
Matrox Genesis
Native Library
version 2.1

User Guide
July 3, 2000

Manual no. 10482-301-0210

Matrox® is a registered trademark of Matrox Electronic Systems Ltd.

Microsoft®, MS-DOS®, Windows®, and Windows NT® are registered
trademarks of Microsoft Corporation.

Intel®, Pentium®, and Pentium II® are registered trademarks of Intel
Corporation.

Texas Instruments is a trademark of Texas Instruments Incorporated.

RAMDAC™ is a trademark of Booktree.

All other nationally and internationally recognized trademarks and
tradenames are hereby acknowledged.
© Copyright Matrox Electronic Systems Ltd., 2000. All rights reserved.

Disclaimer: Matrox Electronic Systems Ltd. reserves the right to make
changes in specifications at any time and without notice. The
information provided by this document is believed to be accurate and
reliable. However, no responsibility is assumed by Matrox Electronic
Systems Ltd. for its use; nor for any infringements of patents or other rights
of third parties resulting from its use. No license is granted under any
patents or patent rights of Matrox Electronic Systems Ltd.

PRINTED IN CANADA

 Contents

Chapter 1: Introduction . 13

The Matrox Genesis Native Library14

The Matrox Genesis imaging boards16

The Genesis main board16

The Genesis processor board 19

The Genesis-LC .20

Basic software concepts 21

A word about examples23

Chapter 2: Getting started . 25

Getting started .26

Basic steps .26

A simple example .27

Your resources .29

Allocating resources29

Freeing allocated resources.30

Displaying an image .31
Transferring to/from the Host32

Grabbing an image .33

Error reporting .35

Synchronization .36

Running multiple applications 38

Chapter 3: Processing functions 41

General overview. .42

Basic architecture of the ’C80.43

Data types . 44

Converting between types 45

Processing a specific region of an image 47

Rectangular region. 47

Non-rectangular region 47

Point-to-point processing 49

Mixed data types . 49

LUT mappings . 50

Mapping with a non-interpolated LUT 52

Mapping with an interpolated LUT 55

Histogram equalization 57

Neighborhood processing 58

Spatial filtering operations 59

Morphological operations 60

Defining your own kernel 68

Specifying the overscan pixels 70

Connectivity mapping 71

Geometric processing 72

Flip/rotate. 72
Scale by integer factors 72

Scale by non-integer factors. 73

Color processing . 74

Choosing a color space 74

Statistical processing 77

Histograms . 78

Chapter 4: Advanced processing79

Three-input arithmetic and
logical operations .80

Live processing .83

Grabbing a sequence of frames
in real-time. .83

Real-time processing.83

Geometric warpings .86

First-order polynomial warpings86

Using a LUT to perform a warping 88

Interpolation modes 91

Fourier transforms .92

Chapter 5: Blob analysis .95

Blob analysis .96

General steps .97

Segmentation .99

Adjusting controls .101

Pixel aspect ratio 102
Grouping results.104

Timeout period .105

Features .106

Area and perimeter106

Dimensions .107

Shape .109

Blob location .110

Selecting blobs . 111

Transferring or copying results. 112

Transferring or copying runs 115

Chapter 6: Pattern matching . 117

Pattern matching . 118

General steps . 119

Creating the model. 121

Preprocessing the model. 122

Adjusting search parameters 123

Acceptance level 123

Number of matches 124

Model’s hot spot. 125

Search region . 125

Positional accuracy 126

Certainty level . 126

"Don’t care" pixels 127

Search speed . 128

Speeding up the search 129
Managing models . 130

The pattern matching algorithm 131

Normalized Correlation 131

Hierarchical Search 133

Search Heuristics 135

Sub-Pixel Accuracy 136

Chapter 7: Compression .137

Introduction .138

Run-length encoding and decoding138

Run-length encoding (compression) 139

Decoding run-length encoded
images (decompression) 140

General steps .140

JPEG Compression .143

General steps .144

Controlling JPEG lossless compression147

Predictive coding.147

Huffman encoding 148

Encoding a very large image 150

Writing/reading to or from open files151

Restart markers .153

JPEG compatibility issues154

Chapter 8: Generating graphics 157

Graphics .158
Generating graphics 159

Plotting. .160

Filling .162

Writing text .162

Chapter 9: Buffers and buffer fields163

Data buffers .164

Allocating buffers .165

Data type. 166

Memory location 166

Control buffers. 167

Child buffers . 169

Copying buffer data 170

Using the advanced copy functions 171

Tag buffers . 173

Zooming and subsampling 174

Extracting bytes. 174

Swapping bytes . 174

Reversing the direction of the copy. 175

Expanding RGB555 or 565 formats 175

Write masks. 175

Reducing overhead 176

Specifying a VIA. 176

Writing a rectangular region 177

Avoiding display artifacts 177

Continuous copying. 177

Copying to/from the VMChannel 178
Transferring buffer data to the Host 179

Mapping a buffer . 180

Creating a buffer from memory
already allocated . 182

Chapter 10: Grabbing images 183

Grabbing . 184

The grab module 185

VIA options of the grab command186

Number of iterations187

Synchronizing multiple grabs187

Grabbing a rectangular region 187

Grabbing a VM stream188

Reversing the direction of the grab 188

Grab mode .188

Reducing overhead188

Line interrupts .189

Grabbing to two or more buffers190

Camera settings .192

Input channel .193

Synchronization channel 197

Gain and reference levels 197

Input LUTs .198

Frame size .200

User bits. .201

Triggers .202

Programmable timers204
Running multiple applications.208

Chapter 11: Displaying images 209

The display section .210

Grayscale images vs. color images213

Using the monochrome version213

Using the color version214

Using the overlay .215

Keying . 217

In single-screen mode 217

In dual-screen mode 218

Panning, scrolling, and zooming 219

Look-up tables . 220

Grab and display . 221

Using the hardware cursor 222

General steps to using a cursor 222

An example . 225

Display memory as extra storage space 227

Running multiple applications 228

Chapter 12: Error handling . 229

Error mechanisms . 230

Which error mechanism to use. 231

More about application-wide errors 232

Places to check for errors 234

Chapter 13: Optimizing your application 235

Overview . 236
Estimating performance 237

General formula 237

Overheads . 238

I/O bound functions 238

Compute bound functions 240

NOA setup overhead 240

Multiprocessing. .242

Multiple threads .242

Multiple nodes .245

Programming tips .247

Appendix A: Glossary .249

Appendix B: Examples .269

blob.c .270

first.c .275

grab.c .277

jpeg.c .279

pat.c .282

process.c. .286

tfilter.c .300

Index

Product Support

Chapter 1: Introduction

This chapter explains the features of the Matrox Genesis
Native Library, and introduces various concepts related
to the Genesis boards.

14 Chapter 1: Introduction

The Matrox Genesis Native Library
The Native Library for Matrox Genesis is a board-specific
library that consists of an extensive set of functions for image
processing and specialized operations such as the scheduling
and synchronization of parallel operations. It provides explicit
control over grabbing, processing, transferring to the Host, and
displaying. The library was designed for the efficient use of the
Matrox Genesis board, as well as for fast application
development.

The Matrox Genesis C-callable library (C-binding) that runs on
the Host platform is simply a set of small stub functions, one
for each function supported by the board. Each function
prepares a "message" that consists of an operation code (opcode)
and various optional parameters. Messages are sent to the
board to perform a specific operation.

Using MIL versus the
Genesis Native
Library

In general, we recommend that you first consider using the
hardware-independent Matrox Imaging Library (MIL), rather
than the Genesis Native Library, to develop your applications.
There will, however, be circumstances that will require the
Genesis Native Library. These are as follows:

■ When MIL does not have the required functionality. For
example, MIL does not use some of the more specialized
features of the grab module and display section.

■ When MIL requires using more calls than the Genesis Native

Library to perform the required operation. Some Genesis
functions perform several operations with only one call (for
example, imIntTriadic()). Using these functions can increase
the speed of your application.

■ When you want to run a particularly complicated, real-time
application that requires several operations run in parallel.

The Matrox Genesis Native Library 15

■ When you want to port your application to the Matrox
Genesis local TMS320C80 (MVP) processor (which we will be
referring to as the ’C80).

■ When you want to develop your application under an
environment not supported by MIL (that is, another
operating system or compiler).

Using both libraries MIL allows you to mix native (board-specific) code with its own
code. Therefore, if only a portion of your application meets one
(or more) of the first three criteria, you can generally use MIL
to develop the bulk of the application, then integrate Genesis
Native Library function calls where necessary. The main
benefit of proceeding in this manner is that it makes your
application as portable as possible. If you want to move the
application to a different Matrox board, you will only have to
change a small portion of code.

16 Chapter 1: Introduction

The Matrox Genesis imaging boards
The Genesis main board
The Matrox Genesis main board is a single-slot, PCI board with
on-board processing, optional grab module, and optional
display section. The optional grab module provides real-time
acquisition (analog and digital). The optional display section
provides high-resolution display for monochrome and color
applications, and includes non-destructive overlay graphics.
Processing power is scalable by connecting one or more Matrox
Genesis main boards or processor boards.

Host interface The Matrox Genesis main board can be a PCI bus master, and
can exchange data with the Host at up to the full PCI bandwidth
of 132 MBytes/sec. The actual data transfer rate that can be
sustained in practice is host-dependent, but 80 MBytes/sec is
attainable on a typical system.

Processing Processing is performed by the Texas Instruments TMS320C80
(also known as the ’C80) running at 50 MHz. This single-chip,
digital signal multiprocessor contains five powerful, fully
programmable processors: a RISC master processor (MP) and
four parallel processors (PPs). The ’C80 is much more flexible
than most custom processing ASICs.

An optional Matrox-designed ASIC (the Neighborhood
Operations Accelerator or NOA) can further accelerate
neighborhood operations such as convolutions and morphology.
There is up to 64 MBytes of on-board processing memory.
Genesis addresses this memory as a single bank of linear
memory. This means that there are no inherent hardware
restrictions on items like image dimensions and pixel depth.
Applications requiring more memory can use Host system RAM
and transfer data to/from the board over the PCI bus at very
high speed when needed.

The Matrox Genesis imaging boards 17

G
ra

b
p
o
rt

in
te

rf
a
c
e

P
C

I
I/
F

G
ra

b
V

M

'C
8
0

p
o
rt

o
r

M
o

n
o

fr
a

m
e

b
u

ff
e

r
2

M
B

O
v
e

rl
a

y
fr

a
m

e
b

u
ff
e

r
2

M
B

P
C

I
I/
F

H
o
s
t
3
2
-b

it
P

C
I
lo

c
a
l
b
u
s

P
C

I-
to

-P
C

I
b
ri
d
g
e

6
4

3
2

G
e

n
e

s
is

M
a

in
B

o
a

rd

P
C

I
I/
F

3
2

6
4

6
4

81
6

S
e
c
o
n
d
a
ry

3
2
-b

it
P

C
I
b
u
s

6
4

P
ri
m

a
ry

V
IA

G
ra

b

W
R

A
M

p
o
rt

P
C

I
I/
F

V
M

D
is

p
la

y
V

IA

O
p

ti
o

n
a

l
d

is
p

la
y

s
e

c
ti
o

n

Analogdisplay
output

H
s
y
n
c

V
s
y
n
c GR B

R
A

M
D

A
C

3
2

3
2

3
2

N
O

A

V
M

C
h

a
n

n
e

l

F
la

s
h

B
IO

S

A D

fr
a

m
e

b
u

ff
e

r
2

M
B

2
M

B

S
D

R
A

M
b
u
ff
e
r

8
,
1
6
,
3
2

o
r

6
4

M
B

T
M

S
3
2
0
C

8
0

('
C

8
0
)

"R
"

"G
"

"B
"

c o n n e c t o r

o
f
th

e
a
b
o
v
e

c
o
m

p
o
n
e
n
ts

in
th

e
G

e
n
e
s
is

In
s
ta

ll
a
ti
o
n

a
n
d

H
a
rd

w
a
re

R
e
fe

re
n
c
e
.

D
ig

it
a
l
T

T
L
/R

S
-4

2
2

In
te

rf
a
c
e

8888
G

a
in

L
o
w

p
a
s
s

fi
lt
e
r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

8 8 8 8

G
a
in

L
o
w

p
a
s
s

fi
lt
e
r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

G
a
in

L
o
w

p
a
s
s

fi
lt
e
r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

G
a
in

L
o
w

p
a
s
s

fi
lt
e
r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

O
p

ti
o

n
a

l
g

ra
b

m
o

d
u

le

3
2

3
2

m u l t i p l e x e r

*
Y

o
u

w
ill

fi
n
d

m
o
re

d
e
ta

il
o
n

s
o
m

e

A
n
a
lo

g
v
id

e
o

in
p
u
t

A
n
a
lo

g
v
id

e
o

in
p
u
t

A
n
a
lo

g
v
id

e
o

in
p
u
t

A
n
a
lo

g
v
id

e
o

in
p
u
t

18 Chapter 1: Introduction

Display section The optional display section has an 8-bit overlay frame buffer
and either an 8-bit monochrome or a 24-bit true color main
(underlay) frame buffer (depending on whether you have the
monochrome or color version of the display section). The overlay
and main frame buffers can be displayed at a maximum
resolution of 1600 x 1200. The main frame buffer will use the
same resolution as the overlay. Display memory is physically
distinct from processing memory, and transfers between
processing and display memory are performed in hardware by
a custom chip: the Video Interface ASIC (VIA). To maintain a
live display of processed images, transfers can occur in parallel
with processing.

Grab module Images can be grabbed directly into processing memory, display
memory, Host memory, or any other memory mapped onto the
PCI bus (you can also grab to two or more of these destinations
at the same time). Grabbing is totally independent of processing
operations, so an image can be acquired while a different one
is being processed. This makes real-time operations much more
flexible and easier to realize.

Processor boards Genesis processor boards can be added to increase system
performance. A typical processor board (which requires one
extra PCI slot) has two ’C80s, each with additional memory,
VIA, and optional NOA.

❖ A processor board can also have only one ’C80, along with
additional memory, VIA, and optional NOA.
Routing data Matrox Genesis can send image data along various paths.

■ The grab module broadcasts input data to all the video
interface ASICs (VIAs) in the system, and each VIA can write
to its local memory bank: processing memory (SDRAM) or
display memory (WRAM).

■ Using the VMChannel, Genesis can transfer data from any
Genesis memory bank in a system to any other Genesis
memory bank in the system. This is most commonly used to
send images from processing memory to the display. The
VMChannel can also transfer data from a Genesis memory
bank to an external (non-Matrox) VM device.

The Matrox Genesis imaging boards 19

■ Using the PCI bus, Genesis can copy data between any two
Genesis memory banks in a system, between a Genesis
memory bank and the Host, and between a Genesis memory
bank and any other memory mapped onto the PCI bus. The
PCI bus is the only route that can be used to send data to/from
the Host. It is also used for general communication between
multiple ’C80s, and as the secondary route to transfer
processing data between processing nodes.

The Genesis processor board

The Matrox Genesis processor board is basically the main board
with no on-board grab module or display section. The processor
board is most commonly connected to a Genesis main board,
but can be used on its own. It can also be used with any other
grab and/or display hardware that can send or receive data over
the PCI bus or VMChannel, or that can send data over the grab
port. A typical processor board has two ’C80s, each with
additional memory, VIA, and optional NOA.

Grab port interface

3232

Genesis Processor Board

PCI
I/F

Grab VM

'C80
port

VIA

PCI
I/F

Grab VM

'C80
port

VIA

VMChannel
❖ You will find more detail on some of the above components in
the Genesis Installation and Hardware Reference.

PCI I/F

Host 32-bit PCI local bus

PCI-to-PCI
bridge

64 64

Secondary 32-bit PCI bus

NOA NOA

TMS320C80
('C80)

TMS320C80
('C80)

SDRAM
buffer

8, 16, 32,
or 64 MB

SDRAM
buffer

8, 16, 32,
or 64 MB

20 Chapter 1: Introduction

The Genesis-LC
The Matrox Genesis-LC is a low-cost version of the main board.
Basically, it is the main board without a processing section. In
general, this manual does not explicitly refer to the Genesis-LC
because any discussion of the main board also applies to the
Genesis-LC, except for discussion of the processing section.

G
ra

b
p

o
rt

in
te

rf
a

c
e

G
e

n
e

s
is

-L
C

o
v
e

c
o
m

p
o
n
e
n
ts

in
th

e
.

