
March 1, 2000

Manual no. 10513-301-0610

Matrox Imaging Library
version 6.1

User Guide

Matrox® is a registered trademark of Matrox Electronic Systems Ltd.

Microsoft®, Windows®, and Windows NT® are registered trademarks of
Microsoft Corporation.

PC/104-Plus™ is a trademark of the PC/104 Consortium.

CompactPCI™ is a trademark of PCI Industrial Computer
Manufacturers’ Group.

Intel®, Pentium®, and Pentium II® are registered trademarks of Intel
Corporation.

Texas Instruments is a trademark of Texas Instruments Incorporated.

All other nationally and internationally recognized trademarks and
tradenames are hereby acknowledged.

© Copyright Matrox Electronic Systems Ltd., 2000. All rights reserved.

Disclaimer: Matrox Electronic Systems Ltd. reserves the right to make
changes in specifications at any time and without notice. The
information provided by this document is believed to be accurate and
reliable. However, no responsibility is assumed by Matrox Electronic
Systems Ltd. for its use; nor for any infringements of patents or other rights
of third parties resulting from its use. No license is granted under any
patents or patent rights of Matrox Electronic Systems Ltd.

PRINTED IN CANADA

 Contents
Chapter 1: Getting started . 19

The MIL package. .20

MIL and the Intel MMX™/SSE™
technologies .24

System requirements 25

Getting started .26

Installation .27

 Building an application 29

Distributing your MIL application33

Distributing MIL run-time DLL files with
your software .33

Obtaining a run-time license 34

Chapter 2: Allocating an image buffer and grabbing
images . 37

Getting started .38

Allocating and displaying an image buffer39

Grabbing images. .42

Chapter 3: Image processing. 45

Image processing .46

The MIL package. .47

Steps to performing a typical application.48

A typical application48

Chapter 4: Improving your images 53

Image quality . 54

Techniques to improve images 55

Averaging an input sequence 56

Applying spatial filters 57

Opening and closing. 58

Basic geometrical transform. 59

Chapter 5: Image manipulation 61

Image manipulation . 62

Image statistics . 62

Generating a histogram 63

Finding the image extremes 65

Projecting an image to one dimension 65

Thresholding your images 66

Binarizing . 66

Clipping. 68

Histogram equalization. 69

Accentuating edges . 70

Edge enhancers . 71

Edge detection . 71

Arithmetic with images. 74

Combining images 74

Mapping an image 76

Erosion and dilation. 77

Distance transform . 81

Labeling . 82

Chapter 6: Advanced image processing85

Advanced image processing86

Custom spatial filters 86

Custom morphological operations90

Erosion and dilation91

Thinning and thickening.96

Matching .98

Searching for hits or misses98

Connectivity mapping99

Fast Fourier Transform100

Watershed transformations104

Using watersheds to separate touching
objects .105

Using watersheds to separate objects from
their background 106

Minimum variation between extrema 107

Using marker images 108

Style of the watershed lines 109

Skipping the last level110

Polar-to-rectangular and rectangular-to-polar
transform .111

Warping .113

First-order polynomial warpings114

Using LUTs to perform a warping114

Interpolation modes 116

Points outside the source buffer117

Discrete Cosine Transform 118

Chapter 7: Calibration . 119

Introduction. 120

Types of distortions 121

Steps to getting results in real-world units . . 122

Transforming coordinates or results 122

Physically correcting an image 122

Automatically getting results in real-world
units . 124

Calibrating your imaging setup 126

Real-world grid . 126

List of coordinates 128

Calibration modes 129

Coordinate systems and camera position . . . 130

Multiple fields of view. 133

Single camera fixed on a manipulator:
Relative camera position example 133

Single camera and moveable object:
Relative coordinate system example 134

Several cameras and fixed object:
Relative coordinate system example 135

Processing calibrated images 136

Chapter 8: Blob analysis . 137

Blob analysis . 138

MIL and blob analysis 139

Steps to performing blob analysis. 139

A simple blob analysis example 142

Blob reconstruction 145

Chapter 9: Setting up for blob analysis147

Identifying blobs .148

Adjusting blob analysis processing controls. .150

Controlling the image lattice150

The pixel aspect ratio151

Setting the Blob identification mode152

Selecting blobs .153

Chapter 10: Analyzing the blobs 155

Making feature extractions 156

The area and perimeter158

Dimensions .160

Determining the shape 162

Finding the blob location.166

Moments. .169

Location, length and number of runs.170

Chapter 11: Pattern matching 171

Pattern matching .172

Simple alignment techniques.173

Vertical and horizontal alignment173

Angular alignment 177

Chapter 12: Models, searches, and search
parameters . 181

Performing a search 182

Rotation . 188

Setting the angle of search. 190

Determining the rotation tolerance of
a model . 191

Masking the model . 192

Search parameters . 194

Specifying the number of matches 194

Setting the acceptance level 194

Setting the certainty level. 195

Redefining the model’s reference
position . 196

Selecting the search region 197

Positional accuracy 198

Setting the speed parameter 199

Preprocess the search model 199

Speeding up the search 200

Choose the appropriate model 200

Adjust the search speed parameter 200

Effectively choose the search region and
search angle . 201

Searching for multiple models at the
same time . 201

The pattern matching algorithm
(for advanced users) 202

Normalized Correlation202

Hierarchical Search 204

Search Heuristics206

Sub-pixel accuracy206

Chapter 13: Optical character recognition 209

The MIL OCR module 210

Steps to reading or verifying a string in
an image .211

A typical application213

Using fonts .216

Calibrating fonts .217

Setting character constraints 219

Setting processing controls220

Managing fonts .222

Saving and restoring a font222

Inverting a font .222

Inquiring about a font.222

Visualizing a font 222

Creating custom fonts224

Speeding up the read or
verification operation.228

Chapter 14: DataMatrix and bar codes 229

Introduction. 230

General steps . 231

Controlling read operations 231

Controlling write operations 234

Chapter 15: Measurements . 235

The measurement module 236

Markers . 237

A multiple marker 237

Steps to finding and obtaining measurements
of markers . 238

A measurement example 241

Measurement box. 244

Search algorithm 247

Marker characteristics 248

Edge markers: fundamental characteristics . 249

Edge markers: advanced characteristics. . . . 251

Stripe markers: fundamental
characteristics . 256

Stripe markers: advanced characteristics . . . 259

Multiple marker characteristics 261

Measurements between two markers 262

A measurement example 264

Chapter 16: Specifying and managing your
data buffers .269

Data buffers .270

Target system .271

Specifying the dimensions of a data buffer. . .271

Data type and depth272

Attribute .273

Manipulating and controlling certain data
buffer areas. .277

Child buffers. .277

Copying specific buffer areas 278

Managing data buffers 279

Controlling how color image buffers
are stored .281

RGB buffers .282

Binary buffers .284

YUV buffers. .284

YUV16 Packed .285

YUV9 Planar .286

YUV12 Planar .286

YUV16 Planar .287

YUV24 Planar .288

Child YUV buffers288

Accessing a MIL buffer directly 289

Mapping a data buffer to user-allocated
memory. .290

Pixel conventions .293

Chapter 17: Lookup tables . 295

Lookup tables . 296

LUTs and data buffers 297

Loading and generating data into LUTs 297

Generating data directly into the
LUT buffer . 297

Loading LUTs with precalculated data . . . 298

Using LUTs . 299

Processing using LUTs. 299

Displaying using LUTs 299

LUTs and digitizers 300

Chapter 18: Displaying an image 301

Displaying an image 302

Display configuration 303

Single-screen configuration 303

Dual-screen configuration 303

Multi-head display configuration 304

Display modes and the display window 305

Displaying in windowed-mode 305

Displaying in non-windowed mode. 305

Display size and depth. 306

Displaying buffers of different
data depths . 306

Removing a buffer from the display 307

Displaying multiple buffers 308

Panning, scrolling, and zooming 311

Annotating the displayed image
non-destructively .312

Using GDI annotations314

Displaying an image in a user-defined
window .317

Using the MdispSelectWindow() function. .317

LUTs and changing the displayed colors
or gray levels .321

Changing the default LUT values 322

Different display architectures in windowed
mode. .324

Underlay display architecture325

Overlay/regular display architecture.326

DirectDraw underlay-surface display
architecture .327

Advanced controls for windowed mode 328

Display types in windowed mode.328

Zoom types in windowed mode329

Controlling how the LUT buffer is loaded
into the Windows palette.330

Controlling how the logical palette is loaded
into the physical output LUTs.330

Chapter 19: Generating graphics 333

MIL and graphics .334

Preparing for graphics334

Drawing graphics .336

Writing text .338

Chapter 20 : Grabbing with your digitizer. 339

Cameras and input devices 340

The data format . 341

The digitizer number 342

Multiple cameras . 342

Number of frames or fields 343

Grabbing to the display 344

Live and pseudo-live continuous grabs. . . 344

Live transfer to the display. 345

Pseudo-live transfers to the display 345

Window occlusion 347

Reference levels, lookup tables, and
scaling . 349

Black and white reference levels 349

Color image reference levels 350

Mapping grabbed data through a LUT . . . 350

Scaling . 351

Optimizing application performance when
grabbing . 352

Grab mode . 352

Double buffering 353

Multiple buffering 355

Grabbing a sequence of frames in
real-time . 356

Grabbing with triggers and exposures 356

Asynchronous reset mode 357

Triggers and exposures 358

Software triggers 361

Auto-focusing .361

Search strategies 362

Chapter 21: Color .367

Dealing with color .368

Grabbing. .368

Displaying. .370

Processing. .371

Saving and loading color images374

Chapter 22 : JPEG compression375

Introduction .376

General steps .377

Controlling a JPEG compression378

JPEG lossless .378

JPEG lossy .379

Using your own table 380

Restart markers .381

Chapter 23: Data manipulation with multiple
systems. .383

Data manipulation with multiple systems . . .384

Chapter 24: Using MIL with multi-processing and
under multi-thread systems. .385

Multi-processing .386

Multi-threading. .387

MIL and multi-threading.388

Chapter 25: Using MIL with Native Mode
Functions . 397

Integrating native functions with MIL code . . 398

Portability . 398

Signaling MIL about Native Mode use. . . . 398

A native mode example. 399

Index

Product Support

Note: For detailed information about MIL functions, see MIL
Command Reference.

Note: For information about using MIL with your specific board, see
MIL/MIL-Lite Board-Specific Notes.

Chapter 1: Getting started

This chapter presents the features of the Matrox Imaging
Library package. It also explains the installation process,
how to run a Matrox Imaging Library application program,
and how to distribute your MIL application.

20 Chapter 1: Getting started

The MIL package

The Matrox Imaging Library (MIL) package is a hardware-
independent, modular 32-bit imaging library. It has an
extensive set of commands for image processing and specialized
operations such as blob analysis, calibration, bar and 2D code
reading/writing, measurement, pattern recognition, and
optical character recognition operations. It also supports a
basic graphics set. In general, MIL can manipulate binary,
grayscale, or color images.

The package has been designed for fast application
development and ease of use. It has a completely transparent
management system and entails virtual, rather than physical,
data object manipulation, allowing for platform-independent
applications. This means that a MIL application can run on any
VESA-compatible VGA board or Matrox imaging board under
different environments (that is, Windows 98/NT/2000). MIL
uses the notion of systems to identify boards, and more than
one board can be controlled by a single application program.
MIL is capable of running solely with the Host CPU, but can
take advantage of specialized accelerated Matrox hardware if
it is available and is more efficient.

Image acquisition Images can be loaded from disk or acquired from the wide range
of supported input devices (if hardware permits) and can be
stored in your platform’s storage area. Sequences of images can
also be loaded and saved in .avi format.
Compression MIL allows you to compress and decompress images. MIL can
compress images using the JPEG lossless or JPEG lossy
algorithm.

Image processing
capabilities

You can smooth, accentuate, qualify, or modify selected features
of an image using MIL’s processing capabilities. These
capabilities include point-to-point, statistical, spatial filtering,
morphological, Fast Fourier transform, as well as geometric
operations which include warping and polar-to-rectangular
transformations.

The MIL package 21

Graphics capabilities You can annotate or alter images using the basic graphics tools
in MIL. MIL has commands to write text, as well as basic
graphics commands to draw rectangles, arcs, lines, and dots.

Blob analysis
capabilities

The MIL blob analysis capabilities allow you to identify and
measure connected regions (commonly known as blobs or
objects) within an image.

The blob analysis module can measure a wide assortment of
blob features, such as the blob area, perimeter, Feret diameter
at a given angle, minimum bounding box, and compactness.
It can also be used to perform some image processing operations
such as reconstructing or eliminating blobs.

Measurement
capabilities

The MIL measurement module allows you to find sets of image
characteristics or "markers" in an image, based on differences
in pixel intensities. Upon finding a marker, the module returns
the marker’s spatial reference position and measures such
features as its width and angle. The module can also take
measurements between two markers.

Pattern recognition
capabilities

The MIL pattern recognition capabilities can help solve
machine vision problems such as alignment, measurement, and
inspection of objects. These capabilities include finding:

■ The coordinates of a pattern (referred to as a model) in a
target image.

■ The number of occurrences of a model in a target image.
In some cases, the orientation of the model and/or the target
image can play a factor in the search operation. MIL includes
a number of options to deal with such cases, each optimized for
different image and background conditions. For example, you
can find the orientation of a target image or you can search for
occurrences of a model at any angle, in the target image.

Optical character
recognition capabilities

The MIL optical character recognition (OCR) module provides
a powerful and easy to use function set for reading and verifying
character strings in grayscale images, providing results such
as quality scores and validity flags.

Bar code capabilities MIL allows you to read and write 2D codes, as well as several
types of bar codes.

22 Chapter 1: Getting started

Calibration capabilities MIL’s calibration module consists of a set of functions that allow
you to map pixel coordinates to real-world coordinates. This
mapping can be used to get results from other MIL modules in
real-world units. The mapping can also be used to physically
correct an image’s distortions. Calibration mappings can
compensate for non-uniform aspect ratio, rotation, perspective
foreshortening, and other more complex distortions.

Creating your own MIL
functions

If the available MIL operations do not provide the required
functionality or do not make use of some board-specific feature,
you can use the MIL Developer's Toolkit to directly access your
target system’s driver functions through native mode and/or to
create your own pseudo-MIL functions. Note, although entering
native mode can be useful, you should be aware that the
resulting application will not be portable to other Matrox
platforms supported by the MIL package. The MIL Developer's
Toolkit is described in the Matrox Imaging Library Command
Reference manual.

MIL objects MIL handles physical objects (systems, digitizers, displays, and
data buffers) as virtual objects. These virtual objects must be
allocated before you can manipulate them and must be released
when they are no longer required. For simple applications, you
seldom need to allocate these objects individually, since those
set up by default (MappAllocDefault()) generally meet your
application needs.

Image pixel depth The MIL package can:
■ Grab up to 16-bit grayscale images, or color images.

■ Process 1, 8, 16, and 32-bit integer or floating point images.

■ Process color images depending on the operation. Each band
of a color image is processed individually, one after the other.
Statistical, blob analysis, measurement, pattern matching,
optical character recognition, and code operations do not
support color processing.

■ Display 1, 8, or 16-bit grayscale or color images (if the
platform supports it).

The MIL package 23

MIL documentation’s
word usage

All the MIL documentation uses the words function and
command interchangeably, since most of the commands in MIL
are C functions. Digitizer and frame grabber are also used
interchangeably. Finally, in general, host refers to the principal
CPU in one’s computer while system refers to your Matrox
imaging board and its associated resources.

Command descriptions Descriptions of the individual commands are found in the
Matrox Imaging Library Command Reference and the
MIL/MIL-Lite Board Specific Notes manuals.

24 Chapter 1: Getting started

MIL and the Intel MMX™/SSE™
technologies

MIL’s processing operations have been optimized, in assembly
language, to take advantage of Intel MMX™ acceleration and
Streaming SIMD Extensions (SSE).

MMX™ Intel MMX™ Technology, an extension to the Intel architecture,
is designed specifically to accelerate multimedia (and
multimedia-like) applications. Intel MMX™ Technology is built
to handle computation-intensive algorithms that perform
repetitive operations on small data types (such as 8-bit pixels).
The technology covers several areas, such as basic arithmetic
operations, logical operations, shift operations, comparison
operations, and data transfer instructions. These instructions
use a SIMD model that allows the processor to perform a single
calculation simultaneously on 2, 4, or 8 data elements by
packing multiple operands (8-bit, 16-bit, or 32-bit values) into
a single 64-bit register and performing processing functions on
them in parallel. On a x86 compatible processor with Intel
MMX™ Technology, MIL operations can execute, typically, 4
times faster than on a regular x86 processor. Some operations
benefit even more from the MMX™ acceleration (for example,
a thinning operation can be up to 16 times faster).

SSE™ Streaming SIMD extensions accelerate performance of floating
point operations and include additional integer and

cacheability instructions that significantly enhance
performance.

System requirements 25

System requirements

The library MIL is available as a set of DLLs under Windows NT/98/2000.

The following system requirements should be respected in
order to ensure that MIL operates properly:

■ Computer with an x86 compatible processor.

■ Windows 98, Windows NT 4.0, or Windows 2000.

■ Minimum of 32 Mbytes RAM.

■ Minimum of 100 Mbytes free hard disk space.

■ Display adaptor (optional).

■ Matrox frame grabber (optional).

Supported compilers

The MIL CD includes MIL libraries that support the Microsoft
Visual C++ 6.0 (service pack 3) compiler under Windows NT 4.0
(service pack 6), Windows 98 SE, and Windows 2000. The CD
also includes ActiveMIL ActiveX controls for Microsoft Visual
Basic 6.0 (service pack 3) and Microsoft Visual C++ 6.0 (service
pack 3) RAD tools. The service pack indicated in parantheses
denotes the actual platform used for testing.

26 Chapter 1: Getting started

Getting started

You are probably anxious to start using MIL. However, before
you start, we recommend that you follow these steps:

■ Fill out and mail in your registration card. This ensures that
you are on our mailing list and will receive any information
on product updates and promotions.

■ Install MIL on your hard disk using the installation details
(described later in this chapter). Upon completion, the
read.me file, in the \MIL (or user-specified) directory,
specifies the location of all MIL files and how to compile the
MIL program examples. See the \MIL\Doc directory for
additional documentation.

■ Compile and run our sample program mstart.exe, in the
examples directory, to test the installation.

■ Review the milsetup.h file to make sure that the default setup
configuration matches your system configuration.

Note, the defaults are not automatically installed on your
system; a call to MappAllocDefault() initializes the system
with these defaults. For simplicity, most examples use the
default system and default display buffer. Upon installation,
the default image buffer is monochrome if the input device is
monochrome and color if the input device is color. Most
examples expect the default image buffer to be monochrome.
As you progress in the manual, you are shown how to set up

your own buffers and select other system configurations. You
can then return to a given example and replace portions of
the code to meet your requirements.

Installation 27

Installation

In addition to your MIL CD, you will require a hardware key
(a two-sided, 25-pin connector) for development of applications.
The key allows you to code, debug, and run your applications.
To redistribute your MIL applications, see the Redistributing
your MIL application section at the end of this chapter.

To install your MIL software:

1. Attach the hardware key to the parallel port of your
computer. If another device such as a printer is attached to
the parallel port, disconnect it, attach the hardware key,
and then attach the printer connector to the other end of
the hardware key. Note, the printer need not be turned on.

2. Place the installation CD in an appropriate drive. The
setup.exe program will run automatically.

During installation, you will be asked a number of questions,
such as:

■ The drive and directory on which to install the program.

■ Your target operating system and compiler.

■ The type of Matrox hardware installed in your computer (for
example, Matrox Corona).

■ The digitizer and display format to load into the default setup
file, milsetup.h.
■ The amount of DMA linear non-paged memory to reserve for
grab buffers. The amount of reserved DMA memory also
establishes the amount of remaining RAM available to your
operating system.

After installation, read the read.me file in the \MIL (or
user-specified) directory to determine where MIL files are
located and how to compile and run the MIL examples. Note
that the installation program also installs Matrox Intellicam
(your digitizer configuration program) and the MIL
Configuration utility.

28 Chapter 1: Getting started

MIL Configuration utility The MIL Configuration utility, located in your Matrox
Imaging\MILConfig directory, provides licensing, DMA
configuration, and system information tools. For example, if
you need to change the amount of reserved memory or if you
change the amount of physical memory in your computer, you
can change the amount of DMA memory assigned or RAM
available to your system at any time by running the MIL
Configuration utility (alternatively, you can adjust the memory
by uninstalling and reinstalling MIL). Should you require
technical support, use the MIL Configuration’s System Info
property page to generate a .txt file that contains all the
necessary system information required for basic
troubleshooting; this file can then be forwarded to your Matrox
technical support representative. You can also use the MIL
Configuration’s Licensing property page to generate run-time
licenses; this is discussed later in this chapter in the section,
Obtaining a run-time license.

If MIL is run without the hardware key, a temporary evaluation
license is assigned to your computer, allowing use of MIL for 30
days. Each time you run MIL, a dialog box appears indicating
the number of days until the evaluation license expires. Once
this time period has elapsed, MIL will not run unless a
hardware key is attached.

Note that MIL's 30-day evaluation license can only be installed
once. Any attempt to tamper with the PC's calendar, before the
date of expiry, will disable MIL. In that event, MIL can only be
re-used once a hardware key is obtained.

Building an application 29

 Building an application

Initialization At the beginning of each application, you must:

1. Allocate your MIL application. This creates a control and
execution environment for your imaging application.

2. Allocate your systems. This opens communication channels
and initializes the systems (or hardware resources). Once
Host communication has been established with a system,
you can allocate its memory resources, display, and input
capabilities.

Note, systems can have many data buffers, displays, and
digitizers. Processing can be done between many systems.
If the required system is the one specified in the milsetup.h file,
you can use the MappAllocDefault() macro (also specified in
milsetup.h) to allocate the default application, system, image
buffer, display, and digitizer. Use MappFreeDefault() to free the
application, devices, and memory resources that were allocated
with MappAllocDefault(), when they are no longer required.

30 Chapter 1: Getting started

Alternatively, you can use MappAlloc(), MsysAlloc(),
MbufAllocColor(), MdispAlloc(), and MdigAlloc() to perform the
above-mentioned operations, respectively. In this case, when
allocated memory resources, displays, and digitizers are no
longer required, free them using MbufFree(), MdispFree(), and
MdigFree(), respectively. At the end of each application, free the
system using MsysFree(), and then free the application using
MappFree().

❖ Note, for information about functionality and hardware
limitations specific to your target system, refer to the
MIL/MIL-Lite Board-specific notes manual.

Multiple systems Note, you can allocate more than one system and then use their
identifiers to access their devices and memory resources. Any
operation involving more than one system will be performed by
the most appropriate one. By default, if none of these systems
is more appropriate than the Host, the Host is used to perform
the operation.

The default image
buffer

If a color digitizer configuration format (DCF) was specified
upon installation, the default image buffer is defined as a color
buffer (RGB) in the milsetup.h file. Note, most examples in this
manual assume that the default image buffer is a monochrome
buffer. You will have to modify the examples appropriately in
order to run them with color defaults. For more details on
dealing with color, see Chapter 21.

When allocating the default image buffer and the default

display, the image buffer is given a displayable attribute and
set to the same size as the allocated display (in single-screen
mode, the default display is the same as that of the image
capture-size specified in the DCF). This buffer is then cleared
and displayed.

Error reporting You can enable or disable error reporting to the Host screen,
using MappControl(). By default, error reporting is enabled. If
you disable error reporting, you can still determine the success
of a particular command or a sequence of commands, using
MappGetError(). In addition, you can assign a user-defined
function to handle the event of a MIL error using
MappHookFunction().

Building an application 31

Compiling and linking To compile a MIL application program, you must include the
mil.h header file, in addition to the required standard C include
files. After you have compiled your application program, you
will have to link it with the appropriate libraries or import
libraries for your operating system, compiler, and target board.
The MIL libraries are located in the MATROX IMAGING (OR
USER-SPECIFIED)\MIL\LIBRARY\WINNT\MSC\DLL directory.

MIL Libraries Board Libraries

Library Description Library Description

mil.lib Core library mil1394.lib Matrox
Meteor-II/1394
library.

milblob.lib Blob Analysis module
library.

milgen.lib Matrox Genesis
library.

milcal.lib Calibration module
library.

milmet2.lib Matrox
Meteor-II/Stan-
dard/MultiChannel
library.

milocr.lib Character Recogni-
tion module library.

milmet2D.lib Matrox
Meteor-II/Digitizer

milpat.lib Pattern Matching
module library.

milorion.lib Matrox Orion
library.

milcode.lib Code module library. milpul.lib Matrox Pulsar
library.

milim.lib Image Processing
For more details, refer to the read.me file in the
\MIL\EXAMPLES (or user-specified) directory.

Testing installation We have provided a sample program, mstart.c, that allows you
to test the installation process and become familiar with
running a MIL application. This test program allocates the

module library.

milvga.lib VGA library.

milmeas.lib Measurement mod-
ule library.

32 Chapter 1: Getting started

application, opens communication with the default target
system, displays a welcoming message, pauses, and frees the
system resources.

���(KNG�PCOG��OUVCTV��E
���5[PQRUKU���6JKU�RTQITCO�FKURNC[U�C�YGNEQOKPI�OGUUCIG�VQ�VJG�WUGT�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

XQKF�OCKP
XQKF�
]
��/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO�����������5[UVGO�KFGPVKHKGT��������������
 ���/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����

����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
�������������������/A07..���/KN+OCIG��

����2TKPV�C�UVTKPI�KP�VJG�KOCIG�DWHHGT����
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.��������������������������
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.����9GNEQOG�VQ�/+.��������
��/ITC6GZV
/A&'(#7.6��/KN+OCIG�����.�����.��������������������������

����2TKPV�C�OGUUCIG�QP�VJG�*QUV�UETGGP����
��RTKPVH
�>P���
��RTKPVH
�>�9GNEQOG�VQ�/+.����>��YCU�RTKPVGF�>P>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

����(TGG�FGHCWNVU����
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

Communicating
properly?

During application development, you can use mstart.c to ensure
that the software is communicating properly with the target
system. To make sure your frame grabber is working properly
with your camera, use Intellicam.

Examples in general Throughout this manual, examples have been provided to
simplify concepts and get you started quickly. The source listing
of these examples can be found on disk. Refer to the readme file
in the \MIL\EXAMPLES (or user-specified) directory to
determine how to compile these examples.

In addition, some systems cannot run some of the examples
because they don’t have the hardware capability or enough
memory. You should skip these examples or modify them.

Distributing your MIL application 33

Distributing your MIL application

To distribute your MIL application, you will have to distribute
MIL run-time DLL files with your application and ensure that
the MIL run-time licenses are installed on the target
computers.

Distributing MIL run-time DLL files with your
software
If the target computers (on which you want to install the MIL
run-time DLLs) are immediately accessible, you can install the
run-time DLLs directly from the MIL CD. To do so, run the MIL
setup program and choose the redistribution option.

Alternatively, to distribute your MIL run-time DLLs, you can
have your setup program call MIL’s redistribution setup
program. There are two ways to distribute the MIL run-time
DLLs along with your application:

■ Normal distribution

■ Silent distribution

Normal distribution A normal distribution prompts the user with MIL dialog boxes
for setup information. To distribute MIL run-time DLL files
with your software using this method:

1. Copy the \REDIST directory from the MIL CD to the path
from which you will burn your software CD.
2. Adjust your installation program so that it calls the
\REDIST\MATROX\SETUP.EXE file with the parameter,
REDISTRIBUTION.

The setup.exe file installs the required run-time MIL DLL files
on your client’s system.

Silent distribution A silent distribution does not prompt the user for any
information; instead, it uses a response file to provide the
necessary setup parameters for the intended computer. A silent
distribution is often wanted when including MIL within your
application and you do not wish to have any Matrox Imaging
setup dialog boxes appear.

34 Chapter 1: Getting started

To distribute the MIL run-time DLLs using a silent
distribution:

1. Follow the steps for a normal MIL redistribution of your
application.

2. Create a response file that provides the setup questions
with all the answers necessary to install MIL according to
the target computers. The response file’s format parameters
and error codes can be found in the Redist.txt file.

3. Call the redist.exe program with the additional
’RESPONSEFILE = "<filename>" -s’ parameter to specify
the name and the location of your resonse file. For example:

Obtaining a run-time license
You require a MIL run-time license for each MIL application
that is distributed. You can call Matrox or your distributor to
obtain a license, or to buy a license generator kit to generate
run-time licenses yourself. Depending on the kit you purchase,
a license kit can generate up to a 100 run-time licenses. Note
that a run-time license does not allow development or
debugging of MIL applications. Run-time license hardware
keys are also available.

Obtaining a run-time
license from Matrox or
your distributor

You can obtain a license as follows:

1. Install your MIL application on the target PC. An

&�>4GFKUV>/CVTQZ>TGFKUV�GZG�4'&+564+$76+10�4'52105'(+.'��&�>4GFKUV>/CVTQZ>TGURQPUG�VZV���U
evaluation license is assigned to your system, allowing use
of MIL for 30 days.

Each time your application runs MIL, a dialog box appears
indicating the number of days until the evaluation license
expires and an option to obtain a run-time license is
displayed.

2. Select the Get license option. A computer code, unique to
your machine, is displayed and you are prompted for a
license number.

Alternatively, you can run the MIL Configuration utility,
located in your Matrox Imaging\MILConfig directory, and
generate a license using the Licensing property page.

Distributing your MIL application 35

3. Call Matrox or your distributor and give them this
computer code to obtain your permanent run-time license
number.

4. Enter the license number.

❖ Note that MIL 30-day evaluation licenses can only be used
once. Any attempt to tamper with the PC’s calendar, before
the date of expiry, will disable the MIL evalutaion license.
In that event, MIL can only be re-used once a license is
obtained.

Using a license kit The second method to acquire a run-time license requires that
you obtain a license kit. A license kit consists of a license meter
key (a two-sided 25-pin connector) and a MIL CD. This method
allows you to generate run-time licenses for machines using
their unique computer codes. You can generate a license with
the license kit using one of the following methods:

1. Attach the license meter key to the parallel port of your PC.

2. Run MIL setup. The Matrox Imaging Master Setup
dialog box appears.

3. Under Redistribution, choose the MIL License Generator
option. This installs the Matrox License Generator
application on your PC.

4. Exit setup.

5. Now, run the Matrox License Generator.
6. Type the computer code for which to generate a license.

7. Click the Get license button in the next dialog box. This is
the run-time license number that must be entered in your
client’s machine. Please record the license number for
future reference.

Or,

1. Attach the license meter key to the parallel port of your PC.

2. Run your application which incorporates MIL.
Alternatively, you can run the MIL Configuration utility.

36 Chapter 1: Getting started

3. A dialog box appears indicating that your evaluation license
has expired: choose the Get license option.

4. Upon consenting to the Matrox Imaging Library Licensing
Agreement, click the Get license button in the next dialog
box. Please record the license number for future reference.

Note that each time a license is generated, a number is
deducted from the license meter key until the key is empty.

Using a MIL run-time
hardware key for the
redistribution license

You can use a MIL run-time hardware key instead of a software
license for your target system. To have MIL run-time DLLs
recognize it, you must install the driver for the hardware key.

To install the hardware key driver, in addition to your regular
redistribution setup, use one of the following procedures:

■ For Windows NT/2000: Call the
\MATROX\DRIVERS\SUPERPRO\WINNT\SETUPX86.EXE and
select the Install Sentinel Driver function.

■ For Windows 98: Call the
\MATROX\DRIVERS\SUPERPRO\WIN95\SETUPW9X.EXE and
select Install Sentinel Driver function.

For more information about Sentinel driver installation, refer
to the Readme.txt file in the \MATROX\DRIVERS\SUPERPRO
directory.

Note, if you are performing a silent distribution using a MIL
run-time hardware key for the redistribution license, set the
response file parameter SUPERPRO to INSTALL, and the

Sentinel hardware key driver will be installed with the
redistribution of MIL.

Chapter 2: Allocating an
image buffer and grabbing
images

This chapter shows you how to allocate an image buffer
and the basics to start grabbing images.

38 Chapter 2: Allocating an image buffer and grabbing images

Getting started

After having run the mstart.c program to ensure that you have
installed MIL properly, you are ready to grab and display an
image. This chapter covers how to allocate and display a
monochrome image buffer and the basics to start grabbing.

Note, most of our examples that grab data assume that the
system has a monochrome digitizer. They also assume that the
input device (camera) is monochrome and is connected to the
default input channel of this digitizer (defaults are defined in
the milsetup.h file).

In addition, the examples assume that the default image buffer
is monochrome.

If you have specified a color digitizer input format upon
installation, the default digitizer and image buffer will be set
to color accordingly (a color image buffer is an image buffer with
multiple color bands rather than a monochrome buffer), and
therefore will not be appropriate for most examples. To run the
examples using the color defaults, you will have to modify some
examples appropriately.

Later in this manual, we discuss changing the current input
channel, how to specify a different digitizer format, and how to
allocate different types of image buffer. With that knowledge,
you can return to this chapter and modify the examples.
Chapter 21 discusses dealing with color in detail.

Allocating and displaying an image buffer 39

Allocating and displaying an image buffer

Allocating an image
buffer

Image buffers are storage areas that can hold image data so
that it can be displayed, manipulated, grabbed, and/or
analyzed. For simple operations, you will find it sufficient to
use the default image buffer that can be allocated during
application initialization with the MappAllocDefault() macro.
However, for some operations, you will need to allocate another
buffer. For example, if you require that the image data
resulting from an operation does not overwrite the source data,
you will need two separate image buffers.

You allocate a monochrome image buffer, using MbufAlloc2d().
This command requires that you specify:

■ The system on which to allocate the buffer.

■ The image buffer’s size in x and y dimensions.

■ The depth of the buffer: 1-, 8-, 16-, or 32-bit buffers.

■ The image buffer’s data type. Signed, unsigned, and
floating-point buffers are all supported by MIL.

■ The image buffer’s intended use. You can allocate an image
buffer to have a combination of uses. It can be used as the
source or destination buffer for a processing operation
(M_PROC), a buffer in which to store acquired data (M_GRAB),
and/or a displayable buffer (M_DISP). This type of
information determines where the buffer is allocated in
physical memory.

Displaying an image
buffer

Especially during application development, it is useful to
display the image buffer that you are manipulating. You must
first allocate a MIL display on the target system, using
MdispAlloc() (or MappAllocDefault()). If you have allocated a
displayable buffer (M_DISP), display it in this display, using
MdispSelect() and stop displaying it using MdispDeselect().
Note, however, that the image buffer and the display must be
allocated on the same system.

40 Chapter 2: Allocating an image buffer and grabbing images

The following example shows you how to allocate and display
an image buffer. Upon completion, it leaves the buffer contents
on the display so that you can analyze it. You can modify the
example and remove it from the display upon exit by calling
MdispDeselect() before freeing the image buffer.

���(KNG�PCOG��OFKURNC[�E
���5[PQRUKU��6JKU�RTQITCO�CNNQECVGU�C�FKURNC[CDNG�KOCIG�DWHHGT��ENGCTU�KVU�
�������������EQPVGPVU��FTCYU�C�HKNNGF�EKTENG��CPF�VJGP�FKURNC[U�VJG�DWHHGT�
�������������+V�CNUQ�EJGEMU�YJGVJGT�VJG�CNNQECVKQP�YCU�UWEEGUUHWN��WUKPI
�������������VJG�/+.�GTTQT�TGRQTVKPI�OGEJCPKUO�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J �

�FGHKPG�+/#)'A&'26*���.

XQKF�OCKP
XQKF�
]�
��/+.A+&��/KN#RRNKECVKQP������#RRNKECVKQP�KFGPVKHKGT������
����������/KN5[UVGO�����������5[UVGO�KFGPVKHKGT�����������
����������/KN&KURNC[����������&KURNC[�KFGPVKHKGT����������
����������/KN+OCIG������������+OCIG�DWHHGT�KFGPVKHKGT�����
��NQPI����'TTQT%QFG�����������'TTQT�EQFG�XCNWG������������

����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
����������������������������������/A07..��/A07..��

����#NNQECVG�C�VYQ�FKOGPUKQPCN�KOCIG�DWHHGT�YKVJ�VJG�UCOG�FKOGPUKQPU�CU�VJG
�����FKURNC[CDNG�UETGGP��KP�YJKEJ�VQ�RGTHQTO�ITCRJKE�QRGTCVKQPU��
����
��/DWH#NNQE�F
/KN5[UVGO��/A&'(A+/#)'A5+<'A:A/+0�/A&'(A+/#)'A5+<'A;A/+0��
�������������������������/A&'(A+/#)'A6;2'��/A+/#)'
/A&+52���/KN+OCIG���

���
EQPV������

Allocating and displaying an image buffer 41

In this example, we also showed how to determine the success
of a buffer allocation. Subsequent examples will not perform
explicit error checking; instead, errors will be returned
automatically to the screen.

Note, if you allocated the default buffer (MappAllocDefault()),
this buffer would be cleared and displayed by default.

Displaying multiple
buffers

With MIL, you can also display multiple buffers. This is
discussed later in the manual, in Chapter 18: Displaying an
image.

�����%JGEM�VJG�GTTQT�UVCVWU�EQFG�UGV�D[�VJG�CNNQECVKQP�EQOOCPF��+H�VJGTG�
�����YCU�PQ�GTTQT��FTCY�CPF�FKURNC[�C�EKTENG��QVJGTYKUG�RTKPV�CP�GTTQT
�����OGUUCIG�CPF�GZKV��
�����
���/CRR)GV'TTQT
/A%744'06���'TTQT%QFG��
���KH�
'TTQT%QFG����/A07..�
���]
���������%NGCT�DWHHGT�CPF�FTCY�C�EKTENG�����
�������/DWH%NGCT
/KN+OCIG���.��
�������/ITC%QNQT
/A&'(#7.6�����.��
�������/ITC#TE(KNN
/A&'(#7.6��/KN+OCIG�����.�����.�����.�����.��������������

���������&KURNC[�VJG�KOCIG�DWHHGT����
�������/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

���������2TKPV�C�OGUUCIG����
�������RTKPVH
�#�EKTENG�YCU�FTCYP�KP�VJG�FKURNC[GF�KOCIG�DWHHGT�>P���
�������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�������IGVEJCT
��

���������4GNGCUG�KOCIG�DWHHGT����
�������/DWH(TGG
/KN+OCIG��
���_
���GNUG
���]
���������2TKPV�CP�GTTQT�OGUUCIG����
�������RTKPVH
�'TTQT��+OCIG�DWHHGT�CNNQECVKQP�HCKNGF�>P���
�������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�������IGVEJCT
��
���_
��
�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

42 Chapter 2: Allocating an image buffer and grabbing images

Grabbing images

Grabbing an image Many applications depend on the ability to grab an image for
later analysis or inspection. With MIL, you use an allocated
digitizer to grab from an input device (typically a video camera).
To allocate your digitizer, use MdigAlloc() or
MappAllocDefault(). This configures the camera interface on
the digitizer so it can accept input from the input device. With
a call to MdigGrab(), you can then grab into a grab image buffer
(M_GRAB).

The following example shows you how to grab an image from
the default camera.

���(KNG�PCOG��OITCD�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�HTQO�VJG�ECOGTC�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
���/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�������
�����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT������������
�����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT�����������
�����������/KN&KIKVK\GT���������&KIKVK\GT�KFGPVKHKGT���������
�����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT������

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
���������������������/KN&KIKVK\GT���/KN+OCIG��

�����)TCD�CP�KOCIG�����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG��

�����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
���RTKPVH
�#P�KOCIG�JCU�DGGP�ITCDDGF�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN&KIKVK\GT�
�������������������/KN+OCIG��
���������������������������������
_

Grabbing images 43

Allocate the grab image buffer on the same system, and of the
same data format type, as the digitizer. For color input devices,
use color image buffers (see Chapter 21: Color).

By default, when MdigGrab() is issued, it grabs a complete
frame of data. Use MdigControl() to control the number of
frames or fields grabbed by MdigGrab(). To control the digitizer,
see Chapter 20: Input devices and digitizers.

Continuous grabbing
and adjusting your
camera

When adjusting and focusing your camera, grabbing a single
frame at a time can be tedious. MIL features a continuous grab
function, MdigGrabContinuous(), that grabs image frames into
the specified buffer until you issue MdigHalt().

This is discussed in greater detail in Chapter 20: Input devices
and digitizers. The following example is of adjusting a camera
using a continuous grab.

���(KNG�PCOG��OHQEWU�E�
���5[PQRUKU���6JKU�RTQITCO�CNNQYU�[QW�VQ�CFLWUV�[QWT�ECOGTC�D[�ITCDDKPI
��������������EQPVKPWQWUN[�WPVKN�C�MG[�KU�RTGUUGF�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

XQKF�OCKP
XQKF�
]�
���/+.A+&��/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT������
�����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�����������
�����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT����������
�����������/KN&KIKVK\GT���������&KIKVK\GT�KFGPVKHKGT��������
�����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�����

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
���������������������/KN&KIKVK\GT���/KN+OCIG��

�����)TCD�EQPVKPWQWUN[����
���/FKI)TCD%QPVKPWQWU
/KN&KIKVK\GT��/KN+OCIG��

���
EQPV������

44 Chapter 2: Allocating an image buffer and grabbing images

If your camera supports remote lens adjustment, you can use
MdigFocus() to automatically adjust the lens motor of your
camera to achieve optimum focus in your images. See the
Auto-focusing section in Chapter 20: Input devices and
digitizers.

���9JGP�C�MG[�KU�RTGUUGF��JCNV����
���RTKPVH
�%QPVKPWQWU�ITCD�KP�RTQITGUU��#FLWUV�[QWT�ECOGTC�CPF>P���
���RTKPVH
�RTGUU��'PVGT �VQ�UVQR�ITCDDKPI�>P���
���IGVEJCT
��
����
�����5VQR�EQPVKPWQWU�ITCD����
���/FKI*CNV
/KN&KIKVK\GT��

�����2CWUG�VQ�UJQY�VJG�TGUWNV����
���RTKPVH
�>P&KURNC[KPI�VJG�NCUV�ITCDDGF�KOCIG�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[�
���������������������������������/KN&KIKVK\GT��/KN+OCIG��
_

Chapter 3: Image processing

This chapter describes the steps to performing a typical
application with the MIL image processing module.

46 Chapter 3: Image processing

Image processing

Pictures, or images, are important sources of information for
interpretation and analysis. These might be images of a
building undergoing renovations, a planet’s surface
transmitted from a spacecraft, plant cells magnified with a
microscope, or electronic circuitry. Human analysis of these
images or objects presents inherent difficulties: the visual
inspection process is time-consuming and subject to
inconsistent interpretations and assessments. Computers, on
the other hand, are ideal for performing these tasks.

In order for computers to process images, the images must be
numerically represented. This process is known as image
digitization.

Once images are represented digitally, computers can reliably
automate the extraction of useful information through the use
of digital image processing. Digital image processing performs
various types of image enhancements, distortion corrections,
and measurements.

The MIL package 47

The MIL package

MIL provides a comprehensive set of image processing
operations. There are two main types of image processing
operations:

■ Those that enhance or transform an image.

■ Those that analyze an image (that is, generate a numeric or
graphic report that relates specific image information).

MIL supports such operations as:

■ Point-to-point operations. These operations include constant
thresholding, image comparison, image subtraction, and
image mapping. They compute each pixel result as a function
of the pixel value at a corresponding location in either one or
two source images.

■ Statistical operations. These extract statistical information
from a given image, such as the minimum or maximum image
pixel value or a histogram. They condense a frame of pixels
into a smaller, more functional set of values for analysis.

■ Spatial filtering operations. These operations are also known
as convolution. They include operations that can enhance and
smooth images, accentuate image edges, and remove ‘noise’
from an image. Most of these operations compute results
based on an underlying neighborhood process: the weighted
sum of a pixel value and its neighbors’ values.

■ Morphological operations. These operations include erosion,
dilation, opening, and closing of images. They compute new
values according to geometric relationships and matches to
known patterns in the input image.

48 Chapter 3: Image processing

Steps to performing a typical application

We have described the broad set of operations included in the
MIL image processing module. Most applications do not require
all of these operations.

Image processing pertains to more than one field and no single
application program can solve the problems associated with
each one of these fields. Therefore, this section describes what
we believe to be a typical problem, where the solution makes
use of most of the supported operations. It also outlines the
steps to take to implement this solution.

A typical application
In analyzing an image of a tissue sample, you might want to
know the number of cell nuclei that are larger than a certain
size, indicating an abnormality. This involves the following
image processing steps:

1. Grab or load an image of a magnified tissue sample.

2. Smooth the image to remove noise produced during the
grab.

3. Binarize the image so that the cell nuclei or particles and
the background have different values: represent particles
in white and the background in black. This will allow you,
later, to label each particle with a unique number.

4. Perform an opening operation to remove small particles
from the image.

Steps to performing a typical application 49

5. Label each particle with a unique consecutive number
starting with the label 1.

6. Calculate and read the extreme value of the image. This
value also corresponds to the largest label. Since the image
particles are labeled with consecutive unique numbers, the
largest valued particle is also labeled with a number that
corresponds to the number of particles in the image.

50 Chapter 3: Image processing

How to encode these
steps

The following sample program (mcount.c) shows you how to
encode these steps, using an existing image of a tissue sample
(cell.mim).

���(KNG�PCOG��OEQWPV�E
���5[PQRUKU���6JKU�RTQITCO�NQCFU�CP�KOCIG�QH�C�VKUUWG�UCORNG�CPF�FGVGTOKPGU
��VJG�PWODGT�QH�EGNN�PWENGK�YJKEJ�CTG�NCTIGT�VJCP�C�EGTVCKP�UK\G�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

���6CTIGV�/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A(+.'��������������EGNN�OKO�
�FGHKPG�+/#)'A9+&6*���������������.
�FGHKPG�+/#)'A*'+)*6��������������.
�FGHKPG�+/#)'A6*4'5*1.&A8#.7'�����.

���5OCNN�RCTVKENG�TCFKWU�
KP�RKZGNU�����
�FGHKPG�5/#..A2#46+%.'A4#&+75���.

XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP������#RRNKECVKQP�KFGPVKHKGT���������������
���������/KN5[UVGO�����������5[UVGO�KFGPVKHKGT��������������������
���������/KN&KURNC[����������&KURNC[�KFGPVKHKGT�������������������
���������/KN+OCIG������������+OCIG�DWHHGT�KFGPVKHKGT��������������
���������/KN5WD+OCIG���������5WD�KOCIG�DWHHGT�KFGPVKHKGT����������
���������'ZVT4GUWNV����������'ZVTGOG�TGUWNV�DWHHGT�KFGPVKHKGT�����
��NQPI���/CZ.CDGN0WODGT������*KIJGUV�NCDGN�XCNWG������������������

�����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
�������������������/A07..���/KN+OCIG��

�����4GUVTKEV�VJG�TGIKQP�VQ�DG�RTQEGUUGF�VQ�VJG�KOCIG�UK\G����
���/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6���/KN5WD+OCIG��

�����.QCF�UQWTEG�KOCIG�KPVQ�CP�KOCIG�DWHHGT����
��/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG��

�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG����
��RTKPVH
�6JKU�RTQITCO�EQWPVU�VJG�PWODGT�QH�NCTIG����
��RTKPVH
�RCTVKENGU�KP�VJG�FKURNC[GF�KOCIG�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��
��

EQPV������

Steps to performing a typical application 51

�����5OQQVJ�VJG�KOCIG�VQ�TGOQXG�PQKUG����
��/KO%QPXQNXG
/KN5WD+OCIG��/KN5WD+OCIG��/A5/116*��

�����$KPCTK\G�VJG�KOCIG�UQ�VJCV�RCTVKENGU�CTG�TGRTGUGPVGF
�����KP�YJKVG�CPF�VJG�DCEMITQWPF�KP�DNCEM����
��/KO$KPCTK\G
/KN5WD+OCIG��/KN5WD+OCIG��/A.'55A14A'37#.��
��������������+/#)'A6*4'5*1.&A8#.7'��/A07..��

�����4GOQXG�UOCNN�RCTVKENGU����
��/KO1RGP
/KN5WD+OCIG��/KN5WD+OCIG��5/#..A2#46+%.'A4#&+75��/A$+0#4;��

�����2CWUG�VQ�UJQY�VJG�TGOCKPKPI�RCTVKENG
U�����
��RTKPVH
�>P���
��RTKPVH
�6JGUG�RCTVKENGU�JCXG�DGGP�GZVTCEVGF�HTQO�VJG�QTKIKPCN�KOCIG�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

�����.CDGN�KOCIG�KP�RNCEG����
��/KO.CDGN
/KN5WD+OCIG��/KN5WD+OCIG��/A&'(#7.6��

�����6JG�NCTIGUV�NCDGN�XCNWG�EQTTGURQPFU�VQ�VJG�GZVTGOG�XCNWG�QH�VJG�KOCIG��
��
��/KO#NNQE4GUWNV
/KN5[UVGO���.��/A':64'/'A.+56���'ZVT4GUWNV��
��/KO(KPF'ZVTGOG
/KN5WD+OCIG��'ZVT4GUWNV��/A/#:A8#.7'��
��/KO)GV4GUWNV
'ZVT4GUWNV��/A8#.7'���/CZ.CDGN0WODGT��

�����/WNVKRN[�VJG�NCDGNKPI�TGUWNV�VQ�CWIOGPV�VJG�ITC[�NGXGN�QH�VJG�RCTVKENGU�
��
��KH�
/CZ.CDGN0WODGT�
�����/KO#TKVJ
/KN5WD+OCIG�����.�/CZ.CDGN0WODGT��/KN5WD+OCIG��/A/7.6A%1056��

�����2TKPV�TGUWNVU����
��RTKPVH
�>P���
��RTKPVH
�6JGTG�YGTG��NF�NCTIG�RCTVKENG
U��KP�VJG�QTKIKPCN�KOCIG�>P��
����������/CZ.CDGN0WODGT��
����������
��RTKPVH
�2TGUU��'PVGT �VQ�GPF����
��IGVEJCT
��

�����(TGG�CNN�CNNQECVKQPU����
��/KO(TGG
'ZVT4GUWNV��
��/DWH(TGG
/KN5WD+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

52 Chapter 3: Image processing

Chapter 4: Improving your
images

This chapter describes different ways to improve your
images, using the MIL image processing module.

54 Chapter 4: Improving your images

Image quality

Prior to manipulating and extracting information from an
image, many applications require that you obtain the best
possible digital representation of it. Several factors affect the
quality of an image. These include:

■ Random noise. There are two main types of random noise:

❐ Gaussian noise. When this type of noise is present, the
exact value of any given pixel is different for each grabbed
image; this type of noise adds to or subtracts from the
actual pixel value.

❐ Salt-and-pepper noise (also known as impulse or shot
noise). This type of noise introduces pixels of arbitrary
values (usually high-frequency values) that are generally
noticeable because they are completely unrelated to the
neighboring pixels.

Random noise can be caused, for example, by the camera or
digitizer because electronic devices tend to generate a certain
amount of noise. If the images were transmitted, the distance
between the sending and the receiving devices also magnifies
the random noise problem because of interference.

■ Systematic noise. Unlike random noise, this type of noise can
be predicted, appearing as a group of pixels that should not
be part of the actual image. This can be caused, for example,
by the camera or digitizer or by uneven lighting. If the image
was magnified, microscopic dust particles, on either the
object or a camera lens, can appear to be part of the image.

■ Distortions. Distortions appear as geometric transforms of
the actual image. These can be caused, for example, by the
position of the camera relative to the object (not
perpendicular), the curvature in the optical lenses, or a
non-unity aspect ratio of an acquisition device.

Techniques to improve images 55

Techniques to improve images

Most interference problems cannot be adjusted very easily at
the source; therefore, preprocessing will probably be required
to improve the image as much as possible, without affecting the
information that you are seeking. There are several techniques
that you can use to improve your image:

■ Grab the object of interest several times, averaging each
image frame with the previous. This technique is generally
effective on Gaussian random noise.

■ Apply a low-pass spatial filter to your image to reduce
Gaussian random noise and systematic noise with small scale
variations. This technique replaces each pixel with a
weighted sum of its neighborhood.

■ Apply a median filter to your image to reduce
salt-and-pepper noise. This technique replaces each pixel
with the median pixel value of its neighborhood.

■ Perform a morphological opening operation to remove small
particles and break isthmuses between objects in your image.

■ Perform a morphological closing operation to remove small
holes in objects.

■ Make sure that the type of camera you allocate digitizes the
image with square pixels (that is, a 1:1 aspect ratio), to reduce
object-shape distortions. If this is not possible or does not
correct the problem, you can resize the image, using
MimResize().

56 Chapter 4: Improving your images

Averaging an input sequence

An effective technique to remove random noise is to average a
grabbed sequence of the same target image. For instance,
Gaussian noise affects the value of any given pixel for each
grabbed frame, adding to or subtracting from the actual pixel
value. Therefore, over several image acquisitions, this noise
averages out to zero. As a rule of thumb, Gaussian noise is
generally reduced by the square root of the number of grabbed
frames.

Frame averaging
with MIL

With MIL, you can average an input sequence, using either one
of the following methods:

■ Adding all input frames and then dividing the result by a
specified weight factor. To use this method, use MimArith().

■ Adding weighted input frames to a weighted accumulator
buffer (Iacc = aIin + (1 - a)Iacc or Iacc = a(Iin - Iacc) + Iacc). To
use this method, use MimArithMultiple() with
M_WEIGHTED_AVERAGE.

The latter approach also acts as a temporal filter if the input is
changing. This allows you to filter out moving objects from a
constant background.

If you do not want to lose any frames in your sequence, you can
use a method called double buffering, a technique whereby
which you can grab data into one buffer while another buffer is
being processed. For an example on how to implement double
buffering, see mdbproc.c file in MIL’s example directory.

Applying spatial filters 57

Applying spatial filters

Spatial filtering provides an effective method to reduce noise.
Spatial filtering operations determine each pixel’s value based
on its neighborhood values. They allow images to be separated
into high-frequency and low-frequency components. There are
two main types of spatial filters that can remove noise: low-pass
filters and rank filters.

Low-pass spatial filters Low-pass spatial filters are effective in reducing Gaussian
random noise (and high-frequency systematic noise), provided
that the noise frequency is not too close to the spatial frequency
of significant image data. These filters replace each pixel with
a weighted sum of each pixel’s neighborhood. Note, these filters
have a side-effect of selectively smoothing your image and
removing edge information.

You can apply low-pass filters with the MimConvolve() image
processing command. The weights applied to each
neighborhood are specified in a data buffer called a kernel. MIL
provides a predefined low-pass filter called M_SMOOTH, that
you will find satisfies most applications.

In the previous chapter, we looked at a cell-analysis application
that determined the number of cell nuclei in a tissue sample.
Since Gaussian noise is generally introduced when digitizing,
we performed a smoothing operation prior to performing the
analysis.

Rank filters Rank-filter operations are more suitable for removing
salt-and-pepper type noise since they replace each pixel with a
pixel in its neighborhood rather than a weighted sum of its
neighborhood. The weighted sum generally creates a blotchy
effect around each noise pixel.

You can perform a rank-filter operation, using MimRank(). In
most cases, it is best to use a rank that is half of the number of
elements in the neighborhood. This effectively replaces each
pixel with the median of the neighborhood and is therefore
called a median filter. To perform a median filter, set the
MimRank() rank parameter to M_MEDIAN. You will find that
the median filter will most often suit your application needs.

58 Chapter 4: Improving your images

Opening and closing

Another way of improving the image might be to remove, for
example, small particles that have been introduced by dust, or
holes in objects. These tasks can generally be accomplished
with an opening or closing operation, respectively.

Opening and closing operations determine each pixel’s value
according to its geometric relationship with neighborhood
pixels, and as such are part of a larger group of operations
known as morphological operations.

Removing small
particles

Besides removing small particles, opening operations also
break isthmuses or connections between touching objects. MIL
provides the MimOpen() command to perform a basic opening
operation on 3 by 3 neighborhoods taking all neighborhood
pixels into account.

Filling holes Closing operations are very useful in filling holes in objects;
however in doing so, they also connect close objects, as shown
below. MimClose() performs a standard 3 by 3 closing operation
taking all neighborhood pixels into account.

Note, opening and closing operations work best on binary
images.

Since opening is the result of eroding and then dilating an
image, and closing is the result of dilating and then eroding an
image, you can also customize an opening or closing operation,
using MimErode() and MimDilate(). Erosion and dilation are
discussed fully in Chapter 5: Image manipulation.

Basic geometrical transform 59

Basic geometrical transform

Image distortions can affect application results. For example,
in a medical application that analyzes blood cells, if the camera
does not have a one-to-one aspect ratio and no correction is
performed, the cells appear distorted and elongated, and
incorrect interpretations might result. Rotating such an image
causes even more serious object distortion.

To resolve distortion problems, the MIL image processing
module offers basic, as well as advanced, geometric functions.
Since the advanced geometric functions (MimPolarTransform()
and MimWarp()) are slower than the basic geometric functions,
they should only be used when the required transform cannot
be performed using a basic geometric function. The advanced
geometric functions are discussed in Chapter 6.

Resizing an image The MimResize() function resizes an image along the horizontal
and/or vertical axis. This can help resolve aspect-ratio
problems. If both the horizontal and vertical resizing factors
are set to the same value, this function can reduce or magnify
an image to an appropriate size.

Rotating an image In some instances, the orientation of an image can also cause
erroneous conclusions. When an object is rotated from its
original position, you can realign it in memory by the required
angle, using MimRotate().

Translating an image MimTranslate() displaces an image by a specified number of
pixels in the x and/or y direction, with sub-pixel accuracy.

Flipping an image MimFlip() flips an image horizontally (left to right) or vertically
(top to bottom). Note that flipping horizontally allows you to get
a mirror copy of the original image.

Interpolation Geometric functions are performed according to a specified
interpolation mode. Interpolation is discussed in Chapter 6.

60 Chapter 4: Improving your images

Chapter 5: Image
manipulation

This chapter describes different ways to manipulate your
images using the MIL image processing module.

62 Chapter 5: Image manipulation

Image manipulation

Once you have improved your image as much as possible, you
are ready to start manipulating and extracting information
from it. The MIL image processing module offers you several
image manipulation operations. Depending on your
application, you will need to perform one operation before
another in order to extract the required information. This
chapter will try to help you determine this order.

Image statistics

Many applications need to obtain some type of image statistic
to condense a frame of pixels into a smaller, more functional set
of values for analysis. The statistic might be required to
perform some subsequent operation and/or might be used to
summarize the effect of some image operation. The MIL image
processing module offers a variety of functions to extract
statistical information from an image. These functions allow
you, for example, to:

■ Generate the intensity histogram of an image buffer
(MimHistogram()).

■ Find the minimum and maximum values of an image buffer
(MimFindExtreme()).

■ Find the location of certain pixel values (MimLocateEvent()).

■ Find the number of differences between two image buffers
(MimCountDifference()) .

■ Perform an image projection from two dimensions to one
dimension (MimProject()).

Image statistics 63

Generating a histogram
A histogram is the intensity distribution of pixel values in an
image and is generated by counting the number of times each
pixel intensity occurs. This information is very useful for
several applications. In particular, it is useful to select a
threshold level when binarizing an image (discussed later) and
to change the image intensity distribution when trying to
increase the image contrast.

You can generate an image histogram, using MimHistogram().
This command takes an image buffer and stores the results in
a previously allocated histogram result buffer. You allocate the
result buffer, using MimAllocResult(), specifying its type as
M_HIST_LIST. Give it enough entries to hold all possible
intensities.

You can then read results, using MimGetResult(). Once results
have been read from the result structure, you can release the
structure, using MimFree().

���(KNG�PCOG��OJKUV�E�
���5[PQRUKU���6JKU�RTQITCO�NQCFU�CP�KOCIG�QH�C�VKUUWG�UCORNG�CPF�IGPGTCVGU
��������������VJG�KOCIG�JKUVQITCO�
���
�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

���6CTIGV�/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A(+.'����������EGNN�OKO�
�FGHKPG�+/#)'A9+&6*�����������.
�FGHKPG�+/#)'A*'+)*6����������.

���0WODGT�QH�RQUUKDNG�RKZGN�KPVGPUKVKGU����
�FGHKPG�07/A+06'05+6+'5�������.

XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP�����������������#RRNKECVKQP�KFGPVKHKGT���������
���������/KN5[UVGO����������������������5[UVGO�KFGPVKHKGT��������������
���������/KN&KURNC[���������������������&KURNC[�KFGPVKHKGT�������������
���������/KN+OCIG�����������������������+OCIG�DWHHGT�KFGPVKHKGT��������
���������/KN5WD+OCIG��������������������5WD�KOCIG�DWHHGT�KFGPVKHKGT����
���������*KUV4GUWNV���������������������*KUVQITCO�DWHHGT�KFGPVKHKGT����
��NQPI���*KUV8CNU=07/A+06'05+6+'5?������*KUVQITCO�XCNWGU���������������
��UJQTV��K������������������������������%QWPVGT������������������������

����#NNQECVG�VJG�FGHCWNV�U[UVGO�CPF�KOCIG�DWHHGT����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
�������������������/A07..���/KN+OCIG��
�
���
EQPV����

64 Chapter 5: Image manipulation

You could use the MIL graphics commands to plot the
histogram results on a graph (as shown below). The graphics
commands (Mgra...()) are discussed later in this manual.

The first peak shows the pixel intensities that make up the dark
particles in the image, while the other peaks represent the gray
and white background pixels.

�����4GUVTKEV�VJG�TGIKQP�VQ�DG�RTQEGUUGF�VQ�VJG�KOCIG�UK\G����
��/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6���/KN5WD+OCIG��

�����.QCF�UQWTEG�KOCIG�KPVQ�CP�KOCIG�DWHHGT����
��/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG��
�
�����#NNQECVG�C�JKUVQITCO�TGUWNV�DWHHGT����
��/KO#NNQE4GUWNV
/KN5[UVGO��07/A+06'05+6+'5��/A*+56A.+56���*KUV4GUWNV��
�
�����)GPGTCVG�VJG�JKUVQITCO����
��/KO*KUVQITCO
/KN5WD+OCIG��*KUV4GUWNV��
�
�����)GV�VJG�TGUWNVU����
��/KO)GV4GUWNV
*KUV4GUWNV��/A8#.7'��*KUV8CNU��

����2TKPV�VJG�TGUWNVU����
��RTKPVH
�2TGUU��'PVGT �VQ�RTKPV�VJG�JKUVQITCO�HQT�VJG�FKURNC[GF�KOCIG�>P���
��IGVEJCT
��

��HQT
K����K�07/A+06'05+6+'5��K

�
��]
����RTKPVH
���F����NF>P���K��*KUV8CNU=K?��
����KH

K�������������
����]
������RTKPVH
�>P2TGUU��'PVGT �VQ�EQPVKPWG�>P���
������IGVEJCT
��
����_
��_
�
�����(TGG�CNN�CNNQECVKQPU����
��/KO(TGG
*KUV4GUWNV��
��/DWH(TGG
/KN5WD+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

 34500

800

0 128 250

Image statistics 65

Finding the image extremes

You can find the minimum and maximum pixel values of your
image with MimFindExtreme(). Perhaps the most common use
for finding the minimum and maximum image pixel values is
to fine-tune the black and white reference levels of your
digitizer, ensuring full-range digitization.

Another use of MimFindExtreme() is to find the number of
objects in a labeled image . If all objects in an image are labeled
with unique consecutive values, using MimLabel() (discussed
later in this chapter), the largest label value also corresponds
to the number of objects in your image.

The MimFindExtreme() command stores results in an
extreme-value result buffer that should have been previously
allocated, using MimAllocResult() with the M_EXTREME_LIST
flag. You can get the resulting values, using MimGetResult(),
and free the result buffer, using MimFree().

Projecting an image to one dimension
The MimProject() command projects an image buffer into a one
dimensional buffer, generated by adding all pixel values along
each diagonal in the image at the specified angle. This
projection is referred to as the pixel value density of each
diagonal. The 90 degree projection of the image is known as the
row profile, and the 0 degree projection is known as the column
profile.

The MimProject() command can perform both grayscale and
binary image projections. On simple binary images, the
projection is useful to detect object locations.

66 Chapter 5: Image manipulation

You allocate the result buffer, using MimAllocResult() with the
M_PROJ_LIST flag. You should define a result buffer with as
many locations as there are diagonals in the image at the
specified angle. You can then get the resulting values, using
MimGetResult(), and free the result structure, using
MimFree().

Thresholding your images

Thresholding images means reducing each pixel to a certain
range of values. Some operations can be performed more
efficiently on thresholded images. Images with full grayscale
levels are useful for some tasks, but have redundant
information for others. The MIL package provides two
thresholding methods:

■ Binarizing, using the MimBinarize() command.

■ Clipping, using the MimClip() command.

Binarizing
A binarizing operation reduces an image to two grayscale
values: 0 and the maximum value in the image (for example,
255 if the image is 8-bit). Binary images are useful when trying
to identify geometrical patterns and objects in your image since
they are not cluttered with shading information. For example,

Column Profile

Row Profile

Thresholding your images 67

in our cell application in Chapter 3, we were concerned with the
number of dark particles in the image and not with the actual
gray levels of the dark particles. Therefore, we binarized the
image to distinguish dark particles from the background.

A binarizing operation is performed by comparing each pixel
value in the image against one or two specified threshold values
(for example, whether each pixel value is above one of the
threshold values, or within the range of the two threshold
values). Pixels that meet the specified condition are set to the
maximum value in the image while other pixels are set to 0.

When using MimBinarize(), it is important to select a threshold
value that preserves the required information. For example, in
our cell application, an inappropriate threshold value might
have changed fewer or more image pixels into background
pixels, resulting in fewer or more particles than actually exist.

Determining threshold
value from histogram

MimBinarize() can automatically determine the threshold
value from the source image’s characteristics. Specifically, a
histogram of the source image is internally generated, then the
threshold value is set to the minimum value between the two

68 Chapter 5: Image manipulation

most statistically important peaks in the histogram, on the
assumption that these peaks represent the object and the
background.

Clipping
Clipping changes the image data less dramatically than
binarizing. It changes the data to include only the range of pixel
values in which you are interested. MimClip() takes a condition
with at most two threshold points and replaces only those pixels
that meet the condition with given values. Pixels that do not
meet the condition are unaffected.

This can be useful to change data from one data type to another.
For example, if you have a 16-bit result, but most of the pixels
are less than 256, you could clip the result into an 8-bit buffer,
and set all the pixels that are too big to the largest possible
value, that is, 255.

MimClip(ImageBuf16, ImageBuf8, M_GREATER, 255L, M_NULL, 255, M_NULL);

Histogram equalization 69

Histogram equalization

A histogram equalization can be performed to obtain a more
uniform distribution of the grayscale values in your image. For
example, if the intensity distribution of an image results in a
clump in one area of the grayscale, there might be objects that
are not easily distinguished because of their similarity in color.
You might want to adjust the image’s intensity distribution to
solve this problem by giving it a more uniform (M_UNIFORM)
distribution, using MimHistogramEqualize().

The MimHistogramEqualize() command first generates a
histogram of the source image buffer. The histogram and a
selected density function are then used to calculate a
transformation LUT. If the destination buffer is an image, the
transformation LUT is applied to the source buffer to produce
the destination image. If the destination buffer is a LUT, the
transformation LUT is copied into the destination LUT that
could be used to enhance the source image, either permanently
(with MimLutMap()) or upon display (with MdispLut()). The
transformation LUT can also be applied directly to images as
they are being grabbed by first associating the LUT buffer with
the device, using MdigLut() and then grabbing the image.

ORIGINAL HIST OGRAM MORE UNIF ORM DIST RIBUTION

70 Chapter 5: Image manipulation

Accentuating edges

Many applications accentuate the edges surrounding the
various image objects and features to increase the quality of the
image or to limit some other operation on the image. For
example, finding edges of objects and features in an image can
be used to highlight defects in a smooth object (as in the circuit
board image below). In general, edges can be distinguished by
the sharp frequency changes between two or more adjacent
pixels.

Edge operations There are two main types of edge operations:

■ One that enhances edges to generate higher image contrast.

■ One that extracts (detects) edges from the image.

Both these edge operations are types of convolutions (or
neighborhood operations that replace each pixel with a
weighted sum of each pixel’s neighborhood). The weights
applied to each neighborhood determine the type of operation
that is performed. For example, certain weights produce a
horizontal edge detection, others produce a vertical one. The
weights are specified in a data buffer called a kernel.

■ Horizontal edges are created when horizontally
connected pixels have values that are different
from those immediately above or below them.

■ Vertical edges are created when vertically
connected pixels have values that are different
from those immediately to the left or right of them.

■ Oblique edges are created from a combination of
horizontal and vertical components.

Accentuating edges 71

Edge enhancers
You can perform an edge enhancement operation, using
MimConvolve() with the appropriate kernel. After this
operation, the amplified edges accentuate all objects in such a
way as to cause the eye to see an increase in detail, generally
attributable to greater picture resolution. However, this
operation might not produce good results for further processing
because when you enhance edges, you also enhance noise
pixels.

Two predefined edge enhancers are provided by MIL:

■ M_SHARPEN

■ M_SHARPEN2

You can try both these kernels to see which best suits your
application needs. The second kernel tends to produce more
enhanced or sharpened edges.

Note, you obtain approximately the same result as M_SHARPEN
by performing a Laplacian edge detection operation on the
image and adding the found edges to the original picture.

Edge detection
You can perform a multitude of edge detection operations, using
MimConvolve(). This command offers predefined kernels for
most common operations. Each offers some advantage over the
others and should be chosen in function of your application.

■ Horizontal edge detection (M_HORIZ_EDGE)

■ Vertical edge detection (M_VERT_EDGE)

■ Laplacian edge detection #1 (M_LAPLACIAN_EDGE)

■ Laplacian edge detection #2 (M_LAPLACIAN_EDGE2)

■ Compass gradient #1 (M_EDGE_DETECT)

■ Compass gradient #2 (M_EDGE_DETECT2)

72 Chapter 5: Image manipulation

Horizontal and vertical
edge detection

Finding the horizontal and vertical edges in the image can be
useful to enhance edges in a certain direction and remove those
in another.

