+/A241%���+OCIG$WH��

���%QORTGUU�VJG�KOCIG���
�KO,RGI'PEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

���5CXG�VJG�EQORTGUUGF�KOCIG���
�KO,RGI5CXG
6JTGCF��1WV(KNG��,RGI$WH���
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Another compression 
example

The following code is similar to the previous example, except 
that it uses imJpegWriteBuf(), and then imBufMap(), to write 
the data to disk. Depending on your system, this might be faster 
than saving the data directly to disk using imJpegSave(). Note 
that the buffer in which to write the compressed image was 
allocated in Host memory. You could also allocate the buffer in 
processing memory and then transfer it to the Host, if this is 
faster. However, you should be aware of certain restrictions (see 
the Genesis Native Library Command Reference for details).   

A decompression 
example

The following code decompresses (decodes) an image. 
imJpegInquire() is first used to allocate an appropriate buffer 
in which to save the decompressed image. Note that this code 

�WPUKIPGF�EJCT��#FFTGUU�
����

���#NNQECVG�C�,2')�DWHHGT�CPF�UGNGEV�NQUUNGUU�OQFG���
�KO,RGI#NNQE
6JTGCF������,RGI$WH��
�KO,RGI%QPVTQN
6JTGCF��,RGI$WH��+/A,2')A/1&'��+/A.155.'55��

���%QORTGUU�VJG�KOCIG���
�KO,RGI'PEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

���#NNQECVG�C�EQPVKIWQWU�*QUV�DWHHGT�DKI�GPQWIJ�HQT�VJG�TGUWNV���
�KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A5+<'���5K\G��
�KO$WH#NNQE�F
6JTGCF��5K\G��+/A7$;6'��+/A*156���*QUV$WH��

���9TKVG�VJG�EQORTGUUGF�KOCIG�VQ�VJG�DWHHGT���
�KO,RGI9TKVG$WH
6JTGCF��*QUV$WH��,RGI$WH��������

���)GV�C�RQKPVGT�VQ�VJG�FCVC�KP�*QUV�OGOQT[�CPF�YTKVG�KV�VQ�FKUM���
�KO$WH/CR
6JTGCF��*QUV$WH��������
XQKF�����#FFTGUU���&WOO[���&WOO[��
�HYTKVG
#FFTGUU��5K\G�����5VTGCO��
is part of the jpeg.c program and requires only the basic Genesis 
hardware. See Appendix B for the complete jpeg.c program. 

�NQPI�,RGI$WH�������%QORTGUUGF�KOCIG���

���.QCF�VJG�EQORTGUUGF�KOCIG�KPVQ�C�,2')�DWHHGT���
�KO,RGI4GUVQTG
6JTGCF��+P(KNG���,RGI$WH��

���#NNQECVG�C�RTQEGUUKPI�DWHHGT�QH�VJG�UCOG�UK\G���
�KO$WH#NNQE
6JTGCF��KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A5+<'A:��07..��
��������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A5+<'A;��07..��
��������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A07/A$#0&5��07..��
��������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A6;2'��07..��
��������������������+/A241%���+OCIG$WH��

���&GEQORTGUU�VJG�KOCIG���
�KO,RGI&GEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����
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Controlling JPEG lossless compression
This section provides an overview of the JPEG lossless 
algorithm, and of the controls you have over this algorithm. You 
should only change these controls if you are familiar with the 
JPEG lossless algorithm. Changing these controls might allow 
you to achieve a higher compression ratio than would be 
possible using the defaults of the Genesis Native Library.

For detailed information about the JPEG algorithm, refer to 
the JPEG Technical Specification Revision 8. 

JPEG lossless The JPEG lossless algorithm is basically a two-step process. 
First, predictive coding is performed on the image. Then, the 
result is Huffman encoded. 

Predictive coding
Predictive coding is based on the fact that adjacent pixels in an 
image generally have similar values. Therefore, the value of a 
pixel can be "predicted" from the values of its neighbor(s). The 
difference between the original value of the pixel and the 
predicted value requires fewer bits to store than the original 

Source
Image

Predictive
coding

Huffman
encoding

Compressed
Image
pixel value. 

By default, the Genesis Native Library uses the pixel to the left 
to predict values. This is suitable for most images. However, 
you can specify that no predicting be done, using 
imJpegControl(). In this case, the values after predictive coding 
will be the same as the original values. This can be useful if you 
have developed your own algorithm to take the place of 
predictive coding and only need your images Huffman encoded. 
Note that you must implement your own algorithm to use one 
of the other "predictors" supported by the JPEG lossless 
algorithm (the Genesis Native Library only directly supports 
predictor #1: the "pixel to the left" predictor).
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Huffman encoding
After an image has been predictive coded, Huffman encoding 
assigns a variable-length "code word" to each value. This code 
is based on the number of bits by which adjacent values differ. 
By storing the code word, rather than the actual difference 
value, further compression can be achieved. Values are 
assigned code words according to a Huffman table.

The Genesis default Huffman table can handle images with up 
to 16-bits per band (for lossless mode). This same table is used 
even for 8-bit images and is suitable for most images. However, 
there are a few JPEG lossless decoders that require a smaller 
Huffman table for 8-bit images. Refer to the example at the end 
of this section for a good Huffman table to use on 8-bit images 
when portability is important.

Using your own table If you do not want to use the default Huffman table provided, 
require an optimal compression ratio, and are familiar with the 
JPEG lossless algorithm, you can use your own Huffman table. 
If you use your own Huffman table, you first need to represent 
it by a one-dimensional array. The first 16 numbers in the array 
should represent the number of code words used for a given code 
length. For example, if the first 16 numbers are:
0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
it means that there are no 1-bit codes, one 2-bit code, five 3-bit 
codes, one 4-bit code, one 5-bit code, etc.

The next numbers in the array determine which code word is 
assigned to each value. Specifically, if these numbers are n , n , 
0 1
n2, etc., it means that the shortest code word is assigned to a 
value whenever adjacent values differ by n0 bits; the next 
shortest code word is assigned to a value whenever adjacent 
values differ by n1 bits; etc. Note that, if these numbers are 0, 
1, 2, etc., progressively longer words are assigned to larger 
differences (this is usually the best sequence, since adjacent 
values tend to be similar rather than different).
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Once you have created the array, you need to transfer it to the 
required JPEG buffer, using imJpegPutTable(). Specify that 
you are transferring a DC Huffman table (see the following 
example).

An example The following code compresses an image with a user-defined 
Huffman table. 
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Encoding a very large image
If an image is too large to be held entirely in memory, you can 
compress it block by block into a JPEG buffer. This is done by 
first specifying the number of blocks by which to divide an 
image, using imJpegControl(). You then write a block of the 
image to an image buffer, compress the image buffer into the 
same JPEG buffer, and repeat until all blocks have been 
compressed. Each compressed block is appended to the JPEG 
buffer, until the entire image has been compressed.

There are some restrictions on the size of each block (except for 
the last block). For a lossless compression, each block (except 
the last) must have a Ysize that is a multiple of the 
IM_JPEG_RESTART_ROWS item of imJpegControl() (restart 
rows are discussed later in this chapter). For a lossy 
compression, each block (except the last) must have a Xsize that 
is a multiple of 8 times the IM_JPEG_RESTART_ROWS item, and 
must have a Ysize that is a multiple of 8.

Note that, if necessary, you can stop a block-by-block 
compression, using imJpegControl(). 

An example The following code compresses an image block by block.  
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Writing/reading to or from open files
With the Genesis Native Library, you can read a compressed 
image from an open file (using imJpegRead()) or write a 
compressed image to an open file (using imJpegWrite()). This 
can be useful if you are compressing/decompressing several 
images to/from the same file (see the examples below). This can 
also be useful if you need to write/read additional information 
(such as header information) to/from the same file.

Note that, when an image is compressed, the tables used in the 
compression are also saved to the JPEG buffer (by default). If 
images are compressed with the same tables and written to the 
same file, there is no need to save tables after the first image 
is written. You can disable the saving of tables using 
imJpegControl().

Writing to the same
file

The following code compresses several images and writes them 
to the same file. The saving of tables is disabled after the first 
image is written.

�(+.'��(KNG�
�NQPI�,RGI�

���1RGP�VJG�HKNG�HQT�YTKVKPI���
�(KNG���HQRGP
�VGUV�LRI����YD���

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JT������,RGI��

���%QORTGUU�CPF�YTKVG�VJG�HKTUV�KOCIG���
�KO,RGI'PEQFG
6JT��+OCIG���,RGI�����

�KO,RGI9TKVG
6JT��(KNG��,RGI��

���&QP	V�UCXG�VCDNGU�YKVJ�UWDUGSWGPV�KOCIGU���
�KO,RGI%QPVTQN
6JT��,RGI��+/A,2')A5#8'A6#$.'5��+/A&+5#$.'��

���%QORTGUU�CPF�YTKVG�UWDUGSWGPV�KOCIGU���
�KO,RGI'PEQFG
6JT��+OCIG���,RGI�����
�KO,RGI9TKVG
6JT��(KNG��,RGI��

�KO,RGI'PEQFG
6JT��+OCIG���,RGI�����
�KO,RGI9TKVG
6JT��(KNG��,RGI��

���(TGG�VJG�,2')�DWHHGT���
�KO,RGI(TGG
6JT��,RGI��

���%NQUG�VJG�HKNG��6JGTG�KU�PQ�PGGF�VQ�HKTUV�U[PEJTQPK\G�UKPEG���
���KO,RGI9TKVG
��KU�U[PEJTQPQWU���
�HENQUG
(KNG��



152      Chapter 7: Compression

Reading from the
same file

The following code decompresses several images from the same 
file. Only one JPEG buffer is needed since, each time 
imJpegRead() is called, tables and other controls in the file 
overwrite the corresponding controls in the JPEG buffer. If 
corresponding controls are not found in the file, the current 
controls in the JPEG buffer are used. 
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Restart markers
When an image is compressed, the Genesis Native Library adds 
restart markers to the bit stream of the compressed image. A 
restart marker is a special code that signifies that the encoded 
bit stream has been padded to the next byte boundary before 
the encoding process was restarted. Restart markers allow the 
Genesis Native Library to decompress the image using multiple 
processors. Files that were compressed by a package without 
restart markers can still be decompressed by the Genesis 
Native Library, although not as quickly.    

By default, the Genesis Native Library places restart markers 
after a certain number of rows of data have been encoded (for 
lossless compressions) or after a certain number of 8x8 blocks 
of data have been encoded (for lossy compressions). If necessary, 
you can use imJpegControl() to specify that restart markers be 
placed after every n rows of data or after every n 8x8 blocks of 
data. This can be useful if you are transmitting the compressed 
image over a medium that is susceptible to errors. If an error 
does occur and there are no restart markers, the error will 
propagate and affect subsequent data. However, if there are 
restart markers, the error will be confined to the data between 
markers. Therefore, if you specify that, for example, restart 
markers be added after every row or after every 8x8 block, an 
error will only affect one row or one block of the reconstructed 
image. 

❖ For a lossy compression with a high compression ratio, too 

many restart markers can significantly increase the size of 
the compressed image. In this case, you might want to 
increase the restart interval, especially if you are not 
transmitting the image over a noisy medium.
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JPEG compatibility issues
You might have problems reading Genesis JPEG files with 
other software packages, or reading non-Genesis JPEG files 
with the Genesis Native Library JPEG functions. There are 
several reasons for this.

Color images First, Genesis only supports RGB color images saved in planar 
format (each color band is encoded separately). Many other 
software packages misinterpret these files and do not decode 
or display them properly. This occurs for two reasons:

■ The three color bands might be recognized and decoded, but 
they are assumed to be from a YUV color image instead of an 
RGB image. Accordingly, an unnecessary color space 
conversion is performed before displaying the image, and the 
colors come out completely wrong.

■ The image is assumed to be monochrome because it is in 
planar form, and is decoded as a 1-band image (as if it were 
monochrome).

In addition, when a color image is compressed by another 
package, it might not be readable by Genesis for two reasons:

■ The image might be encoded in interleaved format (the color 
components are interleaved on a pixel by pixel basis, not by 
band). In this case, Genesis will report an error that 
interleaved format is not supported.
■ The image might be saved as YUV rather than RGB, possibly 
with subsampling of the chrominance (UV) components. 
Neither YUV format nor subsampling is supported by 
Genesis so, again, an error will be reported.

Compression modes Matrox Genesis supports both lossy and lossless JPEG 
compression modes, but many other software packages do not 
support lossless mode (it is mainly used in medical imaging, 
where often no loss of information is acceptable). So if you 
encode an image in lossless mode and save it to disk, you will 
likely get an error message when trying to open that file with 
another software package. 
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Furthermore, Genesis only supports a subset of the many 
different lossy JPEG compression modes defined in the full 
JPEG specification. Monochrome images encoded with the 
baseline DCT method (8 bits per pixel) usually present no 
problems and are interchangeable between Genesis and other 
software packages.

Larger files for a given 
image quality (or lower 
quality for same file size)

During the encoding process on Matrox Genesis, the Genesis 
Native Library only provides a default encoding table, but other 
packages might optimize the tables for a particular image. 
Therefore, it is possible that compression on Matrox Genesis 
produces larger files for a given image quality (or produces 
lower quality when compressing to a file of the same size). 
However, Genesis does allow you to load custom tables. 

Furthermore, after the image is encoded some extra 
information is added to help speed up the decoding process. 
This also makes the compressed file slightly larger. However, 
you can reduce this extra information by increasing the 
IM_JPEG_RESTART_ROWS value using imJpegControl().

JPEG files produced by other packages will not contain the 
extra information that Genesis needs, so those files cannot be 
decoded at full speed by Genesis. Note that this limitation only 
applies to decoding using the’C80; decoding of JPEG lossless 
files by the NOA is always done at full speed.

DC Huffman table And finally, one other known problem concerns the default DC 
Huffman table. The Genesis default table can handle images 

with up to 16-bits per band (for lossless mode); this table is used 
even for 8-bit images. This should not cause any problems, but 
there are a few lossless decoders that require a smaller 
Huffman table for 8-bit images. There is an example presented 
in the Huffman encoding subsection of this chapter for defining 
a custom DC Huffman table. In fact, that table is a good one to 
use on 8-bit images when portability is important.
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Chapter 8: Generating 
graphics

This chapter describes the graphics functions available 
with the Genesis Native Library.
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Graphics
The Genesis Native Library contains a set of graphic functions. 
These functions can draw into any 8-, 16-, or 32-bit integer 
buffer, and drawing will be clipped to fit the buffer. Note, 
however, that if you have the display section, you can instead 
draw into the overlay buffer using the on-board 
high-performance MGA-2064W graphics accelerator, and the 
graphics functions provided by the Host operating system. 
Although these functions are not portable, using the MGA is 
suitable for graphic-intensive applications, because of the 
increase in performance.   

Available graphics 
functions

With the Genesis Native Library, you can:

■ Draw rectangles, using imGraRect() or imGraRectFill().

■ Draw arcs, using imGraArc() or imGraArcFill().

■ Draw lines, using imGraLine().

■ Plot a series of points, using imGraPlot().

■ Write text, using imGraText().

imGraArc()

imGraText()

Good Morning!

imGraRectFill()
You can also fill an object, using imGraFill().

imGraArcFill()

imGraLine()

imGraRect()

imGraPlot()
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Generating graphics
When you generate graphics, you have to specify the drawing 
color using the IM_GRA_COLOR field. The drawing color is the 
color that is used to draw, plot, write, or fill.

Graphics and color 
buffers

If you are generating graphics into a multi-band buffer, the 
same drawing color is normally used in all bands. However, for 
8-bit buffers with two to four bands, you can specify a different 
drawing color for each band, using the IM_GRA_COLOR_MODE 
field. In this case, the least-significant byte of the specified color 
is used for the first band, the next byte is used for the second 
band, etc.

XOR option Certain graphics functions give you the option of generating 
graphics in the drawing color, or in the colors that result from 
performing an XOR between this color and the pixels of the 
destination buffer. The latter option is available so that you can 
later remove the graphic by calling the function again.  
Note that, when using the XOR option, the graphic will usually 
be most visible if the drawing color is set to 0xFFFFFFFF.

To use the XOR option, set the IM_GRA_DRAW_MODE field.

A rectangle is drawn using
imGraRect(), with the XOR
option set. The drawing
color is 0xFFFFFFFF.

The rectangle can be removed
by again calling imGraRect()
with the XOR option (other options
and parameters should also 
be the same as they were in
the first call).
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Plotting
You can plot a series of points using imGraPlot(). This can be 
used, for example, to draw the outline of some object or to plot 
a histogram.

When you use imGraPlot(), you need to specify a 
one-dimensional buffer containing the x-coordinates of the 
points and another containing the y-coordinates of the points. 
imGraPlot() can connect all the points with a single line, 
connect each pair of points with a line, or simply draw a dot at 
each point. 

Note that imGraPlot() plots a series of lines much faster than 
separate calls to imGraLine().

Scaling and offsetting 
points

When you use imGraPlot(), you can scale and offset the x and 
y points by specified factors. This could be used, for example, 
to plot a histogram with the histogram origin ((0, 0)) at the 
bottom left of a buffer. To do so, specify a y scale factor of -1.0 
and a y offset equal to: the buffer height - 1 (see below).
(0, 0) (0, 0)

1 4 6 8 5 2 6 4 2 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

7 4 2 0 3 6 2 4 6 8
y-buffer

(histogram results)
scale = -1.0
offset = 8

x-buffer
scale = 1.0
offset = 0
(default)

(effective origin)
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Plotting a histogram The following code generates the histogram of an image, and 
then plots it right-side up (that is, with its origin at the bottom 
left of a buffer). The buffer in which to plot has dimensions 
SizeX by SizeY. The y scale ensures that histogram results will 
fit into this buffer, while the x scale ensures that the entire 
width of this buffer is used. 

Note that this code is part of the process.c program and requires 
only the basic Genesis hardware. See Appendix B for the 
complete process.c program. 
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Filling
The imGraFill() function fills a connected region with a 
specified color. A connected region is an area of touching pixels 
that have the same value (horizontally and vertically adjacent 
pixels are considered touching; diagonally adjacent pixels are 
not). To specify the region to fill, you have to specify the position 
of a pixel within the region (called a seed pixel).  

Writing text
When using imGraText(), you need to specify the color with 
which to write the text (called the foreground color), as well as 
the x and y coordinates at which to start writing (the text is 
written from the top-left corner of these coordinates). You also 
need to specify the background against which to write the text. 
The background can be a specific color or can be transparent 

Seed pixel

Filling color = 0
(in which case only the strokes of the characters appear).

When writing text, you can use a small, medium, or large 
version of the default font; you can also scale the size of 
characters in the x and y directions by specified factors. 

H i s t o g r a m

foreground color = 0
background color = 0xFFFFFFFF
(x, y) = (1, 1)

H i s t o g r a m

foreground color = 0
background color = transparent
(x, y) = (1, 1)



Chapter 9: Buffers and buffer 
fields

This chapter discusses buffers. It shows you how to allocate 
a buffer, how to use control buffers, child buffers, and tag 
buffers, and how to copy buffer data. 
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Data buffers
The processing functions of the Genesis Native Library operate 
on and store results in buffers. Before processing a buffer, you 
must allocate it. When allocating a buffer, you must give it a 
certain width and height, a certain number of bands, and a 
specific data type. You can allocate buffers on-board (in 
processing or display memory) or on the Host.

Fields A buffer can contain control fields. Control fields are used 
because some functions have so many options that it is more 
practical to store these options in one place (as control fields in 
a buffer) than to have these options as parameters of the 
function. When a buffer is used for this purpose, it is referred 
to as a control buffer.