G
e
n
e
s
is

In
s
ta

ll
a
ti
o
n

a
n
d

H
a
r
d
w

a
r
e

R
e
fe

r
e
n
c
e

P
C

I
I/

F

H
o

s
t

3
2

-b
it

P
C

I
lo

c
a

l
b

u
s

P
C

I-
to

-P
C

I
b

ri
d

g
e

Secondary32-bit
PCIbus

6
4

G
ra

b

W
R

A
M

p
o
rt

P
C

I
I/

F

V
M

V
IA

D
is

p
la

y
s
e
c
ti
o
n

3
2

3
2

3
2

V
M

C
h
a
n
n
e
l

O
v
e

rl
a

y
fr

a
m

e
b

u
ff
e

r
2

M
B

6
4

3
2

3
2

6
4

Analogdisplay
output

H
s
y
n

c
V

s
y
n

c GR B

R
A

M
D

A
C

P
C

I
I/

F

81
6

F
la

s
h

B
IO

S

A D

fr
a

m
e

b
u

ff
e

r
2

M
B

2
M

B

"R
"

"G
"

o
r

M
o
n
o

fr
a
m

e
b
u
ff
e
r

2
M

B

"B
"

*
Y

o
u

w
il
l
fi
n
d

m
o
re

d
e
ta

il
o
n

s
o
m

e
o
f
th

e
a
b

D
ig

it
a

l
T

T
L

/R
S

-4
2

2
In

te
rf

a
c
e

A
n

a
lo

g

in
p

u
t

v
id

e
o

A
n

a
lo

g

in
p

u
t

v
id

e
o

A
n

a
lo

g

in
p

u
t

v
id

e
o

A
n

a
lo

g

in
p

u
t

v
id

e
o

8888
G

a
in

L
o

w
p
a

s
s

fi
lt
e

r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

8 8 8 8

G
a

in
L

o
w

p
a

s
s

fi
lt
e

r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

G
a

in
L

o
w

p
a

s
s

fi
lt
e

r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

G
a

in
L

o
w

p
a

s
s

fi
lt
e

r

8
-b

it
A

/D
L

o
o

k
-u

p
ta

b
le

G
ra

b
m

o
d
u
le

3
2

3
2

m u l t i p l e x e r

c o n n e c t o r

Basic software concepts 21

Basic software concepts
You need to know very little about Genesis hardware to write
simple applications. However, you should not expect to write a
highly optimized, real-time application without knowing the
basic architecture of the system. Refer to the Genesis
Installation and Hardware Reference for more information.

When this manual refers to resources, we mean any digitizers
and displays, as well as processing nodes, threads, and buffers
that you will allocate and use in your application.

Systems Genesis uses the concept of "system" to mean a group of Genesis
boards (main board(s) and/or processor board(s)) connected to
each other by the grab port and the VM port. Systems are not
considered resources as such.

Nodes Genesis uses the concept of "node" to define the combination of
a processor (the ’C80), a video interface ASIC (the VIA), and
processing memory. A node can also include a NOA. The first
step in any application is to assign a device ID to each "node"
that you wish to use. When you do so, the Genesis shell
(’C80 code) is downloaded to the node, if it is not already loaded.
The Host is then responsible for sending functions to the node.

Node 0 Node 1 Node 2 Node 0Disp 0 Disp 0Dig 0 Dig 0

System 0

Main board Second main boardProcessor board

System 1
Host

Grab

PCI bus

VMChannel

imDevAlloc(1, 0, ..., &dev4);imDevAlloc(0, 0, ..., &dev1);

imDevAlloc(0, 1, ..., &dev2);

imDevAlloc(0, 2, ..., &dev3);

VIA

SDRAM

Grab

VM

PCI

NOA

'C80

Grab

VM

PCI

VIA MGA

WRAM

22 Chapter 1: Introduction

Threads A thread, quite simply, is an execution queue. In the Genesis
Native Library, all functions are sent to a specified thread, and
execute on the node associated with this thread. Functions sent
to the same thread execute serially (that is, in the order in
which they are issued).

Typically, a real-time application has several parts that must
run concurrently: acquisition, processing, transfer of data to
the Host and/or display, etc. Since each thread carries out its
sequence of functions independently of the others, you can
allocate several threads to handle a multitasking application.

Note that there are synchronization functions to synchronize
threads, when necessary.

Buffers Buffers are used to hold any type of data, for example, image
data, histogram results, LUT values, etc. They can be allocated
on-board (in processing or display memory) or on the Host. For
more information on buffers, see Chapters 2 and 9.

A word about examples 23

A word about examples
In an effort to simplify concepts and help you get started
quickly, various examples have been provided throughout this
manual. The complete source code of these examples can be
found in Appendix B. To compile these examples, refer to the
readme.txt file in the \GENESIS\DOC directory. Note that there
might be more up-to-date or new examples in the
\GENESIS\EXAMPLES directory.

All examples have a comment describing the minimum
hardware configuration required for them to run. The
expression "basic Genesis hardware" refers to one ’C80, one
VIA, and processing memory (SDRAM).

The examples that grab data assume that the camera is 8-bit
monochrome and that it was specified during installation. The
camera should be connected to the default input channel of the
digitizer.

Some systems cannot run some of the examples because they
do not have the hardware capability or enough memory. You
should skip these examples or modify them to suit your
particular hardware configuration.

24 Chapter 1: Introduction

Chapter 2: Getting started

This chapter describes the basics required to create an
application.

26 Chapter 2: Getting started

Getting started
Once you have properly installed the Genesis Native Library,
you are ready to grab, process, and display images. This chapter
covers the basics of acquisition, processing, transfer, and
display. Subsequent chapters look at these topics in greater
detail.

Basic steps

Although the main design goal of the Genesis Native Library
was the ability to handle demanding real-time applications, it
was also designed to be easy to learn and use. After reading this
chapter, you should be able to follow most of the examples in
this manual and create a simple application.

A typical Genesis application involves the following:

1. Allocate the required resources (processing node, execution
threads, image buffers, etc.).

2. Acquire an image (from a file, camera, or other input
source).

3. Process the image.

4. Transfer the results to the Host and/or the display.

5. Free the allocated resources.

Getting started 27

A simple example
To familiarize you with the functions of the Genesis Native
Library, we have included a simple example that writes a
message in a buffer, and then displays the contents of this
buffer on the screen. The example:

1. Assigns a device ID to the processing node that it uses. This
is the first step of any application. You use imDevAlloc() to
allocate a node on a system.

2. Allocates a thread. You must allocate at least one thread
before you can send functions to the board. You use
imThrAlloc() to allocate a thread.

3. Allocates a full screen display buffer, using imBufChild(),
then clears this buffer, using imBufClear().

4. Allocates a two-dimensional processing buffer, using
imBufAlloc2d(), then clears this buffer, using imBufClear().

5. Draws a rectangle (that is the size of the box that will
contain the message) in the processing buffer. You use
imGraRect() to draw a rectangle in a buffer.

6. Writes the required message ("Matrox Genesis") in the
rectangle of the buffer, using imGraText().

7. Copies the contents of the processing buffer to the display,
using imBufCopy().

8. Frees the allocated resources. Freeing resources makes

them available for other applications. The last resources to
be freed are the thread and the device, in that order.

28 Chapter 2: Getting started

The example Note that this code is part of the first.c program and requires
the Genesis display section. See Appendix B for the complete
first.c program.

�NQPI�&GXKEG�������)GPGUKU�FGXKEG���
�NQPI�6JTGCF�������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
�NQPI�2TQE$WH������$WHHGT�CNNQECVGF�KP�RTQEGUUKPI�OGOQT[���
�NQPI�&KUR$WH������$WHHGT�CNNQECVGF�KP�FKURNC[�OGOQT[���

����

���#NNQECVG�VJG�DQCTF�CPF�C�VJTGCF���
�KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
�KO6JT#NNQE
&GXKEG������6JTGCF��

���#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
�KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���&KUR$WH��
�KO$WH%NGCT
6JTGCF��&KUR$WH��������

���#NNQECVG�C�RTQEGUUKPI�DWHHGT���
�KO$WH#NNQE�F
6JTGCF������������+/A7$;6'��+/A241%���2TQE$WH��

���%NGCT�VJG�DWHHGT�CPF�VJGP�YTKVG�VGZV�KP�KV���
�KO$WH%NGCT
6JTGCF��2TQE$WH��������
�KO)TC4GEV
6JTGCF�����2TQE$WH����������������������
�KO)TC6GZV
6JTGCF�����2TQE$WH�������������/CVTQZ�)GPGUKU���

���%QR[�KV�VQ�VJG�FKURNC[���
�KO$WH%QR[
6JTGCF��2TQE$WH��&KUR$WH��������

����

���%NGCP�WR���
�KO$WH(TGG
6JTGCF��&KUR$WH��
�KO$WH(TGG
6JTGCF��2TQE$WH��
�KO6JT(TGG
6JTGCF��
�KO&GX(TGG
&GXKEG���

Your resources 29

Your resources
Before performing any processing, you should allocate all the
resources that you will be using with your application.

Note that the allocation functions are synchronous, that is, they
do not return control to the Host until they have executed and
their newly allocated ID is available. However, most other
Genesis Native Library functions are asynchronous, that is,
they simply queue their command to the hardware and then
immediately return control to the Host.

Allocating resources

Nodes Since other resources are allocated on nodes, the first resource
to allocate is a node. Use imDevAlloc() to allocate a node.

Threads Before you can send any functions to the board, you must
allocate at least one thread. Use imThrAlloc() to allocate a
thread. Functions sent to a thread execute on the node
associated with that thread.

Buffers After allocating nodes and threads, you should allocate the
various buffers you will need for your application. A buffer can
hold any type of data: image data, histogram results, LUT
values, etc. It must be allocated before it can be used by a
function. You can allocate buffers on-board (in processing
memory or display memory) or on the Host. Use imBufAlloc(),
imBufAlloc1d(), or imBufAlloc2d() to allocate a buffer.
Note that the source buffers of a processing function must be
in local processing memory, that is, in processing memory on
the same node as the thread which will execute the processing
function. For maximum efficiency, the destination buffer of a
processing function should also be in local processing memory.

Child buffers When you need to process a rectangular region of a buffer or a
specific band of a multi-band buffer, you can use a child buffer.
Child buffers are discussed in Chapter 9.

Tag buffers When you need to process a non-rectangular region of a buffer,
you can use a tag buffer. See Chapter 3 for details.

30 Chapter 2: Getting started

Control buffers A control buffer refers to a buffer whose control fields are used
to specify certain options of a function. The Genesis Native
Library uses control buffers because some functions have so
many options that it is impractical to have these options as
parameters of the function. Instead, you specify the options you
want performed by adding the required control fields to a buffer
and passing this buffer to the function.

Each control field (or simply "field") holds a single value
(integer or floating-point). A field is identified by a unique "tag".
The tag itself is just an integer value.

For more information on control buffers, see Chapter 9.

Freeing allocated resources

Once you have finished using a particular resource, you should
free it. Use imDevFree(), imThrFree(), or imBufFree(),
depending on the resource.

❖ The last two resources to be freed must be the thread and the
device, in that order.

It is important to free resources since they are then available
to other applications running under a multi-tasking Host
operating system, such as Windows NT. Note that several Host
applications can use the Genesis system at the same time,
provided they do not hoard the board’s resources and adhere to
certain guidelines (see the Running multiple applications
section).

Displaying an image 31

Displaying an image
The following is an overview of how to display images on the
display section of the Matrox Genesis. You will find more
information in Chapter 11.

❖ If you have not purchased the display section, you can still
display images by transferring them to the Host and using
your display hardware. See the next section for information
about transferring data to/from the Host.

Display memory On Matrox Genesis, processing memory and display memory
are physically distinct. Although the destination buffer of a
processing function can be located in display memory, it is more
efficient if it is in the memory directly attached to the ’C80 (that
is, the SDRAM) and then copied to the display when necessary.
In this case, display memory is being used to hold a second copy
of a buffer. Therefore, you should not allocate memory in the
main or overlay frame buffer of the display section. Instead, you
should use imBufChild() to create a child buffer on the screen
(at the location you wish to display the image) and then copy
the processed buffer to this on-screen child buffer when you
need to see it; see the example in the Getting started section.

Grayscale and color
images

Note that there are two versions of the display section: a
monochrome version and a color version. When you set the Buf
parameter of imBufChild() to IM_DISP, the resulting on-screen
child buffer will automatically have one band on the

monochrome version and three bands on the color version.

Copying a buffer to
the display

To copy a buffer in processing memory to the display, use
imBufCopy(). You can also use imBufCopyVM() or
imBufCopyPCI(). imBufCopyVM() and imBufCopyPCI() are
specialized functions that can format data in a variety of ways
during the copy; see Chapter 9 for details.

Allocating a display If you have more than one display in your system, you must
allocate each one, so you can later specify to functions that have
a "display" parameter which display you want to use. Use
imDispAlloc() to allocate a display. If you have just one display,
there is no need to allocate it because functions that have a
"display" parameter will use it by default.

32 Chapter 2: Getting started

Transferring to/from the Host
Transferring data to/from the Host can be used to read back
results (such as histogram results) and to load values into
buffers (such as kernel and LUT buffers). It can also be used if
you have not purchased the display section of the Genesis and
need to use the Host display hardware to view images.

To transfer data from a buffer to the Host, use imBufGet(),
imBufGet1d(), or imBufGet2d(). When using one of these
functions, you must first allocate Host memory to which to send
your data, and specify the Host memory address to which to
send it.

To transfer data from the Host, use imBufPut(), imBufPut1d(),
or imBufPut2d. Note that these are synchronous functions
because the Host performs the transfer.

❖ If you have allocated a buffer directly on the Host (using
imBufAlloc...()), it is faster to use imBufCopy() to transfer
data to/from the Host. See Chapter 9 for details.

An example The following code transfers histogram results from a
processing buffer to the Host. Note that this code is part of the
process.c program and requires only the basic Genesis
hardware. See Appendix B for the complete process.c program.

�NQPI�*KUV$WH���������������*KUVQITCO�TGUWNV�DWHHGT���
�NQPI�*KUV8CNU=���?���������*QUV�CTTC[�VQ�JQNF�JKUVQITCO�TGUWNV���

����
���#NNQECVG�JKUVQITCO�TGUWNV�DWHHGT����
KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���*KUV$WH��

���2GTHQTO�C�JKUVQITCO�CPF�TGCF�KV�DCEM�VQ�VJG�*QUV���
�KO+PV*KUVQITCO
6JTGCF��5TE$WH��*KUV$WH��+/A&'(#7.6�����
�KO$WH)GV
6JTGCF��*KUV$WH��*KUV8CNU��

Grabbing an image 33

Grabbing an image
With the Genesis Native Library, you can grab images from a
wide variety of input sources. The following is an overview of
how to grab images with the Genesis Native Library. You will
find more information in Chapter 10.

❖ Since the most common input source is a video camera, the
words input source and camera are used interchangeably in
this manual.

Grabbing To grab an image with the Genesis Native Library, you must
first allocate a camera definition that matches your camera
type, using imCamAlloc(). If you have more than one digitizer
in your system, you must also allocate the digitizer with which
to grab, using imDigAlloc(). You then pass the camera
definition identifier and if required, the digitizer identifier, to
the grab command (imDigGrab()).

Note that the buffer in which to grab can be located anywhere
in your system (in processing or display memory on any node).
In addition, you can grab a specific number of lines, fields, or
frames, or you can continuously grab frames until you call
imThrHalt().

The camera
definition

The imCamAlloc() function takes a file that specifies the
parameters of your camera and returns an ID. The camera
definition or digitizer configuration file (.dcf) includes such
information as pixel rate, timings of synchronization signals,

channel number, and gain and offset settings. If the camera
definition file is given as NULL to imCamAlloc(), an ID is
returned for the default camera definition file that you specified
during software installation.

Note that several predefined camera definition files are
available for you to choose from when installing (in the
\GENESIS\DCF directory). If none of these match your camera
type, you can use Matrox INTELLICAM to create a custom
camera definition file.

34 Chapter 2: Getting started

Grabbing to two or
more buffers

With the Genesis Native Library, you can grab to two or more
buffers, allocated in different memory banks, at the same time.
This can be useful when you want to grab to all nodes in your
system, or when you want to simultaneously grab to processing
and display memory.

Grab options When you call imDigGrab(), you can specify a number of options
(such as zooming and subsampling) through the control buffer
passed to this function. Many of these options are particularly
useful when grabbing to the display.

An example The following code continuously grabs frames into a display
buffer, until halted by the user. Note that this code is part of
the grab.c program and requires the Genesis grab module and
display section. See Appendix B for the complete grab.c
program.

�NQPI�&GXKEG�����������������)GPGUKU�FGXKEG���
�NQPI�6JTGCF�����������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU����
�NQPI�&KUR$WH����������������$WHHGT�CNNQECVGF�KP�FKURNC[�OGOQT[���
�NQPI�%COGTC�����������������%COGTC���
�NQPI�5K\G:��5K\G;�����������+OCIG�5K\G���

����

���#NNQECVG�VJG�DQCTF��C�VJTGCF�CPF�C�ECOGTC���
�KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
�KO6JT#NNQE
&GXKEG������6JTGCF���
�KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��

���&GVGTOKPG�VJG�KOCIG�UK\G���
�KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A:���5K\G:��
�KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A;���5K\G;��

���#NNQECVG�C�DWHHGT�CV�C�URGEKHKE�NQECVKQP�QP�VJG�FKURNC[���

�KO$WH%JKNF
6JTGCF��+/A&+52��������5K\G:��5K\G;���&KUR$WH��

���5VCTV�C�EQPVKPWQWU�ITCD�KPVQ�VJG�FKURNC[�DWHHGT���
�KO&KI)TCD
6JTGCF�����%COGTC��&KUR$WH��+/A%106+07175��������

���*CNV�YJGP�VJG�WUGT�JKVU�'PVGT���
�RTKPVH
�2TGUU��'PVGT �VQ�UVQR���
�IGVEJCT
��
�KO6JT*CNV
6JTGCF��+/A(4#/'��

Error reporting 35

Error reporting
Most functions in the Genesis Native Library are
asynchronous, that is, they queue their command to the
hardware and then immediately return control to the Host. As
such, the return values of most functions cannot indicate
whether the function performed successfully. Synchronous
functions could return a meaningful error value, but this would
be tedious to check after each call. For these reasons, errors are
only reported when requested and not through the return
values of functions.