To extract the horizontal or vertical edges from an image, use
MimConvolve() with the M_HORIZ_EDGE or M_VERT_EDGE
predefined kernel, respectively.

Laplacian edge
detection

The Laplacian operations place emphasis on the maximum
values, or peaks, within the image. This is why, once this
operation has been performed, the edge representation of the
image generally looks very similar to the actual image.

To extract the Laplacian edges from an image, use
MimConvolve() with the M_LAPLACIAN_EDGE or
M_LAPLACIAN_EDGE2 predefined kernel.

Accentuating edges 73

Compass gradient
edge detection

When you perform a compass gradient edge detection
operation, edges are determined from the rate of change
between pixel values in the image, without regard to the
direction of the edges. The resulting image contains only
positive values.

You perform this operation, using MimConvolve() with the
M_EDGE_DETECT or M_EDGE_DETECT2 predefined kernel.

74 Chapter 5: Image manipulation

Arithmetic with images

It is often very useful to perform arithmetic operations on
images. These operations apply the specified operator on
individual pixel values in a source image or on pixels at
corresponding locations in two source images. These
operations, whose results do not depend on neighboring values,
are known as point-to-point operations.

Besides arithmetic operations, the MIL image processing
module includes several other point to point operations: logical,
comparative, shifting, or absolute value operations.

Combining images
You can apply most of the above point-to-point operations, using
MimArith():

■ You can add, subtract , multiply, divide, AND, NAND, OR,
XOR, NOR, or XNOR two images or an image and a constant.

■ You can NOT, negate, take the absolute value, or simply copy
the image into the result buffer.

■ You can copy a constant to the entire result buffer.

For example, for a surveillance application, it is more efficient
to extract the constant background from the grabbed image and
display only changes in the image. The following example
shows how this can be done.

Arithmetic with images 75

���(KNG�PCOG��OUWTXG[�E�
���5[PQRUKU���6JKU�RTQITCO�ITCDU�CP�KOCIG�QH�VJG�GZRGEVGF�EQPUVCPV�FCTM�
��������������DCEMITQWPF��CPF�VJGP�UWDVTCEVU�VJKU�DCEMITQWPF�KOCIG�HTQO�
��������������UWDUGSWGPV�ITCDDGF�KOCIGU��
���

�KPENWFG��UVFKQ�J �
�KPENWFG��EQPKQ�J
�KPENWFG��OKN�J
�FGHKPG�%#/'4#A5+<'A$+6��.

XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP�������������#RRNKECVKQP�KFGPVKHKGT����������������
���������/KN5[UVGO������������������5[UVGO�KFGPVKHKGT���������������������
���������/KN&KURNC[�����������������&KURNC[�KFGPVKHKGT��������������������
���������/KN%COGTC������������������%COGTC�KFGPVKHKGT����������������������
���������/KN+OCIG�������������������+OCIG�DWHHGT�KFGPVKHKGT���������������
���������)TCD+OCIG������������������)TCD�KOCIG�DWHHGT�KFGPVKHKGT����������
���������$CEMITQWPF+OCIG������������$CEMITQWPF�KOCIG�DWHHGT�KFGPVKHKGT����
��NQPI���%CO5K\G:�������������������%COGTC�YKFVJ�XCTKCDNG�����������������
���������%CO5K\G;�������������������%COGTC�JGKIJV�XCTKCDNG����������������

�����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
��������������������/KN%COGTC���/KN+OCIG��

�����4GCFU�ECOGTC�:��;�CPF�FGRVJ�FKOGPUKQPU����
��/FKI+PSWKTG
/KN%COGTC��/A5+<'A:���%CO5K\G:��
��/FKI+PSWKTG
/KN%COGTC��/A5+<'A;���%CO5K\G;��

�����#NNQECVG�C�UGEQPF�KOCIG�DWHHGT�VQ�UVQTG�VJG�DCEMITQWPF�KOCIG����

��/DWH#NNQE�F
/A&'(#7.6��%CO5K\G:��%CO5K\G;��%#/'4#A5+<'A$+6�

��������������/A705+)0'&��/A+/#)'
/A241%���$CEMITQWPF+OCIG��

�����#NNQECVG�C�VJKTF�KOCIG�DWHHGT�VQ�ITCD�VJG�EJCPIKPI�KOCIG����
��/DWH#NNQE�F
/KN5[UVGO��%CO5K\G:��%CO5K\G;��%#/'4#A5+<'A$+6�

���������������/A705+)0'&��/A+/#)'
/A241%
/A)4#$���)TCD+OCIG��

�����)TCD�VJG�DCEMITQWPF�KOCIG�KP�VJG�FKURNC[�DWHHGT�����
��/FKI)TCD%QPVKPWQWU
/KN%COGTC��/KN+OCIG��

�����9JGP�C�MG[�KU�RTGUUGF��JCNV����
��RTKPVH
�2QKPV�[QWT�ECOGTC�CV�C�EQPUVCPV�FCTM����
��RTKPVH
�DCEMITQWPF�CPF�CFLWUV�VJG�HQEWU�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��
��/FKI*CNV
/KN%COGTC��
��

EQPV������

76 Chapter 5: Image manipulation

Mapping an image

You can perform complex operations (such as scaling and
logarithms) on an image buffer, using MimLutMap(). This
function performs the operation simply by mapping the source
image buffer through a specified lookup table (LUT) and storing
results in the specified destination image buffer.

You allocate a LUT buffer, using MbufAlloc1d() , specifying the
buffer attribute as M_LUT. You can assign mapping values to it
by copying data from a Host generated buffer (for example, an
array) into it, using MbufPut1d(). You can also generate data
directly into a LUT buffer according to a specified function,
using MgenLutFunction(). If you simply want to invert the
image or set the image to a constant, you can alternatively use
MgenLutRamp() to generate an inverse ramp.

�����%QR[�VJG�FKURNC[GF�DWHHGT�KPVQ�VJG�DCEMITQWPF�DWHHGT����
��/DWH%QR[
/KN+OCIG��$CEMITQWPF+OCIG��

�����9JGP�C�MG[�KU�RTGUUGF��JCNV����
��RTKPVH
�%QPVKPWQWU�UWDVTCEVKQP�KP�RTQITGUU���>P>P���
��RTKPVH
�-GGRKPI�[QWT�ECOGTC�KP�VJG�UCOG�RQUKVKQP��ETGCVG�OQVKQP>P���
��RTKPVH
�YKVJ�C�DTKIJV�QDLGEV�KP�HTQPV�QH�VJG�DCEMITQWPF�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�UVQR�QRGTCVKQP�CPF�GPF�>P���

�����)TCD�CPF�UWDVTCEV�DCEMITQWPF�KP�NQQR����
��YJKNG�
�MDJKV
��
��]
�����/FKI)TCD
/KN%COGTC��)TCD+OCIG��
�����/KO#TKVJ
)TCD+OCIG��$CEMITQWPF+OCIG��/KN+OCIG��/A57$A#$5���
��_
��IGVEJ
��
��
�����4GNGCUG�FGHCWNVU�CPF�KOCIG�����
��/DWH(TGG
)TCD+OCIG���
��/DWH(TGG
$CEMITQWPF+OCIG���
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN%COGTC�
������������������/KN+OCIG��
_

Erosion and dilation 77

Erosion and dilation

Especially during cell analysis, it can be important to know the
growth stages of cell particles. Using the image processing
erosion and dilation operations, you can view the possible
growth stages of these particles.

■ Erosion operations peel off layers from objects or particles,
removing extraneous pixels and small particles from the
image.

■ Dilation operations add layers to objects or particles,
enlarging any particle. Dilation can return eroded particles
to their original size (but not necessarily to their exact
original shape).

Erosion and dilation are neighborhood operations that
determine each pixel’s value according to its geometric
relationship with neighborhood pixels, and as such, are part of
a group of operations known as morphological operations.

They are also the basic operations used to perform the opening
and closing operations discussed in the previous chapter.

Note, zero pixels are considered background, while non-zero
pixels are considered foreground and part of objects.

Basic erosion You can perform a basic erosion operation on 3 by 3
neighborhoods, using MimErode().

■ If the erosion mode is set to M_BINARY, any pixel whose
neighborhood is not completely white (any non-zero pixel
is considered white) is changed to black (0 is considered
black).

■ If the erosion mode is set to M_GRAYSCALE, each pixel is
replaced with the minimum value in its neighborhood.

You can use the iteration parameter of MimErode() to perform
an erosion on larger neighborhoods. Iterating the erosion is the
equivalent to performing an erosion on a (1 + 2*i)) by (1 + (2*i))
neighborhood where i is the number of iterations. For example,
two iterations of a 3x3 erosion is equivalent to a 5x5 erosion,
and three iterations is equivalent to a 7x7 erosion.

78 Chapter 5: Image manipulation

Basic dilation You can perform a basic dilation operation on 3 by 3
neighborhoods, using MimDilate().

■ If the dilation mode is set to M_BINARY, any pixel that has
one or more white pixels (any non-zero pixel is considered
white) in its neighborhood is set to white (0xff in an 8-bit
image).

■ If the dilation mode is set to M_GRAYSCALE, each pixel is
replaced with the maximum value in its neighborhood.

The MimDilate() command is similar to the MimErode()
command in that iterating it will effectively cause a dilation on
larger neighborhoods. Iterating the dilation is the equivalent
to performing a dilation on a (1 + (2*i)) by (1 + (2*i))
neighborhood where i is the number of iterations. For example,
two iterations of a 3x3 dilation is equivalent to a 5x5 dilation,
and three iterations is equivalent to a 7x7 dilation.

An example... You can use erosion or dilation to find the perimeter of objects.
Erode or dilate a binary image and ‘ XOR’ the result with the
original image, using MimArith().

Erosion and dilation 79

The following example shows how to obtain the exoskeletons of
objects in an image.

���(KNG�PCOG��ORGTKO�E�
���5[PQRUKU���6JKU�RTQITCO�HKPFU�VJG�GZQUMGNGVQPU�
RGTKOGVGTU��QH�
��������������FCTM�QDLGEVU�KP�CP�KOCIG��
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

���5QWTEG�/+.�KOCIG�HKNG�URGEKHKECVKQPU�����
�FGHKPG�+/#)'A(+.'���������������EGNN�OKO�
�FGHKPG�+/#)'A9+&6*�����������������.
�FGHKPG�+/#)'A*'+)*6����������������.
�FGHKPG�+/#)'A&'26*���������������.
�FGHKPG�+/#)'A6*4'5*1.&A8#.7'�������.

���5OCNN�RCTVKENG�TCFKWU�
KP�RKZGNU�����
�FGHKPG�5/#..A2#46+%.'A4#&+75�����.
XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT��������������������
���������/KN5[UVGO������������5[UVGO�KFGPVKHKGT�������������������������
���������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT������������������������
���������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT�������������������
���������$KP+OCIG�������������$KPCT[�KOCIG�DWHHGT�KFGPVKHKGT������������
���������&KN$KP+OCIG����������&KNCVGF�DKPCT[�KOCIG�DWHHGT�KFGPVKHKGT����

�����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
�������������������/A07..���/KN+OCIG��

�����#NNQECVG���DKPCT[�KOCIG�DWHHGTU�HQT�HCUV�RTQEGUUKPI����
��/DWH#NNQE�F
/A&'(#7.6��+/#)'A9+&6*��+/#)'A*'+)*6�
���������������
/A705+)0'&��/A+/#)'
/A241%���$KP+OCIG��
��/DWH#NNQE�F
/A&'(#7.6��+/#)'A9+&6*��+/#)'A*'+)*6�
���������������
/A705+)0'&��/A+/#)'
/A241%���&KN$KP+OCIG��

�����.QCF�UQWTEG�KOCIG�KPVQ�CP�KOCIG�DWHHGT����
��/DWH.QCF
+/#)'A(+.'��/KN+OCIG��

�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG����
��RTKPVH
�6JKU�RTQITCO�HKPFU�VJG�GZQUMGNGVQPU�QH>P���
��RTKPVH
�VJG�RCTVKENGU�KP�VJG�FKURNC[GF�KOCIG�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

��

EQPV������

80 Chapter 5: Image manipulation

�����$KPCTK\G�VJG�KOCIG�����
��/KO$KPCTK\G
/KN+OCIG��$KP+OCIG��/A.'55A14A'37#.��
��������������+/#)'A6*4'5*1.&A8#.7'��/A07..��

�����4GOQXG�UOCNN�RCTVKENGU����
��/KO1RGP
$KP+OCIG��$KP+OCIG��5/#..A2#46+%.'A4#&+75��/A$+0#4;��

�����&KNCVG�KOCIG�
CFFU�QPG�RKZGN�CTQWPF�CNN�QDLGEVU������
��/KO&KNCVG
$KP+OCIG��&KN$KP+OCIG���.��/A$+0#4;��

�����:14�VJG�FKNCVGF�KOCIG�YKVJ�VJG�QTKIKPCN�KOCIG����
��/KO#TKVJ
$KP+OCIG��&KN$KP+OCIG��$KP+OCIG��/A:14��

�����%QPXGTV�VJG�DKPCT[�KOCIG�VQ�C�XKUKDNG�ITC[UECNG�KOCIG�
���Z((�����
��/KO$KPCTK\G
$KP+OCIG��/KN+OCIG��/A)4'#6'4�����/A07..��

�����2CWUG�VQ�UJQY�VJG�TGUWNVKPI�KOCIG�����
��RTKPVH
�>P'ZQUMGNGVQPU�QH�VJG�QDLGEV	U�RGTKOGVGTU�CTG�DGKPI�FKURNC[GF�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

�����(TGG�CNN�CNNQECVKQPU����

��/DWH(TGG
$KP+OCIG��
��/DWH(TGG
&KN$KP+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

Distance transform 81

Distance transform

You can produce a distance transform using MimDistance().
This function determines the minimum distance from each
foreground (non-zero) pixel to a background (zero) pixel, and
assigns this distance to the foreground pixel. It produces a type
of contour mapping of an image’s foreground (object) pixels.

You can calculate the minimum distance using one of three
transforms.

The City Block
transform

The City Block transform (M_CITY_BLOCK) determines the
minimum distance using only horizontal or vertical steps. Each
step counts as 1.

The Chessboard
transform

The Chessboard transform (M_CHESSBOARD) determines the
minimum distance using horizontal, vertical, or diagonal steps.
Each step counts as 1.

1
1
1
2 22

3
3

2

2
2
2

3
3
33
2
2
2
21

1
2
2

2
2
2
2

3
3 3

2

1
1

1
1
1
1

2
21

2

1
1
1
1 1 1 1

1
1
1 1 1 1 3 3 2

1
2

2

1
2

2

1
2

2
2

1
2

3331
2
1 1 1 1 1

1

1
1

1

111

1
1
1
2 22

3
3

2

2
2
2

3
3
33
2
2
2
21

1
2
2

2
2
2
2

3
3 3

2

1
1

1
1
1
1

2
21

2

1
1
1
1 1 1 1

1
1
1 1 1 1 3 3 2

1
2

2

1
2

2

1
2

2
2

1
2

3331
2
1 1 1 1 1

1

1
1

1

111

82 Chapter 5: Image manipulation

The Chamfer 3-4
transform

The Chamfer 3-4 transform (M_CHAMFER_3_4), like the
Chessboard transform, determines the minimum distance
using horizontal, vertical, or diagonal steps. However,
horizontal and vertical steps are counted as 3 and diagonal
steps as 4. This allows the transform to better approximate the
true (Euclidean) distance between two pixels. However, it
requires that the destination buffer be large enough to hold a
number at least three times the maximum distance from a
foreground to a background pixel. For example, an 8-bit buffer
(255 max) can be used for a maximum distance of 85 pixels and
a 16-bit buffer (65535 max) for a maximum distance of 21845
pixels.

Labeling

You can label objects or particles (known as blobs) in an image
with MimLabel(). Labeling is useful for several operations:

■ Identifying and distinguishing blobs.

■ Finding the area of a blob. Once a blob is labeled, you find
the area by generating a histogram and noting the number
of pixels associated with that label value.

■ Counting the number of blobs in the image. The label number
assigned to the last blob is also the number of blobs in the
image (assuming there are fewer blobs than possible labels).

■ Using the result as a source for a conditional copy to eliminate
some blobs (MimClip()).

Labeling 83

The MimLabel() command numerically identifies each blob in
the specified image. Each non-zero pixel within a blob is given
the same numerical value, and blobs within an image are given
consecutive values.

You can specify that the operation is performed using one of two
types of connectivity modes:

■ M_4_CONNECTED: If two pixels touch on the vertical or
horizontal, they are considered part of the same blob.

■ M_8_CONNECTED: If two pixels touch on the vertical,
horizontal, or diagonal, they are considered part of the same
blob.

To distinguish between touching blobs, separate the blobs by
performing an erosion operation before the labeling operation.

84 Chapter 5: Image manipulation

Chapter 6: Advanced image
processing

This chapter describes different advanced image
processing techniques.

86 Chapter 6: Advanced image processing

Advanced image processing

Besides the image processing functions discussed in previous
chapters, MIL contains more advanced image processing
functions. These advanced functions, among other things,
allow you to remove noise, separate objects from their
background, and correct image distortions. They include
neighborhood operations using custom structuring elements or
kernels, frequency transforms, watershed transforms, and
warpings.

Custom spatial filters

Spatial filtering operations include operations that can
enhance and smooth images, accentuate image edges, and
remove ‘noise’ from the image.

Spatial filters are operations that compute results based on an
underlying neighborhood process: the weighted sum of a pixel
value and its neighbors’ values. The weights are known as the
kernel values. These kernel values determine the type of spatial
filter. For example , applying the following kernel results in a
sharpening of the image:

Whereas, applying the following kernel smooths an image (it
also increases the intensity of the image by a factor of 16, so
you will need to normalize the convolution result):

If the predefined kernels provided by MimConvolve() do not
meet your requirements, you can create your own spatial
filtering operation by providing your own kernel.

1– 1– 1–

1– 9 1–

1– 1– 1–

1 2 1

2 4 2

1 2 1

Custom spatial filters 87

Defining your own
kernel

To define your own kernel:

1. Allocate a kernel buffer (M_KERNEL), using MbufAlloc2d().
The dimensions of the kernel determine the size of the
neighborhood that is used in the operation. The result of
the operation is stored in the destination buffer at the
location corresponding to the kernel’s center pixel. When
the kernel has an even number of rows and/or columns, the
center pixel is considered to be the top-left pixel of the
central elements in the neighborhood.

2. Load the kernel values into this kernel buffer, using
MbufPut() or MbufPut2d().

You can modify the default operation flags associated with
custom kernels, using MbufControlNeighborhood(). These
operation flags determine how the convolution operation will
be handled. You can control:

■ How the operation handles the borders (overscan) of the
source buffer. If overscan is disabled, the bordering pixels of
the source image are not processed if additional processing
time is implicated. For example, if you are using a 3 by 3
kernel with a normal center pixel, and overscan is disabled,
the pixels on the borders of the source buffer are not
processed if processing time can be saved.

Examples of neighborhoods and their center pixel.

C C C C
C

C

Pixels outside of this square
will not be processed if
overscan is disabled.

3 by 3 kernel

88 Chapter 6: Advanced image processing

To process the bordering pixels, specify an overscan. A
transparent overscan uses the parent buffer to provide the
overscan pixels needed for the border calculation. Note, if the
parent buffer is not available, a mirror overscan is performed.
A mirror overscan specifies that the overscan pixels will be a
mirror copy of the source buffer’s bordering pixels. A
replacement overscan allows you to specify a specific value
to use for the overscan pixel values during processing.

■ Whether or not the absolute value of the result is taken.

■ The division (normalization) factor to apply to the result.

■ Whether or not to saturate the result.

■ The position of the center pixel.

An example... The following is an example of a spatial filtering operation
using a custom 3 by 3 kernel.

���(KNG�PCOG��OEQPXQN�E
���5[PQRUKU���6JKU�RTQITCO�NQCFU�CP�KOCIG�CPF�VJGP�FQGU�C
���������������Z��EWUVQO�EQPXQNWVKQP�
UOQQVJKPI��QP�KV�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

���6CTIGV�/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A(+.'�����YCHGT�OKO�
�FGHKPG�+/#)'A9+&6*������.
�FGHKPG�+/#)'A*'+)*6�����.

���-GTPGN�KPHQTOCVKQPU����
�FGHKPG�-'40'.A9+&6*���.
�FGHKPG�-'40'.A*'+)*6��.
�FGHKPG�-'40'.A&'26*���.

���#XGTCIG�MGTPGN�KPHQTOCVKQP�FCVC�FGHKPKVKQP����
WPUKIPGF�EJCT��-GTPGN&CVC=-'40'.A*'+)*6?=-'40'.A9+&6*?��
���������������]�]�������_�
�����������������]�������_�
�����������������]�������_
���������������_�
��
EQPV��

Custom spatial filters 89

XQKF�OCKP
XQKF�
]�
��/+.A+&�/KN#RRNKECVKQP���������#RRNKECVKQP�KFGPVKHKGT�������������
���������/KN5[UVGO��������������5[UVGO�KFGPVKHKGT������������������
���������/KN&KURNC[�������������&KURNC[�KFGPVKHKGT�����������������
���������/KN+OCIG���������������+OCIG�DWHHGT�KFGPVKHKGT������������
���������/KN5WD+OCIG������������5WD�KOCIG�DWHHGT�KFGPVKHKGT��������
���������/KN-GTPGN��������������%WUVQO�MGTPGN�KFGPVKHKGT�����������

�����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
�������������������/A07..���/KN+OCIG��

�����4GUVTKEV�VJG�TGIKQP�VQ�DG�RTQEGUUGF�VQ�VJG�KOCIG�UK\G����
��/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6���/KN5WD+OCIG��

�����.QCF�UQWTEG�KOCIG�KPVQ�CP�KOCIG�DWHHGT����
��/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG��

�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG����
��RTKPVH
�6JKU�RTQITCO�FQGU�C�EQPXQNWVKQP�QP�VJG�FKURNC[GF�KOCIG�>P���
��RTKPVH
�+V�WUGU�C�EWUVQO�UOQQVJKPI�MGTPGN�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

�����#NNQECVG�C�/+.�MGTPGN����
��/DWH#NNQE�F
/KN5[UVGO��-'40'.A*'+)*6��-'40'.A9+&6*�
��������������-'40'.A&'26*
/A705+)0'&��/A-'40'.���/KN-GTPGN��

�����2WV�VJG�EWUVQO�FCVC�KP�KV����
��/DWH2WV
/KN-GTPGN�-GTPGN&CVC��

�����5GV�C�PQTOCNK\CVKQP�
FKXKFG��HCEVQT�VQ�JCXG�C�MGTPGN�YKVJ�C�UWO�GSWCN��
�����VQ�QPG����
��/DWH%QPVTQN0GKIJDQTJQQF
/KN-GTPGN�/A014/#.+<#6+10A(#%614���.��

�����%QPXQNWVG�VJG�KOCIG�WUKPI�VJG�MGTPGN����
��/KO%QPXQNXG
/KN5WD+OCIG��/KN5WD+OCIG��/KN-GTPGN��

�����2CWUG�VQ�UJQY�VJG�TGUWNV����
��RTKPVH
�>P���
��RTKPVH
�6JG�QTKIKPCN�KOCIG�YCU�UOQQVJGF�WUKPI�C�EWUVQO�MGTPGN�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�VGTOKPCVG�>P���
��IGVEJCT
��

�����(TGG�CNN�CNNQECVKQPU����
��/DWH(TGG
/KN-GTPGN��
��/DWH(TGG
/KN5WD+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

90 Chapter 6: Advanced image processing

Custom morphological operations

Morphological operations are neighborhood operations that
compute new values according to geometric relationships and
matches of known patterns in the input image. The
MimMorphic() command supports different types of
morphological operations:

■ Erosion■ Erosion
■ Dilation
■ Thinning
■ Thickening
■ Matching
■ Hit or miss transformation

Different geometric relationships for each of these operations
are specified, using a structuring element.

Defining your own
structuring element

To define your own structuring element:

1. Allocate a structuring element buffer
(M_STRUCT_ELEMENT) , using MbufAlloc2d(). The
dimensions of the structuring element determine the size
of the neighborhood that is used in the operation. The result
of the operation is stored in the destination buffer at the
location that corresponds to the structuring element’s
center pixel. When the structuring element has an even
number of rows and/or columns, the center pixel is
considered to be the top-left pixel of the central elements in
the neighborhood (see custom spatial filters).

2. Load the structuring element values into this buffer, using
MbufPut() or MbufPut2d(). Give the structuring element
values according to the morphological operation that is to
be performed. For binary and some grayscale operations,
the structuring element values must be 0, 1, or
M_DONT_CARE (the latter means that the corresponding
neighbors are not considered in the comparison) . For other
grayscale operations, any structuring element value can be
used, including M_DONT_CARE.

Custom morphological operations 91

For custom structuring elements, you can use
MbufControlNeighborhood() to control how the operation
handles the borders (overscan) of the source buffer (see
custom spatial filters) and the position of the
neighborhood’s center pixel.

Erosion and dilation
Two fundamental morphological operations are erosion and
dilation. These functions allow you to view the possible growth
stages of an object in the foreground (non-zero pixels) of an
image.

There are two versions of erosion and dilation:

■ Erosion (M_ERODE):

❐ Binary erosion: If the structuring element does not match
the corresponding neighborhood values exactly, the center
pixel is set to zero; otherwise, it remains unchanged. In
effect, binary erosion peels off layers of objects.

❐ Grayscale erosion: Subtracts each structuring element
value from the corresponding pixel value in the
neighborhood, and then replaces the center pixel of the
neighborhood with the minimum value from the resulting
neighborhood values.

1
1

11
1
1

1
1
1

Structuring
element

0

0

1
1
1
1
1

0

0

0

0

0

0 0

0

0

1
1
1

0

0

0

0

0

0

0

0

0

0

1
1
1

0

0

0

0

0 0 0

0

0

0

0

1
1
1
1
1
1
1
1
1
1

0

0

0

1

1

1

0

0

0

1
1
1

0

0

0

0 0

0

0

0

0

1
1
1
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1
1

0

0

0

0

0

0

0

0

0

0

0

Original image

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Eroded image

1 1
1
1
1
1
1

0

1

1
1
1
1
0

0

1
1
1
1
0

1 1
1
1
1
1

0

0

0

1
1
1
1

1 0

0

0 1 0

0

1

1

1

1
1
1
1
1
1
1
1
1
1
1

0

1

1

1

1

0

1

0

1
1
1
1
0

1

1

1

0

0

0

1
1
1
1

1
1
1
1
1
1
1

0

0

0

0

0

0

1

1
1
1
1
1

0

0

1
1
1
1
0

1 0

0

0

0

1
1
1

1
1
1
1

0

0

0

0

0

0

0

0

1
1
1
1
1
0
0

0

1
1
1
1
1

0

0

0

0 0

0

0

0

0

1
1
1
1
1

0 0

0

0

0

0

Dilated image

Note: In these images, pixels represented with the
value 1, actually have the maximum buffer
value (for example, they have the value
0xffff in a 16-bit image).

92 Chapter 6: Advanced image processing

■ Dilation (M_DILATE):

❐ Binary dilation: If any of the structuring element values
match the corresponding neighborhood values, the center
pixel is set to the maximum value of the buffer (e.g. 0xff for
an 8-bit buffer); otherwise, it remains unchanged. In effect,
binary dilation adds layers to the objects.

❐ Grayscale dilation: Adds each structuring element value to
the corresponding pixel value in the neighborhood, and
then replaces the center pixel of the neighborhood with the
maximum value from the resulting neighborhood values.

Note, in binary mode, erosion of the white pixels is the same as
dilation of the black pixels.

If the processing mode is set to M_BINARY, a binary erosion or
dilation is performed and all non-zero pixels are considered as
1’s; otherwise, the grayscale version of these operations is
performed.

Use MblobReconstruct() to perform a conditional dilation.

Using standard erosion
and dilation

MIL also supports MimErode() and MimDilate(), commands
specialized in performing the most standard form of erosion and
dilation operation. These operations use the following
structuring element when performing in binary mode:

And use the following structuring element in grayscale mode:

In other words, these commands execute a simple 3 by 3
minimum or maximum operation without adding or
subtracting anything from the pixel.

1 1 1

1 1 1
1 1 1

0 0 0

0 0 0

0 0 0

Custom morphological operations 93

For example, to perform the most standard dilation operation
on a source image buffer, use MimDilate() with the processing
mode set to M_BINARY, or use MimMorphic() with a 3 x 3
structuring element of ones and the processing mode set to
M_BINARY. Note, in general the standard version is faster.

An example The following example shows how to define your own
structuring element. It demonstrates, on an image with
rounded objects, the difference between performing the
standard opening operation, MimOpen(), and performing a
custom opening with a circular type structuring element. Note,
the latter preserves the original shape of the objects better than
the square structuring element of the standard erosion.

���(KNG�PCOG��OQRGP�E
���5[PQRUKU��6JKU�RTQITCO�NQCFU�CP�KOCIG�QH�C�VKUUWG�UCORNG�CPF�VJGP
�������������RGTHQTOU�QRGPKPI�QRGTCVKQPU�QP�KV�WUKPI�VYQ�OGVJQFU����

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

���6CTIGV�/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A(+.'�������������EGNN�OKO�
�FGHKPG�+/#)'A9+&6*��������������.
�FGHKPG�+/#)'A*'+)*6�������������.
�FGHKPG�+/#)'A&'26*������������.
�FGHKPG�+/#)'A6*4'5*1.&A8#.7'����.

���5VTWEVWTKPI�GNGOGPV�KPHQTOCVKQP����
�FGHKPG�5647%6A'.'/A9+&6*������.
�FGHKPG�5647%6A'.'/A*'+)*6�����.
�FGHKPG�5647%6A'.'/A&'26*�������.

���5OCNN�RCTVKENG�TCFKWU�
KP�RKZGNU�����
�FGHKPG�5/#..A2#46+%.'A4#&+75��.

XQKF�OCKP
XQKF�
]
���/+.A+&�/KN#RRNKECVKQP����#RRNKECVKQP�KFGPVKHKGT���������������������������
����������/KN5[UVGO���������5[UVGO�KFGPVKHKGT����������������������������� ��
����������/KN&KURNC[��������&KURNC[�KFGPVKHKGT�������������������������������
����������/KN+OCIG����������+OCIG�DWHHGT�KFGPVKHKGT��������������������������
����������$KP+OCIG����������$KPCT[�+OCIG�DWHHGT�KFGPVKHKGT�������������������
����������/KN5WD+OCIG�������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�QTKIKPCN�KOCIG���
����������/KN5WD+OCIG�������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�DKPCTK\CVKQP�����
����������/KN5WD+OCIG�������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�EQOOQP�QRGP������
����������/KN5WD+OCIG�������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�EWUVQOK\GF�QRGP��
���/+.A+&�5VTWEV'NGO��������5VTWEVWTKPI�GNGOGPV�DWHHGT�����������������������

���
EQPV������

94 Chapter 6: Advanced image processing

��

��

���5VTWEVWTKPI�GNGOGPV�FCVC�FGHKPKVKQP����
��NQPI��5VTWEV#TTC[=5647%6A'.'/A*'+)*6?=5647%6A'.'/A9+&6*?���
�����]�]/A&106A%#4'��/A&106A%#4'�����/A&106A%#4'��/A&106A%#4'_�
�������]/A&106A%#4'�������������������������������/A&106A%#4'_�
�������]���_�
�������]/A&106A%#4'�������������������������������/A&106A%#4'_�
�������]/A&106A%#4'��/A&106A%#4'�����/A&106A%#4'��/A&106A%#4'_�_�
��
�����#NNQECVG�FGHCWNVU����
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO� �/KN&KURNC[�
�������������������/A07..���/KN+OCIG��

�����#NNQECVG�C�DKPCT[�KOCIG�DWHHGT�HQT�HCUV�RTQEGUUKPI����
��/DWH#NNQE�F
/A&'(#7.6��+/#)'A9+&6*��+/#)'A*'+)*6�
���������������
/A705+)0'&� /A+/#)'
/A241%���$KP+OCIG��

�����&GHKPG�HQWT�RTQEGUUKPI�DWHHGTU�KP�VJG�FKURNC[�DWHHGT��TGUVTKEVKPI�VJG
�����TGIKQPU�VQ�DG�RTQEGUUGF�VQ�VJG�VQR�NGHV�EQTPGT�QH�VJG�QTKIKPCN�KOCIG� ��
��/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6���/KN5WD+OCIG���
��/DWH%JKNF�F
/KN+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*�+/#)'A*'+)*6��
���������������/KN5WD+OCIG���
��/DWH%JKNF�F
/KN+OCIG���.��+/#)'A*'+)*6��+/#)'A9+&6*�+/#)'A*'+)*6��
���������������/KN5WD+OCIG���
��/DWH%JKNF�F
/KN+OCIG��+/#)'A9+&6*��+/#)'A*'+)*6��+/#)'A9+&6*�
��������������+/#)'A*'+)*6���/KN5WD+OCIG���

�����.QCF�UQWTEG�KOCIG�KPVQ�KOCIG�DWHHGT�HQT�QTKIKPCN�KOCIG����
��/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG���

�����#NNQECVG�C�UVTWEVWTKPI�GNGOGPV����
��/DWH#NNQE�F
/KN5[UVGO��5647%6A'.'/A9+&6*��5647%6A'.'/A*'+)*6�
��������������5647%6A'.'/A&'26*�
�/A5+)0'&��/A5647%6A'.'/'06���5VTWEV'NGO��

�����.QCF�DWHHGT�YKVJ�FCVC����
��/DWH2WV�F
5VTWEV'NGO���.���.��5647%6A'.'/A9+&6*�
������������5647%6A'.'/A*'+)*6� 5VTWEV#TTC[��

�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG����
��RTKPVH
�6JKU�RTQITCO�FQGU�VJG�QRGPKPI�QH�CP�KOCIG�WUKPI�VYQ�FKHHGTGPV>P���
��RTKPVH
�UVTWEVWTKPI�GNGOGPVU�>P2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

�����5OQQVJ�VJG�KOCIG�VQ�TGOQXG�PQKUG����
��/KO%QPXQNXG
/KN5WD+OCIG���/KN5WD+OCIG���/A5/116*��

��
EQPV������

Custom morphological operations 95

�

����$KPCTK\G�VJG�KOCIG�UQ�VJCV�RCTVKENGU�CTG�TGRTGUGPVGF�KP�YJKVG�CPF
�����VJG�DCEMITQWPF�KP�DNCEM��RNCEKPI�TGUWNV�KP�UWDKOCIG��QP�VJG�FKURNC[� ��
��/KO$KPCTK\G
/KN5WD+OCIG���/KN5WD+OCIG���/A.'55A14A'37#.�
��������������+/#)'A6*4'5*1.&A8#.7'��/A07..��

�����%QR[�VJG�DKPCTK\GF�KOCIG�VQ�C�DKPCT[�DWHHGT�HQT�HCUV�RTQEGUUKPI���
��/DWH%QR[
/KN5WD+OCIG���$KP+OCIG��

�����1RGPKPI�WUKPI�EQOOQP�OGVJQF��RNCEKPI�TGUWNV�KP�UWDKOCIG��QP�VJG�
�����FKURNC[����
��/KO1RGP
$KP+OCIG��/KN5WD+OCIG���5/#..A2#46+%.'A4#&+75�
��������������������/A$+0#4;��
�
�����1RGPKPI�
'TQFG�CPF�&KNCVG��WUKPI�EWUVQOK\GF�OGVJQF��RNCEKPI
�����TGUWNV�KP�UWDKOCIG��QP�VJG�FKURNC[� ��
��/KO/QTRJKE
$KP+OCIG��$KP+OCIG��5VTWEV'NGO��/A'41&'�
�������������5/#..A2#46+%.'A4#&+75����/A$+0#4;���
��/KO/QTRJKE
$KP+OCIG��/KN5WD+OCIG���5VTWEV'NGO� /A&+.#6'�
�������������5/#..A2#46+%.'A4#&+75����/A$+0#4;��

�����2CWUG�VQ�UJQY�VJG�QRGPGF�RCTVKENG
U�����
��RTKPVH
�6JG�VQR�TKIJV�KOCIG�KU�VJG�DKPCTK\GF�UQWTEG�KOCIG��9JGP�>P���
��RTKPVH
�QRGPKPI�KV�WUKPI�VJG�UVCPFCTF�OGVJQF��VJG�DQVVQO�NGHV�KOCIG�>P���
��RTKPVH
�TGUWNVU��YJGTGCU�YJGP�QRGPKPI�KV�WUKPI�VJG�EWUVQOK\GF�OGVJQF�>P���
��RTKPVH
�VJG�DQVVQO�TKIJV�KOCIG�TGUWNVU�CPF�DGUV�RTGUGTXGU�VJG�QTKIKPCN>P���
��RTKPVH
�UJCRG�QH�VJG�QDLGEVU�>P2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

�����(TGG�UVTWEVWTKPI�GNGOGPV�DWHHGT����
��/DWH(TGG
5VTWEV'NGO��

�����(TGG�VJG�CNNQECVGF�DWHHGTU����
��/DWH(TGG
/KN5WD+OCIG���
��/DWH(TGG
/KN5WD+OCIG����
��/DWH(TGG
/KN5WD+OCIG���
��/DWH(TGG
/KN5WD+OCIG���
��/DWH(TGG
$KP+OCIG��

�����4GNGCUG�FGHCWNVU����
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

96 Chapter 6: Advanced image processing

Thinning and thickening
You can reduce or enlarge objects in the foreground (non-zero
pixels) of an image, using operations based on a rigid match of
the pixel’s neighborhood and the structuring element. Using a
thickening operation, you can enlarge the object and perform
such operations as a convex hull. Using a thinning operation,
you can reduce objects and perform such operations as finding
their skeleton.

You can perform a thinning or thickening operation with a
specified structuring element, using MimMorphic(). These
operations are typically performed several times, using a
different structuring element so that the required pattern is
sought in each direction.

You can also perform standard thinning or thickening
operations with MimThin() or MimThick(), respectively.

Standard MIL binary thinning
operation (MimThin())
performed until
skeleton.

Custom morphological operations 97

There are two versions of thinning and thickening:

Thinning objects ■ Thinning (M_THIN):

❐ Binary thinning: This operation replaces the center pixel
by the value zero if a pixel’s neighborhood matches the
structuring element exactly. However, if the neighborhood
does not match, the pixel value remains unchanged.

❐ Grayscale thinning:
 if MAX(0) < center pixel <= MIN(1)
 center pixel = MAX(0)
 else
 center pixel is unchanged

Where MAX(0) is the maximum of all pixels in the
neighborhood that correspond to zero in the structuring
element, and MIN(1) is the minimum of all pixels in the
neighborhood that correspond to one in the structuring
element.

Thickening objects ■ Thickening (M_THICK):

❐ Binary thickening: This operation replaces the center pixel
by the maximum value of the buffer (for example, 0xff for
an 8-bit buffer) if the pixel’s neighborhood matches the
structuring element exactly. However, if the neighborhood
does not match, the pixel value remains unchanged.

❐ Grayscale thickening:
 if MAX(0) <= center pixel < MIN(1)
 center pixel = MIN(1)
 else
 center pixel is unchanged

Where MAX(0) is the maximum of all pixels in the
neighborhood that correspond to zero in the structuring
element, and MIN(1) is the minimum of all pixels in the
neighborhood that correspond to one in the structuring
element.

98 Chapter 6: Advanced image processing

Both versions of thinning and thickening take structuring
elements containing only 0’s, 1’s, and ‘ don’t care’ values.

If the processing mode is set to M_BINARY, a binary thinning
or thickening is performed, otherwise the grayscale version of
these operations is performed.

Matching

Matching allows you to determine the degree of similarity
between certain areas of the image and a pattern (specified by
a structuring element). The operation takes a binary or
grayscale source image and produces a corresponding grayscale
image, wherein the value of each pixel is equal to the total
number of matches between the neighborhood of the source
image’s corresponding pixel and the structuring element
values.

Searching for hits or misses
You can determine which pixels have neighborhoods that match
a pattern exactly by performing a ‘hit or miss’ operation. When
the neighborhood of a source image’s pixel matches the pattern
exactly, the value of the corresponding pixel in the destination
image is the maximum value of the buffer (e.g. 0xff for an 8-bit
buffer). When the neighborhood does not match exactly, the
pixel value is zero.

Connectivity mapping 99

Connectivity mapping

In some cases, an image must undergo several passes with
different structuring elements. This can be very
time-consuming. To perform such operations more efficiently,
you should consider the connectivity (or cellular) mapping
command, MimConnectMap(). This command reduces a serial
operation to a parallel operation.

The MimConnectMap() command calculates a connectivity code
for each pixel in a binary source image and then maps these
codes through the specified LUT buffer.

The connectivity code is obtained by linking the elements of a
pixel’s 3x3 neighborhood into a string, forming a single 9-bit
number. Neighborhood pixels are linked in the following order:

 where is either 0 or 1

The pixels are connected and mapped as follows:

Connectivity code =

Result = LUTMAP (connectivity code)

Program the LUT with values that would result if the required
structuring elements were applied. As each connectivity code
has 9 bits, you should supply a LUT buffer with at least 512
(2 to the power of 9) entries.

n3 n2 n1

n4 n8 n0

n5 n6 n7

ni

2
i
ni

i 0=

8

∑

100 Chapter 6: Advanced image processing

Fast Fourier Transform

A Fast Fourier Transform (FFT) is used to identify any
consistent spatial patterns in an image (which can be caused,
for example, by systematic noise). MIL can perform one or two
dimensional FFTs using MimTransform(). For 1-D
transforms, each row or column is treated as a 1-D signal. This
method of transform separates a one dimensional signal into a
set of sine and cosine waves of different frequencies. For a
two-dimensional signal (image), it can be interpreted as the
decomposition of an image into a set of 2-D patterns. The
composition of these waves make up the original waveform.

The forward Fourier transform is defined as:

Where u and v are coordinates in the frequency domain and x
and y are coordinates in the spatial domain. A forward FFT
yields a real (R) and an imaginary (I) component of the image
in a frequency domain (spectrum).

The reverse Fourier transform is defined as:

where x and y are the coordinates in the spatial domain and u
and v are coordinates in the frequency domain.

Magnitude and phase For a more visual understanding of the FFT results, you can
calculate the phase and magnitude, also using the
MimTransform() function.

The magnitude is calculated as , where R and I are real

F u v,() f x y,() 2πixu()
N

2πiyv()

M
--------------------expexp

y 0=

M 1–

∑
x 0=

N 1–

∑=

f x y,() 1
nm
------- F u v,() 2πixu–()

N

2πiyv–()
M

-----------------------expexp

v 0=

M 1–

∑
u 0=

N 1–

∑=

R2 I2+

Fast Fourier Transform 101

and imaginary components of the image, respectively.
MimTransform() uses the flag M_MAGNITUDE to obtain this
value.

The following figures show single-frequency images and their
magnitude. Because single-frequency images contain only one
spatial frequency component, their corresponding frequency
images appear as a single point of brightness with their
associated negative-frequency mirrors. Note that the points in
the frequency domain appear in the direction of the pattern.
The distance between the points and the center (DC component)
represents the frequency of the pattern.

102 Chapter 6: Advanced image processing

The spatial shift of each pattern in the image (in degrees) is
called the phase. It is calculated using the formula .
Use the flag M_PHASE to obtain the phase.

Filtering an image To filter constant spatial patterns using FFTs:

1. Perform a forward transform (M_FORWARD) calculating the
magnitude (M_MAGNITUDE) of the image. Scale the image
within displayable range using M_LOG_SCALE (this applies
the formula,).

2. Find the frequency components representing the noise and
design a mask to remove these components.

3. Once the mask is designed, perform a simple transform to
obtain the real and imaginary components, this time
without calculating the magnitude.

4. Apply the mask to both the real and imaginary components
of the image in the frequency domain.

5. Finally, perform a reverse transform to obtain a filtered
image.

If you know the frequency of the noise pattern and have
designed the mask, you need only perform steps 3 to 5.

I R⁄()atan

c 1 F u v,()+[]log

Fast Fourier Transform 103

Following is an excerpt from the example mfft.c. It performs an
FFT on an image with a vertical noise pattern. A forward
transform is performed to obtain the real and imaginary
components of the image. The values of locations corresponding
to the noise pattern are set to 0. Finally, a reverse transform is
performed to obtain a spatial image without the noise pattern.

����(KNG�PCOG��OHHV�E�
����5[PQRUKU��6JKU�RTQITCO�WUGU�VJG�(CUV�(QWTKGT�6TCPUHQTO�VQ�HKNVGT�CP�KOCIG�
����
XQKF�OCKP
XQKF�
]
���
���
���
�����

����%QORWVG�VJG�(CUV�(QWTKGT�6TCPUHQTO�QH�VJG�KOCIG����
��/KO6TCPUHQTO
/KN5WD+OCIG����/A07..��/KN6TCPUHQTO4GCN�
���������������/KN6TCPUHQTO+O��/A((6��/A(149#4&
/A%'06'4��
�
����(KNVGT�VJG�KOCIG�KP�VJG�HTGSWGPE[�FQOCKP�����
��/DWH2WV�F
/KN6TCPUHQTO4GCN������������������<GTQ8CN��
��/DWH2WV�F
/KN6TCPUHQTO+O��������������������<GTQ8CN��
��/DWH2WV�F
/KN6TCPUHQTO4GCN������������������<GTQ8CN��
��/DWH2WV�F
/KN6TCPUHQTO+O��������������������<GTQ8CN��
�
����4GEQXGT�VJG�KOCIG�KP�VJG�URCVKCN�FQOCKP����
��/KO6TCPUHQTO
/KN6TCPUHQTO4GCN��/KN6TCPUHQTO+O�
��/KN5WD+OCIG����/A07..��/A((6��/A4'8'45'
/A%'06'4��
���
���
���
_

104 Chapter 6: Advanced image processing

Watershed transformations

You can perform watershed transformations using
MimWatershed(). A watershed transformation is generally
used in conjunction with other processing operations to
segment images, that is, to separate objects from their
background and/or from each other.

To understand what a watershed transformation is, it is useful
to think of an image as a topographic surface. In other words,
the value of each pixel represents a certain height, with the
lowest pixel value (the darkest pixel) representing the point of
lowest elevation and the highest pixel value (the brightest
pixel) representing the point of highest elevation. A minimum
in the image is defined as a pixel or a set of connected pixels
that is lower in value (or elevation) than all its neighboring
pixels. A maximum is a pixel or a set of connected pixels which
is higher in value (elevation) than all its neighboring pixels.
(Pixels are connected if they are vertically, horizontally, or
diagonally adjacent). A catchment basin refers to a minimum
or maximum’s zone of influence. For example, for a minimum,
a catchment basin refers to the set of pixels which, if a drop of
water were to fall from one of these pixels, it would eventually
reach that minimum.

MimWatershed() labels an image’s catchment basins and/or
builds dividing lines between the catchment basins. These
dividing lines are known as the watershed lines of the image.
Note that catchment basins can be determined from the image’s
minima or its maxima.

Watershed transformations 105

Using watersheds to separate touching objects

You can use MimWatershed() in conjunction with
MimDistance() and MimArith() to separate touching objects in
a binary image.

To summarize:

1. Perform a distance transformation on the image. This will
result in a grayscale image with a maximum in each object.

2. Perform a watershed transformation on the resulting
image. Note that:

■ Catchment basins must be determined from the image’s
maxima rather than its minima since MimDistance()
produces a maximum in each object.

■ The transform must show only watershed lines. To save
time, you can prevent watershed lines from extending
into the background. You can also specify that the
watershed lines be straight. (These options are discussed
in more detail later.)

106 Chapter 6: Advanced image processing

■ You must specify the minimum variation in gray levels
between extrema that is required to produce a new
catchment basin (this is discussed in more detail later).
In general, when separating touching objects in a binary
image, a low value (2) is usually sufficient.

3. Perform an AND operation between the original image and
the result of step 2, using MimArith().

Using watersheds to separate objects from their
background

MimWatershed() can be used in conjunction with other
processing operations to separate objects from their
background. For example, if the objects have well-defined
edges, an edge detection will produce a maximum along the
edges of each object. These maxima will define each object as a
catchment basin since they produce a minimum in each object.
A watershed transformation will then label the catchment
basins, effectively segmenting the image.

To summarize:

1. Perform an edge detection on the image.

2. Determine, through some analysis of the resulting image,
the minimum variation in gray levels between extrema that
is required to produce a new catchment basin (this is
discussed in the next section).

3. Perform a watershed transformation on the resulting
image. You must specify that catchment basins be
determined from the image’s minima. In addition, the
transform should only show labelled catchment basins.

An image with well-defined edges. An edge detection performed
on the image.

A watershed transformation of
the resulting image, showing
labelled catchment basins.

Watershed transformations 107

Minimum variation between extrema
A typical image contains a lot of unwanted extrema, often due
to noise. If catchment basins were determined from each
extremum, the transform would segment various noise areas,
resulting in over-segmentation. The MinimumVariation
parameter of MimWatershed() allows you to prevent such
over-segmentation while still separating objects from their
background.

The MinimumVariation parameter specifies the minimum
variation in gray levels between extrema that is required to
produce a new catchment basin. In other words, a new
catchment basin will be determined from an extremum only
when the difference in gray-levels between it and its closest
extrema is greater than the value specified by the
MinimumVariation parameter.

The following shows the line profile across an object (after an
edge detection was performed on the image). In this case,
extrema in the background (as well as within the object) have
a maximum gray-level variation of about 10. The minimum
gray-level variation between the background and the edges is
about 50. In this case, therefore, the MinimumVariation
parameter should be set to a value somewhere between 10 and
50, for example, 30. Note that, if it is set above 50, the object
will not be separated from the background since its extrema
will not produce a new catchment basin.

The default value for the MinimumVariation parameter is 1,
which means that each extremum produces a catchment basin.

108 Chapter 6: Advanced image processing

Using marker images

If you are able to approximate the location of your objects in an
image (either through some pre-processing or through some
previous knowledge of the image), you might want catchment
basins determined from a separate image (known as a marker
image), instead of from extrema in the source image. In this
case, each group of touching pixels with the value zero in the
marker image (known as a marker) produces a catchment basin
in the corresponding area of the source image. Specifically, each
marker in the marker image forces a minimum in the
corresponding area of the source image. Pixels in the marker
image are considered touching if they are vertically,
horizontally, or diagonally adjacent, that is, if they are
“8-connected”.

If you use a marker image, there is no need to determine what
value to set the MinimumVariation parameter in order to
properly segment the image, since you mark off the extrema in
a separate image. Marker images are also useful in preventing
over-segmentation since you control not only the location of the
extrema but also the number of extrema. However, if you cannot
locate your objects in the image, you should not be using a
marker image.

Note that catchment basins can be determined from markers
in the marker image as well as from extrema in the source
image. In this case, supply a marker image to MimWatershed()
and also specify the minimum variation in gray-levels in the
source image required to produce a new catchment basin.

Watershed transformations 109

Style of the watershed lines
Watershed lines can be 8-connected or 4-connected (set the
ControlFlag parameter of MimWatershed() to
M_4_CONNECTED or M_8_CONNECTED). In addition, they can
be traced exactly or forced to be straight (set ControlFlag to
M_REGULAR or M_STRAIGHT_WATERSHED).

8-connected vs.
4-connected

8-connected watershed lines consist of pixels that are
horizontally, vertically, or diagonally touching. 4-connected
watershed lines consist of pixels that are just horizontally
and/or vertically touching. 8-connected watershed lines can
separate 4-connected blobs, that is, blobs whose pixels can
touch horizontally or vertically. 4-connected watershed lines
are required to separate 8-connected blobs, that is, blobs whose
pixels can touch horizontally, vertically, or diagonally.

❖ MIL’s blob analysis module allows you to define blobs as
either 4- or 8-connected.

Note that 4-connected watershed lines can also separate
4-connected blobs but result in over-separation.

Exact vs. straight For visual purposes, watershed lines can be traced exactly or
forced to be straight.

Original image. Exactly-traced watershed lines. Straight watershed lines.

110 Chapter 6: Advanced image processing

Skipping the last level

When you perform MimWatershed(), you can skip the last
intensity level of the transformation (by setting the
ControlFlag parameter to M_SKIP_LAST_LEVEL). In other
words, you can prevent an extremum’s zone of influence from
extending beyond Lmax - 1 (for a minimum) or Lmin - 1 (for a
maximum), where Lmax is the maximum gray-level in the image
and Lmin is the minimum gray-level. In effect, this prevents the
background in the image from being processed, resulting in
quicker processing times.

This option should be used when separating touching objects
since, in this case, watershed lines in the background are
unnecessary.

Original image. A watershed transform when
the last level of processing is
not skipped.

A watershed transform when
the last level is skipped. The only
watershed lines are those between
touching objects.

Polar-to-rectangular and rectangular-to-polar transform 111

Polar-to-rectangular and
rectangular-to-polar transform

Polar-to-rectangular and rectangular-to-polar transform
allows conversion of polar coordinates to cartesian coordinates
and vice versa. With MIL, you can perform rectangular-to-polar
or polar-to-rectangular transforms, using the
MimPolarTransform() function.
Following is an example of a rectangular-to-polar transform.
The dotted line defines the borders of the zone of interest:

The result will be mapped to the destination buffer as shown
below:

112 Chapter 6: Advanced image processing

For a rectangular-to-polar transform, the borders of the zone of
interest are defined by specifying the center, the start and end
radius, and the start and end angle in a source buffer. The
function scans the specified zone from the start angle to the end
angle. In our example, since the start angle is less than the end
angle, the direction of the scan is counter clockwise. The
increment in angle is determined by the length (in pixels) of the
outside arc, calculated as follows:

The valid range of angle is from -360 to 360 degrees and the
maximum span of the angle must not exceed 360 degrees. These
values are then mapped to a destination buffer.

A polar-to-rectangular transform performs the reverse of the
transform described above. It takes a source buffer and maps
it to a destination buffer. The center, start angle, end angle,
start radius, and end radius parameters are used to specify the
position of the contents of the source buffer in the destination
buffer.

∆angle
endangle star gletan–()

arclength
---=

Warping 113

Warping

In addition to functions which perform specific geometric
transforms (MimFlip(), MimResize(), MimRotate(),
MimTranslate(), and MimPolarTransform()), MIL includes a
more general geometric function, MimWarp(). It can perform
any of the specific transforms, as well as complex warpings.
Such warpings could be used, for example, to correct geometric
distortions.

MimWarp() performs a warping by first associating each pixel
position of the destination buffer, (xd, yd), with a specific point
(not necessarily a pixel) in the source buffer, (xs, ys). The pixel
value at (xd, yd) is then determined from an interpolation
around its associated source point. Destination pixels can be
associated with source points through a first-order polynomial
mapping or through look-up tables (LUTs).

Note that the functions which perform specific transforms are
faster than MimWarp(). You should only use MimWarp() when
the required transform cannot be otherwise performed.

❖ Geometric distortions can also be resolved using the
calibration module. See Chapter 7 for details.

Example A warping example, mwarp.c, can be found in your examples
directory.

114 Chapter 6: Advanced image processing

First-order polynomial warpings
A first-order polynomial warping is equivalent to linearly
translating, rotating, resizing, and/or shearing an image.
First-order polynomial warpings are performed by associating
points in the source buffer with pixels in the destination buffer
according to the following equations:

xs = a0xd + a1yd + a2
ys = b0xd + b1yd + b2

Generating
coefficients

The coefficients (a0...a2, b0...b2) required to produce a
first-order polynomial warping can be automatically generated
using MgenWarpParameter() or can be user-supplied. When
using MgenWarpParameter(), you specify how you want the
warping performed (for example, by how much you want to
rotate and resize an image); the function then generates the
coefficients required to produce such a warping.

To combine coefficients, you need to use separate calls to
MgenWarpParameter(). For example, to generate coefficients
for a rotation and translation, you need to call
MgenWarpParameter() twice, using the output buffer of the
first call as the input buffer of the second call. After all
coefficients are generated, pass the coefficient buffer to
MimWarp().

Using LUTs to perform a warping
When you perform a warping using LUTs, xs is determined from
(xd, yd) through one LUT and ys is determined from
(xd, yd) through another LUT. In other words,

xs = LUTx[xd, yd]
ys = LUTy[xd, yd]

Since xs and ys can be arbitrarily mapped, you can perform any
type of warping when using LUTs.

The LUTs that you pass to MimWarp() can be user-supplied or,
for a 3x3 matrix-defined warping, can be automatically
generated using MgenWarpParameter().

Warping 115

3x3 matrix-defined
warping

A 3x3 matrix-defined warping is performed by associating each
pixel position of the destination buffer, (xd, yd), with a specific
point in the source buffer, (xs, ys), according to the following
equation:

 where

To perform a 3x3 matrix-defined warping, supply the 3x3
coefficients (a0...a2, b0...b2, c0...c2) to MgenWarpParameter(),
which will generate the LUTs required by MimWarp().

Perspective warping A 3x3 matrix-defined warping can produce perspective
transformations that map an arbitrary quadrilateral onto a
rectangle or that map a rectangle onto an arbitrary
quadrilateral.

To produce such a perspective transformation, specify the
coordinates of the above points; MgenWarpParameter() will
generate the required 3x3 coefficients (a0...a2, b0...b2, c0...c2).
You then call MgenWarpParameter() again, having it generate

x

y

w

a0 a1 a2

b0 b1 b2

c0 c1 c2

xd

yd

1

=

xs
x
w

a0xd a1yd a2+ +

c0xd c1yd c2+ +
--= =

ys
y
w

b0xd b1yd b2+ +

c0xd c1yd c2+ +
--= =

116 Chapter 6: Advanced image processing

the LUTs from the 3x3 coefficients. Alternatively, if you do not
need to save the 3x3 coefficients, you can have the LUTs
generated on the first call to MgenWarpParameter().

After the LUTs are generated, pass them to MimWarp().

First-order polynomial
warpings

If c0 and c1 are set to 0 in the equation for a 3x3 matrix-defined
warping and c2 is set to 1, the equation reduces to a first-order
polynomial warping. Therefore, you could perform a first-order
polynomial warping by having MgenWarpParameter() generate
the LUTs from the (a0...a2, b0...b2, 0 0 1) coefficients, then
passing the LUTs to MimWarp(). Depending on your system,
this might be faster.

Interpolation modes
When you perform a warping, pixel positions in the destination
buffer, (xd, yd), get associated with specific points in the source
buffer, (xs, ys). The destination coordinates have integer values
but the source coordinates, in general, do not. Therefore, the
pixel value at (xd, yd) has to be determined from several source
pixels that are near (xs, ys), according to a specified
interpolation mode.

The following interpolation modes are available:

■ Nearest-neighbor. This mode determines the nearest value
to a point, and copies that value into its associated position.

■ Bilinear. This mode takes a weighted average of the four
pixels nearest to the point, and copies that average into its
associated position. The pixels closest to the point are given
the most weight.

■ Bicubic. This mode takes a weighted average of the sixteen
pixels nearest to the point, and copies that average into its
associated position. Again, the pixels closest to the point are
given the most weight.

In general, nearest-neighbor interpolation is the fastest to
perform, and bicubic interpolation is the slowest. However,
nearest-neighbor interpolation produces the least accurate

Warping 117

results, and bicubic interpolation produces the most accurate.
Bilinear interpolation is often the best compromise between
speed and accuracy.

Points outside the source buffer
Sometimes, the point associated with a destination pixel will
fall outside the source buffer. In such cases, the new value for
the destination pixel can be determined in one of the following
ways:

■ You can use pixels from the source buffer’s ancestor buffer. If
the source buffer is not a child buffer or if the point falls
outside the ancestor buffer, the destination pixel will be left
as is.

■ You can just leave the destination pixel as is.

■ You can set the destination pixel to 0.

In general, you should use pixels from the source buffer’s
ancestor buffer when the source buffer is a child buffer. This
will ensure that the pixels you use are related to the source
buffer. If the source buffer is not a child buffer, use one of the
other options.

Note that you can set the destination pixel to a value other than
0 by first clearing the destination buffer to that value.

118 Chapter 6: Advanced image processing

Discrete Cosine Transform

Discrete Cosine Transform (DCT) is mainly used for image
JPEG lossy compression. MIL can perform DCT using
MimTransform(). For a one dimensional signal, this method
separates the signal into a set of cosine waves of different
frequency. For a two-dimensional signal (image), it can be
interpreted as the decomposition of an image into a set of 2D
cosine patterns. The composition of these waves make up the
original waveform.
The forward DCT is defined as:

where u and v are coordinates in the frequency domain,

 for u = 0 and for u > 0

and for v = 0 and for v > 0

The reverse DCT is defined as:

where x and y are coordinates in the spatial domain.

Frequency 0, also called the DC component, is plotted in the
top-left corner of the spectrum. All other components in the
spectrum are called AC components. A DCT concentrates the
low frequency components of the image in the first few
coefficients (top left-corner) of the spectrum. MIL divides the
image into independent blocks of 8x8 pixels and performs the
transform on each individual block.
Centering of the spectrum is not supported in MIL.

C u v,() K u()
2

K v()

2
----------- f x y,()Cos

2x 1+()uπ
16

--------------------------- Cos
2y 1+()vπ

16

y 0=

7

∑
x 0=

7

∑=

K u() 1

2
-------= K u() 1=

K v() 1

2
-------= K v() 1=

f x y,() K v()
2

K u()

2
------------C u v,()Cos

2x 1+()uπ
16

--------------------------- Cos
2y 1+()vπ

16

u 0=

7

∑
v 0=

7

∑=

Chapter 7: Calibration

This chapter describes how to use MIL’s calibration
module.

120 Chapter 7: Calibration

Introduction

MIL’s calibration module (Mcal...()) consists of a set of functions
that allow you to map pixel coordinates to real-world
coordinates. This mapping can be used to get results from other
MIL modules in real-world units. The mapping can also be used
to physically correct an image’s distortions.

By getting results in real-world units, you automatically
compensate for any distortions in an image. Therefore, you can
get accurate results despite an image’s distortions.

Calibration Defining the pixel-to-world mapping is known as calibration. A
calibration object is used to hold the defined mapping, as well
as certain control settings.

Once you have created your calibration object, you can:

■ Use it to transform pixel coordinates or results to their
real-world equivalents.

■ Use it to physically correct an image.

■ Use it to automatically get results from other MIL modules
in real-world units. The modules that can return results in
real-world units are:

❐ Mblob...()

❐ Mcode...()

❐ Mim...()

❐ Mmeas...()

❐ Mocr...()

❐ Mpat...()

❖ Note that a few results are always returned in pixel units. If
a result can be returned in either real-world or pixel units, it
will be stated in the command description.

Introduction 121

Types of distortions

You can use calibration if you have one or more of the following
types of distortion:

■ Non-unity aspect ratio distortion: Present when the X
and Y axis have two different scale factors. This is evident,
for example, if you know that the object in your image should
be round and it appears as an ellipse. This type of distortion
is often a side effect of the sampling rate used by some older
digitizers.

■ Rotation distortion: Present when the camera is
perpendicular to the object grabbed in the image, but not
aligned with the object’s axes.

■ Perspective distortion: Present when the camera is not
perpendicular to the object grabbed in the image. Objects that
are further away from the camera appear proportionally
smaller than the same size objects closer to the camera.

■ Other spatial distortions: Complex distortions, such as
pin cushion and barrel-type distortions, fall in this category.
These distortions can be compensated for by using a large
number of small sections in the mapping function. If the
number of sections used is big enough and the corresponding
area covered in each is small enough, the mapping in each
area can be approximated with a linear interpolation
function.

122 Chapter 7: Calibration

Steps to getting results in real-world units

To get results in real-world units:

1. Allocate a calibration object, using McalAlloc().

2. Calibrate your imaging setup, using either McalGrid() or
McalList().

3. Do one of the following:

■ To transform pixel coordinates or results to their
real-world equivalents, use McalTransformCoordinate()
or McalTransformResult().

■ To physically correct an image, use
McalTransformImage().

■ To automatically get results from other MIL modules in
real-world units, associate the calibration object to an
image or digitizer, using McalAssociate().

Transforming coordinates or results

Transforming
coordinates

You can use McalTransformCoordinate() to convert coordinates
from their pixel to their world values (or vice-versa).

Transforming results You can use McalTransformResult() to convert a specific
non-positional result (a length, angle, or area) from its pixel to
its world value (or vice-versa). Note, however, that this function
uses the average pixel size to perform the conversion; results
will be more accurate if you first correct the image.

Physically correcting an image

Corrected image You can use McalTransformImage() to physically correct and
remove certain types of distortions in an image. An image that
has been physically corrected using the calibration module is
known as a corrected image. When a corrected image is used
within a MIL module, results can be returned in real-world
units. As is expected, the image features in the destination
image have the same world coordinates as they had in the
source image, despite the fact their pixel coordinates have
changed.

Steps to getting results in real-world units 123

For example, after calibrating the source image below, the
world coordinates of the bottom-left circle are (5,6). When you
correct your image, the world coordinates of the bottom-left
circle in the corrected image are also (5,6), even though it is
evident that the pixel coordinates are different for the
bottom-left circle in the source and corrected images.

Note that images are physically corrected using a geometric
warping.

Accelerating through a
cache

By default, a cache is used to physically correct an image. The
first time a calibration object is used to transform an image,
this cache fills up with information relevant to the
transformation. On subsequent transformations with the
calibration object, the information in the cache can significantly
accelerate the transform. However, if you need to save memory,
you can disable this cache, using the M_TRANSFORM_CACHE
setting of McalControl(). (The cache consists of two 32-bit
buffers with the same size as the destination buffer of
McalTransformImage()).

❖ The information in the cache is flushed whenever the size of
the source or destination buffers of McalTransformImage()
changes, or whenever the angle of the relative coordinate
system of the calibration object changes. Coordinate systems
are discussed later in this chapter.

Source image Corrected image

(5,6) (5,6)

124 Chapter 7: Calibration

Automatically getting results in real-world units

Associating To automatically get results from other MIL modules in
real-world units, associate the calibration object to an image or
digitizer, using McalAssociate().

Disassociating To disassociate a calibration object from an image or digitizer,
you also use McalAssociate().

Calibrated image An image with an associated calibration object is known as a
calibrated image. A calibrated image still appears distorted
because it has not been physically corrected. However, when it
is used within a MIL module, results from this module can be
returned in real-world units.

Note that the calibration object gets associated to the image,
not to the buffer containing the image. To understand the
implications this has on processing, refer to the Processing
calibrated images section in this chapter.

Also note that, if you save a calibrated image to file, the
calibration settings do not get saved.

Calibrated digitizer A digitizer with an associated calibration object is known as a
calibrated digitizer. When you grab an image with a calibrated
digitizer, the calibration object currently associated to the
digitizer gets associated to the grabbed image. Therefore, the
grabbed image becomes a calibrated image.

It is recommeded to associate a particular calibration object to
only one digitizer and adjust the parameters (if necessary) of
each subsequent calibration object so that they are in the same
world-coordinate system.

Associating to image
vs. digitizer

When you associate a calibration object to an image (either with
a call to McalAssociate() or a grab with a calibrated digitizer),
the image receives a copy of the calibration object’s current
relative coordinate system and current relative camera position
and a reference to the calibration object for all other settings.
This means that, if you change the relative coordinate system
or relative camera position after association, the change will
not affect the image. (The relative coordinate system and
relative camera position are discussed later). If you change any

Steps to getting results in real-world units 125

other setting of the calibration object after association, the
change will affect the calibrated image. When you associate a
calibration object to a digitizer, the digitizer only receives a
reference to the calibration object.

Child buffers When a calibration object is associated to an image that
contains child images, the child images are automatically
calibrated. In addition, their offsets to the parent image are
taken into account when returning real-world results.

Returned results When a calibrated image is used within a MIL module, results
can be returned in pixel units or in real-world units. To specify
whether results should be in pixel or real-world units, use the
M_OUTPUT_COORDINATE_SYSTEM setting of McalControl().
By default, results are in real-world units. While results can be
returned in pixel or real-world units, any value which you pass
to a MIL function must be in pixel units.

❖ A few results are always returned in pixel units. If a result
can be returned in either real-world or pixel units, it will be
stated in the command description.

126 Chapter 7: Calibration

Calibrating your imaging setup

To calibrate your imaging setup, you can use an image of a
user-defined grid of circles or you can use a list of pixel and
real-world coordinates. To use a grid, call McalGrid(). To use a
list of coordinates, call McalList().

Real-world grid

McalGrid() determines the pixel-to-world mapping from an
image of a user-defined grid of circles and the world description
of this grid. The world description includes the number of rows
and columns, as well as the center-to-center distance between
these rows and columns, in real-world units.

General rules for
constructing a grid

McalGrid() can create a pixel-to-world mapping from almost
any grid of circles. However, to create an accurate (sub-pixel)
mapping, your physical grid should meet the following
guidelines (at the working resolution):

■ The radius of the grid’s circles should range between 6 and
10 pixels.

■ The center-to-center distance between the grid’s circles
should range from 18 to 32 pixels (22 pixels recommended).

■ The minimum distance between the edges of the circles
should be 6 pixels.

Calibrating your imaging setup 127

■ The grid should be large enough to cover the area of the image
from which you want real-world results (the working area).

■ The grid image should have high contrast.

The world By default, the circle in the top-left corner of the grid image is
associated to the origin, (0, 0), of the real world coordinate
system, the first column of circles is aligned with its Y-axis, and
the first row of circles is aligned with its X-axis. This is because,
in general, you know where that first circle is in the real-world,
so you need results with respect to that position (the top-left
pixel, for example, is generally not a known position in the
real-world).

128 Chapter 7: Calibration

Offset and Y-axis If necessary, you can associate the top-left circle of the grid
image to a different position within the real-world coordinate
system. The origin of the real-world coordinate system does not
have to be within the field-of-view. Note that this offset is
specified in real-world units.

You can have the positive Y-axis oriented 90º counter-clockwise
with respect to the positive X-axis (by default, the calibration
module assumes it is oriented 90º clockwise).

Each circle’s
coordinates

After you call McalGrid(), you can inquire about the pixel
coordinates and associated real-world coordinates of each circle
in the grid using McalInquire() with
M_CALIBRATION_IMAGE_POINTS_X/Y and
M_CALIBRATION_WORLD_POINTS_X/Y. This will return the
coordinates of the center of the grid’s circles.