Child buffers A child buffer refers to a rectangular region within a buffer or 
to a specific band of a multi-band buffer. You can therefore 
allocate a child buffer to restrict processing to a specific region 
or to a specific band of a buffer.  

Copying buffer 
data

You can copy data between buffers. This is an efficient operation 
no matter where the source and destination buffers are located.

Tag buffers When you copy or grab data, you can avoid overwriting regions 
of the destination buffer by using a tag buffer. A tag buffer 
specifies which pixels of the destination buffer to leave as they 
are, and which pixels to overwrite.
Transferring buffer
data

You can transfer data between a buffer and an array in Host 
memory, or between a buffer and a file.

Mapping a buffer You can use imBufMap() to map a buffer into Host memory. 
This allows you to access a buffer from the Host.

Creating a buffer You can use imBufCreate() to create a buffer out of memory that 
has already been allocated. Among other things, this allows you 
to operate on memory that was not allocated by Genesis (such 
as memory on another board).



Allocating buffers      165

Allocating buffers
You must allocate a buffer before you can use it in a function 
call. Allocate a buffer using the imBufAlloc(), imBufAlloc2d(), 
or imBufAlloc1d() function. imBufAlloc1d() allocates a 
one-band buffer with a certain width; imBufAlloc2d() allocates 
a one-band buffer with a certain width and height; while 
imBufAlloc() allocates a buffer with a certain width and/or  
height, and with one or more bands. (imBufAlloc() can therefore 
be used to allocate any type of buffer; the other functions are 
provided for ease of use). Once you finish using a buffer, you 
should free the memory allocated to it, using imBufFree().

Buffers are quite general purpose and can hold a variety of data. 
For example, image LUTs, convolution kernels, and histogram 
results are all stored in buffers of the appropriate size and data 
type.

Note that some processing functions will not operate directly 
on multi-band buffers. However, you can process a specific 
component of a color image.

Color band 0
Color band 1

Color band 2

RGB
When you allocate a buffer, in addition to specifying its width, 
height, and number of bands, you must specify:

■ Its data type.

■ The memory bank in which to allocate the buffer.

image buffer
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Data type
Supported data types are: 1-bit packed binary; 8-, 16-, and 
32-bit integer (signed and unsigned); 24-bit packed RGB; and 
32- and 64-bit IEEE floating-point. Not all functions can 
operate on all data types. For example, the functions of the 
integer processing module can generally operate only on 
integer-type buffers. When a function does not support a certain 
data type, you can use imBinConvert(), imFloatConvert(), or 
imIntConvert() to convert the source buffer to the required type.

Memory location

When you call imBufAlloc...(), you can allocate the buffer 
on-board (in processing or display memory) or on the Host. If 
you allocate the buffer on-board, it will reside on the same node 
as the thread which executed the buffer allocation function.

Buffers of a processing 
function

The source buffers of a processing function carried out by the 
’C80 or NOA must be located in processing memory. In addition, 
they must reside on the same node as the thread which will 
execute the processing function. That is, these buffers must 
reside in local processing memory. If these conditions are not 
met, the results of the processing function will be undefined 
because you can not read from a non-local buffer. In other 
words, if you use a non-local buffer as a source buffer in a 
processing operation, the operation might appear to work, but 
the results will not be reliable.

The destination buffer of a processing function can be located 

anywhere, except when the operation uses the NOA. However, 
for maximum efficiency, it should also be in local processing 
memory. Therefore, if you want to display the results of a 
processing function, you should write the results to a buffer in 
processing memory and then copy that buffer to a display 
buffer, rather than using a display buffer as the destination of 
the processing function.

❖ If the processing function is iterative, the destination buffer 
must be in local processing memory because an iterative 
function also reads from the destination buffer.
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When the operation uses the NOA, not only is it inefficient to 
process buffers that are not in local processing memory (buffers 
in display memory, Host memory, or processing memory on 
another node), their use is prohibited.

When a processing operation is carried out by the NOA, the 
destination buffer must be in local processing memory. This 
restriction comes about because the NOA can only access 
buffers that are located on the same node as the thread which 
will execute the processing function. 

The buffer location restrictions discussed above do not apply to 
the buffer copying functions (imBufCopy(), imBufCopyVM(), 
and imBufCopyPCI()). In addition, you can use non-processing 
functions, such as imBufInquire() or imBufGetField(), on any 
buffer, regardless of its location. 

Note that if you cannot send a processing function to a thread 
that resides on the same node as the source and destination 
buffers, you should first copy the buffers to the appropriate 
node (using imBufCopy()). 

Control buffers
A control buffer refers to a buffer whose control fields are used 
to specify certain options of a function. The Genesis Native 
Library uses control buffers because some functions have so 
many options that it is impractical to have these options as 

parameters of the function. Instead, you specify the options you 
want performed by adding the required control fields to a buffer 
and passing this buffer to the function.

Fields Each control field (or simply "field") holds a single value 
(integer or floating-point). A field is identified by a unique "tag". 
The tag itself is just an integer value.

Most fields have predefined tags, but you can add your own 
fields as long as you use tags that don’t conflict with those used 
by the Native Library.
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Managing
control buffers

A control buffer can store fields that apply to many different 
functions because a function will only use those fields that 
apply to it. In addition, you can use any type of buffer as a 
control buffer. You can even use the buffer that a function is 
processing as the function’s control buffer. Therefore, when you 
need a control buffer, you can avoid allocating a new buffer by 
using a previously allocated buffer.

If you do need buffers solely to be used as control buffers, you 
should allocate these buffers with imBufAllocControl(). This 
function allocates a buffer that can only hold fields, not data, 
so it can save you memory.

Regardless of which buffers you use as control buffers, you 
should always set up your control buffers well before you use 
them, so that, for example, you are not adding fields to a buffer 
within a time-critical loop (this can be a significant overhead).

Managing fields You add a new field to a buffer or modify an existing field using 
imBufPutField(). In addition, you remove a field from a buffer 
using imBufRemoveField() and copy fields between buffers 
using imBufCopyField(). You can read the value of a field using 
imBufGetField(), imBufGetFieldDouble(), or 
imBufGetNextField().

Defaults Most fields have default values, so if a field is not added to a 
control buffer or if a control buffer is not passed to the function, 
the function will use these default values. Fields that do not 
have default values only affect the function if you add them to 

the control buffer.

Reading results Some processing functions (specifically those that produce a 
single value as a result, rather than a whole image) write their 
result to a field in the destination buffer. You read back the 
result using imBufGetField().
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Child buffers
A child buffer refers to a specified rectangular region of interest 
within a buffer or to a specific band of a multi-band buffer. The 
buffer from which a child buffer is created is called its parent 
buffer.

A child buffer is considered a data buffer in its own right and 
can be used in the same way as any other buffer. However, no 
new memory is allocated to a child buffer. Therefore, any 
changes made to a parent buffer also affects its child buffer(s), 
and vice-versa.

Child buffers are useful when you want to restrict processing 
to a portion of a buffer, or when you want to copy/grab into a 
portion of a buffer. 

Child buffers are especially important with display buffers 
since you usually want to know exactly where on the display 
the buffer is allocated. In fact, you cannot display an image at 
all until you have made a child display buffer to hold a copy of 
the image you want to see.

Allocating child
buffers

Allocate child buffers using imBufChild() (this allocates a child 
buffer from a region of a buffer) or imBufChildBand() (this 
allocates a child buffer from a band of a multi-band buffer). You 
can move and/or resize child buffers, allocated with 
imBufChild(), using the imBufChildMove() function. Note that 
it is more efficient to move an existing child buffer than to free 

it and allocate a new one.
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Copying buffer data
The Genesis hardware allows data to be copied efficiently 
between buffers, no matter where they are located. You can use 
one of the following functions:

■ imBufCopy(). This function uses whatever hardware can 
perform the copy the fastest.

■ imBufCopyPCI(). This function uses the PCI bus.

■ imBufCopyVM(). This function uses the VMChannel. 

Note that the above functions copy only image data, and not 
any buffer fields that might be present. To copy a buffer’s fields, 
use imBufCopyField().

Formatting options Both imBufCopyPCI() and imBufCopyVM() can perform a 
variety of formatting operations on the data as it is copied (such 
as zooming and packing). However, these functions depend on 
the physical path involved, so you need to understand your 
system’s architecture to exploit their capabilities. See the 
section Using the advanced copy functions.

More on imBufCopy() When you use imBufCopy(), you don’t have to worry about the 
physical path involved because the function will use whatever 
path is available. imBufCopy() is a very important part of the 
library because it performs the following common functions:

■ Copy an image from processing to display memory.
■ Copy an image from an on-board buffer to a buffer in Host 
memory in the fastest possible way (and without tying up the 
Host CPU during the transfer).

■ Copy an image from one processing node to another in a 
multi-processing system.

In addition to the above, imBufCopy() automatically copies all 
bands of a multi-band buffer, if the source and destination 
buffers have the same number of bands. If the source buffer is 
1-band and the destination is a 3-band display buffer, 
imBufCopy() replicates the source buffer in all 3 bands. This 
allows you to display a 1-band (grayscale) image when the 
display is in color mode.
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Using the advanced copy functions
This section discusses some of the formatting options available 
to imBufCopyPCI() and imBufCopyVM(). Note that, when data 
is copied over the VMChannel, two (or more) VIAs are involved. 
When data is copied over the PCI bus, only one VIA is involved. 
If you use imBufCopyVM(), some options only apply to the 
transmitting VIA, and some only apply to the receiving VIA. If 
you use imBufCopyPCI(), some options only apply if the PCI 
bus is the source of the data (that is, if the VIA is reading data 
from the PCI bus and writing it to memory), and some only 
apply if the PCI bus is the destination (that is, if the VIA is 
reading data from memory and writing it to the PCI bus).

For a complete list of the options available to imBufCopyPCI() 
and imBufCopyVM(), including when these options apply, see 
the Genesis Native Library Command Reference.

If you use imBufCopyPCI() or imBufCopyVM(), you should be 
familiar enough with the system architecture to ensure that 
the copy can actually be performed over the specified path. For 
example, if you use imBufCopyPCI(), you should be sure that 
the source and destination buffers of the copy are actually 
connected by the PCI bus. If they are not, the copy will not be 
performed. You should also be familiar enough with the system 
architecture to know which is the transmitting VIA, which is 
the receiving VIA, and whether the PCI bus is the source or 
destination of the data.
The diagram on the next page indicates the path(s) by which 
various memory banks are connected. This can be used to 
determine how two buffers are connected, which is the receiving 
VIA, etc. Note, for example, that the VMChannel cannot be 
used to copy between different systems or to the Host. However, 
it can be used to copy between different boards in the same 
system.
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Tag buffers 
When you copy data, you can avoid overwriting regions of the 
destination buffer by using a tag buffer. A tag buffer specifies 
which pixels of the destination buffer to leave as they are, and 
which pixels to overwrite. This is useful when you want to write 
into a non-rectangular region of a buffer (to write into a 
rectangular region of a buffer, you could always allocate a child 
buffer and then copy into that child buffer). Note that using a 
tag buffer will not affect the speed at which the copy function 
is performed.

How tag buffers work When you supply a tag buffer to a copy function (using the 
IM_CTL_TAG_BUF field), a pixel of the destination buffer is 
overwritten only if its corresponding pixel in the tag buffer has 
the value 0; if its corresponding pixel has the value 1, it is not 
overwritten.

Tag buffer
requirements

A tag buffer must be of type binary, have the same size as the 
destination buffer, and be in the same memory bank as the 
destination buffer. It must have either a single band or the same 
number of bands as the destination buffer. If the tag buffer is 
single band and the destination buffer is multi-band, the tag 
buffer will be applied to each band of the destination buffer.

In addition to the above, the first pixel in the tag buffer must 
be byte-aligned. Binary buffers are byte-aligned when 
allocated, so the only way to violate this restriction is to use a 
child buffer of a binary buffer, with an incorrect alignment. If 

you use a child buffer as your tag buffer, the Xstart parameter 
of imBufChild() should be a multiple of 8 when you create the 
child buffer.

❖ The byte-alignment restriction does not apply to tag buffers 
that are used with imBufPack().
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Creating tag buffers In general, you create a tag buffer by processing an integer 
buffer and then converting that buffer to binary (using 
imBinConvert()). Depending on the region of the destination 
buffer that you want to protect, there are various processing 
functions you can use. For example, you can use the graphic 
functions to draw a required pattern. Note that certain 
processing functions can be performed directly on binary 
buffers, so you might be able to avoid processing integer buffers 
(which would be more efficient).

Zooming and subsampling 
You can subsample or zoom the copied data (using the 
IM_CTL_SUBSAMP_X, IM_CTL_SUBSAMP_Y, IM_CTL_ZOOM_X, 
and IM_CTL_ZOOM_Y fields). Zooming in the x direction 
replicates each column n times; zooming in the y direction 
replicates each row n times. Subsampling in the x direction 
causes only every nth column to be written to the destination 
buffer (starting with the first column); subsampling in the y 
direction causes only every nth row to be written to the 
destination buffer (starting with the first row).

Extracting bytes 
When the pixel depth is more than 8 bits, you can choose to copy 
only 8 contiguous bits to the destination buffer (using the 
IM_CTL_BYTE_EXT field). This is mainly useful when you are 
copying to the display, since the display is limited to 8 bits per 
pixel. Note that the most significant 8 bits are usually copied. 
Swapping bytes 
Sometimes, packed color images are stored as BGR instead of 
RGB (or BGRa instead of RGBa). You can swap the 1st and 3rd 
bytes of such images (using the IM_CTL_BYTE_SWAP field). The 
packed images must be in 24-bit or 32-bit format. Note that if 
the destination buffer is 3x8-bit, the copy function will 
automatically separate the packed color image. Therefore, 
packed BGR or BGRa images can be corrrectly displayed by 
swapping bytes while copying to a 3x8-bit display buffer. 

Note that the "a" in BGRa refers to any extraneous data that 
the packed BGR image might contain.
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Reversing the direction of the copy 
You can copy the data right to left instead of left to right, and 
bottom to top instead of top to bottom (using the IM_CTL_DIR_X 
and IM_CTL_DIR_Y fields). This can be useful if your optical 
set-up has delivered images that are horizontally and/or 
vertically reversed (it could be that a mirror was involved or 
that parts passed under a line scanner from bottom to top).

Expanding RGB555 or 565 formats

With the Genesis Native Library, you can expand 16-bit color 
images (either in RGB555 or RGB565 format) to 3x8-bit (using 
the IM_CTL_FMTCVR field). If you want to display such images 
in color, you must use this option when copying to the display 
(the display is limited to 8 bits per pixel per band).

Write masks 
A write mask can be used to protect certain bit planes of the 
destination buffer (using the IM_CTL_WRTMSK field). This 
option can only be used if you are copying to the display. It can 
be useful, for example, if you want to prevent annotation in 
certain bit planes from being overwritten. Note, however, that 
Matrox Genesis contains an overlay buffer, so you would 
normally not annotate the main display buffer. Instead, you 
would draw in the overlay buffer and enable keying (see 
Chapter 11 for details).  

If you do use a write mask, you must specify the required value 
using 24 bits. The low 8 bits of this value applies to the red 

buffer, the next 8 bits to the green buffer, and the high 8 bits to 
the blue buffer.
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Reducing overhead
In order to reduce overhead, you can skip programming of most 
VIA registers when you perform the copy (use the 
IM_CTL_SETUP field). This is safe if the only difference from 
the previous copy is the address of the source and/or destination 
buffer. This is typically the case in a real-time, double-buffered 
application, where two (or more) buffers are used over and over 
again, and all other copy parameters stay the same.

Note that, if any copy parameter (except the address of the 
source or destination buffer) is different, you should not skip 
programming of any VIA register. 

Specifying a VIA 

This option only applies to imBufCopyPCI().

When a copy is performed over the PCI bus, only a single VIA 
is involved. If the source and destination buffers are both 
on-board, this VIA could either be the one local to the source 
buffer or the one local to the destination buffer. You can specify 
which VIA using the IM_CTL_VIA field. This can be useful if you 
are performing several transfers in parallel since, for the 
transfers to actually occur in parallel, you might need to ensure 
that specific VIAs be used. Unless you are performing transfers 
in parallel, however, it normally does not matter which VIA is 
used. 
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Writing a rectangular region 
This option only applies to imBufCopyVM().

With the Genesis Native Library, you can choose to write a 
rectangular subset of the source buffer to the destination buffer. 
You would normally do this by allocating a child buffer from the 
source buffer, and then copying that child buffer. However, 
there might be cases when you don’t want all of the transmitted 
data written to the destination buffer. For example, if you have 
multiple nodes and want each to process a different part of an 
image, you can use one VIA to transmit the image and several 
others to receive just a portion of the image.

To define the region to write, use the IM_CTL_START_X, 
IM_CTL_START_Y, IM_CTL_STOP_X, and IM_CTL_STOP_Y 
fields.

Avoiding display artifacts

This option only applies to imBufCopyVM().

When copying to the display, you can force the copy to be 
synchronized with updates of the display, in order to avoid  
visible artifacts such as screen tearing. To do so, use the 
IM_CTL_DISPLAY_SYNC field. Note that, by default, the copy is 
performed as soon as possible. If you set the 
IM_CTL_DISPLAY_SYNC field, the copy will be delayed, if 
necessary, in order to avoid visible artifacts.

Continuous copying 
This option only applies to imBufCopyVM().

With the Genesis Native Library, you can have the source buffer 
continuously copied to the destination buffer (using the 
IM_CTL_COUNT field), until you call imThrHalt(). 

This option could be used to maintain a continuous display of 
a processing buffer. However, this would be very inefficient, 
because the buffer would be copied much more frequently than 
necessary (therefore wasting memory bandwidth) and the VIAs 
involved in the copy would be prevented from doing any other 
copies (which could interfere with other applications). It is 
much better to copy the buffer only when it changes.
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Copying to/from the VMChannel 
This option only applies to imBufCopyVM().

With the Genesis Native Library, you can copy data to/from a 
specified VM stream. This is useful when you have multiple 
nodes and want to broadcast the same image to these nodes. 
You specify the VM stream using the IM_CTL_STREAM_ID field.

If you are receiving data from an interlaced VM stream, you 
can specify that the data be written using progressive scanning 
(set the IM_CTL_ADDR_MODE field to IM_PROGRESSIVE). This 
can be useful if you are receiving just one field from the stream 
and want the lines written sequentially into the destination 
buffer.

❖ You can write from two VM streams to two buffers 
simultaneously, by using imDigGrab() to perform the other 
transfer. 

External VM devices The IM_CTL_STREAM_ID field can also be used if you have an 
external (non-Matrox) VM device attached to the VMChannel 
and want to transfer data to or receive data from this device. 
You must know the VM stream ID being used by the device and 
pass this ID to the IM_CTL_STREAM_ID field. Any other 
formatting options that are specified (such as subsampling and 
zooming) will still be performed.
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Transferring buffer data to the Host
Between a buffer
and an array

You can transfer data from an array in Host memory to a buffer 
using the imBufPut(), imBufPut1d(), or imBufPut2d() 
functions. imBufPut() writes data to the entire buffer, while 
imBufPut1d() and imBufPut2d() write data to a specified block 
of the buffer. If the buffer has more than one band, they are all 
written into, one after another. The array should be large 
enough to fill the buffer and be of the same data type as the 
buffer.

You can transfer data from a buffer to an array in Host memory 
using the imBufGet(), imBufGet1d(), or imBufGet2d() 
functions. imBufGet() reads data from the entire buffer, while 
imBufGet1d() and imBufGet2d() read data from a specified 
block of the buffer. If the buffer has more than one band, each 
band is read, one after another. The array should be large 
enough to hold the data and be of the same data type as the 
buffer.