One way to check for errors is to use imThrGetError(). This
function returns the first error detected in a thread since error
information about the thread was last cleared. You can also use
imAppCatchError() or imAppGetError() to check for errors.
imAppCatchError() establishes a user-defined error handler,
that is, establishes a user-defined function that is called
automatically once an error in the application is detected.
imAppGetError() returns the first error detected in an
application since error information about the application was
last cleared.

Note that the error messages provided with the Genesis Native
Library functions are function-specific and intended to be
self-explanatory.

Places to check for
errors

To some degree, the placement of the error checking functions
imAppGetError() and imThrGetError() is

application-dependent. However, there are a few places where
they should normally be used:

■ After the initialization section of the application, where
buffers and other resources are usually allocated.

■ At the end of the application, just before freeing buffers and
other resources.

For more information on error reporting and mechanisms, see
Chapter 12.

36 Chapter 2: Getting started

Synchronization
In the Genesis Native Library, all functions are sent to a
specified thread, and execute on the node associated with this
thread. Functions sent to the same thread execute serially.
Threads execute independently of one another, allowing
operations to run in parallel. However, you can use an
Operation Status Block (OSB) to synchronize two different
threads or to determine the state of a particular asynchronous
function.

Operation Status
Block

An OSB is a block of memory that you allocate using
imSyncAlloc(). All asynchronous functions have an "OSB"
parameter. You can set this parameter to 0 or you can pass an
OSB ID. If you pass an OSB ID, status information will be
written about that function in that OSB. You can then use
imSyncHost() to halt execution on the Host until that function
is in a specified state (for example, until that function has
completed). You can also use imSyncThread() to synchronize
two different threads. The imSyncThread() function halts
execution on one thread until a function in another thread is in
a specified state.

Re-using OSBs An OSB can be re-used with another function after the previous
one has completed, and after the OSB has been reset to the
waiting state (using imSyncControl()). Note that the OSB state
is automatically reset after its function completes if the Host
or another thread is waiting for it.
An example The following code grabs and processes in parallel. Since an
image must be grabbed before it can be processed, an OSB is
associated with the grab command and then imSyncHost() is
used to ensure that this OSB is in the required state
(IM_COMPLETED) before processing. Note that this code is part
of the tfilter.c program and requires the Genesis grab module.
See Appendix B for the complete tfilter.c program.

Synchronization 37

�NQPI�)TCD15$=�?�������������15$U�WUGF�HQT�U[PEJTQPK\CVKQP���
�
����

���#NNQECVG�15$U�HQT�U[PEJTQPK\CVKQP���
�KO5[PE#NNQE
6JTGCF���)TCD15$=�?��
�KO5[PE#NNQE
6JTGCF���)TCD15$=�?��

���5GNGEV�CU[PEJTQPQWU�ITCD�OQFG���
�KO$WH2WV(KGNF
6JTGCF��)TCD%VTN$WH��+/A%6.A)4#$A/1&'�
���������������+/A#5;0%*410175���

���(KTUV�ITCD���
KO&KI)TCD
6JTGCF�����%COGTC��+P$WH=�?�����)TCD%VTN$WH��)TCD15$=�?��

K�����
YJKNG�
�KO#RR)GV'TTQT
+/A'44A%1&'��07..��
�]
����3WGWG�PGZV�ITCD�KPVQ�QVJGT�DWHHGT���
�KO&KI)TCD
6JTGCF�����%COGTC��+P$WH=K?�����)TCD%VTN$WH��)TCD15$=K?��
�
����5YKVEJ�DWHHGTU���
�K�������K�

����2TQEGUU�GCEJ�HTCOG�CU�UQQP�CU�VJG�ITCD�EQORNGVGU���
�KO5[PE*QUV
6JTGCF��)TCD15$=K?��+/A%1/2.'6'&��
�KO+PV/CE�
6JTGCF��+P$WH=K?��1WV$WH��1WV$WH��C��P��
���O��C��O�����
�_

38 Chapter 2: Getting started

Running multiple applications
It can be very useful to run several applications simultaneously
on your Genesis system. For example, if you want to display
several images at once, you can write a very simple application
that loads and displays just one image, and then run multiple
copies of this application simultaneously. If you have a
real-time processing application and occasionally need to
display the input image, you can write a small, separate
application that simply grabs into display memory, then run
this application simultaneously with the real-time application
(when necessary).

In general, the ability to run several applications
simultaneously allows you to write a series of small, simple,
re-usable applications, rather than a large, complex
application. However, when you run applications
simultaneously, you need to follow certain guidelines to ensure
that the resources of the Genesis system are shared properly.

General guidelines The following are some general guidelines you should follow if
you run applications simultaneously:

■ When you allocate a device (using imDevAlloc()), set the
ShellFile parameter to NULL and the Mode parameter to
IM_DEFAULT. This will ensure that the device is not
initialized more than once, even though it is allocated by each
application.
■ Write the applications so that they "fail gracefully" (that is,
clean up after themselves) if there are not enough resources
for them to run. This involves checking for errors. Note that,
to reduce the likelihood of failure, you should not allocate
more resources than are necessary. In addition, you should
free all allocated resources before the application terminates,
since they are not freed automatically.

■ Avoid queuing more commands to the board than necessary.
If an application requires a loop, try to include a synchronous
function within the loop (such as imSyncHost()). This can
prevent the command queue on the board from filling up
(refer to Chapter 4 for details).

Running multiple applications 39

Other guidelines For guidelines that deal specifically with the display or
digitizer, see Chapter 10 or 11, respectively. Some of these
guidelines also ensure that the applications will run regardless
of the display mode or camera type.

40 Chapter 2: Getting started

Chapter 3: Processing
functions

This chapter gives an overview of the processing functions
available with the Matrox Genesis Native Library.

42 Chapter 3: Processing functions

General overview
The Genesis Native Library includes a wide variety of
processing and statistical operations. The functions that can
perform these operations are organized according to the data
type that they support. Specifically, functions that can perform
these operations on packed binary buffers, integer buffers, and
floating-point buffers are the imBin...() functions, the imInt...()
functions, and the imFloat...() functions, respectively.

In general, all buffers passed to a processing function should
have the same size. If they do not, only the area intersected by
all the buffers, starting from the top-left corner, will be
processed.

Processing operations Processing operations result in a new image. There are three
main types of processing operations:

■ Point-to-point

■ Neighborhood

■ Geometric

Statistical operations Statistical operations extract information from an image. A
histogram is an example of a statistical operation.

Color processing Many processing functions can operate on multi-band (color)
buffers. Specifically, if the source and destination buffers have
the same number of bands, the function processes

corresponding source bands and writes results to the
corresponding destination band. If one of the source buffers has
only one band while the other(s) have several bands, the
function uses that one source band as many times as is needed.

When a function does not support multiple bands, you can
create a child buffer for each band, using imBufChildBand(),
and process the bands individually.

General overview 43

Basic architecture of the ’C80
Most processing and statistical operations on the Genesis are
performed by Texas Instrument’s ’C80. This is a single-chip
multiprocessor device. It includes:

■ Four parallel processors (PP0 - 3). These are advanced, 32-bit
integer DSPs.

■ A 32-bit RISC master processor (MP) with an IEEE-754
floating-point unit (FPU).

■ A transfer controller (TC). This manages transfers between
on-chip and off-chip RAM.

■ A high-speed bus switching network between the processors
and on-chip RAM (the crossbar network).

PP3

RAM RAM RAM RAM RAM

PP2 PP1 PP0 FPU

MP

TC

64

Simplified block diagram of the TMS320C80 MVP

crossbar network
Because it is fully programmable, the ’C80 is much more
flexible than custom ASICs or other specialized hardware, so
in those few cases where the MIL and Native Library functions
are insufficient, you can program the ’C80 directly. To do so, you
need to use the optional Genesis Developer’s Toolkit, in
conjunction with Texas Instruments’ TMS320C8x software
development tools. Note that the ’C80 is a complex chip, so
programming it should not be undertaken lightly, even though
it gives you complete access to all features of the board.

44 Chapter 3: Processing functions

Data types
The Genesis Native Library supports the following data types:

■ Packed binary

■ Integer

■ Floating-point

Processing In general, the fewer bits per pixel in the buffer(s), the faster
the processing function. Therefore, when possible, you should
use binary buffers for binary data (rather than, say, 8-bit
integer buffers with only the values 0 and 0xFF). This will not
only speed up binary processing, it will also maximize your
storage space (in packed binary format, pixels are packed 1 bit
per pixel, that is, in a format eight times smaller than an 8-bit
image). You should only use integer buffers for binary data
when the required function does not support packed binary
buffers.

When using integer buffers, use 8 bits per pixel when possible,
16 bits per pixel if necessary, and 32 bits per pixel only as a last
resort. When you need extra precision or greater dynamic
range, you can use floating-point buffers.

❖ If you want to display an image, it must be limited to 8 bits
per pixel per band. If necessary, convert the image before
copying it to the display, or use either imBufCopyVM() or
imBufCopyPCI() to format the image during the copy.

Converting between data types is discussed in the next
section; imBufCopyVM() and imBufCopyPCI() are discussed
in Chapter 9.

Data types 45

RGB packed In addition to the above data types, the Genesis Native Library
allows you to perform a limited number of operations on data
that is in a RGB packed format. In the RGB packed format,
there are no color bands; rather, the color components of each
pixel are interleaved, as shown below:

The Genesis Native Library does not provide functions to
process and/or display the RGB format directly. However, once
you have grabbed or loaded your RGB-packed image into a
buffer, you can automatically unpack it for display by copying
it to a 3-band display buffer, using imBufCopy().

Converting between types
The following functions convert between the supported data
types:

■ imBinConvert()

■ imFloatConvert()

■ imIntConvert()

imBinConvert() Use imBinConvert() to convert between integer and packed
binary buffers. For integer to binary, the conversion result is 1
when a specified threshold condition is true, and 0 otherwise.
For binary to integer, 0s are converted to a specified value, and
1s to a second specified value.

RGBRGBRGBRGBRGBRGB ...
RGBRGBRGBRGBRGBRGB ...
RGBRGBRGBRGBRGBRGB ...
RGBRGBRGBRGBRGBRGB ...
imFloatConvert() Use imFloatConvert() to convert between integer and
floating-point buffers. For floating-point to integer, you can
round towards zero or round to the nearest integer. Overflows
or underflows are set to the maximum or minimum value,
respectively, of the destination buffer’s data type.

46 Chapter 3: Processing functions

imIntConvert() Use imIntConvert() to convert from one integer data type to
another. When converting to a larger pixel size, data is
sign-extended. Sign extension propagates the sign bit
(most-significant bit) if the source buffer is a signed type; if not,
it propagates 0. When converting to a smaller pixel size, the
higher bits are discarded.

When you use imIntConvert(), you can clip values to the
dynamic range of the destination buffer (after sign-extending
if necessary). Alternatively, you can take the absolute value and
clip to the dynamic range of the destination buffer (after
sign-extending if necessary).

Processing a specific region of an image 47

Processing a specific region of an image
Rectangular region
There will be times when you won’t want to process your entire
image. To restrict processing to a rectangular region, you can
create a child buffer, using imBufChild(). For more on child
buffers, see Chapter 9.

Non-rectangular region
You can restrict processing to a non-rectangular region by:

■ Processing the entire area, then using either
imBufCopyPCI() or imBufCopyVM() with a tag buffer (see
below), or using imIntTriadic() to merge the source and
destination buffers (see Chapter 4). You can only use
imBufCopyPCI() or imBufCopyVM() if you are copying
between different memory banks, for example, between
processing and display memory. If you are copying within the
same memory bank, you must use imIntTriadic().

Result
(after copy)

Source buffer Destination buffer
(before copy)

Tag buffer
■ Packing the required region using imBufPack(), processing
the packed buffer, and then, if necessary, unpacking it (also
using imBufPack()). Packing copies selected pixels of a buffer
to a one-dimensional destination buffer. Unpacking copies
pixels from a one-dimensional buffer to selected positions in
a destination buffer. A tag buffer controls which pixels of the
buffer to copy (when packing), or which pixels of the
destination buffer to overwrite (when unpacking). If you use
the same tag buffer to pack a buffer and then to unpack the
resulting buffer, the packed pixels will be written to their
original positions.

❖ Tag buffers are explained in detail in Chapter 9.

48 Chapter 3: Processing functions

More on packing Any type of processing can be used on the one-dimensional
packed buffer, provided it can be performed on the buffer’s data
type. However, only point-to-point operations are useful, since
these operations do not produce results based on neighborhood
information.

Packing vs. copying In general, it is faster to use imBufPack() because only the
required region, and not the entire buffer, is processed.
However, the time required to pack and unpack might exceed
the extra processing time if, for example, you need to process a
large region or if you require just one function to perform the
required processing.

An example The following code uses imBufPack() to process a
non-rectangular region of an image. Note that this code is part
of the process.c program and requires only the basic Genesis
hardware. See Appendix B for the complete process.c program.

�NQPI�6CI$WH���������$KPCT[�VCI�DWHHGT���
�NQPI�2CEMGF$WH��������F�DWHHGT�DKI�GPQWIJ�VQ�JQNF�VCIIGF�RKZGNU���
�NQPI�41+$WH�����������F�DWHHGT�GZCEVN[�VJG�TKIJV�UK\G���
�NQPI�0WO6CIIGF������0WODGT�QH�VCIIGF�RKZGNU���

����

���#NNQECVG�VCI�DWHHGT���
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A$+0#4;��+/A241%���6CI$WH��

����

���#NNQECVG���F�DWHHGT�HQT�RCEMGF�RKZGNU�
OCMG�UWTG�KV U�DKI�GPQWIJ����
�KO$WH#NNQE
6JTGCF��5K\G:�5K\G;�����0WO$CPFU��+/A7$;6'��+/A241%���2CEMGF$WH��
���2CEM�VJG�VCIIGF�RKZGNU���
�KO$WH2CEM
6JTGCF��5TE$WH��6CI$WH��2CEMGF$WH��+/A2#%-A������

���(KPF�QWV�JQY�OCP[�RKZGNU�YGTG�VCIIGF���
�KO$WH)GV(KGNF
6JTGCF��2CEMGF$WH��+/A4'5A07/A2+:'.5���0WO6CIIGF��

���/CMG�C�DWHHGT�YKVJ�LWUV�VJQUG�RKZGNU�KP�VJG�PQP�TGEVCPIWNCT�41+���
�KO$WH%JKNF
6JTGCF��2CEMGF$WH��������0WO6CIIGF������41+$WH��

���2TQEGUU�VJG�PQP�TGEVCPIWNCT�41+���
�KO+PV/QPCFKE
6JTGCF��41+$WH������41+$WH��+/A#&&A5#6�����

���7PRCEM�VJG�RTQEGUUGF�RKZGNU�HQT�FKURNC[���
�KO$WH%NGCT
6JTGCF��&UV$WH��������
�KO$WH2CEM
6JTGCF��41+$WH��6CI$WH��&UV$WH��+/A702#%-A�������

Point-to-point processing 49

Point-to-point processing
The Genesis Native Library supports flexible point-to-point
operations. A point-to-point operation (unlike a neighborhood
operation) does not use a pixel’s neighbors when determining
the pixel’s new values. Examples of point-to-point operations
are LUT mappings, arithmetic operations, logical operations,
and thresholds.

I/O bound Point-to-point operations tend to be I/O bound. Therefore,
smaller data types are usually processed faster.

In-place supported In-place operation, but not partially overlapping source and
destination buffers, is supported for point-to-point functions.

Mixed data types

As mentioned, not all functions in the Genesis Native Library
support all data types. However, the commonly used
point-to-point functions imIntMonadic() and imIntDyadic() do
support all integer types, in all combinations.

For these functions, source operands are cast to an internal
processing type: by sign extension for signed operands, and by
zero extension for unsigned operands. When applicable,
saturation is performed on results that overflow or underflow
the range of the internal processing type. Final results are cast
to the destination type (if necessary) by discarding the high bits.

The internal processing type is chosen as follows:
■ Take the smallest type that can represent the full range of
both source operands (this is bound to be a signed type if
either source is signed). If one operand is constant, the rule
still applies.

■ If the chosen type has fewer bits than the destination type,
promote the type to the same size as the destination. (The
destination sign is not taken into account).

50 Chapter 3: Processing functions

Saturation and
clipping

For certain operations, imIntDyadic() supports both clipping
and saturation. Note that clipping is performed when results
overflow or underflow the range of the destination buffer;
saturation is performed when results overflow or underflow the
range of the internal processing type. Therefore, saturation and
clipping do not produce the same results when the destination
buffer type is different from the internal processing type (for
example, when the sources are unsigned 8-bit and the
destination is signed 8-bit).

LUT mappings
The Genesis Native Library supports LUT mappings in
software, using imIntLutMap(). The imIntLutMap() function
maps an integer image from a source buffer (Src) through a
specified look-up table (LUT) and stores the results in a
specified destination buffer (Dst). Such mappings can reduce a
multi-step or complex operation to a single-step LUT mapping.
They can also be used to perform operations not supported by
the Genesis Native Library.

Mapping a displayed
image

Note that, in single-screen mode, the overlay frame buffer uses
all the LUTs in the RAMDAC. Therefore, to map the contents
of the main frame buffer in single-screen mode, you must use
imIntLutMap(). For the details, see Chapter 11.