List of coordinates

McalList() uses a list of pixel coordinates and their associated
real-world coordinates to define the pixel-to-world mapping.
The more coordinates you specify, the more accurate the
mapping. McalList() can be used when you explicitly know the
real-world coordinates for a given set of pixel coordinates. The
specified pixel coordinates should cover the area of the image
from which you want real-world coordinates (the working area).

You can associate the top-left circle of the
grid image to a different position within

the world. In this case, an offset of
(1.5,1.5) was used.

You can have the positive y-axis
orientated counter-clockwise with

respect to the positive x-axis.

y-axis

x-axis
y-axis

x-axis

(0, 0)

(1.5,1.5)

Calibrating your imaging setup 129

In the case of perspective distortion, knowing the world
coordinates of 4 points in the image gives sufficient information
to create a mapping function. To create a good mapping for a
radial distortion requires a larger number of coordinates (for
example, more than 30) distributed over the image.

Calibration modes
When you use McalGrid() or McalList(), you also have to specify
the calibration mode. MIL supports the following calibration
modes:

■ Piecewise linear interpolation.

■ Perspective transformation.

Piecewise linear
interpolation

In general, you should use the piecewise linear interpolation
mode. This mode can compensate for any kind of distortion. It
is very accurate for points located inside the working area.
However, it is less accurate for points outside the working area.
The piecewise linear interpolation mode fits a piecewise linear
interpolation function to the set of image coordinates and their
real-world equivalents.

Perspective
transformation

The perspective transformation mode can compensate for
rotation, translation, scale, and perspective distortions. For
such distortions, the perspective transformation mode is
accurate for points inside and outside the working area. This
mode cannot compensate for non-linear distortions such as lens
distortions. The perspective transformation mode best fits a
global perspective transformation function to the set of image
coordinates and their real-world equivalents.

130 Chapter 7: Calibration

Coordinate systems and camera position

By default, after calibration, real-world positional results will
be given within the absolute world coordinate system, rather
than the image coordinate system. You can specify the position
of your camera in the absolute world coordinate system. In
addition, you can get results relative to some object by moving
and/or orienting the relative world coordinate system.

Image coordinate
system

The image coordinate system is the coordinate system used to
locate and/or measure objects in an uncalibrated image. Its unit
of measure is pixels. Its origin, (0, 0), is the middle of the image’s
top-left pixel. Its Y-axis is aligned with the first column of pixels
and its X-axis is aligned with the first row of pixels.

Absolute world
coordinate system

The absolute world coordinate system is the coordinate system
used to locate and/or measure objects in the real world. It is
implicitly defined from the calibration points when calibrating
the imaging setup. Its unit of measure is user-defined (mm, cm,
inches, etc.). Calibration relates the image coordinate system
to the absolute world coordinate system.

Note that, when using a grid of circles to calibrate your imaging
setup, the X-axis of the absolute world coordinate system is
aligned with the first row of circles, and the Y-axis is aligned
with the first column of circles.

For the sake of simplicity, the absolute world coordinate system
will be known as the absolute coordinate system.

Camera position The camera position can be any arbitrary point that moves with
the camera; it does not have to be the actual camera position.
For example in the following diagram, the camera position is
assigned not to the actual camera, but to the arm of the robotic
manipulator.

Coordinate systems and camera position 131

Relative camera
position

The relative camera position refers to the position of your
camera relative to the absolute coordinate system. Adjusting
the relative camera position can be useful when analyzing an
object that cannot fit in a single image (see the Multiple fields
of view section for details).

The relative camera position affects positional results taken
from a calibrated image, as shown below.

Camera position

Relative origin

(140, 130 M_NULL)

(125, 110 M_NULL)

(0, 0 M_NULL)

Camera

100

100

Absolute coordinates system origin

Work surface area boundary
for robot manipulator

132 Chapter 7: Calibration

To adjust the relative camera position, use the
M_CAMERA_POSITION_X and M_CAMERA_POSITION_Y
controls of McalControl(). Note however, that the Z position of
the camera cannot be changed when adjusting the relative
camera position, and should be set to M_NULL.

Relative world
coordinate system

By default, the relative world coordinate system is aligned with
the absolute coordinate system. However, to get results relative
to some object, it can be moved anywhere within the absolute
coordinate system and rotated by any angle. Its unit of measure
is the same as the absolute coordinate system. For the sake of
simplicity, the relative world coordinate system will be known
as the relative coordinate system.

Note that this image is for illustrative purposes only. In general,
the object should not be placed over a grid because if the grid’s
circles and the object are not differentiated when performing
the processing operation, then erroneous results will be
returned.

To move and/or rotate the relative coordinate system, use
McalRelativeOrigin(). Once you change the origin and/or
orientation of the relative coordinate system, world coordinates
will be returned in this relative coordinate system.

Note that, when you physically correct an image (using
McalTransformImage()), the image is transformed such that
the relative coordinate system is aligned with the image
coordinate system.

x-axisx-axis

y-axis

y-axis

world
oordinate systems

and relative
c

image coordinate
system

x-axis

y-axis

relative
coordinate

system

(0, 0) (-2, -1) (0, 0)(2, 1)

Multiple fields of view 133

Multiple fields of view

The calibration module makes it possible to measure the length
between various points on an object, even when the object is not
entirely within the camera’s field-of-view. The camera’s
field-of-view refers to the largest world region visible in an
image at a given resolution.

The approach to analyzing a large object involves acquiring
images of the various parts of the object, getting real-world
coordinates from each image, and then calculating the distance
between the coordinates. Three types of applications are
considered:

■ A single camera is fixed on a manipulator and the
manipulator is moved to different positions to acquire the
different images.

■ A single camera is fixed to a location and the object is moved
to different positions to acquire the different images.

■ Several cameras are used to acquire the different images.

Single camera fixed on a manipulator: Relative
camera position example
When a single camera is fixed on a manipulator, part of the
object is grabbed, the camera is moved to a different position,
a different part of the object is grabbed, and the process repeats
until the entire object has been grabbed. For the coordinates
from each image to be in the same absolute coordinate system,
the relative camera position has to be updated each time the

134 Chapter 7: Calibration

camera is moved. To change the relative camera position, use
the M_CAMERA_POSITION_X and M_CAMERA_POSITION_Y
controls of McalControl().

Single camera and moveable object: Relative
coordinate system example
When a single camera is fixed to a location, part of the object is
grabbed, the object is moved to a different position, another part
of the object is grabbed, and the process repeats until the entire
object has been grabbed. For the coordinates from each image
to be in the same coordinate system, the relative coordinate
system must be moved each time the object is moved. To move
the relative coordinate system, use McalRelativeOrigin().

absolute coordinate system

1 2
1 = first field of view

2 = second field of view

For the first grab:

M_CAMERA_POSITION_X = 1

M_CAMERA_ _Y = 1

For the second grab:

M_CAMERA_ _X = 6

M_CAMERA_ _Y = 1

POSITION

POSITION

POSITION

Multiple fields of view 135

Several cameras and fixed object: Relative
coordinate system example

For the coordinates from each image to be in the same absolute
coordinate system when several cameras are used, the
calibration object used to calibrate each camera must use the
same absolute coordinate system. When using McalGrid(), you
must use an offset to relate the origin of each grid to the same
absolute coordinate system. When using McalList(), the
real-world coordinates used in each mapping must be from the
same absolute coordinate system.

136 Chapter 7: Calibration

Processing calibrated images

The calibration object is associated with the image and not the
buffer. This has certain implications on processing operations.
Depending on the type of operation performed on the calibrated
image, the destination image is associated with the following
calibration object:

■ When performing point-to-point or neighborhood processing
operations, the destination image is associated with the same
calibration as the source image.

If the operation uses more than one source image, a
calibration object gets associated to the destination image
only if all source images have the same calibration object;
otherwise, no calibration object gets associated to the
destination image.

■ Geometrical functions (MimFlip(), MimPolarTransform(),
MimResize(), MimRotate(), MimTranslate(), and MimWarp())
always result in an uncalibrated image, even if the source
image is calibrated.

■ The function MbufClear() always results in an uncalibrated
image.

■ Functions for which the source data is always uncalibrated
always produce uncalibrated images. These functions
include, for example MbufImport...() and MbufLoad().

Chapter 8: Blob analysis

This chapter describes the basic steps to extract
connected regions of pixels (blobs) within an image.

138 Chapter 8: Blob analysis

Blob analysis

Blobs? Blob analysis allows you to identify connected regions of pixels
within an image, then calculate selected features of those
regions. The regions are commonly known as blobs.

Blobs are areas of touching pixels that are in the same logical
pixel state. This pixel state is called the foreground state, while
the alternate state is called the background state. Typically, the
background has the value zero and the foreground is everything
else (although some control is generally provided to reverse the
sense).

Feature extraction In many applications, we are interested only in blobs whose
features satisfy certain criteria. Since computation is
time-consuming, blob analysis is often performed as an
elimination process whereby only blobs of interest are
considered in further analysis. The steps involved in feature
extraction are:

1. Analyze an image and exclude or delete blobs that don’t
meet determined criteria.

2. Analyze the remaining blobs to extract further features and
determine their criteria.

Repeat these steps, as necessary, until you have all the blob
measurement results you need.

Reducing the raw data to just a few feature measurements
generally produces more comprehensible and useful results.

MIL and blob analysis 139

MIL and blob analysis

The MIL package includes a blob analysis module that can
extract a wide assortment of blob features, such as the blob
area, perimeter, Feret diameter at a given angle, minimum
bounding box, and compactness.

Identifier image MIL uses a user-specified blob identifier image to discriminate
between blobs and the background. Controls are provided to
allow you to specify how this identifier image is interpreted
(which pixels are part of which blob). Blobs are considered to
consist of either zero or non-zero pixels, depending on the
foreground control setting. The non-zero pixels can either have
any value or must be set to the maximum value of the buffer
(for example, 0xff for an 8-bit image), depending on the
identifier type (grayscale or binary). In addition, MIL provides
controls to take into account such blob image information as
the pixel aspect ratio.

For binary feature extractions, such as those that pertain to the
overall shape of the blob, the blob identifier image is used for
both identification and computation. For grayscale extractions
(e.g. the mean pixel value in a blob), you must also provide a
grayscale image whose pixel values will be used in computation.

Supported buffers With MIL, you can perform blob analysis on 1-bit, 8-bit or 16-bit
unsigned buffers.

Steps to performing blob analysis

Although there are a multitude of features that can be
calculated and used during the elimination or the analysis
process, the following is a series of steps that you will typically
perform:

1. Grab or load an image that was captured under the best
possible conditions to minimize the amount of
preprocessing required.

140 Chapter 8: Blob analysis

2. If necessary, reduce the amount of noise in the image. (Noise
makes the next step more difficult.)

3. Segment the image so that blobs are separated from the
background and from each other. Typically, this involves
binarizing the image so that the background is in one state
(zero or non-zero) and the blob pixels are in the other state.
This image is known as the blob identifier image. If you plan
to perform grayscale calculations, you will need the original
grayscale image as well.

4. If necessary, preprocess the blob identifier image . If there
are too many noise particles, calculation time will be
increased. An opening operation (for non-zero blobs) or a
closing operation (for zero blobs) will remove most of the
noise particles without affecting real blobs significantly.
You might also need to separate touching blobs at this stage
(or they will be counted as a single blob).

5. Allocate a buffer for blob analysis results, using
MblobAllocResult().

6. If necessary, adjust default blob analysis controls to fit your
application, using MblobControl(). You can control the pixel
aspect ratio, when to consider two pixels touching (along
horizontal and vertical only or also along the diagonal),
which values in the identifier image represent a blob (zero
or non-zero), and whether or not non-zero pixels in the
identifier image can have any value or must be set to the
maximum value of the buffer (grayscale or binary). For
example, the maximum value of an 8-bit buffer is 0xff.

7. Allocate a feature list, using MblobAllocFeatureList(). This
list is used to specify the features that should be calculated.
By default, this feature list is empty; no features are
selected.

Steps to performing blob analysis 141

8. Calculate the required features and analyze the results.
This involves the following:

❐ Adding the required features into the feature list so that
they will be calculated. Typically, you will use
MblobSelectFeature() to perform this operation. However,
when calculating moments or Feret diameters, you might
need to use the more general feature selectors,
MblobSelectMoment() or MblobSelectFeret(), respectively.

❐ Calculating results for the selected features, using
MblobCalculate(). For this command, you will have to
specify the blob identifier image that will be used to
identify the blobs and calculate binary features, and
(optionally) the grayscale image that will be used to
calculate grayscale features.

❐ If necessary, excluding or deleting blobs that do not meet
the criteria, using MblobSelect(). Results for the excluded
or deleted blobs will not be returned. Excluded blobs will
be ignored in future calculations, while deleted blobs will
be removed from the blob analysis result buffer altogether.

❐ Getting the number of blobs currently included, using
MblobGetNumber(), and retrieving the results from the
blob result buffer, using MblobGetResult(). Note,
MblobGetResultSingle() obtains results for a single blob,
while MblobGetLabel() and MblobGetRuns() can be used
to obtain more specific results.

You can repeat this step until you obtain all required results
for the blobs of interest. Note, the process of excluding or
deleting unwanted blobs and then calculating more features
is the preferred method if you have many unwanted blobs. If
this is not the case, it is often faster to calculate all the
required features for all the blobs with a single call to
MblobCalculate(), and then exclude or delete unwanted blob
results afterwards.

142 Chapter 8: Blob analysis

A simple blob analysis example

We have provided an example that counts the number of blobs
in an image and then marks their centers of gravity. Note, the
binarizing step produces a considerable number of spurious
blobs and holes, so some processing is performed to clean up
the blob identifier image before doing any calculations.

���(KNG�PCOG��ODNQD�E
���5[PQRUKU��6JKU�RTQITCO�NQCFU�CP�KOCIG�QH�UQOG�PWVU��DQNVU�CPF�������������
��������������YCUJGTU��FGVGTOKPGU�VJG�PWODGT�QH�GCEJ�QH�VJGUG�CPF�OCTMU�VJGKT��
�������������EGPVGT�QH�ITCXKV[�����

�KPENWFG��UVFKQ�J ��
�KPENWFG��OKN�J ��
�
���6CTIGV�/+.�KOCIG�HKNG�URGEKHKECVKQPU������
�FGHKPG�+/#)'A(+.'�������������/A+/#)'A2#6*�DQNVU�OKO���
�FGHKPG�+/#)'A9+&6*���������������.
�FGHKPG�+/#)'A*'+)*6��������������.
�FGHKPG�+/#)'A6*4'5*1.&A8#.7'����.�

���/CZKOWO�PWODGT�QH�DNQDU�����
�FGHKPG�/#:A$.1$5�����������������.�

���/KPKOWO�CPF�OCZKOWO�CTGC�QH�DNQDU����
�FGHKPG�/+0A$.1$A#4'#������������.�
�FGHKPG�/#:A$.1$A#4'#�������������.

���4CFKWU�QH�VJG�UOCNNGUV�RCTVKENGU�VQ�MGGR����
�FGHKPG�/+0A$.1$A4#&+75���.

���/KPKOWO�JQNG�EQORCEVPGUU�EQTTGURQPFKPI�VQ�C�YCUJGT����
�FGHKPG�/+0A%1/2#%60'55�����������

���5K\G�CPF�EQNQT�QH�VJG�ETQUU�WUGF�VQ�OCTM�EGPVGTU�QH�ITCXKV[����
�FGHKPG�%4155A5+<'���������������.
�FGHKPG�%4155A%1.14��������������.
�
���7VKNKV[�HWPEVKQPU�RTQVQV[RG���
XQKF�&TCY%TQUU
/+.A+&�+OCIG+F��FQWDNG�%GPVGT:��FQWDNG�%GPVGT;��NQPI�%QNQT��
�
XQKF�OCKP
XQKF�
]�
��/+.A+&�/KN#RRNKECVKQP�����������#RRNKECVKQP�KFGPVKHKGT���������������
���������/KN5[UVGO����������������5[UVGO�KFGPVKHKGT��������������������
���������/KN&KURNC[���������������&KURNC[�KFGPVKHKGT�������������������
���������/KN+OCIG�����������������+OCIG�DWHHGT�KFGPVKHKGT��������������
���������$KP+OCIG�����������������$KPCT[�KOCIG�DWHHGT�KFGPVKHKGT�������
���������$NQD4GUWNV���������������$NQD�TGUWNV�DWHHGT�KFGPVKHKGT��������
���������(GCVWTG.KUV��������������(GCVWTG�NKUV�KFGPVKHKGT��������������
��NQPI���6QVCN$NQDU�����������������6QVCN�PWODGT�QH�DNQDU�������������������
�������������
���������%QI:=/#:A$.1$5?����������:�EQQTFKPCVG�QH�EGPVGT�QH�ITCXKV[����
���������%QI;=/#:A$.1$5?����������;�EQQTFKPCVG�QH�EGPVGT�QH�ITCXKV[����
���������P������������������������%QWPVGT������������������������������

EQPV������

A simple blob analysis example 143

�����#NNQECVG�FGHCWNVU���
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
�������������������/A07..���/KN+OCIG��

�����#NNQECVG�C�DKPCT[�KOCIG�DWHHGT�HQT�HCUV�RTQEGUUKPI����
��/DWH#NNQE�F
/A&'(#7.6��+/#)'A9+&6*��+/#)'A*'+)*6�
���������������
/A705+)0'&��/A+/#)'
/A241%���$KP+OCIG��

�����.QCF�UQWTEG�KOCIG�KPVQ�KOCIG�DWHHGT�����
��/DWH.QCF
+/#)'A(+.'��/KN+OCIG���
��
�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG�����
��RTKPVH
�6JKU�RTQITCO�FGVGTOKPGU�VJG�PWODGT�QH�QDLGEVU�KP�VJG>P����
��RTKPVH
�FKURNC[GF�KOCIG�CPF�OCTMU�VJG�EGPVGT�QH�ITCXKV[�QH�GCEJ�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P�����
��IGVEJCT
��
�
�����$KPCTK\G�KOCIG����
��/KO$KPCTK\G
/KN+OCIG��$KP+OCIG��/A)4'#6'4A14A'37#.�
��������������+/#)'A6*4'5*1.&A8#.7'��/A07..��
�
�����4GOQXG�UOCNN�RCTVKENGU�CPF�VJGP�TGOQXG�UOCNN�JQNGU����
��/KO1RGP
$KP+OCIG��$KP+OCIG��5/#..A2#46+%.'A4#&+75��/A$+0#4;��
��/KO%NQUG
$KP+OCIG��$KP+OCIG��5/#..A2#46+%.'A4#&+75��/A$+0#4;��
�
�����#NNQECVG�C�HGCVWTG�NKUV�����
��/DNQD#NNQE(GCVWTG.KUV
/KN5[UVGO���(GCVWTG.KUV���
��
��

EQPV������

144 Chapter 8: Blob analysis

�����'PCDNG�VJG�CTGC�HGCVWTG�VQ�UGNGEV�DNQDU�QH�KPVGTGUV
�����CPF�VJG�%1)�HGCVWTG�VQ�OCTM�VJGKT�EGPVGT�QH�ITCXKV[�
������
��/DNQD5GNGEV(GCVWTG
(GCVWTG.KUV��/A#4'#���
��/DNQD5GNGEV(GCVWTG
(GCVWTG.KUV��/A%'06'4A1(A)4#8+6;����

�����#NNQECVG�C�DNQD�TGUWNV�DWHHGT����
��/DNQD#NNQE4GUWNV
/KN5[UVGO���$NQD4GUWNV���
�
�����%CNEWNCVG�UGNGEVGF�HGCVWTGU�HQT�GCEJ�DNQD�����
��/DNQD%CNEWNCVG
$KP+OCIG��/A07..��(GCVWTG.KUV��$NQD4GUWNV����

�����'ZENWFG�DNQDU�YJQUG�CTGC�KU�VQQ�UOCNN����
��/DNQD5GNGEV
$NQD4GUWNV��/A':%.7&'��/A#4'#��/A.'55A14A'37#.��
��������������/+0A$.1$A#4'#��/A07..���
�
�����)GV�VJG�VQVCN�PWODGT�QH�UGNGEVGF�DNQDU�����
��/DNQD)GV0WODGT
$NQD4GUWNV���6QVCN$NQDU���
��RTKPVH
�>P6JGTG�CTG��NF�QDLGEVU�KP�VJG�KOCIG�>P���6QVCN$NQDU���
��
�����%JGEM�HQT�CTTC[�QXGTHNQY�����
��KH
6QVCN$NQDU� �/#:A$.1$5�
��]
�����RTKPVH
�'TTQT��VQQ�OCP[�DNQDU�>P����
��_
��GNUG
��]�
��������)GV�VJG�TGUWNVU�����
�����/DNQD)GV4GUWNV
$NQD4GUWNV��/A%'06'4A1(A)4#8+6;A:
/A6;2'A.10)��%QI:���
�����/DNQD)GV4GUWNV
$NQD4GUWNV��/A%'06'4A1(A)4#8+6;A;
/A6;2'A.10)��%QI;���
����
��������&TCY�ITC[�ETQUU�CV�VJG�EGPVGT�QH�ITCXKV[�QH�GCEJ�DNQD�����
������HQT
P����P���6QVCN$NQDU��P

�
���������]
���������&TCY%TQUU
/KN+OCIG��%QI:=P?��%QI;=P?��%4155A%1.14��
���������_
����
������RTKPVH
�CPF�VJGKT�EGPVGTU�QH�ITCXKV[�JCXG�DGGP�OCTMGF�>P>P����
������_
���
����
������2TKPV�TGUWNVU����
���RTKPVH
�>P6JGTG�CTG���NF�DQNVU>P���6QVCN$NQDU�$NQDU9KVJ*QNGU��
���RTKPVH
�������������NF�PWVU>P���$NQDU9KVJ*QNGU���$NQDU9KVJ4QWIJ*QNGU��
���RTKPVH
�������������NF�YCUJGTU>P>P���$NQDU9KVJ4QWIJ*QNGU��
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P����
���IGVEJCT
��
����
�����(TGG�CNN�CNNQECVKQPU����
���/DNQD(TGG
$NQD4GUWNV���
���/DNQD(TGG
(GCVWTG.KUV���
���/DWH(TGG
$KP+OCIG��
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

���

Blob reconstruction 145

Blob reconstruction

Although the blob analysis module is used mainly for blob
feature calculation purposes, some of the Mblob...() commands
can be used to perform blob image reconstruction. An example
of this is the MblobReconstruct() command. It can:

■ Reconstruct blobs from a seed image (that is, copy in the
destination buffer only those blobs that have a corresponding
seed in the seed buffer):

Note that, for images with grayscale backgrounds, blobs in
the source image which are not seeded are filled with the
average grayscale value of the background.

■ Delete blobs that touch a border of the image:

Note that, for images with grayscale backgrounds, the border
blobs are filled with the average grayscale value of the
background.

Binary Grayscale

Source image Seed image Source image Seed image

Source image Seed imageSource image Seed image

with M_FOREGROUND_ZERO

Destination image

Destination image Destination image

Destination image

Binary Grayscale

with M_FOREGROUND_ZERO

Source image

Source image Source image

Source imageDestination image

Destination image Destination image

Destination image

146 Chapter 8: Blob analysis

■ Fill holes in blobs:

Note that, for images with grayscale blobs, the holes are filled
with the average grayscale value of the blob.

■ Extract holes from blobs:

Note that, for images with grayscale backgrounds, the blobs
are filled with the average grayscale value of the background.

Finally, the analysis and selection tools (for example,
MblobSelect() in conjunction with MblobLabel() and
MblobFill()) can also perform other types of image
reconstruction.

with M_FOREGROUND_ZERO

Binary Grayscale
Source image

Source image

Source image

Source image

Destination image

Destination image Destination image

Destination image

Binary Grayscale

with M_FOREGROUND_ZERO

Source image

Source image Source image

Source imageDestination image

Destination image

Destination image

Destination image

Chapter 9: Setting up for blob
analysis

This chapter describes how to set up for blob analysis.
It discusses setting the controls for the blob identifier
image, and excluding blobs from calculations.

148 Chapter 9: Setting up for blob analysis

Identifying blobs

The MIL blob analysis capabilities allow you to identify and
extract features of connected regions of pixels (commonly
known as blobs) within an image. MIL requires a user-specified
blob identifier image in order to determine which pixels belong
to which blob in the original image. Blob features involving
overall shape are extracted directly from the identifier image.
Features that use the actual pixel values of the blob also require
the original image.

The MIL blob analysis module considers touching foreground
pixels in the blob identifier image to be part of the same blob.
Consequently, what is easily identifiable by the human eye as
several distinct but touching blobs is interpreted by MIL as a
single blob. In addition, any part of a blob that is in the
background pixel state, because of lighting or reflection, is
considered as background during analysis.

To reduce preprocessing, the blob identifier image should be
acquired under the best possible circumstances. This means
ensuring that blobs do not overlap and, if possible, don’t touch.
It also means ensuring the best possible lighting and using a
background with a gray level that is very distinct from the gray
level of the blobs. If noise is a problem, you might also need to
filter the image after acquisition (for example, using a median
filter or a convolution with M_SMOOTH).

Segmenting the blob
image

Once the best possible image is acquired and most noise is
filtered out, you must separate the different blobs from the
background. Segmentation can be done in two ways:

■ Binarize the image, using MimBinarize() so that background
pixels are represented as zero values and blob pixels are
represented as another value.

Identifying blobs 149

■ Clip all background pixels to zero, while retaining the
original values of blob pixels, using MimClip(). This method
has the advantage of not needing a separate buffer to hold
the binary image, but you will not see the result of the
segmentation as clearly. The first method is usually better.

If simple segmentation is not possible due to poor lighting or
blobs with the same gray level as parts of the background, you
must develop a segmentation algorithm appropriate to your
particular image.

 Preprocessing Producing the blob identifier image frequently creates some
spurious blobs or holes (for example, due to noise or lighting).
Such noise blobs make it harder to interpret blob analysis
results. If you have many noise blobs, you should probably
preprocess the image before using it as an identifier. An opening
operation (for non-zero valued blobs or holes) or a closing
operation (for zero valued blobs or holes) will remove most noise
without significantly affecting real features.

If blobs are touching, you might try eroding the image a few
times to break them apart.

Note, preprocessing the blob identifier image might affect the
accuracy of calculations because of the slight change in blob
shape. If this is a problem, perform the calculations on all the
blobs, including those that are actually introduced by noise,
then use the results to filter out the noise. Note, however, that
this method increases the memory required and might increase
the calculation time.

150 Chapter 9: Setting up for blob analysis

Adjusting blob analysis processing controls

Before performing any blob analysis calculations, you should
ensure the correct interpretation of the blob identifier image.
Use MblobControl() to control how certain aspects of the blob
identifier image are interpreted, for example:

■ Which pixel values are considered to be in the foreground
(M_FOREGROUND_VALUE).

■ Whether two pixels touching at their corners are considered
part of the same blob, by appropriately defining the image
lattice (M_LATTICE).

■ Whether non-zero pixels can have any value or must be set
to the maximum value of the buffer; for example, 0xff for an
8-bit buffer (M_IDENTIFIER_TYPE).

■ The pixel aspect ratio of the image
(M_PIXEL_ASPECT_RATIO).

■ Whether to produce separate results for each blob or for
groups of blobs (M_BLOB_IDENTIFICATION).

■ How many Feret angles are considered when calculating a
Feret feature (M_NUMBER_OF_FERETS). Typically, the
default value will be appropriate.

Controlling the image lattice
MIL represents images using a square lattice and considers
adjacent pixels along the vertical or horizontal axis as touching.
However, you can control whether two diagonally adjacent
pixels are considered touching.

Adjusting blob analysis processing controls 151

Use MblobControl() to specify how the blob identifier image
lattice should be interpreted. For example, the following is
considered one blob if the lattice is set to M_8_CONNECTED, but
two blobs if set to M_4_CONNECTED.

The pixel aspect ratio

Pixel’s relation to
real distance

When acquiring an image of a scene, each pixel represents some
real distance both in width and in height. Ideally, this distance
is the same in both directions, producing square pixels and
allowing for simple feature calculations. However, after
digitization, it is quite common for a pixel to represent a
different distance in each direction. The ratio of the pixel’s
width to its height is called the pixel aspect ratio. For
example, a pixel of equal width and height has a pixel aspect
ratio of 1.0.

Note that if you have a calibrated image, feature results are
returned in calibrated units.

Adjusting the aspect
ratio

In blob analysis, the pixel aspect ratio directly affects feature
extractions. For example, all circular blobs are stretched or
squashed if the pixels are not exactly square. In this case, you
have two alternatives:

■ You can adjust your image, using MimResize(), and then
make the required blob analysis feature extractions.

■ You can have calculations take the actual aspect ratio into
consideration without modifying the image, by specifying the
ratio, using MblobControl(). However, any feature derived
from multiple Feret diameters cannot take the pixel aspect
ratio into account accurately, and you will get better results
by actually resizing your image. The same is true of the
general Feret diameter.

152 Chapter 9: Setting up for blob analysis

In both cases, the actual aspect ratio can be calculated using a
simple procedure. Grab an image of a true circle or square and
extract the M_FERET_X and M_FERET_Y features with the
default pixel aspect ratio of 1.0. The relationship between these
features represents the actual pixel aspect ratio to be used in
calculations (M_FERET_Y / M_FERET_X).

Note, if your image has other types of distortions, you can use
MimWarp() to adjust the image.

Positions and
the pixel aspect ratio

Note, all results are affected by the pixel aspect ratio, including
those that are just positions within the image. For example, to
mark M_BOX_X_MIN on an image with a graphics command,
you must take the aspect ratio into account (in this case by
dividing the returned result by the aspect ratio).

Setting the Blob identification mode
Using MblobControl(), you can control how blobs in the blob
identifier image are treated during calculations. This depends
on the blob identification mode setting:

■ Individually (M_INDIVIDUAL)

■ All blobs grouped together (M_WHOLE_IMAGE)

■ Different blobs with the same label grouped together
(M_LABELED)

Note, this mode does not change how blobs are identified
(regions of connected foreground pixels); rather, it determines
whether results are combined into groups.

Results for each blob When using the blob analysis package, you usually want to
make feature calculations on each blob. For example, if you
want to find the area of each cell in a tissue image, set the blob
identification mode to M_INDIVIDUAL.

Circle with a
1.33 aspect ratio

Circle with a
1.0 aspect ratio

Minimum
x-coordinate

(M_BOX_X_MIN)

Minimum
x-coordinate

(M_BOX_X_MIN)

Selecting blobs 153

Results for
blobs grouped as one

Sometimes, however, you need calculations based on the entire
image rather than individual blobs. For example, you might
want to calculate the area of all the copper in a rock sample
image. MIL simplifies your task by allowing you to treat all
foreground pixels together by setting the blob identification
mode to M_WHOLE_IMAGE. Blobs in an image are treated as
one blob and features are calculated for this grouped blob.

Results for blobs
grouped by label value

Blob identification mode M_LABELED allows you to do joint
calculations on blobs with the same label value. When using
labeled mode, ensure that each blob in the identifier image has
a uniform pixel value. This value is the M_LABEL_VALUE result
for that blob, and determines the grouping of the blobs.

Selecting blobs

Once all blobs are clearly identifiable by the blob analysis
package, you are ready to perform calculations. However, in
some cases, you will not want to make time-consuming feature
extractions for every single blob in the blob identifier image.
For example, you probably do not want to calculate features for
blobs that are touching the edges of the image or that are noise
artifacts. Often, you cannot preprocess these blobs out of your
image without losing too much information.

1

2

2

3

4
5

These two blobs
are treated as one.
All others are treated
individually.

154 Chapter 9: Setting up for blob analysis

Selecting blobs The MIL blob analysis package has a command, MblobSelect(),
for such cases. This allows you to select (on the basis of
calculations already made) a subset of blobs for which to make
further calculations and get results. This command is generally
used in one of two ways:

■ If you don’t have too many unwanted blobs, it is usually faster
to calculate all required features for all blobs. Then, prior to
getting results, use MblobSelect() to exclude or delete results
obtained for blobs that do not meet your criteria.

■ If you have many unwanted blobs, you might save time and
memory by first calculating, for all blobs, only those features
that allow you to distinguish between relevant and unwanted
blobs. Exclude from future calculations (or delete altogether
from the blob analysis result buffer) blobs that do not meet
your criteria, using MblobSelect(). Then, calculate all
required features for remaining blobs.

If you cannot exclude or delete many blobs using the second
method, use the first.

You can make as many calls as necessary to MblobSelect() and
MblobCalculate() in order to arrive at the right set of results.
However, you must always give the same identifier and
grayscale buffers to MblobCalculate() during this procedure. If
you give different buffers or change the existing buffers in any
way (for example, if you use MblobFill() to erase blobs from the
identifier image), all current results in the result buffer will be
discarded the next time you call MblobCalculate(). In addition,
all selected features will be re-calculated for all blobs in the new
identifier image. This means that you will have to restart the
selection procedure. If you intend to calculate grayscale
features during your analysis, you must include the grayscale
image before starting your calculations.

Chapter 10: Analyzing the
blobs

This chapter discusses some of the more commonly used
features available for extraction with the MIL blob analysis
module. It also discusses some basic concepts of these
features.

156 Chapter 10: Analyzing the blobs

Making feature extractions

Calculating features The MIL blob analysis module can calculate a variety of
different blob measurements or features, such as the area,
perimeter, Feret diameter, and center of gravity of each selected
blob. Although the MblobCalculate() command initiates the
actual calculations, it is the specified feature list that
determines which calculations will be performed.

When you first allocate the feature list with
MblobAllocFeatureList(), no features are selected for
calculation. You generally use the MblobSelectFeature()
command to add features to this feature list. You can, however,
use the more specialized MblobSelectMoment() or
MblobSelectFeret() commands to select a specific moment or
Feret diameter, respectively.

Binary and grayscale
features

The blob analysis module supports both binary and grayscale
features. When selecting a binary feature, all calculations are
performed using only the blob identifier image. When grayscale
features are selected, you must also provide the
MblobCalculate() command with a grayscale image. The blob
identifier image will identify the blobs, and the grayscale image
will supply the actual blob pixel values.

Selecting features When you call MblobCalculate(), the identifier image is
scanned to locate blobs, and any selected features are
calculated. Even if only a few features are selected, the
overhead of scanning the image can be considerable. Therefore,
it is usually more efficient to select many features and make
one call to MblobCalculate(), rather than to select and calculate
one feature at a time. Note, features that have already been
calculated for the specified images will not be recalculated if
you call MblobCalculate() again, unless any parameters of the
calculation have changed.

Making feature extractions 157

Which features to
calculate

There are several considerations when selecting features:

■ Before selecting a feature for calculation, you should take the
blob shapes into consideration. Some features are more
appropriate for certain blob shapes than for others. For
example, some should be used for round blobs rather than
long, thin ones, and vice versa. The MblobSelectFeature()
command provides this information.

■ When trying to distinguish between two similar blobs,
selection of certain features, rather than some other features
that might also seem appropriate, might reveal a more
notable difference.

■ If two features allow you to come to the same conclusion, it
is recommended that you select the one that is calculated
more quickly. For example, features derived from multiple
Feret diameters tend to calculate relatively slowly, and
grayscale calculations are considerably longer than binary
ones.

Note, for a visual representation of blobs that meet (or don’t
meet) certain criteria, call MblobFill() or MblobLabel() after
calculating some features and calling MblobSelect(). These
commands fill blobs with their own label values (MblobLabel())
or with a user specified value (MblobFill()).

Sorting results The results obtained from MblobGetResult() can be sorted in
ascending or descending order, by a maximum of three features
assigned as sorting keys. To specify a feature as a sorting key,
you can add M_SORT#_UP or M_SORT#_DOWN to the
features selected with the following blob functions:
MblobSelectFeature(), MblobSelectMoment(),
MblobSelectFeret(). Assign the numbers 1, 2, or 3 to the # to
indicate the sorting precedence of the feature(s).

158 Chapter 10: Analyzing the blobs

The area and perimeter

The pixel Each pixel in your image represents a real width and height
(for example, in millimeters). However, all results from the blob
analysis commands (that represent a distance or area) are
expressed in raw (uncalibrated) pixel units. You are left with
the task of converting these results to actual physical units.
This task is made easier if the width and height of the pixels
are the same (that is, the pixel aspect ratio (width/height)
equals 1.0). In this case, each pixel (P) is represented as follows:

The area and
perimeter

A pixel ratio of 1.0 implies that the area (M_AREA) of a single
pixel blob is equal to 1 and the perimeter (M_PERIMETER) is
equal to 4. When calculating the area and perimeter of a larger
blob, the area would then equal the number of pixels in the blob
(excluding holes), and the perimeter would equal the total
number of pixel sides along the blob edges (including the edges
of holes). Note, an allowance is made for the staircase effect
that occurs in a digital image when representing diagonals and
curves. For example, in the following blob (where F represents
foreground pixels), the area is 10 and the perimeter is 14.242.

P

F

F F

F

F

F

F F

F

F

The area and perimeter 159

The convex
Perimeter

You can also calculate an approximation of the convex
perimeter (M_CONVEX_PERIMETER) of the blobs. The convex
perimeter is the perimeter of the convex hull (see below).

This feature is derived by taking the diameter of the blob (Feret
diameter) at different angles. You can adjust the number of
Feret diameters used with the MblobControl() command. The
greater the number of Feret diameters used, the more accurate
the approximation.

The aspect ratio When the pixel aspect ratio has been set to anything other than
1.0, using MblobControl(), the aspect ratio is applied to the pixel
width during calculations. Each pixel is now represented as:

This affects all calculated features as if you had actually
stretched the image (from the top-left corner in the x-direction
only), by a factor equal to the pixel aspect ratio. We can no
longer say that results are in "pixel" units. In fact, results are
really in units of "pixel height" since the height is not affected
by the aspect ratio.

Normal
perimeter Convex

perimeter

P

160 Chapter 10: Analyzing the blobs

Dimensions

The Feret diameter Besides the area and perimeter, you might need to determine
the dimension of the blobs. Since blobs are not typically
rectangular in shape, you will probably have to take the length
(or diameter) of the blobs at various angles from the horizontal
axis. This is actually one of the many definitions of the blob
length, called the Feret diameter. Several Feret diameters are
illustrated below. Note, the angle at which the Feret diameter
is taken (relative to the horizontal axis) is specified as a
subscript to the F.

Calculating different
Feret diameters

With MIL, you can calculate the Feret diameter at a specified
angle (M_GENERAL_FERET) by adding it to the feature list,
using MblobSelectFeret(). To add the Feret diameter at 0°
(horizontal Feret diameter) and 90° (vertical Feret diameter)
to the feature list, you can also use MblobSelectFeature()
(M_FERET_X and M_FERET_Y, respectively).

You can automatically determine the minimum, maximum, and
average Feret diameters of the blob by adding the
M_FERET_MIN_DIAMETER, M_FERET_MAX_DIAMETER, and
M_FERET_MEAN_DIAMETER features, respectively, to the
feature list, using MblobSelectFeature(). These diameters will
be determined by testing the diameter of the blobs at several
angles. Increasing the number of angles that are tested
increases the accuracy of the results, but also increases
processing time.

F0

F90
F135

F45

Dimensions 161

You can use the MblobControl() command to change the default
number of angles (M_NUMBER_OF_FERETS value); these
angles will start at 0° and increase in increments of
180°/(number of Feret diameters).

Note, the maximum Feret diameter is not very sensitive to the
number of angles; using 8 angles usually produces an accurate
result. The minimum diameter, however, can be inaccurate for
long thin blobs unless many angles are used.

The angles at which the minimum and maximum Feret
diameter were found can be determined by adding the
M_FERET_MIN_ANGLE and M_FERET_MAX_ANGLE to the
feature list, using MblobSelectFeature().

You can determine the ratio of the maximum to minimum Feret
diameter by adding M_FERET_ELONGATION feature to the
feature list, using the above command.

Dimensions of long thin
blobs

Although the Feret diameters provide a good approximation of
the blob size, these features are not very good for long, thin
blobs, even when using the maximum number of angles
(M_MAX_FERETS). For these, the following features, available
with MblobSelectFeature(), might provide better results:

■ M_LENGTH: an extraction of the true length of a blob.

■ M_BREADTH: an extraction of the true breadth of a blob.

■ M_ELONGATION: the ratio of the length to the breadth.

These features are derived from the area and perimeter, using
the assumption that the blob area is equal to the
[length x breadth] and the perimeter is equal to
[2(length + breadth)]. These relations only hold if the length
and breadth are constant throughout a blob. However, long,
thin blobs generally satisfy this assumption, even if they are
not straight.

Note, since these features use only the area and perimeter, they
are faster to calculate than Feret features.

162 Chapter 10: Analyzing the blobs

Determining the shape

Other useful features during classification are those that give
you information about the blob shape. Two blobs can have
similar sizes but different shapes because of a different number
of holes, curves, or edges.

For example, in the illustration above, the blobs have similar
sizes, but can be distinguished by the shape of their holes. If
you treat the holes as the actual blobs (set non-zero pixels as
foreground pixels and zero pixels as background pixels), you
can extract the differences in shape of the holes.

Compactness and
roughness

Two features that can qualify the shape of these holes are:

■ Compactness (M_COMPACTNESS)

■ Roughness (M_ROUGHNESS)

The compactness is a measure of how close all particles in the
blob are from one another. It is derived from the perimeter and
area. A circular blob is most compact and is defined to have a
compactness measure of 1.0 (the minimum); more convoluted
shapes have larger values.

The roughness is a measure of the unevenness or irregularity
of a blob’s surface. It is a ratio of the perimeter to the convex
perimeter of a blob. Smooth convex blobs have a roughness of
1.0, whereas rough blobs have a higher value because their true
perimeter is bigger than their convex perimeter.

Although either of these features can be used in the
classification process, compactness is faster to calculate since
it is derived using only the area and perimeter.

Determining the shape 163

For example In the example below, we calculate the number of bolts, nuts,
and washers in an image (diagram found in Chapter 8), and
distinguish between the nuts and washers by analyzing the
compactness of their holes.

���(KNG�PCOG��ODNQD�E�
���5[PQRUKU���6JKU�RTQITCO�NQCFU�CP�KOCIG�QH�UQOG�PWVU��DQNVU�CPF
��������������YCUJGTU��FGVGTOKPGU�VJG�PWODGT�QH�GCEJ�QH�VJGUG�CPF�OCTMU
�������������VJGKT�EGPVGT�QH�ITCXKV[����

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

���6CTIGV�/+.�KOCIG�HKNG�URGEKHKECVKQPU�����
�FGHKPG�+/#)'A(+.'�������������/A+/#)'A2#6*�DQNVU�OKO��
�FGHKPG�+/#)'A9+&6*���������������.
�FGHKPG�+/#)'A*'+)*6��������������.
�FGHKPG�+/#)'A6*4'5*1.&A8#.7'����.

���/CZKOWO�PWODGT�QH�DNQDU�����
�FGHKPG�/#:A$.1$5����������������.

���/KPKOWO�CPF�OCZKOWO�CTGC�QH�DNQDU����
�FGHKPG�/+0A$.1$A#4'#������������.�
�FGHKPG�/#:A$.1$A#4'#������������.

���4CFKWU�QH�VJG�UOCNNGUV�RCTVKENGU�VQ�MGGR����
�FGHKPG�/+0A$.1$A4#&+75���������.

���/KPKOWO�JQNG�EQORCEVPGUU�EQTTGURQPFKPI�VQ�C�YCUJGT����
�FGHKPG�/+0A%1/2#%60'55�����������

���5K\G�CPF�EQNQT�QH�VJG�ETQUU�WUGF�VQ�OCTM�EGPVGTU�QH�ITCXKV[����
�FGHKPG�%4155A5+<'���������������.
�FGHKPG�%4155A%1.14�������������.

���7VKNKV[�HWPEVKQPU�RTQVQV[RG���
XQKF�&TCY%TQUU
/+.A+&�+OCIG+F��FQWDNG�%GPVGT:��FQWDNG�%GPVGT;��NQPI�%QNQT��

XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP������������#RRNKECVKQP�KFGPVKHKGT������������������
���������/KN5[UVGO�����������������5[UVGO�KFGPVKHKGT�����������������������
���������/KN&KURNC[����������������&KURNC[�KFGPVKHKGT����������������������
���������/KN+OCIG������������������+OCIG�DWHHGT�KFGPVKHKGT�����������������
���������$KP+OCIG������������������$KPCT[�KOCIG�DWHHGT�KFGPVKHKGT����������
���������$NQD4GUWNV����������������$NQD�TGUWNV�DWHHGT�KFGPVKHKGT�����������
���������(GCVWTG.KUV���������������(GCVWTG�NKUV�KFGPVKHKGT�����������������
��NQPI���6QVCN$NQDU����������������6QVCN�PWODGT�QH�DNQDU�������������������
���������$NQDU9KVJ*QNGU������������0WODGT�QH�DNQDU�YKVJ�JQNGU��������������
���������$NQDU9KVJ4QWIJ*QNGU�������0WODGT�QH�DNQDU�YKVJ�TQWIJ�JQNGU��������
��������%QI:=/#:A$.1$5?���������:�EQQTFKPCVG�QH�EGPVGT�QH�ITCXKV[����
��������%QI;=/#:A$.1$5?���������;�EQQTFKPCVG�QH�EGPVGT�QH�ITCXKV[����
��������P�����������������������%QWPVGT����
��
EQPV������

164 Chapter 10: Analyzing the blobs

�����#NNQECVG�FGHCWNVU���
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
�������������������/A07..���/KN+OCIG��
�����#NNQECVG�C�DKPCT[�KOCIG�DWHHGT�HQT�HCUV�RTQEGUUKPI����
��/DWH#NNQE�F
/A&'(#7.6��+/#)'A9+&6*��+/#)'A*'+)*6�
���������������
/A705+)0'&��/A+/#)'
/A241%���$KP+OCIG��

�����.QCF�DNQD�KOCIG�KPVQ�KOCIG�DWHHGT����
��/DWH.QCF
+/#)'A(+.'��/KN+OCIG��

�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG����
��RTKPVH
�6JKU�RTQITCO�FGVGTOKPGU�VJG�PWODGT�QH�PWVU>P���
��RTKPVH
�YCUJGTU��CPF�DQNVU�KP�VJG�FKURNC[GF�KOCIG�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

�����$KPCTK\G�VJG�KOCIG����
��/KO$KPCTK\G
/KN+OCIG��$KP+OCIG��/A)4'#6'4A14A'37#.�
��������������+/#)'A6*4'5*1.&A8#.7'��/A07..��

�����4GOQXG�UOCNN�RCTVKENGU�CPF�VJGP�TGOQXG�UOCNN�JQNGU����
��/KO1RGP
$KP+OCIG��$KP+OCIG��/+0A$.1$A4#&+75��/A$+0#4;��
��/KO%NQUG
$KP+OCIG��$KP+OCIG��/+0A$.1$A4#&+75��/A$+0#4;��

�����#NNQECVG�C�HGCVWTG�NKUV����
��/DNQD#NNQE(GCVWTG.KUV
/KN5[UVGO���(GCVWTG.KUV��

������'PCDNG�VJG�CTGC�HGCVWTG�VQ�UGNGEV�DNQDU�QH�KPVGTGUV
������CPF�VJG�%1)�HGCVWTG�VQ�OCTM�VJGKT�EGPVGT�QH�ITCXKV[�����
���/DNQD5GNGEV(GCVWTG
(GCVWTG.KUV��/A#4'#���
���/DNQD5GNGEV(GCVWTG
(GCVWTG.KUV��/A%'06'4A1(A)4#8+6;���

�����#NNQECVG�C�DWHHGT�HQT�VJG�TGUWNVU����
��/DNQD#NNQE4GUWNV
/KN5[UVGO���$NQD4GUWNV��

�����%CNEWNCVG�UGNGEVGF�HGCVWTG�HQT�GCEJ�DNQD����
��/DNQD%CNEWNCVG
$KP+OCIG��/A07..��(GCVWTG.KUV��$NQD4GUWNV��

�����'ZENWFG�DNQDU�YJQUG�CTGC�KU�VQQ�UOCNN����
��/DNQD5GNGEV
$NQD4GUWNV��/A':%.7&'��/A#4'#��/A.'55A14A'37#.��
��������������/+0A$.1$A#4'#��/A07..��

�����)GV�VJG�VQVCN�PWODGT�QH�UGNGEVGF�DNQDU����
��/DNQD)GV0WODGT
$NQD4GUWNV���6QVCN$NQDU��
��RTKPVH
�>P6JGTG�CTG��NF�QDLGEVU�KP�VJG�KOCIG�>P���6QVCN$NQDU��

����%JGEM�HQT�CTTC[�QXGTHNQY�����
���KH
6QVCN$NQDU� �/#:A$.1$5�
������]
������RTKPVH
�'TTQT��VQQ�OCP[�DNQDU�>P���
������_
���GNUG
������]�
���������)GV�VJG�TGUWNVU�����
������/DNQD)GV4GUWNV
$NQD4GUWNV��/A%'06'4A1(A)4#8+6;A:
/A6;2'A.10)��%QI:���
������/DNQD)GV4GUWNV
$NQD4GUWNV��/A%'06'4A1(A)4#8+6;A;
/A6;2'A.10)��%QI;���
����
���
EQPV������

Determining the shape 165

Holes In some cases, you can also distinguish between blobs by
determining the number of holes that they have
(M_NUMBER_OF_HOLES). For example, you could distinguish
between bolts and nuts in the bolts.mim image by counting blob
holes. However, this is not a very robust measure, as a single
noise pixel in a bolt blob would count as a hole.

�������&TCY�ITC[�ETQUU�CV�VJG�EGPVGT�QH�ITCXKV[�QH�GCEJ�DNQD���������
������HQT
P����P���6QVCN$NQDU��P

�
���������]
���������&TCY%TQUU
/KN+OCIG��%QI:=P?��%QI;=P?��%4155A%1.14��
���������_
����������RTKPVH
�CPF�VJGKT�EGPVGTU�QH�ITCXKV[�JCXG�DGGP�OCTMGF�>P>P����
������_
�����4GXGTUG�YJCV�KU�EQPUKFGTGF�VQ�DG�VJG�DCEMITQWPF�UQ�VJCV
�����JQNGU�CTG�UGGP�CU�DGKPI�DNQDU����
��/DNQD%QPVTQN
$NQD4GUWNV��/A(14')4170&A8#.7'��/A<'41��
��
�����#FF�C�HGCVWTG�VQ�FKUVKPIWKUJ�DGVYGGP�V[RGU�QH�JQNGU��5KPEG�CTGC
�����JCU�CNTGCF[�DGGP�CFFGF�VQ�VJG�HGCVWTG�NKUV��CPF�VJG�RTQEGUUKPI�
�����OQFG�JCU�DGGP�EJCPIGF��CNN�DNQDU�YKNN�DG�TG�KPENWFGF�CPF�VJG�CTGC�
�����QH�JQNGU�YKNN�DG�ECNEWNCVGF�CWVQOCVKECNN[����
��/DNQD5GNGEV(GCVWTG
(GCVWTG.KUV��/A%1/2#%60'55��

�����%CNEWNCVG�UGNGEVGF�HGCVWTGU�HQT�GCEJ�DNQD����
��/DNQD%CNEWNCVG
$KP+OCIG��/A07..��(GCVWTG.KUV��$NQD4GUWNV��

�����'ZENWFG�UOCNN�JQNGU�CPF�NCTIG�
VJG�CTGC�CTQWPF�QDLGEVU��JQNGU����
��/DNQD5GNGEV
$NQD4GUWNV��/A':%.7&'��/A#4'#��/A176A4#0)'��
��������������/+0A$.1$A#4'#��/#:A$.1$A#4'#��

�����)GV�VJG�PWODGT�QH�DNQDU�YKVJ�JQNGU����
��/DNQD)GV0WODGT
$NQD4GUWNV���$NQDU9KVJ*QNGU��

�����'ZENWFG�DNQDU�YJQUG�JQNGU�CTG�EQORCEV�
K�G��PWVU�����
��/DNQD5GNGEV
$NQD4GUWNV��/A':%.7&'��/A%1/2#%60'55�
��������������/A.'55A14A'37#.��/+0A%1/2#%60'55��/A07..��

�����)GV�VJG�PWODGT�QH�DNQDU�YKVJ�JQNGU�YJKEJ�CTG�016�EQORCEV����
��/DNQD)GV0WODGT
$NQD4GUWNV���$NQDU9KVJ4QWIJ*QNGU��

�����2TKPV�TGUWNVU����
��RTKPVH
�>P6JGTG�CTG���NF�DQNVU>P���6QVCN$NQDU�$NQDU9KVJ*QNGU��
��RTKPVH
�������������NF�PWVU>P���$NQDU9KVJ*QNGU���$NQDU9KVJ4QWIJ*QNGU��
��RTKPVH
�������������NF�YCUJGTU>P>P���$NQDU9KVJ4QWIJ*QNGU��
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P����
��IGVEJCT
��

�����(TGG�CNN�CNNQECVKQPU����
��/DNQD(TGG
$NQD4GUWNV���
��/DNQD(TGG
(GCVWTG.KUV���
��/DWH(TGG
$KP+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

166 Chapter 10: Analyzing the blobs

Finding the blob location

Finding the location of blobs in an image can sometimes be more
useful than finding their shape or size. For example, if a robotic
arm needs to pick up several items regardless of their type, it
can use their location in an acquired image to determine their
actual physical position.

You can also use the blob location to determine if a blob touches
the image borders. If there are any such blobs, you might want
to adjust the camera’s field of view so that all items are
completely represented in the image, or you might want to
exclude these blobs.

Blob points You can determine the following blob points by adding them to
the feature list:

(M_X_MIN_AT_Y_MIN, M_BOX_Y_MIN) and
(M_FIRST_POINT_X, M_FIRST_POINT_Y)

(M_X_MAX_AT_Y_MAX, M_BOX_Y_MAX)

(M_BOX_X_MIN, M_Y_MAX_AT_X_MIN)

(M_BOX_X_MIN, M_BOX_Y_MIN)

(M_BOX_X_MIN, M_BOX_Y_MAX)

(M_BOX_X_MAX, M_Y_MIN_AT_X_MAX)

(M_BOX_X_MAX, M_BOX_Y_MAX)

(M_BOX_X_MAX, M_BOX_Y_MIN)

(M_CENTER_OF_GRAVITY_X, M_CENTER_OF_GRAVITY_Y)

Finding the blob location 167

The center of gravity can be calculated in binary or grayscale
mode. To calculate the latter, you must provide
MblobCalculate() with a grayscale image.

Chained pixels You can obtain the coordinates of pixels bordering blobs or
delimiting holes in blobs, in a counterclockwise or clockwise
direction respectively. These pixels are referred to as chained
pixels (M_CHAINS).

You can use the chained pixel coordinates to create a chain code.
A chain code is a directional code that records an object’s
boundary as a discrete set of vectors, where each vector points
to the next pixel in the chain.

Chained pixels always form a closed chain. This implies that
the starting pixel in the chain is also the closing one. If your
blob has regions which are 1 pixel wide, these pixels are chained
twice, once in the forward direction and then in the opposite
direction.

In the diagram below, the thick lines illustrate pixels which are
chained twice.The diagram also illustrates chained pixels of a
blob in an 8 and 4-connected lattice, where the solid lines
illustrate chained pixels in an 8-connected lattice, and the
dotted lines illustrate how chained pixels deviate in a
4-connected lattice. Also, note that the blob’s outermost chain
is identified as index 1. Chains that delimit holes in blobs are
identified by subsequent indexes.

168 Chapter 10: Analyzing the blobs

.

The M_CHAINS feature calculates four separate chain
features. This includes M_NUMBER_OF_CHAINED_PIXELS
which calculates the total number of chained pixels for each
blob or a specified blob; the M_CHAIN_INDEX feature which
assigns an index to each chained pixel, for every chain within
in a blob; and the M_CHAIN_X and M_CHAIN_Y features which
calculate the x and y coordinates of all chained pixels within a
blob.

When retrieving results for chain features, you should retrieve
results for the number of chained pixels
(M_NUMBER_OF_CHAINED_PIXELS) first. Retrieving results
for this feature allows you to allocate an array which is large
enough for the other chain results. Thus, to find the results for
a single chain, check the M_CHAIN_INDEX array for the
appropriate chain indices, and retrieve the x and y results from
the corresponding elements in the M_CHAIN_X and M_CHAIN_Y
arrays.

2

1

(0,0)

(4,2)

X

Y

Moments 169

For the blob shown on the previous page, the following arrays
would result:

Moments

Using the blob analysis module, you can also calculate the
moments used to find the center of gravity, as well as other
grayscale or binary moments. The MblobSelectMoment()
command allows you to add any moment to the feature list,
whereas MblobSelectFeature() allows you to add only the more
common moments.

You can calculate either central or ordinary moments. Central
moments use coordinates that are relative to the center of
gravity of the blob, and therefore are independent of a blob’s
position within the image, whereas, ordinary moments are
affected by the blob position because they use coordinates
relative to the top left corner of the image.

Finding the label value The blob analysis module automatically calculates label values
for included blobs when a call to MblobCalculate() is made. You
can obtain a label value for a single blob with a call to
MblobGetLabel(), by specifying the blob’s coordinate. A label
value can be useful to obtain calculation results for a single blob
with MblobGetResultSingle() or MblobGetRuns().

M_CHAIN_INDEX

1
1
1
1

2
2
2
2

M_CHAIN_X M_CHAIN_Y

4
4
4
4

2
3
4
5

5
5
5
5

5
6
7
8

170 Chapter 10: Analyzing the blobs

Location, length and number of runs

A run is defined as a horizontal string of consecutive foreground
pixels. The blob analysis module can be used to obtain the total
number of runs (M_NUMBER_OF_RUNS) for each blob. Results
are obtained with MblobGetResult() or
MblobGetResultSingle().

To obtain the length and coordinate of each run in a specific
blob, use the MblobGetRuns() command. The runs that make
up each blob can be used to calculate features that are not
supported directly by MIL.

Chapter 11: Pattern matching

This chapter explains quick techniques to perform
alignment operations, using the MIL pattern matching
(recognition) module.

172 Chapter 11: Pattern matching

Pattern matching

The MIL package includes a pattern matching module that uses
normalized grayscale correlation to help solve machine vision
problems such as alignment, measurement, and inspection of
objects. The module also provides quick techniques to find
horizontal, vertical, and angular displacement of most images.

The main function of the pattern matching module is to search
for occurrences of a pattern in an image. MIL refers to the
pattern for which you are searching as the search model and
the image from which it is extracted as the model’s source
image.

The image being searched is called the target image.

This chapter describes how these techniques can be applied to
different types of targets. The next chapter looks at defining a
search model, finding the occurrences of this model in the target
image, and understanding the search algorithm.

With MIL, you can only perform pattern matching operations
on 8-bit grayscale unsigned buffers.

Simple alignment techniques 173

Simple alignment techniques

Vertical and horizontal alignment
MIL can find the vertical and horizontal displacement of a
target image by comparing the location of a unique model,
taken from an aligned source image, with its actual location in
the target image. A unique model can be chosen from any
location in the aligned image as long as the model is known to
appear in a shifted target image.

Allocating the model You can automatically allocate a unique model, using
MpatAllocAutomodel(). This function allocates the best unique
search model for a given image.

Preprocessing the
model

Once the model is defined, you must use MpatPreprocModel()
to train the system to find the model in the most efficient
manner. This function analyzes the model and determines
which shortcuts can be safely used during the search.

Finding the model in
the target image

Now, you are ready to find the model in the target image.
Allocate a pattern matching result buffer, using
MpatAllocResult(), and then call MpatFindModel() to find the
model in the target image.

By comparing the model’s coordinates in the model’s source
image with those in the target image, you obtain the vertical
and horizontal displacement of the target image.

∆ Important The coordinates resulting from a search return the reference
position of the model, relative to the top-left corner of the
target image. To find the equivalent coordinates in the model’s
source image, use MpatInquire() with M_ORIGINAL_X and
M_ORIGINAL_Y.

Note, once the model is defined, you can perform the search
operation on an unlimited number of target images.

174 Chapter 11: Pattern matching

A wafer alignment
example

The following sample program finds the vertical and horizontal
displacement of a wafer image.

���(KNG�PCOG��OUJKHV�E�
���5[PQRUKU���6JKU�RTQITCO�HKPFU�VJG�JQTK\QPVCN�CPF�XGTVKECN�
��������������FKURNCEGOGPV�QH�C�YCHGT�KOCIG��
���

�KPENWFG��UVFKQ�J �
�KPENWFG��OKN�J �

���5QWTEG�CPF�VCTIGV�KOCIGU�HKNG�URGEKHKECVKQPU�����
�FGHKPG�/1&'.A+/#)'A(+.'���/A+/#)'A2#6*�YCHGT�OKO�
�FGHKPG�6#4)'6A+/#)'A(+.'��/A+/#)'A2#6*�UJHYCHGT�OKO�
�FGHKPG�+/#)'A9+&6*�����������.
�FGHKPG�+/#)'A*'+)*6����������.

���/QFGN�YKFVJ��JGKIJV��OCZKOWO�FKURNCEGOGPV��KPKVKCN�RQUKVKQP���
�FGHKPG�/1&'.A9+&6*�����������.
�FGHKPG�/1&'.A*'+)*6����������.
�FGHKPG�/1&'.A/#:A&+52.#%'����.

XQKF�OCKP
XQKF�
]�
��/+.A+&�/KN#RRNKECVKQP��������������#RRNKECVKQP�KFGPVKHKGT�����
���������/KN5[UVGO�������������������5[UVGO�KFGPVKHKGT����������
���������/KN&KURNC[������������������&KURNC[�KFGPVKHKGT���������
���������/KN+OCIG��������������������+OCIG�DWHHGT�KFGPVKHKGT����
���������/KN5WD+OCIG�����������������5WD�KOCIG�DWHHGT�KFGPVKHKGT����
���������/QFGN�����������������������/QFGN�KFGPVKHKGT�����
���������4GUWNV����������������������4GUWNV�DWHHGT�KFGPVKHKGT����
��NQPI���2QU:��2QU;������������������/QFGN�RQUKVKQP����
��NQPI���#NNQE'TTQT������������������#NNQECVKQP�GTTQT�XCTKCDNG����
��FQWDNG�1TI:������1TI;��������������1TKIKPCN�EGPVGT�QH�OQFGN����
��FQWDNG�Z������[������5EQTG���������4GUWNV�XCTKCDNGU����������

���
EQPV������

Simple alignment techniques 175

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
���������������������/KN&KURNC[��/A07..���/KN+OCIG��

�����.QCF�OQFGN�KOCIG�KPVQ�CP�KOCIG�DWHHGT����
���/DWH.QCF
/1&'.A+/#)'A(+.'��/KN+OCIG��

�����4GUVTKEV�VJG�TGIKQP�VQ�DG�RTQEGUUGF�VQ�VJG�DQVVQO�TKIJV�EQTPGT�
�����QH�VJG��KOCIG����
���/DWH%JKNF�F
/KN+OCIG��+/#)'A9+&6*����+/#)'A*'+)*6���
���������������+/#)'A9+&6*����+/#)'A*'+)*6�����/KN5WD+OCIG��

�����#PPQWPEG�VJG�CWVQOCVKE�OQFGN�FGHKPKVKQP����
���RTKPVH
�#�OQFGN�KU�DGKPI�CWVQOCVKECNN[�FGHKPGF�KP�VJG�UQWTEG�KOCIG�����
���RTKPVH
�RNGCUG�YCKV���>P>P���

�����#WVQOCVKECNN[�CNNQECVG�PQTOCNK\GF�ITC[UECNG�V[RG�OQFGN�����
���/RCV#NNQE#WVQ/QFGN
/KN5[UVGO��/KN5WD+OCIG��/1&'.A9+&6*��/1&'.A*'+)*6�
����������������������/1&'.A/#:A&+52.#%'��/1&'.A/#:A&+52.#%'��/A014/#.+<'&�
�����������������������/A&'(#7.6���/QFGN��

�����%JGEM�HQT�C�UWEEGUUHWN�OQFGN�CNNQECVKQP����
���/CRR)GV'TTQT
/A%744'06���#NNQE'TTQT��
���KH�
�#NNQE'TTQT�
���]
������/RCV+PSWKTG
/QFGN�/A#..1%A1((5'6A:
/A6;2'A.10)��2QU:��
������/RCV+PSWKTG
/QFGN�/A#..1%A1((5'6A;
/A6;2'A.10)��2QU;��
������/RCV+PSWKTG
/QFGN�/A14+)+0#.A:��1TI:��
������/RCV+PSWKTG
/QFGN�/A14+)+0#.A;��1TI;��
��������&TCY�DQZ�CTQWPF�OQFGN�����
������/ITC4GEV
/A&'(#7.6��/KN5WD+OCIG��2QU:������2QU;�����
��������������2QU:�
�/1&'.A9+&6*��2QU;�
�/1&'.A*'+)*6��
������RTKPVH
�/QFGN�UWEEGUUHWNN[�FGHKPGF�CU�UJQYP�QP�VJG�
��������������FKURNC[GF�KOCIG�>P���
������RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
������IGVEJCT
��

��������.QCF�VCTIGV�KOCIG�KPVQ�CP�KOCIG�DWHHGT����
������/DWH.QCF
6#4)'6A+/#)'A(+.'��/KN+OCIG��

��������#NNQECVG�TGUWNV����
������/RCV#NNQE4GUWNV
/KN5[UVGO���.���4GUWNV��

��������(KPF�OQFGN�����
������/RCV(KPF/QFGN
/KN5WD+OCIG��/QFGN��4GUWNV��
��������+H�QPG�OQFGN�YCU�HQWPF�CDQXG�VJG�CEEGRVCPEG�VJTGUJQNF�UGV����
������KH�
/RCV)GV0WODGT
4GUWNV��/A07..������.�
������]
�����������)GV�TGUWNVU�����
���������/RCV)GV4GUWNV
4GUWNV��/A215+6+10A:���Z���
���������/RCV)GV4GUWNV
4GUWNV��/A215+6+10A;���[��
���������/RCV)GV4GUWNV
4GUWNV��/A5%14'���5EQTG��

���
EQPV������

176 Chapter 11: Pattern matching

�����������&TCY�C�DQZ�CTQWPF�QEEWTTGPEG����
���������/ITC4GEV
/A&'(#7.6��/KN5WD+OCIG�
�����������������
NQPI�
Z�
��������
/1&'.A9+&6*����������
�����������������
NQPI�
[�
��������
/1&'.A*'+)*6���������
�����������������
NQPI�
Z�
������
�
/1&'.A9+&6*�����
�����������������
NQPI�
[�
������
�
/1&'.A*'+)*6������

�����������#PCN[\G�CPF�RTKPV�TGUWNVU����
���������RTKPVH
�#�OKUCNKIPGF�XGTUKQP�QH�VJG�UQWTEG�KOCIG�YCU�NQCFGF�>P>P���
��������RTKPVH
�+OCIG�YCU�HQWPF�VQ�DG�QHHUGV�D[����H�KP�:��CPF����H�KP
�������������������;�>P��
��Z���1TI:��[���1TI;��
���������RTKPVH
�/QFGN�OCVEJ�UEQTG�KU����H�RGTEGPV�>P���5EQTG��
���������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���������IGVEJCT
����������������������
������
������_
������GNUG
������]
��������RTKPVH
�'TTQT��2CVVGTP�PQV�HQWPF�RTQRGTN[�>P���
��������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��������IGVEJCT
��
�����_
��������(TGG�TGUWNV�DWHHGT�CPF�OQFGN����
������/RCV(TGG
4GUWNV��
������/RCV(TGG
/QFGN��

����_
����GNUG
����]
������RTKPVH
�'TTQT��#WVQOCVKE�OQFGN�FGHKPKVKQP�HCKNGF�>P���
������RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
������IGVEJCT
��
����_

�����(TGG�EJKNF�KOCIG�CPF�FGHCWNVU����
���/DWH(TGG
/KN5WD+OCIG��
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

Simple alignment techniques 177

By executing mshift.c, you will find that shfwafer.mim is shifted
by approximately 50 pixels horizontally and 20 pixels vertically.

Angular alignment
You can find the angular displacement of a target image, or of
an object in that image, in a number of ways. The choice of
method will depend on whether whole-image or object
orientation is required, the shape and distinctiveness of the
object, the complexity of the image background, and the degree
of angular accuracy that is required. In this chapter, we will
discuss basic methods to determine the orientation of an image
and the orientation of a model in an image.

Whole-image
orientation

You can quickly determine, with MIL, the orientation of an
image based on the dominant edges in the image and their
angular displacement from the image frame. The image can
have either uni-directional dominant edges (such as parallel
stripes) or bi-directional perpendicular dominant edges. The
MpatFindOrientation() function is designed for images with
smooth edges, usually obtained when grabbing an image with
a camera. It will not work well on an artificially generated
image unless the lines and edges are anti-aliased.

Note that if an image does not have dominant edges, its
orientation cannot be well defined. In addition, if the image’s
background contains edges, the orientation of these edges
might be found instead.

178 Chapter 11: Pattern matching

Whole-image orientation can be determined by following these
steps:

1. Ensure that the target image contains predominant edges.

2. Allocate a pattern matching result buffer, using
MpatAllocResult().

3. Call MpatFindOrientation(), specifying no model identifier
(M_NULL), the identifier of the target image buffer, the
appropriate result range for the type of target image, and
the identifier of the result buffer. For images with
uni-directional predominant edges, the result range should
be set to M_RESULT_RANGE_180. Alternatively, for images
with bi-directional edges, the result range should be set to
M_RESULT_RANGE_45 or M_RESULT_RANGE_90.

4. Call MpatGetResult() to get the angle of orientation,
returned as a value in the specified result range.

Object orientation The orientation of a single large object on a smooth uniform
background can be found by defining it as an M_ORIENTATION
type model and searching for the general contours of the object
in a target image. The model should be created from an image
with a uniform background, so that the contours of the object
can be properly defined, thereby making the operation more
effective.

Simple alignment techniques 179

Orientation of a model can be found by following these steps:

1. Ensure that the typical image contains a unique object on
a smooth uniform background.

2. Create an M_ORIENTATION model of the unique object,
using MpatAllocModel().

3. Preprocess the model using MpatPreprocModel().

4. Allocate a pattern matching result buffer, using
MpatAllocResult().

5. Call MpatFindOrientation(), specifying the identifier of an
M_ORIENTATION model type, the identifier of the target
image buffer, the appropriate result range for the image,
and the identifier of the buffer in which to store the results.