❖ Note the differences between imBufPut/Get() and 
imBufCopy(). imBufCopy() is the fastest way to transfer data 
between Host and on-board memory because the VIA drives 
the transfer without involving the Host CPU. However, 
imBufCopy() can only work with Host buffers allocated with 
imBufAlloc...(). On the other hand, imBufPut/Get() can work 
with any type of Host memory, but are somewhat slower than 
imBufCopy() and tie up the Host CPU (since the Host CPU 
drives the transfer). 
Between a buffer
and a file

You can transfer data from a file to a buffer using the 
imBufLoad() or imBufRestore() function. imBufLoad() writes 
data into an existing buffer (the buffer should be large enough 
to hold the data, and have the same number of bits per pixel as 
the file); imBufRestore() writes data into an automatically 
allocated buffer.

You can transfer data from a buffer to a file using the 
imBufSave() function. 
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Mapping a buffer
With the Genesis Native Library, you can map a buffer into Host 
memory, using imBufMap(). This gives you a pointer to the 
buffer data so that you can access it directly from the Host (see 
the example below).

In addition to the pointer to the buffer, imBufMap() returns:

■ The buffer pitch. The pitch is needed to access a specific line 
of a two-dimensional buffer. For example, the address of a 
pixel 3 lines down from "addr" would be: (addr + 3*pitch). 
Note that a buffer’s pitch is not necessarily the same as its 
width in bytes (especially when the buffer is a child buffer).

■ The number of consecutive lines mapped. This is equal to:
(# of lines in the buffer) - (# of the first line mapped).

An example The following code draws the results of a histogram into a 
buffer, from the Host. It performs a histogram on an image, 
maps the buffer in which to draw into Host memory, and then 
draws into this buffer from the Host. 

Note that this code is part of the process.c program and requires 
only the basic Genesis hardware. See Appendix B for the 
complete process.c program.
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Creating a buffer from memory already 
allocated
You can use imBufCreate() to create a buffer out of memory that 
has already been allocated. This memory can be:

■ From one or more existing Genesis buffers. Creating a buffer 
out of Genesis memory can be used to support multiple live 
grabs on the display (see below for details).

■ Contiguous physical memory. Creating a buffer out of 
contiguous memory is primarily useful when you need to copy 
a buffer to memory on another board.

■ Virtual memory (for example, memory allocated with 
malloc()). Creating a buffer out of virtual memory allows you 
to use the buffer for DMA transfers. You must lock the buffer 
in physical memory (using imBufControl()) before 
attempting to copy it. The new buffer can only be used by 
imBufCopy() or imBufCopyPCI(), not by any other function.

Note that imBufCreate() never allocates memory. In addition, 
when a created buffer is freed using imBufFree(), no memory is 
freed.

Multiple live grabs on 
the display

When grabbing from synchronized monochrome cameras (or 
from a color camera), you can view the input from each 
monochrome camera (or view each color band) in a separate 
display buffer. To do so, allocate a child buffer on the display, 
using imBufChild(), for each monochrome camera or color 

band. Then, use imBufCreate() to create a multi-band buffer 
from these child buffers. When you grab using the ID of the 
created buffer, the data from each monochrome camera or color 
band will be displayed in a separate buffer.



Chapter 10: Grabbing 
images 

This chapter discusses how to grab images, and other 
related topics.
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Grabbing

To grab an image with the Genesis Native Library, you must 
first allocate a camera definition that matches your camera 
type, using imCamAlloc(). If you have more than one digitizer 
in your system, you must also allocate the digitizer with which 
to grab, using imDigAlloc(). You then pass the camera 
definition identifier and if required, the digitizer identifier, to 
the grab command, imDigGrab(). 

Note that the buffer in which to grab can be located anywhere 
in your system (in processing or display memory on any node).

Controlling the grab There are several ways you can control how an image is 
grabbed. You can:

■ Specify a number of options (such as zooming and 
subsampling) through the control buffer passed to 
imDigGrab(). These options are performed by the VIA, as it 
is the VIA that takes data from the grab port and writes it to 
memory. These options are therefore independent of the 
digitizer or the camera type.

■ Change the settings of a particular camera definition, using 
imCamControl().

■ Program the digitizer directly, using imDigControl().

imCamControl() vs. imCamControl() and imDigControl() basically produce the 

imDigControl() same results. However, with imCamControl(), the digitizer is 

programmed to a specific camera definition only when a grab 
is issued with the identifier of that camera definition; 
imDigControl() programs the digitizer directly. Therefore, you 
should avoid using imDigControl() if you want to share the 
digitizer between several applications. 
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The grab module
The grab module of the Genesis offers flexible, high-resolution, 
high-speed acquisition. It features four analog video input 
channels, for standard or non-standard video, four 8-bit analog 
to digital converters, a look-up table (LUT) for each channel, 
and a 32-bit digital interface (TTL/RS-422).
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For more details on the grab module, including sampling rates, 
see the Genesis Installation and Hardware Reference.
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VIA options of the grab command

When you call imDigGrab(), you can specify a number of options 
through the control buffer passed to this function. All these 
options are independent of the digitizer section or the camera 
type; they are carried out by the VIA local to the destination 
buffer of the grab. Therefore, if you are grabbing to two or more 
buffers at the same time, you can specify different options for 
each grab.

Most of the options available to imDigGrab() are also available 
to imBufCopyVM() and/or imBufCopyPCI(). These common 
options are:

■ Tag buffers.

■ Zooming and subsampling.

■ Byte extraction.

■ Reversing the direction of the grab.

■ Write masks.

■ Reducing overhead.

■ Grabbing a rectangular region.

■ Using VM streams.

The above options were discussed in Chapter 9. This section 
discusses some of these options in relation to imDigGrab(), and 

some of the options that are unique to imDigGrab().

For a complete list of the options available to imDigGrab(), see 
the Genesis Native Library Command Reference.
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Number of iterations 
With the Genesis Native Library, you can grab a specific 
number of frames, fields, or lines; use the 
IM_CTL_COUNT_MODE field to specify which one. 
Alternatively, you can continuously grab frames until you call 
imThrHalt(). 

Note that, to grab fields, your camera must use interlaced 
scanning. In that case, you can start grabbing on the next odd 
field, the next even field, or the very next field (use the 
IM_CTL_START_FIELD field). In addition, you can specify that 
the data be written using progressive scanning (set the 
IM_CTL_ADDR_MODE field to IM_PROGRESSIVE). Progressive 
scanning can be useful when you want to grab just one field 
from the camera and you want the lines written sequentially 
into the destination buffer. 

Note that grabbing just one field from an interlaced camera 
allows you to get a low-resolution image in half the time it would 
take to grab the whole frame. This can be an important 
optimization, as long as you do not need the full resolution.

Synchronizing multiple grabs 
If you want to grab the same frame to two or more buffers at 
the same time, you have to set the IM_CTL_CAPTURE_MODE 
field to IM_SYNCHRONIZED on each grab; see the Grabbing to 
two or more buffers section for details.
Grabbing a rectangular region 
As with the copy functions, you can grab a rectangular region 
of the image, rather than the entire image. This saves 
unnecessary memory accesses. Note that this is most commonly 
used when you have multiple nodes and want each node to grab 
a different part of the same input frame.

To define the rectangular region, use the IM_CTL_START_X, 
IM_CTL_START_Y, IM_CTL_STOP_X, and IM_CTL_STOP_Y 
fields. 
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Grabbing a VM stream 
You can use imDigGrab() to grab from a VM stream, instead of 
grabbing from a camera. When you do, all options specified 
through the control buffer (such as subsampling and zooming) 
will still be performed. However, the camera settings and the 
digitizer LUT will not have an effect, since the data is grabbed 
only through the VIA and does not pass through the grab 
module.

To specify the VM stream, use the IM_CTL_STREAM_ID field.

Reversing the direction of the grab
Reversing the direction of the grab can be particularly useful if 
your images are reversed and you are grabbing to the display. 
Without this option, you would need to grab the image to 
processing memory, process it to correct the problem, and then 
copy it to the display.

To reverse the direction of the grab, use the IM_CTL_DIR_X and 
IM_CTL_DIR_Y fields. 

Grab mode
You can execute imDigGrab() synchronously or 
asynchronously. In synchronous mode (the default), the thread 
to which imDigGrab() is sent behaves like any other thread, in 
that it waits for the grab to complete before continuing to 
execute. In asynchronous mode, the thread will not wait for the 
grab to complete before continuing to execute. Asynchronous 

mode is primarily useful when real-time processing (see 
Chapter 4 for details).

To specify the grab mode, use the IM_CTL_GRAB_MODE field.

Reducing overhead

As with the copy functions, you can skip programming of most 
VIA registers, in order to reduce overhead. When you grab, you 
can also skip programming of the grab module, to further 
reduce overhead. This is safe if you are using the same camera 
as the previous grab and have not changed any camera 
parameters with imCamControl().

To specify the necessary setup, use the IM_CTL_SETUP field.
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Line interrupts
With the Genesis Native Library, you can enable line interrupts 
during a grab. Line interrupts allow the ’C80 (or the Host in 
the case of the Genesis-LC) to keep track of when each line of 
a frame is written to memory. This can be useful when another 
function needs to wait on the grab command, but only needs to 
wait for a specific line, rather than the whole frame or field.

To enable line interrupts, use the IM_CTL_LINE field. You can 
request a single interrupt after a specified line has been 
grabbed, or you can request continuous interrupts. In the latter 
case, interrupts will normally be produced as fast as the ’C80 
(or the Host) can handle them (after every line, or after every 
few lines if the line rate is too high). However, when you request 
continuous interrupts, you can force a specific interval between 
the interrupts, using the IM_CTL_LINE_INT_STEP field.

Synchronizing with a 
line

When you enable line interrupts, you must pass an operation 
status block (OSB) to imDigGrab(). The OSB will be updated 
each time there is an interrupt. You can then wait for a specific 
line to be grabbed by calling imSyncThread() or imSyncHost(), 
as follows

where n specifies the line for which you are waiting. You can 
also inquire about the current grab line, as follows

KO5[PE6JTGCF
6JTGCF��15$��+/A.+0'A+06�
�P������UKOKNCTN[�HQT�KO5[PE*QUV
����
Note that, when you wait for a specific line to be grabbed, the 
thread (or Host) will be blocked until the grab line count is equal 
to or greater than the specified line. Since the interrupt will not 
occur until the end of that line, the data will already be in 
memory when the thread (or Host) becomes un-blocked.

Interlaced cameras If your camera uses interlaced scanning and you request a 
single line interrupt, it normally occurs during the second field 
of the frame (or the first field if only a single field is grabbed). 
To receive the interrupt during the first field or during both 
fields, use the IM_CTL_LINE_INT_FIELD control field.   
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Grabbing to two or more buffers

With the Genesis Native Library, you can grab to two or more 
buffers at the same time. The buffers must be in different 
memory banks, that is, in different nodes or in processing and 
display memory on the same node. 

Grabbing to two or more buffers at the same time can be useful 
when you want to grab to more than one node in your system, 
or when you want to simultaneously grab to processing and 
display memory. Each grab command must be sent to a different 
thread and must use compatible camera definitions (camera 
definitions that do not force the digitizer to be re-programmed 
between grab commands). Note that, if the grab commands 
were sent to the same thread, they would run sequentially and 
grab different frames. If the digitizer has to be re-programmed, 
the same frame cannot be grabbed.

Synchronized capture To ensure that exactly the same frame is grabbed to two or more 
buffers at the same time, you must request a synchronized 
capture, by setting the IM_CTL_CAPTURE_MODE field of 
imDigGrab() to IM_SYNCHRONIZED. You then explicitly enable 
the capture, using imDigCapture(), when you know that all 
grabs are ready. For example, the following grabs to two nodes 
at the same time. A different thread is used for each grab 
command, and a third thread is used to execute the 
synchronization commands (since the first two threads are 
blocked until their grabs have executed).
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Note that the call to imSyncHost() ensures that the grab 
command sent to Thread2 does not execute until its control 
buffer is set up. You could also ensure this by using two copies 
of the control buffer and setting each one in the same thread as 
it will later be used. 

Synchronized capture 
through triggers

Another way to perform a synchronized capture is to change 
the camera definition so that it expects a software trigger, set 
up all the grabs, then either provide the software trigger or 
reselect the hardware trigger (if the camera normally uses a 
hardware trigger). However, this method requires different 
code for different types of cameras (triggered and 
non-triggered). The method shown in the above code will work 
regardless of the camera type. 

Triggers are discussed in the Camera settings section.

Compatible camera 
definitions

Note that camera definitions do not necessarily have to be the 
same to be compatible. For example, they can have different 
input channels if the cameras are physically synchronized, but 
not if the cameras are unsynchronized. In addition, they can 
have different gain and reference levels (but not different 
timing parameters). See the Camera settings section for details 
on input channels, gain and reference levels, and timing 
parameters.

Different options Although you must use compatible camera definitions for each 
grab, you can use different control buffers, since the options 
specified through the control buffer are performed by the VIA 

local to the destination buffer of the grab. Therefore, you could, 
for example, zoom data sent to display memory but not to 
processing memory.
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Camera settings

Once a camera definition is allocated, you can change its 
settings (such as its channel number and reference levels), 
using imCamControl(). Note that using imCamControl() does 
not change the original camera definition file in the 
\GENESIS\DCF directory. 

Changing camera 
settings

Using different settings allows different tasks to grab from the 
same camera, but using the settings appropriate to the task. If 
necessary, you can make a copy of the camera definition before 
changing it, using imCamClone(). This is useful when you want 
several identifiers for the same camera, each with different 
settings.

Note that the digitizer is only programmed to a specific camera 
definition when a grab is issued with the identifier of that 
camera definition. Therefore, using imCamControl() will not 
affect the digitizer hardware; it will simply change a camera 
definition already in memory.

❖ Even if you are performing a continuous grab, using 
imCamControl() will not affect the digitizer hardware.

Settings The following sections discuss some of the settings you can 
change using imCamControl(). Note that you should only 
change a setting if you do not want to use the default value 
specified in the original camera definition file. 
Some of these settings, and their associated descriptions, also 
apply to imDigControl(). For a complete list of settings 
available to imCamControl() and imDigControl(), see the 
Genesis Native Library Command Reference.
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Input channel
The input channel is the camera channel from which to grab. 
Monochrome cameras require one channel, while color cameras 
require three. You specify the input channel(s) by setting the 
IM_DIG_CHANNEL field to the appropriate channel(s): 
IM_CHANNEL_0, IM_CHANNEL_1, IM_CHANNEL_2, or 
IM_CHANNEL_3. For example, to grab from a single channel, 
specify the channel number:

To grab from three channels, specify the three channels:

You could also set IM_DIG_CHANNEL to IM_CHANNEL(n). In 
other words, IM_CTL_CHANNEL(3) is equivalent to 
IM_CTL_CHANNEL_3. Using IM_CHANNEL(n) can be useful if, 
for example, you are looping through several channels and want 
the loop counter to specify the appropriate #define.

Note that, if you have only one camera connected to the default 
channel(s) specified in your original camera definition file, you 
don’t need to set IM_DIG_CHANNEL before grabbing. 

The following are some cases when you will need to set 
IM_DIG_CHANNEL before grabbing:

■ When you are grabbing from a monochrome camera that is 
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not connected to the default channel.

■ When you are grabbing from a color camera that is not 
connected to the default channels.

■ When you want to grab from multiple channels to different 
memory banks. For example, you might want to grab each 
band of a color camera to different memory banks, or grab 
from several synchronized monochrome cameras to different 
memory banks. You might also want to grab from several 
synchronized monochrome cameras to a multi-band buffer. 
Grabbing from multiple channels is discussed in the 
following sections.
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❖ "Different memory banks" refers to buffers in different nodes 
or to processing and display memory in the same node.

Settings for each
channel

If necessary, you can specify different settings (such as gain and 
reference levels) for each channel. To do so, combine the #define 
of the required setting with one or more of the channel #defines:

Note that, when you change a setting without specifying a 
channel, the setting is changed on all channels currently 
selected for the camera. This helps to keep the application code 
independent of the camera type (color or monochrome). It also 
means you don’t have to change settings on channels that you 
are not using (but which might be being used by another 
application running on the Genesis system at the same time).

Channel selection on 
imDigGrab()

Once you have selected the required channel(s) and specified 
their individual settings (if necessary), you are ready to grab. 
If you are grabbing from only some of the selected channels 
(perhaps because other nodes are grabbing from the other 
selected channels), you need to set the IM_CTL_CHANNEL field 
of imDigGrab() to specify which one(s); see the next section for 
examples. If you are grabbing from all the channels that you 
selected with imCamControl() (that is, the number of bands in 
your destination buffer matches the number of channels 
selected), you don’t need to set IM_CTL_CHANNEL.

Grabbing RGB into a When the destination buffer has fewer bands than the number 

KO%CO%QPVTQN
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packed buffer of available channels but a greater pixel depth than the grabbed 
data, several channels will be packed into each pixel. This 
allows you to, for example, grab RGB images into a single band 
24- or 32-bit buffer. Each pixel will contain a packed RGB value 
(the fourth byte will be unused in the case of a 32-bit destination 
buffer). 

Grabbing grayscale
into a color buffer

When the destination buffer has several bands but only one 
channel is selected, the data will be replicated in all bands. This 
allows you to use a monochrome camera in a color application 
without modifying the color application.
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Grabbing from multiple channels to a single memory 
bank

Each memory bank has just one VIA capable of writing grabbed 
data to it. Therefore, you cannot simultaneously grab the same 
frame to different buffers in the same memory bank. However, 
you can still grab from multiple synchronized cameras 
simultaneously, by using a single grab command and a 
multi-band destination buffer. For example, to grab from four 
monochrome cameras simultaneously:

Grabbing from multiple channels to different memory 
banks

When you want to grab from multiple channels to different 
memory banks, you must issue a separate grab command for 
each memory bank involved (since each grab command only 
programs a single VIA). In addition, you must follow certain 
rules if you want to ensure that the same frame is grabbed to 
all nodes; these were discussed in the Grabbing to two or more 
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buffers section. 

An example The following code grabs from three channels to different nodes. 
The three required channels are first selected using the 
IM_DIG_CHANNEL field of imCamControl() (this would be 
necessary if the channels are not the default channels of a color 
camera or if you are grabbing from several monochrome 
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cameras). The channel to grab to each node is then set using 
the IM_CTL_CHANNEL field of imDigGrab(). For clarity, the 
code does not include any synchronization to ensure that the 
same frame is grabbed.

Note that the above assumes that Thread1 and Buf1 were 
allocated on one node, Thread2 and Buf2 on a second node, and 
Thread3 and Buf3 on a third node.

An alternative
example

Instead of setting IM_CTL_CHANNEL for each grab, you could 
grab from multiple channels to different nodes by: allocating a 
camera definition for each node, selecting a different channel 
for each camera definition, and then grabbing to a one-band 
buffer on each node (using the different camera definitions). 
There is no need to set IM_CTL_CHANNEL because only a single 
channel is selected for each camera (see below). 
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As with the previous example, the above assumes that Thread1 
and Buf1 were allocated on one node, Thread2 and Buf2 on a 
second node, Thread3 and Buf3 on a third node, and does not 
include any synchronization to ensure that the same frame is 
grabbed.