Generating a LUT To generate a LUT, allocate a one-dimensional buffer using
imBufAlloc1d() and then load data into this buffer in one of two
ways:
■ Use imGen1d() (or any other processing function) to generate
the data.

■ Generate the data on the Host, and then transfer the data to
the buffer, using imBufPut().

❖ None of the source pixel values can exceed the size of the
table; that is, the number of entries in the LUT. For example,
if the LUT is size 1024, the maximum source pixel value
should be 1023. Pixel values above 1023 will not wrap
around; instead, they might cause an invalid memory access.

Point-to-point processing 51

An example The following code maps an image through a LUT. Note that
this code is part of the process.c program and requires only the
basic Genesis hardware. See Appendix B for the complete
process.c program.

LUT performance

The ’C80 performs LUT mappings very efficiently when the
LUT fits entirely in on-chip RAM. When the LUT is larger,
performance drops and becomes data-dependent, that is, varies
with the image being processed. Therefore, to guarantee
maximum speed when using imIntLutMap(), you should
always use the smallest possible LUT. For example, 10-bit data
must be stored in a 16-bit buffer, but only requires a LUT of

size 210 = 1024.

A note about notation In the following sections, the notation x:y means that x-bit data
is being mapped to y-bit data. For example, a 12:32 mapping
means that 12-bit data is being mapped to 32-bit data. Note
that, in this case, the required LUT size is:

�FQWDNG�%QGH=�?���]�����������_�����%QGHHKEKGPVU�HQT�KPXGTUG�TCOR���
����
���#NNQECVG�.76���
KO$WH#NNQE�F
6JTGCF�������+/A7$;6'��+/A241%���.WV$WH��

���)GPGTCVG�CP�KPXGTUG�TCOR���
�KO)GP�F
6JTGCF��.WV$WH��+/A21.;01/+#.�������������%QGH�����

���2GTHQTO�VJG�.76�OCRRKPI���
�KO+PV.WV/CR
6JTGCF��5TE$WH��&UV$WH��.WV$WH������
212 * 4 Bytes = 16 KBytes.

(number of entries) * (data depth) = LUT size

In the equations used to describe LUT mapping operations, Src
refers to the source buffer, Lut refers to the LUT buffer, and
Dst refers to the destination buffer, respectively, that is used
in a LUT mapping operation.

52 Chapter 3: Processing functions

Small LUTs

LUTs smaller than 4 KBytes (for example, 12:8, 11:16, and
10:32) fit entirely in each PP’s internal memory. In this case,
performance is not data-dependent, that is, performance
depends only on the size of the table and on how fast the input
data can be accessed.

Medium size LUTs

LUTs bigger than 4 KBytes but smaller than 16 KBytes (for
example, 12:32, 13:16, and 14:8) can still fit on chip, but each
PP cannot have its own copy of the LUT. In this case,
performance is slightly data-dependent. Specifically, execution
times increase slightly when the image pixels are concentrated
in a small range of values. For most other images, execution
times should be fairly constant.

Large LUTs

LUTs bigger than 16 KBytes (for example, 15:8, 16:8, and 16:32)
cannot fit entirely on chip. You can process such tables by
applying a mapping mode that uses either a non-interpolated
LUT or an interpolated LUT.

Mapping with a non-interpolated LUT
A mapping operation that is performed with a non-interpolated
LUT does not subsample the LUT buffer, so the actual values
in the LUT buffer are used. The imIntLutMap() function
provides three non-interpolated modes:
■ Basic mode

■ Shift & mask mode

■ Clip mode

Basic mode

The basic non-interpolated mode uses the transfer controller of
the ’C80 to process large LUTs. This occurs when no control
fields are added to the LUT buffer to specify a different mode.
The operation used is simply:

Dst = Lut[Src]

Point-to-point processing 53

In this basic mode, the source pixel is used directly as an index
into the LUT and it is your responsibility to make sure that no
pixel value in the source buffer exceeds the size of the LUT
buffer. For example, if you pass a LUT buffer with 1024 entries,
it is assumed that the source buffer contains 10-bit unsigned
data, and you should ensure that all pixel values in the source
buffer are between 0 and 1023 (inclusive). In this mode, the
source buffer can be 8-, 16-, or 32-bit.

Be aware that when the source contains negative values, you
must force the unwanted sign bits to 0. For example, the
difference of two 8-bit unsigned values lies in the range [-255,
+255], but if you then want to apply a LUT with only 512 values,
you must first mask (AND) the pixels with 0x01ff (511) to
prevent negative numbers from being considered as very large
positive values.

For LUTs bigger than 16 KBytes, the function can be quite slow
in this basic mode because the LUT can not fit entirely in
on-chip RAM. In this case, the function can work in one of two
ways internally, depending on whether it uses the default or PP
option.

The default option Using the default option, large LUTs are processed using the
transfer controller of the ‘C80, making the operation strongly
data-dependent.

The PP option Using the PP option, you can increase the speed of the operation
for LUTs that are bigger than 16 KByte in a way that makes

multiple passes with the PPs, but still uses the basic
non-interpolated LUT mode. This option requires a large
temporary work buffer for temporary data storage.
Performance drops if this work buffer is too small, so be sure
that you have enough memory for a large work buffer. Keep in
mind that the results of the mapping operation will be the same
as those obtained when using the default option, and the work
buffer will not necessarily improve the speed in all cases.

You can have this work buffer automatically allocated, or you
can supply it yourself. To specify whether you want an
automatically-allocated or user-supplied work buffer, you have
to add the IM_CTL_WORK_BUF field to the LUT buffer passed

54 Chapter 3: Processing functions

to imIntLutMap(). When you add this field to the LUT buffer,
imIntLutMap() will use the PP option for LUTs bigger than
16 KBytes; otherwise, it will use the default option.

Default vs. PP option When you use the default option, performance is strongly
data-dependent. Specifically, images tend to the best case when
the image pixel values change slowly along a line, and tend to
the worst case when the pixel values vary rapidly. Since typical
images tend to be closer to the worst case than the best case, it
is generally better to use the PP option, which is not very
data-dependent. However, for 16:32 mappings, the default
option is generally better than the PP option.

Other non-interpolated
LUT mapping modes

To increase performance with large LUTs, it is also possible to
apply one of the two other types of mapping modes that use a
non-interpolated LUT.

Shift & Mask mode

The shift and mask mode is a non-interpolated LUT mode of
imIntLutMap() that allows source values to be right shifted
and/or masked before indexing the LUT. The operation
performed is:

Dst = Lut[(Src >> shift) & mask]

This mode is particularly useful when the source buffer
contains negative values (it saves a separate masking
operation), or when you want to increase the speed of the
operation by using a smaller LUT (it saves a separate right shift

operation). To select this mode, you need to specify the dynamic
range of the source pixels with the IM_CTL_INPUT_BITS field.
In this mode, the source buffer can be 16- or 32-bit. Note that
because of the shift, the source’s dynamic range can not be
deduced from the size of the LUT buffer. Instead, the shift and
mask are deduced from the difference between the number of
input bits and the size of the LUT buffer. For example, a LUT
mapping with 15-bit source data and a 10-bit LUT (1024 input
bits) would lead to a right shift of 5 bits (15 - 10), and a mask
value of 0x03ff (1023), which is useful if the source buffer is
signed and there are any negative input values. The value given
for the IM_CTL_INPUT_BITS field must lie in the range 9-16
for a 16-bit source buffer, and 17-32 for a 32-bit source buffer.

Point-to-point processing 55

Clip mode

A third non-interpolated mode of this function allows you to
have large values clipped to the maximum value that the LUT
can handle. The operation performed is:

Dst = Lut[clip(Src)]

This is useful when you have large values in the source buffer
(values larger than the LUT you want to use). To select this
mode, you need to enable clipping (set the IM_CTL_CLIP field
of the LUT buffer to IM_ENABLE). Keep in mind that unsigned
clipping is performed. That is, only values above the upper limit
are clipped, so you should not have any negative values in your
source buffer. There is no right shift in this mode; therefore, the
dynamic range of the source data is always deduced from the
LUT’s size, and the clipping value is equal to (Size of LUT - 1).
For example, 1023 for a 1024-entry (10-bit) LUT. Note that
when you want this mode, you should not add the
IM_CTL_INPUT_BITS field to the LUT buffer as well.

Mapping with an interpolated LUT

Interpolated LUT
mappings

If you are performing a 16:8 or 16:32 mapping, you can improve
performance by using an interpolated LUT mapping. An
interpolated LUT mapping subsamples the LUT buffer to
reduce its size to 16 KBytes (a 16:8 LUT is therefore
subsampled by 4 and a 16:32 LUT by 16). The output for each
16-bit input is then determined by linearly interpolating
between two values of the subsampled LUT.
output

input
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

255

65531 65535

LUT mapping function

A 16:8 mapping before subsampling

.

output

input
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

255

65531 65535

After subsampling

.

56 Chapter 3: Processing functions

To specify an interpolated LUT mapping, add the
IM_CTL_RESAMPLE field to the LUT buffer passed to
imIntLutMap(). Note that final results will be equal to the
actual results when the mapping function varies linearly
between the sampled points. Since even a fairly high-order
polynomial function varies almost linearly over a range of 16
consecutive input values, final results will usually be very close
to the actual results.

Since a 16:32 mapping is usually used to display an image in
pseudo-color, a 32-bit destination buffer is always assumed to
be in RGBa format, and each of the three 8-bit color bands is
interpolated separately.

If necessary, input values from the source buffer can be clipped
to avoid reading beyond the end of the subsampled LUT. When
clipping is enabled (IM_CTL_CLIP is set to IM_ENABLE), these
large input values are clipped to the maximum value that the
subsampled LUT can handle. Similarly, if you want to disable
clipping (usually because your input data is already clipped),
set the IM_CTL_CLIP field to IM_DISABLE.

When you perform an interpolated LUT mapping, you might
prefer to provide the LUT already subsampled, since it will be
quicker to generate and load. However, you then need to specify
the size of your input data, since this cannot be inferred from
the LUT size (if you provide a LUT of 16K entries, the function
would normally assume you have 14-bit data, when in fact you
have 16-bit data).
To specify the input data size, use the IM_CTL_INPUT_BITS
field.

The above descriptions assume that you are using an
interpolated LUT (IM_CTL_RESAMPLE field is set to
IM_INTERPOLATE). The IM_CTL_INPUT_BITS and
IM_CTL_CLIP control fields have different meanings when you
use a non-interpolated LUT.

Use smaller mappings Instead of working with large LUTs, you should always try to
use several smaller LUT mappings; performance will often be
better. For example, a 14:32 mapping is considerably faster if

Point-to-point processing 57

done as three separate 14:8 mappings. Note that a 14:32
mapping can be used to convert a grayscale image to
pseudo-color.

Histogram equalization
Using imIntHistogramEqualize(), you can perform a histogram
equalization on an integer image, or generate a LUT from a
specified histogram equalization operation. In the former case,
a histogram is performed on the source image, the histogram
is transformed into a LUT using the specified equalization
operation, and then this LUT is used to transform the source
image. In the latter case, a histogram is transformed into a LUT
from the specified equalization operation; the histogram can be
of the source image or user-supplied.

58 Chapter 3: Processing functions

Neighborhood processing
The Genesis Native Library supports a variety of neighborhood
operations. A neighborhood operation replaces a pixel’s value
according to the values of its surrounding pixels (called its
neighborhood). The size of the neighborhood is determined by
the operation’s kernel. The type of operation determines how
the kernel is used to determine new pixel values.

Compute bound Neighborhood operations are usually compute-bound, but the
type of data can still affect performance. This is because each
of the parallel processors of the ’C80 can often process four 8-bit
or two 16-bit pixels as quickly as one 32-bit pixel. Speed also
depends on the size of your kernel.

In-place not
supported

In-place operation, as well as partially overlapping source and
destination buffers, are not supported for neighborhood
functions, unless otherwise stated.

Predefined kernels vs.
custom kernels

In general, you can use your own kernel or a predefined kernel.
The predefined kernels will normally execute faster, although
they might not always meet your requirements. If you use your
own kernel, you can generally control the center pixel of the
kernel, as well as other aspects of the operation.

When the NOA is not used (either not present or disabled),
nearly all functions support a maximum kernel size of 15x15,
except for binary pattern matching, which has no kernel size
limit. When using the NOA for binary morphology, the largest

kernel supported is 32x32, (again, except for binary pattern
matching). However, the NOA can only operate on aligned
binary data (an image which starts on a byte boundary and has
a width which is a multiple of 16 pixels). If you do pass a
non-aligned buffer, the operation will be carried out by the ’C80
instead of the NOA, and the 15x15 maximum kernel size will
apply.

Main types There are two main types of neighborhood operations:

■ Spatial filtering (convolution) operations.

■ Morphological operations.

Neighborhood processing 59

Spatial filtering operations
A spatial filtering (convolution) operation determines the new
value for a pixel based on the weighted sum of the pixel and the
pixel’s neighboring values. You perform convolutions using
imIntConvolve().

Using your own
kernel

If you use your own kernel with imIntConvolve(), you can shift,
take the absolute value of, and/or clip the results of the
convolution.

Note that, if clipping is enabled, it is to the range specified by
the IM_CTL_OUTPUT_BITS field (by default, it is to the full
range of the destination buffer).

Processing speed Depending on the kernel values, you might be able to increase
the speed at which imIntConvolve() is performed by setting its
IM_CTL_COMPUTATION field to IM_FAST. This will cause
approximations to be made, if possible, so as to increase
operation speed. Note, however, that some rounding errors
(usually small) can occur if you set this field.

You might also be able to increase operation speed by setting
IM_CTL_INPUT_BITS to the number of bits actually in the
source buffer. For example, if a 16-bit source buffer contains
only 10-bit data, operation speed might be increased if you set
IM_CTL_INPUT_BITS to 10 (again, whether operation speed can
actually be increased depends on the kernel values).

Note that imIntConvolve() runs slower if you shift, take the

absolute of, or clip results. You should only use these options if
really necessary.

60 Chapter 3: Processing functions

Morphological operations
The Genesis Native Library supports the following
morphological operations:

■ Erosion.

■ Dilation.

■ Thinning.

■ Thickening.

■ Binary template matching.

■ Hit-or-miss transformation.

■ Distance transform.

Erosion and dilation

There are two types of erosion/dilation operations: binary and
grayscale.

Binary erosion and
dilation

To perform binary erosion or dilation, use imBinMorphic().

■ In binary erosion, if the kernel does not match the
neighborhood exactly, the center pixel is set to zero;
otherwise, it remains unchanged.

■ In binary dilation, if any of the elements of the neighborhood
match the corresponding kernel value, the center pixel is set
to 1; otherwise, it remains unchanged.
Note that any kernel value other than 0 or 1 is considered a
"don’t care" value, that is, it is ignored during the operation.

Neighborhood processing 61

Grayscale erosion
and dilation

To perform grayscale erosion or dilation, use
imIntErodeDilate(). The kernel must be grayscale. A kernel
value of IM_DONT_CARE causes the corresponding pixel in the
neighborhood to be ignored during the operation.

Grayscale erosions and dilations are done in two steps.

The erosion operation:

1. Subtracts each kernel value from the corresponding pixel
value in the neighborhood.

2. Replaces the center pixel of the neighborhood with the
minimum value from the resulting neighborhood values.

The dilation operation:

1. Adds each kernel value to the corresponding neighborhood
pixel.

2. Replaces the center pixel of the neighborhood with the
maximum value from the resulting neighborhood values.

62 Chapter 3: Processing functions

Thinning and thickening

In thinning and thickening operations, the value of the center
pixel is determined by whether an exact match of the
neighborhood and the kernel is found.

There are two versions of thinning and thickening: binary and
grayscale. For either version, any kernel value other than 0 or
1 is considered a "don’t care" value, that is, it is ignored during
the operation.

Binary thinning
and thickening

Use imBinThin() to perform a fast binary thinning operation.

■ Binary thinning: This operation replaces the center pixel by
the value 0 if a pixel’s neighborhood matches the kernel
exactly. If the neighborhood does not match, the pixel value
remains unchanged.

Use imBinMorphic() to perform a binary thickening operation.

■ Binary thickening: This operation replaces the center pixel
by the value 1 if the pixel’s neighborhood matches the kernel
exactly. If the neighborhood does not match, the pixel value
remains unchanged.

❖ Note that it is also possible to use imBinMorphic() to perform
a binary thinning operation, although processing will be
slower.

When performing binary operations using imBinMorphic(), the
NOA can only directly process buffers which are byte aligned,

and have a width which is a multiple of 16 pixels. If a buffer
does not respect these restrictions, processing will be slower
(either because the NOA will not be used, or an aligned copy of
the buffer will be made first). Note that this restriction only
applies to child buffers, since buffers are always initially
allocated with the proper alignment.

Grayscale thinning
and thickening

Use imIntThickThin() to perform a grayscale thinning or
thickening operation.

Neighborhood processing 63

■ Grayscale thinning:
if MAX(0) < center pixel <= MIN(1)
 center pixel = MAX(0)
else
 center pixel is unchanged.

■ Grayscale thickening:
if MAX(0) <= center pixel < MIN(1)
 center pixel = MIN(1)
else
 center pixel is unchanged.

where MAX(0) is the maximum of all pixels in the
neighborhood that correspond to zero in the kernel, and
MIN(1) is the minimum of all pixels in the neighborhood that
correspond to one in the kernel.