For model-orientation searches, use a 360o range to include
all the rotational possibilities of the model.

6. Call MpatGetResult() to get the angle of orientation from
the result buffer.

180 Chapter 11: Pattern matching

Chapter 12: Models,
searches, and search
parameters

This chapter explains how to define search models and
parameters to perform and optimize more complex
pattern matching operations.

182 Chapter 12: Models, searches, and search parameters

Performing a search

In the previous chapter, we discussed some quick techniques to
determine the alignment of a target image. This chapter looks
at defining a search model and finding the occurrences of this
model in the target image to help solve machine vision problems
such as ones listed below:

■ In machine guidance applications, mechanical devices need
to be informed of the location of parts to be picked. Therefore,
the search model must be specific to the part in question; it
cannot be for an arbitrary location.

■ When performing an alignment using gauging techniques,
the location of two or more points of reference (fiducial marks)
is required. To perform this process, you must define your
own model to uniquely identify the reference points.

Steps to performing a
search

The steps involved in performing a search with a model are as
follows:

1. Load or grab a model’s source image.

2. Define the model from the model’s source image.

3. Optionally, specify a range for angular search.

4. Optionally, set the model's "don't care" pixels to exclude
certain pixels from the search process.

5. Specify the model’s search parameters (search constraints).

6. Preprocess the model.

7. Allocate a result buffer.

8. Grab a target image. Optionally, process it to improve its
quality.

9. Find the model in the target image.

10. Read the search results.

Performing a search 183

In general, the first seven steps are performed once, while steps
8 through 10 are repeated as required. Note, in practice, models
are usually saved on disk, using MpatSave(); therefore steps 1
through 6 are often replaced by a single step that restores a
saved model from disk, using MpatRestore().

Load the model’s
source image

Load the image from which to extract the model. This image
must be of the best quality possible. If your images tend to be
noisy, try to clean the image, using the image processing
techniques discussed previously in this manual.

Define the model Use MpatAllocModel() to define which portion of this image is
to be used as your model, or use MpatAllocAutoModel() to have
MIL automatically generate the model for you (see previous
chapter). Upon allocation, the model is extracted from the
selected region in the model’s source image buffer and stored
into a non-displayable model buffer. The model’s source image
buffer is then no longer needed. To view the portion of the image
from which the model was extracted, use MpatCopy().

When allocating a model, you must specify its size. Generally,
relative to the target image, small models take longer to find
than larger ones, although very large models can also be
time-consuming.

Specify search angle You can set the angular search limits for the specified model,

using MpatSetAngle(). By default, the angle of search is 0o.
However, you can enable and specify a rotational range of up

to 360o, as well as the required precision of the resulting angle
and the interpolation mode used for the rotated model. These
settings can influence the speed of the search significantly. The
accuracy of the search can also be influenced.

Set model’s "don’t care"
pixels

You can set pixels in the model to the "don't care" state, using
MpatSetDontCare(). These pixels will not be considered when
finding occurrences of the model in a target image. Note that
setting don’t care pixels also affects the speed of the search.

184 Chapter 12: Models, searches, and search parameters

Specify model
parameters

When search models are allocated (whether automatically or
manually), they are assigned a set of default search parameters
(search constraints). Some of the parameters can be changed.
For instance, you can limit the search to a certain region of the
target image (MpatSetPosition()), restrict the number of
occurrences to find (MpatSetNumber()), and set the level of
acceptance (MpatSetAcceptance()).

Preprocess
the model

The preprocessing stage uses the known model, together with
a typical (optional) target image, to decide on the optimal search
strategy for subsequent search operations.

Allocate a
result buffer

Before performing the search, you must allocate a result buffer,
using MpatAllocResult(). This buffer is used to store the result
values for subsequent search operations. You can delete the
result buffer, using MpatFree().

Acquire the new target
image

Once the model is defined and the model’s search parameters
meet your application needs, the target image should be loaded
from disk, or acquired from the input device into an image
buffer.

Find the model You can now search in the target image for the coordinates of
model occurrences, using MpatFindModel(). The search is
performed according to the defined model parameters.

You can also search for several models of the same size and
search region in the same image, using
MpatFindMultipleModel(). This function finds occurrences of
the specified models in the given image and returns the position
of each occurrence for each model or of the best matches from
the group of models. Note that in the former case, you have to
allocate and specify a result buffer for each model that is being
sought. In the latter case, you have to allocate and specify a
single result buffer. If you have to search for several different
models, this is more efficient.

Read the
search results

To read results, use MpatGetNumber() and MpatGetResult() to
get, respectively, the number of model occurrences found in the
target, and the required results.

Performing a search 185

The following sample program (msearch.c) shows how to define
a model and then find this model in a target image. It also
demonstrates the sub-pixel accuracy of MpatFindModel().

���(KNG�PCOG��OUGCTEJ�E�
���5[PQRUKU���6JKU�RTQITCO�FGHKPGU�C�OQFGN�CPF�VJGP�UGCTEJGU�HQT�KV
��������������KP�C�UJKHVGF�XGTUKQP�QH�VJG�KOCIG��6JG�OQFGN�KU�UCXGF
��������������QP�FKUM�HQT�HWVWTG�WUG�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

���5QWTEG�KOCIG�HKNG�URGEKHKECVKQPU�����
�FGHKPG�+/#)'A(+.'����/A+/#)'A2#6*�DQCTF�OKO�

���+OCIG�UJKHVKPI�XCNWGU����
�FGHKPG�5*+(6A:�����������
�FGHKPG�5*+(6A;�����������

���/QFGN�RQUKVKQP�CPF�UK\G����
�FGHKPG�/1&'.A:215�������.
�FGHKPG�/1&'.A;215�������.
�FGHKPG�/1&'.A9+&6*������.
�FGHKPG�/1&'.A*'+)*6�����.

���/KPKOWO�OCVEJ�UEQTG�VQ�FGVGTOKPG�CEEGRVCDKNKV[�QH�OQFGN�
FGHCWNV�����
�FGHKPG�/1&'.A/+0A/#6%*A5%14'�����

���/KPKOWP�CEEWTCE[�HQT�VJG�UGCTEJ����
�FGHKPG�/1&'.A/+0A#%%74#%;�������

���(KNG�KP�YJKEJ�VQ�UCXG�OQFGN����
�FGHKPG�/1&'.A(+.'����/A+/#)'A2#6*�EJKR�OOQ�

���#DUQNWVG�XCNWG�OCETQ����
�FGHKPG�CDUQNWVG
Z��

Z���������!��
Z����
Z��

XQKF�OCKP
XQKF�
]
���/+.A+&�/KN#RRNKECVKQP���������#RRNKECVKQP�KFGPVKHKGT��������
����������/KN5[UVGO��������������5[UVGO�KFGPVKHKGT�������������
����������/KN&KURNC[�������������&KURNC[�KFGPVKHKGT������������
����������/KN+OCIG���������������+OCIG�DWHHGT�KFGPVKHKGT�������
����������/QFGN������������������/QFGN�KFGPVKHKGT��������������
����������4GUWNV�����������������4GUWNV�KFGPVKHKGT�������������
���FQWDNG�:1TI������;1TI���������/QFGN�QTKIKPCN�RQUKVKQPU������
���FQWDNG�Z������[���������������/QFGN�RQUKVKQPU���������������
���FQWDNG�5EQTG������������������/QFGN�EQTTGNCVKQP�UEQTG�������

��

EQPV������

186 Chapter 12: Models, searches, and search parameters

������#NNQECVG�FGHCWNVU����
����/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
����������������������/KN&KURNC[��/A07..��/A07..��

������4GUVQTG�UQWTEG�KOCIG�KPVQ�CP�CWVQOCVKECNN[�CNNQECVGF�KOCIG�DWHHGT����
����/DWH4GUVQTG
+/#)'A(+.'��/KN5[UVGO���/KN+OCIG��
��
������&KURNC[�VJG�KOCIG�DWHHGT����
����/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��
���
������#NNQECVG�C�PQTOCNK\GF�ITC[UECNG�OQFGN����
����/RCV#NNQE/QFGN
/KN5[UVGO��/KN+OCIG��/1&'.A:215��/1&'.A;215�
�������������������/1&'.A9+&6*��/1&'.A*'+)*6��/A014/#.+<'&���/QFGN��

������5GV�VJG�UGCTEJ�CEEWTCE[�VQ�JKIJ����
����/RCV5GV#EEWTCE[
/QFGN��/A*+)*��

������5GV�VJG�UGCTEJ�OQFGN�URGGF�VQ�/A*+)*����
����/RCV5GV5RGGF
/QFGN��/A*+)*��

������2TGRTQEGUU�VJG�OQFGN����
����/RCV2TGRTQE/QFGN
/KN+OCIG��/QFGN��/A&'(#7.6��

������&TCY�C�DQZ�CTQWPF�VJG�OQFGN�KP�VJG�OQFGN�KOCIG����
����/ITC4GEV
/A&'(#7.6��/KN+OCIG�
�������������/1&'.A:215������
�������������/1&'.A;215�����
�������������/1&'.A:215�
�/1&'.A9+&6*��
����
�������������/1&'.A;215�
�/1&'.A*'+)*6�
����

������2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG�CPF�OQFGN�RQUKVKQP����
����RTKPVH
�#�OQFGN�YCU�FGHKPGF�KP�VJG�UQWTEG�KOCIG�>P���
����RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
����IGVEJCT
��

������6TCPUNCVG�VJG�KOCIG�QP�C�UWDRKZGN�NGXGN����
����/KO6TCPUNCVG
/KN+OCIG��/KN+OCIG��5*+(6A:��5*+(6A;��/A&'(#7.6��
����RTKPVH
�5QWTEG�KOCIG�YCU�UJKHVGF�D[����H�KP�:�CPF����H�KP�;�>P>P��
�����������5*+(6A:��5*+(6A;��

������#NNQECVG�TGUWNV�DWHHGT����
����/RCV#NNQE4GUWNV
/KN5[UVGO���.���4GUWNV��

������(KPF�VJG�OQFGN�KP�VJG�VCTIGV�DWHHGT����
����/RCV(KPF/QFGN
/KN+OCIG��/QFGN��4GUWNV��

��

EQPV������

Performing a search 187

�������+H�QPG�OQFGN�YCU�HQWPF�CDQXG�VJG�CEEGRVCPEG�VJTGUJQNF����
�����KH�
/RCV)GV0WODGT
4GUWNV��/A07..������.�
������]
����������4GCF�TGUWNVU�CPF�FTCY�C�DQZ�CTQWPF�OQFGN�QEEWTTGPEG����
��������/RCV)GV4GUWNV
4GUWNV��/A215+6+10A:���Z��
��������/RCV)GV4GUWNV
4GUWNV��/A215+6+10A;���[��
��������/RCV)GV4GUWNV
4GUWNV��/A5%14'���5EQTG��
��������/ITC4GEV
/A&'(#7.6��/KN+OCIG�
����������������
NQPI�
Z�
��������
/1&'.A9+&6*�����
����������������
NQPI�
[�
��������
/1&'.A*'+)*6����
����������������
NQPI�
Z�
������
�
/1&'.A9+&6*���������
����������������
NQPI�
[�
������
�
/1&'.A*'+)*6���������

���������2CWUG�VQ�UJQY�VJG�UJKHVGF�KOCIG�CPF�RTKPV�QWV�VJG�FKHHGTGPEG
���������VQ�EQPHKTO�VJG�UWD�RKZGN�CEEWTCE[��
���������
�������/RCV+PSWKTG
/QFGN��/A14+)+0#.A:���:1TI��
�������/RCV+PSWKTG
/QFGN��/A14+)+0#.A;���;1TI��
�������RTKPVH
�6JG�OQFGN�YCU�HQWPF�VQ�DG�UJKHVGF�D[����H�KP�:�CPF����H�KP�;�>P��
��������������Z���:1TI��[���;1TI��
�������RTKPVH
�/QFGN�OCVEJ�UEQTG�KU����H�RGTEGPV�>P>P���5EQTG��

���������5CXG�OQFGN�VQ�FKUM�HQT�HWVWTG�WUG�KH�XGTKHKECVKQP�YCU�UWEEGUUHWN����
�������KH�

����������
CDUQNWVG

Z���:1TI����5*+(6A:�����/1&'.A/+0A#%%74#%;������
����������
CDUQNWVG

[���;1TI����5*+(6A;�����/1&'.A/+0A#%%74#%;������
����������
5EQTG�������������������������� ��/1&'.A/+0A/#6%*A5%14'�
����������
���������]
���������/RCV5CXG
/1&'.A(+.'��/QFGN��
���������RTKPVH
�/QFGN�YCU�UCXGF�QP�FKUM�CU�	�U	�>P���/1&'.A(+.'��
���������_
������GNUG
���������]
���������RTKPVH
�/QFGN�XGTKHKECVKQP�GTTQT��OQFGN�YCU�PQV�UCXGF�>P���
���������_
������_
���GNUG
������]
������RTKPVH
�/QFGN�YCU�PQV�HQWPF��OQFGN�YCU�PQV�UCXGF�>P���
������_

������9CKV�HQT�C�MG[�RTGUU�VQ�EQPVKPWG�����
����RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
����IGVEJCT
��

������(TGG�CNN�CNNQECVKQPU����
����/RCV(TGG
4GUWNV��
����/RCV(TGG
/QFGN��
����/DWH(TGG
/KN+OCIG��
����/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

188 Chapter 12: Models, searches, and search parameters

Rotation

Besides M_ORIENTATION model searches made with
MpatFindOrientation() (discussed in the previous chapter), there
are two ways to search for a model that can appear at different
angles using the MpatFindModel() function:

■ Search for rotated versions of the model.

■ Search for models taken from the same region in rotated
images.

M
a
tro

x

M
a
tro

x

Target image

Model

MatroxMatrox

M
a
tro

x

= resulting M_DONT_CARE pixels

An M_NORMALIZED model
internally rotated

An M_NORMALIZED+
M_CIRCULAR_OVERSCAN

model internally rotated

Model

Rotation 189

The following describes how to create the models to perform
these types of searches.

Creating rotated
versions of the models

To implement the first type of search, allocate an
M_NORMALIZED model with MpatAllocModel(). Then, enable
and specify the angular range in which it can appear with
MpatSetAngle(). When you call MpatPreprocess(), it will
internally create different models by rotating the original
model at the required angles, assigning don’t care pixels to
regions that do not have corresponding data in the original
model.

This method should only be used when the pixels surrounding
the model follow no predictable pattern (for example, when
searching for loose nuts and bolts lying on a conveyor with an
inconsistent background).

Extracting models at
different rotations

To implement the second type of search, first allocate an
M_NORMALIZED + M_CIRCULAR_OVERSCAN model with
MpatAllocModel(); this will extract the model as well as circular
overscan data from the model’s source image (specifically, MIL
extracts the region enclosed by a circle which circumscribes the
model). Second, enable and specify the angular range in which
the model can appear with MpatSetAngle(). When you call
MpatPreprocess(), it will extract different orientations of the
model from the overscanned model.

It is recommended that the model be as square as possible: the
longer the rectangle, the smaller the number of consistent
central pixels in every model. Therefore, this type of model
should only be used when the model’s distinct features lie in
the center of the region, so that they are included in all models
when rotated.

Model

Consistent central
pixels

Circular overscan data

190 Chapter 12: Models, searches, and search parameters

As mentioned, a larger region than the one defined will be
fetched from the model’s source image. Therefore, the model
must not be extracted from a region too close to the edge of the
model’s source image.

The pixels surrounding the model should be relevant to the
positioning of the pattern (that is, the model should appear in
the target image with the same overscan data). An example is
the image of an integrated circuit.

Both methods find the position and match score of the model in
a target image.

Finally, it should be noted that MIL’s implementation of
MpatFindModel() with a M_CIRCULAR_OVERSCAN type model
is significantly faster than that of a M_NORMALIZED model
when performing an angular search.

Setting the angle of search

By default, the angle of search is 0o. However, you can specify

a rotational range of up to 360o, as well as the required precision
of the resulting angle and the interpolation mode used for the
rotated model. These settings can influence the speed of the
search significantly. The accuracy of the search can also be
influenced.

When an angular range has been specified with MpatSetAngle(),
MpatPreprocess() creates a model for every x degrees within the
range, where x is determined by the specified tolerance
(M_SEARCH_ANGLE_TOLERANCE). Tolerance defines the full
range of degrees within which the pattern in the target image
can be rotated from a model at a specific angle and still meet
the acceptance level.

After the approximate location is found, MIL fine-tunes the
search, according to the specified accuracy
(M_SEARCH_ANGLE_ACCURACY). To be effective, you must set
the degree of accuracy to a value smaller than that of the
rotation tolerance.

Rotation 191

When searching within a range of angles, you should use as
narrow a range as possible, since the operation can take a long
time to perform. Note that the model is rotated according to the
interpolation mode
(M_SEARCH_ANGLE_INTERPOLATION_MODE).

Determining the rotation tolerance of a model
Every model has its own particular rotation tolerance. This
tolerance is dependent on the individual model characteristics
and surrounding target image features. To determine the
rotation tolerance of a model:

1. Set the search angle of a model to the same angle as the
sought for pattern in a sample target image. However, set
the positive and negative delta values to zero since you want
to test by how much a pattern in an image can be rotated
and still correlate with a model at a specific angle.

2. Use the MimRotate() function to rotate the image in very
small, positive increments (for example, 0.5 degrees), and
perform a MpatFindModel() operation at every angle. Make
sure that the image’s center of rotation is the same as that
of the model, otherwise the resulting tolerance will not be
accurate. Note, when rotating the image, always set the
angle from the image’s original position to avoid
interpolating the image more than once.Check the results
for the greatest angle that produces an acceptable score.

3. Repeat steps 1 through 3, rotating the image in negative
increments.

4. Take the minimum of the absolute value of these angles.
Double this angle and set it as the rotation tolerance for the
angular search.

192 Chapter 12: Models, searches, and search parameters

Masking the model

Often your search model contains regions that you need MIL to
ignore when searching for the model in the target image. These
regions might be noise pixels or simply regions that have
nothing to do with what you are searching for.

An example For instance, in a machine guidance application, a mechanical
device might need to know where mounting holes are located
on a circuit board so that screws can be properly inserted. In
this case, a mounting hole would be the search model and the
circuit board would be the target image.

In the above image, the search model contains too much of the
actual board; it might not match holes in different areas of the
board.

In such cases, parts of the search model (any model type other
than M_ORIENTATION) can be masked by setting pixel values
in certain regions to "don’t cares". MIL then ignores these
regions when searching for occurrences of the model.

Masking the model 193

In our example, you would need to mask the edges of the search
model, as follows:

The unmasked region of the search model now more closely
resembles the pattern for which to search; it is more circular in
shape and contains little of the actual board.

To create a mask:

1. View the portion of the image from which the model was
extracted, using MpatCopy().

2. Clear the pixels that should be set to "don’t care", using the
appropriate Mgra...() function.

3. Call MpatSetDontCare(), specifying the image along with
the foreground color used to draw the "don’t care" pixels.
This function sets the model’s "don’t care" pixels.

4. To view the mask, call MpatCopy() again; this time specify
if you want to view the masked image or only the mask.

When you change the "don’t care" pixels of a model, you should
preprocess the search model again.

194 Chapter 12: Models, searches, and search parameters

Search parameters

Once a model is defined (whether manually or automatically),
it is assigned set of default search parameters (search
constraints). Some of these parameters can be changed. You can
change these parameters:

■ The number of occurrences to find.

■ The threshold for acceptance and certainty.

■ The model’s reference position.

■ The region to search in the target image.

■ The positional accuracy.

■ The search speed.

Specifying the number of matches
You can specify how many matches to try to find, using
MpatSetNumber(). If all you need is one good match, set it to
one (the default value) and avoid unnecessary searches for
further matches. If a correlation has a match score above the
certainty level, it is automatically considered an occurrence
(default 80%), the remaining occurrences will be the best of
those above the acceptance level.

Setting the acceptance level

Typical match has an
80 to 100% correlation

The level at which the correlation (match score) between the
model and the pattern in the image is considered a match is
called the acceptance level.

You can set the acceptance level for the specified model, using
MpatSetAcceptance(). If the correlation between the target
image and the model is less than this level, they are not
considered a match. A perfect match is 100%, a typical match
is 80% or higher (depending on the image), and no correlation
is 0%. If your images have considerable noise and/or distortion,
you might have to set the level below the default value of 70%.

Search parameters 195

However, keep in mind that such poor-quality images increase
the chance of false matches and will probably increase the
search time.

Note, perfect matches are generally unobtainable because of
noise introduced when grabbing images.

When you ask for a specific number of matches (using
MpatSetNumber()), the MpatFindModel() command might not
find that number; you should always call MpatGetNumber() to
see how many occurrences were actually found. When multiple
results are found, they are returned in decreasing order of
match score (that is, best match first).

Setting the certainty level
The certainty level is the match score (usually higher than that
of the acceptance level) above which the algorithm can assume
that it has found a very good match and can stop searching the
rest of the image for a better one. The certainty level is very
important because it can greatly affect the speed of the search.
To understand why, you need to know a little about how the
search algorithm works.

Since a brute force correlation of the entire model, at every point
of the image, would take several minutes, it is not practical.
Therefore, the algorithm has to be intelligent. It first performs
a rough but quick search to find likely match candidates, then
checks out these candidates in more detail to see which are
acceptable.

A significant amount of time can be saved if several candidate
matches never have to be examined in detail. This can be done
by setting a certainty level that is reasonable for your needs. A
good level is slightly lower than the expected score. If you
absolutely must have the best match in the image, set the level
to 100%. This would be necessary if, for example, you expect
the target image to contain other patterns that look similar to
your model. Unwanted patterns might have a high score, but
this will force the search algorithm to ignore them.
Symmetrical models fall into this category. At certain angles
symmetrical models might seem like an occurrence in the

196 Chapter 12: Models, searches, and search parameters

target image, but if the search was completed, a match with a
higher score would be found. Use MpatSetCertainty() to set the
certainty level.

Often, you know that the pattern you want is unique in the
image, so anything that reaches the acceptance level must be
the match you want; therefore, you can set the certainty and
acceptance levels to the same value.

Another common case is a pattern that usually produces very
good scores (say above 80%), but occasionally a degraded image
produces a much lower score (say 50%). Obviously, you must
set the acceptance level to 50%; otherwise you will never get a
match in the degraded image. But what value is appropriate
for the certainty level? If you set it to 50%, you take the risk
that it will find a false match (above 50%) in a good image before
it finds the real match that scores 90%. A better value is about
80%, meaning that most of the time the search will stop as soon
as it sees the real match, but in a degraded image (where
nothing reaches the certainty level), it will take the extra time
to look for the best match that reaches the acceptance level.

Redefining the model’s reference position
The coordinates returned by MpatGetResults(), after a call to
MpatFindModel() are the coordinates of the model’s reference
position (in pixel or real-world units, depending on whether the
imaging setup is calibrated; see Chapter 7 Calibration). By
default, this reference position is defined to be at the geometric
center. Note that, when using pixel units, results are returned
relative to the top-left corner of the target image.

If there is a particular spot from which you would like results
returned, you can change the model’s reference position, using
MpatSetCenter(). For example, if your model has a hole and you
want to find results with respect to this hole, change the

Search parameters 197

reference position of the model accordingly. Note that you can
define the reference position to be outside of the model’s
boundary.

Selecting the search region

Instead of searching the entire region of an image, you can limit
the search region with MpatSetPosition(). This function
specifies the region in which to find the model’s reference
position. Therefore, the search region can even be smaller than
the model. If you have redefined the model’s reference position
(with MpatSetCenter()), make sure that the search region
defined by MpatSetPosition() covers this new reference position
and takes into account the angular search range of the model.

Model

Model’s
reference position

Model

New Model’s
reference position

198 Chapter 12: Models, searches, and search parameters

In general, you should not use a child buffer to delimit the
search region to a portion of an image; this might cause the
search routine to have border or edge effects and be less
accurate (the routine does not assume that there is valid data
outside of the buffer).

Search time is roughly proportional to the region searched;
always set the search region to the minimum required when
speed is a consideration.

Positional accuracy
You can set the positional accuracy for your search. Use
MpatSetAccuracy() to set the required positional accuracy. It
can be set to:

■ M_LOW (typically ± 0.20 pixel)

■ M_MEDIUM (typically ± 0.10 pixel)

■ M_HIGH (typically ± 0.05 pixel)

Note, the actual precision achieved is dependent on the quality
of the model and of the image (the tolerances listed above are
typical for high-quality, low-noise images).

A less precise positional accuracy will speed up the search.
Positional accuracy is also slightly affected by the search speed
parameter (MpatSetSpeed()).

Preprocess the search model 199

Setting the speed parameter

You can specify the algorithm’s search speed, using
MpatSetSpeed(). As you increase the speed, the robustness of
the search operation (the likelihood of finding a model)
decreases. Search speed is discussed at greater length in the
section, "Speeding up the search".

Preprocess the search model

Once you are ready to search for the allocated model (either
manually or automatically), you must preprocess the model.
The preprocessing stage uses the known model to decide on the
optimal search strategy for subsequent search operations.
Preprocessing should be performed after all search constraints
have been set. Use the MpatPreprocModel() function to
preprocess the model.

MpatPreprocModel() has a parameter that allows you to specify
a typical target image. Providing a typical image is optional;
you can set this parameter to M_NULL. If you provide this
image, it helps MpatPreprocModel() improve the search’s
robustness and optimize the strategy for subsequent search
operations. You should only specify a typical image if the model
will always appear on the same type of background.

If you save the model to disk, the model’s preprocessing changes
are stored with the model. Upon restoration, the model need
not be preprocessed.

200 Chapter 12: Models, searches, and search parameters

Speeding up the search

To ensure the fastest possible search, you should:

■ Choose an appropriate model.

■ Set the search speed parameter to the highest possible
setting for your application.

■ Set the search region to the minimum required. Search time
is roughly proportional to the region searched, so don’t search
the whole image if you don’t need to.

■ Search the smallest range of angles required.

■ Select the lowest positional accuracy that you need.

■ Set the certainty level to the lowest reasonable value (so that
the search can stop as soon as a good match is found).

■ Search for multiple models at the same time, if possible.

Choose the appropriate model
The size of a model affects the search speed. In general, small
models take longer to find than larger ones, although very large
models can also be time-consuming. In general, the optimal size
is approximately 128 x 128 pixels if you are searching a large
region (for example, most of the image). Small models are found
quickly when the search region is not too large.

Adjust the search speed parameter
The model has a search speed parameter that is used to set the
speed of the search. As you increase the speed, the robustness
of the search operation (the likelihood of finding a model)
decreases. When you call MpatPreprocModel(), MIL analyzes
the pattern in the model, and determines what shortcuts are
appropriate; only shortcuts that are considered safe for a
particular model are taken. This also means that higher search
speeds might not be any faster for certain models, depending
on the particular pattern. Higher search speeds reduce the
positional accuracy very slightly.

Speeding up the search 201

You adjust the search speed parameter setting, using
MpatSetSpeed(). This command has five settings:

■ M_VERY_HIGH
■ M_HIGH
■ M_MEDIUM
■ M_LOW
■ M_VERY_LOW

As expected, the M_VERY_HIGH and M_HIGH speed settings
allow the search to take all possible shortcuts, performing the
search as fast as possible. Higher speed settings are
recommended when searching on a good quality image or when
using a simple model. Note, the search might have a lower
tolerance for rotation when using this setting.

The M_MEDIUM speed setting is the default setting and is
recommended for medium quality images or more complex
models. A search with this setting is capable of withstanding
up to approximately 5 degrees of rotation for typical models.

Use the M_LOW or the M_VERY_LOW speed settings only if the
image quality is particularly poor and you have encountered
problems at higher speeds. The speed parameter is discussed
further in the algorithm description at the end of this chapter.

Effectively choose the search region and search
angle
You can improve performance by not searching the whole image
unnecessarily. Search time is roughly proportional to the region
searched; set the search region to the minimum required, using
MpatSetPosition(). You can also improve performance by
selecting the lowest positional accuracy. In addition, for an
angular search, select lowest angular accuracy
(MpatSetAngle() with M_SEARCH_ANGLE_ACCURACY) and
range required, in combination with the highest tolerance
possible.

Searching for multiple models at the same time
When searching for multiple models of the same size and search
region, it is more efficient to call the MpatFindMultipleModel()
function instead of calling MpatFindModel() once for each
model.

202 Chapter 12: Models, searches, and search parameters

The pattern matching algorithm (for
advanced users)

Normalized grayscale correlation is widely used in industry for
pattern matching applications. Although in many cases you do
not need to know how the search operation is performed, an
understanding of the algorithm can sometimes help you pick
an optimal search strategy.

Normalized Correlation

The correlation operation can be seen as a form of convolution,
where the pattern matching model is analogous to the
convolution kernel (see Chapter 5: Image manipulation). In
fact, ordinary (un-normalized) correlation is exactly the same
as a convolution:

In other words, for each result, the N pixels of the model are
multiplied by the N underlying image pixels, and these
products are summed. Note, the model does not have to be
rectangular because it can contain "don’t care" pixels that are
completely ignored during the calculation. When the
correlation function is evaluated at every pixel in the target
image, the locations where the result is largest are those where
the surrounding image is most similar to the model. The search
algorithm then has to locate these peaks in the correlation
result, and return their positions.

r IiMi

i 1=

i N=

∑=

The pattern matching algorithm (for advanced users) 203

Unfortunately, with ordinary correlation, the result increases
if the image gets brighter. In fact, the function reaches a
maximum when the image is uniformly white, even though at
this point it no longer looks like the model. The solution is to
use a more complex, normalized version of the correlation
function (the subscripts have been removed for clarity, but the
summation is still over the N model pixels that are not "don’t
cares"):

With this expression, the result is unaffected by linear changes
(constant gain and offset) in the image or model pixel values.
The result reaches its maximum value of 1 where the image
and model match exactly, gives 0 where the model and image
are uncorrelated, and is negative where the similarity is less
than might be expected by chance.

In our case, we are not interested in negative values, so results

are clipped to 0. In addition, we use r2 instead of r to avoid the
slow square-root operation. Finally, the result is converted to a
percentage, where 100% represents a perfect match. So, the
match score returned by MpatGetResult() is actually:

 Score = max (r, 0)2 x 100%

Note, some of the terms in the normalized correlation function
depend only on the model, and hence can be evaluated once and
for all when the model is defined. The only terms that need to
be calculated during the search are:

This amounts to two multiplications and three additions for
each model pixel.

r

N IM∑ I∑ 
  M∑–

N I
2∑ I∑ 

  2
– N M

2∑ M∑ 
  2

–

---=

I∑ I
2∑ IM∑, ,

204 Chapter 12: Models, searches, and search parameters

On a typical PC, the multiplications alone account for most of
the computation time. A typical application might need to find
a 128x128-pixel model in a 512x512-pixel image. In such a case,
the total number of multiplications needed for an exhaustive

search is 2x5122x1282, or over 8 billion. On a typical PC, this
would take a few minutes, much more than the 5 msec or so the
search actually takes. Clearly, MpatFindModel() does much
more than simply evaluate the correlation function at every
pixel in the search region and return the location of the peak
scores.

Hierarchical Search

A reliable method of reducing the number of computations is to
perform a so-called hierarchical search. Basically, a series of
smaller, lower-resolution versions of both the image and the
model are produced, and the search begins on a much-reduced
scale. This series of sub-sampled images is sometimes called a
resolution pyramid, because of the shape formed when the
different resolution levels are stacked on top of each other.

Each level of the pyramid is half the size of the previous one,
and is produced by applying a low-pass filter before
sub-sampling. If the resolution of an image or model is 512x512
at level 0, then at level 1 it is 256x256, at level 2 it is 128x128,
and so on. Therefore, the higher the level in the pyramid, the
lower the resolution of the image and model.

Level

7
6
5
4
3
2
1
0

Resolution Search stage

Lowest

Highest

Initial

Final

The pattern matching algorithm (for advanced users) 205

The search starts at low resolution to quickly find likely match
candidates. It proceeds to higher and higher resolutions to
refine the positional accuracy and make sure that the matches
found at low resolution actually were occurrences of the model.
Because the position is already known from the previous level
(to within a pixel or so), the correlation function need be
evaluated only at a very small number of locations.

Since each higher level in the pyramid reduces the number of
computations by a factor of 16, it is usually desirable to start
at as high a level as possible. However, the search algorithm
must trade off the reduction in search time against the
increased chance of not finding the pattern at very low
resolution. Therefore, it chooses a starting level according to
the size of the model and the characteristics of the pattern. In
the application described earlier (128x128 model and 512x512
image), it might start the search at level 4, which would mean
using an 8x8 version of the model and a 32x32 version of the
target image. You can, if required, force a specific starting level,
using MpatSetSearchParameter() with M_FIRST_LEVEL.

The logic of a hierarchical search accounts for a seemingly
counter-intuitive characteristic of MpatFindModel(): large
models tend to be found faster than small ones. This is because
a small model cannot be sub-sampled to a large extent without
losing all detail. Therefore, the search must begin at fairly high
resolution (low level), where the relatively large search region
results in a longer search time. Thus, small models can only be
found quickly in fairly small search regions.

Note that the pyramidal representation of the buffer is
generated each time MpatFindModel() or
MpatFindMultipleModel() is called. However, you can save the
pyramidal representation of the buffer (generated when
MpatFindModel() or MpatFindMultipleModel() is called) in the
result buffer, using MpatSetSearchParameter() with
M_TARGET_CACHING. This pyramidal representation is
re-used by consecutive calls to MpatFindModel() and
MpatFindMultipleModel() as long as the same result buffer is
used and the image, search region, and model size are not
modified.

206 Chapter 12: Models, searches, and search parameters

Search Heuristics

Even though performed at very low resolution, the initial
search still accounts for most of the computation time if the
correlation is performed at every pixel in the search region. On
most models, match peaks (pixel locations where the
surrounding image is most similar to the model, and correlation
results are largest) are several pixels wide. These can be found
without evaluating the correlation function everywhere.
MpatPreprocModel() analyzes the shape of the match peak
produced by the model, and determines if it is safe to try to find
peaks faster. If the pattern produces a very narrow match peak,
an exhaustive initial search is performed. The search algorithm
tends to be conservative; if necessary, force fast peak finding,
using MpatSetSearchParameter() with M_FAST_FIND.

Using MpatSetSearchParameter() with
M_EXTRA_CANDIDATES, you can set the number of extra peaks
to consider. Normally, the search algorithm considers only a
limited number of (best) scores as possible candidates to a
match when proceeding at the most sub-sampled stage. You can
add robustness to the algorithm, by considering more
candidates, without compromising too heavily on search speed.
In addition, you can use MpatSetSearchParameter() with
M_COARSE_SEARCH_ACCEPTANCE to set a minimum match
score, valid at all levels except the last level, to be considered
for an occurrence of the model. This ensures that possible
models are not discarded at lower levels, yet maintains the
required certainty during the final level.

At the last (high-resolution) stage of the search, the model is
large, so this stage can take a significant amount of time, even
though the correlation function is evaluated at only a very few
points. To save time, you can select a high search speed, using
MpatSetSpeed(). For most models, this has little effect on the
score or accuracy, but does increase speed.

Sub-pixel accuracy
The highest match score occurs at only one point, and drops off
around this peak. The exact (sub-pixel) position of the model
can be estimated from the match scores found on either side of
the peak. A surface is fitted to the match scores around the peak

The pattern matching algorithm (for advanced users) 207

and, from the equation of the surface, the exact peak position
is calculated. The surface is also used to improve the estimate
of the match score itself, which should be slightly higher at the
true peak position than the actual measured value at the
nearest whole pixel.

The actual accuracy that can be obtained depends on several
factors, including the noise in the image and the particular
pattern of the model. However, if these factors are ignored, the
absolute limit on accuracy, imposed by the algorithm itself and
by the number of bits and precision used to hold the correlation
result, is about 0.025 pixels. This is the worst-case error
measured in X or Y when an image is artificially shifted by
fractions of a pixel. In a real application, accuracy better than
0.05 pixels is achieved for low-noise images. These numbers
apply if you select high-search accuracy, using
MpatSetAccuracy(), in which case the search always proceeds
to resolution level 0.

If you select medium accuracy (the default), the search might
stop at resolution level 1, and hence the accuracy is half of what
can be attained at level 0. Selecting low accuracy might cause
the search to stop at level 2, so the accuracy is reduced by an
additional factor of two (to about 0.2 pixel).

208 Chapter 12: Models, searches, and search parameters

Chapter 13: Optical
character recognition

This chapter presents the features of the optical character
recognition (OCR) module.

210 Chapter 13: Optical character recognition

The MIL OCR module

Many types of industries require the analysis of character
strings in images. For example, the semiconductor industry
requires serial numbers printed on wafers to be read for
tracking purposes. The pharmaceutical industry requires
analysis of medicine bottle labels to ensure, for example, that
expiry dates are properly printed.

The MIL optical character recognition (OCR) module provides
a powerful and easy to use function set for reading and verifying
character strings in 8-bit grayscale images, providing results
such as quality scores and validity flags. The OCR module can
read and verify mechanically generated, uniformly spaced,
character strings of known lengths. The module is especially
designed to operate on character strings in degraded images
and can tolerate up to 10 degrees of rotation in the target string.
The OCR module can also be used in conjunction with other
MIL functions to develop hardware independent OCR
programs for machine vision applications.

The module loads a grayscale representation of the font
characters from a font file. Each character in the string to be
read (target string) is compared to each character
representation in this font. The representation with the closest
match is chosen. You can adjust the value at which this match
will be considered a success by setting the acceptance level. The
result of a read or verify operation will yield a string of
characters with the closest match, a confidence score for each
character and its position in the target string, and a validity
flag for each character and for the whole string.

Two predefined font files are provided to read and verify
semiconductor wafer serial numbers of standard SEMI font
character types. For applications requiring other font types, the
OCR module supports the creation of custom fonts.

The module also supports user-specified character constraints,
processing controls, and the automatic calibration of fonts. To
ensure recognition accuracy, checksum calculations are
performed when analyzing standard SEMI font character
strings, and user-defined validation functions can be specified.

Steps to reading or verifying a string in an image 211

Matrox READER Included with the OCR module is Matrox READER, a Windows
utility giving you interactive access to all of the OCR functions.
Matrox READER can be used, for example, for OCR
experimentation, font calibration, control setting and operation
timing. See the read.me file in the utility’s directory for more
details.

Matrox READER includes the MIL command interpreter,
MILINTER. MILINTER can be used to access MIL functions
while in Matrox READER, and can also be used to create
custom scripts of MIL functions. For information on
MILINTER, see the Matrox Intellicam User Guide.

Steps to reading or verifying a string in an
image

The basic steps to read or verify a string in an image are:

1. Load or create a character font.

2. Calibrate the font to match the target image’s character size
and spacing.

3. Specify font character constraints and processing controls.

4. Allocate a result buffer.

5. Acquire or load a target image. Optionally, limit the area to
be read and/or preprocess the image to improve its quality.
Note that OCR can only process unsigned 8-bit buffers.

6. Read or verify the string in the target image.

7. Read the results.

In general, the first four steps are performed once, while steps
5 to 7 are repeated as desired. Note that you can save the font
calibration results, character constraints, and processing
controls with the character font. Therefore, steps 1 to 3 can be
replaced by a single step which loads a font from disk.

212 Chapter 13: Optical character recognition

Load or create a
character font

You can load an existing font from disk using MocrRestoreFont()
or you can create a custom font using MocrCopyFont() or
MocrImportFont().

Calibrate the font Use MocrCalibrateFont() to determine the width, height, and
spacing of characters in the target image, or manually program
them using MocrControl().

Specifying constraints
and controls

You can use MocrSetConstraint() to specify the type of
characters (alphabetic, numeric, or other) that should appear
at a specific position in a string.

You can use MocrControl() to modify processing controls, such
as the speed of the algorithm.

Allocate a result
buffer

You must allocate a result buffer using MocrAllocResult(). This
buffer will be used to store subsequent read or verify result
values.

Acquire and pre-
process a new target
image

Once the previous steps have been performed, the target image
should be loaded from disk or acquired from the input device
into an image buffer. You have the option of limiting the area
to be read and of removing noise to improve the target image
prior to performing the OCR operation.

Read or verify the
string

You can now read or verify the string in the target image using
MocrReadString() or MocrVerifyString(). These operations are
performed according to the defined character constraints and
processing controls.

Read the results You can obtain the OCR results using MocrGetResult(). You can
determine whether or not the string or characters read were
valid. In addition, you can obtain the characters read, their
confidence scores, and their individual positions.

A typical application 213

A typical application

The following example demonstrates how to read the serial
number in an image of a semiconductor wafer, using the OCR
functions in conjunction with other MIL functions. The serial
number, printed on the wafer, is a standard SEMI font
character string containing a checksum.

����(KNG�PCOG��OQETTGCF�E
����5[PQRUKU���6JKU�RTQITCO�ECNKDTCVGU�CP�1%4�HQPV�
UGOK�HQPV��CPF�WUGU�KV�VQ
���������������TGCF�VJG�UVTKPI�RTGUGPV�KP�VJG�KOCIG��6JG�UVTKPI�TGCF�KU�VJGP
���������������RTKPVGF�VQ�VJG�UETGGP�CPF�VJG�ECNKDTCVGF�HQPV�KU UCXGF�VQ�FKUM�
����

���KPENWFG��UVFKQ�J
���KPENWFG��UVTKPI�J
���KPENWFG��OKN�J

����6CTIGV�KOCIG�EJCTCEVGT�URGEKHKECVKQPU����
���FGHKPG�%*#4A+/#)'A(+.'������QETUGOK��OKO�
���FGHKPG�%*#4A5+<'A:A/+0����������
���FGHKPG�%*#4A5+<'A:A/#:����������
���FGHKPG�%*#4A5+<'A:A56'2���������
���FGHKPG�%*#4A5+<'A;A/+0����������
���FGHKPG�%*#4A5+<'A;A/#:����������
���FGHKPG�%*#4A5+<'A;A56'2���������

����6CTIGV�TGCFKPI�URGEKHKECVKQPU����
���FGHKPG�4'#&A4')+10A215A:������.��
���FGHKPG�4'#&A4')+10A215A;������.
���FGHKPG�4'#&A4')+10A9+&6*�������.
���FGHKPG�4'#&A4')+10A*'+)*6�����.
���FGHKPG�4'#&A5%14'A/+0�����������

��

EQPV������

214 Chapter 13: Optical character recognition

����(QPV�HKNG�PCOGU����
���FGHKPG�(106A(+.'A+0������UGOK�����OHQ�
���FGHKPG�(106A(+.'A176���UGOKECNK�OHQ����

����.GPIVJ�QH�VJG�UVTKPI�VQ�TGCF�
PWNN�VGTOKPCVGF����
���FGHKPG�564+0)A.'0)6*������������.

����&TCYKPI�EQNQT�HQT�VJG�TGUWNVKPI�UVTKPI���
���FGHKPG�564+0)A&4#9+0)A%1.14������.

XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP�������������������������#RRNKECVKQP�KFGPVKHKGT����������
���������/KN5[UVGO������������������������������5[UVGO�KFGPVKHKGT���������������
���������/KN&KURNC[�����������������������������&KURNC[�KFGPVKHKGT��������������
���������/KN+OCIG�������������������������������+OCIG�DWHHGT�KFGPVKHKGT���������
���������/KN5WD+OCIG����������������������������5WD�KOCIG�DWHHGT�KFGPVKHKGT�����
���������1ET(QPV��������������������������������1%4�HQPV�KFGPVKHKGT�������������
���������1ET4GUWNV������������������������������1%4�TGUWNV�DWHHGT�KFGPVKHKGT����
��EJCT���5VTKPI=564+0)A.'0)6*?������������������#TTC[�QH�EJCTCEVGTU�VQ�TGCF�����
��FQWDNG�5EQTG����������������������������������4GCFKPI�UEQTG�������������������

����#NNQECVG�FGHCWNVU���
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
�������������������/A07..���/KN+OCIG��

����.QCF�UQWTEG�KOCIG�KPVQ�KOCIG�DWHHGT����
��/DWH.QCF
%*#4A+/#)'A(+.'��/KN+OCIG��

����4GUVTKEV�VJG�TGIKQP�QH�VJG�KOCIG�KP�YJKEJ�VQ�TGCF�VJG�UVTKPI���
��/DWH%JKNF�F
/KN+OCIG��4'#&A4')+10A215A:��4'#&A4')+10A215A;�
��������������4'#&A4')+10A9+&6*��4'#&A4')+10A*'+)*6���/KN5WD+OCIG��

����4GUVQTG�VJG�1%4�EJCTCEVGT�HQPV�HTQO�FKUM����
��/QET4GUVQTG(QPV
(106A(+.'A+0��/A4'5614'��/KN5[UVGO���1ET(QPV��

����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG�CPF�CUM�HQT�VJG�ECNKDTCVKQP�UVTKPI����
��RTKPVH
�6JG�1%4�HQPV�YKNN�DG�ECNKDTCVGF�WUKPI�VJG�FKURNC[GF�KOCIG�>P���
��RTKPVH
�6[RG�VJG�UVTKPI�RTGUGPV�KP�VJG�KOCIG�HQNNQYGF�D[��'PVGT �>P���
��UECPH
��U��5VTKPI��
��IGVEJCT
��
��UVTWRT
5VTKPI��
��RTKPVH
�>P%CNKDTCVKPI�HQPV���>P>P���

����%CNKDTCVG�VJG�1%4�HQPV����
��/QET%CNKDTCVG(QPV
/KN5WD+OCIG��1ET(QPV��5VTKPI� %*#4A5+<'A:A/+0�
���������������������������������%*#4A5+<'A:A/#:��%*#4A5+<'A:A56'2�
���������������������������������%*#4A5+<'A;A/+0��%*#4A5+<'A;A/#:��
���������������������������������%*#4A5+<'A;A56'2� /A&'(#7.6��

��

EQPV������

A typical application 215

����5GV�VJG�WUGT�URGEKHKE�EJCTCEVGT�EQPUVTCKPVU�HQT�GCEJ�UVTKPI�RQUKVKQP���
��/QET5GV%QPUVTCKPV
1ET(QPV������/A.'66'4��/A07..����������#�VQ�<�QPN[�����������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6�����������������������QPN[��������������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6���/A07..������������VQ���QPN[�����������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6���/A07..������������VQ���QPN[�����������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6���/A07..������������VQ���QPN[����������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6���/A07..������������VQ���QPN[�����������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6���/A07..������������VQ���QPN[����������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&'(#7.6��������������������QPN[��������������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A.'66'4���/��������������/QPN[�����������������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A.'66'4���:��������������:��QPN[���������������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A.'66'4���#$%&'()*�������5'/+�EJGEMUWO���������
��/QET5GV%QPUVTCKPV
1ET(QPV������/A&+)+6�������������������5'/+�EJGEMUWO���������

����2CWUG�VQ�UKIPCN�VJG�HQNNQYKPI�TGCF�QRGTCVKQP����
��RTKPVH
�6JG�UVTKPI�RTGUGPV�KP�VJG�FKURNC[GF�KOCIG�YKNN�DG�TGCF�CPF>P���
��RTKPVH
�VJG�TGUWNV�YKNN�DG�RTKPVGF�>P2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

����#NNQECVG�CP�1%4�TGUWNV�DWHHGT����
��/QET#NNQE4GUWNV
/KN5[UVGO��/A&'(#7.6���1ET4GUWNV��

����4GCF�VJG�UVTKPI����
��/QET4GCF5VTKPI
/KN5WD+OCIG��1ET(QPV��1ET4GUWNV��

����)GV�VJG�UVTKPI�CPF�KVU�TGCFKPI�UEQTG����
��/QET)GV4GUWNV
1ET4GUWNV��/A564+0)��5VTKPI��
��/QET)GV4GUWNV
1ET4GUWNV��/A5%14'����5EQTG��

����2TKPV�VJG�TGUWNV����
��RTKPVH
�>P6JG�UVTKPI�TGCF�KU��>��U>��
UEQTG�����H����>P>P���5VTKPI��5EQTG��

����&TCY�VJG�UVTKPI�WPFGT�VJG�TGCFKPI�TGIKQP����
��/ITC(QPV
/A&'(#7.6��/A(106A&'(#7.6A.#4)'��
��/ITC%QNQT
/A&'(#7.6�564+0)A&4#9+0)A%1.14��
��/ITC6GZV
/A&'(#7.6��/KN+OCIG��4'#&A4')+10A215A:

4'#&A4')+10A9+&6*����
�����������4'#&A4')+10A215A;
4'#&A4')+10A*'+)*6��5VTKPI��

����5CXG�VJG�ECNKDTCVGF�HQPV�KH�VJG�TGCFKPI�UEQTG�YCU�UWHHKEKGPV����
��KH�
5EQTG� �4'#&A5%14'A/+0�
��]
�����/QET5CXG(QPV
(106A(+.'A176��/A5#8'��1ET(QPV��
�����RTKPVH
�4GCF�UWEEGUUHWN��ECNKDTCVGF�1%4�HQPV�YCU�UCXGF�VQ�FKUM�>P���
��_
��GNUG�
��]
�����RTKPVH
�'TTQT��4GCF�UEQTG�VQQ�NQY��ECNKDTCVGF�1%4�HQPV�PQV�UCXGF�>P���
��_
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

����(TGG�CNN�CNNQECVKQPU����
��/QET(TGG
1ET(QPV��
��/QET(TGG
1ET4GUWNV��
��/DWH(TGG
/KN5WD+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

216 Chapter 13: Optical character recognition

Using fonts

To read or verify character strings in images, the OCR module
must know about the font type and dimensions of the target
string. The module uses fonts (or typesets) to specify the style,
size, and spacing of characters in the images to be read or
verified.

The module provides two predefined font files, semi1292.mfo
and semi1388.mfo, for analyzing SEMI font character strings
in a target image. If your application requires font types other
than the standard SEMI fonts, you can create custom font files
(see Creating custom fonts at the end of this chapter).

A font file contains information such as:

■ The grayscale representations of the characters.

■ Codes identifying each character (usually the ASCII codes for
the characters).

■ The number of characters in the font file.

■ Character dimensions.

■ The maximum number of characters in the target image
string to read or verify.

■ Control parameters, such as target image character size and
spacing, and character constraints.

The above information can be modified and saved to meet
specific application requirements.

Calibrating fonts 217

Calibrating fonts

Before character strings can be read or verified in target
images, fonts must be calibrated to the size and spacing of
characters in the target images. The MocrCalibrateFont()
function uses a sample reference image
to obtain these values. The sample image must be
representative of all target images to be analyzed: the sample
image’s characters must be equal in type, size, and spacing to
those of the target images. The character string in the sample
image, as well as in target images, must be of known length,
aligned, uniformly spaced, and cannot be rotated more than 10
degrees.

Generally, a font is calibrated once, at the beginning of an
application. If your target image characters’ size and/or spacing
change, you should calibrate the font again. If the font is not
calibrated, MocrReadString() or MocrVerifyString() might not
be able to find the string in the target image because of the
difference in size between the font characters and the target
image characters.

Calibration values can be stored in the font file as part of the
font’s information set. You can use MocrSaveFont() to save the
calibration values with the font or MocrModifyFont() to
actually modify the font’s character representation to match
the characters in the sample target image.

Target character
dimensions

If MocrCalibrateFont() function is inappropriate, you can use
the MocrControl() function to manually set the width
(M_TARGET_CHAR_SIZE_X), the height
(M_TARGET_CHAR_SIZE_Y), and spacing
(M_TARGET_CHAR_SPACING) of target image characters with
sub-pixel accuracy.

218 Chapter 13: Optical character recognition

These values must be very precise so as not to affect reading
performance and reliability. The following diagram illustrates
spacing and size of sample characters.

Spacing

X size
Y

 s
iz

e

Setting character constraints 219

Setting character constraints

The read operation compares each character in the target
image to each character in the font to find the best match. You
might know beforehand that certain characters (or types of
characters) should appear at specific positions in the string. If
this is the case, you can speed up and increase the robustness
of the read operation by restricting the comparison to only those
characters in the font. The following types of constraints can be
set using MocrSetConstraint():

■ One or many digits (M_DIGIT): ASCII codes 48 to 57.

■ One or many letters (M_LETTER): ASCII codes 65 to 90 and
97 to 122.

■ One or many uppercase letters (M_LETTER+M_UPPERCASE):
ASCII characters 65 to 90.

■ One or many lowercase letters
(M_LETTER+M_LOWERCASE): ASCII characters 97 to 122.

■ Specific list of mixed character types (for example, A,1,b,2),
including special characters and punctuations (for example,
&, -, ...).

■ Default (all characters in the font).

The constraints are stored with the font as part of its
information set and can be inquired, using MocrInquire().

The following is a portion of the mocrfont.c example found at
the end of this chapter. It demonstrates how character
constraints are set. For example, the character in the first
position should be the letter K, the character in the second
position should be any upper or lowercase letter.

�����5GV�EJCTCEVGT�EQPUVTCKPVU�HQT�GCEJ�RQUKVKQP�QH�VJG�UVTKPI�VQ�TGCF������
���/QET5GV%QPUVTCKPV
1ET(QPV�����/A.'66'4���-�������������/WUV�DG�-���������
���/QET5GV%QPUVTCKPV
1ET(QPV�����/A.'66'4��/A07..���������#P[�NGVVGT��������
���/QET5GV%QPUVTCKPV
1ET(QPV�����/A&+)+6���/A07..���������#P[�FKIKV���������
���/QET5GV%QPUVTCKPV
1ET(QPV�����/A&+)+6������������������/WUV�DG���QT������
���/QET5GV%QPUVTCKPV
1ET(QPV�����/A&+)+6���/A07..���������#P[�FKIKV���������
���/QET5GV%QPUVTCKPV
1ET(QPV�����/A&'(#7.6�/A07..����������#P[�EJCTCEVGT�����

220 Chapter 13: Optical character recognition

Setting processing controls

Before reading or verifying an image, you should ensure that
the processing controls associated with the font are appropriate
for your application using MocrInquire(). The following
processing controls are associated with a font and their values
can be changed using MocrControl():

■ Length of target string.

■ Target character dimensions.

■ Acceptance levels.

■ Symbol for unrecognized characters.

■ Characters to erase from the font.

■ Contrast enhancement and string location.

■ Robustness of the read algorithm.

Acceptance levels You can set the acceptance level of a successful read/verify
operation for an entire string or for each of its characters.

■ Setting levels for each character (M_CHAR_ACCEPTANCE).

If the correspondence (also known as the match score)
between a character in an image and a character in a
specified font is less than the specified acceptance level, that
character is considered invalid and the associated validity
flag for that character is set to false. A perfect match is 100%,
a typical match is 60%, and no correlation is 0%. If your
images have a lot of noise or distortion, you might have to set
a low acceptance level. However, keep in mind that
poor-quality images increase the chance of false readings and
will probably increase the reading time.

Note also that perfect matches are generally unobtainable
because of noise obtained during image acquisition.

■ Setting the acceptance level for the entire string of characters
(M_STRING_ACCEPTANCE).

Setting processing controls 221

The match score for the entire string is determined by taking
the average of the match scores of all characters in that
string. If this average passes the acceptance level set for the
string, the string is considered valid and its validity flag is
set to true.

Unrecognized
characters

You can specify the symbol for unrecognized (or invalid)
characters (M_CHAR_INVALID). If a target image character’s
match score does not reach the specified acceptance level, you
can force a specified symbol to be returned at that position in
the string. If no symbol is specified (default), the character with
the closest match will be returned. For example:

Target string: "HELLO"
Invalid character: "*"
Acceptance threshold: 30% 30% 30% 30% 30%
Confidence scores: 70% 15% 53% 24% 80%
Result: H*L*O

Since the confidence scores of the characters in the second and
fourth positions are less than the specified acceptance level,
these characters are replaced by asterisks in the result.

Characters to erase
from font

If you no longer require certain character representations in
your font file, they can be deleted from the font, using the
M_CHAR_ERASE option.

Image
enhancement and
string location

By default, the read and verify operations first clean the target
image (filter and perform contrast enhancement) and then
locate the target string. You can skip the image enhancement
step if your images don’t have too much noise and have good
contrast. You can skip the location step if you have created a
child buffer which surrounds the string very closely, without
touching it. By skipping these steps, you can save a significant
amount of time.

Robustness of the read
algorithm

You can set the speed and reliability of the algorithm by setting
the robustness factor. For instance, noisy images might require
a high level of reliability. The robustness factor can be adjusted
such that the algorithm is slower but more reliable.

222 Chapter 13: Optical character recognition

Managing fonts

You can save, restore, modify, and inquire about fonts, as well
as display their grayscale representations.

Saving and restoring a font

You can use MocrSaveFont() to save a font to disk. You can save
all of the font’s associated data or only its associated processing
controls or character constraints. You can restore a previously
saved font, using MocrRestoreFont(). This function restores all
data associated with the font or restores only processing
controls or character constraints.

Inverting a font
The MocrModifyFont() function can be used to invert the
grayscale representations of the font characters to match that
of the target image characters.

Inquiring about a font
You can inquire about character constraints, processing
controls, and other information associated with a font using the
MocrInquire() function.

Visualizing a font

It might be necessary at some point during application
development to display the grayscale character representations
of your font. To do so, use MocrCopyFont() to copy the grayscale
representations to a displayable image buffer.

Managing fonts 223

 For example... The following example shows you how to inquire about a font
and how to display its grayscale character representations.

�

����(KNG�PCOG��OQETXKGY�E
����5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�XKUWCNK\G�VJG�EJCTCEVGTU�QH�C�HQPV�
����

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

����6CTIGV�HQPV�HKNG�PCOG����
�FGHKPG�(106A(+.'A0#/'����UGOK�����OHQ�

XQKF�OCKP
XQKF�
]���
��/+.A+&�/KN#RRNKECVKQP������������������#RRNKECVKQP�KFGPVKHKGT����������������
���������/KN5[UVGO�����������������������5[UVGO�KFGPVKHKGT���������������������
���������/KN&KURNC[����������������������&KURNC[�KFGPVKHKGT��������������������
���������/KN+OCIG������������������������+OCIG�DWHHGT�KFGPVKHKGT���������������
���������1ET(QPV�������������������������1%4�HQPV�KFGPVKHKGT�������������������
��FQWDNG�%JCT0WODGT���������������������0WODGT�QH�EJCTCEVGTU�KP�HQPV���������
���������%JCT$QZ5K\G:��%JCT$QZ5K\G;������5K\G�QH�EJCTCEVGT	U�DQZ�KP�HQPV�������

����#NNQECVG�FGHCWNVU���
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
�������������������/A07..���/KN+OCIG��

����4GUVQTG�VJG�1%4�EJCTCEVGT�HQPV�HTQO�FKUM����
��/QET4GUVQTG(QPV
(106A(+.'A0#/'��/A4'5614'��/KN5[UVGO���1ET(QPV��

����+PSWKTG�VJG�1%4�HQPV�EJCTCEVGT�PWODGT�CPF�FKOGPUKQPU����
��/QET+PSWKTG
1ET(QPV��/A%*#4A07/$'4���%JCT0WODGT��
��/QET+PSWKTG
1ET(QPV��/A%*#4A$1:A5+<'A:���%JCT$QZ5K\G:��
��/QET+PSWKTG
1ET(QPV��/A%*#4A$1:A5+<'A;���%JCT$QZ5K\G;��

����8GTKH[�VJCV�CNN�VJG�EJCTCEVGT�TGRTGUGPVCVKQPU�HKVU�KP�VJG�VCTIGV�KOCIG���
��KH�
%JCT0WODGT��
������

/DWH+PSWKTG
/KN+OCIG��/A5+<'A:��/A07..����%JCT$QZ5K\G:���
�������
/DWH+PSWKTG
/KN+OCIG��/A5+<'A;��/A07..����%JCT$QZ5K\G;���
������
��]
�������&KURNC[�VJG�HQPV�TGRTGUGPVCVKQP����
�����/QET%QR[(QPV
/KN+OCIG��1ET(QPV��/A%12;A(41/A(106
/A#..A%*#4��/A07..��

�������2CWUG�VQ�UJQY�VJG�TGUWNV����
�����RTKPVH
�6JG�HQPV�EJCTCEVGTU�JCXG�DGGP�EQRKGF�VQ�VJG�FKURNC[GF�KOCIG�>P���
�����RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
�����IGVEJCT
��
��_
��GNUG�
��]
�����RTKPVH
�'TTQT��6CTIGV�KOCIG�VQQ�UOCNN�VQ�EQR[�VJG�HQPV�EJCTCEVGTU�>P���
��_

����(TGG�CNN�CNNQECVKQPU����
��/QET(TGG
1ET(QPV��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_��

224 Chapter 13: Optical character recognition

Creating custom fonts

While the standard SEMI font is frequently used for wafer
analysis in the semiconductor industry, other applications
requiring different font types can be addressed by creating
custom fonts.

To create a custom font:

1. Allocate a font buffer, using MocrAllocFont().

2. Grab or create the grayscale character representations of
the font in a MIL image buffer and then copy them from the
image buffer to a MIL font buffer, using MocrCopyFont().
Alternatively, you can import grayscale character
representations from a text file or an image file (in either a
TIFF or MIL format) into a MIL font buffer using
MocrImportFont().

Note that the font buffer must have been previously allocated
using MocrAllocFont(). When allocating a font buffer, you must
specify the dimensions of its character representations and
their character boxes. The following is an example of a
character in its character box and the dimensions that you will
have to specify. Values are to be specified in pixels. Each square
in the grid represents one pixel.

Once copied or imported into a font buffer, the font information
can be saved on disk using MocrSaveFont(), and then later
restored using MocrRestoreFont().

Character box X size

Character
thickness

C
h

a
ra

c
te

r
Y

 o
ff

se
t

Character
X offset

C
ha

ra
ct

er
 b

ox
 Y

 si
ze

Character X size

C
ha

ra
c

te
r Y

 s
ize

Creating custom fonts 225

For example... The following example demonstrates how a custom font is
created to verify lot numbers printed on medicine bottle labels.
Character constraints have been set for each of the six positions
in the string to be read. To simplify the example, the font’s
character representations have been drawn using the MIL
graphics module instead of being grabbed.

����(KNG�PCOG��OQETHQPV�E
����5[PQRUKU��6JKU�RTQITCO�ETGCVG�C�EWUVQO�1%4�HQPV��UGV�KVU�EQPUVTCKPVU
��������������CPF�WUGU�KV�VQ�TGCF�C�UVTKPI�FTCYP�KP�VJG�KOCIG��6JG�UVTKPI
��������������TGCF�KU�VJGP�RTKPVGF�VQ�VJG�UETGGP�CPF�VJG�ECNKDTCVGF�HQPV
��������������KU�UCXGF�VQ�FKUM�
����

���KPENWFG��UVFKQ�J
���KPENWFG��OKN�J

����6[RKECN�TGCFKPI�URGEKHKECVKQPU����
���FGHKPG�564+0)A61A4'#&������������-(���0�
���FGHKPG�564+0)A5%14'A/+0�������������
���FGHKPG�564+0)A5%#.'����������������
�
����(QPV�URGEKHKECVKQPU����
���FGHKPG�(106A%*#4A.+56������������(-./0�����������
���FGHKPG�(106A%*#4A07/��������������.
���FGHKPG�(106A%*#4A$1:A5+<'A:�������.
���FGHKPG�(106A%*#4A$1:A5+<'A;�������.
���FGHKPG�(106A%*#4A1((5'6A:��������.
���FGHKPG�(106A%*#4A1((5'6A;��������.
���FGHKPG�(106A%*#4A5+<'A:�����������.
���FGHKPG�(106A%*#4A5+<'A;�����������.
���FGHKPG�(106A%*#4A6*+%-0'55�������.
���FGHKPG�(106A07/A%*#4A61A4'#&�����.
���FGHKPG�(106A%*#4A(14')4170&�����/A(14')4170&A9*+6'
���FGHKPG�(106A(+.'A0#/'������������EWUVQO�OHQ�

��

EQPV������

226 Chapter 13: Optical character recognition

����9QTM�TGIKQP�URGEKHKECVKQPU����
���FGHKPG�914-A4')+10A215A:����.
���FGHKPG�914-A4')+10A215A;����.
���FGHKPG�914-A4')+10A9+&6*�
��
NQPI�

(106A%*#4A$1:A5+<'A:�(106A%*#4A07/
���>��
�������������564+0)A5%#.'�
���
���FGHKPG�914-A4')+10A*'+)*6
��
NQPI�

(106A%*#4A$1:A5+<'A;����564+0)A5%#.'�

����+OCIG�DCEMITQWPF�EQNQT����
���FGHKPG�$#%-)4170&A%1.14������

XQKF�OCKP
XQKF�
]
��/+.A+&�/KN#RRNKECVKQP������������������������#RRNKECVKQP�KFGPVKHKGT�����������
���������/KN5[UVGO�����������������������������5[UVGO�KFGPVKHKGT����������������
���������/KN&KURNC[����������������������������&KURNC[�KFGPVKHKGT���������������
���������/KN+OCIG������������������������������+OCIG�DWHHGT�KFGPVKHKGT����������
���������/KN5WD+OCIG���������������������������5WD�KOCIG�DWHHGT�KFGPVKHKGT������
���������1ET(QPV�������������������������������1%4�HQPV�KFGPVKHKGT��������������
���������1ET4GUWNV�����������������������������1%4�TGUWNV�DWHHGT�KFGPVKHKGT�����
��FQWDNG�5EQTG���������������������������������4GCFKPI�UEQTG��������������������
��EJCT���5VTKPI=(106A07/A%*#4A61A4'#&
�?�������#TTC[�HQT�VJG�TGCF�EJCTCEVGTU����

����#NNQECVG�FGHCWNVU���
��/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[��
�������������������/A07..���/KN+OCIG��

����4GUVTKEV�VJG�UQWTEG�KOCIG�VQ�VJG�YQTM�TGIKQP����
��/DWH%JKNF�F
/KN+OCIG��914-A4')+10A215A:��914-A4')+10A215A;��914-A4')+10A9+&6*��
��������������914-A4')+10A*'+)*6���/KN5WD+OCIG��

����&TCY�C�TGRTGUGPVCVKQP�QH�CNN�VJG�EJCTCEVGTU�QH�VJG�PGY�HQPV�VQ�ETGCVG����
��/DWH%NGCT
/KN5WD+OCIG�����
��/ITC(QPV
/A&'(#7.6��/A(106A&'(#7.6A.#4)'��
��/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG��������(106A%*#4A.+56��

����2CWUG�VQ�UJQY�VJG�EJCTCEVGTU�QH�VJG�HQPV����
��RTKPVH
�#�EWUVQO�1%4�HQPV�YKNN�DG�ETGCVGF�HTQO�VJG�EJCTCEVGTU�FTCYP>P���
��RTKPVH
�KP�VJG�FKURNC[GF�KOCIG�>P2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

����#NNQECVG�C�PGY�GORV[�1%4�HQPV����
��/QET#NNQE(QPV
/KN5[UVGO��/A&'(#7.6���(106A%*#4A07/�
����������������(106A%*#4A$1:A5+<'A:���(106A%*#4A$1:A5+<'A;�
����������������(106A%*#4A1((5'6A:�����(106A%*#4A1((5'6A;�
����������������(106A%*#4A5+<'A:�������(106A%*#4A5+<'A;�
����������������(106A%*#4A6*+%-0'55����(106A07/A%*#4A61A4'#&�
����������������(106A%*#4A(14')4170&����1ET(QPV��
��
����%QR[�VJG�EJCTCEVGT�TGRTGUGPVCVKQP�VQ�VJG�HQPV����
��/QET%QR[(QPV
/KN5WD+OCIG��1ET(QPV��/A%12;A61A(106��(106A%*#4A.+56��

���

EQPV������

Creating custom fonts 227

����5GV�EJCTCEVGT�EQPUVTCKPVU�HQT�GCEJ�RQUKVKQP�QH�VJG�UVTKPI�VQ�TGCF������
��/QET5GV%QPUVTCKPV
1ET(QPV�����/A.'66'4���-�����������/WUV�DG�-�����������
��/QET5GV%QPUVTCKPV
1ET(QPV�����/A.'66'4��/A07..�������#P[�NGVVGT����������
��/QET5GV%QPUVTCKPV
1ET(QPV�����/A&+)+6���/A07..�������#P[�FKIKV�����������
��/QET5GV%QPUVTCKPV
1ET(QPV�����/A&+)+6����������������/WUV�DG���QT��������
��/QET5GV%QPUVTCKPV
1ET(QPV�����/A&+)+6���/A07..�������#P[�FKIKV�����������
��/QET5GV%QPUVTCKPV
1ET(QPV�����/A&'(#7.6�/A07..�������#P[�EJCTCEVGT�������

����5GV�VJG�VCTIGV�KOCIG�EJCTCEVGT�UECNG�HQT�VJG�HQPV�OCPWCNN[����
��/QET%QPVTQN
1ET(QPV��/A6#4)'6A%*#4A5+<'A:��(106A%*#4A5+<'A:�564+0)A5%#.'��
��/QET%QPVTQN
1ET(QPV��/A6#4)'6A%*#4A5+<'A;��(106A%*#4A5+<'A;�564+0)A5%#.'��
��/QET%QPVTQN
1ET(QPV��/A6#4)'6A%*#4A52#%+0)��(106A%*#4A$1:A5+<'A:�564+0)A5%#.'��

����&TCY�C�V[RKECN�UVTKPI�TGURGEVKPI�VJG�HQPV�CPF�KVU�EQPUVTCKPVU�
����DWV�CV�C�DKIIGT�UECNG��
����
��/DWH%NGCT
/KN5WD+OCIG�����
��/ITC(QPV5ECNG
/A&'(#7.6��564+0)A5%#.'��564+0)A5%#.'��
��/ITC6GZV
/A&'(#7.6��/KN5WD+OCIG��������564+0)A61A4'#&��

����2CWUG�VQ�UJQY�VJG�UVTKPI�VQ�TGCF����
��RTKPVH
�>P#�V[RKECN�UVTKPI�YKVJ�C�DKIIGT�UECNG�YKNN�DG�TGCF�WUKPI>P���
��RTKPVH
�VJG�PGY�EWUVQO�HQPV�CPF�VJG�TGUWNV�YKNN�DG�RTKPVGF�>P���
��RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
��IGVEJCT
��

����#NNQECVG�CP�1%4�TGUWNV�DWHHGT����
��/QET#NNQE4GUWNV
/KN5[UVGO��/A&'(#7.6���1ET4GUWNV��

����4GCF�VJG�UVTKPI����
��/QET4GCF5VTKPI
/KN+OCIG��1ET(QPV��1ET4GUWNV��
����)GV�VJG�UVTKPI�CPF�KVU�TGCFKPI�UEQTG����
��/QET)GV4GUWNV
1ET4GUWNV��/A564+0)��5VTKPI��
��/QET)GV4GUWNV
1ET4GUWNV��/A5%14'����5EQTG��

����2TKPV�VJG�TGUWNV����
��RTKPVH
�6JG�UVTKPI�TGCF�KU��>��U>��
UEQTG�����H����>P>P���5VTKPI��5EQTG��

����5CXG�VJG�EWUVQO�HQPV�KH�VJG�TGCFKPI�UEQTG�YCU�UWHHKEKGPV����
��KH�
5EQTG� �564+0)A5%14'A/+0�
��]
�����/QET5CXG(QPV
(106A(+.'A0#/'��/A5#8'��1ET(QPV��
�����RTKPVH
�4GCF�UWEEGUUHWN��ECNKDTCVGF�1%4�HQPV�YCU�UCXGF�>P���
��_
��GNUG�
��]
�����RTKPVH
�'TTQT��4GCF�UEQTG�VQQ�NQY��EWUVQO�1%4�HQPV�PQV�UCXGF�>P���
��_
��RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
��IGVEJCT
��

����(TGG�CNN�CNNQECVKQPU����
��/QET(TGG
1ET(QPV��
��/QET(TGG
1ET4GUWNV��
��/DWH(TGG
/KN5WD+OCIG��
��/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

228 Chapter 13: Optical character recognition

Speeding up the read or
verification operation

To ensure the fastest possible read or verify operation:

■ Reduce the area in the target image to be read or verified by
creating a child buffer around the target string using
MbufChild...(); the search time is roughly proportional to the
area searched.