Separate
applications  

Note that the previous two examples are single applications 
that use multiple channels. If you have multiple synchronized 
monochrome cameras and each camera is used by a separate 
application, each application can run on its own node (using its 
own channel), without regard to what is happening on the other 
nodes. In other words, each node can independently execute 
code such as the following in real-time (no frames will be 
missed):

Synchronization channel
The synchronization channel is the channel carrying the 
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horizontal and vertical synchronization signals from the 
camera. You specify the synchronization channel through the 
IM_DIG_SYNC_CHANNEL field. The synchronization channel 
can be a specific channel or the same channel used to grab the 
data.

Gain and reference levels

For analog cameras, you can change the black and white 
reference levels and the gain used by the analog-to-digital 
converters. You specify the black and white reference levels 
through the IM_DIG_REF_BLACK and IM_DIG_REF_WHITE 
fields, respectively. You specify the gain through the 
IM_DIG_GAIN field. To keep the application code 
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hardware-independent, you specify a value between 0 and 
100% for these fields. The percentage is mapped internally to 
one of the discrete values supported by the hardware.

Reference levels The black and white reference levels determine the zero and 
full-scale levels, respectively, of the input voltage range. The 
analog-to-digital converters convert voltages above the white 
reference level to the maximum pixel value, and voltages below 
the black reference level to a zero pixel value.

Adjusting 
contrast/brightness

By reducing or increasing either or both the black and white 
reference levels, you can affect the brightness of the resulting 
image. By reducing one reference level and increasing the other, 
you can affect the contrast of the resulting image.

Note that adjusting the brightness and contrast of an image is 
usually an iterative process. You should generally choose an 
appropriate gain first, then adjust the reference levels. If you 
then change the gain, you should readjust the reference levels.

Black reference level White reference level

0

255

Gray level

Input voltage
Input LUTs
You can use the LUTs in the grab module to map the data being 
grabbed. Note, however, that it is generally better to map data 
in software, after it is grabbed, using imIntLutMap(). Using 
imIntLutMap() is more flexible and is not dependent on the 
digitizer capabilities. In addition, it allows an application to be 
shared more efficiently with other applications that might also 
be using the grab module (using the LUTs in the grab module 
causes the digitizer to be re-programmed, possibly preventing 
other applications from grabbing the same frame).  

For details on imIntLutMap(), see Chapter 3.
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Using the input LUTs If you do use the LUT in the grab module, specify the LUT buffer 
with which to perform the mapping using the IM_DIG_LUT_BUF 
field. You must not modify this buffer until the grab which uses 
that buffer has started (since the values might not be copied 
into the hardware until just before the grab starts). If you do 
modify the buffer, you must again set IM_DIG_LUT_BUF. 

LUT requirements The LUT buffer should be one-dimensional and allocated in 
processing memory. The size of the LUT should match the pixel 
size of the data being grabbed (for example, if the data being 
grabbed is 8-bit, the LUT should have 256 entries). In addition, 
the pixel size of the LUT should match the pixel size of the 
destination buffer of the grab (that is, if the destination buffer 
is 8-bit, each LUT entry should also be 8-bit).

Number of bands A LUT buffer can have one band or multiple bands. If the LUT 
buffer has one band, the band will be used for all channels being 
grabbed. If the LUT buffer has the same number of bands as 
there are channels being grabbed, each band is used for the 
corresponding channel (band 0 of the LUT buffer is used for the 
first channel, band 1 for the second channel, etc.)  

Note that you can achieve a pseudo-color effect when grabbing 
grayscale images by using a 3-band LUT buffer and a 3-band 
destination buffer.  

LUT restrictions There are some restrictions in the way the LUTs in the grab 

module can be used. These are:

■ When grabbing from an analog camera, the LUTs must be 8 
bits in and 8 bits out (that is, 256 entries of 8 bits each). In 
addition, to achieve a pseudo-color effect with an analog 
camera, the camera must have a sampling rate of 35 MHz or 
lower and use the first channel.

■ When grabbing one or two channels from a digital camera, 
the LUTs can be up to 13 bits in and 8 or 16 bits out (that is, 
up to 8K entries of 8 or 16 bits each). When grabbing from 
more than two channels of a digital camera, the LUTs must 
be 8 bits in and 8 bits out. To achieve a pseudo-color effect 
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with a digital camera, the LUT can be up to 13 bits in but 
must be 8 bits out (for each band). In addition, you must grab 
from the first channel.   

Frame size

You can change the width and height of the grabbed frame using 
the IM_DIG_SIZE_X and IM_DIG_SIZE_Y fields, respectively. 
Adjusting the frame width can be useful if your input source is 
capable of dynamically changing the number of pixels it sends 
per line. For certain types of input sources, adjusting the frame 
width can also be used to compensate for non-square pixels 
(non-square pixels can lead to incorrect interpretations when 
analyzing images). Adjusting the frame height can be useful if 
the number of lines per frame needs to be changed dynamically 
(in machine inspection, for example, the required number of 
lines per frame often depends on the object being inspected). 

Note that, if you simply want to grab a subset of a frame, you 
should use the control buffer of imDigGrab() rather than set 
IM_DIG_SIZE_X and/or IM_DIG_SIZE_Y; see the VIA options of 
the grab command section for details.

Frame width When you change the frame width for analog cameras that have 
the pixel clock generated by the Genesis grab module, you 
change the number of positions at which the analog signal is 
sampled on every line. Since the line period (the time between 
horizontal syncs) is fixed, changing the number of positions at 
which the analog signal is sampled is done by changing the 
sampling frequency (the pixel clock). This changes the physical 

distance spanned by each pixel. In this case, the blanking 
period is automatically adjusted so that only the active portion 
of each line is still digitized. In other words, the frame width in 
pixels is changed, but the physical width is not.

Note that, if your input source provides its own pixel clock, and 
dynamically changes the number of pixels it sends per line, you 
must specify the new frame width before grabbing a frame with 
the new size.
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Frame height When you adjust the frame height, you do not change how each 
line is sampled, only the number of lines grabbed per frame. 
Adjusting the frame height is most useful for line scan cameras 
that can be programmed to grab an arbitrary number of lines 
in order to build up an image.   

User bits
The connector on the grab module has several input and output 
lines not designated for specific purposes; you can use them for 
anything you want. To do so, use the IM_DIG_USER_IN or 
IM_DIG_USER_OUT field, respectively. To select a specific user 
bit, combine the #defines of these fields with IM_BITx (for 
example, IM_DIG_USER_OUT+IM_BIT1). User bits can be set or 
tested through software.

For user outputs, you can use imCamControl() or 
imDigControl() to set a specific output low (0) or high (1). If you 
use imCamControl(), the outputs will be set just before the 
grab, when the rest of the digitizer is programmed. Therefore, 
the outputs will not interfere with any other grabs that might 
be in progress. If you use imDigControl(), the digitizer will be 
programmed immediately, interfering with other grabs that 
might be in progress.

For user inputs, use imDigInquire() to read the current 
hardware value (0 or 1) of the input line.

Note that the grab module supports both TTL and RS422 
formats for user inputs and outputs; different pins on the grab 

connector are used in each case. You must specify which format 
(and hence which connector pins) you want to use. To specify 
whether to enable the TTL or RS422 user inputs, set the 
IM_DIG_USER_IN_FORMAT field. To specify whether to enable 
the TTL or RS422 user outputs, set the 
IM_DIG_USER_OUT_FORMAT field.
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Triggers
The grab module has a trigger input that allows you to grab a 
frame upon occurrence of an event. In other words, when you 
use a trigger input, nothing will happen when you call 
imDigGrab(), until the event specified in the camera definition 
file occurs. Triggering can be useful, for example, in an 
automatic inspection application, where you want to grab a 
frame only when the part to be inspected is under the camera. 

Trigger sources The event that actually causes a frame to be grabbed is called 
the trigger source and is specified through the 
IM_DIG_TRIG_SOURCE field of imCamControl(). The trigger 
source can be:

■ Software generated. Set IM_DIG_TRIG_SOURCE to 
IM_SOFTWARE.

■ Hardware generated. Set IM_DIG_TRIG_SOURCE to 
IM_HARDWARE.

■ Based on the programmable exposure timers of the grab 
module. Set IM_DIG_TRIG_SOURCE to IM_EXPOSURE.

Note that, if you want to use the trigger source specified in the 
original camera definition file, you don’t have to set the 
IM_DIG_TRIG_SOURCE field. 

Software triggers

When you use a software trigger, a frame is grabbed once you 

call imDigCapture() (after calling imDigGrab()): 
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A software trigger can also be enabled by calling 
imDigControl(), setting its IM_DIG_TRIGGER field to 
IM_ENABLE. However, imDigCapture() is more general; it 
works even if the grab is triggered indirectly by software (for 
example, if software is used to start the timer).

Hardware triggers

When you use a hardware trigger, a frame is grabbed once the 
signal on the specified hardware trigger generates:

■ A positive or negative pulse. 

■ A level-sensitive (low or high) signal.

To select a specific hardware trigger, combine the required 
trigger with IM_HARDWARE (for example, 
IM_HARDWARE+IM_TRIGGER2). If you do not select a specific 
hardware trigger, the one on the same connector as the camera 
is used (trigger 1 is the trigger input on the analog connector 
and trigger 2 is the trigger input on the digital connector).

To specify whether to wait for a positive or negative pulse, or a 
level-sensitive signal, set the IM_DIG_TRIG_MODE field of 
imCamControl().

To disable a level-sensitive signal, call imDigControl(), setting 
its IM_DIG_TRIGGER field to IM_DISABLE. 

If you are not using the hardware trigger specified in the 
original camera definition file, you must specify whether you 

are using the TTL or RS422 trigger input on the grab connector. 
To enable either the TTL or RS422 trigger, use the 
IM_DIG_USER_IN_FORMAT field.
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An example The following code grabs a frame once a positive pulse is 
generated on trigger 1. 

Note that the above could be used in an automatic inspection 
application to ensure that a frame is grabbed only when the 
part to be inspected is under the camera, assuming that:

■ The signal generated by a part-present sensor is connected 
to trigger 1.

■ The part-present sensor generates a positive pulse when a 
part is detected.

Programmable timers
When you use one of the timers of the grab module as a trigger, 
a frame is grabbed a specified amount of time after the timer 
is started. To select a specific timer (IM_TIMER1, IM_TIMER2, 
etc.) as a trigger, combine it with IM_EXPOSURE. For example:

Once a timer is started, it produces an output signal after a 
specified delay. This is known as the exposure signal. The 
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exposure signal remains active for a specified amount of time 
(known as the exposure time).

timer
started

delay

exposure time
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The exposure signal can be fed to the camera to control the 
exposure time (or used for some other purpose, such as firing a 
strobe light).

Specify the exposure time through the IM_DIG_EXP_TIME field. 
Specify the delay through the IM_DIG_EXP_DELAY field.

Starting the timer A timer can be started by a hardware trigger that generates a 
positive or negative pulse, by software, or by the horizontal or 
vertical syncs of the camera signals. It can also be started by 
the exposure signal of another timer. Specify the source of the 
timer with the IM_DIG_EXP_SOURCE field. Note that a timer 
cannot be started by a level-sensitive hardware trigger. 

If the exposure output was not specified in the original camera 
definition file, you must specify whether you want to use the 
TTL or RS422 output pin on the grab connector. To enable either 
the TTL or RS422 exposure output, use the 
IM_DIG_USER_OUT_FORMAT field.

From hardware When you use a hardware trigger, the timer starts once the 
signal on the specified hardware trigger input generates a 
positive or negative pulse. By default, the trigger on the same 
connector as the camera is used (trigger 1 is the trigger input 
on the analog connector and trigger 2 is the trigger input on the 
digital connector). If you want to select a specific trigger, 
combine it with IM_HARDWARE. For example, 
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To specify whether to wait for a positive or negative pulse, use 
the IM_DIG_TRIG_MODE field.

From software When you use software, the timer starts once you call 
imDigControl() with its IM_DIG_EXPOSURE field set to 
IM_ENABLE.

From horizontal or 
vertical syncs

Horizontal or vertical syncs are typically used when the camera 
does not require a trigger, but you still need to output exposure 
signals for every line or frame.
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An example An application that might need exposure signals is one that 
uses an asynchronous-reset camera to capture an image of a 
part along an inspection line. An asynchronous-reset camera is 
a type of camera that can be reset at any time to force it to start 
a new frame. It is often used when the time interval between 
the receipt of a trigger and the capture of an image is critical. 
A strobe light is often used in such an application to freeze parts 
at precise moments in time. Assuming that the signal 
generated by a part-present sensor is connected to a trigger 
input of the grab module, the sequence of events could be:

1. Once the required pulse (positive or negative) is generated 
on the trigger, send a signal to reset the camera. The first 
exposure signal of the grab module can be used for this 
purpose. Usually, the signal must remain active for some 
minimum amount of time in order to reset the camera 
properly. Note that the hardware trigger must be specified 
as the source that starts the timer.

2. Send a second signal to fire the strobe light. This must also 
be timed very precisely, and is usually output just after the 
camera reset signal. The second exposure signal of the grab 
module can be used for this purpose, and the first exposure 
signal is specified as the source (so that the delay before 
firing the strobe is measured relative to the camera reset 
signal).       

3. Capture the first frame after the camera is reset. Since the 
first exposure signal resets the camera, it is used as the 

trigger source.
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The code is shown below. Note that all the time-critical events 
are controlled by the hardware of the grab module; software 
only has to make sure that the grab command is queued before 
the trigger is received.
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Running multiple applications 

If you are running several applications simultaneously on a 
Genesis system and if more than one of these applications grab 
images, there are some specific guidelines you should follow to 
ensure that the digitizer is shared properly. (Note that general 
guidelines were given in Chapter 2). These specific guidelines, 
which also ensure that applications will run unchanged on 
different Genesis configurations or with different camera types, 
are:

■ If your application is not dependent on a particular camera 
type, set the CamFile parameter of imCamAlloc() to NULL so 
that the camera definition file that you specified during 
installation is allocated.

■ Use imCamInquire() to obtain the size of the buffer needed 
for a grabbed image. You can also use imCamInquire() to 
obtain the number of bands needed for the grabbed image, if 
your application does not require a specific number of bands. 
Note, however, that you can always grab a color image into a 
single-band buffer and a monochrome image into a 
multi-band buffer. In addition, you do not need to know the 
number of bands when grabbing into display memory, since 
most functions which operate on display buffers will 
transparently work with one or three bands.

■ Avoid re-programming the digitizer. This means that, after 
you allocate a camera definition (using imCamAlloc()), avoid 

using imCamControl(). If you use imCamControl(), the 
camera definition might become incompatible with those 
used by other applications, forcing the digitizer to be 
re-programmed (if the digitizer has to be re-programmed, the 
same frame cannot be grabbed by several applications). Note 
that imDigControl() programs the digitizer immediately, so 
you should never call this function if you want to share the 
digitizer between several applications.

■ Avoid doing a continuous grab unless absolutely necessary. 
A continuous grab will prevent other applications from 
grabbing into the same memory bank.



Chapter 11: Displaying 
images

This chapter describes how to display images, and other 
related topics. 
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The display section
The display section, which is optional on the Genesis main 
board, consists of two separate frame buffers: a main (underlay) 
frame buffer and an overlay frame buffer. The overlay frame 
buffer is powered by the 64-bit Matrox MGA Millennium 
2064W graphics accelerator, and interfaces directly with the 
on-board secondary PCI bus. 

The display section has up to 8 MBytes of frame buffer memory: 
2 MBytes for the overlay frame buffer and either 2 or 6 MBytes 
for the main frame buffer (depending on whether you have the 
monochrome or color version of the display section).

The display section has a maximum resolution of 1600 x 1200, 
with an 85-Hz non-interlaced refresh rate. It supports the 
display of captured video in real time.

A 128-bit RAMDAC provides digital-to-analog conversion. The 
RAMDAC has three 8-bit LUTs that map the contents of the 
overlay frame buffer. When the overlay is not required, these 
LUTs can map the contents of the main frame buffer.
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Below is a block diagram of the display section. Note that you 
will find more detail on some of the components in the Genesis 
Installation and Hardware Reference.
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Display memory On Matrox Genesis, processing memory and display memory 
are physically distinct. Although the destination buffer of a 
processing function can be located in display memory, it is more 
efficient if it is in the memory directly attached to the ’C80 (that 
is, the SDRAM) and then copied to the display when necessary. 
In this case, display memory is being used to hold a second copy 
of a buffer. Note that if the processing function uses the NOA, 
the destination buffer must be located in local processing 
memory. 

To display an image, you should not allocate memory in the 
main or overlay frame buffer. Instead, you should use 
imBufChild() to create a child buffer on the screen (at the 
location you wish to display the image) and then copy the 
processed buffer to this on-screen child buffer when you need 
to see it.
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Grayscale images vs. color images
There are two versions of the display section:

■ Monochrome version.

■ Color version.

When you set the Buf parameter of imBufChild() to IM_DISP, 
the resulting on-screen child buffer will automatically have one 
band if the display is in monochrome mode and three bands if 
it is in color mode. Note, however, that you rarely need to know 
how many bands there are, since most functions which operate 
on display buffers will transparently work with one or three 
bands.

Using the monochrome version
When displaying an image on the monochrome version of the 
board, the same data is sent to all three color display guns 
(RGB). As a result, the image is displayed in grayscale.
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Note that, if a color application is run on the monochrome 
version of the board, only one band of the color image can be 
displayed (the first band). To display this band, allocate an 
on-screen child buffer (use imBufChild(), setting its Buf 
parameter to IM_DISP) and then copy the color image to this 
buffer. The color image will be displayed in grayscale. If you 
prefer that the color application not be able to run on the 
monochrome version of the board, try to allocate a 3-band child 
display buffer (set the Buf parameter of imBufChild() to 
IM_DISP_COLOR). This will fail on the monochrome version of 
the board (the buffer identifier will be returned as 0 and an 
error will be logged).     
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Using the color version
When displaying an image on the color version of the board, 
each band of the image is sent to a different color display gun 
(RGB). As a result, images are displayed in true color.

To display a grayscale image on the color version of the board, 
you need to copy the image to all three display buffers. This is 
done automatically if you copy or grab a one-band image into 
an on-screen child buffer that was allocated by setting the Buf 
parameter of imBufChild() to IM_DISP. Therefore, there is no 
need to modify a monochrome application if it is to run on the 
color version of the board. In addition, you can display grayscale 
images at the same time as color images. 

In specialized applications, the color version of the board can 
also be used to drive three independent monochrome outputs.

Changing the display On the color version of the board, you can change the display 
mode to monochrome (using imDispControl()). This can be 
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useful if a monochrome application needs the extra display 
memory (for example, for extra storage or to double buffer the 
display). Note, however, that you do not need to change the 
display mode to monochrome to display grayscale images. In 
addition, if you select monochrome mode, you will interfere 
with color applications that might also be using the display. 
Therefore, you should only change the display mode to 
monochrome if an application has exclusive use of the display 
and needs the extra display memory.

In monochrome mode, the color version of the board behaves 
just like the monochrome version, except that you can allocate 
on-screen child buffers in a specific buffer (red, green, or blue).
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Using the overlay
The display section consists of two frame buffer surfaces: the 
main (underlay) frame buffer and the overlay frame buffer. This 
allows you to work in either a single-screen or a dual-screen 
mode, which is determined at installation time.

Single-screen mode When you are working in single-screen mode, the overlay frame 
buffer is used by the Matrox MGA 2064W graphics accelerator 
to display the Host operating system’s user interface. 

In this mode, you can use the overlay frame buffer to write 
and/or draw non-destructively over the main frame buffer. If 
you are working with Windows, use the Windows GDI functions 
to do so. You should not normally use Genesis functions to 
access the overlay in single-screen mode since they might 
interfere with Windows.

Dual-screen mode When you are working in dual-screen mode, one screen displays 
the Host operating system’s user interface, while the other 
displays the Genesis frame buffers. 