Multi-band kernels Since it is common to thin or thicken with a series of different
kernels (one applied after the other), you can provide a
multi-band kernel to imBinMorphic() or imIntThickThin().
Each band of the kernel will be applied to the result of the
previous one, allowing you to perform a series of operations
with one call to the function.

An example The following code is an example of thinning to skeleton. Note
that this code is part of the process.c program and requires only
the basic Genesis hardware. See Appendix B for the complete
process.c program.

64 Chapter 3: Processing functions

�NQPI�5MGN$WH���������������$WHHGT�HQT�MGTPGN���
�NQPI�$KP�$WH��$KP�$WH������$KPCT[�YQTM�DWHHGTU���

���&GHKPG�GKIJV��Z��MGTPGNU������OGCPU��FQP	V�ECTG����
�UJQTV�5MGN8CNU=�?=�?���
�]
�����������������������������
������������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�_�

���#NNQECVG�CP���DCPF�MGTPGN�DWHHGT���
KO$WH#NNQE
6JTGCF�����������+/A5*146��+/A241%���5MGN$WH��

���#NNQECVG�DKPCT[�YQTM�DWHHGTU���
KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��+/A$+0#4;��+/A241%���$KP�$WH��
�KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��+/A$+0#4;��+/A241%���$KP�$WH��

���5GV�MGTPGN�XCNWGU�
CNN�GKIJV�DCPFU�CV�QPEG����
KO$WH2WV
6JTGCF��5MGN$WH��5MGN8CNU��

���$KPCTK\G�VJG�KOCIG�TGCF[�HQT�VJKPPKPI���
KO$KP%QPXGTV
6JTGCF��5TE$WH��$KP�$WH��+/A)4'#6'4�������������

���6JKP�VQ�C�UMGNGVQP�WUKPI�TGRNCEG�QXGTUECP���
KO$KP/QTRJKE
6JTGCF��$KP�$WH��$KP�$WH��5MGN$WH��+/A6*+0�
��������������+/A+&'/216'0%'��5MGN$WH�����

Neighborhood processing 65

Binary template matching

Binary template matching allows you to determine how similar
certain areas of a binary image are to a pattern (specified by a
kernel). Binary template matching produces resulting pixels
that are a count of the number of matches between the
neighborhood and kernel values (therefore, the result is a
grayscale image). Any kernel value other than 0 or 1 is
considered a "don’t care" value, that is, it is ignored during the
operation.

Use imBinMorphic() to perform binary template matching.

Hit-or-miss transformations

A hit-or-miss operation determines which pixels have
neighborhoods that match a pattern exactly. When the
neighborhood of a source image’s pixel matches the pattern
exactly, the value of the corresponding pixel in the destination
image is set to 1. When the neighborhood does not match
exactly, the pixel value is set to 0. Any kernel value other than
0 or 1 is considered a "don’t care" value, that is, it is ignored
during the operation.

Use imBinMorphic() to perform hit-or-miss operations.

66 Chapter 3: Processing functions

Distance transform

You can produce a distance transform using imIntDistance().
This function determines the minimum distance from each
foreground (non-zero) pixel to a background (zero) pixel, and
assigns this distance to the foreground pixel. It produces a type
of contour mapping of an image’s foreground (object) pixels.

You can calculate the minimum distance using one of three
transforms.

The City Block
transform

The City Block transform (IM_CITY_BLOCK) determines the
minimum distance using only horizontal or vertical steps. Each
step counts as 1.

The Chessboard
transform

The Chessboard transform (IM_CHESSBOARD) determines the
minimum distance using horizontal, vertical, or diagonal steps.
Each step counts as 1.

1
1
2
3 22

3
3

3

2
2
2

3
3
4

4
44

4
4

3
2
21

1
2
2

2
2
3

3
2

1
1

1
1
1
23

2
2
2

1
1
1
1 1 1 1

1
1
1 1 1 2 3 3 2

1
2

2

1
2

2

1
2

2
2

1
3

3331
2
1 1 1 1 1

1

1
1

1

111
1
1
1
2 22

3
3

2

2
2
2

3
3
33
2
2
2
21

1
2
2

2
2
2
2

3
3 3

2

1
1

1
1
1
1

2
21

2

1
1
1
1 1 1 1

1
1
1 1 1 1 3 3 2

1
2

2

1
2

2

1
2

2
2

1
2

3331
2
1 1 1 1 1

1

1
1

1

111

Neighborhood processing 67

The Chamfer 3-4
transform

The Chamfer 3-4 transform (IM_CHAMFER_3_4), like the
Chessboard transform, determines the minimum distance
using horizontal, vertical, or diagonal steps. However,
horizontal and vertical steps are counted as 3 and diagonal
steps as 4. This allows the transform to better approximate the
true (Euclidean) distance between two pixels. However, it
requires that the destination buffer be large enough to hold a
number at least three times the maximum distance from a
foreground to a background pixel.

With the Chamfer 3-4 transform, you can normalize results.
Normalization will divide results by 3 so that each horizontal
or vertical step is counted as 1. Note, however, that you still
need a destination buffer that is large enough to hold a number
at least three times the maximum distance from a foreground
to a background pixel.

3
3
4
7 66

9
9

10
7

6
6
6
7
6

9
9

10
8
7
6
63

3
3
6

6
6
7
8

10
9
6

3
3
3
3
3
3
3

6

3
3
3
3 3 3 3

3 3
3
3 3 3 3 9 9

3
6

6

3
6

6

3
6
6
6
6

3
7

10
9 993
6
3 3 3 3 3

3
3
3
3
3
3

333

68 Chapter 3: Processing functions

Defining your own kernel
If the predefined kernels do not meet your requirements, you
can define your own kernel, as follows:

1. Allocate a kernel buffer using, for example, imBufAlloc2d().
The dimensions of the kernel determine the size of the
neighborhood used in the operation.

The result of the neighborhood operation is stored in the
destination buffer at the location corresponding to the
kernel’s center pixel. By default, the coordinates of the
kernel’s center pixel are:

(int (Xsize-1)/2, int (Ysize-1)/2)

where Xsize by Ysize are the dimensions of the kernel
buffer. For most functions, however, you can use any pixel
of the kernel as the center pixel, by setting the
IM_KER_CENTER_X and IM_KER_CENTER_Y fields.

2. Load the kernel values into this kernel buffer, using
imBufPut() or any processing function that might be

Neighborhoods and their default center pixel

C C C C
C

appropriate.

Neighborhood processing 69

An example The following code performs a convolution with a user-defined
kernel. Note that this code is part of the process.c program and
requires only the basic Genesis hardware. See Appendix B for
the complete process.c program.

�NQPI�-GT$WH������������-GTPGN�DWHHGT���
�UJQTV�-GT8CNU=�?�������#TTC[�QH�MGTPGN�XCNWGU���
�]
����������������
����������������
���������������
�_�
�
���#NNQECVG�MGTPGN�DWHHGT���
�KO$WH#NNQE�F
6JTGCF��������+/A5*146��+/A241%���-GT$WH��

���5GV�MGTPGN�XCNWGU���
KO$WH2WV
6JTGCF��-GT$WH��-GT8CNU��

���5RGEKH[�CDUQNWVG�XCNWG�CPF�ENKR���
KO$WH2WV(KGNF
6JTGCF��-GT$WH��+/A-'4A#$51.76'��+/A'0#$.'��
KO$WH2WV(KGNF
6JTGCF��-GT$WH��+/A-'4A%.+2��+/A'0#$.'��

���2GTHQTO�VJG�EQPXQNWVKQP���
KO+PV%QPXQNXG
6JTGCF��5TE$WH��&UV$WH��-GT$WH��������

70 Chapter 3: Processing functions

Specifying the overscan pixels
In a neighborhood operation, the neighborhood of some pixels
will fall outside of the source buffer. To determine the new
values for these pixels, "extra" source pixels are required. These
are known as the overscan pixels of the neighborhood operation.

With the Genesis Native Library, you can use either
"transparent overscan" or "replace overscan" to perform a
neighborhood operation.

Transparent overscan If you choose transparent overscan, the pixels of the source
buffer’s parent buffer are used as the overscan pixels. If the
parent buffer can’t provide overscan pixels (for example, if the
source buffer is not a child buffer or if it touches one of the edges
of its parent buffer), then the pixel values used will be

C

Kernel

= source buffer pixel

= overscan pixel
undefined (leading to unpredictable results).

Replace overscan If you choose replace overscan, the overscan pixels are set to a
specified constant value.

Transparent vs.
replace

In general, use transparent overscan when the source buffer is
a child buffer. This will ensure that the overscan pixels are
related to the pixels that border the source buffer. Use replace
overscan if the source buffer is not a child buffer, if the source
buffer touches one of the edges of its parent buffer, or if the
source buffer is unrelated to its parent buffer.

Neighborhood processing 71

Connectivity mapping
The imIntConnectMap() function calculates a connectivity code
for each pixel in a binary source image and then maps these
codes through a LUT buffer.

The connectivity code is obtained by linking the elements of a
pixel’s 3x3 neighborhood into a string, forming a single 9-bit
number. Neighborhood pixels are linked in the following order:

 where ni is either 0 or 1

The pixels are connected and mapped as follows:

Connectivity code =

Result = LUTMAP (connectivity code)

Program the LUT with values that produce the desired result
for each possible neighborhood configuration. Since each
connectivity code has 9 bits, you should supply a LUT buffer

with at least 29 = 512 entries.

n3 n2 n1

n4 n8 n0

n5 n6 n7

2
i
ni

i 0=

8

∑

72 Chapter 3: Processing functions

Geometric processing
The Genesis Native Library provides basic geometric functions
(imIntFlip(), imIntScale(), imIntSubsample(), and
imIntZoom()), as well as general, more flexible geometric
functions (imIntWarp...()). The more general functions are
discussed in Chapter 4. The basic geometric functions are faster
than the general warping functions but cannot produce complex
geometrical transforms.

Support for 32-bit
floating-point

Although the geometric functions are intended for integer
images, most can operate on 32-bit floating-point data if no
interpolation is specified.

In-place not
supported

Note that in-place operation is not supported for the geometric
functions.

Flip/rotate
The imIntFlip() function allows you to:

■ Flip horizontally (left to right) or vertically (top to bottom).
Note that flipping horizontally allows you to get a mirror copy
of your original image.

■ Rotate 90, 180, or 270° counter-clockwise.

Scale by integer factors

The imIntSubsample() function minifies (subsamples) an
image by an integer factor. When no interpolation is specified,

the function takes a single sample from each block of the source
buffer; when interpolation is specified, the function takes the
average value of the block. The size of the block determines the
factor by which the source buffer is minified.

The imIntZoom() function magnifies (zooms) an image by an
integer factor. It replicates each pixel of the source buffer into
a block of the same value. An averaging filter can then be
applied to the result, thereby producing an interpolated zoom.
The size of the block determines the factor by which the source
buffer is magnified.

Geometric processing 73

You can also use the imIntScale() function to scale an image by
integer factors in non-interpolated mode and in interpolated
mode. imIntScale() has more restrictions than
imIntSubsample() or imIntZoom(); however, it is the fastest
way to perform an interpolated scaling by an integer factor
(especially for factors of 2, 4, and 8).

Scale by non-integer factors

The imIntScale() function can also scale an image by a
non-integer factor in interpolated or non-interpolated mode. In
non-interpolated mode, the exact scale factor that is specified
is used. In interpolated mode, the actual scale factor used might
be slightly different from the one requested. This is done in the
interest of speed. However, non-integer factors that can be
expressed as the ratio of two small integers (such as 1.5 = 3/2)
will also be used exactly as specified. In interpolated mode, the
scale factors are used exactly as specified when:

scaling factor = n/m,

where n and m are integers between 1 and 16 (inclusive).

You can specify the x and y scaling factors yourself, or you can
have them automatically chosen such that the re-scaled image
will just fill the destination buffer.

74 Chapter 3: Processing functions

Color processing
Many processing functions can operate on multi-band (color)
buffers. Specifically, if the source and destination buffers have
the same number of bands, the function processes
corresponding source bands and writes results to the
corresponding destination band. If one of the source buffers has
only one band while the other(s) have several bands, the
function uses that one source band as many times as is needed.

When a function does not support multiple bands, you can
create a child buffer for each band, using imBufChildBand(),
and process the bands individually.

Choosing a color space

When processing color images, you can take advantage of the
extra information available in the color image without greatly
increasing the processing time required and without occupying
more memory than is necessary. The key is to select the right
color space.

The color spaces supported by the Genesis Native Library are
RGB and HSL.

RGB color space In the RGB color space, color is represented as a combination
of red, green, and blue. This color space is generally used for
most display hardware since it best matches the three colored
phosphors of display monitors. It is also the direct output color
space of many cameras and input devices. The color space does

have drawbacks, however:

■ Processing in this color space is not intuitive. Small changes
in one component can have large visible effects.

■ In general, the color component values are highly correlated.
This redundancy can lead to wasted computation.

Color processing 75

HSL color space In the HSL color space, color is represented as a combination
of hue, saturation, and luminance. The hue corresponds to the
wavelength of the main color. It is represented as an angular
position on a circular color disk. The luminance corresponds to
the brightness of the color, while the saturation can be thought
of as the measure of color purity or concentration.

The HSL color space is similar to the human way of describing
colors. Each color has its own hue value (such as red, orange,

Black

White

Blue

Cyan

Green Yellow

Red

Magenta

lu
m

in
an

ce

hue

saturation

(60(120

(240

(0

(300

(180)

)

))

)

)

or green). Once the hue value is chosen, changes to the
saturation or the luminance alter only the color quality, not the
basic color.

Converting between
RGB and HSL

You can convert between the RGB and HSL color spaces, using
imIntConvertColor(). For efficiency, when converting from a
3-band (RGB) buffer, you can calculate just the hue (H)
component of the HSL color space into a 1-band buffer. You can
also use this function to extract the luminance (intensity) from
an RGB image, or to copy the luminance component of an image
into a three-band buffer, to create a monochromatic (gray) RGB
buffer.

76 Chapter 3: Processing functions

In addition, you can perform a custom matrix-defined
conversion. To perform an arbitrary matrix-defined color
conversion, you must also pass a 3x3 or 3x1 floating point
coefficient buffer. For a matrix-defined conversion, the
coefficient buffer should be 3x3 if both source and destination
are 3-band buffers. If the source buffer has 3 bands and the
destination buffer has 1 band, then the coefficient buffer should
be 3x1.

For 3x3 Coef buffers:

each band of the destination is calculated from the source bands
as follows:

Dst[0] = a.Src[0] + b.Src[1] + c.Src[2]

Dst[1] = d.Src[0] + e.Src[1] + f.Src[2]

Dst[2] = g.Src[0] + h.Src[1] + i.Src[2]

By default, underflows and overflows are not clipped; the input
format is the same as that of the source buffer, and the output
format is the same as that of the destination buffer.

You can control whether clipping is enabled, as well as the data
type of input (source) and output (destination) bands, by adding
control fields to the coefficient buffer. When IM_CTL_CLIP is set
to IM_ENABLED, underflows and overflows are clipped to the

a b c

d e f

g h i
output range [0, 255] for unsigned outputs, and [-128, 127] for
signed outputs.

It is also possible to set IM_CTL_INPUT_FORMAT and
IM_CTL_OUTPUT_FORMAT to IM_UNSIGNED or IM_SIGNED to
control the data type of the input and/or output bands,
respectively. Note that the first band is always unsigned.

Statistical processing 77

Statistical processing
In addition to the processing operations, the Genesis Native
Library provides a variety of statistical operations. For
example, you can:

■ Take the histogram of an image, using imIntHistogram().

■ Locate pixels that satisfy a specified condition, using
imIntLocateEvent().

■ Count the differences between two images, using
imIntCountDifference().

■ Find the minimum and/or maximum pixel value in an image,
using imIntFindExtreme().

The statistical functions write results either to a field of a buffer
(for example, imIntCountDifference(), where only one value is
returned), or into a buffer itself (for example, imIntHistogram(),
where multiple values are returned).

Once you have completed your statistical operations and want
to read back the results, use imBufGet() or imBufGet1d() if the
results are written into a buffer; use imBufGetField() if the
result is written into a field of a buffer.

❖ Statistical functions do not support packed binary buffers.

78 Chapter 3: Processing functions

Histograms
When you perform a histogram, speed is dependent on data
type. To guarantee maximum speed, the result buffer should be
no larger than necessary. For example, 10-bit data must be
stored as a 16-bit image, but only requires a result buffer of size

210 = 1024.

In order to speed up the time required to generate the
histogram, you can specify certain options (described below).
These options are mainly useful for deep input data. In such a
case, the result buffer is normally too large to fit in on-chip RAM
and the operation is much slower than normal.

Skip input pixels You can specify that the histogram be generated using only

every xth column and/or every yth row of the source buffer. To
do so, use the IM_CTL_SUBSAMP_X and/or
IM_CTL_SUBSAMP_Y fields. The histogram will have
approximately the same shape but the total number of counts
will be less.

Scale data You can scale the input data, if the number of input bits exceeds
the size of the result buffer. For example, if 16-bit data is used

with a result buffer of size 210 = 1024, all input pixels can be
right shifted by 6 bits. The operation will be much faster than

with a full result buffer (size 216 = 65536), although there will
be some approximations to the shape of the histogram since
fewer bins are used.
In order to scale input data when the number of input bits
exceeds the size of the result buffer, use the
IM_CTL_INPUT_BITS field to indicate the input data size.