■ Set appropriate character constraints using
MocrSetConstraint(). You can speed up the process by
limiting the number of character representations to be
compared.

■ Set the processing controls (using MocrControl()) to skip the
contrast enhancement and/or the string location step.

■ Adjust the robustness factor of the read algorithm (using
MocrControl()) according to the quality of your image.

Chapter 14: DataMatrix and
bar codes

This chapter describes how to read and write 2D and bar
codes.

230 Chapter 14: DataMatrix and bar codes

Introduction

MIL allows you to read and write 2-D codes, such as DataMatrix
and PDF417, as well as several types of bar codes.

A read operation searches for a specified type of code in an
image and decodes it. The decoded string can then be used to
identify the object in the image.

A write operation encodes a null-terminated string into an
image using the specified type of coding scheme. The resulting
image can then be scaled or rotated, if necessary, and then
printed on an object (using a hardware printing device) in order
to label the object.

More information For technical information about DataMatrix, PDF417, or bar
codes, see the AIM International Symbology Specification -
DataMatrix, AIM International Symbology Specification -
PDF417, or The Bar Code Book, Roger C. Palmer, Helmers
Publishing, United States, 1995.

General steps 231

General steps

To perform a read or write operation:

1. Allocate a code object, using McodeAlloc(). A code object
specifies the type of code to read or write and how to perform
the operation.

2. If necessary, change control settings of the code object, using
McodeControl().

3. To perform a read operation, use McodeRead(). To perform
a write operation, use McodeWrite().

4. Retrieve results, using McodeGetResult().

5. Free the memory allocated to the code object, using
McodeFree().

Controlling read operations

You can set the following controls of a read operation using
McodeControl():

■ The type of encoding scheme (M_ENCODING) and the type of
error correction (M_ERROR_CORRECTION).

■ The cell size of the code (M_CELL_SIZE_MIN and
M_CELL_SIZE_MAX), as well as the number of cells in the X
or Y direction of a 2-D code (M_CELL_NUMBER_X or
M_CELL_NUMBER_Y).

■ The color (black or white) of the code
(M_FOREGROUND_VALUE).

■ The search angle (M_SEARCH_ANGLE,
M_SEARCH_ANGLE_DELTA_NEG, and
M_SEARCH_ANGLE_DELTA_POS).

■ The search speed (M_SPEED).

■ The threshold value (M_THRESHOLD).

■ The size of the string to search (M_STRING_SIZE).

232 Chapter 14: DataMatrix and bar codes

In general, except for the encoding scheme and error correction,
you should only change a control if you are having problems
finding the specified code or if the operation is too slow for your
application. There are some code types however, for which it is
essential to explicitly set their controls.

Encoding scheme and
error correction

For each supported code, you must specify the encoding scheme
(M_ENCODING) and error correction method
(M_ERROR_CORRECTION). There are several encoding schemes
and error correction types available. For a full list, see the
description of McodeControl() in the MIL Command Reference.

Note that error correction allows MIL to detect and correct
errors.

Cell size The cell size is the size, in pixels, of a unit of code. For the 2D
codes, it is the width, in pixels, used to encode one bit of data.
For a bar code, it is the pixel width of the smallest bar of the
code. During a read operation, the cell size of the code must be
within the range defined by M_CELL_SIZE_MIN and
M_CELL_SIZE_MAX. If it is not, the code will not be found.

 Number of cells in
x and y

By default, the operation searches for 2D code with any number
of cells in the X and Y direction. For the PDF417 code, you must
specify the number of cells in the X and Y direction
(M_CELL_NUMBER_X and M_CELL_NUMBER_Y). If you know
the number of cells in the X and/or Y direction of the
DataMatrix code, you can specify this, to increase the speed of
the operation.

String size By default, the operation searches for a string of any size.
However, if you know the exact size of the string, you might
want to specify this (M_STRING_SIZE), to increase the
robustness of the operation. Note, for the BC412 code, you must
specify this parameter.

Search angle In a read operation, the specified code is sought for within the
range of angles defined by
(M_SEARCH_ANGLE - M_SEARCH_ANGLE_DELTA_NEG) to
(M_SEARCH_ANGLE + M_SEARCH_ANGLE_DELTA_POS). By
default, the search is performed at 0 ± 5°. You should change
the search angle if the code appears rotated in the image. You

Controlling read operations 233

should increase the angular range if you are unsure of the code’s
exact orientation. Note, however, that when searching for a bar
code, the operation speed might decrease as you increase the
range of angles. For the DataMatrix code, the angular range
does not affect the speed of the operation.

Search speed A read operation can be performed at several speeds
(M_SPEED+M_VERY_LOW, M_LOW, M_MEDIUM, M_HIGH, or
M_VERY_HIGH). The faster the search speed, the less robust
the operation. In general, the larger and more clearly defined
the code, the better chance it has of being found at a speed
higher than the default. If you are having problems finding the
code, you might want to search at a speed lower than the
default.

Threshold value In a read operation, the source image is internally binarized so
as to separate the code from the background. By default, the
threshold value is chosen automatically from the source image’s
histogram (the two highest peaks in the histogram are located
and the threshold value is set to the minimum value between
these peaks). The automatically chosen threshold value is
suitable in most cases. However, if you feel that a different
value would result in a better separation (and therefore in a
more efficient operation), you can specify this value
(M_THRESHOLD).

Note that, if the background is both darker and lighter than the
code, a simple binarization will not separate the code from the
background. In this case, you should process the image before
performing the read operation so that the background is either
darker or lighter than the code.

234 Chapter 14: DataMatrix and bar codes

Controlling write operations

You can set the following controls of a write operation using
McodeControl():

■ The type of encoding scheme (M_ENCODING) and the type of
error correction (M_ERROR_CORRECTION). Note that error
correction allows a read operation to determine whether the
encoding produced any errors. For a full list of supported
encoding schemes and error correction types, see the
description of McodeControl() in the MIL Command
Reference.

■ The cell size of the code (M_CELL_SIZE_MIN). The cell size is
the size, in pixels, of a unit of code. For 2D codes, it is the
width, in pixels, used to encode one bit of data. For a bar code,
it is the pixel width of the smallest bar of the code. Instead
of specifying a cell size, M_CELL_SIZE_MIN can be set to
M_DEFAULT, in which case the code is resized so as to just fit
into the destination image of the operation.

■ The number of cells (M_CELL_NUMBER_X and
M_CELL_NUMBER_Y). If set to M_ANY, the minimum number
of cells possible will be used to perform the write operation.

■ The color (black or white) in which to write the code
(M_FOREGROUND_VALUE).

Size of destination
image

The destination image of the write operation should be large
enough to hold the encoded string. For a given code object and
string, you can inquire about the minimum buffer size required
by first calling McodeWrite() with its image buffer parameter
set to M_NULL and then using the M_WRITE_SIZE_X and
M_WRITE_SIZE_Y result types of McodeGetResult().

Chapter 15: Measurements

This chapter describes the MIL measurement module and
the steps to follow to take measurements.

236 Chapter 15: Measurements

The measurement module

The MIL measurement module allows you to find sets of image
characteristics or "markers" in an image, based on differences
in pixel intensities. Upon finding a marker, the module returns
the marker’s spatial reference position and measures such
features as its width and angle. The module can also take
measurements between two markers.

The measurement module can be used, for example, to measure
the width of pins protruding from chips or printed circuit boards
(PCBs) and to measure the distance between each pin.

The measurement module relies on a one-dimensional analysis.
As such, it has several advantages over the pattern matching
module when locating relatively simple image characteristics;
it is independent of lighting, more tolerant of slight differences,
and much faster.

You specify the approximate location and other characteristics
of a marker to help locate the marker in an image. The more
precisely the marker characteristics are defined, the more
likely it is to be distinguished from similar aspects of the image.

The measurement module can operate on 8-bit or 16-bit
unsigned grayscale buffers. Measurements are made with
sub-pixel accuracy and results can be returned in pixels or
real-world units (see Chapter 7: Calibration).

This chapter discusses finding and obtaining measurements of
markers, how to define and set marker characteristics, and
then the steps that are generally followed when taking
measurements between markers.

Markers 237

Markers

To take any type of measurement with the MIL measurement
module, you must first define your markers, using
MmeasSetMarker(). The marker contains the image
characteristics to search for in the target image.

There are three types of markers that can be used in
measurement operations:

■ Point marker. A marker consisting of a single point or
multiple points and generally used as a reference position in
calculations involving two markers. Point markers cannot be
searched for but can be placed manually at the required
location as a reference marker. Positional results from a
previous pattern matching or blob analysis operation on the
image can also be declared as point markers.

■ Edge marker. A marker consisting of an edge or multiple
edges. Edges are sharp changes between two or more
adjacent pixels.

■ Stripe marker. A marker consisting of a stripe (two edges)
or multiple stripes. Stripe marker edges do not have to be
parallel.

A multiple marker

The measurement module allows you to define a multiple edge,
stripe, or point marker, so that you can search for multiple
instances of the same image characteristics. Using a multiple
marker in a measurement operation makes it possible to take
global measurements, then compare them for conformity. For
example, a multiple marker could be used to verify if a series
of presumed-identical pins are actually of equal width or if the

Edge marker Stripe marker

238 Chapter 15: Measurements

spacing between the pins is within established limits. Note that
a multiple marker is considered to be only one marker that has
a specified number of instances of the same characteristics.

Steps to finding and obtaining
measurements of markers

Although there are many types of measurements that can be
taken with the MIL measurement module, the series of steps
outlined below are usually followed to find and obtain
measurements of markers:

1. Allocate an edge or stripe marker. For a multiple marker,
set the number of occurrences of the edge or stripe.

2. Set the processing area, generally referred to as the
measurement box.

3. Set the marker’s characteristics.

4. Optionally, set the measurement control settings.

5. Grab or load a target image. Optionally, preprocess it to
improve its quality.

6. Find the marker in the target image and calculate
measurements.

7. Read the results.

In general, the first four steps are performed once, while steps
5 to 7 are repeated as required. Note, you can avoid step 1 to 4
by saving an initialized marker on disk and restoring it when
needed.

Allocating or restoring a marker

Allocate a new marker, using MmeasAllocMarker()

or restore a previously saved marker from disk, using
MmeasRestoreMarker(). You can allocate an edge, stripe, or
point marker, depending on your application needs; if a
multiple marker is needed, specify the number of occurrences
of the edge or stripe. When a marker is no longer required, you
should free the memory associated with it, using MmeasFree().
Store a marker to disk using MmeasSaveMarker(). The save

Steps to finding and obtaining measurements of markers 239

command stores all of the marker’s associated parameter
settings, such as the marker’s typical position, width, and
contrast.

Setting the marker’s measurement box

Before you can search for a marker, you must define the area
in which to perform the search. This area is known as the
measurement box. The measurement box is stored as a
characteristic of the marker and is set with MmeasSetMarker().
Subsequent search operations for this marker will only be
performed in the area defined by the box.

Setting the marker’s characteristics and processing
area

The marker’s characteristics, such as its approximate width,
orientation, and position, must also be defined using
MmeasSetMarker().

You can inquire about the current settings of a marker's
characteristics, using MmeasInquire().

Specifying the measurement control settings

When performing an MmeasFindMarker() operation, you must
specify a measurement context, either the default one or one
allocated using MmeasAllocContext(). Measurement context
settings, such as the pixel aspect ratio, control the behavior of
measurement operations. You can modify these settings using
MmeasControl().

When a measurement context is no longer required, it should
be freed, using MmeasFree().

Acquiring and pre-processing a target image

The target image can be either loaded from disk or acquired
from an input device and placed into an image buffer. You can
preprocess the target image to remove noise and improve the
image prior to performing the measurement operation. Note,
however, that preprocessing operations such as filtering often
result in a slight shifting of the location position of edges.

240 Chapter 15: Measurements

Therefore, if precise edge location and measurement are crucial
to your application, preprocessing operations should be kept to
a minimum.

Finding the marker and taking measurements

Use MmeasFindMarker() to find a marker. The
MmeasFindMarker() function can measure all calculable edge
and stripe characteristics, such as the width, orientation, or
contrast. The function’s parameters allow you to specify which
measurements to take (the default setting performs all
measurements).

Reading results

You can obtain results using MmeasGetResult(). Results from a
MmeasFindMarker() operation are stored directly with the
marker rather than in a result buffer. All positional results are
relative to the top-left pixel in the target image or the origin of
the coordinate system of a calibrated image (recall that the
pixel reference position is its center). Note that results do not
overwrite specified marker characteristics.

For a multiple marker, the MmeasFindMarker() function takes
the required measurements for all the located edges or stripes.
The number of edges or stripes found can be obtained using
M_NUMBER as the result type with the MmeasGetResult()
function. Global results, such as the maximum, minimum,
mean, or standard deviation of any characteristic of the result
group can be returned.

Steps to finding and obtaining measurements of markers 241

A measurement example
The following example demonstrates how to use the
measurement module to find the positions, widths, and angles
of the pins on a chip.

Target image

Measurement
box

���(KNG�PCOG��/OGCU/WN�E
���5[PQRUKU���6JKU�RTQITCO�OGCUWTGU�VJG�RQUKVKQPU��YKFVJU�CPF�CPINGU�QH
��������������VJG�RKPU�QH�C�EJKR�
���

���4GIWNCT�KPENWFGU����
�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J
�KPENWFG��OCVJ�J

���5QWTEG�/+.�KOCIG�HKNG�URGEKHKECVKQP�����
�FGHKPG�+/#)'A(+.'������������������/A+/#)'A2#6*��EJKR�DOR�

���2TQEGUUKPI�TGIKQP�URGEKHKECVKQP���
�FGHKPG�/'#5A$1:A9+&6*�����������������
�FGHKPG�/'#5A$1:A*'+)*6���������������
�FGHKPG�/'#5A$1:A215A:�����������������
�FGHKPG�/'#5A$1:A215A;�����������������

���6CTIGV�UVTKRG�URGEKHKECVKQPU�����������
�FGHKPG�564+2'A14+'06#6+10����������/A8'46+%#.�
�FGHKPG�564+2'A21.#4+6;A.'(6��������/A215+6+8'
�FGHKPG�564+2'A21.#4+6;A4+)*6�������/A0')#6+8'
�FGHKPG�564+2'A07/$'4�����������������
�
���5K\G�CPF�EQNQT�QH�VJG�ETQUU�CPF�VJG�EKTENG����
�FGHKPG�%4155A5+<'��������������������.
�FGHKPG�%4155A%1.14��������������������.
�FGHKPG�%+4%.'A5+<'�������������������.

���7VKNKV[�HWPEVKQPU�RTQVQV[RGU���
XQKF�&TCY%TQUU
/+.A+&�+OCIG+F��FQWDNG�%GPVGT:��FQWDNG�%GPVGT;��NQPI�%QNQT��

����/CKP�CRRNKECVKQP�HWPEVKQP���
XQKF�OCKP
XQKF�

EQPV����

242 Chapter 15: Measurements

]
���/+.A+&�/KN#RRNKECVKQP�������������������#RRNKECVKQP�KFGPVKHKGT�������
����������/KN5[UVGO������������������������5[UVGO�KFGPVKHKGT������������
����������/KN&KURNC[�����������������������&KURNC[�KFGPVKHKGT�����������
����������/KN+OCIG�������������������������+OCIG�DWHHGT�KFGPVKHKGT������
����������5VTKRG/CTMGT���������������������5VTKRG�OCTMGT�KFGPVKHKGT�����
���FQWDNG�5VTKRG%GPVGT:=564+2'A07/$'4?�����5VTKRG�:�EGPVGT�RQUKVKQPU����
����������5VTKRG%GPVGT;=564+2'A07/$'4?�����5VTKRG�;�EGPVGT�RQUKVKQPU����
����������/GCP#PING������������������������5VTKRG�OGCP�CPING������������
����������/GCP9KFVJ������������������������5VTKRG�OGCP�YKFVJ������������
����������/GCP5RCEKPI����������������������5VTKRG�OGCP�URCEKPI����������
���NQPI���0WODGT(QWPF����������������������0WODGT�QH�UVTKRGU�HQWPF������
���NQPI���K��������������������������������+PFGZ������������������������
���
�����#NNQECVG�FGHCWNVU���
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
���������������������/KN&KURNC[��/A07..��/A07..��

�����4GUVQTG�UQWTEG�KOCIG�KPVQ�CP�CWVQOCVKECNN[�CNNQECVGF�KOCIG�DWHHGT����
���/DWH4GUVQTG
+/#)'A(+.'��/KN5[UVGO���/KN+OCIG��
��
�����&KURNC[�VJG�KOCIG�DWHHGT����
���/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��
���
�����&TCY�VJG�EQPVQWT�QH�VJG�OGCUWTGOGPV�DQZ���
���/ITC4GEV
/A&'(#7.6��
������������/KN+OCIG��
������������/'#5A$1:A215A:����/'#5A$1:A215A;����
������������/'#5A$1:A215A:
/'#5A$1:A9+&6*
���/'#5A$1:A215A;
/'#5A$1:A*'+)*6
���
�����������������������
�����2CWUG�VQ�UJQY�VJG�QTKIKPCN�KOCIG����
���RTKPVH
�6JKU�RTQITCO�YKNN�FGVGTOKPG�VJG�RQUKVKQPU�QH�GCEJ�RKP�QH�VJG�EJKR�>P�������������
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��
��
�����4GCF�VJG�UQWTEG�KOCIG�CICKP�VQ�TGOQXG�RTGXKQWUN[�FTCYP�TGEVCPING���
���/DWH.QCF
+/#)'A(+.'��/KN+OCIG��
���
�����#NNQECVG�C�UVTKRG�OCTMGT���
���/OGCU#NNQE/CTMGT
/A&'(#7.6��/A564+2'��/A&'(#7.6���5VTKRG/CTMGT��

�����5VTKRG�URGEKHKECVKQPU���
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A07/$'4��
��������������������������������564+2'A07/$'4��/A07..��
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A21.#4+6;���������
��������������������������������564+2'A21.#4+6;A.'(6��564+2'A21.#4+6;A4+)*6��
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A14+'06#6+10��
��������������������������������564+2'A14+'06#6+10��/A07..��
���
������5RGEKH[�VJG�UGCTEJ�DQZ�UK\G����
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A$1:A14+)+0��
��������������������������������/'#5A$1:A215A:��/'#5A$1:A215A;��
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A$1:A5+<'�
��������������������������������/'#5A$1:A9+&6*��/'#5A$1:A*'+)*6��

��
EQPV����

Steps to finding and obtaining measurements of markers 243

�

�����(KPF�VJG�UVTKRG�CPF�OGCUWTG�KVU�YKFVJ�CPF�CPING����
���/OGCU(KPF/CTMGT
/A&'(#7.6��/KN+OCIG���5VTKRG/CTMGT��/A215+6+10�
�/A#0).'�
�

/A9+&6*��

�����)GV�VJG�PWODGT�QH�UVTKRGU�HQWPF��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A07/$'4�
�/A6;2'A.10)���0WODGT(QWPF��/A07..��

�����)GV�VJG�UVTKRG�RQUKVKQP��YKFVJ�CPF�CPING����
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A215+6+10����������5VTKRG%GPVGT:��

5VTKRG%GPVGT;��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A#0).'�
�/A/'#0�����/GCP#PING�����/A07..��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A9+&6*�
�/A/'#0�����/GCP9KFVJ�����/A07..��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A52#%+0)�
�/A/'#0���/GCP5RCEKPI���/A07..��

�����&TCY�C�ETQUU�QP�VJG�EGPVGT�QH�GCEJ�UVTKRG�HQWPF������������
���HQT
K���K�0WODGT(QWPF�K

�
���]
������&TCY%TQUU
/KN+OCIG��5VTKRG%GPVGT:=K?��5VTKRG%GPVGT;=K?��%4155A%1.14��
���_

�����&TCY�VJG�EQPVQWT�QH�VJG�OGCUWTGOGPV�DQZ���
���/ITC4GEV
/A&'(#7.6��
������������/KN+OCIG��
������������/'#5A$1:A215A:����/'#5A$1:A215A;����
������������/'#5A$1:A215A:
/'#5A$1:A9+&6*
���/'#5A$1:A215A;
/'#5A$1:A*'+)*6
���
�����������������������
�����2TKPV�VJG�TGUWNVU����
���RTKPVH
�6JG�EGPVGT�QH�GCEJ�RKP�HQWPF�JCXG�DGGP�OCTMGF�>P���
���RTKPVH
�6JG�UVCVKUVKEU�QH�VJG�RKPU�CTG�>P���
���RTKPVH
�#XGTCIG�CPING���������H>P���/GCP#PING��
���RTKPVH
�#XGTCIG�YKFVJ���������H>P���/GCP9KFVJ��
���RTKPVH
�#XGTCIG�URCEKPI�������H>P���/GCP5RCEKPI��
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

�����(TGG�CNN�CNNQECVKQPU����
���/OGCU(TGG
5VTKRG/CTMGT��
���/DWH(TGG
/KN+OCIG��
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
���_

�����&TCY�C�ETQUU�CV�VJG�URGEKHKGF�RQUKVKQP����
���XQKF�&TCY%TQUU
/+.A+&�+OCIG+F��FQWDNG�%GPVGT:��FQWDNG�%GPVGT;��NQPI�%QNQT�
���]
���/ITC%QNQT
/A&'(#7.6�%QNQT��
���/ITC.KPG
/A&'(#7.6��+OCIG+F�
������
NQPI�
%GPVGT:
�����
%4155A5+<'�����
NQPI�
%GPVGT;
�����
������
NQPI�
%GPVGT:
����

%4155A5+<'�����
NQPI�
%GPVGT;
������
���/ITC.KPG
/A&'(#7.6��+OCIG+F�
������
NQPI�
%GPVGT:
������
NQPI�
%GPVGT;
�����%4155A5+<'�
������
NQPI�
%GPVGT:
������
NQPI�
%GPVGT;
����
%4155A5+<'��
����_

244 Chapter 15: Measurements

Measurement box

The marker’s measurement box indicates the area of the target
image in which to search for the marker. Proper placement of
the measurement box is essential to the success of any
MmeasFindMarker() search. The default setting of the
measurement box is the whole image. The measurement box
should be limited to as small an area containing the marker as
possible, in order to ensure the success of the operation,
especially when using a highly detailed or complex target
image. In addition, by limiting the processing region, you can
accelerate the find marker operation.

There are two ways to specify the measurement box. To specify
the box’s position, you can set either the origin
(M_BOX_ORIGIN) or the center (M_BOX_CENTER) coordinates.
You must also set the box's width and height (M_BOX_SIZE).

Note that the origin is always the top-left corner of the
unrotated box and all width and height values are positive.

Obtaining valid results To obtain valid results the edge or stripe must enter and leave
by opposite sides of the box. The illustration below is an
example of valid and invalid measurement box definitions.

Box width Box width

Box origin

Measurement
box

Box center

Box height Box height

Measurement
box

Measurement
box

Stripe

origin origin

Valid Invalid

Stripe

Stripe marker with vertical orientation

Measurement box 245

Orientation The orientation (M_ORIENTATION) specifies the angle of the
edge or stripe in relation to that of the measurement box and
can be set to either M_VERTICAL or M_HORIZONTAL. More
importantly, the orientation determines the direction in which
the search will proceed.

These settings can tolerate a certain amount of rotation. The
amount is determined by the target image, placement of the
measurement box, and the marker characteristic settings. The
greater the degree of rotation, the greater the chance of not
finding the marker and miscalculation of characteristics, such
as edge strength and width. If the rotation is too great and you
cannot find the marker, the marker’s measurement box should
be defined with an angle.

Setting the
measurement box’s
angle

You can set the measurement box angle (M_BOX_ANGLE) to
approximately the same angle as the marker. The angle is in a
counter-clockwise direction relative to the positive X-axis and
can be any value from 0 to 360 degrees. When an angle is
specified, the center of rotation used is the center of the
measurement box. To modify this default center of rotation, use
MmeasSetMarker (...,M_BOX_ANGLE_REFERENCE,...).

Multiple-angle search
for a marker

You can also rotate the measurement box to search within a
specified range of angles. To perform a multiple-angle search
for a marker, enable multiple-angle search, using

Vertical orientation

Search direction

Origin Origin

Search direction

Horizontal orientation

Measurement
box

35
o

Box origin Box origin

Box center
=

center of rotation
Box angle

246 Chapter 15: Measurements

MmeasSetMarker (...,M_BOX_ANGLE_MODE,...). This function
also includes control settings that allow you to specify the range
of angles to
be searched (M_BOX_ANGLE_DELTA_NEG and
M_BOX_ANGLE_DELTA_POS), the degree of rotation tolerance
at any given angle (M_BOX_ANGLE_TOLERANCE), the
interpolation method
(M_BOX_ANGLE_INTERPOLATION_MODE), and the required
degree of accuracy for the resulting
marker(M_BOX_ANGLE_ACCURACY).

The range of angles is searched in step angle increments
determined by the specified rotation tolerance. The marker’s
rotation tolerance is the full range of degrees within which a
marker can be rotated from a measurement box that is at a
specific angle and still be found. Once the approximate location
of the edge is found, the degree of accuracy controls the number
of fine-tuned searches that are performed. To be effective, you
must set the degree of accuracy to a value smaller than that of
the rotation tolerance.

Determining the
rotation tolerance of a
marker

Every marker has its own particular rotation tolerance. This
tolerance is dependent on the individual marker characteristics
and surrounding image features. To determine the rotation
tolerance of a marker, simulate the rotation of the marker by
rotating the target image, so that you can determine by how
much the marker can be offset from the measurement box and
still be found. That is:

1. Make sure the measurement box is in the proper position
and the marker is located within the measurement box at
close to the required angle. Since the measurement box
must remain in a set position, the positive and negative
deltas must be zero (that is, you can set the angle of the box,
but do not perform an angular search).

2. Use the MimRotate() function to rotate the image in very
small increments (for example, 0.5 degrees), in the positive
direction, and perform a FindMarker() operation at every
angle. Make sure that the image’s center of rotation is the
same as that of the measurement box, otherwise the
resulting tolerance will not be accurate. Note, when

Measurement box 247

rotating the image, always set the angle from the image’s
original position to avoid interpolating the image more than
once.

3. Check the results for the greatest angle that produces an
acceptable score.

4. Repeat steps 1 through 3, rotating the image in the negative
direction.

5. Take the minimum of the absolute value of these angles.
Double this angle and set it as the rotation tolerance for the
angular search.

Searching at any angle Alternatively, you can set the measurement box angle to M_ANY
to allow MIL to analyze the contents of the measurement box
and determine the angle. However, it should be noted that the
processing time will be greatly increased when using this
technique.

Search algorithm
The MIL measurement module projects the two-dimensional
measurement box into a one-dimensional line (that is, it takes
the box’s profile). The pixel summation is performed
horizontally or vertically, depending on the measurement box’s
origin and the orientation of the marker. Each sum represents
the intensity of all the pixels in that column.

To locate each edge, an edge filter is then applied to the profile.
The edge filter first finds the edge value of each profile value.
The edge value is the difference between one profile value and

Measurement box

Pixel summation

248 Chapter 15: Measurements

the next. The greater the difference, the larger the edge value.
The filter rejects as possible markers any edges with edge
values below the edge threshold value.

The filter then finds the marker by scoring each possible edge
based on geometric constraints that you specify, giving each
characteristic a specific weight, or degree of importance. The
edge(s) with the highest score is returned as the marker.

Marker characteristics

Associated with a marker is a set of parameters specifying the
characteristics of the marker. The MmeasFindMarker()
function searches through the target image to find the edge or
stripe that best matches the characteristics (parameter
settings) of the specified marker. The more precisely defined
your marker characteristics, the more likely the find routine
will have success in distinguishing it from similar aspects of
the image.

Marker characteristics are set to their default values upon
allocation of the marker (see the MmeasAllocMarker()
command reference description for the default values). These
values can be modified at any time, using MmeasSetMarker().

The important characteristics to set when searching for a
marker are the measurement box, the polarity, the contrast,
and for stripe markers, the width. Fundamental and advanced
characteristics are discussed for edge, stripe, and multiple
markers in the following sections. Note, all characteristics can
be set to M_ANY if the value is unknown or not a criteria, unless
otherwise specified in the MIL Command Reference.

Edge markers: fundamental characteristics 249

Edge markers: fundamental characteristics

This section describes the fundamental characteristics of edge
markers that are set using MmeasSetMarker() or returned as
measurement results.

Polarity

Polarity of an edge The polarity (M_POLARITY) of an edge describes whether an
edge is rising or falling. A rising edge denotes a rise in grayscale
values and a positive (M_POSITIVE) polarity. A falling edge
denotes a decrease in grayscale values and a negative
(M_NEGATIVE) polarity. When setting the polarity of a marker
it is important to keep in mind the direction of the search, which
is performed horizontally or vertically, depending on the
measurement box’s origin and the orientation of the marker
(see the Measurement box section).

Position and position variation

Position The marker’s position is defined as the X and Y coordinates of
the marker’s center (the center of the portion of the marker
located within the measurement box). These coordinates are
relative to the top-left pixel of the image and are used as the
default reference position when using MmeasCalculate() to
calculate measurements.

MGA

Positive
polarity

Negative
polarity

origin
origin

Edge marker with
M_HORIZONTAL orientation

Edge marker with
M_VERTICAL orientation

Target image

Measurement box Measurement box

LABERGE-980923

250 Chapter 15: Measurements

When several edges have similar characteristics within the
same measurement box, then you can use the position
characteristic to specify the approximate X and/or Y
coordinates (M_POSITION, M_POSITION_X, M_POSITION_Y) at
which to find the required marker’s center.

You can also specify a tolerance for these coordinates
(M_POSITION_VARIATION).

The position must be located within the measurement box
(taking into account the measurement box’s angle or angular
range), otherwise an error is generated.

Contrast and contrast variation

Contrast You can indicate the typical difference in grayscale values
between an edge and its background (M_CONTRAST). Contrast
is useful in distinguishing between several different edges,
particularly when the required edge does not have the largest
edge strength (described later), or when the edge is at an angle.

You can also specify a tolerance for the contrast
(M_CONTRAST_VARIATION).

Length

Length You can measure the length (M_LENGTH) of an edge marker.
The length being measured is restricted to the portion of the
marker contained within the measurement box. Note, the
length of an edge marker cannot be set, but can be returned
with MmeasGetResult().

Line equation

Line equation You can calculate the line equation (M_LINE_EQUATION) of the
mean line following an edge marker: Y = MX + B, where M
denotes the slope of the line and B denotes the Y-intercept.

Note, the line equation of an edge marker cannot be set, but
can be returned with MmeasGetResult(). The slope of the line
equation (M_LINE_EQUATION_SLOPE) and the Y intercept of
the line equation (M_LINE_EQUATION_INTERCEPT) can also be
returned separately.

Edge markers: advanced characteristics 251

Edge markers: advanced characteristics

This section describes the advanced characteristics of edge
markers that are set using MmeasSetMarker() or returned as
measurement results.

Width

Width of an edge
marker

Edges are usually gradual shifts in grayscale values over
several pixels. The smoother the image, the more gradual the
change. The width of an edge can be seen as a measure (in
pixels) of this gradual shift in grayscale values. The diagram
below illustrates a profile of an edge where the gradual
transition from black to white can be seen.

The measurement module calculates the marker’s position to
be in the middle of this width. The position variation is
equivalent to half the edge’s width. Note, the more an edge is
at an angle the greater the stretching or distortion of its actual
width.

The width of an edge marker cannot be set, but can be found
with MmeasFindMarker().

252 Chapter 15: Measurements

Minimum/maximum position

Minimum/maximum
position

The minimum and maximum positions (M_POSITION_MIN and
M_POSITION_MAX) indicate the start and end positions of the
marker. The minimum position is always on the side of the
measurement box adjacent to the origin, regardless of how the
box is rotated.

The minimum and maximum positions of an edge cannot be set
but can be found with MmeasGetResult().

Edge strength

A marker’s edge strength (M_EDGE_STRENGTH) is the
minimum/maximum edge value along the width of the edge
(depending on the polarity of the edge). The edge value is
represented as a normalized percentage of the maximum pixel
value possible for the specific image buffer. The sign of the edge
value represents the polarity of the edge. For example, for a
measurement box with a vertical orientation, the equation for
an edge value is:

For instance, in an 8-bit image buffer the maximum possible
pixel value is 255. Therefore, a 50% edge strength in this buffer
represents a maximum difference in average adjacent profile
values of 128 and a rising edge. The larger the absolute edge
value, the greater the edge strength. The default setting finds
the marker with the largest edge strength.

center of
edge marker

center of
measurement
box

minimum position
of edge marker

maximum position
of edge marker

origin

edge value% = adjacent profile values

buffer depth
100*

2 - 1(box height) ()

Edge markers: advanced characteristics 253

You can also specify a tolerance for the edge strength
(M_EDGE_STRENGTH_VARIATION).

The edge in the diagram below has an edge strength of 100%,
the maximum edge value possible since the edge is completely
vertical and has an edge width of one pixel.

However, if the edge is at the following angle, the edge profiles
are distributed over ten profiles, resulting in a much lower edge
strength of 10%:

100

Background
pixel value = 0

marker pixel
value = 255

Pixel summation

Edge value%0 0

10 1010 10 10 10 10 10 10 10

Background
pixel value = 0

Marker pixel
value = 255

Pixel summation

Edge value%0 0

254 Chapter 15: Measurements

When the edge strength is not very high, you should specify the
contrast. By using the contrast characteristic, changes in
consecutive edge values are summed, from where the edge
starts and ceases (that is, from one region of zero edge value to
another), allowing the marker to be located. In general, it is
recommended to set the contrast rather than to specify an edge
strength, since the edge strength is very dependent on lighting.

Edge threshold The edge threshold is the edge value beneath which a grayscale
variation is not considered an edge and is set with
M_EDGE_THRESHOLD.

Determining the
strength of the required
edge

To determine the edge strength of the required marker, use
M_BOX_EDGE_VALUES. This calculates the edge values for
every profile value of the measurement box. The illustration
below shows a specific edge strength measurement, a graphical
representation of box edge value measurement, and a sampling
of these results.

Notice that the measurement box is 400 pixels wide so there
are 400 edge values that are returned.

Marker reference

The marker reference position (M_MARKER_REFERENCE)
defines the position from which calculations between two
markers are taken. By default, the reference position is set to
the center position of the marker. You can, however, move the
reference position by specifying x and y offsets relative to the
center of the marker. The marker reference position is only used
with the MmeasCalculate() function; MmeasFindMarker()

Measurement box
(400 pixels wide = 400 edge values)

edge 1
0%value =

edge 104
= 19%value

edge 327
-42%value =

{
specified edge

edge strength
19%

{ {
0

100

-100

%

400
pixels

50

-50

graphical representation
of edge values across
the measurement box

Edge markers: advanced characteristics 255

always returns the marker’s actual center. For example, the
reference position for the edge marker in the diagram below is
set to the left of the marker's actual edge.

Weight factors

When searching for a marker, the relative importance (weight)
assigned to each of the marker characteristics is crucial to the
robustness of the operation. By default, 50% of the search
weight is assigned to the edge strength; the remaining 50% is
equally divided among all characteristics that can have a
weight factor and that are set to a value other than M_ANY (the
value used to flag an "ignore" state). This makes the edge
strength by far the most important characteristic in the search.

You can override this default by adding M_WEIGHT_FACTOR to
certain of the marker characteristics (see MmeasSetMarker()
in the MIL Command Reference manual for the list of applicable
characteristics). However, to better control the search, it is
recommended when specifying weight factors that you assign
a weight factor to all the enabled characteristics which support
weight factors to a total of 100%.

For example, in a case where you must distinguish between two
edge markers of different contrast, you can specify the typical
contrast of the marker to be found. If you specify only this
characteristic, the default search algorithm will assign a 50%
weight to the edge strength and the remaining 50% to the
contrast. However, if the edge you want to ignore has the higher
edge strength, the desired edge might not be found. In this case,
specifying the weights as 30% for the edge strength and 70%
for the contrast will give precedence to the edge with the best
match to the specified contrast.

Reference position
of a stripe marker

Center of a
stripe marker

256 Chapter 15: Measurements

Stripe markers: fundamental
characteristics

A stripe marker is simply a marker with two edges, therefore
the discussion of edge characteristics applies to each of the
stripe marker’s edges. However, certain characteristics have
special attributes applicable only to stripe markers.

Polarity

The edges of a stripe marker can have opposite (M_OPPOSITE)
polarities or can have similar (M_SAME) polarities.

Contrast and contrast variation

The contrast for a stripe marker requires two values, one for
each of the stripe's edges. The contrast of the second edge can
be set to M_SAME if both edges of the stripe have approximately
the same contrast. Both values can be set to M_ANY if the
contrast is unknown (default). The contrast variation for a
stripe marker should be the maximum of the contrast
variations of both its edges.

MGA

JSM0998

Positive
polarity

Negative
polarity

A stripe marker with
M_VERTICAL orientation

Stripe marker with
M_HORIZONTAL orientation

Target image

Center of a
stripe marker

Width of a
stripe marker

Measurement box

Stripe markers: fundamental characteristics 257

Width and width variation

To help find a stripe marker, you can specify the typical distance
between both of its edges (M_WIDTH) in pixels.You can also
specify by how many pixels the width of a stripe marker might
vary (M_WIDTH_VARIATION). This value should be equivalent
to the maximum amount of variation.

Width of a
stripe marker

The width of a stripe marker is the average distance in pixels
between its edges. Note, if the marker measurement box
(processing region) is at an angle, the width is measured
according to the orientation of the box, as shown below.

Position

The position (M_POSITION) of a stripe marker is considered the
center between the two edges of the stripe. This is the default
reference position. The reference position of a marker can be
moved with MmeasSetMarker(M_MARKER_REFERENCE).

Length

The length of a stripe marker is measured along the mean line
between its exterior edges. The length of either of its edges can
also be measured. The length being measured is restricted to
the portion of the marker contained within the measurement
box. Note, the length of a stripe marker cannot be set, but can
be returned with MmeasGetResult().

width width

Measurement box
with a vertical
orientation

Measurement box with
a horizontal orientation
at a 75 degree angle

origin

origin

258 Chapter 15: Measurements

Line equation

You can calculate the equation of the mean line following an
stripe marker: Y = MX + B, where M denotes the slope of the
line and B denotes the Y-intercept.

Line equations can be calculated for a stripe, or each edge of a
stripe marker. The line equation of a stripe marker is the mean
of the line equations of its edges.

Note, the line equation of a stripe marker cannot be set, but can
be returned with MmeasGetResult(). The slope of the line
equation (M_LINE_EQUATION_SLOPE) and the Y intercept of
the line equation (M_LINE_EQUATION_INTERCEPT) can also be
returned separately.

Y
 =

 M
X

 +
 B

Mean line equation
of a str ipe mar ker

Second edge of
stripe mar ker

First edge of
stripe mar ker

Stripe markers: advanced characteristics 259

Stripe markers: advanced characteristics

Inside edge and inside-edge variation

Inside edge To help find a stripe marker, you can specify the typical number
of edges located between the external edges of the stripe marker
you are defining. For example, in the following illustration, the
two stripes share the same position since their centers coincide.

To find the larger stripe without having to determine and
specify its width, specify 2 as the number of inside edges of the
stripe marker (M_EDGE_INSIDE). To find the smaller stripe,
specify 0 (the default, M_ANY, ignores the possibility of any
inside edges). The identification of inside edges is based only
on the edge threshold setting (M_EDGE_THRESHOLD). The
number of such edges found can also be returned using
M_EDGE_INSIDE as a result type.

Inside edge variation You can also specify the tolerance in the number of inside edges
of a stripe (M_EDGE_INSIDE_VARIATION). Note, this tolerance
should be in increments of two if stripes are contained within
stripes, since two edges are recognized for each stripe.

Position inside stripe

If necessary when defining a stripe marker, you can specify if
the X and Y coordinates of M_POSITION must be located inside
or outside of the stripe (M_POSITION_INSIDE_STRIPE). If the
position is defined as being within the stripe, the search
algorithm is modified so that the search proceeds outwards in
both directions from that point, making the operation faster
and more robust. M_POSITION_INSIDE_STRIPE is useful when
the required stripe does not have the greatest edge strength or

260 Chapter 15: Measurements

when it is difficult to set the measurement box without clipping
other similar image characteristics. If defined as outside, no
stripe including the position is considered.

Since other aspects of the image can have similar features or
stronger edges, the required stripe might not be found. In order
to successfully locate the stripe, specify its M_POSITION and
then set M_POSITION_INSIDE_STRIPE to M_YES so that the
search begins from the marker’s approximate position,
allowing the marker to be found.

Target image

The search begins from the
required stripe's position.

Search direction

Measurement box

Required stripe

Multiple marker characteristics 261

Multiple marker characteristics

To use a multiple marker, only a few additional
MmeasSetMarker() parameters need to be set. The marker edge
or stripe characteristics are set just as with any marker, except
that M_POSITION and its weight factor is ignored.

Specify the number of edges or stripes (M_NUMBER) to be found
(default is 1) and the typical spacing between them if a regular
pattern is expected (M_SPACING). Unless a minimum number
(M_NUMBER_MIN) is specified, no results will be returned if the
number of edges or stripes found falls below M_NUMBER. If the
exact number of edges or stripes is unknown then M_NUMBER
can be set to M_ALL.

When the M_SPACING setting is enabled, an initial search is
performed to find all edges or stripes which best conform to the
marker characteristics. This group of edges or stripes are then
inspected to ensure that the spacing constraints are met. The
marker’s M_SPACING can be set to M_SAME, which takes the
average spacing of all located edges or stripes and then applies
this spacing as a criteria for determining the marker’s actual
edges or stripes.

M_WIDTH can also be set to M_SAME, meaning that the average
width is applied as a constraint to all located stripes.

JSM0998

Center of stripe Typical inter-stripe spacing

Measurement
box

Target image

262 Chapter 15: Measurements

Measurements between two markers

The MmeasCalculate() function performs calculations between
two markers’ reference positions. The default setting of the
MmeasCalculate() function performs all measurements;
distance, angle, and line equation. For a stripe marker the
center position is used as the reference position from which to
take measurements.

Steps to taking measurements between two markers

The series of steps outlined below are usually followed to take
measurements between two markers:

1. Allocate a result buffer, using MmeasAllocResult().

2. Allocate, define, and find each marker with the
MmeasFindMarker() function (see the steps previously
outlined in the Steps to finding and obtaining
measurements of markers section).

3. Call MmeasCalculate(), specifying which markers are to be
used as the first and second reference positions and which
measurements to take.

4. Read the results, using MmeasGetResult().

Calculating with multiple markers

If both markers are multiple markers, then calculations are
made using the edges or stripes of the first marker and the
corresponding edges or stripes in the second marker. The
number of calculations is limited to the smallest number of
results held in either marker (that is, if a marker contains only
one edge or stripe, then only one calculation is performed,
regardless of the number of edges or stripes contained in the
other marker).

With a multiple marker, results for each calculation will be held
in an array. Note that the array which you pass to
MmeasGetResult() must be large enough to hold the result for
each edge or stripe. If necessary, MmeasGetResultSingle() can
be used to retrieve a single result from the array.

Measurements between two markers 263

Angle

You can calculate the angle of a line joining two markers as
shown below.

The angle is measured in a counter-clockwise direction relative
to the positive x-axis, and can be a value from 0 to 360 degrees.

Line equation and distance

The line equation and distance can be calculated for the line
joining two markers (see diagram below).

The distance between two markers is the distance between both
of their reference positions, as illustrated in the diagram below.

The horizontal or vertical distance between two markers can
also be calculated by using M_DISTANCE_X or M_DISTANCE_Y
as the result type with MmeasGetResult().

150
o

75
o

Angle of a
stripe marker

First marker

Angle of the line
joining the two markers

Second marker

Y = MX + B

Line
equation

Reference position
of stripe marker

Point marker

Distance

264 Chapter 15: Measurements

A measurement example

The following example illustrates the steps to take to find a
stripe in an image, and measure its position, width, and angle.
It also demonstrates how to perform calculations using a point
marker as a reference point.

�������������

Target image

Measurement
box

Point
marker

���(KNG�PCOG��OOGCU�E
���5[PQRUKU���6JKU�RTQITCO�OGCUWTGU�VJG�RQUKVKQP��YKFVJ�CPF�CPING�QH
��������������C�UVTKRG�KP�CP�KOCIG��CPF�OCTMU�KVU�EGPVGT�CPF�GFIGU�
��������������+V�CNUQ�ECNEWNCVGU�VJG�NGPIVJ�CPF�CPING�QH�C�NKPG�IQKPI
��������������HTQO�C�TGHGTGPEG�RQKPV�KP�VJG�KOCIG�VQ�VJG�EGPVGT�QH
��������������VJG�NQECVGF�UVTKRG�
���

�KPENWFG��UVFKQ�J
�KPENWFG��OKN�J

���5QWTEG�/+.�KOCIG�HKNG�URGEKHKECVKQP�����
�FGHKPG�+/#)'A(+.'������������������/A+/#)'A2#6*�NGCF�OKO�

���2TQEGUUKPI�TGIKQP�URGEKHKECVKQP���
�FGHKPG�/'#5A$1:A9+&6*�����������������
�FGHKPG�/'#5A$1:A*'+)*6����������������
�FGHKPG�/'#5A$1:A215A:�����������������
�FGHKPG�/'#5A$1:A215A;�����������������

���6CTIGV�UVTKRG�V[RKECN�URGEKHKECVKQPU�����������
�FGHKPG�564+2'A21.#4+6;A.'(6��������/A215+6+8'
�FGHKPG�564+2'A21.#4+6;A4+)*6�������/A0')#6+8'
�FGHKPG�564+2'A9+&6*������������������.
�FGHKPG�564+2'A9+&6*A8#4+#6+10��������.

���4GHGTGPEG�RQKPV�URGEKHKECVKQP���
�FGHKPG�4'('4'0%'A215A:���������������.
�FGHKPG�4'('4'0%'A215A;���������������.

��
EQPV��

A measurement example 265

������#NNQECVG�C�UVTKRG�OCTMGT���
���/OGCU#NNQE/CTMGT
/KN5[UVGO��/A564+2'��/A&'(#7.6���5VTKRG/CTMGT��

������5RGEKH[�VJG�UVTKRG�CRRTQZKOCVKXG�FGHKPKVKQP���
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A21.#4+6;��564+2'A21.#4+6;A.'(6��������
���564+2'A21.#4+6;A4+)*6��������������������������������
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A9+&6*��564+2'A9+&6*��/A07..��
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A9+&6*A8#4+#6+10��564+2'A9+&6*A8#4+#6+10��
���/A07..�����������������������������������
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A$1:A#0).'A/1&'��/A'0#$.'��/A07..���
�������
������5RGEKH[�VJG�UGCTEJ�DQZ�UK\G����
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A$1:A14+)+0��
��������������������������������/'#5A$1:A215A:��/'#5A$1:A215A;��
���/OGCU5GV/CTMGT
5VTKRG/CTMGT��/A$1:A5+<'�
��������������������������������/'#5A$1:A9+&6*��/'#5A$1:A*'+)*6��
�����������������������
������(KPF�VJG�UVTKRG�CPF�OGCUWTG�KVU�YKFVJ�CPF�CPING����
���/OGCU(KPF/CTMGT
/A&'(#7.6��/KN+OCIG���5VTKRG/CTMGT��/A&'(#7.6��

������)GV�VJG�UVTKRG�RQUKVKQP��YKFVJ�CPF�CPING����
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A215+6+10���5VTKRG%GPVGT:�
���5VTKRG%GPVGT;��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A215+6+10
/A'&)'A(+456�
���5VTKRG(KTUV'FIG:�
���5VTKRG(KTUV'FIG;��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A215+6+10
/A'&)'A5'%10&�
���5VTKRG5GEQPF'FIG:�
���5VTKRG5GEQPF'FIG;��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A9+&6*������5VTKRG9KFVJ��/A07..��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A#0).'������5VTKRG#PING��/A07..��

������&TCY�VJG�EQPVQWT�QH�VJG�OGCUWTGOGPV�DQZ���
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A$1:A%140'4A612A.'(6����
/A6;2'A.10)���$QZ��:��
����$QZ��;��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A$1:A%140'4A612A4+)*6���
/A6;2'A.10)���$QZ��:��
����$QZ��;���
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A$1:A%140'4A$1661/A.'(6�
/A6;2'A.10)���$QZ��:��
����$QZ��;��
���/OGCU)GV4GUWNV
5VTKRG/CTMGT��/A$1:A%140'4A$1661/A4+)*6
/A6;2'A.10)���$QZ��:�
����$QZ��;���
���/ITC.KPG
/A&'(#7.6��/KN+OCIG��$QZ��:��$QZ��;��$QZ��:��$QZ��;��
���/ITC.KPG
/A&'(#7.6��/KN+OCIG��$QZ��:��$QZ��;��$QZ��:��$QZ��;��
���/ITC.KPG
/A&'(#7.6��/KN+OCIG��$QZ��:��$QZ��;��$QZ��:��$QZ��;��
���/ITC.KPG
/A&'(#7.6��/KN+OCIG��$QZ��:��$QZ��;��$QZ��:��$QZ��;��

������&TCY�C�ETQUU�QP�VJG�EGPVGT��NGHV�CPF�TKIJV�GFIG�QH�VJG�HQWPF�UVTKRG���
���&TCY%TQUU
/KN+OCIG��5VTKRG%GPVGT:������5VTKRG%GPVGT;������%4155A%1.14��
���&TCY%TQUU
/KN+OCIG��5VTKRG(KTUV'FIG:���5VTKRG(KTUV'FIG;���%4155A%1.14��
���&TCY%TQUU
/KN+OCIG��5VTKRG5GEQPF'FIG:��5VTKRG5GEQPF'FIG;��%4155A%1.14��

��
EQPV�����

266 Chapter 15: Measurements

������2TKPV�VJG�TGUWNV����
���RTKPVH
�6JG�UVTKRG�KP�VJG�KOCIG�KU�CV�RQUKVKQP����H����H�CPF>P��
���5VTKRG%GPVGT:��5VTKRG%GPVGT;��
���RTKPVH
�KU����H�RKZGNU�YKFG�YKVJ�CP�CPING�QH����H�FGITGGU�>P��
���5VTKRG9KFVJ��5VTKRG#PING��
���RTKPVH
�+VU�EGPVGT�CPF�GFIGU�JCXG�DGGP�OCTMGF�>P>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��

������#NNQECVG�C�RQKPV�OCTMGT���
���/OGCU#NNQE/CTMGT
/KN5[UVGO��/A21+06��/A&'(#7.6���2QKPV/CTMGT��

������5RGEKH[�VJG�TGHGTGPEG�RQKPV�RQUKVKQP�KP�VJG�KOCIG���
���/OGCU5GV/CTMGT
2QKPV/CTMGT��/A215+6+10��4'('4'0%'A215A:��4'('4'0%'A215A;��
���
������&TCY�TGHGTGPEG�RQKPV�RQUKVKQP�KP�VJG�KOCIG���
���&TCY/CTM
/KN+OCIG��4'('4'0%'A215A:��4'('4'0%'A215A;��/#4-A%1.14�����

������#NNQECVG�C�ECNEWNCVKQP�TGUWNV�DWHHGT���
���/OGCU#NNQE4GUWNV
/KN5[UVGO��/A%#.%7.#6'���%CNE4GUWNV��

������%CNEWNCVG�VJG�FKUVCPEG�CPF�CPING�DGVYGGP�VJG�RQKPV�CPF�VJG�UVTKRG����
���/OGCU%CNEWNCVG
/A&'(#7.6��2QKPV/CTMGT��5VTKRG/CTMGT��%CNE4GUWNV�
���/A&+56#0%'
/A#0).'��

������)GV�VJG�FKUVCPEG�CPF�CPING����
���/OGCU)GV4GUWNV
%CNE4GUWNV��/A&+56#0%'���4GHGTGPEG&KUVCPEG��/A07..��
���/OGCU)GV4GUWNV
%CNE4GUWNV��/A#0).'���4GHGTGPEG#PING��/A07..��

������&TCY�C�ETQUU�QP�VJG�TGHGTGPEG�RQKPV�CPF�C�NKPG�HTQO�VJCV�RQKPV
������VQ�VJG�EGPVGT�QH�VJG�HQWPF�UVTKRG�
������
���&TCY%TQUU
/KN+OCIG��4'('4'0%'A215A:��4'('4'0%'A215A;��%4155A%1.14��
���/ITC.KPG
/A&'(#7.6��/KN+OCIG��4'('4'0%'A215A:��4'('4'0%'A215A;�
�����������
NQPI�
5VTKRG%GPVGT:
�����
NQPI�
5VTKRG%GPVGT;
������

������2TKPV�VJG�TGUWNV����
���RTKPVH
�6JG�FKUVCPEG�CPF�CPING�HTQO�VJG�FTCYP�TGHGTGPEG�RQKPV�CTG>P���
���RTKPVH
����H�RKZGNU�CPF����H�FGITGGU�>P���4GHGTGPEG&KUVCPEG��
���4GHGTGPEG#PING������
���RTKPVH
�>P2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

������(TGG�CNN�CNNQECVKQPU����
���/OGCU(TGG
%CNE4GUWNV��
���/OGCU(TGG
2QKPV/CTMGT��
���/OGCU(TGG
5VTKRG/CTMGT��
���/DWH(TGG
/KN+OCIG��
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
���_

��
EQPV��

A measurement example 267

������&TCY�C�ETQUU�CV�VJG�URGEKHKGF�RQUKVKQP����
���XQKF�&TCY%TQUU
/+.A+&�+OCIG+F��FQWDNG�%GPVGT:��FQWDNG�%GPVGT;��NQPI�%QNQT�
���]
���/ITC%QNQT
/A&'(#7.6�%QNQT��
���/ITC.KPG
/A&'(#7.6��+OCIG+F�
�����
NQPI�
%GPVGT:
����
%4155A5+<'�����
NQPI�
%GPVGT;
����
�����
NQPI�
%GPVGT:
���

%4155A5+<'�����
NQPI�
%GPVGT;
�����
���/ITC.KPG
/A&'(#7.6��+OCIG+F�
�����
NQPI�
%GPVGT:
�����
NQPI�
%GPVGT;
����
%4155A5+<'����
�����
NQPI�
%GPVGT:
�����
NQPI�
%GPVGT;
���

%4155A5+<'�����
���_

������&TCY�C�TGHGTGPEG�OCTM�CV�VJG�URGEKHKGF�RQUKVKQP����
���XQKF�&TCY/CTM
/+.A+&�+OCIG+F��FQWDNG�%GPVGT:��FQWDNG�%GPVGT;��NQPI�%QNQT�
���]
���/ITC%QNQT
/A&'(#7.6�%QNQT��
���/ITC#TE
/A&'(#7.6��+OCIG+F��
NQPI�
%GPVGT:
�����
NQPI�
%GPVGT;
�����
���%4155A5+<'��%4155A5+<'��������������
���/ITC.KPG
/A&'(#7.6��+OCIG+F�
NQPI�
%GPVGT:
����
%4155A5+<'���
���
NQPI�
%GPVGT;
����
NQPI�
%GPVGT:
���

%4155A5+<'���
NQPI�
%GPVGT;
�����
���/ITC.KPG
/A&'(#7.6��+OCIG+F�
NQPI�
%GPVGT:
�����
���
NQPI�
%GPVGT;
����
%4155A5+<'��
NQPI�
%GPVGT:
�����
���
NQPI�
%GPVGT;
���

%4155A5+<'���
���_

268 Chapter 15: Measurements

Chapter 16: Specifying and
managing your data buffers

This chapter discusses data buffers in detail. It shows you
how to allocate and manage data buffers, and how to
restrict an operation to a portion of a data buffer by using
child buffers. It shows you how YUV buffers are stored, how
to create a user-defined buffer, and how MIL defines the
pixel reference position.

270 Chapter 16: Specifying and managing your data buffers

Data buffers

Data buffers In this manual, the term data buffer is used loosely to refer to
the most general type of data buffer (storage area) that is
allocated by the MIL package and operated on by most MIL
functions. For example, a data buffer can be a buffer for image
data or one for lookup table (LUT) data. Besides data buffers,
there are also other buffers (for example, result buffers), which
are specific to a particular group of functions. These types of
buffers are discussed in the chapters describing their related
functions.

Allocating data buffers All data buffers must be allocated before a function can access
them. You can allocate a monochrome buffer using
MbufAlloc1d(), MbufAlloc2d(), or MbufAllocColor(). You
allocate a color buffer using MbufAllocColor().

When allocating a data buffer, you must specify its:

■ Target system.

■ Dimensions.

■ Data type and depth.

■ Attribute.

Controlling specific
parts

You can manipulate or control specific parts of data buffers
by allocating and using child buffers. A child buffer is a subset
of the parent buffer (a specific area of the parent buffer).
Although any change made to the child buffer data affects the
parent buffer, the buffer is considered a data buffer in its own
right; wherever the parent buffer can be used, you can use the
child buffer instead to affect only a part of the buffer. All results
are returned relative to the child buffer coordinates rather than
the parent buffer.

Target system 271

Target system

A data buffer is allocated on the specified system. If the
M_DEFAULT_HOST system is specified, the default Host system
of the current MIL application will be used. If M_DEFAULT is
specified, MIL will select the most appropriate system on which
to allocate the data buffer (it can be the default Host system or
any currently allocated system).

In addition, any operation involving one or more buffers will be
performed by the most appropriate system that is associated
with one of the buffers. By default, if none of these systems is
more appropriate than the Host, the Host is used to perform
the operation.

Specifying the dimensions of a data buffer

Data buffers can have up to three dimensions: an x, y, and color
band dimension. Most data buffers have an x dimension (for
example, LUT buffers) or an x and y dimension (for example,
monochrome image buffers). The color-band dimension has
been provided to allow you to store data for each color
component used to represent an image; when allocating color
buffers, each band will be of the same data depth and type.

Once you finish using a data buffer, you should release its
memory space, using MbufFree().

Color band 0
Color band 1

Color band 2

RGB
image buffer

272 Chapter 16: Specifying and managing your data buffers

Certain MIL functions support manipulating multi-band image
buffers. See Chapter 21: Color for details on handling color
image buffers.

Data type and depth

Data type and
depth

The data depth of a buffer indicates the number of bits per band
in the buffer (1, 8, 16, 32). The data type of a buffer indicates
how its data is internally represented (that is, whether the data
is considered signed, unsigned, or floating-point). Supported
combinations are: 1-bit packed binary; 8-, 16-, and 32-bit
integer (signed and unsigned); and 32-bit floating-point. If a
function can only operate on data buffers of certain depths, this
is explicitly stated in the command’s description, otherwise the
function can be used with any combination of data buffers (the
MIL Command Reference manual).

Packed binary buffers The packed binary data format represents each pixel by a single
bit, in a state of 0 or 1. Therefore, 8 pixels can be packed in a
single byte (known as an 8-bit data unit); that is, in a format
eight times smaller than an 8-bit image.

Processing done directly on a packed binary buffer is very fast
and efficient. Many MIL functions support accelerated
processing using packed binary buffers. General processing
functions which do not support packed binary buffers directly,
automatically convert the data into a suitable data type buffer,
perform the operation, and re-convert the resulting buffer to
packed binary.

For efficiency, when possible, you should store binary data in
packed binary buffers (rather than, for example, 8-bit integer
buffers with only the values 0 and 0xFF). General processing
functions that are optimized for packed binary buffers are noted
as such in the MIL Command Reference manual.

Integer and
floating-point buffers

In general, the fewer bits per pixel in a buffer, the faster an
operation can be performed on the buffer. Packed binary buffers
are the fastest to process. When you need to use integer buffers,
use 8 bits per pixel when possible, 16 bits if necessary, and 32

Attribute 273

bits as a last resort. When you need non-integer values, extra
precision, or a greater dynamic range, you can use
floating-point data buffers.

Attribute

Buffer type and
usage

The data buffer attribute indicates the buffer type and its
intended usage. MIL uses this information to determine the
most appropriate location in physical memory in which to
allocate the buffer, and how to handle the buffer. A data buffer
can be one of the following types:

■ M_IMAGE (image buffer).

■ M_LUT (lookup table buffer).

■ M_KERNEL (kernel buffer for convolution functions).

■ M_STRUCT_ELEMENT (structuring element buffer for
morphology functions).

Allocating an image
buffer

When allocating an image buffer (M_IMAGE), you must give
more information about its intended usage. An image buffer
can be any combination of the following:

■ A buffer that can be displayed (M_DISP).

■ A buffer that can be processed (M_PROC).

■ A buffer in which data can be grabbed (M_GRAB).

■ A buffer in which data is stored in a compressed format
(M_COMPRESS).

For example, to allocate an image buffer that can be displayed
and used for processing, its attribute should be given as:

 M_IMAGE + M_DISP + M_PROC

In general, buffers are allocated in Host memory instead of
on-board memory by default. This is because on-board memory
is limited in size and Host memory can be accessed much faster
than on-board memory. However, if the system has an on-board
processor, the buffer is allocated on-board by default. These
defaults can be overridden by using the MbufAlloc...()
M_ON_BOARD and M_OFF_BOARD attributes.

274 Chapter 16: Specifying and managing your data buffers

Grab buffers Buffers with an attribute of M_GRAB are allocated in DMA
memory, which is physically contiguous and always present.
This is also known as non-paged memory. An advantage to
non-paged memory is that a bus mastering device can write to
it without the help of the CPU.

If a system does not support grab buffers (for example,
M_HOST_SYSTEM), you could still allocate a buffer on such a
system in physically contiguous and always present memory by
giving it an M_NON_PAGED attribute instead.

Attribute 275

Displayable buffers When a displayable buffer is allocated and selected for display
(MbufAlloc...() with M_DISP, and then MdispSelect()), two
buffers are maintained internally: one in Host memory for
processing purposes, the other in a frame buffer surface
(maintained directly or through a DIB) for display purposes
(not necessarily the same size). When the Host buffer is
modified, its associated buffer in the frame buffer surface is
automatically updated. When displaying a buffer, both the
buffer and the display must have been allocated on the same
system.

When grabbing a single frame into a displayable buffer, MIL
grabs into the Host memory version of the buffer and then
updates the display of the buffer. When grabbing continuously,
the grab is made directly to the frame buffer surface and then
at the end of the grab, the Host buffer is updated.

Overriding the default
allocation sequence

On boards with a display section, you can override the default
buffer allocation sequence and force allocation only in the frame
buffer surface using the MbufAlloc...() M_ON_BOARD attribute.
In general, the buffer is allocated in the non-displayable area
of the frame buffer surface. If you are in a non-windowed mode
and the M_DISP attribute is specified, the buffer will be in the
displayable area. Note you can allocate only one
M_DISP+M_ON_BOARD buffer and one M_OVR+M_ON_BOARD
buffer unless stated in the MIL/MIL-Lite Board Specific Notes
manual.

Overriding the default allocation sequence is useful when
allocating a displayable buffer under any non-windowed mode.
If you are not using the displayable buffer for processing or are

276 Chapter 16: Specifying and managing your data buffers

only using it as a destination, storing the buffer on-board will
avoid the extra copy operation to the display without the
penalty of slowing down processing.

Even if it is not in the displayed area of the frame buffer, the
image buffer depth and display depth must be the same.

Internal format of the
buffer

It is also possible to force the internal representation of a data
buffer using internal storage format specifiers, such as
M_PACKED or M_PLANAR, which force the data buffer to be in
a packed or planar format, respectively. Refer to
MbufAllocColor() for a complete list of internal format
specifiers.

Insufficient memory If there is insufficient memory of the appropriate type to
allocate a buffer with the specified attributes, the function
generates an error and does not allocate the buffer.

Inappropriate data
buffer usage

If you try to use a data buffer in a situation that is not
appropriate for its allocated attribute, an error message is
generated and the operation is not performed. For example, if
you try to display a buffer without an M_DISP attribute with
MdispSelect(), an error message will be generated.

Host memory

Src
Buf A

Dest
Buf B

BUF B+

Host memory

Src
Buf A

ON-BOARD
Dest
Buf B

Manipulating and controlling certain data buffer areas 277

Manipulating and controlling certain data
buffer areas

You can manipulate or control specific parts of a data buffer by
creating a child buffer within it or by copying specific parts of
it to another buffer.

Child buffers

Child buffers are
subsets of parent
buffers

A child buffer is a subset (or region of interest) of a given data
buffer (known as the parent buffer). Child buffers occupy a
specific area of the parent buffer. Since this area is part of the
same physical space as the parent buffer, changes made to the
child buffer affect the parent buffer and vice versa.

Allocating child
buffers

The child buffer is considered a data buffer in its own right.
Like its parent buffer, a child buffer must be allocated so that
it can be associated with an identifier and recognized as an
entity by the MIL package. Allocate a monochrome child buffer
using MbufChild1d() or MbufChild2d(). To allocate a child
buffer consisting of only one of the color bands of a multi-band
image buffer, use MbufChildColor() or MbufChildColor2d().
Note, as a subset of the parent buffer, a child buffer cannot
exceed the bounds of its parent in any dimension. For example,
a color buffer cannot be created from a monochrome parent
buffer.

A child buffer takes on the same attributes and type as the
parent buffer. In general, any operation that can be performed
on the parent buffer can also be performed on the child buffer.

Allocate a child buffer by specifying its size and offset with
respect to each of the parent buffer dimensions. After, when
using the child image buffer, any specified or returned
coordinates are relative to the child’s top-left corner.

As with any MIL data buffer, once you have finished using a
child data buffer, you must delete it, using MbufFree().

278 Chapter 16: Specifying and managing your data buffers

One major benefit of the child buffer is being able to handle
several buffers simultaneously, in contexts where normally
only one buffer can be handled. For example, when using MIL
in non-windowed mode, you can only display one buffer at a
time. However, you might want to display the source and
destination buffer of an operation simultaneously. You can get
around this situation by allocating a displayable image buffer
as large as the display, then allocating two child buffers from
this buffer. You can then use one as the source data buffer and
one as the destination. When the parent buffer is selected on
the display (MdispSelect()), both the source and the destination
child buffers can be seen.

Copying specific buffer areas

As an alternative to using a child buffer, you can restrict
operations to specific areas or bits of a buffer (child or parent)
by copying the required portions to another buffer. You can copy
data from any type of data buffer to another using any of the
following functions. For example:

■ Copy an image buffer to another buffer at the specified offset,
using MbufCopyClip(). Data that falls outside of the
destination buffer will be automatically clipped.

■ Copy specific non-sequential areas to another buffer based
on a conditional buffer, using MbufCopyCond(). Source buffer
data is copied to the destination buffer if corresponding data
in the specified conditional buffer satisfies the copy condition.
Other data in the destination buffer is left unaffected.

■ Copy specific non-consecutive bits to another buffer based on
a mask, using MbufCopyMask(). Only destination bits that
correspond to non-zero bits in the mask are modified with
source bits.

■ Copy a single band of a multi-color band buffer to or from a
single-band buffer, using MbufCopyColor() or
MbufCopyColor2d(). This allows you to operate on a single
color band of a buffer.

Managing data buffers 279

If the source buffer depth is greater than that of the destination,
the most significant bits are truncated when the data is copied
into the destination. If the source and destination buffers are
signed and the destination depth is greater than that of the
source, the source data is sign-extended when it is copied into
the destination.

MbufCopy() copies the entire buffer into another buffer, while
the other commands copy only portions of a buffer.

Managing data buffers

Besides the copy functions discussed in the previous section,
MIL provides several other data buffer management functions.
These allow you to transfer data between an array and a buffer,
load data into a buffer (or a sequence of buffers), and save a
buffer (or a sequence of buffers) to disk.

Putting and retrieving
data

You can put data from an array into a data buffer, using
MbufPut(), MbufPut1d(), MbufPut2d(), MbufPutColor(), or
MbufPutColor2d(). MbufPut() puts data in the entire buffer,
while MbufPutColor() or MbufPutColor2d() put data into one
or all color bands of a multi-band buffer. The other two
commands allow you to put data in a selected area of a
monochrome buffer, respectively.

In addition, you can retrieve data from a data buffer and place
it into an array, using MbufGet(), MbufGet1d(), MbufGet2d(),
MbufGetColor(), or MbufGetColor2d(). MbufGet() gets data
from the entire buffer, while MbufGetColor() or
MbufGetColor2d() get data from one or all bands of a
multi-band buffer. The other two commands, like their ‘ put in
buffer’ counterparts, allow you to get data from a selected area
of a monochrome, respectively.