In this mode, you can also use the overlay frame buffer to write 
and/or draw non-destructively over the main frame buffer. 
However, this time, you will normally use Genesis functions to 
access the overlay. As with the main display, the best way to 
use the overlay with the Genesis functions is to allocate a 
two-dimensional region of interest (using imBufChild()) and 
then copy the data you want to overlay from a processing buffer 

to the overlay display buffer. However, if you are drawing only 
a small amount of annotation into the overlay (with the graphic 
functions, for example), it might be more efficient to draw it 
directly into the overlay (that is, give the overlay child buffer 
as the destination buffer).
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Resolution On Genesis, the Matrox MGA 2064W graphics accelerator only 
supports 8 bits per pixel for the overlay. In single-screen mode 
under Windows, use the MGA Display Properties utility to 
configure the overlay frame buffer to the desired 8-bit 
resolution. Otherwise, use the GENVCFLD utility. The main 
frame buffer resolution is automatically set to be the same as 
the overlay resolution. See the Genesis Installation and 
Hardware Reference for details on changing resolution and the 
GENVCFLD utility.

Note that you should not change the resolution while 
applications are using the display, since all display buffers will 
become invalid.
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Keying
Keying is an effect that switches between two display sources 
according to pixel values in one of the sources (that is, according 
to a keying color). On Genesis, keying is usually used to make 
portions of the overlay frame buffer transparent so that 
corresponding areas of the main frame buffer can show through 
it. Keying is controlled with the imDispControl() function (use 
the IM_DISP_KEY_MODE field to specify the keying mode and 
the IM_DISP_KEY_LOW and IM_DISP_KEY_HIGH fields to 
specify the range of the keying color).

In single-screen mode
By default, only the overlay frame buffer is visible in 
single-screen mode. To use keying in a way that will not 
interfere with other applications that might also be using the 
display, you should first inquire about the current keying mode. 
If keying is disabled, you should enable it and use a single 
keying color. If keying is already enabled, you should inquire 
about the current keying color and use that color as your keying 
color. For example,
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You should then fill, with the keying color, those areas of the 
overlay that you want transparent (use Windows functions to 
do so). You should not disable keying when the application 
terminates, since this will interfere with other applications 
using the display.
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In dual-screen mode
By default, only the main frame buffer is visible in dual-screen 
mode. If your application is intended to run in dual-screen mode 
and does not use the overlay buffer, you should not enable 
keying. This will also make the program useable in 
single-screen mode, since you can simply run a separate 
program (such as the GENKEY utility) to enable keying. See 
the Genesis Installation and Hardware Reference for details on 
the GENKEY utility.

A dual-screen application that does use the overlay will never 
work well with other applications, especially single-screen 
applications under Windows. Such a dual-screen application 
can therefore explicitly enable keying, using any keying mode 
it requires.
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Panning, scrolling, and zooming
You can move the source of your on-screen display by panning, 
scrolling, or zooming. Use the imDispControl() function. Note 
that panning, scrolling, and zooming are only display effects 
and do not modify the data in the frame buffers.

You can pan and scroll images in the main frame buffer (this 
can be useful when the images are larger than the display 
resolution). You can zoom images (by a factor of 2 or 4), although 
zooming affects both the main and overlay frame buffers.

Modify the data 
instead

It is usually better (especially in single-screen mode when 
several applications might be sharing the display) not to use 
imDispControl() for display effects. Rather, you should modify 
the data before or during the copy to the display (limited 
zooming, for example, can be performed by the advanced copy 
functions). In this way, different effects can be applied to each 
displayed image. If you want to use zoom factors other than 
those supported by the copy functions, or if you prefer zoom 
with interpolation, you can use the appropriate geometric 
function (imIntZoom(), imIntScale(), or 
imIntWarpPolynomial()). Note that, if you are using integer 
factors without interpolation, imIntZoom() is the fastest of the 
three functions. If you are using integer factors with 
interpolation, imIntScale() is the fastest. If you are using 
non-integer factors, imIntScale() is the fastest but has more 
restrictions than imIntWarpPolynomial().
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Look-up tables
The main frame buffer does not have dedicated display LUTs. 
You can, however, map your data using imIntLutMap() and 
then copy the result to the display. Alternatively, you can use 
the LUTs in the RAMDAC, if they are not being used to map 
the overlay frame buffer (to do so, disable the overlay frame 
buffer using imDispControl()). However, using imIntLutMap() 
is more flexible, since each image to be displayed can be mapped 
in a different way. Note that mapping a color image requires 
three calls to imIntLutMap() (one for each band) while mapping 
a one-band image requires just one call.

Displaying in 
pseudo-color

You can display a grayscale image in pseudo-color through 
three separate mappings of the one-band image (send one 
mapping to the red display buffer, one to the green display 
buffer, and one to the blue display buffer). However, it is more 
efficient to map each value of the one-band image to an RGBa 
value in a single call to imIntLutMap() (use a 32-bit destination 
buffer and a LUT with 256 entries of 32 bits each). You can then 
copy the 32-bit buffer directly to the display; the color 
components will automatically be separated into the correct 
display buffers.
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Grab and display
There will be times when you want to display immediately the 
images you are grabbing, especially when grabbing 
continuously. To do so, use imDigGrab() with an on-screen child 
buffer as the destination. Use imBufChild() to allocate the 
on-screen child buffer (to ensure that the same code will work 
on either the monochrome or color version of the display, set the 
Buf parameter of imBufChild() to IM_DISP). 

When you call imDigGrab(), you can specify a number of options 
through the control buffer passed to this function. Many of 
these options are particularly useful when grabbing to the 
display (such as extracting the most-significant byte of images 
with a pixel depth of more than 8 bits). These options were 
described in Chapter 10.

Non-rectangular
windows

To grab into a non-rectangular window of the display, you have 
to use tag buffers. Tag buffers were described in Chapter 9.
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Using the hardware cursor
The Genesis display section has a hardware cursor that can be 
displayed and positioned on-screen through the use of Genesis 
Native Library functions. These functions allow you to, for 
example, interface a secondary pointing device with the 
Genesis hardware cursor. The cursor functions should be used 
only in a dual-screen display configuration because they will 
interfere with the Windows display driver in a single-screen 
display configuration.

The Native Library cursor functions are synchronous and 
executed by the Host, rather than being queued to the Genesis 
board; therefore, they have no thread parameter. They do, 
however, have a device parameter to indicate which Genesis 
board should be used to display the cursor when more than one 
board is present. 

General steps to using a cursor
To use the Genesis hardware cursor, you need to perform the 
following steps (steps 1, 2, and 7 are only needed when defining 
a new cursor; these steps can be omitted if you use the default 
cursor).

1. Allocate a Genesis Native Library cursor by calling 
imCurAlloc().

2. Define and set the cursor’s shape (and hot spot) and color 
attributes by calling imCurDefine() and imCurSetColor(), 

respectively. 

3. Load the cursor attributes into the physical hardware and 
select the software copy of the cursor to the display by 
calling imCurSelect().

4. Set the cursor’s initial display position by calling 
imCurSetPosition().

5. Enable the hardware cursor, that is, make the hardware 
cursor visible, by calling imCurEnable().

6. Track and move the cursor using the imCurGetPosition() 
and imCurSetPosition() functions.
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7. Free the cursor and any cursor-related resources when it is 
no longer needed by calling imCurFree().

Allocating the cursor As with other Native Library resources, a cursor must first be 
allocated. You can allocate any number of cursors with 
imCurAlloc() because cursor allocation just sets up a virtual 
(software) copy. When a cursor is allocated, its attributes are 
initially undefined. 

The cursor should be freed when no longer needed.

Defining the cursor’s 
shape and hot spot

The cursor’s shape and hot spot are specified by calling 
imCurDefine(). The maximum dimensions for a cursor are 
64x64 (width x height), and the hot spot is defined relative to 
the top-left corner (0,0). The hot spot is the coordinate of a 
specific pixel within the defined cursor to which all cursor 
positions refer. Valid positions for the hot spot are between (0,0) 
and (63,63), inclusive. 

Instead of defining your own cursor, you can also use the default 
cursor.

Default cursor There is a default arrow cursor with its hot spot defined at the 
tip of the arrow. To use it, you simply have to select it (load it 
into the hardware); you do not have to allocate or define it. To 
do so, call imCurSelect() and pass 0 as the cursor ID. Then, 
enable this cursor (make it visible). For example: 

�KO%WT5GNGEV
&GXKEG�����
�KO%WT'PCDNG
&GXKEG��+/A'0#$.'��
Defining the cursor’s 
colors

The cursor’s on-screen appearance is specified by calling 
imCurSetColor(). The cursor is essentially a pixel image. Each 
cursor pixel has a value. A cursor pixel with a value of 0 is 
always transparent. Cursor pixel values of 1, 2, and 3 represent 
the three user-definable colors. The three cursor colors are set 
by calling imCurSetColor() and specifying their red, green, and 
blue color components. For each color component, the valid 
pixels values range from 0 to 255.

Note that when a cursor smaller than 64x64 is defined, the 
remaining area will not be visible.
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Selecting a cursor to 
appear on-screen

The cursor attributes that you specify are loaded into the 
hardware and a cursor is selected to the display, overriding the 
existing cursor by calling imCurSelect(). It is important to note 
that although you can allocate and set the display properties of 
an unlimited number of cursors, only one cursor can be loaded 
into the hardware (selected) at a time.

Once a cursor is selected, the hardware cursor can be made 
visible or invisible by calling imCurEnable().The cursor 
appears on-screen as a non-destructive pixel image displayed 
on top of the underlay and overlay frame buffers, with a defined 
shape and color scheme. Since the hardware cursor is not 
always needed as a display effect, the hardware cursor can also 
be made invisible with imCurEnable(). Keep in mind that since 
the hardware cursor is initially undefined, a cursor should be 
selected to the display before being enabled.

Moving and tracking 
the cursor

After you select a cursor, the cursor position is initially 
undefined. You should call imCurSetPosition() to set the 
position at which to display the cursor. Keep in mind that when 
you set the cursor’s position, the coordinates are those of the 
hot spot, measured from the top-left corner of the screen.

Note that if you specify a position that is not valid for the 
current screen resolution, the cursor will not be visible.

You are responsible for tracking the cursor using the 
imCurGetPosition() and imCurSetPosition() functions. For 
example, when the cursor is accessed by simultaneous 

processes dispatched to multiple threads, you can use 
imCurGetPosition() to read back the current cursor position 
before executing an operation on a particular thread. Similarly, 
if you zoom and/or pan the display with imDispControl(), a 
subsequent call to a cursor function will take the zoom factor 
into account; however, the cursor’s current position on the 
screen will not be not changed automatically. You should reset 
the cursor position after the display is panned or zoomed by 
calling imCurSetPosition().

Note that the cursor itself is only zoomed in the X direction 
when the display is zoomed; due to a hardware restriction, it 
keeps its size in the Y direction. Despite these limitations, the 
cursor functions normally when zoomed.



Using the hardware cursor      225

An example
The following example demonstrates how to define, select, and 
make visible a cross-shaped cursor with dimensions of 32x32 
and its hot spot at coordinates (15,15). The color scheme is 
chosen so that the cursor appears in the form of a red and white 
cross.
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The full example is included in the Genesis Native Library 
\EXAMPLES\HOST\MISC\ directory that is on the CD.
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Display memory as extra storage space
You can use your off-screen display memory as extra linear 
storage space for images. This can be useful if you are using a 
tag buffer during a grab or VM transfer to the display (a tag 
buffer must be in the same memory bank as the destination 
buffer).

To allocate off-screen display memory, use imBufAlloc...(), 
setting its Location parameter to IM_DISP. There are no 
restrictions on the type or size of buffer that you can allocate in 
display memory, although there is a limited amount of 
off-screen memory available. 

Host memory
vs. display memory

If all you want is extra general-purpose storage space (for 
example, you are not using tag buffers which must be in display 
memory), you can use Host memory instead of display memory. 
Your Host memory is probably not as limited as your display 
memory, and you can always add more to suit your 
requirements.

Processing speed Note that, if you need to process a buffer allocated in display 
(or Host) memory, you must first copy it to processing memory, 
since the source buffers of a processing function must be in local 
processing memory, that is, in processing memory on the same 
node as the thread which will execute the processing function. 
For maximum efficiency, the destination buffer of a processing 
function should also be in local processing memory. Note that 

the destination buffer of a processing function that uses the 
NOA must be located in local processing memory.

Displaying the buffer It is still possible to display an image allocated in a linear 
format, provided it is 8 bits deep. Note, however, that this is not 
recommended, since only one such image can be displayed at a 
time. (Only one image can be displayed because the start 
address and pitch of the display must be set to be the same as 
those of the image, and won’t necessarily be compatible with 
other images currently in display memory.) Use 
imDispControl() to display your data and specify the ID of the 
buffer to display.
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Running multiple applications
This section is a summary of the guidelines you should follow 
if you want to properly share the display between multiple 
applications at the same time. Note that most of these 
guidelines were mentioned in previous sections of this chapter 
and that general guidelines regarding multiple applications 
were given in Chapter 2.

■ When you allocate an on-screen child buffer, always set the 
Buf parameter of imBufChild() to IM_DISP. This will allow 
the application to run on either the monochrome or color 
version of the display. 

■ Avoid changing the display mode to monochrome (this is 
possible if you have the color version of the display section). 
The only time you should change the display mode to 
monochrome is when an application has exclusive use of the 
display and needs the extra display memory.

■ Do not use Genesis functions to access the overlay in 
single-screen mode; this might interfere with Windows.

■ Enable keying only after you have inquired about the current 
keying mode and ensured that keying was disabled.

■ Do not disable keying when an application terminates; this 
will interfere with other applications using keying.

■ Do not enable keying in a dual-screen application that does 
not use the overlay. This will at least make the program 

useable in single-screen mode, since you can simply run a 
separate program (such as the GENKEY utility) to enable 
keying (see the Genesis Installation and Hardware Reference 
for details on the GENKEY utility).

■ Do not use imDispControl() to pan, scroll, or zoom your 
on-screen display. If you need these display effects, perform 
them before or during the copy to the display.

■ If you allocate off-screen display memory, use imBufAlloc...(), 
setting its Location parameter to IM_DISP.   



Chapter 12: Error handling

This chapter describes the various error mechanisms 
available with the Genesis Native Library.
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Error mechanisms
Genesis and error 
reporting

Often, it is important to check that functions have performed 
successfully (such as after allocating resources). However, most 
functions in the Native Library are asynchronous; they queue 
their command to the hardware and then immediately return 
control to the Host. Therefore, the return values of most 
functions cannot indicate whether they were performed 
successfully; but at most whether they were successfully sent 
to the board. Synchronous functions could return a meaningful 
error value but these would be tedious to check after every call. 
For these reasons, errors are only reported when requested, not 
through the return values of functions.  

Error mechanisms With the Genesis Native Library, you can:

■ Check application-wide errors, using either imAppGetError() 
or imAppCatchError(). imAppGetError() returns 
information about the first error detected in the application. 
imAppCatchError() calls a user-defined function once an 
error in the application is detected.  

■ Check a specific thread, using imThrGetError(). This 
function returns information about the first error detected in 
a specific thread.

■ Check a specific asynchronous function, using 
imSyncGetError(). This function checks the outcome of a 
specific function call.
When using imAppGetError() or imThrGetError(), the error 
returned is the first to occur since error information about the 
application or thread was last cleared. You clear error 
information by specifying an IM_ERR_RESET flag when calling 
these functions.

❖ Errors can only be detected for functions that have finished 
executing. Therefore, imAppGetError() might not detect 
errors caused by asynchronous functions, unless some 
synchronization is performed to ensure that these functions 
have finished executing. Since functions in a thread execute 
serially, imThrGetError() does not have this problem. 
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Which error mechanism to use
In general, you should check application-wide errors when you 
do not expect errors but still need to be sure that none have 
occurred. However, if your application uses only a single thread, 
imThrGetError() is generally a better alternative to 
imAppGetError() because it requires no explicit 
synchronization. Then, errors will usually be handled in the 
following manner:

Note that there are two types of errors that imAppGetError() 
can detect that imThrGetError() cannot. These are invalid 
thread IDs, and errors caused by functions not sent to a thread. 
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Checking a specific
function

You can use imSyncGetError() when you want to check the 
outcome of a specific asynchronous function call. If a function 
produces an error, it will always be recorded in that function’s 
OSB, and can then be retrieved by imSyncGetError(). 
(imAppGetError() and imThrGetError() will only report the 
error if it is the first to occur since error information was last 
cleared).
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More about application-wide errors
You can check application-wide errors using either 
imAppGetError() or imAppCatchError().

Using
imAppGetError()

When you use imAppGetError(), information is returned about 
the first error detected in the application since error 
information about the application was last cleared. You clear 
error information about an application by specifying an 
IM_ERR_RESET flag when calling imAppGetError():

When you call imAppGetError(), you can retrieve the code of 
the detected error, the name of the function that caused the 
detected error, and the message generated by the detected 
error. When you clear, all these items are simultaneously 
cleared. This ensures that, at any time, all error items pertain 
to the same detected error. Note that you should only clear error 
information when retrieving the last required error item.

Using
imAppCatchError()

When you use imAppCatchError(), a user-defined function is 
called if an error in the application is detected. You can have 
this function called on subsequent errors by clearing error 
information within the user-defined function (call 
imAppGetError() with the IM_ERR_RESET flag). In addition, 
you can have a specified parameter value passed to the 
function. 
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imAppCatchError() can be used to establish a standard 
response to errors. For example, the following shows you how 
to use imAppCatchError() so that error messages are printed 
whenever an error is detected:
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Places to check for errors
To some degree, the placement of the error checking functions 
imAppGetError() and imThrGetError() is 
application-dependent. However, there are a few places where 
they should normally be used:

■ After the initialization section of the application, where 
buffers and other resources are usually allocated. Since it is 
quite possible that some of the allocations failed, it is a good 
idea to check for errors and, if any allocations did fail, clean 
up and exit. Since the first error in a sequence of functions is 
recorded, you only need to make a single call to 
imAppGetError() or imThrGetError().

■ At the end of the application, just before freeing buffers and 
other resources. Note that errors would not usually be 
expected here if your application has been correctly written. 
However, during the development phase, it is common to 
have bugs (for example, bad buffer IDs caused by passing 
incorrect parameters). Checking for errors during 
application development can save you debugging time.

A simple application can usually make do with just the second 
method. Even if some buffer allocations failed early in the 
application, they will return invalid buffer IDs which will be 
trapped by subsequent processing functions. Therefore, the 
error will eventually be reported when you call 
imAppGetError() or imThrGetError() at the end of the 

application. 

A more complex application might require extra error checking. 
For example, an application with a long processing loop should 
check for errors before entering the loop, to avoid the possibility 
of looping with, say, a bad buffer ID. You might even want to 
check for errors within the loop, unless the loop is a very 
time-critical one. 



Chapter 13: Optimizing your 
application

This chapter describes how to improve the performance 
of your application.
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Overview
With the Genesis Native Library, there are various ways you 
can improve the performance of your application. Two simple 
but effective ways, which apply to any application, are:

■ Use the smallest possible data type. In general, functions 
run faster when you use a smaller data type. For example, 
many processing functions run up to twice as fast on 8-bit 
data than they do on 16-bit data. There can be a much greater 
difference in speed between binary and other data types, so 
when possible, you should use binary buffers for binary data 
(rather than, say, 8-bit buffers with only the values 
0 and 0xFF).

■ Choose the best function. With the Genesis Native 
Library, there are sometimes different ways of doing the 
same thing. Therefore, if a function or sequence of functions 
is too slow for your application, you should consider others; 
see the Genesis Native Library Command Reference.