Note that, by default, the number of input bits is deduced from
the size of the result buffer. For example, when the source buffer

is 16-bit and the result buffer is of size 210, the input data is
assumed to be only 10-bit and is therefore not right-shifted.
However, if the IM_CTL_INPUT_BITS field is set to 16, input
pixels are right shifted by 6 bits.

❖ The IM_CTL_INPUT_BITS field only applies when the source
buffer is 16-bit, since no right shift is needed for 8-bit buffers.

Chapter 4: Advanced
processing

This chapter describes some of the more advanced
processing functions of the Matrox Genesis Native Library.

80 Chapter 4: Advanced processing

Three-input arithmetic and logical
operations
With the Genesis Native Library, you can perform arithmetic
and logical operations on up to three input operands, using
imBinTriadic() or imIntTriadic(). Working with three operands
rather than two can reduce the number of function calls
required to perform an operation. For example, merging
operands A and B based on operand C,
 (A&C) | (B&~C), can be performed in a single call to
imIntTriadic() rather than three calls to imIntDyadic().

Note that the operation (A&C) | (B&~C) passes A where C is
0xFFFFFFFF, and passes B where C is 0.

(A & C) | (B & ~C)A B C

Three-input arithmetic and logical operations 81

More on the
Triadic functions

Besides providing pre-defined operators, imBinTriadic() and
imIntTriadic() allow you to control the type of arithmetic or
logical operation performed by allowing you to specify the
actual PP ALU opcode. By specifying opcodes directly, you can
perform any type of arithmetic or logical operation that the
PP ALU supports. Note, however, that you only need to derive
opcodes if you cannot perform the required operation using a
pre-defined opcode or using another arithmetic and logical
function.

Deriving opcodes for
Triadic functions

The following example outlines how to derive the opcode for a
logical operation. Most arithmetic operations exist as
pre-defined opcodes; if you ever need to derive the opcode for
an arithmetic operation, you can contact Texas Instruments for
their TMS320C80 (MVP) Parallel Processor’s User Guide. (You
will need to derive the 32-bit part of the PP opcode that resides
in register d0 for the instruction class EALU || ROTATE).

1 1 1

10 0
10 0

1 0 0

1 1 0
1 10

000

1 10

A B C A & C B & ~C

CB = 00 CB = 01 CB = 11 CB = 10

First step:
Derive the result of
the operation for all
combinations of
A, B, and C

Operation: (A & C) | (B & ~C) i.e. pass A when C is 1; pass B when C is 0

Deriving the proper opcode for a logical operation

0
0
1
0
0
1
1
1

((((
F0 F2

F1 F3

F4

F5

F6

F7

0

1

01

0 1 1

0A = 0

A = 1

Second step:
Represent results
in this table

F7 F6 F5 F4 F3 F2 F1 F0

Last step:
Left-shift by 19 bits 10101100 << 19

1 1 1 10 0 0 0

82 Chapter 4: Advanced processing

The opcode for (A&C) | (B&~C) is therefore
10101100 << 19 = 0x5600000. The appropriate function calls
for imBinTriadic() and imIntTriadic() would be:

Note, however, that (A&C) | (B&~C) exists as a pre-defined
opcode: IM_PP_MERGE.

❖ The distinction between arithmetic and logical operations
lies in whether the operation produces any carry-outs (for
example, A + B produces a carry-out for 1 + 1). If there are
no carry-outs (for any combination of A, B, and C) the
operation is logical and its opcode can be derived according
to the above steps. If there are carry-outs, the operation is
arithmetic and its opcode must be derived using a different
method; see the TMS320C80 (MVP) Parallel Processor’s User
Guide.

KO$KP6TKCFKE
VJT��DWHC��DWHD��DWHE��FGUVDWH���Z������������

KO+PV6TKCFKE
VJT��DWHC��DWHD��DWHE��FGUVDWH������Z���������+/A&'(#7.6�����

Live processing 83

Live processing
Grabbing a sequence of frames in real-time
To grab a sequence of frames in real-time, simply use successive
calls to imDigGrab() in the same thread:

No frames will be missed as long as you use compatible camera
definitions for each call and as long as no other applications are
also grabbing to the same memory bank. Frames could be
missed if the camera definitions are different, since the
digitizer has to be re-programmed for each grab. Frames could
also be missed if two or more applications grab to the same
memory bank, since each memory bank has just one VIA
capable of writing grabbed data to memory.

Real-time processing
To grab and process concurrently on Genesis, you need to
allocate two grab input buffers. You then process one buffer
while grabbing the next frame into the other buffer. You must

��FGHKPG�07/(4#/'5��
�NQPI�$WH=07/(4#/'5?�

���#NNQECVG�C�DWHHGT�HQT�GCEJ�HTCOG���
�HQT�
K������K���07/(4#/'5��K

�
�����KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%���$WH=K?��

���)TCD�VJG�UGSWGPEG���
�HQT�
K������K���07/(4#/'5��K

�
������KO&KI)TCD
6JTGCF�����%COGTC��$WH=K?�����������
switch the destination of the grab between the two input buffers
(this is commonly known as double buffering). You also need to
synchronize the grabbing and processing so that:

■ You do not process a buffer until an entire frame has been
grabbed into the buffer.

■ You do not grab into a buffer until the previous frame in that
buffer has been processed.

84 Chapter 4: Advanced processing

There are many ways to implement real-time processing. For
example, you could use separate threads for grabbing and
processing, and possibly a third thread for synchronization.
However, one of the simplest ways is to use a single thread and
to use imDigGrab() in asynchronous mode.

Asynchronous grab
mode

When you use imDigGrab() in asynchronous mode, the thread
to which imDigGrab() is sent will not wait for the grab to
complete before continuing to execute. You specify
asynchronous mode through the IM_CTL_GRAB_MODE field of
imDigGrab(). Note that, by default, the thread will wait for
imDigGrab() to complete before continuing.

Using imDigGrab() in asynchronous mode allows you to grab
and process concurrently using just one thread. This can
simplify the application code, as shown below.

���5GNGEV�CU[PEJTQPQWU�ITCD�OQFG���
�KO$WH2WV(KGNF
6JTGCF��%QPVTQN$WH��+/A%6.A)4#$A/1&'��+/A#5;0%*410175��

���)TCD�VJG�HKTUV�HTCOG���
�KO&KI)TCD
6JTGCF�����%COGTC��+P$WH=�?�����%QPVTQN$WH��)TCD15$=�?��
�K�����

�YJKNG�
�MDJKV
��

�]
��������3WGWG�VJG�PGZV�ITCD�KPVQ�VJG�QVJGT�DWHHGT���
������KO&KI)TCD
6JTGCF�����%COGTC��+P$WH=K?�����%QPVTQN$WH��)TCD15$=K?��

��������5YKVEJ�DWHHGTU���
������K�������K�
Note how the above code satisfies the two synchronization
requirements. The first requirement (that processing wait for
grabbing) is satisfied by using imSyncHost(). The second
requirement (that grabbing wait for processing) is
automatically satisfied because the grab function is called after
the processing function in the same thread (recall that
functions in a thread execute serially).

��������2TQEGUU�GCEJ�HTCOG�YJGP�VJG�ITCD�EQORNGVGU���
������KO5[PE*QUV
6JTGCF��)TCD15$=K?��+/A%1/2.'6'&��
������KO+PV.WV/CR
6JTGCF��+P$WH=K?��1WV$WH��.WV$WH�����
�_

Live processing 85

A note about
command queues

While the above code processes the same number of frames per
second whether imSyncHost() or imSyncThread() is used,
imSyncHost() prevents the command queue on the board from
filling up. If imSyncThread() is used, there is nothing to stop
the Host from executing the loop much faster than the board
can carry out the processing. Therefore, the command queue on
the board will quickly fill up, preventing other applications on
the board from running properly. In addition, grabbing will
continue even after you exit the loop (for several seconds)
because of all the queued commands.

Note also that each command queued to the board uses a small
amount of ’C80 time. Therefore, if you queue too many
commands, you will significantly slow down any functions that
are currently executing. Typically, it is safe to queue a few tens
of commands, but hundreds would be too many.

To inquire about the status of a command queue, use
imDevInquire().

86 Chapter 4: Advanced processing

Geometric warpings
In addition to the basic geometric functions described in
Chapter 3, the Genesis Native Library contains geometric
functions (imIntWarp...()) that allow you to warp an image.
Warpings could be used, for example, to correct geometric
distortions in an image.

How a warping is
performed

The Genesis Native Library performs warpings by associating
each pixel position of the destination buffer, (xd, yd), with a
specific point in the source buffer, (xs, ys), and then determining
the pixel value at (xd, yd) from its associated point and from a
specified interpolation mode.

First-order polynomial warpings

You can perform first-order polynomial warpings using
imIntWarpPolynomial(). A first-order polynomial warping is
equivalent to linearly translating, rotating, resizing, and/or
shearing an image. First-order polynomial warpings are
performed by associating points in the source buffer with pixels
in the destination buffer according to the following equations:

 xs = a0 + a1xd + a2yd
 ys = b0 + b1xd + b2yd

Generating
coefficients

The coefficients (a0...a2, b0...b2) required to produce a
polynomial warping can be automatically generated (using
imGenWarp1stOrder()) or user-supplied. When using

imGenWarp1stOrder(), you specify how you want the warping
performed (for example, by how much you want to rotate and
resize an image); the function then generates the coefficients
required to produce such a warping (see the following example).

Whether you supply the coefficients yourself or have them
generated, they must be placed in a 32-bit floating-point buffer
of size 3x2.

Geometric warpings 87

An example The following code rotates an image by 30° about its center.
Since rotations are performed about (0, 0), the image is
translated to move its center to (0, 0), rotated, and then
translated to its original position. Note that this code is part of
the process.c program and requires only the basic Genesis
hardware. See Appendix B for the complete process.c program.

�NQPI�%QGH$WH������%QGHHKEKGPV�DWHHGT�
CNUQ�EQPVTQN�DWHHGT����

���#NNQECVG�VJG�YCTR�EQGHHKEKGPV�DWHHGT���
�KO$WH#NNQE�F
6JTGCF��������+/A(.1#6��+/A241%���%QGH$WH��

���)GPGTCVG�EQGHHKEKGPVU�HQT�C���u�TQVCVKQP�CDQWV�VJG�EGPVGT���
�KO)GP9CTR�UV1TFGT
6JTGCF��%QGH$WH��+/A64#05.#6'���5K\G:�����5K\G;���
�������������������+/A%.'#4�����
�KO)GP9CTR�UV1TFGT
6JTGCF��%QGH$WH��+/A416#6'�������������+/A01A%.'#4�����
�KO)GP9CTR�UV1TFGT
6JTGCF��%QGH$WH��+/A64#05.#6'��5K\G:����5K\G;���
�������������������+/A01A%.'#4�����

���5GNGEV�DKNKPGCT�KPVGTRQNCVKQP�CPF�TGRNCEG�QXGTUECP���
�KO$WH2WV(KGNF
6JTGCF��%QGH$WH��+/A%6.A4'5#/2.'��+/A$+.+0'#4��
�KO$WH2WV(KGNF
6JTGCF��%QGH$WH��+/A%6.A18'45%#0��+/A4'2.#%'��

���4QVCVG�VJG�KOCIG���
�KO+PV9CTR2QN[PQOKCN
6JTGCF��5TE$WH��&UV$WH��%QGH$WH��%QGH$WH������

88 Chapter 4: Advanced processing

Using a LUT to perform a warping
You can perform warpings through look-up tables (LUTs), using
imIntWarpLut(). Since this function associates points in the
source buffer with pixels in the destination buffer through
LUTs, it can perform any type of warping. For example, it can
perform first-order polynomial warpings and perspective
warpings, as well as warpings that arbitrarily map pixels in the
destination buffer to points in the source buffer.

Perspective warpings A perspective warping maps an arbitrary quadrilateral onto a
rectangle, in such a way that part of the image seems farther
from your plane of view.

Perspective warpings are performed by associating points in
the source buffer with pixels in the destination buffer according
to the following equations:

 and

Source image A perspective transformation
of the source image

xs
x
w
----= ys

y
w
----=
 where

 so

x

y

w

c00 c10 c20

c01 c11 c21

c02 c12 c22

xd

yd

1

=

xs

c00xd c10yd c20+ +

c02xd c12yd c22+ +
--=

ys

c01xd c11yd c21+ +

c02xd c12yd c22+ +
--=

Geometric warpings 89

To perform a perspective warping, you must supply the 3x3
coefficients (c00 ... c22) to the imGenWarpLutMatrix() function.
This function generates the LUTs required by imIntWarpLut()
to perform the warping. The 3x3 coefficients can be
user-supplied or automatically generated using
imGenWarp4Corner().

Note that, if c02 and c12 are set to 0 in the equations for a
perspective warping, the equations reduce to a first-order
polynomial warping. You could therefore perform a first-order
polynomial warping by generating the required coefficients
using imGenWarp1stOrder(), passing the generated
coefficients to imGenWarpLutMatrix(), and then passing the
generated LUTs to imIntWarpLut(). However, it is more
efficient to use imIntWarpPolynomial().

An example The following code performs a perspective warping on an image.
Note that this code is part of the process.c program and requires
only the basic Genesis hardware. See Appendix B for the
complete process.c program.

�NQPI�%QGH$WH�����������9CTR�EQGHHKEKGPV�DWHHGT���
�NQPI�:.WV$WH�����������:�CFFTGUU�.76�DWHHGT���
�NQPI�;.WV$WH�����������;�CFFTGUU�.76�DWHHGT���

���#NNQECVG�YCTR�EQGHHKEKGPV�CPF�CFFTGUU�.76�DWHHGTU���
�KO$WH#NNQE�F
6JTGCF��������+/A(.1#6��+/A241%���%QGH$WH��
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%���:.WV$WH��
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%���;.WV$WH��

���)GPGTCVG�EQGHHKEKGPVU�HQT�RGTURGEVKXG�VTCPUHQTO���
�KO)GP9CTR�%QTPGT
6JTGCF��%QGH$WH�

���������������������5K\G;����5K\G:����5K\G;���
��������������������5K\G:������5K\G;����5K\G:������5K\G;���
������������������������5K\G:����5K\G;����+/A&'(#7.6�����

���)GPGTCVG�CFFTGUU�.76U�HTQO�VJG�EQGHHKEKGPVU�
WUG���HTCE��DKVU����
�KO$WH2WV(KGNF
6JTGCF��:.WV$WH��+/A%6.A24'%+5+10�����
�KO)GP9CTR.WV/CVTKZ
6JTGCF��:.WV$WH��;.WV$WH��%QGH$WH��:.WV$WH�����

���5GNGEV�DKNKPGCT�KPVGTRQNCVKQP���
�KO$WH2WV(KGNF
6JTGCF��:.WV$WH��+/A%6.A4'5#/2.'��+/A$+.+0'#4��

���9CTR�VJG�KOCIG���
�KO+PV9CTR.WV
6JTGCF��5TE$WH��&UV$WH��:.WV$WH��;.WV$WH��:.WV$WH�����

90 Chapter 4: Advanced processing

Another example The following code warps an image through user-supplied
LUTs. Note that this code is part of the process.c program and
requires only the basic Genesis hardware. See Appendix B for
the complete process.c program.

�NQPI�:.WV$WH�����������:�CFFTGUU�.76�DWHHGT���
�NQPI�;.WV$WH�����������;�CFFTGUU�.76�DWHHGT���
�UJQTV��:.WV8CNU��������*QUV�CTTC[�VQ�JQNF�:�.76�XCNWGU���
�UJQTV��;.WV8CNU��������*QUV�CTTC[�VQ�JQNF�;�.76�XCNWGU���
�KPV�1Z��1[�������������1TKIKPCN�RKZGN�EQQTFKPCVGU���
�KPV�9Z��9[�������������9CTRGF�RKZGN�EQQTFKPCVGU���

���#NNQECVG�CFFTGUU�.76�DWHHGTU���
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%���:.WV$WH��
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%���;.WV$WH��

���#NNQECVG�JQUV�OGOQT[�KP�YJKEJ�VQ�ETGCVG�VJG�.76U���
�:.WV8CNU���
UJQTV����OCNNQE
UK\GQH
UJQTV����5K\G:���5K\G;��
�;.WV8CNU���
UJQTV����OCNNQE
UK\GQH
UJQTV����5K\G:���5K\G;��

��
���%CNEWNCVG�VJG�
:�;��UQWTEG�CFFTGUU�HQT�GCEJ�FGUVKPCVKQP�RKZGN�
���7UG�KPVGIGT�CFFTGUU�XCNWGU�HQT�PGCTGUV�PGKIJDQT�TGUCORNKPI�
���
�HQT�
1[������1[�� 5K\G;��1[

�
�]
������HQT�
1Z������1Z���5K\G:��1Z

�
������]
���������(NKR�VJG�KOCIG�KP�VJG�:�FKTGEVKQP���
�������9Z���5K\G:�������1Z�

���������#FF�C�UKPG�YCXG�QHHUGV�KP�VJG�;�FKTGEVKQP���
�������9[���1[�
�
KPV��
�������UKP
1Z����������

���������&QP	V�NGV�VJG�CFFTGUU�HCNN�QWVUKFG�VJG�UQWTEG�KOCIG���
�������KH�
9Z�� ��^^�9Z� ��5K\G:�^^�9[�� ��^^�9[� ��5K\G;�
�������]
������������9Z�����
������������9[�����
�������_
���������9TKVG�VJG�
:�;��CFFTGUU�KP�VJG�.76U���
�������:.WV8CNU=1Z�
�1[�5K\G:?���
UJQTV��9Z�
�������;.WV8CNU=1Z�
�1[�5K\G:?���
UJQTV��9[�
������_
�_

Geometric warpings 91

Interpolation modes
When you perform a warping, pixel positions in the destination
buffer, (xd, yd), get associated with specific points in the source
buffer, (xs, ys). The destination coordinates have integer values
but the source coordinates, in general, do not. Therefore, the
pixel value at (xd, yd) has to be determined from several source
pixels that are near (xs, ys), according to a specified
interpolation mode.