❖ Note that you can also access the contents of a MIL buffer
from an array by using MbufInquire(). Inquire the Host
address of the buffer, and then using a pointer access the
buffer as an array. This is discussed in more detail later.

280 Chapter 16: Specifying and managing your data buffers

Loading a data buffer You can load data, using one of two methods:

■ Load data into an automatically allocated MIL data buffer,
using MbufImport() with M_RESTORE, or using
MbufRestore().

■ Load data into a previously allocated MIL data buffer, using
MbufImport() with M_LOAD or using MbufLoad().

These commands internally handle the opening and closing of
the file. With MbufImport(), you can specify the file’s format.
MbufLoad() and MbufRestore() will read the data in the file to
determine the format, therefore they might take more time to
return a result.

Saving a data buffer You can save a data buffer to disk, using MbufExport() or
MbufSave(). MbufExport() is the most general of these
commands and can save data in any MIL-supported file format.
MbufSave() can only save data in an M_MIL file format.

These functions internally handle opening and closing the file.
If the given file name already exists, the file will be overwritten.

Loading and saving a
sequence of data
buffers

You can import or export a sequence of image buffers to a file
using MbufImportSequence() or MbufExportSequence(),
respectively. The available file formats are: standard AVI DIB
format, MJPEG format, and proprietary AVI MIL format.

Controlling how color image buffers are stored 281

Controlling how color image buffers are
stored

A color image buffer’s internal representation can be either in
a planar or packed format. When allocating the buffer, if its
attribute is also set to M_PLANAR, the pixels are stored in
planes (for example, RRR GGG BBB). When allocating the
buffer, if its attribute is set to M_PACKED, each pixel is stored
as one unit containing all its components (for example, RGB
RGB RGB).

MIL automatically selects the most appropriate format,
according to the specified intended usage attribute. If an image
buffer is allocated in one format, and a general processing
function requiring another format is called, the function will
automatically convert the data to the required format and
re-convert it back to its original format upon completion. To
change a buffer’s default internal storage format, change the
internal storage part of the attribute parameter for
MbufAllocColor(). Note that it might be slower to process
buffers with M_PACKED attributes.

In general, packed formats are mostly used for display
purposes; when selecting a buffer’s attribute as M_DISP, the
default internal representation is usually packed. This
configuration allows for faster transfers to display sections that
handle packed data (for example, VGA). However, if the display
section of your board has dedicated red, green, and blue frame
buffer planes, the buffer is allocated in planar format.

Planar formats are generally preferred for processing. Here,
the buffer stores each pixel as three component planes (for
example, RRR, GGG, BBB). Processing is done on each of the
components separately.

When allocating an image buffer with more than one attribute,
for example, M_DISP and M_PROC, the buffer’s internal
storage requirements for the display will take precedence over
other attributes.

See the MIL/MIL-Lite Board-Specific Notes manual to
determine which formats are supported on your board.

282 Chapter 16: Specifying and managing your data buffers

RGB buffers

By default, MIL allocates color image buffers in an RGB color
format. The pixels are internally stored in little-endian order,
that is, they are stored in memory from their least-significant
to the most significant bytes. The definitions of the RGB
formats that are available are shown here. The corresponding
MIL constant is shown in brackets beside the common format
name.

RGB data formats BGR24 packed (M_BGR24+M_PACKED) is a format whereby
each pixel is internally stored as three consecutive bytes in
little-endian order, that is:

BGR32 packed (M_BGR32+M_PACKED) is a format whereby
each pixel is internally stored as four consecutive bytes, in
little-endian order. The most-significant byte is a "don’t care"
byte, as shown below:

Byte 0

Byte 1

Byte 2 R

G

B

Byte 3

Byte 4

Byte 5 R

G

B

.

.

.

.

.

.

R

G

B

x

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

R

G

B

x
.
.
.

.

.

.

RGB buffers 283

RGB15 packed (M_RGB15+M_PACKED) is a format whereby
each pixel is internally stored as a 16-bit word with a 5-bit blue
value (least significant), a 5-bit green value, a 5-bit red value,
and a "don’t care" bit (most significant), in little-endian order,
as shown below. Note that when accessing an
M_RGB15+M_PACKED buffer as a 3-band 8-bit buffer, the least
significant bits of each band are set to 0.

RGB16 packed (M_RGB16+M_PACKED) is a format whereby
each pixel is internally stored as a 16-bit word with a 5-bit blue
value (least significant), a 6-bit green value, and a 5-bit red
value (most significant), in little-endian order, as shown below.
Note that when accessing an M_RGB16+M_PACKED buffer as a
3-band 8-bit buffer, the least significant bits of each band are
set to 0.

RGB planar are formats whereby the color components of all
the pixels are stored contiguously: (RRR...., BBB..., GGG...).

R G Bx

16-bit word

R G Bx

word 0

word 1

.

.

.

.

R G B

16-bit word

R G B

word 0

word 1

.

.

.

.

284 Chapter 16: Specifying and managing your data buffers

Binary buffers

Binary buffers have a different internal storage format than
other types of buffers: eight pixels are stored in one byte. The
leftmost pixel of an image is the least significant bit that is
stored in memory.

YUV buffers

YUV is a compressed format in which Y is the grayscale
component (luminance) and U and V are the color components.
MIL supports grabbing, loading, or saving images in a YUV
color format.

Although any general processing operation can be performed
on YUV buffers, allocating them for processing purposes is not
recommended because MIL is configured to process RGB color
data only. However, MIL will automatically convert YUV buffer
data to RGB for all general processing operations (including
conversion for display), and re-convert it to YUV upon
completion.

All YUV formats are supported even on the Host system.
However, only some systems support grabbing into YUV
buffers. See the MIL/MIL-Lite Board-Specific Notes manual to
determine if grabbing into YUV buffers is supported on your
system.

YUV buffers must be allocated as 3-band 8-bit buffers, however,
the actual number of bits per pixel will differ depending on the
YUV format selected.

The supported YUV formats are:

■ YUV16 Packed

■ YUV9 Planar

■ YUV12 Planar

■ YUV16 Planar

YUV buffers 285

YUV16 Packed
YUV16 Packed or YUV 4:2:2 (M_YUV16+M_PACKED) is an
interleaved data format. Although each pixel has a
corresponding one byte Y (luminance component), each pair of
pixels share the same one byte U (chrominance U) and the same
one byte V (chrominance V). Since a pair (two pixels) is
represented by 4 bytes, each pixel has an average of 16 bits per
pixel.

The YUV16 packed data format has two available formats:
YUYV and UYVY. The only difference between these two YUV
formats is the ordering of data in the buffer. Certain digitizer
boards grab data in exclusively YUYV or UYVY packed data
format. In addition, certain display adapters are optimized to
handle YUYV format (or can only handle the YUYV format in
their underlay).

When you allocate an M_YUV16+M_PACKED buffer, MIL
allocates the buffer in the format that is most suitable for the
selected platform and the specified buffer attributes. You can,
however, force a format using the M_YUV16_YUYV or
M_YUV16_UYVY control types. When the buffer has an
M_GRAB attribute, forcing an inappropriate format generates
an error. When the buffer has an M_DISP attribute, if you force
the buffer in the other YUV format, then CPU intervention is
required to perform the automatic conversion. See the
MIL/MIL-Lite Board Specific Notes for supported data
formats.

YUYV

286 Chapter 16: Specifying and managing your data buffers

UYVY

YUV9 Planar
YUV9 Planar (M_YUV9+M_PLANAR) is a planar format whose
components have a depth of one byte but are not of the same
size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 16 pixels share the same
one byte of U (chrominance U) and the same one byte of V
(chrominance V). Since the 16 pixels are represented by
18 bytes, each pixel has an average 9 bits. For example, a block
of 16 pixels has the following: 16 bytes Y and 1 byte each of U
and V.

YUV12 Planar
YUV12 Planar (M_YUV12+M_PLANAR) is a planar format
whose components have a depth of one byte but are not of the
same size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 4 pixels share the same
one byte of U (chrominance U) and the same one byte of V

Y Y Y Y Y Y Y Y7 6 5 4 3 2 1 0

U U U U U U U U7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y Y7 6 5 4 3 2 1 0

V V V V V V V V7 6 5 4 3 2 1 0

Byte 0

Byte 1

Byte 2

Byte 3

Y plane U plane V plane

4 x 4 bytes

1
byte

1
byte

YUV buffers 287

(chrominance V). Since the 16 pixels are represented by
24 bytes, each pixel has an average of 12 bits. For example, a
block of 16 pixels has the following: 16 bytes Y and 4 bytes each
of U and V.

YUV16 Planar

YUV16 Planar (M_YUV16+M_PLANAR) is a planar format
whose components have a depth of one byte but are not of the
same size. Although each pixel has a corresponding 1 byte Y
(luminance) component, each block of 2 pixels share the same
1 byte of U (chrominance U) and the same 1 byte of V
(chrominance V). Since the 16 pixels are represented by
32 bytes, each pixel has an average 16 bits. For example, a block
of 16 pixels has the following: 16 bytes Y and 8 bytes each of U
and V.

Y plane U plane

4 x 4 bytes

2 x 2
bytes

V plane

2 x 2
bytes

Y plane U plane V plane

4 x 4 bytes 2 x 4
bytes

2 x 4
bytes

288 Chapter 16: Specifying and managing your data buffers

YUV24 Planar

YUV24 Planar (M_YUV24+M_PLANAR) is an uncompressed
planar format whose components have a depth of one byte and
are of equal size. Each pixel has a corresponding 1 byte Y
(luminance) component, 1 byte U component (chrominance U),
and 1 byte V component (chrominance V). Since the 16 pixels
are represented by 48 bytes, each pixel has an average 24 bits.
For example, a block of 16 pixels has the following: 16 bytes Y
and 16 bytes each of U and V.

Child YUV buffers

You can create child buffers from YUV buffers in the same way
as RGB child buffers. When creating YUV child buffers, MIL
will keep the proportions of the U and V bands with respect to
the Y band. For example, if your YUV9 Planar Y band is a size
of 256 x 256 pixels, the U and V bands will be 1/4 the size of the
Y band in each dimension (width and height): 64 x 64 pixels,
which is 1/16 the size of the Y band. If a child buffer is 16 x 16
pixels, then the U and V bands will be 4 x 4 pixels. In other
words, the 4 x 4 U and V bands (16 pixels) is 1/16 the size of the
Y band (256 pixels).

Y plane U plane V plane

4 x 4 bytes 4 x 4 bytes4 x 4 bytes

Accessing a MIL buffer directly 289

Accessing a MIL buffer directly

If needed, a MIL buffer’s contents can be accessed directly. For
instance, if you want to calculate the average value of the pixels
of your image, you could create a custom algorithm. The
algorithm could be applied directly to the buffer without having
to copy the contents of the MIL buffer into a user-allocated
array (MbufAlloc()) by using MbufGet() and MbufPut(). To do
so would be more efficient and might improve the performance
of the custom algorithm.

In order to access the MIL buffer directly, the buffer’s address
and pitch must be known. Once you know this, you will be able
to access them directly for optimum performance.

290 Chapter 16: Specifying and managing your data buffers

Address The address of a parent or child buffer can be returned using
MbufInquire(). Selecting M_HOST_ADDRESS will return a
logical address, while M_PHYSICAL_ADDRESS will return a
physical address. In either case, the first address of the buffer
you are specifying will be the top left-most pixel in the image.
Knowing the pitch and the depth of the buffer will tell you the
address of the following row.

Pitch The pitch of a buffer is the number of units between the
beginnings of any two adjacent lines of the buffer’s data and
can be measured in pixels or bytes. Note that in some instances,
the pitch in bytes will be more accurate than in pixels. If the
last pixel falls outside of a 32-bit boundary (required by
Windows), the start of the next row will be located at the
beginning of the next 32-bit boundary; this process is called
internal padding. When measuring the pitch in pixels, the
padding can be counted as "extra" pixels, depending on the
depth of the pixels. This will result in an inaccurate pitch.

Mapping a data buffer to user-allocated
memory

Instead of allocating new memory to a buffer using
MbufAlloc...(), you can create a buffer from the memory at a
specified location, using MbufCreate2d() to create a
monochrome data buffer and MbufCreateColor() to create a
color data buffer. In these cases, MIL does not allocate any
memory; it uses the memory that you provide.

When creating a buffer with MbufCreateColor(), you must pass
an array of pointers to the addresses of the data. For packed
color buffers, you must pass an array of one pointer; for planar
buffers, you must pass an array with the same number of
pointers as the number of bands in the buffer. When creating a
buffer with MbufCreate2d(), you must pass the address of the
data. The address(es) can be either logical or physical. If you
want to use the buffer for grabbing, the address(es) must be
physical (grab buffers must be allocated in physically
contiguous and always present memory, that is, non-paged).
The MbufCreate...() functions must be used with caution
because, when using physical addresses, these functions

Mapping a data buffer to user-allocated memory 291

provide direct manipulation of any of your PC’s memory
mapped devices; when using logical addresses, memory
protection errors could result.

You can use MbufInquire() with the M_HOST_ADDRESS or
M_PHYSICAL_ADDRESS control type to determine the Host’s
logical address or the physical address of a buffer’s data,
respectively. Note that the physical address is not necessarily
an address in Host memory. It could be an address in on-board
memory. If an on-board buffer is mapped to the Host, you can
use the MbufInquire() function with the M_HOST_ADDRESS
control type to determine the Host address to which it is
mapped.

There are several instances when memory mapping is useful.
A particularly useful instance is when processing and
displaying an interlaced grab in a time critical application. In
this case, you could use a displayable buffer to store and display
the grabbed data. Then, to process each field as it is grabbed,
you could use a buffer that is mapped to the odd field of the
displayable buffer (Buffer 1) and a buffer that is mapped to the
even field (Buffer 2).

Create Buffers 1 and 2 as follows:

■ Buffer 1: (Odd field)

❐ Size = 640 x 240 (i.e., half height)

❐ Pitch = 1280 (i.e., to skip to the next field)

❐ Address = Address A (i.e., first pixel of the first row)

ODD
EVEN
ODD
EVEN

640

480

A
B

240

ODD
ODD
ODD

640

EVEN
EVEN
EVEN

640

240

A

B

Original buffer

Buffer 1 Buffer 2

292 Chapter 16: Specifying and managing your data buffers

■ Buffer 2: (Even field)

❐ Size = 640 x 240 (i.e., half height)

❐ Pitch = 1280 (i.e., to skip to the next field)

❐ Address = Address B (i.e., first pixel of the second row)

In general, MIL automatically issues a display update after a
displayed buffer has been modified. However, if a buffer
selected on the display is modified using a mapped buffer, its
display is not updated until you notify it of the change using
MbufControl(...M_MODIFIED...).

See Chapter 26: Data Manipulation with multiple systems for
another instance where creating buffers is useful.

Buffer A
Buffer B

Buffer A

Pixel conventions 293

Pixel conventions

The center of a pixel is important for all MIL functions which
return positional results with subpixel accuracy. The reference
position of a pixel is its center, and the resulting subpixel
coordinates are with respect to the pixel’s center.

With this in mind, the coordinates of the center of an image can
always be found using the following formula:

For example, the following image contains 4 pixels. If the
formula is applied, the center of the image is found at (1.5, 0).

Width -1

2

Height -1

2

,()

0 1 2 3

(1.5, 0.0)

294 Chapter 16: Specifying and managing your data buffers

Chapter 17: Lookup tables

This chapter describes lookup tables (LUTs). It shows you
how to generate and modify them and briefly discusses
how to use them.

296 Chapter 17: Lookup tables

Lookup tables

Lookup tables (LUTs) are collections of memory locations that
are used to map data to pre-calculated values. They can easily
reduce a multi-step or complex operation to a single-step LUT
mapping.

You can map an image buffer through a LUT, using
MimLutMap(). If the hardware system permits, you can also
use LUTs to precondition input data at acquisition time, before
it is stored in an image buffer. LUTs can also be used (hardware
system permitting) to adjust the color contrast and intensity of
an image upon display, without affecting the actual data.

0
0

0
0
0

0

1

1 1

1

1

1 12
2 3 2

1

2
3

LUT index

0
84

170
255

LUT values

Original
8-bit image

Resulting
8-bit image

0
0
0
0

0
84 84

84
84

84 84170
170255170

84

LUTs and data buffers 297

LUTs and data buffers

LUT buffers The MIL package represents LUTs as LUT data buffers. As
with any other data buffer, LUT buffers must be allocated
before they are used. A LUT buffer can be loaded, stored, or
copied to another buffer (not necessarily to another LUT buffer)
or to disk. You can also allocate child LUT buffers. When a LUT
buffer is no longer required, you should free its memory space,
using MbufFree().

Allocating LUT buffers LUT buffers are typically one-dimensional data buffers created
with MbufAlloc1d() (single row). However, you can allocate a
color RGB LUT, using MbufAllocColor(). In this case, set the
number of bands to 3 (for RGB), the y-dimension to 1, and the
x-dimension to have enough entries to represent the full range
of possible values of the image buffer.

Loading and generating data into LUTs

With MIL, you can generate data directly into a LUT buffer or
calculate the data and then load it in a LUT buffer.

Generating data directly into the LUT buffer

Direct LUT data
generation

You can generate general data directly into a LUT buffer, using
MgenLutRamp() or MgenLutFunction().

The MgenLutRamp() command generates a value for each LUT
index within the specified index range. The index range
together with the start and end values determine the
increment.

The increment If the increment is positive, MgenLutRamp() generates a ramp.
If the increment is negative, the command generates an inverse
ramp. If the increment is equal to zero, it loads the entire LUT
range with the given start value.

298 Chapter 17: Lookup tables

The MgenLutFunction() command generates data within the
specified LUT buffer area according to a specified function. The
functions available are: M_LOG, M_EXP, M_SIN, M_COS, M_TAN,
and M_QUAD. The LUT index and the start x value are used as
the x value in the equation.

The MimHistogramEqualize() command can be used to create
a LUT for intensity correction.

Color LUTs When generating data in a color LUT buffer, each row of each
color band is loaded with the same data. For example, for an
RGB LUT, the red, green, and blue bands of the LUT are loaded
with the same data.

To load each color band with different data, you would have to
generate the data into three separate one-dimensional LUT
buffers, then copy each buffer to the appropriate color band of
the color LUT buffer, using MbufCopyColor().

Loading LUTs with precalculated data

More complex LUTs There are several ways to generate more complex LUTs. Most
of these, however, involve pre-calculating the data, then loading
it into the LUT buffer:

■ Calculate data, using your Host system, and then load it into
the LUT, using MbufPut(), MbufPut1d(), or MbufPutColor().

■ Generate data into another data buffer, using MIL
commands other than MgenLutRamp() (for example, using
the MimArith() command and perhaps the histogram of the
image), then copy the data to the LUT buffer, using
MbufCopy() or MbufCopyColor().

■ Load previously saved LUT data from disk to the LUT buffer
(MbufLoad()). Note, when loading data from disk, there
should be enough data for each dimension of the LUT buffer.

■ Restore a previously saved LUT, using MbufRestore(). Note,
this command actually performs the LUT buffer allocation.

Using LUTs 299

Using LUTs

In MIL, LUTs can be used in different circumstances:

■ when performing certain processing operations

■ when displaying data (if supported by hardware)

■ when acquiring data from a digitizer (if supported by
hardware)

In each of these cases, if you want only a certain portion or
palette of the LUT to be used, allocate the palette as a child
buffer, and then specify the child LUT buffer identifier instead
of its parent.

Refer to the documentation accompanying your target system
device to determine under what circumstances it supports
LUTs.

Processing using LUTs

LUT buffer parameter A LUT buffer identifier parameter is included in all commands
that process using LUTs.

Displaying using LUTs

When you want to map a displayable image buffer through a
LUT prior to displaying it, you need to associate the LUT buffer
with the display, using MdispLut(). If this feature is supported
by the hardware, it allows you to adjust the color contrast and
intensity upon display without affecting the actual image data
in memory.

The LUT buffer must match the pixel depth, and should either
have the same number of color bands as the display or have a
single color band. In the case of a single band, the same data is
loaded into each of the display color LUTs.

300 Chapter 17: Lookup tables

Monochromatic
effect

If you associate a one-band LUT buffer with a display, the same
data is loaded in each output channel LUT, and the same data
is routed to each output channel LUT. This produces a
monochromatic effect when displaying a single-band image.

Pseudo-color effect If you associate a three-band color LUT buffer (RGB) with a
display, each LUT buffer color band is loaded in the
corresponding output channel LUT. When displaying a
single-band image, the same data is sent to each LUT. This
produces a pseudo-color effect on the display .

True color effect As mentioned above, if you associate a one-band LUT buffer
with a display, the same LUT buffer data is loaded in each of
the available output channel LUTs upon display. Although the
same LUT values are used, you obtain a true color effect upon
display of a color image because, typically, each image color
band does not contain the same data. You generally want this
image and LUT configuration when performing gamma
correction to compensate for your monitor.

Finally, as is expected, associating a three-band color LUT with
a display creates a true-color effect upon display of a color
image.

Displaying image buffers with an associated LUT is further
discussed in Chapter 18: Displaying an image.

LUTs and digitizers

Associating a LUT to
a digitizer

Using MIL, you can map data from a digitizer through LUTs
during image acquisition (if the device supports a LUT) . This
requires that you associate the LUT to the digitizer, using
MdigLut(). The LUT buffer must match the pixel depth of the
device. In addition, it should either have the same number of
color bands as the digitizer or have a single color band.

Chapter 18: Displaying an
image

This chapter discusses the display of image buffers, in
detail. It shows you how to display several images
simultaneously, and discusses some of the special effects
that can be applied to a displayable image buffer.

302 Chapter 18: Displaying an image

Displaying an image

MIL is platform independent. If your system is not using an
imaging board with a display section, MIL will use your VGA
for display purposes.

Displayable image
buffers

To display an image buffer, the buffer must have been allocated
with a displayable attribute (M_DISP). In addition, a display
must have been allocated, using MdispAlloc() or
MappAllocDefault(). Both the buffer and the display must have
been allocated on the same system.

Selecting a buffer for
display

Once the buffer and the display have been allocated, use
MdispSelect() to select the image buffer for display. The buffer
is displayed at the top-left corner of the screen or in a dedicated
window. If the specified image buffer is smaller in size than the
display, the border outside the buffer is blanked out. If the
specified image buffer is larger in size than the display, the
right and bottom part of the buffer, the part that exceeds the
display size, is not displayed.

If you want to display only one band of a three-band color buffer,
you must first allocate a two-dimensional displayable image
buffer and copy the required band into it using
MbufCopyColor(). You can then display this buffer.

Frame buffers This manual uses the term frame buffer to refer to display
memory. The number of available frame buffer surfaces
depends on the system you are using. Matrox imaging boards
that have a display section typically have two frame buffer
surfaces: a dedicated or dynamically allocated main (underlay)

Display configuration 303

surface and an overlay (VGA) surface. Separate VGA boards
typically have only one frame buffer surface, a VGA frame
buffer.

Display configuration

MIL supports various display configurations which use
combinations of imaging boards with display sections, separate
VGAs, and multiple screens. Some of these configurations
might not be supported on your system, therefore it is
important that you are aware of your system’s hardware
restrictions when allocating a display in MIL.

Single-screen configuration

The single-screen configuration is a display configuration in
which a single board is used both as a VGA to display the user
interface (for example, the Windows desktop) and for the
display of images. Both the user interface and images are
viewed on a single screen. When using an imaging board with
a display section in this configuration, the VGA controls the
overlay (VGA) frame buffer.

This configuration is supported on systems using an imaging
board with a display section and those which use a separate
VGA. In other words, this configuration is supported on all
systems.

Dual-screen configuration
The dual-screen configuration is a display configuration that
consists of a separate VGA board for main user-interface
display (for example, the Windows desktop) and a Matrox
imaging board for image display. This configuration is only
supported on systems using an imaging board with a display
section.

In this configuration, you can override the default and have
images displayed on the same screen as your Windows desktop,
so that the display is essentially running in a single-screen
configuration. To do so, set the initialization flag for
MdispAlloc() to M_WINDOWED; this operation is discussed
later.

304 Chapter 18: Displaying an image

❖ To configure your Matrox imaging board with a display
section in dual-screen mode, see the installation manual of
your board to install the board appropriately.

Multi-head display configuration

If you are running Windows NT, you can run in a multi-head
display configuration. This configuration is a multi-board
configuration that uses a combination of Matrox imaging
boards and/or Matrox MGA boards (up to 4 boards). A
multi-head display configuration creates one large Windows
desktop across multiple screens, in a horizontal, vertical, or
tiled fashion.

To run a multi-head display, click on List All Modes... in your
Windows Display utility (Control Panel) and choose a
dual-sized desktop area (for example, 3200x1200) from the list
of available resolutions. Note that in a multi-head display
configuration, your monitor settings should be compatible with
your least-capable monitor.

A Matrox imaging board
+ two MGA boards

A Matrox imaging board
+ four MGA boards

horizontal:
3200 x 1200

vertical:
1600 x 2400

tiled:
3200 x 2400

Display modes and the display window 305

Display modes and the display window

There are two display modes available, depending on your
system’s configuration:

■ Windowed mode (M_WINDOWED).

■ Non-windowed mode (M_NON_WINDOWED).

You must select one of these modes when allocating a display
with MdispAlloc(). These modes are described below.

Displaying in windowed-mode

A windowed-mode display (M_WINDOWED) is displayed in its
own window. The window is tracked and updated with the
image buffer selected on the display; that is, if the window
moves or is occluded, the window is updated with the image
buffer accordingly.

In windowed mode, multiple windowed-mode displays can be
allocated and selected for display; therefore, the display device
number should always be set to M_DEFAULT.

This mode is the default allocation mode in a single-screen
configuration (M_DEFAULT). If your board has a display
section and you are using it in a dual-screen configuration, you
can still choose not to use it, and display an image, even a live
grabbed image, in windowed mode. In this case, the display is
on your Windows desktop.

In windowed-mode, MIL does not communicate directly with
the VGA, but uses the normal Windows mechanisms (Windows
API functions and extensions) to display images. In other
words, it allocates image buffers in a Windows Device
Independent BITMAP (DIB or DirectDraw surface) and loads
LUT buffers into Windows logical palettes (refer to the
Microsoft SDK Programming Guide for information on
Windows DIBs, DirectDraw surface, and logical palettes).

Displaying in non-windowed mode
A non-windowed mode (M_NON_WINDOWED) display has no
window associated with it. You are responsible for moving and
tracking this type of display, if required.

306 Chapter 18: Displaying an image

The buffer, selected on the display, is displayed at the top-left
corner of the screen. On boards with two dedicated frame
buffers, this buffer is actually displayed from the main
(underlay) frame buffer surface, and is only visible wherever
the overlay (VGA) is set to the keying color (by default, 0).

In this mode, only one MIL display can be allocated and selected
for display. This is the default configuration in dual-screen
mode.

Display size and depth

In a single-screen configuration, you determine the display
format (size and depth) of the overlay frame buffers using the
Windows Display utility (Control Panel); in this case, the
display format of the MIL display has no effect and should be
set to M_DEFAULT. In dual-screen configuration, the display
format or video configuration format (VCF) of the selected
display determines the display format of the frame buffers.

If the display section has two dedicated frame buffers, a main
(underlay) frame buffer and an overlay (VGA) frame buffer,
both surfaces are configured to the same size.

In windowed mode, when you select a buffer to a display,
Windows will create a display of the same size as the buffer,
unless such a display cannot fit in the Windows desktop.

In non-windowed mode, MIL will create a display of the same
size as the display format of the frame buffers.

Displaying buffers of different data depths

Displayable buffers usually have a depth of 8 bits (or 3-band
8 bits in the case of color images). If you are in windowed mode,
you can display images of other depths (for example, 1-bit or
16-bit images). By using MdispControl() with the
M_VIEW_MODE control type, you can control the way such
buffers are actually being displayed.

The M_VIEW_MODE control type provides three modes of
displaying non 8-bit images:

■ The M_BIT_SHIFT setting will bit shift the pixel values of the
image by the specified number of bits upon updating the
display.

Removing a buffer from the display 307

■ The M_AUTO_SCALE setting remaps the pixel values to the
display such that the minimum and maximum values in the
image (not the full range of the buffer) are set to 0 and 255,
respectively. If the image buffer contains a single value, its
corresponding displayed value is determined by linearly
re-mapping the full range of the buffer (for example, 0 to 64K)
to 0 through 255.

■ The M_MULTI_BYTES setting is primarily useful when
grabbing from a multi-tap camera. This setting displays each
byte of the image in separate display pixels. For instance,
each pixel of a 16-bit image will occupy two consecutive
display pixels; each pixel of a 32-bit image will occupy four
consecutive display pixels.

The default display mode (M_DEFAULT) will automatically
select the appropriate mode, depending on the image depth.

Removing a buffer from the display

After displaying an image buffer, you can remove it from the
display and close the associated window (in windowed mode) or
leave the display blank (in non-windowed mode), using
MdispDeselect(). To display a different image buffer, you are not
required to remove the current buffer from the display;
selecting another buffer for display automatically updates the
display with the new buffer.

You can only remove the entire image buffer from the display.
That is, when displaying a parent buffer, you cannot remove
one of its child buffers from the display.

Once you have finished using a display, you should free it, using
MdispFree(). If a displayed buffer is freed, the buffer is either
automatically removed from the display (in windowed mode) or
is left blank (in non-windowed mode).

308 Chapter 18: Displaying an image

Displaying multiple buffers

MdispSelect() only allows you to view one buffer at a time in a
display. However, in windowed mode, you can use many
displays to view more than one buffer at a time. In
non-windowed mode, you can view more than one buffer at a
time using child buffers. For example, you can display the
source and destination buffers of an operation, using the
following steps:

1. Allocate a large displayable buffer (MbufAlloc2d() or
MbufAllocColor()). This buffer will be known as the parent
buffer.

2. Allocate two non-overlapping child buffers within it
(MbufChild2d() or MbufChildColor()).

3. Select the parent buffer for display (MdispSelect()).

4. Use one of the child buffers as the source image buffer and
the other as a destination image buffer of the operation.

An example... The following portion of MIL code shows how to display
multiple buffers in a single display. The required portion of the
cell image, cell.mim, is loaded into a child of a displayable buffer
and then used as the source of a binarizing operation. The result
is stored in another child of the same displayable buffer.

Displaying multiple buffers 309

���(KNG�PCOG��OOWNVFKU�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�FKURNC[�OQTG�VJCP�QPG�
��������������KOCIG�DWHHGT�CV�C�VKOG�QP�C�UKPING�FKURNC[��+V
��������������CNNQECVGU�C�FKURNC[CDNG�KOCIG�DWHHGT��CNNQECVGU�
��������������VYQ�EJKNF�DWHHGTU�HTQO�KV��CPF�VJGP�WUGU�VJG�EJKNF�
��������������DWHHGTU�CU�VJG�UQWTEG�CPF�FGUVKPCVKQP�QH�C�DKPCTK\KPI�
��������������QRGTCVKQP�
��
��������������0QVG��6JG�FKURNC[�YKNN�DG�\QQOGF�KH�VJG�U[UVGO	U�
��������������������FKURNC[�UWRRQTVU�KV�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J

���/+.�KOCIG�HKNG�PCOG����
�FGHKPG�+/#)'A(+.'�������������/A+/#)'A2#6*��EGNN�OKO��

���/+.�KOCIG�HKNG�URGEKHKECVKQPU����
�FGHKPG�+/#)'A9+&6*���������������.
�FGHKPG�+/#)'A*'+)*6��������������.
�FGHKPG�+/#)'A6;2'��������������.
/A705+)0'&
�FGHKPG�+/#)'A6*4'5*1.&A8#.7'�����.
�FGHKPG�<11/A8#.7'��������������.

XQKF�OCKP
XQKF��
]
���/+.A+&�/KN#RRNKECVKQP�����#RRNKECVKQP�KFGPVKHKGT�����������������
����������/KN5[UVGO����������5[UVGO�KFGPVKHKGT�����������������������
����������/KN&KURNC[���������&KURNC[�KFGPVKHKGT���������������������
����������/KN2CTGPV+OCIG�����+OCIG�DWHHGT�KFGPVKHKGT����������������
����������/KN5TE+OCIG��������5QWTEG�KOCIG�DWHHGT�KFGPVKHKGT����������
����������/KN&UV+OCIG��������&GUVKPCVKQP�KOCIG�DWHHGT�KFGPVKHKGT�����

������#NNQECVG�VJG�FGHCWNVU����
����/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
������������������������������/KN&KURNC[��/A07..��/A07..��

������#NNQECVG�C�FKURNC[�KOCIG�DWHHGT����
����/DWH#NNQE�F
/KN5[UVGO��+/#)'A9+&6*����+/#)'A*'+)*6�
���������������+/#)'A6;2'��/A+/#)'
/A&+52
/A241%���/KN2CTGPV+OCIG��
��
������#NNQECVG�VYQ�EJKNF�DWHHGTU�HTQO�VJG�FKURNC[CDNG�RCTGPV�DWHHGT����
����/DWH%JKNF�F
/KN2CTGPV+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5TE+OCIG���
����/DWH%JKNF�F
/KN2CTGPV+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN&UV+OCIG��
���������������
������%NGCT�VJG�RCTGPV�DWHHGT�����
����/DWH%NGCT
/KN2CTGPV+OCIG���.��

������&KURNC[�VJG�RCTGPV�DWHHGT����
����/FKUR5GNGEV
/KN&KURNC[��/KN2CTGPV+OCIG��

��
EQPV��������

310 Chapter 18: Displaying an image

������.QCF�VJG�GPVKTG�UQWTEG�KOCIG�KPVQ�VJG�UQWTEG�EJKNF�DWHHGT�����
����/DWH.QCF
+/#)'A(+.'��/KN5TE+OCIG��

������$KPCTK\G�VJG�UQWTEG�EJKNF�DWHHGT�KPVQ�VJG�FGUVKPCVKQP�EJKNF�DWHHGT�����
����/KO$KPCTK\G
/KN5TE+OCIG��/KN&UV+OCIG��/A)4'#6'4A14A'37#.�
���������������+/#)'A6*4'5*1.&A8#.7'��/A07..��

������4GRQTV�QP�VJG�*QUV�UETGGP�YJCV�KU�DGKPI�FKURNC[GF����
����RTKPVH
�#�DKPCTK\KPI�QRGTCVKQP�YCU�RGTHQTOGF�QP�VJG�EJKNF�DWHHGT�QP�VJG>P���
����RTKPVH
�NGHV�UKFG�QH�VJG�FKURNC[��CPF�VJG�TGUWNV�KU�DGKPI�FKURNC[GF�KP>P���
����RTKPVH
�VJG�EJKNF�DWHHGT�QP�VJG�TKIJV�UKFG�QH�VJG�FKURNC[�>P���
����RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P>P���
����IGVEJCT
��

������4GRQTV�QP�VJG�*QUV�FKURNC[�YJCV�KU�DGKPI�FKURNC[GF����
����RTKPVH
�&KURNC[�\QQOGF�D[��NF�KP�:�CPF�;�
KH�UWRRQTVGF��>P���<11/A8#.7'��

������<QQO�DQVJ�EJKNF�DWHHGTU�D[�\QQOKPI�VJG�FKURNC[����
����/FKUR<QQO
/KN&KURNC[��<11/A8#.7'��<11/A8#.7'��

������9CKV�HQT�C�MG[���
����RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
����IGVEJCT
��

������%NQUG�VJG�FKURNC[����
����/FKUR&GUGNGEV
/KN&KURNC[��/+.2CTGPV+OCIG��

������(TGG�CNN�CNNQECVKQPU����
����/DWH(TGG
/KN&UV+OCIG��
����/DWH(TGG
/KN5TE+OCIG��
����/DWH(TGG
/KN2CTGPV+OCIG��
����/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

Panning, scrolling, and zooming 311

Panning, scrolling, and zooming

At times, your image buffer might be larger than the display,
or have details that are too fine or too small to see. Display
effects can be associated with the display to view specific parts
of the image. These effects are panning, scrolling, and zooming.
Note that these are only display effects; they do not affect the
content of the image buffer.

Panning and scrolling Panning and scrolling displace an image horizontally or
vertically, respectively, on the display. You can pan and scroll
your image to display the appropriate location at the top-left
corner of the window (in windowed mode) or screen (in
non-windowed mode), using MdispPan(). Note, in
non-windowed mode, to display the image at another location
on the display, you must create a large displayable image buffer,
display it, and then allocate and use a child buffer at the
required location on the display.

Zooming Zooming is the horizontal and/or vertical replication of each
pixel by the given integer factor. You can zoom the display by
an integer factor using MdispZoom(). Note that zooming by a
large factor might cause a "blocky" effect. In windowed mode,
you can also reduce the size of an image on the display. To do
so, pass a negative zoom factor to MdispZoom(); this
functionality is not supported in non-windowed mode.

In the mmultdis.c example, the source and destination image
buffer dimensions are rather small, so the parent buffer is
zoomed by a factor of 2. This is achieved with the line following
the binarizing operation:

MdispZoom(MilDisplay, ZOOM_VALUE, ZOOM_VALUE);

312 Chapter 18: Displaying an image

Annotating the displayed image
non-destructively

In windowed mode In windowed mode, you can annotate the displayed image
non-destructively using MIL’s overlay-display mechanism.

To make use of this functionality in windowed mode, do the
following:

1. Enable the overlay-display mechanism, using the following
function call:

/FKUR%QPVTQN
&KURNC[+&��/A9+0&19A184A94+6'��/A'0#$.'�

2. Select a buffer to the display:

/FKUR5GNGEV
&KURNC[+&��+OCIG$WH+F�

Since the overlay-display mechanism is enabled, this will
not only display the selected image, but it will associate a
temporary overlay buffer with the display. This overlay
buffer will annotate the underlying image with an effect
called keying, which makes portions of the overlay buffer
transparent so that underlying areas of the displayed image
show through. Therefore, anything that you draw in this
buffer will annotate the image selected to the display. Note
that when you select another image to the display, another
temporary overlay buffer is created.

3. To access the overlay buffer, use the following call to
determine the identifier of the buffer:

/FKUR+PSWKTG
&KURNC[+&��/A9+0&19A184A$7(A+&���1XGTNC[$WHHGT+&�

This overlay buffer will have the same number of bands as
the buffer selected to the display.

4. Draw into the display’s overlay buffer with the appropriate
graphics function (Mgra...()). For example, to write text in
the overlay buffer, use MgraText().

In non-windowed
mode

To make use of this functionality in non-windowed mode, follow
the same steps. However, in this mode, when the
overlay-display mechanism is enabled, the display is associated
with a temporary overlay buffer immediately. This overlay

Annotating the displayed image non-destructively 313

buffer is also the same size as the display. When selecting
another buffer to the display, the overlay buffer remains the
same.

Using the overlay If available, whenever it is most efficient, both the underlay
and overlay frame buffer surfaces are used to annotate the
displayed image.

If your board does not have two frame buffer surfaces, a
simulated version of the overlay effect is produced. This means
that the display update will be slower and a continuous grab
operation will appear only in pseudo-live, due to the additional
operation needed to combine the grabbed image with the
overlay buffer. However combined, the actual buffer selected on
the display is not overwritten by the content of the overlay
buffer.

Keying When allocating a display (MdispAlloc()), keying is
automatically enabled, if required, and the keying color is
automatically set to a default color (generally appropriate).

If required, select another keying color with
MdispOverlayKey(). If you are using an 8-bit display resolution
(256 colors), you can set the color to a value between 0 and 255.
If you are using a non 8-bit display resolution (15-bit, 16-bit,
24-bit, or 32-bit), call the macro M_RGB888 and specify the RGB
value, for example, as follows:

/FKUR1XGTNC[-G[
���� /A4)$���
����������������

When the overlay buffer is created, it is cleared to the effective
keying color. If the keying color is changed after the overlay
buffer is created, it will not be cleared.

The following portion of MIL code shows the enabling of the
overlay on the display, the inquiring of the overlay buffer
identifier, and the display of text in the overlay (see also,
mdispovr.c). It assumes that an image has been selected to the
display.

314 Chapter 18: Displaying an image

Forcing the display in
the overlay

Although not commonly done, if using an imaging board that
has a display section, you can allocate a MIL display that is
only in the overlay (VGA) frame buffer surface, if the display is
allocated with the M_OVR attribute. When in non-windowed
mode and using an imaging board with a display section, your
buffer must be allocated with an M_IMAGE+M_OVR+... attribute
before it can be selected to an M_OVR display.

Using GDI annotations
If the display has been selected, you can also annotate the
displayed buffer using Windows GDI annotations. Use one of
the following methods:

■ Allocate a Windows display device context (DC) for drawing
in the displayed image buffer. To do so, use MbufControl()
with M_WINDOW_DC_ALLOC. Inquire the identifier of this
context using MbufInquire() with M_WINDOW_DC. Then, use
this DC with Windows GDI function calls.

The buffer which you are annotating must be internally
stored in M_DIB or M_DDRAW format, and cannot be a child
buffer.

You can create a DC for either the image buffer or the overlay
buffer of the display. Note that if you create a DC for the
image buffer and then draw using this DC, drawing will be
destructive (that is, the data of the image buffer is actually
changed).

���'PCDNG�QXGTNC[�GHHGEVU�QP�VQR�QH�VJG�FKURNC[�DWHHGT����
�/FKUR%QPVTQN
/KN&KURNC[��/A9+0&19A184A94+6'��/A'0#$.'��

���+PSWKTG�VJG�KFGPVKHKGT�QH�VJG�QXGTNC[�DWHHGT�CUUQEKCVGF�YKVJ�VJG
���FKURNC[GF�DWHHGT�
���
�/FKUR+PSWKTG
/KN&KURNC[��/A184A$7(A+&���/KN1XGTNC[+OCIG��

���2TKPV�C�UVTKPI�KP�VJG�QXGTNC[�DWHHGT�VQ�CRRGCT�QXGT�VJG�FKURNC[GF
���KOCIG�DWHHGT��
���
�/ITC6GZV
/A&'(#7.6��/KN1XGTNC[+OCIG������������/+.�1XGTNC[�6GZV������

Annotating the displayed image non-destructively 315

When either buffer is changed, signal MIL by calling
MbufControl(..., M_MODIFIED,...).

This method avoids a flickering display when drawing.

■ Inquire the display’s window handle using MdispInquire()
with M_WINDOW_HANDLE. Pass the window handle to the
Windows GetDC() function to get a Windows display device
context (DC). Then, paint the annotations with GDI functions
from a function hooked to the display update event
(MdispHookFunction()), that is, paint each time the MIL
display is modified.

Note that drawing using this method is non-destructive (that
is, the actual data of the image buffer is not changed).

The following portion of MIL code shows the creation of the
device context of the overlay buffer, the inquiring of the device
context, and the drawing and writing in the overlay buffer (see
also, mdispovr.c).

316 Chapter 18: Displaying an image

�*&%���J%WUVQO&%�
�*2'0��JRGP��JRGP1NF�
�EJCT��EJ6GZV=��?�

���%TGCVG�C�FGXKEG�EQPVGZV�VQ�FTCY�KP�VJG�QXGTNC[�DWHHGT�YKVJ�)&+����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A9+0&19A&%A#..1%��/A&'(#7.6��

���+PSWKTG�VJG�FGXKEG�EQPVGZV����
�J%WUVQO&%���

*&%�/DWH+PSWKTG
/KN1XGTNC[+OCIG��/A9+0&19A&%��/A07..���
�KH�
J%WUVQO&%�
�]
�������%TGCVG�C�DNWG�RGP����
�����JRGP�%TGCVG2GP
25A51.+&�����4)$
�������������
�����JRGP1NF���5GNGEV1DLGEV
J%WUVQO&%�JRGP��
���������
�������&TCY�C�ETQUU�KP�VJG�QXGTNC[�DWHHGT����
�����/QXG6Q'Z
J%WUVQO&%���+OCIG*GKIJV���07..��
�����.KPG6Q
J%WUVQO&%�+OCIG9KFVJ�+OCIG*GKIJV����
�����/QXG6Q'Z
J%WUVQO&%�+OCIG9KFVJ�����07..��
�����.KPG6Q
J%WUVQO&%�+OCIG9KFVJ���+OCIG*GKIJV��
���������
�������9TKVG�VGZV�KP�VJG�QXGTNC[�DWHHGT����
�����UVTER[
EJ6GZV���)&+�1XGTNC[�6GZV����
�����5GV6GZV%QNQT
J%WUVQO&%�4)$
������������
�����6GZV1WV
J%WUVQO&%�+OCIG9KFVJ������+OCIG*GKIJV������EJ6GZV�
�������UVTNGP
EJ6GZV���
�����5GV6GZV%QNQT
J%WUVQO&%�4)$
������������
�����6GZV1WV
J%WUVQO&%�+OCIG9KFVJ�������+OCIG*GKIJV������EJ6GZV�
�������UVTNGP
EJ6GZV���������

�������&GUGNGEV�CPF�FGUVTQ[�VJG�DNWG�RGP����
�����5GNGEV1DLGEV
J%WUVQO&%�JRGP1NF��
�����&GNGVG1DLGEV
JRGP��
�_
����
���&GNGVG�ETGCVGF�FGXKEG�EQPVGZV����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A9+0&19A&%A(4''��/A&'(#7.6��
������
���5KIPCN�/+.�VJCV�VJG�QXGTNC[�DWHHGT�YCU�OQFKHKGF����
�/DWH%QPVTQN
/KN1XGTNC[+OCIG��/A/1&+(+'&��/A&'(#7.6��

Displaying an image in a user-defined window 317

Displaying an image in a user-defined
window

Selecting a buffer into a
specific display window

Under Windows, you can display a specific image buffer
in a user-defined window, using MdispSelectWindow(). For best
results, the display must have the same resolution as the image
buffer depth. The window must be created with the Windows
API functions. If the defined window is of different dimension
than the image buffer, any excess window area will be left
untouched or any excess image area will be cropped.

By default, under Windows, images are displayed in the default
window, using MdispSelect(). This function dynamically creates
a window in the Windows desktop for the specified display, if
the display is not already selected. The created window respects
any window control that has been associated with the display
using an Mdisp...() function.

Using the MdispSelectWindow() function
The MdispSelectWindow() function is similar to MdispSelect(),
except that it allows you to specify a handle to a user-defined
window, rather than displaying into a MIL created window.
This window is automatically refreshed when the display is
modified (for example, when the image data is modified). You
can use MdispDeselect() to deselect the image from the display.

318 Chapter 18: Displaying an image

An example... The following portion of MIL code from the mwindisp.c example
shows you how to display an image in a user-defined window,
grab into such a window, and remove the image from the
display.

�

���(KNG�PCOG��OYKPFKUR�E
��
���5[PQRUKU���6JKU�RTQITCO�FKURNC[U�C�YGNEQOKPI�OGUUCIG�KP�C�WUGT�
��������������FGHKPGF�YKPFQY�CPF�ITCDU�KPVQ�KV�
KH�UWRRQTVGF���+V�WUGU�
��������������VJG�/+.�U[UVGO�CPF�VJG�/FKUR5GNGEV9KPFQY
��HWPEVKQP�
��������������VQ�FKURNC[�VJG�/+.�DWHHGT�KP�C�WUGT�ETGCVGF�ENKGPV�YKPFQY��
��
��������������7UG�/FKUR&GUGNGEV
��VQ�TGOQXG�VJG�UGNGEVGF�KOCIG�DWHHGT�
��������������HTQO�VJG�FKURNC[�
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCNNQE�J
�KPENWFG��YKPFQYU�J
�KPENWFG��OKN�J
�KPENWFG��OYKPOKN�J
�KPENWFG��YKPIFK�J

�FGHKPG�$7(('45+<':�����������
�FGHKPG�$7(('45+<';�����������
�FGHKPG�$7(('45+<'$#0&������
�FGHKPG�/#:A2#6*A0#/'A.'0�����

���2TQVQV[RGU���
XQKF�/KN#RRNKECVKQP
*90&�7UGT9KPFQY*CPFNG��
XQKF�/KN#RRNKECVKQP2CKPV
*90&�7UGT9KPFQY*CPFNG��
���
���
��0COG����������/KN#RRNKECVKQP
�
�
��U[PQRUKU������6JKU�HWPEVKQP�KU�VJG�EQTG�QH�VJG�/+.�CRRNKECVKQP�VJCV
����������������YKNN�DG�GZGEWVGF�YJGP�VJG��5VCTV��OGPW�KVGO�QH�VJKU
����������������9KPFQYU�RTQITCO�YKNN�DG�UGNGEVGF��5GG�9KP/CKP
��DGNQY
����������������HQT�VJG�RTQITCO�GPVT[�RQKPV�
�
����������������+V�YKNN�WUG�/+.�VQ�FKURNC[�C�YGNEQOKPI�OGUUCIG�KP�VJG�
����������������URGEKHKGF�WUGT�YKPFQY�CPF�VQ�ITCD�KP�KV�KH�KV�KU�UWRRQTVGF�
����������������D[�VJG�VCTIGV�U[UVGO�
����������������
��

���
EQPV����

Displaying an image in a user-defined window 319

XQKF�/KN#RRNKECVKQP
*90&�7UGT9KPFQY*CPFNG�
]
������/+.�XCTKCDNGU���
����/+.A+&�/KN#RRNKECVKQP������/+.�#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO�����������/+.�5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[����������/+.�&KURNC[�KFGPVKHKGT���������
����������/KN&KIKVK\GT��������/+.�&KIKVK\GT�KFGPVKHKGT�������
����������/KN+OCIG������������/+.�+OCIG�DWHHGT�KFGPVKHKGT����
����������
����NQPI�$WH5K\G:�
����NQPI�$WH5K\G;�
����NQPI�$WH5K\G$CPF�

������#NNQECVG�C�/+.�CRRNKECVKQP����
����/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��

������#NNQECVG�C�/+.�U[UVGO����
����/U[U#NNQE
/A&'(A5;56'/A6;2'��/A&'8���/A&'(#7.6���/KN5[UVGO��

������#NNQECVG�C�/+.�FKURNC[����
����/FKUR#NNQE
/KN5[UVGO��/A&'8���/A&'(A&+52.#;A(14/#6��/A&'(#7.6
�����/KN&KURNC[��

������#NNQECVG�C�/+.�FKIKVK\GT�KH�UWRRQTVGF�CPF�UGVU�VJG�VCTIGV�KOCIG�UK\G���
����KH�
/U[U+PSWKTG
/KN5[UVGO��/A&+)+6+<'4A07/��/A07..�� ���
����]
������/FKI#NNQE
/KN5[UVGO��/A&'8���/A&'(A&+)+6+<'4A(14/#6��/A&'(#7.6�
��������/KN&KIKVK\GT��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:������$WH5K\G:��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;������$WH5K\G;��
������/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A$#0&���$WH5K\G$CPF��
����_
����GNUG
����]
������/KN&KIKVK\GT���/A07..�
������$WH5K\G:�������$7(('45+<':�
������$WH5K\G;�������$7(('45+<';�
������$WH5K\G$CPF����$7(('45+<'$#0&�
����_
������
������&Q�PQV�CNNQY�GZCORNG�VQ�TWP�KP�FWCN�UETGGP�OQFG����������������
������KH�
/FKUR+PSWKTG
/KN&KURNC[��/A&+52.#;A/1&'��/A07..�����/A9+0&19'&��������������
����]
������/GUUCIG$QZ
�����6JKU�GZCORNG�FQGU�PQV�TWP�KP�FWCN�UETGGP�OQFG���
��������������������/+.�CRRNKECVKQP�GZCORNG��
�������������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���
������IQVQ�GPF�
����_

��
EQPV����

320 Chapter 18: Displaying an image

������#NNQECVG�C�/+.�DWHHGT����
����/DWH#NNQE%QNQT
/KN5[UVGO��$WH5K\G$CPF��$WH5K\G:��$WH5K\G;���
/A705+)0'&�
����
/KN&KIKVK\GT!�/A+/#)'
/A&+52
/A)4#$���/A+/#)'
/A&+52����/KN+OCIG��

������%NGCT�VJG�DWHHGT���
����/DWH%NGCT
/KN+OCIG����

������5GNGEV�VJG�/+.�DWHHGT�VQ�DG�FKURNC[GF�KP�VJG�WUGT�URGEKHKGF�YKPFQY���
����/FKUR5GNGEV9KPFQY
/KN&KURNC[��/KN+OCIG��7UGT9KPFQY*CPFNG��

������2TKPV�C�UVTKPI�KP�VJG�KOCIG�DWHHGT�WUKPI�/+.�
������0QVG��#HVGT�C�/+.�EQOOCPF�YTKVKPI�KP�C�/+.�DWHHGT��VJG�FKURNC[�
������YKNN�CWVQOCVKECNN[�WRFCVG�VJG�YKPFQY�IKXGP�VQ�/FKUR5GNGEV9KPFQY
��
�����

����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;���
�������������������������������
����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;��
���
���������9GNEQOG�VQ�/+.��������
����/ITC6GZV
/A&'(#7.6��/KN+OCIG��
$WH5K\G:�������$WH5K\G;��
���
�������������������������������

������9KPFQYU�EQFG�VQ�QRGP�C�OGUUCIG�DQZ�VQ�YCKV�C�MG[����
����/GUUCIG$QZ
�����9GNEQOG�VQ�/+.�������YCU�RTKPVGF��
�����������������/+.�CRRNKECVKQP�GZCORNG��
����������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���

������)TCD�KP�VJG�WUGT�YKPFQY�KH�UWRRQTVGF�D[�VJG�U[UVGO����
����KH�
/KN&KIKVK\GT�
����]
����������)TCD�EQPVKPWQWUN[����
��������/FKI)TCD%QPVKPWQWU
/KN&KIKVK\GT��/KN+OCIG��

����������9KPFQYU�EQFG�VQ�QRGP�C�OGUUCIG�DQZ�VQ�YCKV�C�MG[����
��������/GUUCIG$QZ
���%QPVKPWQWU�ITCD�KP�RTQITGUU��
��������������������/+.�CRRNKECVKQP�GZCORNG��
�������������������/$A#22./1&#.�^�/$A+%10':%.#/#6+10���
�������������������
����������5VQR�EQPVKPWQWU�ITCD����
��������/FKI*CNV
/KN&KIKVK\GT��
����_

������&GUGNGEV�VJG�/+.�DWHHGT�HTQO�VJG�FKURNC[����
����/FKUR&GUGNGEV
/KN&KURNC[��/KN+OCIG��

������(TGG�CNNQECVGF�QDLGEVU����
����/DWH(TGG
/KN+OCIG��
�
�GPF�

���/FKUR(TGG
/KN&KURNC[��
���KH�
/KN&KIKVK\GT�
������/FKI(TGG
/KN&KIKVK\GT��
���/U[U(TGG
/KN5[UVGO��
���/CRR(TGG
/KN#RRNKECVKQP��
_

LUTs and changing the displayed colors or gray levels 321

LUTs and changing the displayed colors or
gray levels

In general, when displaying in a 256-color display resolution,
images are mapped through physical output LUTs on display.
These LUTs are available and programmable so that you can
achieve the best display effect for your images since not all
colors are available in this resolution. Note that when
displaying in a non-256-color display resolution, MIL can
simulate a display LUT in software for 8-bit images.

How images are
mapped through the
physical output LUTs

By default in windowed mode, when displaying 8-bit images,
MIL tries to use the image’s pixel values to address the physical
output LUTs. When displaying color images, MIL will search
the physical output LUTs for the entry that best matches the
color of the image’s pixels being displayed. It then creates a
translation table for the image. This table is used to convert
each pixel value upon display to a value that will address the
appropriate physical output LUT entry.

In non-windowed mode, MIL uses the image’s pixel values to
address the physical output LUTs.

Palette versus physical
output LUTs

The actual programming of the physical output LUTs is
handled by MIL in one of two ways. In windowed mode, MIL
indirectly programs the physical output LUTs through the use
of a Windows palette. In non-windowed mode, MIL programs
the physical output LUTs directly.

Default palette settings
in windowed mode

By default in windowed mode, MIL provides a good default
logical palette for the realization of the physical output LUTs
(MdispLut(..., M_DEFAULT, ...)). MIL takes into consideration
the displayed image, the Windows display driver used, and the
VGA physical output LUT capabilities, and produces the best
"portability versus visual quality" compromise possible.

Default physical output
LUT settings in
non-windowed mode

By default in non-windowed mode, MIL generates a ramp in
the physical output LUTs, which uses the full range of available
intensities (MdispLut(..., M_DEFAULT, ...)). This type of
mapping is also referred to as a pass-through LUT mapping (or
transparent LUT mapping).

322 Chapter 18: Displaying an image

Changing the default LUT values
In general, if the default LUT values are not appropriate for
your application, you can change the LUT values to control the
displayed colors or gray levels of an image. Some situations that
might require special display effects are:

■ When displaying monochrome images, you might want to
view the images with each gray intensity in a different color.
For example, you can associate specific colors to ranges of
temperatures obtained by an infra-red camera.

■ When displaying monochrome images, you might want to
invert the image values. For example, when grabbing a film
negative, you can display the film as it will be printed.

■ In windowed mode, when displaying color images under a
256-color display driver resolution, you might want to reduce
the loss of color resolution. For example, when displaying a
color image with many shades of red, you might want to select
a LUT so that all shades of the image are represented.

To change the LUT values, associate a pseudo-color or custom
LUT buffer to the display with MdispLut() or to the displayed
image buffer with MbufControl(). Please note that LUT buffers
used for display have the following restrictions:

■ If the LUT buffer values are changed while the image is
selected on the display, the changes will not take effect.

■ The LUT buffer will not be used when displaying a 3-band
8-bit image under a non-8-bit display resolution.

■ A LUT buffer cannot be associated to a display that belongs
to a system using an imaging board with an on-board display
section, unless that display has been allocated with the
M_OVR initialization parameter.

■ The LUT buffer must have one or three bands. Note that the
number of LUT buffer entries must be the same as the
maximum number of intensities that can be represented in
the displayed buffer. In other words, if you want to invert an
8-bit grayscale image (that is, an image that can have 256
intensities), your LUT must also have 256 entries.

LUTs and changing the displayed colors or gray levels 323

You can use MdispInquire() to obtain information about the
physical output LUTs of a display.

Associating a
pseudo-color LUT

To view an 8-bit image buffer with each gray intensity in a
different color, associate the default pseudo-color LUT buffer
(M_PSEUDO) with the display of the image. In windowed mode,
the data is loaded in each component of the logical palette. In
non-windowed mode, the data is loaded into the physical output
LUTs of the display.

A 1-band custom LUT
buffer

To invert the values of an 8-bit image on display, you would need
physical output LUTs that map each value to the maximum
pixel value minus the current pixel value. To do so:

1. Allocate a one-band LUT buffer (MbufAlloc1d()).

2. Generate the data into the buffer, using MgenLutRamp() or
load the data into it, using MbufPut(). The depth of the LUT
buffer data must be 8-bits.

3. Associate the LUT buffer with the required display using
MdispLut(), or to a particular image with MbufControl().

If you associate a one-band LUT buffer with the display or
buffer in windowed mode, the same data is loaded into each
component of the logical palette. In non-windowed mode, the
same data is loaded in each available display physical output
LUT.

LR0LR0
L0L0 LG0LG0

LB0LB0

LR1LR1
L1L1 LG1LG1

LB1LB1

LR255LR255L255L255 LG255LG255
LB255LB255

...

...
...
... ...

...
...
...

LUT R

LOGICAL PALETTE/
OUTPUT LUTs

LOGICAL PALETTE/
OUTPUT LUTs

LUT M

1-band LUT buffer1-band LUT buffer

LUT G LUT B

8/

L1L1

324 Chapter 18: Displaying an image

A 3-band custom LUT
buffer

To reduce the loss of color resolution when displaying an image
with a specific range of colors, you would need physical output
LUTs that contain all the required colors so that when Windows
creates a translation table for the image, most colors are
mapped to their exact values. Follow the steps for a 1-band LUT
buffer, except allocate and load a 3-band LUT buffer instead.
When in windowed mode, each band of the LUT buffer is loaded
into its corresponding component of the logical palette. In
non-windowed mode, each band is loaded in a different display
physical output LUT (if a different LUT is available for each
display channel).

Different display architectures in windowed mode

Although all MIL display windows have a similar appearance,
MIL uses one of three different architectures to make an image
buffer visible through a display window. The particular
architecture determines the behavior of the display window
under specific circumstances. For example, the display
architecture will determine how a continuous grab operation
will behave when overlapped by another window. Similarly, the
display architecture will determine whether or not the Host
CPU is used to overlay graphical annotations or images on top
of the buffer selected for display.

LR0LR0LR0LR0 LG0LG0LG0LG0 LB0LB0 LB0LB0

LR1LR1 LR1LR1LG1LG1 LG1LG1
LB1LB1 LB1LB1

LR255LR255LR255LR255 LG255LG255
LG255LG255LB255LB255 LB255LB255

...

...
...
...

...

...
...
...

...

...
...
...

LUT RLUT R

LOGICAL PALETTE/
OUTPUT LUTs

LOGICAL PALETTE/
OUTPUT LUTs

3-band LUT buffer3-band LUT buffer

LUT GLUT G LUT BLUT B

8/

8/

8/

Different display architectures in windowed mode 325

The three display architectures are listed and discussed below.

■ Underlay display

■ Overlay/ regular display

■ DirectDraw underlay-surface display

❖ The type of display architecture that can be used depends on
the available hardware. Keep in mind that MIL
automatically selects the most appropriate display
architecture when a display is allocated (MdispAlloc()) with
the default (M_DEFAULT) initialization flag.

Underlay display architecture
Under the underlay display architecture, the Windows desktop
sits in a dedicated overlay frame buffer surface, whereas the
selected MIL buffer(s) sits in a dedicated underlay frame buffer
surface. The data of the buffer, selected to a windowed display,
is visible through a special hardware keying mechanism.

An underlay display architecture is used only when the video
frame buffer is physically split into a main (underlay) and
overlay frame buffer. The display resolution sets the size of the
overlay and the underlay frame buffer surfaces that are used
for on-screen purposes. Accordingly, the amount of video
memory required is twice that of the current display resolution.
This display architecture is used only when it is more efficient
to do so.

The underlay display architecture is used only on Matrox
Imaging frame grabbers such as Matrox Corona, Matrox
Genesis, and Matrox Pulsar frame grabbers.

Under this display architecture, there are a number of
important features:

■ MdigGrabContinuous() is always performed live with no
Host CPU intervention, irrespective of overlapping of the
display windows.

■ Graphics and video overlay on top of the selected buffer is
done with no Host CPU intervention.

■ MdispLut() is usually not supported.

326 Chapter 18: Displaying an image

■ MdispZoom() is not accelerated by the hardware, which
means that it is emulated by the software.

■ The underlay surface data-format usually follows the
Windows display resolution. This means that the underlay
surface data-format is typically in RGB format.

MIL will choose the most appropriate display architecture at
the time of display allocation (MdispAlloc()). Still, you can use
the M_WINDOWED + M_UND initialization flag to force this
dedicated underlay display architecture, provided that you
have the appropriate hardware.

Overlay/regular display architecture
Under a overlay/regular display architecture, image buffers are
allocated in a Windows Device Independent Bitmap (DIB or
Direct Draw surface) and then Windows handles their display.
In addition, LUT buffers are loaded into logical Windows
palettes.

An overlay/regular display architecture uses the regular
Windows mechanisms (Windows API function and extensions)
to display images. In this case, the video frame buffer does not
have to meet any special conditions.

Under this display architecture, there are a number of
important features:

■ MdigGrabContinuous() is performed live with no Host CPU
intervention when (1) the display format is supported by the
frame grabber, (2) the display window is not overlapped by
another window, and (3) when there is no overlay. Otherwise,
when these conditions are not met, MIL automatically
switches to a pseudo-live grab, which uses Host CPU to
emulate the grab operation to the display.

■ Graphics and video overlay on top of the selected buffer is
emulated by the software. Consequently, the graphics
overlay makes use of the Host CPU.

■ MdispLut() is supported. Therefore, it is possible to perform
a continuous grab operation in pseudo-color.

■ MdispZoom() is not accelerated by the hardware, which
means that it is emulated by the software.

Different display architectures in windowed mode 327

Although MIL will choose the most appropriate display
architecture, at the time of display allocation (MdispAlloc()),
you can use the M_WINDOWED + M_OVR initialization flag to
force this overlay display architecture.

DirectDraw underlay-surface display architecture
The DirectDraw underlay display architecture is similar to the
underlay display architecture described above. The display
resolution sets the size of the overlay frame buffer surface.
However, under the DirectDraw underlay-surface display
architecture, the VGA display adapter dynamically allocates
an underlay surface that is of the same size as the buffer
selected to the display. Accordingly, the amount of video
memory used for on-screen purposes depends on the size and
depth of the image buffer selected for display.

A DirectDraw underlay-surface display architecture can only
be used when the VGA display adapter can dynamically
allocate an underlay surface, and is only used when it is more
efficient to do so.

The DirectDraw underlay-surface display architecture is
currently available when using a Matrox frame grabber with a
Matrox G200 or Matrox G400 graphics controller such as the
Matrox Orion frame grabber. The Cyrix processor’s companion
chip on the Matrox 4Sight imaging platform also supports the
DirectDraw underlay-surface display architecture.

Under this DirectDraw underlay surface display architecture,
there are a number of important features:

■ MdigGrabContinuous() is always performed live with no
Host CPU intervention, irrespective of overlapping of the
display windows.

■ Graphics and video overlay on top of the selected buffer is
done with no Host CPU intervention.

■ MdispLut() is not supported.

■ MdispZoom() is accelerated by the hardware, which means
that there is no Host CPU intervention.

328 Chapter 18: Displaying an image

■ The underlay surface data format is usually YUV. Typically,
this is an advantage because it allows true color images to be
displayed even in 256 colors display resolution (if there are
no hardware restrictions which apply).

MIL will choose the most appropriate display architecture at
the time of display allocation (MdispAlloc()). Still, you can use
the M_WINDOWED + M_DDRAW_UND initialization flag to force
this DirectDraw underlay-surface display architecture,
provided that you have the appropriate hardware.

Advanced controls for windowed mode

Display types in windowed mode
In windowed mode, when allocating a display (MdispAlloc()),
you can specify how image buffers are displayed in a 256-color
display resolution. There are three types of display
initialization:

■ Enhanced (M_DISPLAY_ENHANCED,
M_DISPLAY_8_ENHANCED, M_DISPLAY_24_ENHANCED)

■ Basic with optimization (M_DISPLAY_BASIC,
M_DISPLAY_8_BASIC, M_DISPLAY_24_BASIC)

■ Basic without optimization (M_DISPLAY_WINDOWS,
M_DISPLAY_24_WINDOWS)

Select both an M_DISPLAY_8_XXX and M_DISPLAY_24_XXX
display initialization to independently control the display of
8-bit and 3-band 8-bit images.

Enhanced When using an enhanced initialization, the MIL display calls
the Microsoft Video for Windows DrawDIBDraw() function to
display image buffers. This function’s use of dithering
particularly improves the display of 3-band 8-bit images under
256-color display resolution.

Note, with enhanced initializations, the actual display color
values are selected, on a best-match basis, from the logical
palette’s available display colors. Therefore, effects such as
those of an inverse LUT are not possible. This is the default
display initialization for an 8-bit 3-band image.

Advanced controls for windowed mode 329

Basic with optimization When using a basic with optimization initialization, the MIL
display calls the Windows API StretchDIBits(), StretchBlt(),
or DirectDrawBlt() function to display image buffers. When
8-bit images are displayed, the pixel values are used, as much
as possible, to index the physical output LUTs. When 3-band
8-bit images are displayed in an 256-color display resolution,
the display uses an algorithm optimized for speed. This
algorithm converts 24 bits to 8 bits by taking the
most-significant bits of each component: 3 bits each are taken
from the red and green components, and 2 bits from the blue.
This produces an 8-bit DIB with 3:3:2 RGB values for display;
it is these values that are used to address the physical output
LUTs. This is the best possible combination when you are not
aware of the color content of the image buffer.

Basic without
optimization

When using a basic without optimization initialization, the
MIL display calls the Windows API StretchDIBits(),
StretchBlt() or DirectDrawBlt() function to display image
buffers; however no optimization for speed is done when
displaying a 3-band 8-bit image in a 256-color display
resolution. The display will display such images (color images)
on a best-match basis and display 8-bit images using their pixel
values to address the physical output LUTs.

This display initialization can result in slow display
performance.

Zoom types in windowed mode

In windowed mode, when allocating a display (MdispAlloc()),
you can specify how image buffers are zoomed in a 256-color
display resolution. There are two types of zoom initialization:

■ Enhanced (M_ZOOM_ENHANCED)

■ Basic (M_ZOOM_BASIC)

Enhanced When using an enhanced zoom initialization, the
DrawDIBDraw() function is called to perform a zoom.
Although zooming might be a little slower than using the basic
initialization option, it does not alter the dithering quality,

330 Chapter 18: Displaying an image

providing a better quality zoom. This option is the default and
is only available when an M_DISPLAY_XXX_ENHANCED display
initialization is used.

Basic When using a basic zoom initialization, Windows (Windows API
functions) is called to perform the zoom. Note, if an
M_DISPLAY_XXX_ENHANCED display initialization is used,
this zoom might alter the quality of the DrawDIBDraw()
dithering.

Controlling how the LUT buffer is loaded into the
Windows palette

When calling MdispLut(), MIL will copy the data of each band
of the LUT buffer to the corresponding component of the logical
palette, without modification. To obtain good results, the
specified color values must be carefully selected to provide the
best color match upon image display. If the specified values
closely match the RGB values that occur frequently in the
image to be displayed, very good results can be obtained.

Controlling how the logical palette is loaded into
the physical output LUTs
When in windowed mode, you can control how Windows loads
the logical palette into the physical output LUTs. If you want
the Windows palette manager to use palette optimization when
realizing the physical output LUT values from the logical
palette, use MdispControl() with the
M_WINDOW_PALETTE_NOCOLLAPSE control type.

The M_WINDOW_PALETTE_NOCOLLAPSE control type can be
used to control palette optimization in one of two ways:

■ The Windows palette manager realizes the physical output
LUTs with the best color usage of the logical palette
(M_DISABLE); this is the default setting.

■ The Windows palette manager realizes the physical output
LUTs by loading the logical palette "as is" (M_ENABLE).