Multiprocessing You can also improve performance by multiprocessing (that is, 
by executing operations in parallel). You can often execute 
several operations in parallel on a single node. In addition, 
almost any application can be made to run faster if you have 
more than one node in your system.

Programming the
’C80

In those few cases where the Native Library does not provide 
sufficient performance, you can program the ’C80 directly. To 

do so, you need to use the optional Genesis Developer’s Toolkit, 
in conjunction with Texas Instruments’ TMS320C8x software 
development tools. Note that the ’C80 is a complex chip, so 
programming it should not be undertaken lightly, even though 
it gives you complete access to all features of the board.  
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Estimating performance
To estimate the performance of your application, benchmarks 
of functions with common data types have been provided. These 
can be found in the optimize.doc file in the \GENESIS\DOC 
directory. This section describes how to estimate performance 
for cases not listed in the file. In general, the rules given here 
apply to all functions; any exceptions are described in the 
optimize.doc file.

Note that, while the rules given here allow you to quickly 
estimate the performance of a function, it is always more 
accurate to use imSysClock() to measure execution time. For 
details, see the Genesis Native Library Command Reference. 

General formula
In general, when adjusting a benchmark to your specific case, 
you need to subtract the function’s overhead from the 
benchmark, scale the result by an appropriate factor, then add 
the overhead, i.e.,

  Performance = (Benchmark case - Overhead) x Scale + Overhead.

A function’s overhead can be determined from its total 
execution time and its processing rate (as described in the 
Overheads section).

For all functions, benchmarks have to be scaled according to 
the new image size involved. For example, if a function with a
0.5 ms overhead takes a total of 2.5 ms for a 512x512 image, 

then for a 256x256 image, it will take: 

  (2.5 - 0.5) x (2562/5122) + 0.5 = 1.0 ms.
For a 1024x1024 image, it will take:

  (2.5 - 0.5) x (10242/5122) + 0.5 = 8.5 ms.  

In addition to the new image size, benchmarks for I/O bound 
functions have to be scaled according to the bytes/pixel involved 
(as described in the I/O bound functions section).



238      Chapter 13: Optimizing your application

Overheads 
All functions have a fixed overhead. This means that an image 
cannot be processed in less time than this overhead, no matter 
how small the image is. It also means that functions become 
less efficient when operating on small images, since the 
overhead becomes a greater part of the total execution time.

A function’s overhead can be determined from its total 
execution time and its processing rate, both of which are listed 
in the optimize.doc file. For example, if a function takes 3.2 ms 
to process a 512x512 image and has a processing rate of 
94 MPixels/sec, its overhead is

  

Overheads might be reduced in the future, so you should always 
consult the latest version of the optimize.doc file when 
determining a function’s overhead.

Note that simple asynchronous functions (such as 
imBufPutField()), and other functions that don’t operate on 
images, have the lowest overhead (currently about 0.2 ms). 
Synchronous functions (such as imBufGetField() and 
imBufChild()) have the highest overhead (currently about 
0.6 ms under Windows NT, slightly less under DOS). Processing 
functions usually have an overhead somewhere in-between 
(currently about 0.5 ms).

3.2 ms
512

2
pixels

94 MPixels/sec
------------------------------------– 0.4 ms≈
I/O bound functions

A function is I/O bound if its performance is limited by the speed 
at which it can access data in memory. Note that functions 
which use the parallel processors (PPs) always work by 
transferring the image from external memory into on-chip 
memory, a block at a time. Each block is processed in on-chip 
memory, then the results are transferred back to external 
memory. Processing and transferring can overlap, in which case 
the PPs are not kept waiting for data. However, if the data is 
processed faster than it can be transferred, the PPs are kept 
waiting at least part of the time, and the function is said to be 
I/O bound.  
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A function can be assumed to be I/O bound if the optimize.doc 
file indicates that it requires a bandwidth of about 
300 MBytes/sec.

To estimate the performance of I/O bound functions for cases 
not listed in the optimize.doc file, you need to scale according 
to the number of bytes/pixel involved, in addition to the image 
size involved. For example, assume a function with two source 
buffers and one destination buffer has the following 
benchmarks when its source and destination buffers are 
512x512 pixels large and 8 bits deep. 

The overhead, as calculated in the previous section, is 0.4 ms.

Given the above information, you can estimate the performance 
for buffers of different sizes and/or depths. For example, if the 
source and destination buffers are 512x512 but 16-bit, there are 
twice as many bytes involved, so performance should be 
(3.2 - 0.4)x2 + 0.4 = 6.0 ms. If the source and destination buffers 
are 8-bit but 256x256, there are 1/4 as many pixels involved 

(2562/5122 = 1/4), so performance should be 
(3.2 - 0.4)x1/4 + 0.4 = 1.1 ms. If the source and destination 
buffers are 256x256, the source buffers are 8-bit, and the 
destination buffer is 16-bit, there are 1/4 as many pixels 
involved and 4/3 as many bytes, so performance should be 

Time with overhead: 3.2 ms
Rate without overhead: 94 MPixels/sec
I/O without overhead: 280 MBytes/sec
(3.2 - 0.4)x1/4x4/3 + 0.4 = 1.3 ms.

Note that, in the benchmark case, the total I/O is 3 bytes/pixel 
(since there are two source buffers and one destination buffer). 
To determine the total I/O for other cases, simply scale 
according to the number of pixels and bytes involved. For 
example, when the source and destination buffers are 512x512 
but 16-bit, the total I/O is 3x2 = 6 bytes/pixel.
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Compute bound functions
A function is said to be compute bound if its performance is 
limited strictly by the speed at which it can process the data, 
and not by other factors such as how fast the data can be 
accessed in memory. Benchmarks for most compute bound 
functions are listed in the optimize.doc file. However, for 
neighborhood functions that support user-defined kernels, 
benchmarks are not given for all possible kernel sizes. To 
estimate performance when your case is not given, scale the 
appropriate benchmark according to the number of values in 
your kernel. For example, if the processing rate using a 5x5 
kernel (25 kernel values) is 7.65 MPixels/sec, then using a 7x7 
kernel (49 kernel values), it should be 
7.65x25/49 = 3.90 MPixels/sec. 

Note that, for some functions, the performance estimated using 
the above rule might not always agree with the actual 
performance. For example, the performance of imIntConvolve() 
also depends on the content of the kernel. Specifically, when 
kernel values are all the same (or where only the center value 
is different), performance is faster than when kernel values are 
completely arbitrary.   

NOA setup overhead

It takes quite a long time to set up the NOA for a processing 
pass, and this overhead can be very significant for small images 
(it can represent about a 40% overhead even on a 512x512 

image when using small kernels). To reduce the NOA set-up 
time, you can save some or all of the hardware register values 
in a cache buffer. This is useful when performing an operation 
with imBinMorphic(), imIntConvolve(), or imIntErodeDilate(). 
Doing so can reduce processing time for a subsequent call to 
any of these functions. The first call to one of these functions 
will take slightly longer because the registers must be fully 
calculated and saved, but subsequent calls will be faster. The 
increase in speed depends on the number of parameters that 
have changed since the setup information was saved. The 
increase is biggest when everything is the same (same buffers, 
kernel, control fields). The increase is slightly less if only the 
source and/or destination buffer addresses have changed (same 
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size and type of buffer, same kernel, same control fields). This 
is useful if performing a double buffering operation. There is 
also some set-up time saved when only the kernel is the same 
as before (although buffers and control fields might have 
changed).

You have the option to allocate the cache buffer yourself (this 
will save a little time on the first call), or have it allocated 
automatically. Note that if you choose to allocate it yourself, 
then you need to allocate a one-dimensional, 8-bit buffer of size 
IM_CACHE_BUF_SIZE. Either way, you are responsible for 
freeing the buffer when you no longer need it. 

Example The following example demonstrates how to reduce NOA setup 
overhead when using the imIntConvolve() command.
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Multiprocessing
There are several levels of parallelism on a Genesis system. For 
example, there are multiple processors within a node: a master 
processor (MP), four parallel processors (PPs), and an optional 
accelerator (the NOA). In addition, a system can consist of 
many processing nodes connected by the grab port, 
VMChannel, and PCI bus. 

There are two main reasons why you would want to exploit the 
parallelism of your system:

■ It might be the only way to achieve a certain task (for 
example, to process an image while maintaining real-time 
acquisition). 

■ It might be required to achieve a certain task fast enough. 
For example, you might need several processing nodes 
working together to achieve the performance you require.

Multiple threads

For your application to exploit the parallelism of your system, 
you need to allocate multiple threads on the Genesis board, so 
that operations can run in parallel. Recall that, in the Genesis 
Native Library, an operation is sent to a thread, and the 
operation executes on the node associated with this thread. 
Threads execute independently of one another, allowing 
operations to run in parallel, within and/or across nodes.

In general, you should use as many threads as you need to 

exploit the parallelism of your system, but no more. Using too 
many threads can make your application less efficient because, 
among other things, you will need extra synchronization 
functions. 
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Multiple threads within a node

When a function is sent to a node to execute, it will normally 
use as many resources in that node as it needs to run at 
maximum speed. However, you can use imThrControl() to 
specify that functions sent to a thread use no more than a 
specified number of PPs, or that they not use the NOA (if 
available). This can be useful when you want your application 
to execute several processing threads simultaneously and you 
have only one node. Note, however, that there is usually no 
point in executing two functions at the same time if they both 
use the same processors. For example, if you have allocated two 
threads on a node and have limited each to two PPs, then two 
functions will run at the same time, but each at only half speed, 
so there is no net gain in performance. This is true whether the 
functions are compute bound (each runs at half speed because 
it only has half of the processors) or I/O bound (each runs at 
half speed because it only gets access to memory half of the 
time).

If two functions use different processors (for example, the PPs 
and the MP, or the PPs and the NOA), there will still be no 
advantage to executing them in parallel if both are I/O bound, 
since both still access memory only half of the time. However, 
if one or both functions are compute bound, there can be some 
advantage to running them in parallel.

An application that can benefit from using two threads on the 
same node is one that processes an image while copying the 

previously-processed image to the display. If the processing and 
copy commands were sent to the same thread, they would run 
serially, so the total execution time would simply be the 
processing time plus the copy time. If the processing and copy 
commands were sent to different threads and properly  
synchronized, the copy command would still only begin when 
the processing completes, but it would not prevent processing 
of the next image from starting. Therefore, part or all of the 
copy time is "hidden", depending on how I/O intensive the 
processing functions are. For details on implementing such an 
application, see the examples in the \GENESIS\EXAMPLES 
directory.
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Host threads

When your application contains several distinct parts that you 
want to run in parallel, it is often easier to design it so that each 
part is controlled by a separate thread (or task) on the Host. 
For example, if you have two processing tasks that run in 
parallel, it is easier to have each controlled by a separate Host 
thread. 

Note that Host threads are only supported by multi-tasking 
operating systems.

Host threads and 
synchronization

When you use Host threads and need to synchronize, you can 
use either the Host synchronization services (such as 
Windows NT event objects) or the Genesis synchronization 
functions. Note, however, that the Host synchronization 
services cannot be used when you want to synchronize on-board 
events that are running asynchronously with respect to the 
Host (this is likely to be often). 

When using the Genesis synchronization functions, you can 
refer to the OSB states using the defines IM_NON_SIGNALLED 
and IM_SIGNALLED, instead of IM_WAITING and 
IM_COMPLETED (to comply with Windows NT conventions).
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Multiple nodes
Various Genesis hardware and software features allow you to 
make maximum use of the multiple nodes in your system. For 
example:

■ Grabbed images are broadcast to all nodes in a system. Each 
node can take the whole image or only part of it.

■ The VMChannel connects all nodes, so that results are easily 
sent to a specific node for display or further processing.

■ Each ’C80 can make random accesses to any other node over 
the PCI bus. This is normally used for message passing and 
sharing small amounts of data.

■ You can execute functions on any node in the system. 

In accordance with the above, there are different ways you can 
divide an application between nodes:

■ Let each node grab a different part of the same input frame, 
and work only on that (see the Grabbing part of the same 
frame section below). 

■ Let each node grab and process a complete frame. Each 
successive frame goes to a different node (see the Grabbing 
successive frames section below).   

■ Dedicate one node to grabbing, and let it do the first part of 
the processing before passing the partial results on to the 
next node in the pipeline.
Any combination of the above methods can also be used. Which 
method is best depends on the individual application.

Examples Multi-node examples can be found in the 
\GENESIS\EXAMPLES directory.
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Grabbing part of the same frame

Letting each node grab a different part of the same input frame 
results in the lowest possible latency before an output image is 
produced. However, it is not suitable for algorithms that need 
access to a whole image. For example, to count the number of 
blobs in an image, you should not sub-divide the image and then 
sum the results (some blobs might be counted more than once).

To grab part of the same input frame to multiple nodes 
simultaneously, you need to use the IM_CTL_START_X, 
IM_CTL_START_Y, IM_CTL_STOP_X, and IM_CTL_STOP_Y fields 
of imDigGrab(). In addition, you need to synchronize the nodes 
to ensure that they all grab the same frame. See Chapter 10 for 
details.

Grabbing successive frames

When each node grabs and processes successive frames, the 
latency will be longer than when each node grabs a different 
part of the same input frame. However, performance scales 
linearly with the number of nodes for almost any algorithm 
(that is, if you have n nodes, your application will run n times 
faster using this method). 

To grab successive frames to different nodes, you must wait for 
the start of the previous grab before trying to grab the next 
frame (if you wait for the end of the previous grab, it will be too 
late to grab the next frame; if you do not wait at all, you might 
grab the same frame). For example:  
Note that the above assumes that Thread1 and Buf1 were 
allocated on the first node, and Thread2 and Buf2 on the other 
node.
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Programming tips
The following are some miscellaneous tips that will help your 
application run at maximum speed:

■ Don’t use a display buffer as the destination of a processing 
function; it is much better to use a buffer in processing 
memory, and then copy that buffer to display memory when 
results need to be seen.

■ Avoid large look-up tables; they are slow. If you need to 
perform a LUT mapping on 16-bit data, try to use several 
smaller LUT mappings instead.

■ Avoid dividing an image by a constant or another image; this 
is a slow operation. If you are dividing by a constant, it is 
better to invert the constant and multiply (making sure to 
use enough bits to avoid loss of precision). 

■ Use only those control options that you need; some functions 
run slower if you select certain options (such as saturation 
and clipping of results).

■ Avoid synchronous functions within time-critical loops; they 
break the processing pipeline because the Host has to wait 
for a reply from the board. Since the allocation functions are 
synchronous, you should allocate all resources at the 
beginning of your application. 

■ Don’t add fields to a buffer inside a loop. This can cause a 
significant overhead, especially if you are processing small 

images.

■ If possible, pack small images into a single large buffer and 
process them all at once (it is more efficient to process large 
buffers than small ones).

■ If your application requires that one or more regions of 
interest (ROIs) be processed, it might be more efficient to 
process the whole image than to define and process several 
ROIs. This is because there is less overhead involved.

■ When retrieving blob analysis or pattern matching results, 
retrieve a group of results rather than retrieving results 
individually.
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Appendix A: Glossary 

This appendix defines some of the specialized terms used 
in the Genesis documentation.
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■ ALU

Arithmetic and Logic Unit. The hardware used to perform 
arithmetic and logical operations.

■ ASIC 

Application-specific integrated circuit. A custom-made 
integrated circuit made to meet the requirements of a specific 
application by integrating several digital and/or analog 
functions into a single die. Integrating the functions into a 
single die results in a reduction in cost, board area, and power 
consumption, while improving performance when compared 
to an equivalent implementation using off-the-shelf 
components.

■ Asynchronous function

A function that queues its command to the hardware and 
then immediately returns control to the caller.

See also synchronous function.

■ Backplane

A circuit board that acts as a pathway between multiple 
Genesis boards. If a backplane is inserted between the grab 
ports of Genesis boards and one is inserted between the 
VMChannels of these boards, the boards are part of the same 
system and can share data through their VMChannel and 
grab port interface.
■ Band

One of the surfaces of a buffer. A grayscale image requires 
just one band. A color image requires three bands, one for 
each color component.  

■ Bandwidth

A term describing the capacity to transfer data. Greater 
bandwidth is needed to sustain a higher transfer rate. 
Greater bandwidth can be achieved, for example, by using a 
wider bus.
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■ Bicubic interpolation

An interpolation mode that takes a weighted average of the 
sixteen pixels nearest a point. The pixels closest to the point 
are given the most weight. Bicubic interpolation produces 
more accurate results than bilinear interpolation but is 
slower.

■ Bilinear interpolation

An interpolation mode that takes a weighted average of the 
four pixels nearest a point. The pixels closest to the point are 
given the most weight. Bilinear interpolation produces less 
accurate results than bicubic interpolation (it tends to blur 
the image slightly). However, it is faster than bicubic 
interpolation.

■ Binarize

To convert data to one of two values. 

■ Bit

A digit of a binary number. An image is referred to as 1-bit, 
8-bit, 16-bit, etc., meaning that many bits are available to 
store the value of each pixel in the image. 

■ Broadcast

To send data to multiple memory banks at the same time. On 
Matrox Genesis, this can be done for data passing through 
the grab port and the VMChannel, but not for data passing 

through the PCI bus. 

■ Blanking period

The portion of a video signal after the end of a line or frame, 
and before the beginning of a new line or frame. During this 
period, the video signal is "blank" so that a scan line can be 
brought back to the beginning of the new line or frame. The 
portion of a video signal after the end of a line and before the 
beginning of a new line is known as the horizontal blanking 
period. The portion of a video signal after the end of a frame 
and before the beginning of a new frame is known as the 
vertical blanking period. 
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■ Blob

An area of touching pixels that have the same value. 
Horizontally and vertically adjacent pixels are considered 
touching. Usually, you can specify whether diagonally 
adjacent pixels are considered touching. Pixels in the image 
that are not part of a blob make up the background.

Also known as a connected region.

■ Buffer pitch

The number of bytes from a pixel to its neighboring pixel on 
the line below. Note that a buffer’s pitch is not necessarily 
the same as its width in bytes, since the buffer could be a 
child buffer or could have been allocated with some padding 
at the end of each line. 

Also known as line pitch or pitch.

■ Byte-aligned

Describes a packed binary buffer which starts on an 8-bit 
boundary, that is, whose first pixel represents bit 0 of a data 
byte. Note that packed binary buffers are byte-aligned when 
allocated; the only way to have a misaligned packed binary 
buffer is to create a child buffer with an origin that is not a 
multiple of 8.

■ ’C80

A single-chip multiprocessor device that performs most of the 

processing on the Genesis board. It includes four parallel 
processors (these are advanced, 32-bit integer DSPs), a 32-bit 
RISC master processor with an IEEE-754 floating-point unit, 
and a transfer controller (this transfers data between 
external and internal memory). The 'C80 is much more 
flexible than custom ASICs or other specialized hardware 
because it is fully programmable.

Also known as the TMS320C80.

■ C-binding

The set of functions, callable from a Host C (or C++) 
application, available for controlling the Genesis system.
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■ Child buffer

A buffer corresponding to a rectangular region within 
another buffer, or to a specific band of a multi-band buffer. 
Child buffers are therefore useful when you want to restrict 
processing to a rectangular region of a buffer, or to a band of 
a buffer.

■ Clip

To replace overflows (or underflows) in an operation with the 
highest (or lowest) possible value that can be held in the 
destination buffer of the operation.  

■ Closing

A dilation followed by an erosion.

See also opening.

■ Color component

One of the components that make up a color space. Typically, 
each component of a color image is stored in a separate band 
of a multi-band buffer.