The following are some interpolation modes:

■ Nearest-neighbor. This mode determines the nearest value
to a point, and copies that value into its associated position.

■ Bilinear. This mode takes a weighted average of the four
pixels nearest to the point, and copies that average into its
associated position. The pixels closest to the point are given
the most weight.

■ Bicubic. This mode takes a weighted average of the sixteen
pixels nearest to the point, and copies that average into its
associated position. Again, the pixels closest to the point are

���.QCF�VJG�CFFTGUU�.76�DWHHGTU���
�KO$WH2WV
6JTGCF��:.WV$WH��:.WV8CNU��
�KO$WH2WV
6JTGCF��;.WV$WH��;.WV8CNU��

���9CTR�VJG�KOCIG�
WUKPI�VJG�FGHCWNV�PGCTGUV�PGKIJDQT�OQFG����
�KO+PV9CTR.WV
6JTGCF��5TE$WH��&UV$WH��:.WV$WH��;.WV$WH��������
given the most weight.

In general, nearest-neighbor interpolation is the fastest to
perform, and bicubic interpolation is the slowest. However,
nearest-neighbor interpolation produces the least accurate
results, and bicubic interpolation produces the most accurate.
Bilinear interpolation is often the best compromise between
speed and accuracy.

92 Chapter 4: Advanced processing

Fourier transforms
With the Genesis Native Library, you can represent an image
in its frequency domain by performing a fast Fourier transform
(FFT) on the image, using imIntFFT(). In the frequency
domain, you can easily locate any constant spatial patterns in
an image (which can be caused, for example, by systematic
noise). By changing an image’s frequency domain
representation and then performing an inverse transform (also
using imIntFFT()), you can emphasize or de-emphasize
constant spatial patterns.

By removing these
spots and then
performing an inverse
transform, the noise
is removed.

An image with constant
systematic noise. The
spatial frequency of this
pattern is quite different
from the image’s other
spatial frequencies.
Therefore, in the frequency
domain of this image,
it should be clearly
distinguishable.

The FFT of the image.
The bright spots (near
the corners) represent
the spatial frequencies
of the systematic noise.
Note that imIntFFT() uses a fixed-point integer representation
of the image. This is faster than using a floating-point
representation. It can also be just as accurate if you left-shift
the input image by enough bits before performing the
transform. To avoid overflows, you should then enable
normalization (this will right-shift results at each stage of the
transform so that the dynamic range doesn’t get larger); see the
following example.

Fourier transforms 93

An example The following code performs an FFT on an image, then performs
a reverse transform. Note that this code is part of the process.c
program and requires only the basic Genesis hardware. See
Appendix B for the complete process.c program.

�NQPI�+PV4$WH�������4GCN�EQORQPGPV�KP�HKZGF�RQKPV���
�NQPI�+PV+$WH�������+OCIKPCT[�EQORQPGPV�KP�HKZGF�RQKPV���
�NQPI�(NV4$WH�������4GCN�EQORQPGPV�KP�HNQCVKPI�RQKPV���
�NQPI�(NV+$WH�������+OCIKPCT[�EQORQPGPV�KP�HNQCVKPI�RQKPV���

���#NNQECVG����DKV�DWHHGTU�HQT�VJG�((6�
UK\G�OWUV�DG�RQYGT�QH������
�KO$WH#NNQE�F
6JTGCF������������+/A.10)��+/A241%���+PV4$WH��
�KO$WH#NNQE�F
6JTGCF������������+/A.10)��+/A241%���+PV+$WH��
�KO$WH#NNQE�F
6JTGCF������������+/A(.1#6��+/A241%���(NV4$WH��
�KO$WH#NNQE�F
6JTGCF������������+/A(.1#6��+/A241%���(NV+$WH��

���%QPXGTV�UQWTEG�HTQO���DKV�TGCN�VQ����DKV�HKZGF�RQKPV�EQORNGZ���
�KO$WH%NGCT
6JTGCF��+PV4$WH������������%NGCT�KP�ECUG�DKIIGT�VJCP�UQWTEG�����
�KO$WH%NGCT
6JTGCF��+PV+$WH������������+OCIKPCT[�RCTV�KU�\GTQ���

���#FF����HTCEVKQPCN�DKVU�HQT�GZVTC�RTGEKUKQP���
�KO+PV/QPCFKE
6JTGCF��5TE$WH������+PV4$WH��+/A5*+(6�����

���5GV�EQPVTQN�HKGNFU�HQT�C�HQTYCTF�VTCPUHQTO���
�KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A&+4'%6+10��+/A(149#4&��
�KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A014/#.+<'��+/A'0#$.'��

���2GTHQTO�VJG�((6�
KP�RNCEG�VQ�UCXG�OGOQT[����
�KO+PV((6
6JTGCF��+PV4$WH��+PV+$WH��+PV4$WH��+PV+$WH��+PV4$WH�����

����

���5GV�EQPVTQN�HKGNFU�HQT�TGXGTUG�VTCPUHQTO���
�KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A&+4'%6+10��+/A4'8'45'��
�KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A014/#.+<'��+/A&+5#$.'��

���2GTHQTO�VJG�TGXGTUG�((6���
�KO+PV((6
6JTGCF��+PV4$WH��+PV+$WH��+PV4$WH��+PV+$WH��+PV4$WH�����

���4GOQXG�HTCEVKQPCN�DKVU�
YKVJ�TQWPFKPI�HQT�GZVTC�RTGEKUKQP����
�KO+PV/QPCFKE
6JTGCF��+PV4$WH���������+PV4$WH��+/A#&&�����

�KO+PV/QPCFKE
6JTGCF��+PV4$WH�������+PV4$WH��+/A5*+(6�����

���%NKR�TGCN�RCTV�VQ���DKVU�
KOCIKPCT[�RCTV�UJQWNF�DG�\GTQ����
�KO+PV%QPXGTV
6JTGCF��+PV4$WH��&UV$WH��+/A%.+2������

94 Chapter 4: Advanced processing

Chapter 5: Blob analysis

This chapter describes how to perform blob analysis.

96 Chapter 5: Blob analysis

Blob analysis
Blob analysis is a branch of image analysis that allows you to
identify connected regions of pixels (blobs) within an image, and
then to calculate selected features of those regions. Typical
features describe the size, shape, and location of the blobs.
Therefore, you can use the results of blob analysis for a variety
of purposes, for example, to distinguish between objects in an
image, to locate objects, and to measure objects. Along a
production line, for instance, you can use results to determine
if parts have been manufactured within specified tolerances.

Segmentation Before you can perform blob analysis, you must segment your
image. This is the process of separating blob pixels from the
rest of the image. Since the blob module requires an image in
which either the blobs or the background have the value zero,
the minimum that you must do is threshold the image.

The segmented image is known as the blob identifier image. If
the background of the blob identifier image has the value zero,
touching pixels with non-zero values are considered a blob. If
the background has non-zero values, touching pixels with zero
values are considered a blob.

Binary vs. grayscale
features

Note that most features only depend on the shape of a blob.
These are known as binary features. Since the blob module only
needs to identify blob pixels from background pixels to calculate
binary features, the only image you need to provide to the blob

module is the blob identifier image. However, there are certain
features (such as the mean pixel value of a blob) which depend
on the value of pixels within the blob. These are known as
grayscale features. If you plan to calculate grayscale features,
you need to provide two images to the blob module: the blob
identifier image and the original grayscale image.

General steps 97

General steps
The general steps to perform blob analysis are:

1. Segment your image to produce the blob identifier image.
The minimum that you must do is threshold the image so
that either the blobs or the background have the value zero.

2. Allocate a blob analysis result buffer, using
imBlobAllocResult(). A blob result buffer is used to store the
results of blob analysis.

3. Adjust blob analysis controls, if the defaults are not
suitable, using imBlobControl(). If, for example, the blobs
have the value zero, you must use imBlobControl() to
specify this (by default, the background is considered to
have the value zero).

4. Allocate a feature list, using imBlobAllocFeatureList(). A
feature list specifies the features to calculate.

5. Select features for calculation by adding them to the feature
list, using imBlobSelectFeature(), imBlobSelectFeret(),
and/or imBlobSelectMoment().

6. Calculate the features, using imBlobCalculate(). Note that,
if you simply want the number of blobs, you must still
perform this step.

7. If necessary, exclude blobs whose results don’t meet
specified criteria, using imBlobSelect().
8. If necessary, repeat steps 5, 6, and 7, until you have all the
results you need.

9. Transfer necessary results to the Host or copy necessary
results to an on-board buffer.

10. Free the result buffer and feature list, using imBlobFree().

98 Chapter 5: Blob analysis

An example The following code determines the bounding box of each blob in
an image. Note that this code is part of the blob.c program and
requires only the basic Genesis hardware. See Appendix B for
the complete blob.c program.

�NQPI�(GCV.KUV��������������$NQD�HGCVWTG�NKUV���
�NQPI�4GUWNV����������������$NQD�TGUWNV�DWHHGT���
�NQPI�0WODGT����������������0WODGT�QH�DNQDU���
�������
���#NNQECVG�C�DNQD�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
�KO$NQD#NNQE(GCVWTG.KUV
6JTGCF���(GCV.KUV��
�KO$NQD#NNQE4GUWNV
6JTGCF���4GUWNV��
�
���5GNGEV�DQZ�HGCVWTG�HQT�ECNEWNCVKQP���
�KO$NQD5GNGEV(GCVWTG
6JTGCF��(GCV.KUV��+/A$.1$A$1:��+/A&'(#7.6��
�
���%CNEWNCVG�UGNGEVGF�HGCVWTGU���
�KO$NQD%CNEWNCVG
6JTGCF��+FGPV$WH�����(GCV.KUV��4GUWNV��+/A%.'#4�����

���)GV�VJG�PWODGT�QH�DNQDU���
�KO$NQD)GV0WODGT
6JTGCF��4GUWNV���0WODGT���

Segmentation 99

Segmentation
Segmentation is the process of separating blob pixels from
background pixels. Since the blob module requires an image in
which either the blobs or the background have the value zero,
the minimum that you must do is threshold the image (using
imIntBinarize() or imBinConvert()). Typically, this is all you
need to do. However, if the gray-levels of the blobs are not
different from the gray-levels of the background, you will have
to use a more complicated segmentation algorithm. In addition,
you will have to process the image if, for example, two blobs are
touching (since they will be considered one blob) or if noise has
introduced some spurious blobs.

Usually, spurious blobs consist of just a few pixels. You can
generally remove these blobs through an erosion followed by a
dilation (if your blobs have non-zero values) or through a
dilation followed by an erosion (if your blobs have zero values).
If you have touching blobs, you can try eroding the image (if
your blobs have non-zero values) or dilating the image (if your
blobs have zero values), until these blobs are separated. Note
that, if your image is packed binary, you perform erosions and
dilations using imBinMorphic(); otherwise, you use
imIntErodeDilate().

If your image has a lot of noise, you might want to filter it before
segmenting. For example, you might want to smooth the image
(using imIntConvolve()) or apply a median filter to it (using
imIntRank()).
Reducing processing To reduce processing, your image should be acquired under the
best possible conditions. This means that blobs should not
overlap and, if possible, not touch. In addition, the background
should have a very different gray level from the blobs.

If the above conditions are followed, the acquired image can
usually be segmented with a simple threshold.

100 Chapter 5: Blob analysis

Processing vs.
excluding

If you need to process your image, it can affect blob calculations
because the shape of the remaining blobs might be changed
slightly. Instead of processing unwanted blobs out of your
image, however, you can first perform calculations on all blobs
in the image, and then use imBlobSelect() to exclude blobs
based on the results. For the details, see the Selecting blobs
section.

If you have only a few unwanted blobs, it is generally faster to
perform calculations on all blobs and then exclude the
unwanted ones using imBlobSelect(). However, if you have
many unwanted blobs, blob analysis will likely be faster if you
first process the unwanted blobs out of your image.

Note that which method is more efficient (processing or
excluding) ultimately depends on the content of your image.

Adjusting controls 101

Adjusting controls
You can control the following aspects of a blob analysis
operation using imBlobControl():

■ Which pixel values (zero or non-zero) are considered blob
pixels (IM_BLOB_FOREGROUND_VALUE). By default,
non-zero values are considered blob pixels.

■ Whether diagonally adjacent pixels are considered touching
(IM_BLOB_LATTICE). Recall that a blob is an area of touching
pixels that have the same value. Horizontally and vertically
adjacent pixels are considered touching. By default,
diagonally adjacent pixels are also considered touching.

■ The pixel aspect ratio (IM_BLOB_PIXEL_ASPECT_RATIO).
This setting allows you to compensate for pixels that are not
square (see the Pixel aspect ratio section).

■ The number of Feret angles
(IM_BLOB_NUMBER_OF_FERETS). This setting is used when
a feature requires several Feret diameters to be calculated.
Feret diameters are discussed later in the chapter.

■ Whether to group results (IM_BLOB_IDENTIFICATION). By
default, separate results are produced for each blob.
However, you can group the results of certain blobs, or group
the results of all blobs (see the Grouping results section).

■ Whether to save, in the result buffer, a run-length encoded
version of the blob identifier image (IM_BLOB_SAVE_RUNS).

If you disable the saving of runs, you will reduce the memory
required for the result buffer and might also increase the
speed of imBlobCalculate() slightly. However, you will not be
able to use functions which rely on run information
(imBlobCopyRuns(), imBlobFill(), imBlobGetLabel(),
imBlobGetRuns(), imBlobLabel()). Note that runs are defined
in the Transferring or copying runs section.

■ The maximum time allowed for imBlobCalculate() to process
(IM_BLOB_MAX_TIME). By default, imBlobCalculate() will
run to completion, no matter how long this takes. However,
you can specify a maximum processing time (see the Timeout
period section).

102 Chapter 5: Blob analysis

■ The amount of processing time that imBlobCalculate() uses
before it yields to other threads of equal priority
(IM_BLOB_TIME_SLICE). By default, imBlobCalculate() uses
all of the master processor’s (MP’s) time until it finishes. This
means that other threads of equal priority will not be able to
execute any new commands until imBlobCalculate() has
finished (although threads of higher priority will be able to
execute commands). If your application requires that
imBlobCalculate() run in parallel with other commands, you
can specify that it use only a certain amount of the MP’s time
before yielding to other threads of the same priority. For
example, if you specify a time slice of 1 ms, then
imBlobCalculate() will yield to other threads of the same
priority every 1 ms. Note that imBlobCalculate() will still run
to completion, but not as quickly (the performance
degradation will depend on how many other threads have
commands to execute).

Pixel aspect ratio
In general, an object has the same proportions in real-life as it
has in an image. This means that, while blob calculations are
performed in pixels, it is relatively easy to interpret results in
real-world units. However, if pixels in your image are not
square, objects in the image will be distorted, and blob
calculations will lead to incorrect interpretations.

To determine whether pixels in your image are square, you can
measure the image's pixel aspect ratio. The pixel aspect ratio of

an image compares the real-world size of a rectangular region
in the image, with its size in pixels. Specifically, it is:

Note that you can measure the pixel aspect ratio by grabbing
an image of a circle or square and then, using the blob analysis
module, calculating the Feret diameter of the circle or square
at 0° and 90° (IM_BLOB_FERET_X and IM_BLOB_FERET_Y).
Since the number of real-world units in the x and y direction of
a circle or square are the same, and since the number of pixels
in the x and y direction correspond to IM_BLOB_FERET_X and
IM_BLOB_FERET_Y, the pixel aspect ratio of the image is
IM_BLOB_FERET_Y/IM_BLOB_FERET_X.

of pixels in the region’s Y direction / # of pixels in the region’s X direction

of real-world units in the region’s Y direction / # of real-world units in the region’s X direction

Adjusting controls 103

If the pixel aspect ratio is 1.0, pixels in the image are square.
If the pixel aspect ratio is not 1.0, pixels are not square.

Non-square pixels When the pixel aspect ratio is not 1.0, you should first check
which camera definition file you are using to grab images. Note,
for example, that an RS-170 signal produces non-square pixels
when digitized to 512x480 pixels but produces square pixels
when digitized to 640x480 pixels.

If changing camera definition files is not an option, you can
either:

■ Warp the image so that the pixel aspect ratio becomes 1.0.
The warping functions are discussed in Chapter 4.

■ Specify what the actual pixel aspect ratio is, using
imBlobControl(). In this case, the pixel aspect ratio is
factored in when blob calculations are performed.

In general, it is faster simply to specify the pixel aspect ratio.
However, specifying the pixel aspect ratio will only produce

Image of a circle with
a 1.0 aspect ratio.