Optimizing the physical
output LUTs

When setting the M_WINDOW_PALETTE_NOCOLLAPSE control
type to M_DISABLE, the Windows palette manager attempts the
best color usage of the logical palette when realizing the

Advanced controls for windowed mode 331

physical output LUTs. The palette manager tries to map colors
from the logical palette into the currently realized physical
output LUTs to reduce the number of requested new entries.
This reduces the chance of a color occuring more than once in
the physical output LUTs.

Realizing the physical
output LUTs without
modification

When setting the M_WINDOW_PALETTE_NOCOLLAPSE control
type to M_ENABLE, the Windows palette manager loads each
component of the logical palette "as is" into the corresponding
physical output LUT. This can result in a color occuring more
than once in the physical output LUT.

332 Chapter 18: Displaying an image

Chapter 19: Generating
graphics

This chapter describes the graphics commands that are
available with MIL. These consist of drawing and
text-writing commands.

334 Chapter 19: Generating graphics

MIL and graphics

The MIL package supports basic drawing and text commands
that are useful in typical image processing or machine vision
applications. These commands could be used, for example, to
create a conditional buffer or to annotate an image.

Preparing for graphics

There are two requirements for graphics operations:

■ An image buffer in which to perform the operation.

■ A set of graphics parameters, referred to as a graphics
context, with which to perform the operation.

Graphics context Allocate a graphics context, using MgraAlloc(). Upon allocation,
each of the graphics parameters of the graphics context is set
to the default (refer to the MgraAlloc() command reference
description for the defaults). You can change these parameter
settings according to your needs.

Different graphics contexts can coexist. Use their identifier to
specify which to use or change.

Once a graphics context is no longer required, it should be freed,
using MgraFree().

When a MIL application is created, using MappAlloc() or
MappAllocDefault(), a default graphics context is
automatically created. It can be used as a normal graphics
context by specifying M_DEFAULT as the graphics context
identifier. Since M_DEFAULT is simply another graphics
context, you can change its parameter settings according to
your needs.

Preparing for graphics 335

Graphics
parameters

There are two basic parameters that apply to graphic objects:

1. Background color. This determines the background color of
textual graphic objects. The default background color value
is zero (typically corresponds to black). You can change this
color, using MgraBackColor().

2. Foreground color. This determines the color in which
graphic objects are drawn or written. The default
foreground color value is the highest positive buffer value
(typically corresponds to white). You can change this color,
using MgraColor().

Selecting colors A grayscale value can be any integer or floating-point number.
If the given value exceeds the range of the possible values that
can be stored in each band of the destination buffer, the least
significant bits of the value are used.

Clearing the buffer Once you are satisfied with the graphics parameters, you
should determine whether you need to clear the graphics image
buffer prior to drawing or writing to it. You can use MgraClear()
or MbufClear() to clear the buffer to a specific color.

336 Chapter 19: Generating graphics

Drawing graphics

With the MIL package, you can draw:

■ lines (MgraLine())

■ rectangles (MgraRect() and MgraRectFill())

■ arcs, circles, and ellipses (MgraArc() and MgraArcFill())

■ dots (MgraDot())

Using MgraLine(), MgraRect(), MgraArc(), or MgraDot(), you
can draw the outline of most required shapes. The outlines are
drawn one pixel wide.

In addition, the MIL package includes MgraRectFill() and
MgraArcFill() so you can draw solid rectangles and arcs.

If you need complex filled-in shapes, draw the outline of the
shape and use MgraFill() to fill it.

MgraDot()

MgraArc()

MgraArcFill()

MgraLine()

MgraRect()

MgraRectFill()

Drawing graphics 337

Filling shapes MgraFill() performs a boundary-type seed fill. It fills an area
of the target buffer with the current foreground color, starting
from the specified seed position. Filling occurs on adjacent
pixels of the same value as the original seed pixel.

Note, any drawing is clipped outside the boundaries of the
buffer.

Seed position

338 Chapter 19: Generating graphics

Writing text

You can also write text in the drawing area, using MgraText().
This command writes a null-terminated (\0) ASCII string at
the specified position in a given buffer, using the foreground
and background color and current font of the specified graphics
context.

When specifying the location at which to write the string, give
the top-left corner coordinates of the first character in the
string.

Although the graphics context specifies a default character font
and size, you can change the font and size of this context, using
MgraFont() and MgraFontScale(), respectively. MgraFont()
provides a set of predefined fonts from which to choose.

(x, y)

Chapter 20 : Grabbing with
your digitizer

This chapter discusses the cameras supported
with MIL and the control of your digitizers, including the
fine-tuning of the input and auto-focusing.

340 Chapter 20 : Grabbing with your digitizer

Cameras and input devices

The MIL package supports input from any type of input device
supported by the digitizer. Data grabbed from an input device
with the digitizer using MdigGrab() or MdigGrabContinuous(),
is stored into an image buffer. For color cameras, you must use
color image buffers, with the same number of bands as the
incoming data. Note, since most input devices are cameras, they
will hereafter be referred to as such.

For a digitizer to be recognized by MIL, it must be allocated on
the target system, using MdigAlloc() (or MappAllocDefault()).
The allocation sets up the digitizer to match your camera’s data
format and to access the active input channel. Once you have
finished using a digitizer, you should free it, using MdigFree().

If you often use the same camera and prefer to use
MappAllocDefault() to set up and initialize your system, you
might want to update the milsetup.h file to reflect your camera.

When developing an application, it is recommended that you
use a simple camera. Once the application is working, switch
to a more sophisticated camera, if necessary. This approach
makes debugging much easier.

The data format 341

The data format

MdigAlloc() needs the camera’s digitizer configuration format
(DCF) to perform the digitizer allocation. The DCF defines such
parameters as the input frequency and resolution, and will
determine limits when grabbing an image.

MIL provides a number of predefined DCFs for the basic
cameras supported by your digitizer. Refer to the
MIL/MIL-Lite Board-specific notes manual for exact settings.
MIL also provides some DCF files that you can load if the
predefined DCFs don’t suit your needs.

Once a digitizer has been allocated, you can use MdigInquire()
to inquire about its settings.

If you find a DCF file that is appropriate for your video source,
but need to adjust some of the more common settings, you can
do so directly, without adjusting the file, using the Mdig...()
commands. For more specialized adjustments, you can adjust
the file itself, using Matrox Intellicam.

If you cannot find an appropriate DCF file or have a
non-standard input device that does not appear in our list (such
as a strobe or trigger device), you can create your own, also
using Matrox Intellicam. For more information on Matrox
Intellicam, refer to the Matrox Intellicam User Guide manual.

If you cannot develop the required DCF using Matrox
Intellicam, you should provide the camera specifications to your
Matrox Technical Support Engineer. A suitable customized
DCF file can then be developed, if your digitizer supports the
camera.

342 Chapter 20 : Grabbing with your digitizer

The digitizer number

The device number In addition to the data format, MdigAlloc() requires that you
specify the digitizer number. The digitizer number specifies the
required digitizer, and its rank with respect to other digitizers
of the same type (color or monochrome) residing in the same
system. Note, if there is only one digitizer on the specified
system, you must specify the digitizer number as M_DEV0 or
M_DEFAULT.

Multiple cameras

MIL also supports applications that require input from
different cameras. In general, you cannot simultaneously
activate two cameras, whether or not they are connected to the
same digitizer.

The input channel Most digitizers have several multiplexed input channels, that
is they have several channels but can only grab from one of the
channels at a time. In this case, if you have a camera that is
not connected to the first channel of its digitizer, you must
specify the channel, using MdigChannel().

If there are several cameras of the same data format connected
to a digitizer, you only need to allocate a digitizer with the DCF
of the first camera and use MdigChannel() to switch between
the others of the same type.

When using different cameras on the same digitizer, a different
DCF must be used for each camera. In general, to switch
between cameras of different formats, you have to allocate the
digitizer with one format, grab, free the digitizer, and then
allocate the digitizer again with the second format. Some
systems permit virtual digitizers (for example, Matrox Genesis)
so that you can allocate several digitizers, specify a channel for
each digitizer, and then grab with the appropriate digitizer,
without having to free and re-allocate between switches.

Number of frames or fields 343

Number of frames or fields

To grab a single frame or field, use MdigGrab(). The type of
scanning used by your camera determines whether you grab
fields or frames. With progressive scanning cameras, frames
are grabbed. If your camera uses interlaced scanning, fields
are grabbed. By default, if your camera uses interlaced
scanning, one call to MdigGrab() will grab both the odd and
even fields.

To grab a series of continuous frames, use
MdigGrabContinuous(); this function uses the specified
digitizer to continuously acquire frames of data until
MdigHalt() is called.

Note, when grabbing data with MdigGrab(), you can specify
how many fields or frames to grab using MdigControl(), with
M_GRAB_FIELD_NUM or M_GRAB_FRAME_NUM.

Line-scan cameras If your target digitizer supports it, you can grab from a line-scan
camera in the same way you would, for example, an RS-170
type camera. However, you should be aware of how data from
these cameras is stored.

When acquiring data from a line-scan camera, each line of each
destination buffer band is filled from top to bottom. The
operation will only end once the entire buffer has been filled.

344 Chapter 20 : Grabbing with your digitizer

Grabbing to the display

Live and pseudo-live continuous grabs

With MIL, you can grab to a displayable buffer selected on a
display. If your system is not using an imaging board with a
display section, MIL will use your VGA for display purposes.
MIL uses one of two methods to transfer when grabbing:

■ Live grab: MIL grabs directly to the version of the buffer
that is physically allocated in the frame buffers (display
memory).

■ Pseudo-live grab: MIL grabs into the Host memory version
of the buffer and then updates the version in the frame
buffers (display memory).

When grabbing, the digitizer (for example, Matrox Meteor-II)
always acts as the bus master.

A monoshot grab is always pseudo-live. Grabbing a specific
number of frames is also performed pseudo-live (note that
under a non-windowed display it is possible to perform a live
monoshot grab by allocating your buffer directly on the VGA
board with M_ON_BOARD.

In general, a continuous grab is live. By default, at the end of
the continuous grab, a copy of the last image grabbed is made
in the Host memory version of the buffer (or on-board
processing memory). This allows the image to be processed. You
can override the copy-to-Host behavior, using MsysControl()
with the M_LAST_GRAB_IN_TRUE_BUFFER control type. Note
that in this case, the MdigGrabContinuous() call will not modify
the Host buffer in any way.

Grabbing to the display 345

Live transfer to the display

The digitizer can generally transfer all grabbed data directly to
display memory, when grabbing to an on-board display or when
grabbing to a VGA that supports fast linear-memory accesses
to its frame buffer.

Pseudo-live transfers to the display
A continuous grab will automatically switch to pseudo-live if:

■ Your VGA board does not support fast linear-memory
accesses (discussed later in this section).

■ The format of the grabbed data is not compatible with your
VGA display mode. For example, performing a color grab in
256 color display resolution.

■ Your board does not have both an underlay and overlay frame
buffer surface and there is a non-rectangular overlap
between the display windows on the display device.

■ Your board does not have both an underlay and overlay frame
buffer surface, DDraw is disabled or you are in multi-head
mode, and the grab display window does not have the focus,
that is, is not active.

■ Your board does not have both an underlay and an overlay
frame buffer surface and you are using the display’s overlay
buffer, that is, have enabled M_WINDOW_OVR_WRITE with

Matrox
Digitizer

Matrox
Digitizer

Display

VGA Board

PCI
Bus

Requires the use
of specific display
board

Video is transferred
directly to display
memory

Does not involve
the Host CPU

OR

346 Chapter 20 : Grabbing with your digitizer

MdispControl(). In this case, the grab will be pseudo-live
because an additional operation is required to combine a
grabbed image with a simulated version of the overlay.

■ You are in multi-head mode and the display window occupies
more than one screen.

MIL transparently performs pseudo-live grabs:

By default, when a continuous grab switches to pseudo-live, it
will transparently double buffer the grab in Host memory. That
is, while the digitizer is grabbing one frame into a Host buffer,
the display driver performs a blit of the previous frame (stored
in the temporary Host buffer) to the frame buffers (VGA display
memory). Double-buffering can be disabled using
MsysControl() with M_DISPLAY_DOUBLE_BUFFERING.

Pseudo-live transfers will be real time (that is, full frame rate
of 30 for NTSC or 25 fps for PAL) if the CPU transfer from the
Host buffer to display memory is fast enough. That is, if the blit
is taking at most one frame time length. Blit time is affected by
the load of the CPU (for example, the number of process threads
and the priorities of other boards). You can reduce the load of
the CPU in the pseudo-live grab operation by disabling the
double buffering operation. However, when double buffering is
disabled, only half of the full frame rate can be achieved.

VGA Board

Matrox
Digitizer

System RAM

PCI
Bus Video is transferred by

way of an intermediate
Host buffer

Any display card
can be used

Video might need to be
scaled down to appropriate
size to be displayed in
real-time (depends on
VGA board and system)

Involves the
Host CPU

Grabbing to the display 347

Multi-head mode In multi-head mode, note that a continuous grab without
overlay can be moved from one screen to another and be
displayed live when it has the focus. However, a continuous
grab with overlay will only be live on the screen attached to the
on-board display section; it will switch to pseudo-live on the
other screen(s). In both cases, when the window displaying the
grab intersects two screens, the grab is pseudo-live.

The table below indicates the type of configurations which are
supported on particular boards.

For more information about your board’s transfer capabilities,
consult the MIL/MIL-Lite Board-specific notes manual.

Window occlusion
When there is no overlap or rectangular overlap of a live grab
window, the continuous grab is displayed live. When there is
non-rectangular overlap (that is, the displayed portion of the
occluded window is no longer rectangular), there is pseudo-live
display.

* Window 1 is the active window and window 2 is the grab and
display window.

Display configuration Corona Genesis Meteor-II Orion Pulsar

single-screen or multi-head
(windowed mode)

x x x x x

single- or dual-screen
(non-windowed mode)

x x x

348 Chapter 20 : Grabbing with your digitizer

Note that when DDraw is disabled (see MsysAlloc()), the
continuous grab is displayed live only when the window has the
focus (that is, is active).

Using an MGA VGA
board

Matrox recommends using Matrox MGA boards for real-time
display of video data. Selection of an MGA board depends on
your application’s requirements. To find out more about display
mode resolutions on a particular board, see the MIL/MIL-Lite
Board-specific notes manual.

Using a VGA board
other than MGA board

If your VGA is not an MGA board, you must reconfigure the
[Vga] section in the mil.ini file.

The following is an example of a mil.ini configuration file,
describing the Matrox MGA Millennium-II PCI board (contact
your VGA board vendor for this information). The Matrox
vendor identifier is 102B, the MGA Millennium-II device
identifier is 051B, the VGA frame buffer is mapped to an
address, offset by 0 from its PCI base address of 0:

[Vga]

VgaVendorId=102B

VgaDeviceId=051B

VgaBaseAddressIndex=0

VgaBaseAddressOffset=0

Instead of specifying all of the above parameters, you can
specify the VGA board’s physical address:

VgaPhysicalAddress=EF000000

If the live grab operation does not have the proper pitch or the
proper pixel depth, the following optional entries must be
specified:

VgaPitch=400

VgaFormat=M_BGR15+M_PACKED

❖ All values are hexadecimal.

The default location of the mil.ini file is the Windows directory
under Microsoft Windows. A different location can be specified
using the environment variable, MILINIDIR.

Reference levels, lookup tables, and scaling 349

Reference levels, lookup tables, and
scaling

MIL provides functions to improve the appearance of a grabbed
image on input (if your hardware allows it). You can adjust the
brightness and contrast of the images, as well as the hue and
saturation for color grabs, by fine-tuning the controls of the
analog-to-digital converters in your system. You can also
correct and precondition the input data prior to storing it,
through scaling, or by mapping it through an input LUT.

Black and white reference levels

When digitizing images, the black and white reference levels
determine the zero and full-scale levels, respectively, of the
input voltage range. The analog-to-digital converters convert
any voltage above the white reference level to the maximum
pixel value, and any voltage below the black reference level to
a zero pixel value.

Matrox digitizers support fine-tuning of these reference levels.
By reducing or increasing either or both the black and white
reference levels, you affect the brightness of the image. By
reducing one reference level and increasing the other, you affect
the contrast of the image.

MIL linearly represents the distance between the minimum
and maximum voltages, in which the black reference level can
be adjusted (hardware-specific), as units between
M_MIN_LEVEL and M_MAX_LEVEL. The same is done for the
white reference level adjustment range. These units are the
values by which you can adjust the specified reference level,
using MdigReference().

350 Chapter 20 : Grabbing with your digitizer

To calculate the value to pass to MdigReference(), use the
following equation with the appropriate voltages specified in
the MIL/MIL-Lite Board-specific notes manual for your
particular board.

The smallest voltage increment supported by your board can
differ such that consecutive reference-level settings might
produce the same result.

Note, the new reference level might not take effect until the
next grab, at which point, a certain amount of delay might be
incurred as the hardware adjusts to the reference-level
changes.

Color image reference levels
When grabbing composite color images, MdigReference()
provides specific control parameters to adjust the levels of
contrast, brightness, hue, and saturation. These levels can be
set to values from 0 to 255. See the MIL/MIL-Lite
Board-specific notes manual for your particular board for more
details.

Mapping grabbed data through a LUT
You can correct or precondition input data by mapping it
through a LUT when grabbing (if the hardware permits). This
requires that you copy a LUT buffer to a digitizer’s physical
input LUT, using MdigLut().

You can copy a LUT buffer that has the same number of color
bands as the digitizer’s physical input LUTs. If you copy a
one-band LUT buffer to a digitizer that has more than one
physical input LUT, each of the digitizer's LUTs is loaded with
the same LUT buffer data.

In addition, the LUT buffer’s number of entries must match the
digitizer's input data range.

Voltage needed - minimum voltage

maximum voltage - minimum voltage

M_MAX_LEVEL - M_MIN_LEVEL

=
Value to pass to
MdigReference()

Reference levels, lookup tables, and scaling 351

To revert to the default LUT values, you must copy the default
LUT (M_DEFAULT) to the digitizer. For digitizers, the default
LUT is one that maps pixels to the same values. This type of
LUT is typically referred to as a transparent LUT.

Scaling

The MdigControl() function allows you to scale grabbed data
horizontally and vertically. If you scale grabbed data, the stored
image size is different from the original image by the specified
factors in the X and/or Y direction. The scaled image is written
in contiguous locations in the image buffer, starting from the
top-left corner. For example, if you set both the X and Y scaling
factors to 1/2, only one column and one row out of two are
written to the image buffer.

The X and Y scaling factors are independent. Note, depending
on the digitizer and camera used, some scaling factors might
not be available.

To disable scaling, set scaling factors to 1.

0 0

0 0

0 0

0

0

0

0 0

0 0

0 0

0 0

0

0

0

0

115

244

196 196

87 87 87 87 86 87

87 87 87 87

243

111

115

115

92 92

111

111

111 111

111

111 111

0

0 0

0 0

0 0

0

0

0 0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

45

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

215

215

215

0

0

0

0

0

0

115

196

87 87

243

115

92

0

0

0

0

0

0

0

0

0

0

0

0

Original image

X subsampling factor = 2
Y subsampling factor = 2

Subsampled image

352 Chapter 20 : Grabbing with your digitizer

Optimizing application performance when
grabbing

Grab mode
When grabbing data with MdigGrab(), you can control the
synchronization by setting the MdigControl() M_GRAB_MODE
control type to a value of M_SYNCHRONOUS,
M_ASYNCHRONOUS, or M_ASYNCHRONOUS_QUEUED (if
supported).

■ If the grab mode is set to M_SYNCHRONOUS, your application
will be synchronized with the end of a grab operation. In other
words, your application will wait until the grab has finished
before executing the next command.

■ If the grab mode is set to M_ASYNCHRONOUS, your
application will not be synchronized with the end of a grab
operation. This option allows other commands to execute
while still grabbing. This is a useful option when performing
double buffering, a technique whereby you can grab data into
one buffer while processing the previously grabbed buffer
(discussed below). Note, a call to another MdigGrab() before
the current grab has finished will cause your application to
wait until the current grab has finished.
MdigGrabContinuous() is by definition asynchronous since
you must use MdigHalt() to stop the grab.

■ If your imaging board supports queuing, you can set the grab
mode to M_ASYNCHRONOUS_QUEUED; if another grab is
issued before the first one is finished, the grab will be queued
on-board, allowing you to perform other processes while
waiting for the next MdigGrab() to be executed. Note, you can
still force your application to wait until the end of a grab
before executing an operation, by calling MdigGrabWait().

Optimizing application performance when grabbing 353

Double buffering
Double buffering involves grabbing into one image while
processing the previously grabbed image. Double buffering
allows you to grab and process concurrently. You must switch
the destination of the grab between the two image buffers. In
addition, you need to synchronize the grabbing and processing
so that:

■ You do not process an image until an entire frame has been
grabbed into the buffer.

■ You do not grab into a buffer until the previous frame in that
buffer has been processed.

Below is an example of how to perform double buffering:

��
���6JKU�GZCORNG�FQGU�FQWDNG�DWHHGTGF�ITCD�YKVJ�TGCN�VKOG�RTQEGUUKPI�����������
���0QVG��6JKU�CUUWOG�VJCV�VJG�RTQEGUUKPI�QRGTCVKQP�KU�UJQTVGT�VJCP�C�ITCD�����
���������CPF�VJCV�VJG�2%�JCU�UWHHKEKGPV�DCPFYKFVJ�VQ�UWRRQTV�VJG���������������
���������QRGTCVKQPU�UKOWNVCPGQWUN[��#NUQ�KH�VJG�VCTIGV�RTQEGUUKPI�DWHHGT������
���������KU�PQV�QP�VJG�FKURNC[��VJG�RTQEGUUKPI�URGGF�KU�CWIOGPVGF�������������
�
�
�
���+OCIG�UECNG����
�FGHKPG�+/#)'A5%#.'�����

���JGCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��EQPKQ�J �
�KPENWFG��OKN�J �

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&���/KN#RRNKECVKQP�
���/+.A+&���/KN5[UVGO������
���/+.A+&���/KN&KIKVK\GT���
���/+.A+&���/KN&KURNC[�����
���/+.A+&���/KN+OCIG=�?����
���/+.A+&���/KN+OCIG&KUR���
��
���NQPI���0D2TQE�����
�
��
EQPV����

354 Chapter 20 : Grabbing with your digitizer

����#NNQECVKQPU����
���/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
���/U[U#NNQE
/A&'(A5;56'/A6;2'��/A&'(A5;56'/A07/��/A5'672���/KN5[UVGO��
���/FKI#NNQE
/KN5[UVGO��/A&'(#7.6��
/A&'(A&+)+6+<'4A(14/#6�/A&'(#7.6��/KN&KIKVK\GT��
���/FKUR#NNQE
/KN5[UVGO��/A&'(#7.6��/A&'(A&+52.#;A(14/#6��/A&'(#7.6��
�/KN&KURNC[���

����#NNQECVG���ITCD�DWHHGTU����
���/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%���/KN+OCIG=�?��
���/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%���/KN+OCIG=�?��

������#NNQECVG���FKURNC[CDNG�DWHHGT�CPF�ENGCT�KV����
���/DWH#NNQE�F
/KN5[UVGO���
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..��+/#)'A5%#.'��
���������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..��+/#)'A5%#.'��
����������������.
/A705+)0'&��
���������������/A+/#)'
/A)4#$
/A241%
/A&+52���/KN+OCIG&KUR��
���/DWH%NGCT
/KN+OCIG&KUR���Z���������������
����
����
����
�
������2WV�VJG�FKIKVK\GT�KP�CU[PEJTQPQWU�OQFG����
���/FKI%QPVTQN
/KN&KIKVK\GT��/A)4#$A/1&'��/A#5;0%*410175��
��
������)TCD�KPVQ�VJG�HKTUV�DWHHGT����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?��
��
������2TQEGUU�QPG�DWHHGT�YJKNG�ITCDDKPI�VJG�QVJGT����
���YJKNG
��MDJKV
���
���]
������)TCD�UGEQPF�DWHHGT�YJKNG�RTQEGUUKPI�HKTUV�DWHHGT����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?��
����
�����
����
���
EQPV������

Optimizing application performance when grabbing 355

Multiple buffering
When an occasional frame takes longer to process than the time
required to grab, you can use a multiple buffering technique to
ensure that all processing is completed without losing any
frames. To perform multiple buffering, use the
MdigHookFunction() when grabbing asynchronously to hook
the grab function to certain grab events, such as the start or
end of a frame: the hooked function will interrupt the
processing to perform the grab, and return to continue
processing after the grab is initiated. You can grab into as many
buffers as required to ensure that all processing is finished
before overwriting a buffer with a new frame.

Note, processing is generally faster if the buffer is not on the
display.

���2TQEGUU�VJG�HKTUV�DWHHGT�CNTGCF[�ITCDDGF������
������0QVG��4GCN�VKOG�QPN[�KH�2%�KU�HCUV�GPQWIJ����
���/KO%QPXQNXG
/KN+OCIG=�?��/KN+OCIG&KUR��/A'&)'A&'6'%6��
����
����
����
������)TCD�HKTUV�DWHHGT�YJKNG�RTQEGUUKPI�UGEQPF�DWHHGT����
���/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=�?�

������2TQEGUU�VJG�UGEQPF�DWHHGT�CNTGCF[�ITCDDGF�����
���/KO%QPXQNXG
/KN+OCIG=�?��/KN+OCIG&KUR��/A'&)'A&'6'%6��
���_
����
����
����
�����(TGG�CNNQECVKQPU����
���/DWH(TGG
/KN+OCIG&KUR��
���/DWH(TGG
/KN+OCIG=�?��
���/DWH(TGG
/KN+OCIG=�?��
���/FKUR(TGG
/KN&KURNC[��
���/FKI(TGG
/KN&KIKVK\GT��
���/U[U(TGG
/KN5[UVGO��
���/CRR(TGG
/KN#RRNKECVKQP��
_��

356 Chapter 20 : Grabbing with your digitizer

Grabbing a sequence of frames in real-time

To grab a sequence of frames in real-time, simply use
successive, asynchronous calls to MdigGrab() :

Note that you must also allocate a buffer for each frame of the
sequence. After you have grabbed a sequence, you can use the
MbufExportSequence() function to export the sequence of image
buffers (compressed or un-compressed 8-bit) to an *.avi file.
When exporting, you must specify the number of buffers and
the frame rate (number of images/second) of the sequence. Note,
the MIL identifiers of the image buffers to export must be kept
in an array.

Use the MbufImportSequence() to import a sequence of images
from an *.avi file into separate image buffers. You can import
compressed (MJPEG) or un-compressed 8-bit images. You can
also choose to import the sequence into automatically allocated
buffers or previously allocated buffers.

Grabbing with triggers and exposures

If your Matrox digitizer supports trigger input, this allows you
to grab a frame upon the occurrence of an event; that is, nothing
is grabbed when you call MdigGrab() or
MdigContinousGrab(), until a specified event occurs. When
grabbing continuously, the digitizer waits for a trigger before
grabbing each frame; you must still call MdigHalt() after
grabbing all required frames.

The camera’s digitizer definition format (DCF) file specifies
whether or not to perform a triggered grab and exactly how it
should be carried out. For example, if the DCF specifies that an

��������2WV�FKIKVK\GT�KP�CU[PEJTQPQWU�OQFG���
������/FKI%QPVTQN
/KN&KIKVK\GT��/A)4#$A/1&'��/A#5;0%*410175��

��������)TCD�VJG�UGSWGPEG����
������HQT�
P����P�0D(TCOGU��P

�
������]
�������������)TCD�QPG�DWHHGT�CV�C�VKOG����
�����������/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG=P?��
������_

Grabbing with triggers and exposures 357

exposure signal should be generated (for the camera) upon the
grab trigger event, the actual grab would only be triggered once
the active exposure time was over.

You can use MIL commands to override the DCF trigger
settings. You can enable/disable whether
MdigGrab()/MdigContinousGrab() performs a triggered
grab using MdigControl() with M_GRAB_TRIGGER. You can
also specify the source and activation mode of the event upon
which to grab using MdigControl() with
M_GRAB_TRIGGER_SOURCE and then with
M_GRAB_TRIGGER_MODE.

Asynchronous reset mode

If your digitizer supports asynchronous reset mode, the
digitizer resets the camera to begin a new frame when the
trigger signal is received.

Otherwise, the digitizer waits for the next valid frame (or field)
before commencing to grab. The grab activation mode is
specified in the DCF file.

time
lapse even field

arrival of
trigger pulse

camera resets immediately to new
even field and starts to grab

external trigger

TTL signal

Video data

Asynchronous reset mode

358 Chapter 20 : Grabbing with your digitizer

Triggers and exposures
In MIL, there are two methods of grabbing with triggers and
exposures: the automatic exposure model and the manual
bypass model. They are described in detail in the following
diagrams. By default, MIL uses the automatic exposure model.
You can change this default using MdigControl() with
M_GRAB_EXPOSURE_BYPASS.

Automatic exposure
model

In the automatic exposure model, the digitizer is configured to
have the pipeline that is illustrated in the next diagram. (Note
that the defines specified in the following illustration are those
to be used with the MdigControl() function).

time lapse

even field odd field even field

arrival of
trigger pulse

start of grab is the beginning
of next even field

external trigger

TTL signal

Video data

Next valid frame (or field) mode

Grabbing with triggers and exposures 359

To summarize:

■ MdigControl() with M_GRAB_TRIGGER_SOURCE selects
which signal to use as the source of the trigger (for example,
M_HARDWARE_PORT0). MdigControl() with
M_GRAB_TRIGGER_MODE, selects the trigger detection
method (for example, trigger on the rising edge of the signal).

■ If the exposure time (MdigControl() with
M_GRAB_EXPOSURE_TIME) is zero, the trigger sets off the
grab trigger module immediately, initiating the actual grab.
The exposure timers are bypassed.

■ If you set the exposure time to a non-zero value, an exposure
signal is generated with an active period equal to the
specified exposure time (M_GRAB_EXPOSURE_TIME). The
active period occurs after the specified delay
(M_GRAB_EXPOSURE_TIME_DELAY). The signal will be
generated with the specified polarity
(M_GRAB_EXPOSURE_MODE). The end of exposure will
trigger the grab trigger module, initiating the actual grab.

(M_GRAB_EXPOSURE_BYPASS set to M_DISABLE or M_DEFAULT)

MUX

Detect

Trigger selection
and detection

trigger source (M_GRAB_TRIGGER_SOURCE)1

trigger detection method (M_GRAB_TRIGGER_MODE)2

2

exposure delay (M_GRAB_EXPOSURE_TIME_DELAY)3

3

exposure time (M_GRAB_EXPOSURE_TIME)4

bypass exposure timers if exposure time = 0 (M_GRAB_EXPOSURE_TIME)6

4

polarity of exposure signal (M_GRAB_EXPOSURE_MODE)5

MUX Grab

1

6

* exposure timers will be cascaded automatically (if necessary)
to generate one signal that has the required delay and active time

5

Exposure timers*
Grab
trigger
module

or

360 Chapter 20 : Grabbing with your digitizer

Manual exposure
bypass model

In the manual bypass model, you are responsible for enabling
and setting-up all the exposure timers and grab trigger
connections

Exposure timer2 (T2)

Exposure
trigger
source2

Exposure
trigger
source1

Manual exposure bypass model
(M_GRAB_EXPOSURE_BYPASS set to M_ENABLE)

Grab

Grab trigger module

(M_GRAB_EXPOSURE_SOURCE + M_TIMER1)

(M_GRAB_EXPOSURE_MODE + M_TIMER1)

(M_GRAB_EXPOSURE_TRIGGER_MODE + M_TIMER1)

(M_GRAB_EXPOSURE_TIME_DELAY + M_TIMER1)

(M_GRAB_EXPOSURE_TIME + M_TIMER1)

1

2

3

4

5

(M_GRAB_EXPOSURE_SOURCE + M_TIMER2)

(M_GRAB_ TRIGGER_MODE + M_TIMER2)EXPOSURE_

(M_GRAB_EXPOSURE_MODE + M_TIMER2)

(M_GRAB_EXPOSURE_TIME_DELAY + M_TIMER2

6

7

8

9

10

11

12

(M_GRAB_EXPOSURE_TIME + M_TIMER2)

(M_GRAB_TRIGGER_SOURCE)

(M_GRAB_TRIGGER_MODE)

10

9

Exposure timer1 (T1)

Active level
for exposure

signal

Timer2
enabled
switch

68

Active level
for exposure

signal

Timer1
enabled
switch

13

7

Detect

MUX

6

Trigger selection and
detection

2

Detect

MUX

1

Trigger selection and
detection

4

5

Delay
before
Exposure

Exposure
time

Delay
before
Exposure

Exposure
time

T1

Hrd
Port

T2

Hrd
Port

Hrd
Port

T1
T2

Grab
trigger
source

MUX

11

12

Detect

Auto-focusing 361

Software triggers

In general, the digitizer’s grab trigger module and exposure
timers can also be triggered by software (M_SOFTWARE). In this
case, following a grab call, nothing is grabbed until you call a
specific function (discussed below). Note that in this case, the
grab call must be asynchronous (that is, issue the grab with
MdigGrab() in asynchronous mode or with
MdigGrabContinuous()) or the grab call must be called on a
separate thread.

In the automatic
exposure model

In the automatic exposure model, issue the software trigger by
calling MdigControl() with M_GRAB_TRIGGER and
M_ACTIVATE. This will trigger the grab if the exposure time
is 0, otherwise the call will trigger the exposure signal which
in turn will trigger the grab.

In the manual bypass
model

In the manual bypass model, to issue a software trigger for the
grab trigger module, call MdigControl() with
M_GRAB_TRIGGER and M_ACTIVATE. To issue a software
trigger for one of the exposure timers, call MdigControl() with
M_GRAB_EXPOSURE+M_TIMERn and M_ACTIVATE.

Note, for a digitizer without an exposure timer, the exposure
time is considered to be zero.

Auto-focusing

You can use MdigFocus() to automatically adjust the lens motor
of your camera to a position that produces optimum focus in
your images. This function is primarily useful when your
camera’s depth of field is limited with respect to the range
required by the grabbed object and manual adjustment is not
possible.

MdigFocus() determines the optimum focus position by
grabbing an image at an initial lens position, analyzing the
focus quality of the grabbed image, calling a user-defined
function that changes the position of the lens motor, and then
grabbing and analyzing another image. The process repeats
until the optimum focus position is found.

362 Chapter 20 : Grabbing with your digitizer

The focus quality of an image (known as its focus indicator) is
measured by analyzing its edges. An image with good focus
quality (a high focus indicator) has well-defined edges, that is,
has a sharp difference in gray-levels between its object edges
and its background.

By default, MdigFocus() subsamples and filters each grabbed
image before analyzing it. This makes it easier to analyze the
image. If necessary, you can specify that the subsampling
and/or filtering be skipped. Skipping these operations will
result in a more accurate analysis of the image’s focus quality.
It is primarily useful to skip these operations when your images
contain fine details since subsampling or filtering can remove
these details. Note that subsampling the grabbed images
increases the speed of MdigFocus(); filtering the grabbed
images slows down MdigFocus().

If necessary, you can specify that only a sub-region of the image
be analyzed, by passing a child buffer to the function. This is
primarily useful if there are objects at different distances
within the camera’s field of view. In such a case, each object will
have a different optimum focus position, so you need to use a
child buffer to specify the object on which to focus.

Search strategies
When you perform MdigFocus(), you have to specify the
minimum, maximum, and starting position of the lens motor.
Given these parameters, different strategies can be used to find
the optimum focus position. These strategies determine how
the position is updated (in which direction and by how much)
between grabs. They can affect the speed and accuracy of the
operation.

Auto-focusing 363

Bisection strategy The bisection strategy breaks down the given positional range,
step-by-step, until it finds the optimum focus position.

In general, the bisection strategy processes the fewest amount
of images. However, it is most sensitive to noise and requires
that the lens motor travel the greatest distance.

Refocus strategy The refocus strategy scans upward or downward until it finds
the optimum focus position or until it reaches the minimum or
maximum position. While scanning in one direction, if the focus
indicator decreases continuously (indicating an out-of-focus
condition), the focus position is returned to its starting point
and scanning is started in the opposite direction. By default, if
a peak in focus indicator values is found, the next two positions

364 Chapter 20 : Grabbing with your digitizer

are scanned to make sure the peak is truly the optimum. If
necessary, you can change the number of positions used to
verify a peak.

The refocus strategy is the best strategy to use when the current
focus position is close to optimum.

Auto-focusing 365

Scan-All strategy The scan-all strategy scans, by 1, all positions between the
minimum and maximum and returns the position which
produced the highest focus indicator.

The scan-all strategy is the slowest but most accurate.

Smart-Scan strategy The smart-scan strategy performs three refocus searches, each
with a smaller positional increment. You specify the initial
positional increment; the subsequent increments are factors of
the initial one. As with the refocus strategy, the default number
of positions used to verify a peak is 2 but can be changed.

366 Chapter 20 : Grabbing with your digitizer

The smart-scan strategy is a compromise between the speed of
a bisection and the accuracy of a scan-all.

Evaluate the focus
indicator

Rather than determine the optimum focus position,
MdigFocus() can be used to simply return the focus indicator
value for a given image or for the image grabbed at the current
lens position.

Chapter 21: Color

This chapter discusses how to handle objects in color with
MIL.

368 Chapter 21: Color

Dealing with color

MIL supports grabbing, displaying, and processing color
images.

MIL can represent an object in color with a single color buffer,
allocated with MbufAllocColor().

Grabbing

You grab from an input device (typically a camera) into a color
image buffer, as you would into a two-dimensional grayscale
image buffer, by calling MdigGrab() or MdigGrabContinuous().

Before performing a color grab, a digitizer must be allocated,
using MdigAlloc() (or MappAllocDefault()), specifying a color
digitization data format. In addition, the digitizer and the
image buffer must be allocated on the same system and have
compatible dimensions. Once you have finished using the
digitizer, you should free it, using MdigFree().

When grabbing from a color digitizer, each color component is
transmitted simultaneously. The destination buffer must have
the same number of color bands as the digitizer. The data is
simultaneously stored in the appropriate component of the
image buffer. When grabbing RGB, the red component is stored
in the first color band, the green component is stored in the
second color band, while the blue component is stored in the
third color band.

Grabbing 369

If the hardware permits, you can control the digitization
reference level of each channel, using MdigReference().

❖ Note, upon installation, if you specified a color camera, the
default image buffer allocated with MappAllocDefault() will
be a three-band color image buffer. If you didn’t specify a color
camera, but would now prefer to use one, you might want to
update the milsetup.h file to reflect the desired defaults for
the allocation of your color camera and a color image buffer.

Note, most examples in this manual assume that the target
system has a monochrome digitizer, and that the camera and
default image buffer are monochrome. To run the examples
using a color digitizer and image buffer, you must modify the
code appropriately.

Mapping grabbed
data through a LUT

You can also correct or precondition input data by mapping it
through a LUT upon acquisition (if the hardware permits). This
requires that you associate a LUT buffer with the input device,
using MdigLut().

The LUTs that can be associated to a digitizer are either
one-dimensional LUT buffers (single rows) or LUT buffers that
have the same number of color bands as the digitizer. If you
associate a one-dimensional LUT buffer with the digitizer, each
of the digitizer’s color band input LUTs is loaded with the
one-dimensional LUT buffer data. If you associate a multi-band
LUT buffer with the digitizer, each of the digitizer’s color band
LUTs is loaded with its corresponding color band LUT buffer
data.

Note, the LUT buffer depth must match the digitizer’s pixel
depth.

To disassociate the LUT buffer from the digitizer, you need to
associate the digitizer with the default LUT, using M_DEFAULT
as a parameter to MdigLut().

370 Chapter 21: Color

Displaying

You display a color-image buffer as you would a
two-dimensional grayscale image buffer. You must first allocate
the image buffer with a displayable attribute (M_DISP), then
select it for display, using MdispSelect(). To stop displaying the
image buffer and leave the display blank, use MdispDeselect().

Before you can display a buffer, the display must be allocated,
using MdispAlloc() (or MappAllocDefault()). The image buffer
and the display must be allocated on the same system and have
compatible dimensions.

When you display a color-image buffer (usually RGB), the first
band is routed to the first output channel (usually red), the
second band is routed to the second output channel (usually
green), while the third band is routed to the third output
channel (usually blue).

When a display is allocated, a default pass-through LUT
(transparent LUT) is loaded into the output LUT(s) (if any). You
can change the displayed colors of an image by associating a
lookup table (LUT) to the display, using MdispLut().

When you associate a one-color-band LUT buffer with a display
that has more than one output LUT, the same LUT buffer data
is loaded in each of the available output channel LUTs.

When you associate a multi-band LUT buffer to a display that
has multiple output LUTs, each output LUT is loaded with the
data of the corresponding LUT buffer color band.

To disassociate the LUT buffer from the display, you need to
associate the display with the default LUT, using M_DEFAULT
as a parameter to MdispLut().

Processing 371

Processing

MIL can process color (multi-band) image buffers by processing
each band of an image individually. However, MIL cannot
perform statistical analysis, blob analysis or pattern
recognition operations on color image buffers.

To process a single band of a color image, you can extract one
band, using MbufCopyColor() or access it directly, using
MbufChildColor(). In either case, processing can then be
performed on the two-dimensional single band buffer. In the
case of MbufCopyColor(), after each color band has been
extracted and processed, it can be re-inserted into the buffer,
using MbufCopyColor(). If MbufChildColor() was used, the
parent buffer (in this case a multi-band buffer) is automatically
updated after processing since its child buffer occupies the
same physical space in memory.

Using the MIL command MimConvert(), you can perform color
conversions, such as converting an RGB image into a HLS (Hue,
Luminance, and Saturation) image and vice versa. You can also
extract the luminance (intensity) from an RGB image or copy
the luminance component of an image into a three-band buffer
to create a monochromatic (gray) RGB buffer.

372 Chapter 21: Color

An example The following is an example of color image manipulation and
conversion.

���(KNG�PCOG��OEQNQT�E
���5[PQRUKU���6JKU�RTQITCO�CNNQECVGU�C�FKURNC[CDNG�EQNQT�KOCIG�DWHHGT��
��������������FKURNC[U�KV�CPF�NQCFU�KVU�EQPVGPVU�YKVJ�C�EQNQT�KOCIG��+V�VJGP
��������������EQPXGTVU�KV�VQ�*WG��.WOKPCPEG��5CVWTCVKQP�
*.5���CFFU�C
��������������EGTVCKP�QHHUGV�VQ�VJG�NWOKPCPEG�EQORQPGPV�CPF�EQPXGTVU�VJG
��������������KOCIG�DCEM�VQ�4GF��)TGGP��$NWG�
4)$��VQ�FKURNC[�VJG�TGUWNV�
���

�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��OKN�J �

���5QWTEG�/+.�KOCIG�HKNG�URGEKHKECVKQPU�����
�FGHKPG�+/#)'A(+.'��������DKTF�OKO�
�FGHKPG�+/#)'A9+&6*���������.
�FGHKPG�+/#)'A*'+)*6��������.
�FGHKPG�+/#)'A$#0&��������.
�FGHKPG�+/#)'A&'26*�������.

���.WOKPCPEG�QHHUGV�VQ�CFF�CPF�OCZKOWO�XCNWG�QH�VJG�KOCIG���
�FGHKPG�+/#)'A.7/+0#0%'A1((5'6�������.
�FGHKPG�+/#)'A/#:A8#.7'���������������.

XQKF�OCKP
XQKF�
]�
��/+.A+&�/KN#RRNKECVKQP��������#RRNKECVKQP�KFGPVKHKGT����������������������������
���������/KN5[UVGO�������������5[UVGO�KFGPVKHKGT���������������������������������
���������/KN&KURNC[������������&KURNC[�KFGPVKHKGT��������������������������������
���������/KN+OCIG��������������+OCIG�DWHHGT�KFGPVKHKGT���������������������������
���������/KN5WD+OCIG�����������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�QTKIKPCN�KOCIG����
���������/KN5WD+OCIG�����������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�RTQEGUUGF�KOCIG���
���������/KN5WD+OCIG.WO��������5WD�KOCIG�DWHHGT�KFGPVKHKGT�HQT�NWOKPCPEG���������
��NQPI���+OCIG5K\G:������������+OCIG�YKFVJ���������������������������������������
���������+OCIG5K\G;������������+OCIG�JGKIJV��������������������������������������

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
��������������������/A07..��/A07..��
��
EQPV����

Processing 373

����(KPF�VJG�DGUV�UK\G�HQT�VJG�FKURNC[�KOCIG�FGRGPFKPI�QP�VJG�FKURNC[�V[RG����
��KH�
/FKUR+PSWKTG
/KN&KURNC[�/A&+52A/1&'�/A07..���/A9+0&19'&�
�����]
������+OCIG5K\G:���+/#)'A9+&6*�����
������+OCIG5K\G;���+/#)'A*'+)*6�
�����_
��GNUG
�����]
��������6JG�UK\G�QH�VJG�GPVKTG�FKURNC[�VQ�CXQKF�RQUUKDNG�FKURNC[�CTVKHCEV����
������+OCIG5K\G:���OKP
/FKUR+PSWKTG
/KN&KURNC[�/A5+<'A:�/A07..��
�����������������������/A&'(A+/#)'A5+<'A:A/#:��
������+OCIG5K\G;���OKP
/FKUR+PSWKTG
/KN&KURNC[�/A5+<'A;�/A07..��
�����������������������/A&'(A+/#)'A5+<'A;A/#:��
�����_

�����#NNQECVG�C�EQNQT�FKURNC[�KOCIG�DWHHGT�VQ�RGTHQTO�RTQEGUUKPI�KP�KV����
��/DWH#NNQE%QNQT
/KN5[UVGO��+/#)'A$#0&��+OCIG5K\G:��+OCIG5K\G;��
�����������������+/#)'A&'26*
/A705+)0'&��/A+/#)'
/A&+52
/A241%���/KN+OCIG��

�����%NGCT�VJG�KOCIG�DWHHGT����
��/DWH%NGCT
/KN+OCIG���.��

�����&KURNC[�VJG�KOCIG�DWHHGT����
��/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG��

�����&GHKPG���RTQEGUUKPI�DWHHGTU�KP�VJG�FKURNC[�DWHHGT��TGUVTKEVKPI�VJG
�����TGIKQPU�VQ�DG�RTQEGUUGF�VQ�VJG�UQWTEG�KOCIG�UK\G����
���/DWH%JKNF�F
/KN+OCIG���.���.��+/#)'A9+&6*��+/#)'A*'+)*6���/KN5WD+OCIG���
���/DWH%JKNF�F
/KN+OCIG��+/#)'A9+&6*���.��+/#)'A9+&6*��+/#)'A*'+)*6�
����������������/KN5WD+OCIG���

�����.QCF�C�EQNQT�KOCIG�KP�UWDKOCIG�����
���/DWH.QCF
+/#)'A(+.'��/KN5WD+OCIG���

�����2TKPV�C�OGUUCIG����
���RTKPVH
�#�EQNQT�UQWTEG�KOCIG�YCU�NQCFGF�CPF�YKNN�DG�RTQEGUUGF>P���
���RTKPVH
�VQ�KPETGCUG�KVU�NWOKPCPEG�>P2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��

�����%QPXGTVU�KV�VQ�*WG��.WOKPCPEG��5CVWTCVKQP�
*.5�����
���/KO%QPXGTV
/KN5WD+OCIG���/KN5WD+OCIG���/A4)$A61A*.5��

�����&Q�C�EJKNF�VJCV�OCR�VQ�VJG�NWOKPCPEG�EQORQPGPV���
���/DWH%JKNF%QNQT
/KN5WD+OCIG���/A.7/+0#0%'���/KN5WD+OCIG.WO��
��
EQPV������

374 Chapter 21: Color

Saving and loading color images

MIL supports the saving and loading of color images from disk
in different file formats. See the MbufSave(), MbufLoad(),
MbufRestore(), MbufImport(), and MbufExport() command
reference descriptions in the Matrox Imaging Library
Command Reference manual for more details.

Note, all the MIL data allocation, access, and generation
(Mbuf...() and MgenLut...()) commands can handle color image
buffers.

�����%NKR�VJG�DWHHGT�NWOKPCPEG�EQORQPGPV�VQ�CXQKF�NCVGT�UCVWTCVKQP����
���/KO%NKR
/KN5WD+OCIG.WO��/KN5WD+OCIG.WO��/A)4'#6'4�
�����������+/#)'A/#:A8#.7'�+/#)'A.7/+0#0%'A1((5'6��/A07..�
�����������+/#)'A/#:A8#.7'�+/#)'A.7/+0#0%'A1((5'6��/A07..��

�����#FF�CP�QHHUGV�VQ�VJG�NWOKPCPEG�EQORQPGPV����
���/KO#TKVJ
/KN5WD+OCIG.WO��+/#)'A.7/+0#0%'A1((5'6��/KN5WD+OCIG.WO��/A#&&A%1056��

�����%QPXGTVU�KV�DCEM�VQ�4GF��)TGGP��$NWG�
4)$��HQT�FKURNC[����
���/KO%QPXGTV
/KN5WD+OCIG���/KN5WD+OCIG���/A*.5A61A4)$��

�����2TKPV�C�OGUUCIG����
���RTKPVH
�6JG�EQNQT�UQWTEG�KOCIG�KP�VJG�VQR�NGHV�EQTPGT�YCU�EQPXGTVGF>P���
���RTKPVH
�VQ�*.5��VJG�NWOKPCPEG�EQORQPGPV�YCU�CWIOGPVGF�CPF�KV�YCU>P���
���RTKPVH
�EQPXGTVGF�DCEM�VQ�4)$�KP�VJG�VQR�TKIJV�EQTPGT�KOCIG�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��
�
�����4GNGCUG�UWDKOCIGU�CPF�EQNQT�KOCIG�DWHHGT����
���/DWH(TGG
/KN5WD+OCIG.WO��
���/DWH(TGG
/KN5WD+OCIG���
���/DWH(TGG
/KN5WD+OCIG���
���/DWH(TGG
/KN+OCIG��

�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/A07..��
_

Chapter 22 : JPEG
compression

This chapter describes how to compress and decompress
images.

376 Chapter 22 : JPEG compression

Introduction

MIL allows you to compress and decompress images.
Compression allows you to store more images in memory than
would normally be possible. In addition, it allows images to be
transferred more quickly, since it reduces the amount of data
that must be transferred. MIL can compress images using the
JPEG lossless algorithm or the JPEG lossy algorithm.

❖ Under MIL-Lite, dedicated hardware is required to compress
and decompress images.

JPEG lossless The JPEG lossless algorithm compresses images without any
loss of information. Typically, the algorithm compresses images
by a factor of 2:1, although a factor of 4:1 can sometimes be
achieved. The JPEG lossless algorithm can compress 8- or
16-bit buffers with 1 or 3 bands.

JPEG lossy The JPEG lossy algorithm compresses images by a variable
factor but introduces some loss of information. The higher the
compression factor, the more the compression, but the lower the
image quality. The JPEG lossy algorithm can compress 8-bit
buffers with 1 or 3 bands. To be compatible with most
image-viewing software, MIL allows you to store compressed
color images in YUV format.

Interlaced JPEG MIL can perform a JPEG compression such that the image data
is stored in separate fields. This is referred to as an interlaced
JPEG compression. Unless otherwise stated, everything that
applies to a JPEG compression also applies to an interlaced
JPEG compression.

Control options MIL allows you to control certain aspects of a compression.
Specifically, you can use your own compression tables, although
the default tables are suitable for most applications.

*.avi files You can use MbufExportSequence() to export a sequence of
image buffers to an audio video interleave (*.avi) file. You can
use MbufImportSequence() to import a sequence of images from
an *.avi file into separate buffers.

General steps 377

General steps

Compression To compress an image:

1. Allocate a buffer in which to hold the compressed image.
Use MbufAlloc...(), allocating the buffer with an
M_COMPRESS+CompressionType attribute.

2. If necessary, change the control settings of the buffer, using
MbufControl(). Specifically, for a lossy compression, you
might want to change the quantization factor, which is one
of the factors that determine the amount of compression.

3. If the image to compress is stored in a buffer, use
MbufCopy() to compress it into the buffer allocated in step
1. If it is stored on file, use MbufImport(). Note that, if you
want the compressed image stored on file rather than in a
buffer, use MbufExport() instead of MbufCopy(). In this
case, there is no need to allocate a destination buffer.

You can also automatically compress your grabbed images.
To do so, use MdigGrab() with a destination buffer that has
an M_GRAB+M_COMPRESS+CompressionType attribute.

Decompression To decompress an image, use MbufCopy(), MbufImport(), or
MbufExport(), depending on where the source image is stored
(in a buffer or on file) and where you want results written (to a
buffer or file). Before the decompression, you should not change
any control settings in the source image. This is because, in
order for the reconstructed image to match the original, the
same controls must be used to decompress. If you do change a
control setting, the image data will be lost.

Multi-band buffers
and color formats

When you allocate a multi-band buffer for a lossy compression,
you can specify that the compressed image be stored in an RGB
or YUV format. Note that most image-viewing software display
compressed color images in YUV 4:2:2 format. When the chosen
format differs from that of the source image, MIL internally
converts the source image to the specified format, then
performs the compression.

378 Chapter 22 : JPEG compression

Multi-band buffers
and control settings

If you are compressing a multi-band buffer, you can specify
different control settings for each band. To do so, create a child
buffer from each band, using MbufChildColor(), then set
controls for each child buffer, using MbufControl().
Alternatively, if you performing a lossy compression on a YUV
image, you can use the xx_LUMINANCE and xx_CHROMINANCE
control types. The xx_LUMINANCE control type affects the Y
band, while xx_CHROMINANCE affects the U and V bands.

Application-specific
markers

During a compression, MIL adds some application-specific
markers to the resulting image. Most other packages will ignore
these markers and therefore be able to decompress the file. MIL
itself ignores unrecognized markers when it decompresses files.

Controlling a JPEG compression

This section provides a brief overview of the JPEG lossless and
lossy algorithms and of the controls you have over these
algorithms. In general, you should only change these controls
if you are familiar with the algorithm you are using. For
detailed information about the JPEG lossless and lossy
algorithms, see the JPEG Technical Specification Revision 8.

JPEG lossless

The JPEG lossless algorithm is basically a two-step process.
First, predictive coding is performed on the image. Then, the
result is Huffman encoded.

Controlling a JPEG compression 379

Predictive coding Predictive coding is based on the fact that adjacent pixels in an
image generally have similar values. Therefore, the value of a
pixel can be "predicted" from the values of its neighbor(s). The
difference between the original value of the pixel and the
predicted value requires fewer bits to store than the original
pixel value.

By default, MIL uses the pixel to the left to predict values. This
is suitable for most images. However, you can specify that no
predicting be done, using MbufControl(). In this case, the values
after predictive coding will be the same as the original values.
This can be useful if you have developed your own algorithm to
take the place of predictive coding and only need your images
Huffman encoded. Note that you must implement your own
algorithm to use one of the other "predictors" supported by the
JPEG lossless algorithm; MIL only supports predictor #0 (no
predictor) and predictor #1 (the "pixel-to-the-left" predictor).

Huffman encoding After an image has been predictive coded, Huffman encoding
assigns a variable-length "code word" to each value. This code
is based on the number of bits by which the difference between
adjacent values differ. By storing the code word, rather than
the actual difference value, further compression can be
achieved. Values are assigned code words according to a DC
Huffman table. You can use the default DC Huffman table or
you can create your own table. If you want to use your own table,
refer to the Using your own table section.

JPEG lossy
The JPEG lossy algorithm is outlined below. First, each 8x8
block of the image is represented in its frequency domain
through a discrete cosine transform, resulting in 1 DC and 63
AC values. Each block is then quantized and Huffman encoded.

380 Chapter 22 : JPEG compression

Quantization divides each of the 64 values in a block by a
specified value, according to a quantization table. After each
block is quantized, Huffman encoding assigns a variable-length
"code word" to each value. Each DC value in a block is assigned
a code word according to a DC Huffman table. The AC values
are assigned a code word according to an AC Huffman table.
You can control a JPEG lossy compression by using your own
quantization and/or Huffman tables.

Using your own table

For a JPEG lossless compression, you can use your own DC
Huffman table. For a JPEG lossy compression, you can use your
own quantization, DC Huffman, or AC Huffman table. In order
to use your own table:

1. Allocate a buffer with an M_ARRAY attribute and of the
required size. Huffman tables are one-dimensional, so use
MbufAlloc1d() to allocate the buffer. Quantization tables
are two-dimensional, so use MbufAlloc2d().

2. Transfer the table values to the buffer, using MbufPut1d()
or MbufPut2d(), depending on the type of table.

3. Associate the M_ARRAY buffer to the required image buffer,
using MbufControl().

Note that you can associate a different table to each band of a
multi-band buffer. To do so, create a child buffer from each band,
using MbufChildColor(), then associate a table to each child
buffer. Alternatively, for lossy compressions of YUV images, use
the xx_LUMINANCE and xx_CHROMINANCE control types.

Restart markers 381

Restart markers

When an image is compressed, MIL adds restart markers to the
bit stream of the compressed image. A restart marker is a
special code that signifies that the encoded bit stream has been
padded to the next byte boundary before the encoding process
was restarted. Restart markers can be useful if you are
transmitting the compressed image over a medium that is
susceptible to errors. If an error does occur and there are no
restart markers, the error will propagate and affect subsequent
data. However, if there are restart markers, the error will be
confined to the data between markers.

By default, MIL places restart markers after a certain number
of rows of data have been encoded (for lossless compressions)
or after a certain number of 8x8 blocks of data have been
encoded (for lossy compressions). If necessary, you can use
MbufControl() to change the number of rows or blocks between
restart markers.

❖ For a lossy compression with a high compression ratio, too
many restart markers can significantly increase the size of
the compressed image. In this case, you might want to
increase the number of rows or blocks between restart
markers, especially if you are not transmitting the image
over a noisy medium. In fact, if you are sure that the
transmission medium is not noisy, you might want to set the
restart interval to 0, that is, not use restart markers. This
will increase the compression ratio, as well as reduce the time
required to decompress the image.

382 Chapter 22 : JPEG compression

Chapter 23: Data
manipulation with multiple
systems

384 Chapter 23: Data manipulation with multiple systems

Data manipulation with multiple systems

To use multiple Matrox imaging boards, you have to allocate a
MIL system for each board.

Processing To perform a processing operation, your source and destination
buffers can be on different systems; MIL will transparently
copy buffers to the most efficient of these system, if necessary.

Exchanging data To exchange data between systems, you can physically copy the
data from one system to another. The copy is always performed
by the most suitable system. If both systems are of the same
type, the copy is always performed by the destination system.

Instead of performing a physical copy using MbufCopy(), you
can allocate a buffer on one system and use MbufCreate...() to
access this buffer from another system. MbufCreate...() creates
a buffer that maps to allocated memory (for example, on the
Host or any MIL system); no memory is actually allocated to
this newly created buffer.

The second method can be used, for example, to update a buffer
(or part of it) with data grabbed from different systems. Note
that after writing to the created buffer, you should notify the
real buffer that its contents have been changed, by calling
MbufControl() with M_MODIFIED. See Chapter 16: Specifying
and managing your data buffers for more information about
creating data buffers.

Grab and display To grab, the digitizer and the destination buffer must be
allocated on the same MIL system. Similarly, to display a buffer,
the display and the buffer must be allocated on the same MIL
system.

Systems without an on-board display section use the VGA for
display. Therefore, under Windows, such systems will
automatically display together on the same screen.

Chapter 24: Using MIL with
multi-processing and under
multi-thread systems

This chapter describes how MIL handles multi-processing
and multi-threading.

386 Chapter 24: Using MIL with multi-processing and under multi-thread systems

Multi-processing

Multi-processing is the ability to execute various processes
(applications) simultaneously.

MIL applications are autonomous processes (or executables)
designed to execute a complete operation or series of operations.
Therefore, they can profit from multi-processing by executing
independently, without interference from each other.

In general, when multiple processes are running, no sharing of
systems is permitted, except for the Host and VGA. Some
particular systems, such as Matrox Genesis, can also be shared.

Systems with
multi-processing

Systems that support multiple processes have on-board
resources (like processors) that can be shared by different
processes. However, if many processes are running at the same
time, these processes have to share the available processing
time and will not be able to share data.

Systems without
multi-processing

Not all systems support multi-processing. For example, a
simple frame grabber with only acquisition capability (like the
Matrox Meteor-II) cannot ensure either the response time to a
command or the independence of a process necessary for
multi-processing. Therefore, on such systems MIL will refuse
to allocate the system if it is already being used by another
process. To use a non-multi-processing system within a
multi-processing environment, all processes that need to
communicate with the system must do so by sending their
requests through a single dedicated process.

Multi-threading 387

Multi-threading

MIL also supports multi-threading. Multi-threading is the
ability to perform multiple operations simultaneously in the
same process. This is done by creating different threads
(execution queues) to ensure sequential execution of operations
within the same thread, while allowing simultaneous yet
independent execution of other operations in other threads.

Threads within a process share the same data. Therefore, they
can communicate and exchange data such as MIL identifiers.

Multi-threading is most appropriate for applications where
independent tasks can be done simultaneously but need to
share data or to be controlled and synchronized within a main
task.

Speed considerations Multi-threading does not always result in an increase of speed
and efficiency. Threads running simultaneously share the same
system resources (such as memory) and generally run on the
same CPU. This sharing can, in some cases, slow the process.
For example, when using a system with multiple CPUs under
Windows NT, the threads generally run on separate CPUs and
provide more processing power. However, since they share the
same memory, operations that are I/O intensive and require
only simple processing might not be accelerated.

Alternatives Most applications do not require the use of multiple threads
since there are other ways of multi-tasking. Mechanisms such
as asynchronous grab and call-back functions can be used
(see MdigControl() and MdigHookFunction()). Applications
resolved by alternative means are often simpler to implement
and easier to maintain than multi-threaded applications.

388 Chapter 24: Using MIL with multi-processing and under multi-thread systems

MIL and multi-threading
When your application contains several distinct parts that you
want to run in parallel, it is often easier to design it so that each
part is controlled by a separate thread (or task). For example,
if you have two independent processing tasks that can be
performed in parallel, it is often easier to have each controlled
by a separate thread.

Thread execution Under multi-thread operating systems, you can create as many
threads as you require. The MIL commands in any thread are
executed as follows:

■ If the target processor is the Host CPU, processing in each
thread is determined by the operating system.

■ If the target processor is an on-board processor of a system
that supports multi-threading (like the Matrox Genesis),
MIL automatically creates, and eventually terminates, an
on-board thread for each Host thread that sends commands
to the board.

MIL application context For each new Host thread sending MIL commands, MIL creates
a new default MIL application context and initializes it to the
state of the main MIL application (the first application
allocated with MappAlloc()). Its purpose is to handle the context
of the new thread, such as error reporting.

You can force the thread to inherit the state of a specific existing
MIL application by creating a child MIL application, using
MappChild(). Although inheriting (upon allocation) the state
of the parent application, the child application is subsequently
considered a separate application and can be modified
independently of the state of its parent.

You can have the thread’s application initialized with a reset
initial state by allocating a new application, using MappAlloc().

Synchronization Thread synchronization is generally done by the Host
synchronization services (such as Windows NT/2000 and 98
event objects). However, when using a system with an on-board
processor, this processor is not synchronized with the Host.

Multi-threading 389

This means that Host threads continue execution without
waiting for the execution of the on-board commands to
complete. In most cases, this is desirable to make the Host
thread available for other tasks. However, for operations that
necessitate the completion of a previous command(s) in order
to return valid results (for example, MbufGet() after an
MdigGrab()), MIL automatically synchronizes the threads to
force the Host to wait for completion of the earlier command(s).

Explicit synchronization might be necessary if commands
sharing a common resource or system might conflict with each
other. For example, two threads sharing the same image buffer
MIL identifier might each try to clear the buffer to a different
value. If the threads are not synchronized, these commands
might execute at the same time and the buffer could be cleared
to either value or even to a combination of
the two values. Use the MIL synchronization command,
MappControlThread(), to control the flow of such commands.

Thread control Windows NT/2000 and 98 systems are both multi-process and
multi-thread. They provide various thread control services,
including events (used to synchronize threads).

The MIL MappControlThread() command serves as a link
between MIL and the operating system. It controls and
coordinates both MIL threads and MIL events. It can create
and delete a MIL thread, set a thread as the current active
thread, set its processing mode, determine its current state,
and synchronize its processing by forcing a "wait" state. It can
exert similar controls on MIL events. MIL events can be used
in addition to, or instead of, the operating system’s events.

Error reporting Some functions in MIL are asynchronous, that is, they queue
their command to the hardware and then immediately return
control to the Host. For this reason, errors are only reported
when detected and not necessarily before the end of the MIL
function.

The most common way to check for errors is to use the
MappGetError() function. This function returns the errors
currently detected in a thread.

390 Chapter 24: Using MIL with multi-processing and under multi-thread systems

An example of using multiple threads or systems

Multiple threads The following example illustrates how multiple threads can be
used to perform processing. It also illustrates how to
synchronize multiple threads, using events.