■ Color space

The way color information in a color image is represented. 
Common color spaces are RGB and HSL.

■ Composite sync

A synchronization signal made up of two components: one 

horizontal and one vertical.

■ Compression ratio

The ratio of the uncompressed data size of an image to its 
compressed data size.  

■ Compute bound

Describes a function whose performance is limited strictly by 
the speed at which the ’C80 can process the data, and not by 
other factors such as how fast the data can be accessed in 
memory.

See also I/O bound.
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■ Connected region

See blob.

■ Contiguous memory

A block of memory occupying a single, unbroken series of 
addresses.

■ Control buffer

A buffer whose control fields specify certain options of a 
function. The Genesis Native Library uses control buffers 
because some functions have so many options that it is 
impractical to have these options as parameters of the 
function. Instead, you specify the options you want performed 
by adding the required control fields to a buffer and passing 
this buffer to the function. 

■ Control field

A field that is used to specify a certain option of a function. 
The option is performed by adding the field to the function’s 
control buffer. A field holds a single value (integer or 
floating-point) and is identified by a unique "tag". The tag 
itself is just an integer value.

■ Convolution

A neighborhood operation that determines the new value for 
a pixel based on the weighted sum of the pixel and the pixel’s 
neighboring values. 
■ Dilation

A morphological operation that adds layers to objects in an 
image. In general, this is done by changing background pixels 
that touch object pixels into object pixels. 

See also erosion.

■ Display artifacts

Unwanted visual effects sometimes seen when the transfer 
of data to display memory is not synchronized with the 
reading of display memory by the RAMDAC.
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■ Display buffer

See main frame buffer.

■ Double buffering

Alternating the destination of an operation between two 
buffers. Double buffering allows you to, for example, process 
one buffer while grabbing into the other buffer.

■ DSP

Digital Signal Processor. Microprocessor designed for 
high-speed processing of digital signals.

■ Dual-screen mode

A display configuration using two monitors; one to display 
images from the Genesis display memory, and another to 
display the Host operating system’s user interface.

See also multi-display mode and single-screen mode.

■ Dynamic range

The range of values present in a buffer. An unsigned 8-bit 
buffer, for example, has an allowable range of 0 to 255; its 
dynamic range can be any range within these values.

■ Erosion

A morphological operation that peels layers from objects in 
an image. In general, this is done by changing object pixels 
that touch background pixels into background pixels. 
See also dilation.

■ Exposure signal

The signal generated by one of the programmable timers of 
the grab module. The exposure signal can be used to control 
external hardware. For example, it can be fed to the camera 
to control its exposure time or used to fire a strobe light.

■ Exposure time

Refers to the period during which the image sensor of a 
camera is exposed to light. As the length of this period 
increases, so does the image brightness.
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■ Field

One of the two halves that together make up the image 
grabbed from an interlaced camera. One half consists of the 
image’s odd lines (known as the odd field); the other half 
consists of the image’s even lines (known as the even field).

■ Fixed-point

A format for representing non-integer values that contains a 
fixed number of digits for the integer and fractional parts. A 
16-bit fixed-point buffer, for example, might contain 8 integer 
bits and 8 fractional bits. Fixed-point buffers are a 
compromise between floating-point and integer buffers, since 
they offer the speed of integer processing with some of the 
precision of floating-point processing.

■ Floating-point

A format for representing numbers that contains two parts: 
a mantissa and an exponent. The mantissa specifies the 
digits in the number, while the exponent expresses the 
magnitude of the number. This format provides a constant 
number of significant digits of precision over a very large 
dynamic range. Floating-point buffers take longer to process 
than integer buffers.

■ Frame

A single image grabbed from a video camera.

■ Gain level
The factor by which an analog input signal is scaled. The gain 
affects the brightness and contrast of the resulting image. 

■ Gain and offset correction

To offset and multiply each pixel in an image by specified 
values:
new pixel value = (old pixel value - offset) * gain.
The offset and gain values can be constant for the whole 
image, or they can be different for each pixel. The latter can 
be useful when performing shading corrections.
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■ Geometric operation

A processing operation that repositions pixels in an image.

■ Grab

To acquire an image from a camera.

■ Histogram

A statistical operation that measures the frequency with 
which each pixel value occurs in an image.

■ Histogram equalization

A point-to-point operation that changes each pixel value in 
an image so as to reshape the image’s histogram in a specified 
way. A histogram equalization operation can be used to 
improve the contrast or brightness of an image.

■ Horizontal blanking period

The portion of a video signal after the end of a line and before 
the beginning of a new line. During this period, the video 
signal is "blank".

See also vertical blanking period.

■ Horizontal sync

The part of a video signal that indicates the end of a line and 
the start of a new one.

See also vertical sync.
■ HSL

A color space that represents color using components of hue, 
saturation, and luminance. The hue component describes the 
actual color of a pixel. The saturation component describes 
the concentration of that color. The luminance component 
describes the combined brightness of the primary colors. 

■ In-place operation

Describes a processing operation in which the results 
overwrite one of the source buffers.
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■ Interlaced scanning

Describes a transfer of data in which the odd-numbered lines 
of the source are written to the destination buffer first, and 
then the even-numbered lines (or vice-versa).

See also progressive scanning.

■ Interpolation

A neighborhood operation that estimates the intensity at a 
point in an image between pixel positions. To estimate the 
intensity, the operation takes a weighted-sum of the point’s 
neighboring pixel values. Two common interpolation modes 
are bicubic interpolation and bilinear interpolation.

■ I/O bound

Describes a function whose performance is limited by the 
speed at which it can access data in memory.

See also compute bound.

■ JPEG

Joint Photographic Experts Group. A standard for 
compressing images.

■ Kernel

The set of numbers that are used by a neighborhood operation 
to determine new pixel values. The type of neighborhood 
operation determines how the kernel is used.
Also known as a structuring element (particularly for 
morphological operations).

■ Keying

A display effect that switches between two display sources 
depending on the pixel values in one of the sources. On 
Genesis, keying is usually used to make portions of the 
overlay frame buffer transparent so that corresponding areas 
of the main frame buffer can show through it.

■ Latency

The time from when an operation is started to when the final 
result is produced. 
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■ Line pitch

See buffer pitch.

■ Live processing

See real-time processing.

■ LUT mapping

Look-up table mapping. A point-to-point operation that uses 
a table to define a replacement value for each possible pixel 
value in an image.

■ Main frame buffer

The buffer whose contents are displayed by the display 
section of Matrox Genesis. If keying is enabled, those areas 
of the overlay frame buffer that have a specified color allow 
the main frame buffer to show through.

Also known as the display buffer.

■ Message

The operation code and its various optional parameters that 
a C-binding function sends to the board so that the board can 
execute the function.  

■ MGA

Matrox Graphics Architecture. As part of Matrox Genesis’s 
display section, it allows you to draw into the overlay buffer 
using the graphics functions of the Host operating system. 
■ Morphological operation

A neighborhood operation that determines the new value for 
a pixel based on the results of a comparison between the 
pixel’s neighborhood and the operation’s kernel, or based on 
the extreme values in the pixel’s neighborhood.  

■ Multi-display mode

A multi-board configuration that uses Genesis boards and/or 
MGA Millennium boards to create one large desktop on two, 
three, or four screens.
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■ Multi-processing

Executing two or more operations in parallel.

Also known as parallel processing.

■ Neighborhood operation

A processing operation that replaces a pixel’s value according 
to the values of its surrounding pixels (called its 
neighborhood). The size of the neighborhood is determined 
by the operation’s kernel. The type of operation determines 
how the new pixel value is determined. Convolutions and 
morphological operations are two types of neighborhood 
operations.

■ NOA

Neighborhood Operations Accelerator. A Matrox-designed 
ASIC that can accelerate neighborhood operations such as 
convolutions and morphology.

■ Node

The basic building block of a Genesis system; it consists of 
the TMS320C80 (’C80), the VIA, and processing memory. A 
node can also include a NOA.

■ Normalized grayscale correlation

A neighborhood operation that determines the new value for 
a pixel (r), based on a specified kernel (model):
         

where M = the value of a model pixel and I = the value of the 
underlying image pixel. Note that the above equation reaches 
its maximum value of 1 where the image and model match 
exactly, gives 0 where the image and model are uncorrelated, 
and is negative where the similarity is less than might be 
expected by chance (reaching -1 when the image is a negative 
version of the model). Normalized grayscale correlation is 
widely used in industry for pattern matching applications.
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■ Normalization

Adjusting the results of a processing operation so that they 
have the correct magnitude. After multiplying an image by a 
fixed-point integer, for example, normalization is needed to 
right-shift results to remove the fractional bits.

■ Off-screen display memory

Memory that is allocated in the main or overlay frame buffer 
(in Matrox Genesis’s display section) that is not visible on the 
screen.

■ Opening

An erosion followed by a dilation.

See also closing.

■ Operand

One of the terms of an arithmetic or logical operation. In the 
arithmetic operation A + B, for example, the operands are A 
and B. In the Genesis Native Library, one of the operands of 
an arithmetic or logical operation must be a buffer; the 
other(s) can be buffers or constants. Note that the buffers can 
hold any type of data, for example, image data, LUT values, 
and kernel values.

■ Overflows

Results of a processing operation that are above the range of 
the destination buffer. For example, in an unsigned 8-bit 

destination buffer, overflows are those results above 255.

See also underflows.

■ Overlay frame buffer

The buffer used to annotate the main frame buffer. On 
Genesis, portions of the overlay frame buffer that have a 
specified color allow the corresponding areas of the main 
frame buffer to show through (if keying is enabled). Note that, 
in single-screen mode, the overlay frame buffer is also used 
to display the Host operating system’s user interface.  

■ Parallel processing

See multi-processing.
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■ Pitch

See buffer pitch.

■ Point-to-point operation

A processing operation that does not use a pixel’s neighbors 
when determining the pixel’s new value. Examples of 
point-to-point operations are LUT mappings, arithmetic 
operations, and logical operations.

■ Processing operation

An operation that results in a new image. Examples of 
processing operations are geometric operations, 
point-to-point operations, and neighborhood operations.

See also statistical operation.

■ Progressive scanning

Describes a transfer of data in which the lines of the source 
are written sequentially into the destination buffer.

See also interlaced scanning.

■ RAMDAC

Random Access Memory Digital-to-Analog Converter. A chip 
that converts data from digital to analog so that it can be 
displayed on a monitor. The RAMDAC can also implement 
various display effects.

■ Rank filter operation
A neighborhood operation that sorts a pixel’s neighborhood 
values in increasing order, and then replaces the pixel’s value 
with the nth highest value in the list. A median filter is a type 
of rank filter that uses the middle value in the list. 

■ Real-time processing

The processing of an image as quickly as the next image is 
grabbed. 

Also known as live processing.
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■ Reference levels

The zero and full-scale levels of an analog-to-digital 
converter. Voltages below a black reference level are converted 
to a zero pixel value; voltages above a white reference level 
are converted to the maximum pixel value. Together with the 
analog gain factor, the reference levels affect the brightness 
and contrast of the resulting image. 

■ RGB

A color space that represents color using the primary colors 
(red, green, and blue) as components.

■ RISC

Reduced Instruction Set Computing. A microprocessor design 
that focuses on efficiently processing a small set of 
instructions.

■ ROI

Region of interest. The area of a buffer that is processed. The 
region of interest can be the entire buffer or a rectangular 
portion of the buffer. 

■ Run

A horizontal sequence of consecutive pixels with the same 
value. Often used in blob analysis, since each blob can be 
efficiently described as a list of runs. 

■ Saturate
To replace overflows (or underflows) in an operation with the 
highest (or lowest) possible value that can be held in the 
destination buffer of the operation.  

■ Scalability

Describes a board whose configuration is designed to include 
additional modules, if desired. The Genesis main board, for 
example, can include a display section and/or grab module. 
In addition, one or more processor boards can be added to 
increase performance. 
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■ SDRAM

Synchronous Dynamic Random Access Memory. A type of 
memory used for processing. SDRAM allows the ’C80 to 
access data as fast as possible, which is important for 
I/O-bound functions.

■ Shearing

A geometric operation that translates pixels along only one 
axis, by an amount proportional to the distance from that axis 
(see below).

■ Signed

Describes a buffer that can have negative values. A signed 

-y shearing

+y shearing

original
image

+x shearing-x shearing
8-bit buffer, for example, has values between -128 and 127. 

See also unsigned.

■ Sign-extension

To extend a value from one data type to a larger data type by 
copying the sign bit of the source type to all the higher bits 
of the destination (that is, by copying 1’s if the value is 
negative; 0’s if the value is positive).

See also zero-extension.
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■ Single-screen mode

A display configuration using a single monitor to display both 
the Host operating system’s user interface and images from 
the Genesis display memory. 

See also dual-screen mode and multi-display mode.

■ Spatial filtering operation

See convolution.

■ Statistical operation

An operation that extracts information from an image. A 
histogram is an example of a statistical operation.

See also processing operation.

■ Structuring element

See kernel.

■ Synchronous function

A function that does not return control to the caller until it 
has finished executing.

See also asynchronous function.

■ System

A group of Genesis boards (main board(s) and/or processor 
board(s)) connected to each other by the grab port and the 
VM port.
■ Temporal filtering

An operation that takes a weighted sum of the currently 
grabbed frame and the previous output of the filter operation. 
Temporal filtering is often used to remove the effects of 
random noise because it acts as an averaging filter.

■ Thickening

A morphological operation that converts background pixels 
into object pixels when the neighborhood exactly matches a 
kernel. Thickening is similar to dilation except that it is more 
selective because, when iterated, it will not convert all pixels 
to object pixels. Instead, it will eventually reach a steady 
state (known as idempotence).
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■ Thinning

A morphological operation that converts object pixels into 
background pixels when the neighborhood exactly matches a 
kernel. Thinning is similar to erosion except that it is more 
selective because, when iterated, it will not convert all pixels 
to background pixels. Instead, it will eventually reach a 
steady state (known as idempotence).

■ Thread

An execution queue. In the Genesis Native Library, all 
functions are sent to a specified thread, and execute on the 
node associated with this thread. Threads execute 
independently of one another, allowing operations to run in 
parallel.

■ Threshold

A point-to-point operation that converts pixels whose values 
are above, below, and/or within a specified range, to a 
specified value.

■ TMS320C80

See ’C80.

■ Translation

A geometric operation that displaces an image vertically 
and/or horizontally. 

■ Underflows
Results of a processing operation that are below the range of 
the destination buffer. For example, in an unsigned 8-bit 
destination buffer, underflows are those results below 0.

See also overflows.

■ Unsigned

Describes a buffer that can have only positive values. An 
unsigned 8-bit buffer, for example, has values between 0 and 
255.

See also signed.
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■ Vertical blanking period

The portion of a video signal after the end of a frame and 
before the beginning of a new frame. During this period, the 
video signal is "blank".

See also horizontal blanking period.

■ Vertical sync

The part of a video signal that indicates the end of a frame 
and the start of a new one.

See also horizontal sync.

■ VIA

Video Interface ASIC. A custom ASIC that connects all the 
data buses on Matrox Genesis (the grab, VMChannel, ’C80 
and PCI bus) to one another, and directs and monitors data 
flow "traffic" throughout the system. It is a video interface 
that provides various ways of inputting and outputting data.

■ VMChannel

Vesa Media Channel. An industry standard 32-bit bus 
designed for carrying video data. On Genesis, it is used 
primarily to copy images between nodes or from processing 
to display memory. 

■ WRAM

Window Random Access Memory. A type of dual-ported 
memory used for displays. 
■ Zero-extension

To extend a value from one data type to a larger data type by 
copying 0’s into all the higher bits of the destination.

See also sign-extension. 
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Appendix B: Examples 

This appendix gives the complete source code of each 
example referenced in this manual. To compile these 
examples, refer to the readme.txt file in the 
\GENESIS\DOC directory. Note that there might be more 
up-to-date or other examples in the \GENESIS\EXAMPLES 
directory.
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Index

A

acceptance level 123–124, 126
allocating

blob analysis feature list 97
blob analysis result buffer 97
camera definition files 33, 184, 208
child buffers 169
control buffers 168
data buffers 29, 31–32, 165
digitizer 184
display 31
Host memory 166
JPEG buffer 140, 144
nodes 27, 29, 38
off-screen display memory 227–228
on-screen child buffers 213, 228
operation status block 36
pattern matching result buffer 119
resources 38, 247
threads 27, 29

analog cameras 199–200
annotating images 175
applications

checking for errors 230–232, 234
color 194, 213–214
dividing between nodes 245
dual-screen 217–218, 228

asynchronous functions 29, 35–36, 230, 238
asynchronous grab mode 84, 188
asynchronous-reset cameras 206

B

benchmark information 237
BGR/BGRa images 174
bicubic interpolation 91
bilinear interpolation 91
binary buffers 44–45, 77, 173–174, 236
binary template matching 60, 65
bit planes, protecting 175
blanking period 200
blob analysis

acquiring an image for 99
adjusting controls 97, 101
assigning label values 104
background 96
binary features 96
blob identifier image 96
calculating 97
copying results 97, 112
defined 96
example 98
excluding blobs 97
feature list 97
features 106
freeing buffers 97
grayscale features 96
grouping results 101, 104
identifying blobs 101
estimating performance 237
latency 246
MIL vs Native Library 14
monochrome 213–214
multiple 38, 208, 228
optimizing 236
porting 15
programming tips 247
real-time 22, 38, 83–84, 188, 197
single-screen 217–218, 228
typical steps 26

arithmetic and logical operations
deriving opcodes for 81
divisions 247
with three operands 80–81

non-square pixels 102–103
number of blobs 97, 112–113
number of Feret angles 101
pixel aspect ratio 101–103
result buffer 97, 101
runs 101, 115
segmentation 97, 99
selecting features 97
steps 97
time slice 102
timeout period 101, 105
transferring results 97, 247

blob.c program 270



blobs
area 106
assigning label values 104
breadth 108
center of gravity 110
central moments 110
compactness 109
convex perimeter 107, 109
counting 97
defining 96, 101
deleting 111
dimensions 107
excluding 97, 110–111
features 106
Feret diameter 107–108
filling 104
grouping 101, 104
identifying 96, 99
length 107–108
location 106, 110
long, thin 108
moments 110
number of holes 109
number of runs in 115
ordinary moments 110
perimeter 106, 109
processing 111
removing 111
separating from image 96, 99
shape 106, 109
size 109
spurious 99

color 42, 74, 165, 175
control 30, 164, 167–168
converting data type 166
copying 31, 164, 170
creating 164, 182
data types 236
display 169, 247
fields 30, 167–168
freeing 165
mapping to Host 164, 180
memory location of 166
multi-band 42, 74–75, 165, 170
packed 47, 247
parent 169
pitch 180
RGB packed 45
single-band 165
supported data types 166
tag 29, 47, 164, 173, 186
transfer to/from a file 179
transfer to/from the Host 179

byte-aligned buffers 173

C

C80 16, 18–19, 31
and multiple nodes 245
block diagram 43
code 21
multiple 19
porting 15
programming 43, 236
touching borders 110–111
touching each other 99
unwanted 100, 111
width 107

board
Genesis-LC 20
main 16, 18–19, 21, 171
processor 16, 18–19, 21, 171

brightness, adjusting on grab 198
broadcasting to all nodes 245
buffers

1d 165
2d 165
allocating 29, 165
binary 44–45, 77, 173, 236
child 29, 42, 47, 74, 169

camera definition files
allocating 33, 184, 208
changing 184, 192
compatible 83, 190–191
creating 33
that produce non-square pixels 103

camera settings
frame size 200
gain levels 198
input channel 193–194
LUT 198–199
reference levels 198
synchronization channel 197
triggers 202
user bits 201



cameras
analog 199–200
asynchronous-reset 206
color 182, 193
digital 200
line scan 201
monochrome 182, 193–195, 197

cellular mapping 71
certainty level 123, 126, 129
Chamfer 3-4 transform 67
Chessboard transform 66
child buffers 29, 42, 47, 74, 169

on the display 31, 212–213, 221, 228
City Block transform 66
clearing error information 230, 232
clipping 50, 247
color buffers

copying 75
copying to display 175
processing 42, 74

color space
HSL 74–75
RGB 74–75

command queues 85
compressing images

achievable ratios 143
an example 145, 149–151
controlling 145, 147
of JFIF files 143
overview of algorithm 147
saving tables during 151
steps 140, 144, 222

converting
between data types 45
RGB to HSL 75

convex perimeter 107
convolutions 58–59
copy

16-bit color images 175
available functions 170
between nodes 170
between on-board and Host 170
between processing and display 170
blob results 97, 112
bottom to top 175
color images 75
continuously 177
control fields 168
extracting bytes during 174
multi-band buffers 75, 170
over the PCI bus 170–171
over the VMChannel 170–171
pattern matching models 130
rectangular region 177
reducing overhead during 176
RGB images 75
RGB555/565 images 175
right to left 175
swapping bytes during 174
to non-rectangular regions 173
to rectangular regions 169
to the display 174–175, 177
to/from a VM stream 178
with a specific VIA 176
to open files 151
transmitting 153
when image is large 150
with restart markers 153
with your own table 149

compute bound functions 58, 240, 243
connected region, filling 162
connectivity mapping 71
contiguous physical memory 182
continuous grab 34, 187, 192, 208

an example 34
contrast, adjusting on grab 198
control buffers 30, 164, 167–168
control fields 30, 167–168, 247

with subsampling 174
with tag 164, 173
with VIA options 171
with write masks 175
with zoom 174

counting blobs 97

D

data paths 18, 171
data types

converting between 45–46
mixed 49
speed 236
supported 44, 166



decompressing images
an example 146, 152
controls 145
from open files 151
restrictions 143
steps 141, 144

development tools 43, 236
digital cameras 200
digitizer

allocating 184
programming 184

dilation 60–61, 99
direct memory access 182
display

allocating 31
as two-dimensional surface 31, 212
block diagram 211
buffers 169, 247
child buffers 31, 212–213, 221, 228
color images 213–214
color version of 210, 213–214, 221, 228
copying to 174–175
dual-screen mode 215–216, 218, 228
effects 219, 228
grabbing to 221
grayscale images 170, 213–214
in pseudo-color 220
keying 217–218, 228
LUTs 210
memory 18, 31, 212, 214, 227–228
mode 214
monochrome version of 210, 213, 221, 228

drawing
an object’s outline 160
arcs 158
lines 158
rectangles 158

dual-screen display mode 215–216, 218, 228

E

erosion 60–61, 99
error information, clearing 230, 232
error messages, printing 232
error reporting

a function 230
a thread 230–231
and asynchronous functions 230–231
application-wide 230–232
when to check 35, 234
which mechanism to use 231

estimating performance 237
event objects 244
example of

an FFT 93
basic program 28
blob analysis 98
blob analysis result transfer 113
blob analysis timeout feature 105
checking for errors 231
compressing images 145, 149–151
decompressing images 146, 152
defining kernels 69
grabbing continuously 34
multiple live grabs on 182
off-screen buffers 227
overview 18, 210
panning 219, 228
refresh rate 210
resolution 210, 216, 219
scrolling 219, 228
single-screen mode 215–218, 228
zooming 219, 228

display artifacts, avoiding 177
distance transforms 60, 66
distortions, geometric 86, 103
dividing images 247
DMA transfers 182
double buffering 83, 176

grabbing from multiple channels 196–197
grabbing successive frames 83, 246
grabbing to two or more buffers simulta-
neously 190

grabbing with timers 207
hardware triggers 204
keying 217
LUT mapping 51
LUT warping 90
mapping buffer to Host 180
pattern matching 120
perspective warping 89
plotting 161
printing error messages 232
processing non-rectangular regions 48



real-time processing 84
rotating images 87
software triggers 202
synchronizing operations 36
thinning to skeleton 63
transferring to Host 32

examples, overview 23
exposure signals 204
exposure time 204
extracting bytes

during copy 174
during grab 186

F

fast peak finding 135
Feret diameter 107–108
FFTs 92–93

an example 93
fields (camera), grabbing 187
filling objects 158
first.c program 275
first-order warpings 86, 89

an example 87
generating coefficients for 86

flipping images 72
floating-point buffers 45, 72, 166
formatting

copied data 171
grabbed data 186

frame buffers 210, 215–217, 219–220
frame size 200

grab.c program 277
grabbing

asynchronously 84, 188
bottom to top 186
color images 194, 208
continuously 34, 187, 192, 208, 221
extracting bytes during 186
fields 187
frames 187
from a specific channel 194
from interlaced cameras 187
from multiple channels 195–196
general steps 184
line interrupts 189
lines 187
low-resolution image 187
monochrome images 208
multiple live, on display 182
part of the same frame 246
rectangular region 186
reducing overheads during 188
right to left 186
successive frames 83, 246
to multiple nodes 190
to non-rectangular regions 221
to rectangular regions 169
to the display 208, 221
to two or more buffers simultaneously 187,
190

to/from a VM stream 186, 188
with subsampling 186
with tag 186
frames, grabbing 187

G

gain levels 198
Genesis Developer’s Toolkit 43, 236
Genesis shell 21
Genesis-LC 20
GENKEY utility 218, 228
GENVCFLD utility 216
geometric operations 42

advanced 72, 86
basic 72

grab module 18, 185
grab port 19

with VIA options 186
with write masks 186
with zoom 186

graphics
and color buffers 159
available functions 158
drawing color 159
using the MGA 158
XOR option 159

H

hardware triggers 191, 202–203, 205
an example 204



histogram 77
plotting right-side up 160–161
transferring results 32

histogram equalization 57
hit-or-miss transformation 60, 65
horizontal syncs 197, 200, 205
Host

allocating memory on 32
and asynchronous functions 29
and command queues 85
and synchronous functions 29
copying to/from 170
halting execution on 36
mapping buffers to 164, 180
memory 22, 29, 166, 227
operating system 30, 158, 215
synchronizing with 36, 244
threads 244
transfer data to/from 19, 26, 31–32, 97,
112, 119, 164, 179

transfer rate 16
hot spot 123, 125
HSL color space 74–75
Huffman encoding 147–148

I

I/O bound functions 49, 237–239, 243
imAppCatchError() 35, 230, 232
imAppGetError() 35, 230–232, 234
imBinConvert() 45, 166, 174
imBinMorphic() 60, 62–63, 65, 99, 118

imBlobInquire() 105
imBlobLabel() 101
imBlobSelect() 97, 100, 111
imBlobSelectFeature() 97, 112
imBlobSelectFeret() 97, 108
imBlobSelectMoment() 97, 110
imBufAlloc() 32, 165, 227–228
imBufAlloc1d() 50, 165, 227–228
imBufAlloc2d() 68, 165, 227–228
imBufAllocControl() 168
imBufChild() 27, 31, 47, 169, 182, 212–215,
221, 228

imBufChildBand() 74, 169
imBufChildMove() 169
imBufClear() 27
imBufControl() 182
imBufCopy() 27, 31–32, 45, 75, 170, 182
imBufCopyField() 168, 170
imBufCopyPCI() 31, 44, 47, 170–171, 182,
186

imBufCopyVM() 31, 44, 47, 170–171, 186
imBufCreate() 164, 182
imBufFree() 30, 165, 182
imBufGet() 32, 77, 114, 179
imBufGet1d() 32, 77, 179
imBufGet2d() 32, 179
imBufGetField() 77, 168
imBufGetFieldDouble() 168
imBufGetNextField() 168
imBufLoad() 179
imBufMap() 164, 180
imBufPack() 47–48, 173
imBinTriadic() 80–82
imBlobAllocFeatureList() 97
imBlobAllocResult() 97
imBlobCalculate() 97, 101, 104–105
imBlobControl() 97, 101, 103, 105, 107–108,
115

imBlobCopyResult() 112, 114
imBlobCopyRuns() 101, 115
imBlobFill() 101, 111
imBlobFree() 97
imBlobGetLabel() 101
imBlobGetNumber() 112–113
imBlobGetResult() 112–114
imBlobGetResultSingle() 112, 114
imBlobGetRuns() 101, 115

imBufPut() 32, 50, 68, 179
imBufPut1d() 32, 179
imBufPut2d() 32, 179
imBufPutField() 168
imBufRemoveField() 168
imBufRestore() 179
imBufSave() 179
imCamAlloc() 33, 184
imCamClone() 192
imCamControl() 184, 188, 192, 196–197,
201, 208

imCamInquire() 208
imDevAlloc() 27, 29, 38
imDevFree() 30
imDevInquire() 85
imDigAlloc() 33, 184



imDigCapture() 190, 202
imDigControl() 184, 192, 201, 203, 208
imDigGrab() 33, 83–84, 178, 186, 196–197,
202, 221

imDigInquire() 201
imDispControl() 214, 217, 219–220, 227–228
imFloatConvert() 45, 166
imGen1d() 50
imGenWarp1stOrder() 86
imGenWarp4Corner() 89
imGenWarpLutMatrix() 89
imGraArc() 158
imGraArcFill() 158
imGraFill() 162
imGraLine() 158
imGraPlot() 158, 160
imGraRect() 27, 158
imGraRectFill() 158
imGraText() 27, 158, 162
imIntBinarize() 99
imIntConnectMap() 71
imIntConvert() 46, 99, 166
imIntConvertColor() 75
imIntConvolve() 59, 68, 99
imIntCorrelate() 118
imIntCountDifference() 77
imIntDistance() 66
imIntDyadic() 49
imIntErodeDilate() 61, 99
imIntFFT() 92
imIntFindExtreme() 77
imIntFlip() 72

imJpegDecode() 141, 144
imJpegEncode() 140–141, 144
imJpegFree() 144
imJpegInquire() 144
imJpegPutTable() 145, 149
imJpegRead() 144, 151
imJpegReadBuf() 141, 144
imJpegRestore() 144
imJpegSave() 144, 146
imJpegWrite() 151
imJpegWriteBuf() 141, 144, 146
imPatAllocModel() 119
imPatAllocResult() 119
imPatAllocRotatedModel() 130
imPatCopy() 130
imPatFindModel() 119, 133–134
imPatFree() 119
imPatGetNumber() 119, 124
imPatGetResult() 119, 124, 132
imPatInquire() 130
imPatPreprocModel() 119, 122, 128–129
imPatRead() 130
imPatRestore() 119, 130
imPatSave() 130
imPatSetAcceptance() 123
imPatSetAccuracy() 123, 129, 136
imPatSetCenter() 123, 125
imPatSetCertainty() 123, 129
imPatSetDontCare() 123
imPatSetNumber() 123–124
imPatSetPosition() 123, 129
imPatSetSearchParameter() 123, 132, 134–
imIntHistogram() 77
imIntHistogramEqualization() 57
imIntLocateEvent() 77
imIntLutMap() 50–51, 54, 56, 220
imIntMonadic() 49
imIntRank() 99
imIntScale() 73, 219
imIntSubsample() 72–73
imIntThickThin() 62–63
imIntTriadic() 47, 80–82
imIntWarpLut() 88–89
imIntWarpPolynomial() 86, 219
imIntZoom() 72–73, 219
imJpegAlloc() 140, 144–145
imJpegControl() 145, 147, 150–151, 153
imJpegControlBand() 145

135
imPatSetSpeed() 123, 128–129
imPatWrite() 130
imSyncAlloc() 36
imSyncControl() 36
imSyncGetError() 230–231
imSyncHost() 36, 38, 84–85, 189, 191
imSyncThread() 85, 189
imSysClock() 237
imThrAlloc() 27, 29
imThrControl() 243
imThrFree() 30
imThrGetError() 35, 230–231, 234
imThrHalt() 33, 177, 187
input channels 193–194
integer buffers 44–46, 158, 174



interlaced scanning 187, 189
interpolated LUT mappings 55–56
interpolation modes 86, 91

J

JPEG compression
achievable ratios 143
an example 145, 149–151
by blocks 150
controlling 145, 147
of JFIF files 143
overview of lossless algorithm 147
restart markers 153
saving tables during 151
steps 140, 144, 222
to open files 151
transmitting compressed images 153
with large images 150
with your own table 149

jpeg.c program 279

K

kernels
an example 69
center coordinates 68
custom 58–59, 68
predefined 58

keying 217–218, 228
an example 217

M

main board 16, 18–19, 21
block diagram 16, 18, 171

main frame buffer 210, 215–219
mapping buffer to Host 180

an example 180
mapping through LUT

displayed images 220
grabbed images 198

match peaks 135
match score 123, 128, 132, 136
memory

display 18, 31, 33, 166, 212, 227–228
freeing 144
Host 29, 32, 164, 170, 227
invalid access 50
linear 16, 227
main frame buffer 210
off-screen 227–228
operation status block 36
overlay frame buffer 210
physical 182
processing 16, 18, 21, 29, 31, 33, 166,
212, 227

virtual 182
memory banks

defined 194
how connected 171

merging images 47, 80
message passing 245
L

level-sensitive trigger 203
line interrupts 189
line scan cameras 201
live grabs, multiple 182
loops 38, 234, 247
LUT

in the grab section 198–199
in the RAMDAC 50, 210, 220
large vs small 247
mappings 50–51, 55–56, 220
warpings 86, 88

MGA 210, 215–216
MIL vs Native Library 14–15
model (pattern matching)

complex 128
copying 130
creating 119, 121
defined 118
don’t care pixels 123, 127
effective center 123, 125
efficient 129
freeing 119
hot spot 123, 125
inquiring about 130
large features 122
masking 123, 127
orientation 121



reading from open file 130
restoring 119, 122, 130
rotating 130
saving 122, 130
size 121, 129
small-scale features 122
writing to open file 130

model images 121, 127
monochrome cameras 182, 194–195, 197
morphological operations 58, 60
multi-band buffers 42, 74, 165

copying 75, 170
processing 74

multiple live grabs, on display 182
multi-processing 22, 36, 236, 242

N

Native Library
overview 14
vs MIL 14–15

nearest-neighbor interpolation 91
neighborhood operations 16, 42, 48, 58, 70
NOA 16, 18, 21, 243
nodes

allocating 27, 29, 38
broadcasting to 245
defined 21
multiple 177–178, 187, 245

non-square pixels 101–103, 200
normalized grayscale correlation 131

O

P

packed buffers 47, 247
packed color images 174
panning the display 219, 228
parallel processing 22, 36, 236, 242
parent buffers 169
part-present sensor 204, 206
pat.c program 282
pattern matching

acceptance level 123–124
adjusting parameters 119, 123
algorithm 131
certainty level 123, 126, 129
controlling search 123
copying models 130
creating model 119, 121
defined 118
example 120
false matches 121, 127
fast peak finding 135
masking model 123, 127
match peaks 135
match score 123
model 118, 129
number of matches 123–124
positional accuracy 123, 126, 129
preprocessing 119, 122, 129
reading models from open file 130
resolution level 133
restoring models 119, 122, 130
objects, filling 158
open files 130, 151
operating system 30, 158, 215
operations, synchronizing 36
optimize.doc file 237–240
OSB

allocating 36
and Windows NT 244

overheads 237–238
reducing, when copying 176
reducing, when grabbing 188

overlay frame buffer 210, 215–220, 228
overscan pixels 70

result buffer 119
returned coordinates of 123, 125
rotating models 130
saving models 122, 130
search in one direction 126
search parameters 119
search region 123, 125, 129
search speed 123, 128–129
searching for model 119
speeding up 129
steps 119
supported buffers 118
target image 118, 122
transferring results 119, 247
uses 118
writing models to open file 130



PCI bus, copying over 19, 170–171, 245
performance, estimating 237
perspective warpings 86, 88–89
physical memory 182
pitch 180
pixel aspect ratio 101–103
pixel clock 200
plotting 158, 160

an example 161
point-to-point operations 42, 48–49
polynomial warpings 86, 89

an example 87
positional accuracy 123, 126, 128–129
predictive coding 147
preprocessing models 119, 122, 128–129
printing, error messages 232
process.c program 286
processing

a band of a buffer 164
color buffers 42, 74
non-rectangular regions 29, 47–48
rectangular regions 29, 47, 164, 169, 247

processing memory 16, 18, 29, 31, 166, 212,
227

processing operations 42, 166
processor board 16, 18–19, 21

block diagram 19, 171
programming

’C80 43, 236
digitizer 184

programming tips 247
progressive scanning 187

resizing images 86
resolution levels 133
resolution, of display 210, 216, 219
resources 21, 29, 38, 247

freeing 27, 30
restart markers 153
restoring

compressed images 145
models 122, 130

reversed images 175, 186, 188
RGB color space 74–75
RGB packed buffers 45
RGB555/565 formats 175
rotating images 72, 86–87

an example 87
RS422 format 201, 203, 205
runs in a blob 101, 115

S

sampling frequency 200
saturation 49–50, 247
saving

compressed images 144–145, 151
models 122, 130

scaling images 72–73
screen tearing, avoiding 177
scrolling the display 219, 228
SDRAM 18, 31, 212
search parameters 123
segmentation 96, 99
shearing images 86
protecting bit planes 175
pseudo-color effect, achieving 199, 220

R

RAMDAC 210
reading from open files

compressed images 151
models 130

reading results 168
real-time processing 22, 83–84

an example 84
reference levels 198
refresh rate 210
replace overscan 70

single-band buffers 165
single-screen display mode 215–218, 228
software triggers 191, 202

an example 202
spatial filtering operations 58–59
spatial patterns, locating 92
square pixels 101–103
statistical operations 42, 77
subsample

copied data 174
grabbed data 186
images 72–73

swapping bytes, during a copy 174
synchronization channel 197



synchronizing
an example 36
grabs 190
Host threads 244
operations 36
threads 36

synchronous functions 29, 32, 35, 230, 238,
247

systems 21, 171

T

tag buffers 29, 47, 164, 173–174, 186, 227
target images 118, 122, 128
text, writing 158, 162
tfilter.c program 300
thickening 60, 62–63
thinning 60, 62–63

an example 63
threads

allocating 27, 29
checking for errors 230
defined 22
multiple 242–243
on the Host 244
synchronizing 36

timers, on the grab 202, 204
an example 207

transfer to/from a file, buffer data 179
transfer to/from the Host

achievable rates 16
an example 32

U

user bits 201

V

vertical syncs 197, 201, 205
VIA options

during a copy 171
during a grab 186

virtual memory 182
visible artifacts, avoiding 177
VM device 18, 178, 186
VM stream 178, 186
VMChannel

and multiple nodes 245
copying data over 18, 170–171

W

warping
an example 87
first-order 86, 89
generating coefficients for 86
how performed 86
interpolation modes 91
perspective 88
through a LUT 88, 90

Windows NT 30, 244
WRAM 18
write masks 175, 186
blob results 97, 112, 247
buffer data 19, 32, 138, 164, 179
pattern matching results 119, 247

translating images 86–87
transmitting compressed images 153
transparent overscan 70
triggers

hardware 191, 202–203, 205
software 191, 202
sources 202
timers 202, 204

TTL format 201, 203, 205

writing a rectangular region 177, 186
writing text 158, 162
writing to open file

compressed images 151
models 130

Z

zoom
copied data 174
display 219, 228
grabbed data 186
images 72–73, 219
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