���(KNG�PCOG��OVJTGCF�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�WUG�FKHHGTGPV�VJTGCFU�CPF�U[PEJTQPK\G�
��������������VJGO�YKVJ�/+.��+V�ETGCVGU���RTQEGUUKPI�VJTGCFU�VJCV�CTG�WUGF
��������������VQ�YQTM�KP���FKHHGTGPV�TGIKQPU�QH�C�FKURNC[�DWHHGT�
��
�������6JTGCF�WUCIG�
����������6JG�OCKP�VJTGCF�UVCTVU�C�RTQEGUUKPI�VJTGCF�KP�GCEJ�QH�VJG���FKHHGTGPV
����������SWCTVGTU�QH�C�FKURNC[�DWHHGT��6JG�OCKP�VJTGCF�VJGP�YCKVU�HQT�C�MG[�VQ
����������DG�RTGUUGF�VQ�UVQR�VJGO�
����������6JG�VQR�NGHV�CPF�DQVVQO�NGHV�VJTGCFU�YQTM�KP�C�NQQR��CU�HQNNQYU��VJG
����������VQR�NGHV�VJTGCF�CFFU�C�EQPUVCPV�VQ�KVU�DWHHGT��VJGP�UGPFU�CP�GXGPV�VQ
����������VJG�DQVVQO�NGHV�VJTGCF��6JG�DQVVQO�NGHV�VJTGCF�YCKVU�HQT�VJG�GXGPV
����������HTQO�VJG�VQR�NGHV�VJTGCF��TQVCVGU�VJG�VQR�NGHV�DWHHGT��VJGP�UGPFU�CP
����������GXGPV�VQ�VJG�VQR�NGHV�VJTGCF��9JGP�VJG�VQR�NGHV�VJTGCF�TGEGKXGU�VJG
����������GXGPV��VJG�NQQR�EQPVKPWGU�
����������6JG�VQR�TKIJV�CPF�DQVVQO�TKIJV�VJTGCFU�YQTM�GZCEVN[�VJG�UCOG�YC[�CU�VJG
����������VQR�NGHV�CPF�DQVVQO�NGHV�VJTGCFU��GZEGRV�VJCV�VJG�DQVVQO�TKIJV�VJTGCF
����������RGTHQTOU�CP�GFIG�FGVGEVKQP��TCVJGT�VJCP�C�TQVCVKQP�
��
��������0QVG�VJCV�VJG�VQR�CPF�DQVVQO�VJTGCFU�
QH�GCEJ�JCNH��EQWNF�DG�UGV�VQ�FQ
��������UQOGVJKPI�GNUG�YJKNG�YCKVKPI�HQT�GCEJ�QVJGT��
���
���JGCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��EQPKQ�J
�KPENWFG��RTQEGUU�J
�KPENWFG��YKPFQYU�J
�KPENWFG��OKN�J �
���NQECN�FGHKPGU���
�FGHKPG�+/#)'A(+.'�������������������DKTF�OKO�
�FGHKPG�+/#)'A9+&6*��������������������.
�FGHKPG�+/#)'A*'+)*6�������������������.
�FGHKPG�564+0)A.'0)6*A/#:�������������
�FGHKPG�564+0)A215A:������������������
�FGHKPG�564+0)A215A;�������������������
�FGHKPG�564+0)A612���������������������
�FGHKPG�564+0)A$1661/������������������
���6JTGCF�HWPEVKQP�RTQVQV[RGU���
WPUKIPGF�NQPI�/(6;2'�6QR6JTGCF
XQKF��62CTCO��
WPUKIPGF�NQPI�/(6;2'�$QV.GHV6JTGCF
XQKF��62CTCO��
WPUKIPGF�NQPI�/(6;2'�$QV4KIJV6JTGCF
XQKF��62CTCO��
���
EQPV�����

Multi-threading 391

���6JTGCF�RCTCOGVGTU�UVTWEVWTG���
V[RGFGH�UVTWEV
]
���/+.A+&��5TE+OCIG+F�
���/+.A+&��&UV+OCIG+F�
���/+.A+&��'XGPV5GPF+F�
���/+.A+&��'XGPV9CKV+F�
���/+.A+&��'XGPV'PF+F��
���/+.A+&��'XGPV'PF$QV+F�
���NQPI�����0WODGT1H+VGT2VT�
���NQPI�����%QO8CT2VT�
_��6*4'#&A2#4#/�

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&�/KN#RRNKECVKQP�����������#RRNKECVKQP�KFGPVKHKGT������������������������
����������/KN5[UVGO����������������5[UVGO�KFGPVKHKGT�����������������������������
����������/KN&KURNC[���������������&KURNC[�KFGPVKHKGT����������������������������
����������/KN+OCIG�����������������+OCIG�DWHHGT�KFGPVKHKGTU����������������������
����������/KN%JKNF�����������������%JKNF�DWHHGT�KFGPVKHKGTU����������������������
����������/KN6QR.GHV+OCIG����������6QR�NGHV�EJKNF�KOCIG��������������������������
����������/KN$QV.GHV+OCIG����������$QVVQO�NGHV�EJKNF�KOCIG�����������������������
����������/KN6QR4KIJV+OCIG���������6QR�TKIJV�EJKNF�KOCIG�������������������������
����������/KN$QV4KIJV+OCIG���������$QVVQO�TKIJV�EJKNF�KOCIG����������������������
����������'XGPV5GPF6QR.GHV���������'XGPV�UGPF�D[�VQR�NGHV�VJTGCF�����������������
����������'XGPV5GPF6QR4KIJV��������'XGPV�UGPF�D[�VQR�TKIJV�VJTGCF����������������
����������'XGPV9CKV6QR.GHV���������'XGPV�YCKVGF�QP�D[�VQR�NGHV�VJTGCF������������
����������'XGPV9CKV6QR4KIJV��������'XGPV�YCKVGF�QP�D[�VQR�TKIJV�VJTGCF�����������
����������'XGPV'PF6QR.GHV����������'XGPV�WUGF�VQ�GZKV�VQR�NGHV�VJTGCF������������
����������'XGPV'PF$QV.GHV����������'XGPV�WUGF�VQ�GZKV�DQVVQO�NGHV�VJTGCF���������
����������'XGPV'PF6QR4KIJV���������'XGPV�WUGF�VQ�GZKV�VQR�TKIJV�VJTGCF�����������
����������'XGPV'PF$QV4KIJV���������'XGPV�WUGF�VQ�GZKV�DQVVQO�TKIJV�VJTGCF��������
���NQPI�0WODGT1H6QR.GHV�����.������0WODGT�QH�VQR�NGHV�VJTGCFU�KVGTCVKQPU���������
��������0WODGT1H$QV.GHV�����.������0WODGT�QH�DQVVQO�NGHV�VJTGCFU�KVGTCVKQPU������
��������0WODGT1H6QR4KIJV����.������0WODGT�QH�VQR�TKIJV�VJTGCFU�KVGTCVKQPU��������
��������0WODGT1H$QV4KIJV����.������0WODGT�QH�DQVVQO�TKIJV�VJTGCFU�KVGTCVKQPU�����
��������%QO8CT.GHV����������.������%QOOWPKECVKQP�XCTKCDNG�HQT�NGHV�VJTGCF��������
��������%QO8CT4KIJV���������.������%QOOWPKECVKQP�XCTKCDNG�HQT�TKIJV�VJTGCF�������
���6*4'#&A2#4#/�62CT6QR.GHV��������2CTCOGVGTU�RCUUGF�VQ�VQR�NGHV�VJTGCF����������
����������������62CT$QV.GHV��������2CTCOGVGTU�RCUUGF�VQ�DQVVQO�NGHV�VJTGCF�������
����������������62CT6QR4KIJV�������2CTCOGVGTU�RCUUGF�VQ�VQR�TKIJV�VJTGCF���������
����������������62CT$QV4KIJV�������2CTCOGVGTU�RCUUGF�VQ�DQVVQO�TKIJV�VJTGCF������
���*#0&.'�6JTGCF*CPFNG=�?����������6JTGCF�JCPFNGU��������������������������������
���&914&��6JTGCF+F=�?��������������6JTGCF�+FU������������������������������������

����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO�
���������������������/KN&KURNC[��/A07..���/KN+OCIG��

���
EQPV������

392 Chapter 24: Using MIL with multi-processing and under multi-thread systems

������#NNQECVG�EJKNF�DWHHGTU����
���/DWH%JKNF�F
/KN+OCIG��������+/#)'A9+&6*����+/#)'A*'+)*6�����/KN%JKNF��
���/DWH%JKNF�F
/KN%JKNF��������+/#)'A9+&6*��+/#)'A9+&6*���/KN6QR.GHV+OCIG��
���/DWH%JKNF�F
/KN%JKNF��+/#)'A9+&6*�����+/#)'A9+&6*�
���������������+/#)'A*'+)*6���/KN6QR4KIJV+OCIG��
���/DWH%JKNF�F
/KN%JKNF�����+/#)'A*'+)*6��+/#)'A9+&6*�
���������������+/#)'A*'+)*6���/KN$QV.GHV+OCIG��
���/DWH%JKNF�F
/KN%JKNF��+/#)'A9+&6*��+/#)'A*'+)*6��+/#)'A9+&6*�
���������������+/#)'A*'+)*6���/KN$QV4KIJV+OCIG��
���/FKUR5GNGEV
/KN&KURNC[�/KN%JKNF��

�����#NNQECVG�U[PEJTQPK\CVKQP�GXGPVU����
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV5GPF6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV5GPF6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV9CKV6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV9CKV6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF6QR.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF6QR4KIJV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF$QV.GHV��
���/CRR%QPVTQN6JTGCF
/A&'(#7.6��/A'8'06A#..1%��/A&'(#7.6���'XGPV'PF$QV4KIJV��

�����+PKVKCNK\G�UQWTEG�DWHHGTU����
���/DWH.QCF
+/#)'A(+.'��/KN6QR.GHV+OCIG��
���/DWH.QCF
+/#)'A(+.'��/KN6QR4KIJV+OCIG��

�����+PKVKCNK\G�VJTGCFU�RCTCOGVGT�UVTWEVWTGU����
���62CT6QR.GHV�5TE+OCIG+F�������������/KN6QR.GHV+OCIG�
���62CT6QR.GHV�&UV+OCIG+F�������������/KN6QR.GHV+OCIG�
���62CT6QR.GHV�'XGPV5GPF+F������������'XGPV5GPF6QR.GHV�
���62CT6QR.GHV�'XGPV9CKV+F������������'XGPV9CKV6QR.GHV�
���62CT6QR.GHV�'XGPV'PF+F�������������'XGPV'PF6QR.GHV�
���62CT6QR.GHV�'XGPV'PF$QV+F����������'XGPV'PF$QV.GHV�
���62CT6QR.GHV�0WODGT1H+VGT2VT���������0WODGT1H6QR.GHV�
���62CT6QR.GHV�%QO8CT2VT���������������%QO8CT.GHV�

���62CT$QV.GHV�5TE+OCIG+F�������������/KN6QR.GHV+OCIG�
���62CT$QV.GHV�&UV+OCIG+F�������������/KN$QV.GHV+OCIG�
���62CT$QV.GHV�'XGPV5GPF+F������������'XGPV9CKV6QR.GHV�
���62CT$QV.GHV�'XGPV9CKV+F������������'XGPV5GPF6QR.GHV�
���62CT$QV.GHV�'XGPV'PF+F�������������'XGPV'PF$QV.GHV�
���62CT$QV.GHV�'XGPV'PF$QV+F����������/A07..�
���62CT$QV.GHV�0WODGT1H+VGT2VT���������0WODGT1H$QV.GHV�
���62CT$QV.GHV�%QO8CT2VT���������������%QO8CT.GHV�

���62CT6QR4KIJV�5TE+OCIG+F������������/KN6QR4KIJV+OCIG�
���62CT6QR4KIJV�&UV+OCIG+F������������/KN6QR4KIJV+OCIG�
���62CT6QR4KIJV�'XGPV5GPF+F�����������'XGPV5GPF6QR4KIJV�
���62CT6QR4KIJV�'XGPV9CKV+F�����������'XGPV9CKV6QR4KIJV�
���62CT6QR4KIJV�'XGPV'PF+F������������'XGPV'PF6QR4KIJV�
���62CT6QR4KIJV�'XGPV'PF$QV+F���������'XGPV'PF$QV4KIJV�
���62CT6QR4KIJV�0WODGT1H+VGT2VT��������0WODGT1H6QR4KIJV�
���62CT6QR4KIJV�%QO8CT2VT��������������%QO8CT4KIJV�

���
EQPV�����

Multi-threading 393

���62CT$QV4KIJV�5TE+OCIG+F������������/KN6QR4KIJV+OCIG�
���62CT$QV4KIJV�&UV+OCIG+F������������/KN$QV4KIJV+OCIG�
���62CT$QV4KIJV�'XGPV5GPF+F�����������'XGPV9CKV6QR4KIJV�
���62CT$QV4KIJV�'XGPV9CKV+F�����������'XGPV5GPF6QR4KIJV�
���62CT$QV4KIJV�'XGPV'PF+F������������'XGPV'PF$QV4KIJV�
���62CT$QV4KIJV�'XGPV'PF$QV+F���������/A07..�
���62CT$QV4KIJV�0WODGT1H+VGT2VT��������0WODGT1H$QV4KIJV�
���62CT$QV4KIJV�%QO8CT2VT��������������%QO8CT4KIJV�
���
�����5VCTV�TQVCVG�CPF�GFIG�FGVGEV�VJTGCFU����
���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���6QR6JTGCF�
���������������������������62CT6QR.GHV����.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���$QV.GHV6JTGCF�
���������������������������62CT$QV.GHV����.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���6QR6JTGCF�
���������������������������62CT6QR4KIJV���.���
6JTGCF+F=�?���
���6JTGCF*CPFNG=�?���
*#0&.'��ADGIKPVJTGCFGZ
07..���.���$QV4KIJV6JTGCF�
���������������������������62CT$QV4KIJV���.���
6JTGCF+F=�?���
�����
�����5GPF�GXGPVU�VQ�VTKIIGT�QRGTCVKQP�QH�VQR�NGHV�CPF�VQR�TKIJV�VJTGCFU����
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR.GHV��/A'8'06A5'6��/A5+)0#.'&�/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR4KIJV�/A'8'06A5'6��/A5+)0#.'&�/A07..��

����4GRQTV�YJCV�JCU�JCRRGPGF�VQ�VJG�*QUV�UETGGP�����
���RTKPVH
�2TQEGUUKPI�FQPG�KP�C�NQQR�>P���
���RTKPVH
�2TGUU��'PVGT �VQ�EQPVKPWG�>P���
���IGVEJCT
��
������/CMG�CNN�VJTGCFU�GZKV����
����/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV���/A'8'06A5'6��/A5+)0#.'&��/A07..��
����/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV��/A'8'06A5'6��/A5+)0#.'&��/A07..��

���9CKV�WPVKN�CNN�VJTGCFU�CTG�HKPKUJGF�DGHQTG�HTGGKPI�/+.�QDLGEVU����
���YJKNG�

/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV���/A'8'06A56#6'�
�����������������������������/A&'(#7.6��/A07..�����/A5+)0#.'&��^^
����������
/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV��/A'8'06A56#6'�
�����������������������������/A&'(#7.6��/A07..�����/A5+)0#.'&���
�����������
���RTKPVH
�6QR�NGHV�KVGTCVKQPU�FQPG��������NF�>P���0WODGT1H6QR.GHV��
���RTKPVH
�$QVVQO�NGHV�KVGTCVKQPU�FQPG�����NF�>P���0WODGT1H$QV.GHV��
���RTKPVH
�6QR�TKIJV�KVGTCVKQPU�FQPG�������NF�>P���0WODGT1H6QR4KIJV��
���RTKPVH
�$QVVQO�TKIJV�KVGTCVKQPU�FQPG����NF�>P���0WODGT1H$QV4KIJV��
���RTKPVH
�2TGUU��'PVGT �VQ�GPF�>P���
���IGVEJCT
��

����(TGG�DWHHGTU����
���/CRR%QPVTQN6JTGCF
'XGPV5GPF6QR.GHV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV5GPF6QR4KIJV��/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR.GHV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV9CKV6QR4KIJV��/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR.GHV����/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF6QR4KIJV���/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF$QV.GHV����/A'8'06A(4''��/A&'(#7.6��/A07..��
���/CRR%QPVTQN6JTGCF
'XGPV'PF$QV4KIJV���/A'8'06A(4''��/A&'(#7.6��/A07..��

��
EQPV����

394 Chapter 24: Using MIL with multi-processing and under multi-thread systems

����/DWH(TGG
/KN6QR.GHV+OCIG��
���/DWH(TGG
/KN6QR4KIJV+OCIG��
���/DWH(TGG
/KN$QV.GHV+OCIG��
���/DWH(TGG
/KN$QV4KIJV+OCIG��
���/DWH(TGG
/KN%JKNF��
�����4GNGCUG�FGHCWNVU����
���/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/A07..��/KN+OCIG��
_

YJKNG�
�'ZKV�
���]
���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
�������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6�/A07..��

���������2TQEGUU����
������/KO#TKVJ
5TE+OCIG+F���.��&UV+OCIG+F��/A#&&A%1056��

���������+PETGOGPV�KVGTCVKQP�EQWPV�CPF�FTCY�VGZV����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.����
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��

���������/QFKH[�EQOOWPKECVKQP�XCTKCDNG����
������
�

6*4'#&A2#4#/����62CTCO�� %QO8CT2VT���
����.����

���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
�������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
������]
������������/CMG�DQVVQO�VJTGCF�GZKV����
����������/CRR%QPVTQN6JTGCF
'XGPV'PF$QV+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
��
������������5GV�GZKV�NQQR�HNCI����
����������'ZKV���
������_
���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�RTQEGUUKPI����
�������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&��/A07..��
���_

������9CKV�DGHQTG�HTGGKPI�/+.�QDLGEVU�VJCV�CNN�VJTGCFU�CTG�HKPKUJGF����
����YJKNG�
/CRR%QPVTQN6JTGCF
'XGPV'PF$QV+F��/A'8'06A56#6'�
����������������������������/A&'(#7.6��/A07..�����/A5+)0#.'&�
�������

������/CMG�UWTG�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
����/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
����TGVWTP
�.��
_

���
EQPV�����

Multi-threading 395

���$QVVQO�NGHV�HWPEVKQPU�
4QVCVG�����
�������������������������������������
WPUKIPGF�NQPI�/(6;2'�$QV.GHV6JTGCF
XQKF��62CTCO�
]
���/+.A+&��5TE+OCIG+F������

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&��&UV+OCIG+F������

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&��'XGPV5GPF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&��'XGPV9CKV+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&��'XGPV'PF+F������

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�
���EJCT����6GZV=564+0)A.'0)6*A/#:?���564+0)A$1661/�
���NQPI����'ZKV���
���
���YJKNG�
�'ZKV�
���]
������NQPI�K�

���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
�������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
���������2TQEGUU����
�������/KO4QVCVG
5TE+OCIG+F�&UV+OCIG+F��

6*4'#&A2#4#/��62CTCO�� %QO8CT2VT������
����������������/A&'(#7.6��/A&'(#7.6��/A&'(#7.6��/A&'(#7.6�
����������������/A0'#4'56A0'+)*$14
/A%.'#4��

���������+PETGOGPV�KVGTCVKQP�EQWPV�CPF�FTCY�VGZV����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.�
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��

���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
�������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
������]
������������5GV�GZKV�NQQR�HNCI����
����������'ZKV���
������_

���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�RTQEGUUKPI����
�������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&�/A07..��
��_

�����/CMG�UWTG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
���/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&���/A07..��
���TGVWTP
�.��
_

��
EQPV�����

396 Chapter 24: Using MIL with multi-processing and under multi-thread systems

���$QVVQO�TKIJV�HWPEVKQP�
'FIG�&GVGEV�����
��
�WPUKIPGF�NQPI�/(6;2'�$QV4KIJV6JTGCF
XQKF��62CTCO�
�]
���/+.A+&�5TE+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� 5TE+OCIG+F�
���/+.A+&�&UV+OCIG+F�����

6*4'#&A2#4#/����62CTCO�� &UV+OCIG+F�
���/+.A+&�'XGPV5GPF+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV5GPF+F�
���/+.A+&�'XGPV9CKV+F����

6*4'#&A2#4#/����62CTCO�� 'XGPV9CKV+F�
���/+.A+&�'XGPV'PF+F�����

6*4'#&A2#4#/����62CTCO�� 'XGPV'PF+F�

���EJCT���6GZV=564+0)A.'0)6*A/#:?���564+0)A$1661/�
���NQPI���'ZKV���

���YJKNG�
�'ZKV�
���]
���������9CKV�HQT�GXGPV�VQ�RTQEGUU����
������/CRR%QPVTQN6JTGCF
'XGPV9CKV+F��/A'8'06A9#+6��/A&'(#7.6��/A07..��
������
���������2TQEGUU����
������/KO%QPXQNXG
5TE+OCIG+F��&UV+OCIG+F��/A'&)'A&'6'%6��
���
���������+PETGOGPV�KVGTCVKQP�EQWPV�CPF�FTCY�VGZV����
������
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT��
����.����
������NVQC
�

6*4'#&A2#4#/����62CTCO�� 0WODGT1H+VGT2VT���6GZV������
������/ITC6GZV
/A&'(#7.6��&UV+OCIG+F��564+0)A215A:��564+0)A215A;��6GZV��

���������%JGEM�KH�RTQEGUUKPI�OWUV�DG�VGTOKPCVGF����
������KH�
/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A56#6'��/A&'(#7.6�
����������������������������/A07..�����/A5+)0#.'&�
������]
������������5GV�GZKV�NQQR�HNCI����
���������'ZKV���
������_

���������5[PEJTQPK\G�OCKP�VJTGCF�YKVJ�GPF�QH�RTQEGUUKPI����
������/CRR%QPVTQN6JTGCF
'XGPV5GPF+F��/A'8'06A5'6��/A5+)0#.'&�/A07..��
���_
������
������/CMG�UWTG�VJCV�GZKV�QH�VJTGCF�KU�U[PEJTQPK\GF�YKVJ�*156����
���/CRR%QPVTQN6JTGCF
'XGPV'PF+F��/A'8'06A5'6��/A016A5+)0#.'&��/A07..��
���TGVWTP
�.��
_
�

���

Chapter 25: Using MIL with
Native Mode Functions

This chapter covers the use of Native Mode functions with
MIL.

398 Chapter 25: Using MIL with Native Mode Functions

Integrating native functions with MIL code

MIL allows you to mix board-specific code (from the native
library function set) with its own code. This is useful when you
need to access some board-specific functionality that is not
supported directly by the MIL function set or to optimize a
time-critical piece of code.

When programming in native mode through MIL, you use the
same board driver and programmer’s kit that are used by
regular native mode programmers. The only difference is the
need to use certain rules and commands to ensure proper
communication between MIL and the native functions. These
rules and commands allow you enter and leave native mode
from MIL and access MIL for information, such as the object
native handle, concerning data objects on the target board.

Portability
You should note that applications containing native mode
functions are not portable to other present or future Matrox
platforms supported by MIL.

Signaling MIL about Native Mode use
MIL must be signaled when entering and leaving native mode
and when MIL objects have been modified while in native mode,
using MsysControl(). For buffer modification, MbufControl()
can also be used to signal MIL.

On entering native mode, MIL does not affect the current state
of either the board or the environment.

The M...Inquire() functions can be used to determine the buffer,
digitizer, or display native identifier (handle) required to use
the system’s native library.

On leaving native mode, MIL assumes that the board is in the
same state as when entering. Therefore, you must ensure that
you return the board to the proper state before returning
control to MIL. Inquiries about the board state must be made
using the board’s native library inquiry functions.

A native mode example 399

A native mode example

In this example, we use MIL mixed with Genesis native library
code to grab and warp an image.

Code

���(KNG�PCOG��OPCVIGP�E�
���5[PQRUKU���6JKU�RTQITCO�UJQYU�JQY�VQ�WUG�)'0'5+5�PCVKXG�NKDTCT[�
��������������HWPEVKQP�ECNNU OKZGF�YKVJ�/+.�HWPEVKQP�ECNNU�
���

���IGPGTCN�KPENWFGU���
��KPENWFG��UVFKQ�J �
��KPENWFG��UVFNKD�J �
��KPENWFG��UVTKPI�J �
��KPENWFG��OKN�J
��KPENWFG��KOCRK�J

���1RGTCVKQP�EQPVTQN�FGHKPGU���
��FGHKPG�#..1%#6'����
��FGHKPG�241%'55�����
��FGHKPG�(4''��������

���0CVKXG�HWPEVKQPU�VQ�ITCD��CPF�YCTR�CP�KOCIG����
�XQKF�)TCD#PF9CTR
/+.A+&�/KN5[UVGO��/+.A+&�/KN&KURNC[��/+.A+&�/KN%COGTC���
�����������������/+.A+&�/KN+OCIG��NQPI�1RGTCVKQP��

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
���/+.A+&�/KN#RRNKECVKQP�������#RRNKECVKQP�KFGPVKHKGT�����
����������/KN5[UVGO������������5[UVGO�KFGPVKHKGT����������
����������/KN&KURNC[�����������&KURNC[�KFGPVKHKGT���������
����������/KN%COGTC������������%COGTC�KFGPVKHKGT�����������
����������/KN+OCIG�������������+OCIG�DWHHGT�KFGPVKHKGT����

�����#NNQECVG�FGHCWNVU����
���/CRR#NNQE&GHCWNV
/A5'672���/KN#RRNKECVKQP���/KN5[UVGO���/KN&KURNC[�
���������������������/KN%COGTC���/KN+OCIG��
�
�����#NNQECVG�CPF�KPKVKCNK\G�YQTM�DWHHGTU���
���)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��#..1%#6'��
��������������������
������2TKPV�C�OGUUCIG�QP�VJG�JQUV�UETGGP����
����RTKPVH
�0CVKXG�HWPEVKQP�ECNNGF�KP�C�NQQR���>P���
����RTKPVH
�2TGUU��'PVGT �VQ�GPF������

���
��
EQPV������

400 Chapter 25: Using MIL with Native Mode Functions

�������)TCD�CPF�YCTR�ITCDDGF�KOCIG�KP�C�NQQR���
������YJKNG�
�MDJKV
��
������]
����������)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��241%'55��
������_
������
������(TGG�YQTM�DWHHGTU���
����)TCD#PF9CTR
/KN5[UVGO��/KN&KURNC[��/KN%COGTC��/KN+OCIG��(4''��

����/CRR(TGG&GHCWNV
/KN#RRNKECVKQP��/KN5[UVGO��/KN&KURNC[��/KN%COGTC�
�������������������/KN+OCIG��
_

���0CVKXG�HWPEVKQP����
����������������������
XQKF�)TCD#PF9CTR
/+.A+&�/KN5[UVGO��/+.A+&�/KN&KURNC[��/+.A+&�/KN%COGTC�
�����������������/+.A+&�/KN+OCIG��NQPI�1RGTCVKQP�
]
������9CTR�EQGHHKEKGPV�CPF�.76�+&�XCTKCDNGU�
������
MGRV�KP�UVCVKE�VQ�CXQKF�YCTR�EQGHHKEKGPV�ECNEWNCVKQP�CV�GCEJ�ECNN��
������
����UVCVKE�NQPI�0CVKXG9CTR$WH+F����������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR.WV:$WH+F������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR.WV;$WH+F������/A07..�
����UVCVKE�NQPI�0CVKXG)TCD$WH+F����������/A07..�
����UVCVKE�NQPI�0CVKXG9CTR4GUWNV$WH+F����/A07..�
���
������+PSWKTG�WUGHWN�/+.�KPHQTOCVKQP����
����NQPI�5K\G:������/FKI+PSWKTG
/KN%COGTC��/A5+<'A:�����/A07..��
����NQPI�5K\G;������/FKI+PSWKTG
/KN%COGTC��/A5+<'A;�����/A07..��
����NQPI�5K\G$CPF���/FKI+PSWKTG
/KN%COGTC��/A5+<'A$#0&��/A07..��
���
������/KUEGNNCPGQWU�NQECN�XCTKCDNGU���
����FQWDNG�%QTPGT:���������
����FQWDNG�%QTPGT;���������
����FQWDNG�%QTPGT:�����5K\G:�������
����FQWDNG�%QTPGT;���������
����FQWDNG�%QTPGT:�����������5K\G:�
����FQWDNG�%QTPGT;�����5K\G;�������
����FQWDNG�%QTPGT:������������5K\G:�
����FQWDNG�%QTPGT;�����5K\G;�������
����NQPI���5TE:5VCTV����.�
����NQPI���5TE;5VCTV����.�
����NQPI���5TE:'PF�����5K\G:����.�
����NQPI���5TE;'PF�����5K\G;����.�
���
EQPV������

A native mode example 401

������+PSWKTG�)GPGUKU�PCVKXG�+F	U�����
����NQPI�0CVKXG5[U6JTGCF+F���/U[U+PSWKTG
/KN5[UVGO��/A0#6+8'A6*4'#&A+&��/A07..��
����NQPI�0CVKXG&KI%COGTC+F���/FKI+PSWKTG
/KN%COGTC��/A0#6+8'A%#/'4#A+&��/A07..��
����NQPI�0CVKXG&KI%QPVTQN+F���/FKI+PSWKTG
/KN%COGTC��/A0#6+8'A%10641.A+&�
������/A07..��
����NQPI�0CVKXG&KI+F���/FKI+PSWKTG
/KN%COGTC���/A0#6+8'A+&��/A07..��
����NQPI�0CVKXG$WH+F���/DWH+PSWKTG
/KN+OCIG���/A0#6+8'A+&��/A07..��

������0QVKH[�/+.�VJCV�YG�CTG�GPVGTKPI�PCVKXG�OQFG����
����/U[U%QPVTQN
/KN5[UVGO��/A0#6+8'A/1&'A'06'4��/A07..��
���
������&Q�VJG�UGNGEVGF�QRGTCVKQP���
����UYKVEJ�
1RGTCVKQP�
���]
�������2TGCNNQECVG�ITCD�CPF�YCTR�DWHHGTU�
FQPG�QPEG�HQT�URGGF�����
�����ECUG�#..1%#6'�
�����]
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;��5K\G$CPF��+/A7$;6'�
�����������������+/A241%���0CVKXG)TCD$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;��5K\G$CPF��+/A7$;6'�
�����������������+/A241%���0CVKXG9CTR4GUWNV$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F���.���.���.��+/A(.1#6��+/A241%��
������������������0CVKXG9CTR$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;���.��+/A5*146��+/A241%�
������������������0CVKXG9CTR.WV:$WH+F��
������KO$WH#NNQE
0CVKXG5[U6JTGCF+F��5K\G:��5K\G;���.��+/A5*146��+/A241%�
������������������0CVKXG9CTR.WV;$WH+F��
������KH�
0CVKXG)TCD$WH+F����0CVKXG9CTR4GUWNV$WH+F����0CVKXG9CTR$WH+F����
����������0CVKXG9CTR.WV:$WH+F����0CVKXG9CTR.WV;$WH+F�
������]
������������%CNEWNCVG�YCTR�EQGHHKEKGPVU���
����������KO)GP9CTR�%QTPGT
0CVKXG5[U6JTGCF+F��0CVKXG9CTR$WH+F��%QTPGT:��
��������������������������%QTPGT;���%QTPGT:���%QTPGT;���%QTPGT:���%QTPGT;��
��������������������������%QTPGT:���%QTPGT;���5TE:5VCTV��5TE;5VCTV�
��������������������������5TE:'PF��5TE;'PF��+/A&'(#7.6���.��
����������KO)GP9CTR.WV/CVTKZ
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV:$WH+F�
��0CVKXG9CTR.WV;$WH+F��
��0CVKXG9CTR$WH+F���.���.��
������_
������GNUG
�����]
���������RTKPVH
�'TTQT�CNNQECVKPI�TGUQWTEGU���>P���
�����_
������DTGCM����
�����_�����

���
EQPV�����

402 Chapter 25: Using MIL with Native Mode Functions

��

�����)TCD�CPF�9CTR�DWHHGT����
����ECUG�241%'55�
����]
���������2TQEGUU�KH�CNNQECVKQPU�YGTG�UWEEGUUHWN����
�������KH�
0CVKXG)TCD$WH+F����0CVKXG9CTR4GUWNV$WH+F����0CVKXG9CTR$WH+F���
����������0CVKXG9CTR.WV:$WH+F���0CVKXG9CTR.WV;$WH+F�
�������]
������������)TCD�VJG�KOCIG���
����������KO&KI)TCD
0CVKXG5[U6JTGCF+F��0CVKXG&KI+F��0CVKXG&KI%COGTC+F�
�������������������0CVKXG)TCD$WH+F���.��0CVKXG&KI%QPVTQN+F���.��
�
������������9CTR�VJG�ITCDDGF�KOCIG����
����������KO+PV9CTR.WV
0CVKXG5[U6JTGCF+F��0CVKXG)TCD$WH+F��0CVKXG9CTR4GUWNV$WH+F�
����������������������0CVKXG9CTR.WV:$WH+F��0CVKXG9CTR.WV;$WH+F���.���.��

�����������%QR[�VJG�TGUWNV�KPVQ�VJG�FKURNC[�DWHHGT���
���������KO$WH%QR[
0CVKXG5[U6JTGCF+F��0CVKXG�9CTR4GUWNV$WH+F��0CVKXG$WH+F���.��
�������������������.��
�������_
�������DTGCM����
����_
������
�������(TGG�ITCD�CPF�YCTR�DWHHGTU����
����ECUG�(4''�
����]
������KH�
0CVKXG)TCD$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG)TCD$WH+F��
������KH�
0CVKXG9CTR4GUWNV$WH+F�
���������KO$WH(TGG
PCVKXG5[U6JTGCF+F�0CVKXG9CTR4GUWNV$WH+F��
������KH�
0CVKXG9CTR$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR$WH+F��
������KH�
0CVKXG9CTR.WV:$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV:$WH+F��
������KH�
0CVKXG9CTR.WV;$WH+F�
���������KO$WH(TGG
0CVKXG5[U6JTGCF+F��0CVKXG9CTR.WV;$WH+F��
������DTGCM����
����_
���_
��
������0QVKH[�/+.�VJCV�YG�NGCXG�PCVKXG�OQFG����
����/U[U%QPVTQN
/KN5[UVGO��/A0#6+8'A/1&'A.'#8'��/A07..��
���
������0QVKH[�/+.�VJCV�VJG�DWHHGT�YCU�OQFKHKGF����
����/DWH%QPVTQN
/KN+OCIG��/A/1&+(+'&��/A&'(#7.6��
_

Index

A

absolute value
image 74
result of operation 88

absolute world coordinate system 130
AC Huffman table 379
accentuating edges 70
acceptance level

definition 194
acquisition

attribute 273
continuous 43
image 42, 340
input LUT 369
precondition 350

adding, image 74
address

Host 290
logical 290

alignment
angular 177
fiducial marks 182
image rotation 59
vertical and horizontal 173

allocate
application 29
buffers 39
child buffer 277, 371
data buffer 270
defaults 30
digitizer 42, 340
display 302
graphics context 334
image buffer 37, 273
LUT buffer 76, 297–298
measurement marker 238
multi-band buffer 368
OCR result buffer 212
pattern matching model, manual 183
pattern matching result buffer 184

allocation error 276

angle
marker 263
orientation 178

angular alignment 177
annotation

image 334
non destructive 313

application
building 29
child 388
processing, typical 48
simultaneous processing 386

application context 388
arcs, draw 336
arithmetic operations 74
aspect ratio 54, 150, 152, 159

definition 151
auto-focusing 361
average, input data 55–56

B

background color
associate to graphics context 335

background, blobs 138
bar codes 230
bicubic interpolation 116–117
bilinear interpolation 116–117
binarize 48, 63, 66, 148
Binary buffers 284
binary buffers, packed 272
binary measurements, blobs 139, 156
bisection strategy 362–363
blanking, display 307
blob analysis 137–138, 147, 155

all-blob interpretation 153
area 158
binary measurements 139, 156
blob location 166
blob-group interpretation 153
calculating with blob runs 170
capabilities 21
compactness 162
controls 140, 150
coordinates 152
count by label 65
example, compactness 163

example, count blobs 142
feature list 140–141, 156, 160
feature selection 138
foreground 148, 150
grayscale measurements 139, 156
module 139
non-calibration of results 158
number of holes 165
perimeter 158
result buffer 140, 154
results 152
roughness 162
selecting blob features 156
selecting blobs 153–154
single-blob interpretation 152
speed 154, 156–157, 161
steps to performing 139
transformation 145

blob identifier image 150
acquisition 148
background 138
blob group 150, 152
definition 140
foreground 138, 148
identifier type 150
interpretation 150
labelled 152
lattice 150
noise 149
pixel aspect ratio 150–151, 159
preprocess 140, 149
purpose 139, 148
segmentation 148

blobs
area 82, 158
binary, feature extraction 139
border-touching 145
breadth 161
break apart 58, 77, 140, 149
calculate features 152
center of gravity 167
compactness 162
convex perimeter 159
counting 142
definition 21, 138
dimensions 160
distinguish 140
feature extraction 156

feature ordering 138
features 139, 141, 155–157
Feret diameter 150–151, 160
Feret diameter, See also Feret diameter 156
grayscale, feature extraction 139
grouping 152
holes 149, 158, 165
identifier types 139
identifying 148
including See blob identifier image 157
label 82, 169
locate 66
location 166
moments 156, 169
noise 149
number of 82
perimeter 158
reconstruction 145
roughness 162
runs 170
selecting 153–154
shape 162
sizing 161
touching 148, 150

border
search accuracy 198

border handling
neighborhood operations 87, 91

borders
blobs touching 145

brightness, adjust on input 349
buffer

accessing a 289
RGB 282
storage format 281–284, 286–287
user-allocated 290

buffers
address 290
binary 284
displayable 275
grab 274
pitch of 290
supported 139
YUV 284

C

calibrating images 120
calibration 158
camera

acquisition from 42, 340
adjusting/focusing 43, 361
sophisticated 340
specification 341

catchment basins 104
cell size of code 231, 234
cellular mapping 99
center of gravity 142, 167
central moments 169
certainty level

definition 195
Chained pixels 167
Chamfer 3-4 transform 82
characters, text 338
Chessboard transform 81
child application 388
child buffers 277

allocate 277
color 371
data buffer attributes 277
definition 270
dimensions 277
display 278, 311
display multiple 308
inheriting parent features 277
LUT 297
offset from parent 277
returned coordinates 277
size 277

circles, draw 336
City Block transform 81
clear

display 307
graphics image buffer 335

clipping
borders 278
graphics 337
pixel values 68, 149

closing operation 47, 55, 58
codes 230
coefficients, warping 114

color
handling techniques 367
input LUT 369

color band 271
LUT 323

color images
allocate buffer 368
allocate child buffer 371
color conversion 371
copy 371
copy single band 278
dealing with 368
displaying 370
grabbing 368
loading 374
processing 371
processing restrictions 371
put data in band 279
reference levels 350
saving 374

column profile 65
commands

functions 30
pseudo-MIL 398

communication channels 29, 32
compactness, blob 162
comparative operations 74
compass gradient 71, 73
compiling 31
complex operations 76
compressing images 376
conditional buffer, creating 334
connectivity

code 99
mapping 99

constant thresholding 47
continuous grab 43
contrast 349

image, adjusting 63, 69, 349
marker/background 250

control
areas processed 277
neighborhood center 91
neighborhood operation 87

conversion
color 371
data format 280

convex perimeter 159

convex perimeter, find 96
convolution 70–71
coordinates

child buffer 277
measurement marker 247
model 183
of a pixel 293
search result 173
text writing 338

copy
bit truncation/extension 279
clip, and 278
color band 278, 298, 371
conditional 278
data 278
data to LUT 298
mask 278
model 183
specific buffer areas 278

Corona
exposure 356, 359–361

automatic model 358
bypass model 360

triggers 356, 359–361
counting

dark particles 67
objects 48, 82, 163

custom
morphological operations 90
spatial filters 86
structuring element 90
window, VGA 317

D

data allocation and access module 269
data average 56
data buffer

attributes 273, 276
automatically allocated 280
child 270, 277
clear 335
clip border 278
color band 271, 368
defined 270
depth 272
dimensions 271

display 301
export data 280
free 271
get data, put in array 279
handling 269
import 280
incorrect usage 276
integer 272
intended usage 273
location 273
LUT, see LUT buffer 297
management 279
multiple, display 278
multiple, handling 278
packed binary 272
put data 279
range 272
restore 280
save 280
type 68, 273

data format, input device 341
data generation

LUT 297
data type 39

changing 68
data, overwriting 39
DataMatrix codes 230
DC Huffman table 379
dcf files 341
decompressing images 376
default graphics context 334
defaults

display 30
image buffer 26, 30, 39, 41
initializing 26
input device 340
input LUT 351

defect highlighting 70
depth

data buffer 272
display 306

destination buffer 39
device

control module 339
differences

image, count 62
digitization, definition 46

digitizer
allocate 42, 340
color data format 368
configuration format 341
frame averaging 56
free 340
input channel 342
inquire 341
LUT 300, 350, 369
number 342
reference levels 349

digitizer configuration files 341
dilation

advanced 91
basic 47, 77–78
binary algorithm 92
conditional 92, 145
grayscale algorithm 92
opening/closing operation 58

dimensions, blob 160
DirectDraw 324, 327
DirectDraw underlay-surface 327
DirectDraw underlay-surface display 327
DirectDraw underlay-surface display
architecture 327

displacement
search maximum 197

display 324
allocation 29
annotating 312

Windows GDI 314
border handling 302
buffer 39, 278
clear 307
color 322
color image 370
control module 301
default 30
dual-screen 303
example 313, 318
free 318
image location 302
LUT 299, 322, 370
mode

non-windowed 305
windowed 305

monochromatic effect 300
monochrome buffer 38

multi-head 304
multiple buffers 308
non 8-bit buffers 306
pan 311
pseudo-color effect 300
psuedo color LUT 323
scroll 311
single-screen 303
size and depth 306
true color effect 300
user-defined window 317
VGA 303
VGA system 317
Windows, VGA 317
zoom 311

display architectures 324
display mode

windowed 328
Displayable buffers 275
distance transforms 81
distinguishing edges 70
distortions 54–55, 59, 120
dividing, image 74
dontcare, kernel value’ 90
dots, draw 336
double buffering, definition 352
DrawDIBDraw()

VGA 328–330
drawing 334, 336
dual-screen configuration

displaying in 303
VGA 303

dynamic range 349

E

edge
enhance for contrast 70
enhancers 47, 70–71, 86
inside stripe marker 259
markers 237

edge extractors 72
compass gradient 71, 73
definition 70
horizontal 70–71
Laplacian 71–72
oblique 70
predefined kernels 71
vertical 70–71

encoding type 231, 234
erosion 47

advanced 91
basic 77, 90
binary algorithm 91
grayscale algorithm 91
opening/closing operation 58

error correction type 231, 234
error reporting

automatic 41
memory, insufficient 276
message control 30
thread 388–389

event, locate 62
examples

blob analysis, compactness 163
blob analysis, count blobs 142
change data type 68
color image manipulation 372
color, run with 369
custom structuring element 93
display in user-defined window 318
display multiple buffers 308
display with overlay 313
extract background 74
filter with custom kernel 88
find perimeter of object 78
general information 26, 32
grab 42
image allocation/display 40
image analysis 48
installing 26

kernel 86
mblobcnt.c 163
mblobcog.c 142
mcolor.c 372
mconvol.c 88
MIL sample program 32
mmultdis.c 308
mocrfont.c 225
mocrread.c 213
mocrview.c 223
modify for color 38
mopen.c 93, 96
mperim.c 78
msearch.c 185
mstart.c 32
msurvey.c 74
mwindisp.c 318
Native Mode ProgrammersToolkit’ 399
OCR, calibrate a font 213
OCR, create custom font 225
OCR, visualize font characters 223
optical character recognition 213, 219
pattern matching, define model and
search 185

standard defaults 38
structuring element 92
wafer alignment 174
zooming 311

excluding blobs 154, 158
export data buffer 280
exposure 361

automatic model
Corona 358

bypass model
Corona 360

Corona 356
extreme value, find 49, 62, 65

F

false matches 195
feature list, blob analysis 140–141
Feret diameter

angle 161
aspect ratio 151
average 160
blob feature 156
convex perimeter 159
general 160
illustrated 160
minimum/maximum 160
number of 150

fiducial marks 182
field grabbing 343
field-of-view 133
file format 280
files

semi1292.mfo 216
semi1388.mfo 216

fill
holes 58

filled-in shapes 337
filter

temporal 56
find

buffer extremes 62
marker 240, 248
model 184

first-order polynomial warping 114
focus indicator 362
font

associate to graphics context 338
predefined 338
scale 338
size 338

foreground color
associate to graphics context 335
fill with 337

foreground, blobs 138, 150
frame

averaging 56
grabbing 43, 343

frame buffer 302
frame buffer, display 313

free
buffer, data 271
buffer, image processing result 65
graphics context 334

full range digitization 65
function

development 399
execution success 30
user-created 22

functions
commands 30

G

gamma correction 300
Gaussian noise 54–57
generating warping coefficients 114
geometric transforms 113
Grab 274
grab 351

color images 368
continuous 43
data average 55–56
data buffer 273, 368
example 42
fields 343
frames 43, 343
halt 43
image 42, 48, 340
mode 352
monochrome 42
multi-dimensional buffers 368
sequence 56
synchronization 352

Grab buffers 274
GrabAndWarp()

example 399
graphics 334

arcs, draw 336
boundary type seed fill 337
buffer, clear 335
capabilities 21
circles, draw 336
clipping 337
dots, draw 336
filled elliptic arcs, draw 336
filled rectangles, draw 336

filled-in shapes 336
lines, draw 336
module 333
non-destructive annotation 313
outline, draw 336
parameters 335
plot a histogram 64
rectangles, draw 336
text, write 338

graphics context
allocate 334
background color, associate 335
default 334
definition 334
font scale, associate 338
foreground color, associate 335
free 334
object parameters 335
text font, associate 338

grayscale images, modules using only 20

H

halt grabbing 43
header file 31
hierarchical search 204
histogram

equalization 69
generate 62–63
plotting 64
statistical operation 47

hit or miss pattern matching 98
holes

blobs, in 158
blobs, to distinguish 165
extract 145
fill 55, 58, 145

horizontal edges 70–71
host

communication 29
CPU 20
default system 271
screen 30
system 298

hue 371
Huffman encoding 378–379

I

image
addition 74
analysis 47
arithmetic operations 74
binarize 66
column profile 65
comparison 47
contrast 63
data type 68
definition 46
differences, count 62
dilation 77
distortion 55, 59, 194
division 74
edge enhancement 70
enhancement 47
erosion 77
extreme values 62, 65
grabbing 42
histogram 62–63
histogram equalization 69
inversion 76
manipulation, advanced 85
manipulation, basic 47
manipulation, order 62
mapping 47, 76
multiplication 74
noise reduction 47
pixel value clipping 68
projection 62, 65
quality 54–55
row profile 65
sharpening 47
smoothing 47
statistics 62
subtraction 47, 74
thresholding 66
transformation 145

image buffer
acquisition 273
allocation 37, 39–40, 273
color 38, 43
conditional 334
default 30, 39, 369
defined 39
destination 39
display 40, 273
display border 302
display multiple 308
display position 302
free 271
map through LUT 296
multi-band 371
processing 273
removing from display 307
select for display 302
size 39
source 39
two-dimensional 38–39, 43
uses 39

image coordinate system 130
image digitization 46
image processing 46–47

application 48
capabilities 20
module 45, 53, 61
operation ordering 62
result buffer 63, 65–66

imIntDistance() 81
impulse noise 54
include file 31
initialization

input device 340
system 26, 340

input device
brightness 349
contrast 349
defaults 340
frequency 341
line-scan 343
LUT 350
resolution 341
subsampling 351
using 42

inquire
digitizer 341
font, OCR 222

installation
MIL 26
test program 31

integer buffers 272
Intellicam 341
intensity

correction 298
distribution 63, 69
histogram 62
HLS 371

interlaced JPEG compression 376
interpolation modes 116
isthmuses 55, 58

J

JPEG compression 376

K

kernels
buffer allocation 87, 273
defined 57
example, sharpen/smooth 86
predefined 57, 71
usage 70, 72–73, 86
user-defined 87

keying 313

L

labelling
blobs 48–49, 169
blobs, use 65, 82

Laplacian edge detection 71–72
lattice, blobs 150
length

measurement marker 250, 257
lens curvature 54
lens motor 361
line equation

measurement marker 250, 258
linear interpolation function 129

lines
draw 336

line-scan device 343
link program with library 31
load

color image 374
data 279–280
LUT data 298

locating blobs in an image 66, 166
logical operations 74
look-up table 321

1-band custom 323
3-band custom 324
changing default 322
control loading into physical output
LUTs 330

control loading into Windows
palette 328, 330

pseudo-color 323
lossless compression 376
lossy compression 376
low-pass spatial filters 55
luminance

HLS 371
LUT 321

1-band custom 323
3-band custom 324
changing default 322
control loading into physical output
LUTs 330

control loading into Windows
palette 328, 330

pseudo-color 323
LUT buffer

allocation 273, 297
child buffer 297
color bands 297–298, 369
data generation 297–298
dimensions 297
load 298
management 297
one-dimensional 297
restore 298

LUTs
allocate 76
connectivity mapping 99
custom 323
definition 296
display 299, 370
display color, change 322
general information 295
index 297
input 349–350, 369
input mapping 76, 300
intensity correction 298
monochromatic effect 300
multiple-color-band 324
one-color-band 323
processing 76, 299
pseudo-color effect 300
ramp 297
transformation 69
true-color effect 300
usage 299

M

M_DISP 275
M_GRAB 274
machine guidance 166, 182
MappAlloc() 30, 334, 388

example 318
MappAllocDefault() 26, 29, 39, 41–42,
302, 334, 340, 368–370

example 32, 40, 42–43, 50, 74, 79, 88, 93,
142, 185, 213, 223, 225, 308, 399

MappChild() 388
MappControl() 30
MappControlThread() 389
MappFree() 30

example 318
MappFreeDefault() 29

example 32, 40, 42–43, 50, 64, 74, 79,
88, 93, 142, 163, 174, 185, 223,
225, 308, 372, 399

MappGetError() 30, 389
example 40, 174

MappHookFunction() 30
mapping 76, 99
mapping pixels to world 120

marker
allocation 238
center 249, 254
characteristics 239, 248
contrast 250
edge 237
find 240, 248
find, speed 244, 250
find, tolerance 245
managing 237
measure 240
measurement box 244–245, 257
parameters 239, 248
processing area 239
reference 249
reference position 254
region of interest 244
stripe 237
types 237

mask, copy 278
matrix-defined warping 115
matrix-defined warpings

generating LUTs for 115
Matrox READER 211
maximum

pixel value 47, 65
MblobAllocFeatureList() 140, 156

example 142, 163
MblobAllocResult() 140

example 142, 163
MblobCalculate() 141, 154, 156, 167

example 142, 163
mblobcog.c 142
MblobControl() 140, 150–153, 159, 161

example 163
MblobFill() 146, 154, 157
MblobFree()

example 142, 163
MblobGetLabel() 141, 169
MblobGetNumber() 141

example 142, 163
MblobGetResult() 141

example 142
MblobGetResultSingle() 141, 169
MblobGetRuns() 141, 169
MblobLabel() 146, 157
MblobReconstruct() 92, 145

MblobSelect() 141, 154, 157
example 142, 163

MblobSelectFeature() 141, 156–157,
160–161, 169

example 142, 163
MblobSelectFeret() 141, 156, 160
MblobSelectMoment() 141, 156, 169
MbufAlloc() 289
MbufAlloc1d() 76, 270, 297, 323
MbufAlloc2d() 39, 87, 90, 270, 308

example 40, 74, 79, 93, 142, 318
MbufAllocColor() 30, 270, 281, 297, 368
MbufChild1d() 277
MbufChild2d() 277, 308

example 50, 88, 93, 185, 213, 225,
308, 372

MbufChildColor() 277, 371, 378
example 372

MbufClear() 335
example 225, 308, 318

MbufControl 314
MbufControl() 314, 323, 377–378, 380

example 399
MbufControlNeighborhood() 87, 91

example 88
MbufCopy() 298, 377

example 74, 93
MbufCopyClip() 278
MbufCopyColor() 278, 298, 371
MbufCopyCond() 278
MbufCopyMask() 278
MbufCreate2d() 290
MbufCreateColor() 290
MbufExport() 280, 374, 377
MbufExportSequence 376
MbufFree() 30, 271, 277, 297

example 50, 64, 74, 79, 88, 93, 142,
163, 174, 185, 225, 308, 372

MbufGet() 279, 289
MbufGet1d() 279
MbufGetColor() 279
MbufImport() 280, 374, 377
MbufImportSequence() 376
MbufInquire() 290–291, 314

example 223, 399
MbufLoad() 280, 298, 374

example 50, 79, 93, 142, 185, 213,
308, 372

MbufPut() 87, 90, 279, 289, 298, 323
example 88

MbufPut1d() 76, 279, 298
MbufPut2d() 87, 90

example 93
MbufPutColor() 279, 298
MbufRestore() 280, 298, 374
MbufSave() 280, 374
McalAlloc() 122
McalAssociate() 122
McalControl() 125
McalGrid() 122, 126, 135
McalList() 122, 126, 128, 135
McalRelativeOrigin() 132
McalTransformCoordinate() 122
McalTransformImage() 122
McalTransformResult() 122
McodeAlloc() 231
McodeControl() 231, 234
McodeFree() 231
McodeGetResult() 231
McodeRead() 231
McodeWrite() 231
mconvol.c 88
MdigAlloc() 30, 42, 340–342, 368

example 318
MdigChannel() 342
MdigControl() 43, 352, 387
MdigFocus() 361
MdigFree() 30, 340, 368

example 318
MdigGrab() 43, 343, 352, 368, 377

example 42, 74
MdigGrabContinuous() 43, 368

example 43, 74, 318
MdigGrabWait() 352
MdigHalt() 43, 352

example 43, 74, 318
MdigHookFunction() 387
MdigInquire() 341

example 74, 399
MdigLut() 69, 300, 350, 369
MdigReference() 350, 369
MdispAlloc() 30, 39, 302–303, 313, 370

example 318
MdispControl() 306, 313

example 313
MdispDeselect() 39–40, 307, 370

example 308, 318
MdispFree() 30, 307

example 318
MdispHookFunction() 315
MdispInquire() 315, 323

example 313
MdispLut() 69, 299, 323, 370
MdispOverlayKey() 313
MdispPan() 311
MdispSelect() 39, 275, 278, 302, 308, 370

example 308, 372
VGA 317

MdispSelectWindow() 317
example 318

MdispZoom() 311
example 308

measurement context
free 239

measurements
angle, marker 263
capabilities 21
context 239
control settings 239
length, marker 250, 257
line equation 250, 258
markers, multiple 256
markers, using 240
module 235
position 249
preprocess image 240
region of interest 244
steps 238
width, stripe 257

measurements, blob
binary 139
compactness 162
dimensions 161
discriminate, to 138
general 156
grayscale 139, 156
pixel units 159
roughness 162

median filter 57
memory

insufficient 276
resources 29–30

messages, error 30, 41
MgenLutFunction() 76, 297–298

MgenLutRamp() 76, 297–298, 323
MgenWarpParameter() 114
MgraAlloc() 334
MgraArc() 336
MgraArcFill() 336
MgraBackColor() 335
MgraClear() 335
MgraColor() 335

example 142
MgraDot() 336
MgraFill() 336–337
MgraFont() 338

example 225
MgraFontScale() 338

example 225
MgraFree() 334
MgraLine() 336

example 142
MgraRect() 336

example 174, 185
MgraRectFill() 336
MgraText() 338

example 32, 225, 313, 318
MIL

file format 280
header file 31
include file 31
objects 22
running application 31

MIL Configuration utility 27
MIL modules

blob analysis 137, 147, 155
display control 301
graphics 333
I/O device control 339
image processing 45, 53, 61
measurements 235
pattern matching 171, 181

mil.h 31
mil.ini

Meteor-II 348
MILINTER 211
milsetup.h 26, 29–30, 38, 340, 369
MimAllocResult() 63, 65–66

example 50
MimArith() 74, 105, 298

example 50, 74, 79, 372

MimBinarize() 66, 68, 148
example 50, 79, 93, 142, 163, 308

MimClip() 66, 68, 82, 149
example 68, 372

MimClose() 58
example 142, 163

MimConnectMap() 99
MimConvert() 371

example 372
MimConvolve() 57, 71–73, 86

example 50, 88, 93
MimCountDifference() 62
MimDilate() 58, 78, 92–93

example 79
MimDistance() 105
MimErode() 58, 77–78, 92
MimFindExtreme() 62, 65

example 50
MimFlip() 113
MimFree() 63, 65–66

example 50, 64
MimGetResult() 65–66

example 50, 64
MimHistogram() 62–63
MimHistogramEqualize() 69, 298
MimLabel() 65, 83

example 50, 82
MimLocateEvent() 62
MimLutMap() 69, 76, 296
MimMorphic() 90, 93, 96

example 93
MimOpen() 58, 93

example 50, 79, 93, 142, 163
MimPolarTransform() 113
MimProject() 62, 65
MimRank() 57
MimResize() 55, 59, 113, 151
MimRotate() 59, 113
MimThick() 96
MimThin() 96
MimTranslate() 113

example 185
MimWarp() 113
MimWatershed() 104
minimum pixel value 47, 65
MmeasAllocMarker() 238, 248
MmeasCalculate() 239, 249
MmeasFindMarker() 239–240

MmeasFree() 239
MmeasInquire() 239
MmeasRestoreMarker() 238
MmeasSetMarker() 239, 248, 259
mmultdis.c 308
MMX Technology, Intel 24
mnatgen.c 399
MocrAllocFont() 224

example 225
MocrAllocResult() 212

example 225
MocrCalibrateFont() 217
MocrControl() 212, 220

example 225
MocrCopyFont() 212, 222, 224

example 223, 225
mocrfont.c 225
MocrFree()

example 223, 225
MocrGetResult() 212

example 225
MocrImportFont() 212, 224
MocrInquire() 219–220, 222

example 223
MocrModifyFont() 217, 222
mocrread.c 213
MocrReadString() 212, 217

example 225
MocrRestoreFont() 212, 222, 224

example 213, 223
MocrSaveFont() 217, 222, 224

example 225
MocrSetConstraint() 212, 219, 228

example 219, 225
MocrVerifyString() 212, 217
mocrview.c 223
model

acceptance level 194
allocation, automatic 173
allocation, manual 183
center 173, 197
coordinates 173, 183
copy to image buffer 183
default search parameters 184
dontcarepixels’ 202
find 173, 194
load 184
number of matches 194

positional accuracy 198, 200
preprocess 199–200
reference point 197
rotate 183, 194
search parameters 184
size 183, 200
storage location 183
view 183

moments 156, 169
central 169
ordinary 169

monochromatic effect 300
monochrome image buffer 39
mopen.c 93
morphological operations

binary 90
custom 90
erosion/dilation 77
grayscale 90
standard 47, 58

MpatAllocAutoModel() 173, 183
MpatAllocModel() 179, 183

example 185
MpatAllocResult() 173, 178, 184

example 174, 185
MpatCopy() 183
MpatFindModel() 173, 184–185,
195–196, 205

example 174, 185
MpatFindOrientation() 178–179
MpatFree() 184

example 174, 185
MpatGetNumber() 174, 184, 195

example 174
MpatGetResult() 178–179, 184, 203

example 174, 185
MpatInquire() 173

example 174, 185
MpatPreprocModel() 173, 199–200, 206

example 185
MpatSave()

example 185
MpatSetAcceptance() 194
MpatSetAccuracy() 198, 201, 207

example 185
MpatSetCenter() 196–197
MpatSetCertainty() 196
MpatSetDontCare() 183

MpatSetNumber() 194–195
MpatSetPosition() 174, 197, 201
MpatSetSearchParameter() 205–206
MpatSetSpeed() 199, 201, 206

example 185
mstart.c 31
MsysAlloc() 30

example 318
MsysControl()

example 399
MsysFree() 30

example 318
MsysInquire()

example 318, 399
multi-dimensional buffers 368
multi-head configuration

displaying in 304
multiple buffers

displaying 308
multiple fields of view 133
multiplying, image 74
multi-processing 385–386

definition 386
multi-threading 385, 387

definition 387
MvgaDispDeselectClientArea()

VGA 317
mwindisp.c 318

N

native mode 397
example code 399
integrating with MIL 398
interface 398

nearest-neighbor interpolation 116–117
neighborhood

bordering pixels 88
center pixel 87–88, 91
convolution method 87
dontcarepixels’ 90
operations 47, 55, 57–58, 70–71,
77, 86, 90, 96

overscan 87, 91

noise 47
blobs 149
Gaussian 54–56
impulse 54
random 54, 56–57
reduction 57, 86, 140, 149
salt-and-pepper 54–55, 57
shot 54
systematic 54, 57

non 8-bit buffers
displaying 306

normalization factor 88
normalized grayscale correlation 202
number of

objects 65
number of cells in code 231

O

object orientation 178
oblique edges 70
open communication 29, 32
opening operation 47–48, 55, 58
optical character recognition 210

acceptance levels 220
allocating result buffer 212
calibrating fonts 212, 217
character constraints 212, 219
character dimensions 218
contrast enhancement 221
creating fonts 212, 224
erasing characters 221
examples 213, 219, 223, 225
font files 216–217
inquiring about fonts 222
inverting fonts 222
loading fonts 212
managing fonts 222
match scores 220
processing controls 212, 220
READER 211
reading results 212
reading strings 212
restoring fonts 222, 224
saving fonts 222, 224
semi1292.mfo font file 216
semi1388.mfo font file 216

speeding up 221, 228
steps 211
string location 221
target images 212
unrecognized characters 221
verifying strings 212
visualizing fonts 222

ordinary moments 169
orientation

image 59, 177
object 177–178
whole-image 177

overlay
example 313
simulated 313
usage 313

Overlay/regular display 326
Overlay/regular display architecture 326
overscan 117

mirror 88
pixels 87, 91
transparent 88

overwriting data 39

P

packed binary buffers 272
palette

image 297
panning, display 311
parent buffer 270, 277

display 308, 311
pattern matching

algorithm 202
alignment 173
basic 66
capabilities 21
example 174
module 171, 181
morphological 47, 98
peaks 206
result buffer 173, 184
score 195
search steps 182
usage 172

perimeter
convex 159
normal 158

perspective transformation function 129
perspective warping 115
physical memory 39

buffer allocation 273
picth 290
pixel

area 158
aspect ratio 54–55, 140, 150–152,
158–159

coordinates 293
depth 22
dontcare’ 183, 202
height 159
location 62, 90
perimeter 158
real-world units 158
units 159
value density of diagonals 65
value distribution 69
value, minimum/maximum 47
value, mininum/maximum 349

pixel reference position 240
pixel-to-world mapping 120
plotting histogram 64
point-to-point operations 47, 74
portability

native mode 398
position of marker 249
positional accuracy 198
predictive coding 378–379
preprocess

input data 350
measurement target image 239
model 173, 184, 199–200

processing
attribute 273
limiting 277
single band 371
with LUT 299

profile 65
program examples 26
projecting an image 62, 65

pseudo-color
effect 300

put data
array, from 279

Q

quantization 380

R

ramp, LUT 297
random noise 54, 57
rank filters 57
read.me 26–27, 31–32
READER 211
reading codes 230
real-world results, obtaining 120
reconstruct object from seed 145
rectangles, draw 336
reference level

analog 349
black/white 65, 349
controls 349
input channel 349

reference point, model 197
reference position 249

measurement marker 254
refocus strategy 364
relative camera position 131, 134
relative coordinate system 130, 134
remove

holes 55
small particles 58

resize image 59
resolution pyramid 204
restart markers 381
restore

fonts, OCR 222
LUT buffer 298

result buffer
blob analysis 140–141, 152, 154
image processing 63, 65–66
pattern matching 173, 184

RGB
buffers 282

rotate
image 59
model 183, 194
tolerance 201

roughness, blob 162
row profile 65

S

salt-and-pepper noise 54–55, 57
sample program 31
saturation

HLS 371
operation result 88

save
color image 374
data 279–280
fonts, OCR 222

scale, input 76, 351
scaling 351
scan_all strategy 365
scrolling, display 311
search

acceptance level 194
accuracy 198
area 201
basic steps 182
border effects 198
certainty level 195
coordinates 173
heuristics 206
hierarchical 204
model 184
number of matches 194
parameters 184, 194, 205
region 197
results 195
robustness 200
speed 183–184, 195, 198–201, 204–206
subpixel accuracy 206

segmentation 148
semi1292.mfo file, OCR 216
semi1388.mfo file, OCR 216
sequence averaging 56
sharpen image 71
shift

operations 74

shot noise 54
single-screen configuration

displaying in 303
VGA 303

size
child buffers 277
data buffer 271
display 306
image buffer 39
LUT buffer 297
model 200
system display 303
text character 338

skeleton, find 96
smart_scan strategy 365
Smatch

pattern matching 181
smoothing 47–48, 57, 86
software triggers

Corona 361
source buffer 39
spatial filtering operations

algorithm 86
custom 86
edge enhancement/extraction 70
low-pass 55, 57
median 55
rank effect 57
usage 47, 57

speed
marker, find 244, 250
model size 200
multi-threading 387
packed binary processing 272
search 184, 195, 198–201, 204–206
search, high speed 201
search, low speed 201
search, medium speed 201

spurious blobs 149
square pixels 55
stop grabbing 43
storage area 39
stripe

markers 237
rising/falling 249

strobe device 341

structuring elements
buffer allocation 90, 273
connectivity 99
custom 90
default 92
defining 90
example, custom opening 93
example, erosion/dilation 92
usage 90, 96, 98

subpixel accuracy 206
subsampling input 351
subtracting, image 74
synchronization

of grab 352
thread 387–388

system
allocation 29
buffers 39
configuration 26
default 22, 26
definition 20
device 299, 368, 370
display criteria 39
grab criteria 43
initialization 26, 340
multiple 30
multi-processing capabilities 386

systematic noise 54, 57

T

target system
system 22

test installation program 32
text

character font 338
graphics 338
support 334

thickening 96
binary algorithm 97
grayscale algorithm 97

thinning 96
binary algorithm 97
grayscale algorithm 97

thread
application context 388
data sharing 387
error reporting 388–389
multi-threading 385, 390
synchronization 388

thresholding 63, 66
toolkit

Function Developers’ 397
transformation LUT 69
transformations

generating LUTs for 115
transforming data 280
trigger device 341
triggers 359, 361

Corona 356, 360
true color effect 300
typical application

binarizing 48
extreme value 49
grabbing 48
labelling 49
opening 48
smoothing 48

U

Underlay display 325
Underlay display architecture 325
uniform distribution 69
user-allocated buffer 290

V

vertical edges 70–71
view model 183

W

warping 113
interpolation modes 116

warpings
generating LUTs for 115

watershed lines 104
watershed transforms 104
width

stripe 257
Window occlusion

Meteor-II 349
Windows

custom window, VGA 317
working area 127
world coordinate system 130
writing codes 230

Y

YUV buffers 284

Z

zoom
display 311
example 311

Product Assistance Request Form

Name:
Company:
Address:
Phone: Fax:
E-mail:

Hardware Specific Information
Computer: CPU:
System memory: PCI Chipset:
System BIOS rev:
Video card used: Resolution:
Network Card: Network Software:
Other cards in system:

Software Specific Information
Operating system: Rev:
Matrox SW used: Rev:
Compiler: Rev:

Describe the problem:

	Contents
	Chapter 1: Getting started
	The MIL package
	MIL and the Intel MMX™/SSE™ technologies
	System requirements
	Getting started
	Installation
	Building an application
	Distributing your MIL application
	Distributing MIL run-time DLL files with your software
	Obtaining a run-time license

	Chapter 2: Allocating an image buffer and grabbing images
	Getting started
	Allocating and displaying an image buffer
	Grabbing images

	Chapter 3: Image processing
	Image processing
	The MIL package
	Steps to performing a typical application
	A typical application

	Chapter 4: Improving your images
	Image quality
	Techniques to improve images
	Averaging an input sequence
	Applying spatial filters
	Opening and closing
	Basic geometrical transform

	Chapter 5: Image manipulation
	Image manipulation
	Image statistics
	Generating a histogram
	Finding the image extremes
	Projecting an image to one dimension

	Thresholding your images
	Binarizing
	Clipping

	Histogram equalization
	Accentuating edges
	Edge enhancers
	Edge detection

	Arithmetic with images
	Combining images
	Mapping an image

	Erosion and dilation
	Distance transform
	Labeling

	Chapter 6: Advanced image processing
	Advanced image processing
	Custom spatial filters
	Custom morphological operations
	Erosion and dilation
	Thinning and thickening
	Matching
	Searching for hits or misses

	Connectivity mapping
	Fast Fourier Transform
	Watershed transformations
	Using watersheds to separate touching objects
	Using watersheds to separate objects from their background
	Minimum variation between extrema
	Using marker images
	Style of the watershed lines
	Skipping the last level

	Polar-to-rectangular and rectangular-to-polar transform
	Warping
	First-order polynomial warpings
	Using LUTs to perform a warping
	Interpolation modes
	Points outside the source buffer

	Discrete Cosine Transform

	Chapter 7: Calibration
	Introduction
	Types of distortions

	Steps to getting results in real-world units
	Transforming coordinates or results
	Physically correcting an image
	Automatically getting results in real-world units

	Calibrating your imaging setup
	Real-world grid
	List of coordinates
	Calibration modes

	Coordinate systems and camera position
	Multiple fields of view
	Single camera fixed on a manipulator: Relative camera position example
	Single camera and moveable object: Relative coordinate system example
	Several cameras and fixed object: Relative coordinate system example

	Processing calibrated images

	Chapter 8: Blob analysis
	Blob analysis
	MIL and blob analysis
	Steps to performing blob analysis
	A simple blob analysis example
	Blob reconstruction

	Chapter 9: Setting up for blob analysis
	Identifying blobs
	Adjusting blob analysis processing controls
	Controlling the image lattice
	The pixel aspect ratio
	Setting the Blob identification mode

	Selecting blobs

	Chapter 10: Analyzing the blobs
	Making feature extractions
	The area and perimeter
	Dimensions
	Determining the shape
	Finding the blob location
	Moments
	Location, length and number of runs

	Chapter 11: Pattern matching
	Pattern matching
	Simple alignment techniques
	Vertical and horizontal alignment
	Angular alignment

	Chapter 12: Models, searches, and search parameters
	Performing a search
	Rotation
	Setting the angle of search
	Determining the rotation tolerance of a model

	Masking the model
	Search parameters
	Specifying the number of matches
	Setting the acceptance level
	Setting the certainty level
	Redefining the model’s reference position
	Selecting the search region
	Positional accuracy
	Setting the speed parameter

	Preprocess the search model
	Speeding up the search
	Choose the appropriate model
	Adjust the search speed parameter
	Effectively choose the search region and search angle
	Searching for multiple models at the same time

	The pattern matching algorithm (for advanced users)
	Normalized Correlation
	Hierarchical Search
	Search Heuristics
	Sub-pixel accuracy

	Chapter 13: Optical character recognition
	The MIL OCR module
	Steps to reading or verifying a string in an image
	A typical application
	Using fonts
	Calibrating fonts
	Setting character constraints
	Setting processing controls
	Managing fonts
	Saving and restoring a font
	Inverting a font
	Inquiring about a font
	Visualizing a font

	Creating custom fonts
	Speeding up the read or verification operation

	Chapter 14: DataMatrix and bar codes
	Introduction
	General steps
	Controlling read operations
	Controlling write operations

	Chapter 15: Measurements
	The measurement module
	Markers
	A multiple marker

	Steps to finding and obtaining measurements of markers
	A measurement example

	Measurement box
	Search algorithm

	Marker characteristics
	Edge markers: fundamental characteristics
	Edge markers: advanced characteristics
	Stripe markers: fundamental characteristics
	Stripe markers: advanced characteristics
	Multiple marker characteristics
	Measurements between two markers
	A measurement example

	Chapter 16: Specifying and managing your data buffers
	Data buffers
	Target system
	Specifying the dimensions of a data buffer
	Data type and depth
	Attribute
	Manipulating and controlling certain data buffer areas
	Child buffers
	Copying specific buffer areas

	Managing data buffers
	Controlling how color image buffers are stored
	RGB buffers
	Binary buffers
	YUV buffers
	YUV16 Packed
	YUV9 Planar
	YUV12 Planar
	YUV16 Planar
	YUV24 Planar
	Child YUV buffers

	Accessing a MIL buffer directly
	Mapping a data buffer to user-allocated memory
	Pixel conventions

	Chapter 17: Lookup tables
	Lookup tables
	LUTs and data buffers
	Loading and generating data into LUTs
	Generating data directly into the LUT buffer
	Loading LUTs with precalculated data

	Using LUTs
	Processing using LUTs
	Displaying using LUTs
	LUTs and digitizers

	Chapter 18: Displaying an image
	Displaying an image
	Display configuration
	Single-screen configuration
	Dual-screen configuration
	Multi-head display configuration

	Display modes and the display window
	Displaying in windowed-mode
	Displaying in non-windowed mode
	Display size and depth
	Displaying buffers of different data depths

	Removing a buffer from the display
	Displaying multiple buffers
	Panning, scrolling, and zooming
	Annotating the displayed image non-destructively
	Using GDI annotations

	Displaying an image in a user-defined window
	Using the MdispSelectWindow() function

	LUTs and changing the displayed colors or gray levels
	Changing the default LUT values

	Different display architectures in windowed mode
	Underlay display architecture
	Overlay/regular display architecture
	DirectDraw underlay-surface display architecture

	Advanced controls for windowed mode
	Display types in windowed mode
	Zoom types in windowed mode
	Controlling how the LUT buffer is loaded into the Windows palette
	Controlling how the logical palette is loaded into the physical output LUTs

	Chapter 19: Generating graphics
	MIL and graphics
	Preparing for graphics
	Drawing graphics
	Writing text

	Chapter 20 : Grabbing with your digitizer
	Cameras and input devices
	The data format
	The digitizer number
	Multiple cameras
	Number of frames or fields
	Grabbing to the display
	Live and pseudo-live continuous grabs
	Live transfer to the display
	Pseudo-live transfers to the display
	Window occlusion

	Reference levels, lookup tables, and scaling
	Black and white reference levels
	Color image reference levels
	Mapping grabbed data through a LUT
	Scaling

	Optimizing application performance when grabbing
	Grab mode
	Double buffering
	Multiple buffering
	Grabbing a sequence of frames in real-time

	Grabbing with triggers and exposures
	Asynchronous reset mode
	Triggers and exposures
	Software triggers

	Auto-focusing
	Search strategies

	Chapter 21: Color
	Dealing with color
	Grabbing
	Displaying
	Processing
	Saving and loading color images

	Chapter 22 : JPEG compression
	Introduction
	General steps
	Controlling a JPEG compression
	JPEG lossless
	JPEG lossy
	Using your own table

	Restart markers

	Chapter 23: Data manipulation with multiple systems
	Data manipulation with multiple systems

	Chapter 24: Using MIL with multi-processing and under multi-thread systems
	Multi-processing
	Multi-threading
	MIL and multi-threading

	Chapter 25: Using MIL with Native Mode Functions
	Integrating native functions with MIL code
	Portability
	Signaling MIL about Native Mode use

	A native mode example

	Index
	Product Support