Image of a circle with
a 1.33 aspect ratio.
correct results if non-square pixels are due to a simple
stretching of the image (in the x or y directions). If pixels are
not square due to a more complex distortion (such as a
perspective distortion), you must warp the image.

104 Chapter 5: Blob analysis

Grouping results
By default, the Genesis Native Library produces separate
results for each blob. There might be times, however, when you
want to group results. For example, you might want to know
the combined area of all blobs in your image, or you might have
a situation where a blob is incorrectly considered two or more
blobs because it is separated by noise.

Grouping all blobs To group the results of all blobs, set IM_BLOB_IDENTIFICATION
to IM_WHOLE_IMAGE. In this mode, features are calculated as
if all blob pixels are part of the same blob.

Grouping some blobs To group the results of certain blobs, set
IM_BLOB_IDENTIFICATION to IM_LABELLED. In this mode,
results are grouped for those blobs in the blob identifier image
that have the same pixel value.

Assigning particular
label values

By default, imBlobCalculate() assigns an arbitrary label value
to each blob. Note, however, that you can assign a particular

1

2

2

3

4

5

These two blobs
are treated as one.
All others are treated
individually.
label value by filling each blob with a unique pixel value, using
imGraFill(), and then setting IM_BLOB_IDENTIFICATION to
IM_LABELLED.

Assigning a particular label value can sometimes make it easier
to associate blob results with specific objects in your image.

Adjusting controls 105

Timeout period
By default, imBlobCalculate() will take as long as necessary to
complete. However, you can specify a maximum processing
time, using imBlobControl(). In this case, imBlobCalculate()
will timeout when the specified period expires, rather than
running to completion.

To determine if imBlobCalculate() timed out, call
imBlobInquire(), setting its Item parameter to
IM_BLOB_TIMEOUT. If imBlobCalculate() did time out, results
will not be valid.

Setting a maximum processing time can be useful because the
execution time of imBlobCalculate() can vary widely with the
number of blobs in the image. For example, in an inspection
application, the number of blobs (defects) is usually very small,
so execution is fast. However, if an image contains many defects
or was perhaps badly thresholded, processing time can be much
longer than normal, possibly causing frames to be missed. You
might prefer to set a maximum processing time that would
reject such images. For example, assuming that processing
normally takes 5 ms for a good image, you might want to abort
processing after 15 ms and continue to the next image:

���5GV�OCZKOWO�RTQEGUUKPI�VKOG�CNNQYGF���
�KO$NQD%QPVTQN
6JTGCF��4GUWNV��+/A$.1$A/#:A6+/'���������

���2GTHQTO�DNQD�CPCN[UKU���
�KO$NQD%CNEWNCVG
6JTGCF��5TE$WH�����(GCV.KUV��4GUWNV��+/A%.'#4�����
���%JGEM�YJGVJGT�RTQEGUUKPI�VKOGF�QWV�QT�PQV���
�KH�
KO$NQD+PSWKTG
6JTGCF��4GUWNV��+/A$.1$A6+/'176��07..���
�]
����#UUWOG�VJCV�VJG�QDLGEV�KU�FGHGEVKXG���
�����
�_
�GNUG
�]
����)GV�TGUWNVU�CU�PQTOCN���
��KO$NQD)GV0WODGT
6JTGCF��4GUWNV���0WODGT��
�����
�_

106 Chapter 5: Blob analysis

Features
This section discusses some of the blob features supported by
the Genesis Native Library. For a complete list of features, see
the Genesis Native Library Command Reference.

Most features fall into one of four main groups:

■ Area and perimeter

■ Dimensions

■ Shape

■ Location

Area and perimeter
You can calculate the area and perimeter of a blob. Since blob
calculations assume a pixel is 1 unit long and 1 unit wide, the
area of a single pixel is 1 and the perimeter of a single pixel is
4. The area of a blob is then the number of pixels in that blob,
while the perimeter of a blob is the number of pixel sides along
that blob.

When calculating the perimeter, an allowance is made for the
staircase effect (the "pixel side" of diagonally adjacent pixels is
considered to be 1.414, rather than 2). For example, the
following blob has a perimeter of 14.242.

1 1 1 1
1

1

1

1

1

1

1.414

1.414

1.414

Features 107

Convex perimeter In addition to the normal perimeter, you can calculate the
convex perimeter of a blob. The convex perimeter of a blob is
the perimeter of the blob’s convex hull.

The convex perimeter is derived from several Feret diameters
of the blob (Feret diameters are discussed in the next section).
You can specify the number of Feret diameters, using
imBlobControl(). The more Feret diameters used, the more
accurate the convex perimeter but the longer the processing
time.

Dimensions
The dimensions of a rectangular object are its length and width.
Most blobs, however, are not rectangular. Therefore, to get an
indication of a blob’s dimensions, you need to look at other
features (such as the Feret diameter).

Feret diameter The Feret diameter of a blob is the diameter of the blob at a
given angle. Several Feret diameters are shown below. The

Normal
perimeter

Convex
perimeter
angle at which the Feret diameter is taken (relative to the
horizontal axis) is specified as a subscript to the F.

F0

F90

F135

F45

Y

X

108 Chapter 5: Blob analysis

With the Genesis Native Library, you can determine the
minimum and maximum Feret diameter of a blob
(IM_BLOB_FERET_MIN_DIAMETER and
IM_BLOB_FERET_MAX_DIAMETER, respectively). The length
of a blob can then be defined as its maximum Feret diameter
and the width of a blob as its minimum Feret diameter.

Note that the minimum and maximum Feret diameter are
determined after checking a specified number of Feret
diameters. You specify the number using imBlobControl() (the
default is 8 and is suitable for most blobs). In general, the more
Feret diameters used, the more accurate the calculation, but
the longer the processing time.

Different Feret
diameters

In addition to the minimum and maximum Feret diameter, you
can calculate the Feret diameter at 0° (IM_BLOB_FERET_X), at
90° (IM_BLOB_FERET_X), or at a specified angle (using
imBlobSelectFeret()).

Long, thin blobs Note that the minimum and maximum Feret diameters of a
long, thin blob are not very representative of its dimensions
(especially if the blob is curved). For long, thin blobs, the
following features are better:

■ IM_BLOB_LENGTH.

■ IM_BLOB_BREADTH.

The above features are derived from a blob's area and
perimeter, assuming that area = length*breadth and

perimeter = 2(length + breadth). These are not valid
assumptions for most blob types, although they do hold for long,
thin blobs (such blobs have approximately constant breadth
along their length).

Features 109

Shape
When trying to distinguish between blobs, the shape of the
blobs can be an important feature. This is because two blobs
can have similar sizes but different shapes due to a different
number of holes, curves, or edges.

The following features will tell you something about a blob’s
shape:

■ Compactness. This is a measure of how close pixels in the
blob are to one another. It is derived from the blob’s area and
perimeter. A circular blob is most compact and is defined as
having the minimum compactness value (1.0); more
convoluted shapes will have higher values.

■ Roughness. This is a measure of the uneveness or irregularity
of a blob’s surface. It is the ratio of the blob’s perimeter to its
convex perimeter. The minimum roughness value is 1.0
because a blob’s perimeter will always be equal to or greater
than its convex perimeter. A blob with many jagged edges will
have a much higher roughness value because its perimeter
will be much larger than its convex perimeter.

Number of holes In addition to compactness and roughness, the number of holes
in a blob can be useful in distinguishing between blobs. Note,
however, that this feature can also be misleading because a hole
can be the result of a single noise pixel in the wrong place.

110 Chapter 5: Blob analysis

Blob location
The location of a blob can sometimes be more useful than its
shape or size. For example, if a robotic arm needs to pick up an
object, it can use the location of that object in an image as a
guide. You can also use the location of a blob to determine if it
touches any image borders. If it does touch any image borders,
you might want to adjust the camera’s field-of-view or exclude
the blob (since certain features, such as the area of the blob,
would be misleading).

Blob points With the Genesis Native Library, you can determine the
following blob points:

The center of gravity can be calculated in binary or grayscale
mode. The former is determined from the blob identifier image,
and the latter from the original grayscale image.

(IM_BLOB_X_MIN_AT_Y_MIN, IM_BLOB_BOX_Y_MIN) and

(IM_BLOB_FIRST_POINT_X, IM_BLOB_FIRST_POINT_Y)

(IM_BLOB_X_MAX_AT_Y_MAX, IM_BLOB_BOX_Y_MAX)

(IM_BLOB_BOX_X_MIN, IM_BLOB_Y_MAX_AT_X_MIN)

(IM_BLOB_BOX_X_MIN, IM_BLOB_BOX_Y_MIN)

(IM_BLOB_BOX_X_MIN, IM_BLOB_BOX_Y_MAX)

(IM_BLOB_BOX_X_MAX, IM_BLOB_Y_MIN_AT_X_MAX)

(IM_BLOB_BOX_X_MAX, IM_BLOB_BOX_Y_MAX)

(IM_BLOB_BOX_X_MAX, IM_BLOB_BOX_Y_MIN)

(IM_BLOB_CENTER_OF_GRAVITY_X, IM_BLOB_CENTER_OF_GRAVITY_Y)
Moments With the Genesis Native Library, you can calculate the
moments used to find the center of gravity, as well as other
common moments. If you need to calculate a specific moment,
use imBlobSelectMoment().

You can calculate binary and grayscale moments (the former
calculated from the blob identifier image and the latter from
the original grayscale image). In addition, you can calculate
central and ordinary moments. Central moments use
coordinates that are relative to the center of gravity of the blob.
Ordinary moments use coordinates that are relative to the
top-left corner of the image, and are therefore dependent on the
blob’s position within the image.

Selecting blobs 111

Selecting blobs
Sometimes, you will not be interested in all blobs in your blob
identifier image. For example, you might have blobs that are
actually noise pixels, or you might have blobs that touch the
image borders. Unwanted blobs can sometimes be removed by
processing the image. However, processing might affect the
shape of the relevant blobs in your image and, therefore, the
results of blob calculations. In addition, such processing can be
time-consuming.

With the Genesis Native Library, you can exclude or delete
unwanted blobs using imBlobSelect(). Blobs are excluded or
deleted based on the result of a specified feature. Therefore, you
select the features to calculate, calculate the features, and then
use imBlobSelect() to exclude or delete unwanted blobs. You
then repeat this process until the features and blobs you have
selected produce the results you need.

❖ If you have many unwanted blobs, you can save time and
memory by first calculating only those features that allow
you to distinguish between unwanted and relevant blobs.
Once unwanted blobs are excluded or deleted, calculate all
required features.

Excluding vs. deleting Note that excluded blobs are simply ignored during subsequent
calculations but can be re-included (using imBlobSelect()).
Deleted blobs are removed completely from the blob result
buffer and cannot be re-included. However, deleted blobs are

not removed from the blob identifier image.

If necessary, you can remove blobs from a blob identifier image
using imBlobFill().

112 Chapter 5: Blob analysis

Transferring or copying results
Once blob calculations are performed, you can copy results to
an on-board buffer using imBlobCopyResult(), or transfer
results to the Host using imBlobGetResult(). These functions
can retrieve results for a specific feature or for a predefined
group of features. In the latter case, set the Feature parameter
of imBlobCopyResult() or imBlobGetResult() to the desired
group (for example, IM_BLOB_GROUP1); all results for features
in that group will be returned at the same time. Note that
retrieving results for a predefined group can reduce the number
of function calls required to retrieve results (often, it can reduce
it to one function call, since similar features are grouped
together). Retrieving results for each feature individually can
take a long time. In fact, when there are relatively few blobs
and many features, the time to retrieve results can be a
significant overhead when compared to the calculation time.

To see which features are in which groups, refer to the Genesis
Native Library Command Reference. There is some overlap of
features between groups. For example, the label value is
included in all groups because you might need it no matter what
other features you calculate. Also included in each group is the
number of blobs. This means that you do not need to call
imBlobGetNumber() if you are sure you have allocated enough
memory for the results.

To save memory and reduce transfer time when retrieving
results for a predefined group, features that can easily be

derived from others are not included in any group. For example,
IM_BLOB_FERET_X is not included, because it is equal to
IM_BLOB_BOX_X_MAX - IM_BLOB_BOX_X_MIN +1. Note,
however, that these features can be retrieved individually or
can be determined from their equations (see
imBlobSelectFeature() in the Genesis Native Library Command
Reference for the equations needed to derive features).

Transferring or copying results 113

When you retrieve results for a predefined group, the results
are stored in a specific data structure. There is a different data
structure for each group; see the Genesis Native Library
Command Reference for the definitions. In order to save
memory and reduce transfer time to the Host, each feature is
stored in the smallest data type that can hold it. For example,
integer results are returned as 16-bit values if possible, and
floating-point values are returned as 32-bit single precision
values.

Note that, when you retrieve results for a group of features,
only results for features you calculated will be valid. Values for
features not calculated will simply be undefined, and no error
messages will be generated.

An example The following code determines the bounding box of each blob in
an image, then uses the results to mark each blob. Since the
required features are all in the same group, results can be
retrieved using a single call to imBlobGetResult().

��FGHKPG�/#:A$.1$5����

���#TTC[�QH�UVTWEVWTGU�VQ�JQNF�TGUWNVU���
�+/A$.1$A)4172�A56�)TQWR�=/#:A$.1$5?�

���5GNGEV�CNN�TGSWKTGF�HGCVWTGU���
�KO$NQD5GNGEV(GCVWTG
6JTGCF��(GCV.KUV��+/A$.1$A$1:��+/A&'(#7.6��

���%CNEWNCVG�UGNGEVGF�HGCVWTGU���
�KO$NQD%CNEWNCVG
6JTGCF��+FGPV$WH�����(GCV.KUV��4GUWNV��+/A%.'#4�����

���)GV�TGUWNVU�CNN�CV�QPEG���
Note that, in the above code, the maximum number of blobs is
known, so imBlobGetNumber() is not needed to determine how
much memory to allocate for results. However, if you are not
sure what the maximum number of blobs will be, you should
call imBlobGetNumber() first, then allocate the required
memory. See the blob.c program in Appendix B.

�KO$NQD)GV4GUWNV
6JTGCF��4GUWNV��+/A$.1$A)4172���+/A&'(#7.6��)TQWR���

���/CTM�VJG�DQWPFKPI�DQZGU���
�HQT�
K������K���)TQWR�=�?�PWODGTAQHADNQDU��K

�
�����KO)TC4GEV
6JTGCF�����+FGPV$WH��)TQWR�=K?�DQZAZAOKP��)TQWR�=K?�DQZA[AOKP�
������������������������������������)TQWR�=K?�DQZAZAOCZ��)TQWR�=K?�DQZA[AOCZ��

114 Chapter 5: Blob analysis

Multiple calls to
imBlobGetResult()

If for some reason you need to use several calls to
imBlobGetResult() to transfer results, it might be more efficient
to copy them to an on-board buffer (using multiple calls to
imBlobCopyResult()), and then transfer them to the Host all at
the same time (using imBufGet()). This is because
imBlobCopyResult() is an asynchronous function while
imBlobGetResult() is a synchronous function (asynchronous
functions have a lower overhead than synchronous functions).

Results for a single blob If all you need is the result of a specific feature of a single blob,
you can use imBlobGetResultSingle() instead of
imBlobGetResult(). The imBlobGetResultSingle() function
transfers the result of a specified feature of a specified blob.

Transferring or copying results 115

Transferring or copying runs
You can copy or transfer "run" information about a specified
blob using imBlobCopyRuns() or imBlobGetRuns(). A run is
defined as a horizontal sequence of consecutive blob pixels.
imBlobCopyRuns() and imBlobGetRuns() copy or transfer,
respectively, the x- and y-coordinate of each run in the blob, as
well as the length of each run.

Note that run information can be used to calculate features that
are not supported by the blob analysis module.

❖ To use imBlobCopyRuns() or imBlobGetRuns(), you must not
disable the saving of runs (using imBlobControl()). In
addition, you must calculate the total number of runs in a
blob (IM_BLOB_NUMBER_OF_RUNS).

(0, 0)

x-coordinate of each run = 2, 1, 5, 2

y-coordinate of each run = 2, 3, 3, 4

length of each run = 4, 2, 3, 6

* Blob pixels are in black.

116 Chapter 5: Blob analysis

Chapter 6: Pattern matching

This chapter describes how to perform a pattern
matching operation.

118 Chapter 6: Pattern matching

Pattern matching
Pattern matching is a branch of image analysis that allows you
to search for a pattern in an image. The pattern for which you
are searching is called the model and the image being searched
is called the target image.

Pattern matching can be used in a variety of applications. In
machine guidance, for example, it can be used to locate
mounting holes on a circuit board, so that a mechanical device
can insert screws into these holes (use an image of a typical
mounting hole as the model, and an image of a circuit board as
the target image). In machine vision, pattern matching can be
used to determine the degree by which an object is misaligned
(compare the object’s coordinates in the target image with its
coordinates in a correctly aligned target image).

Note that the pattern matching module operates on 8-bit
unsigned buffers.

Comparing images
against a pattern

If you simply want to know how similar areas of an image are
to a pattern, you can use imBinMorphic() (for binary images)
or imIntCorrelate() (for integer images). These functions do not
perform the search algorithm used by the pattern matching
module; they simply compare areas of an image to a pattern
and write results to a destination buffer. Note that they can
take much longer to execute than the pattern matching
functions, particularly for large patterns.
For more on imBinMorphic() and imIntCorrelate(), see the
Genesis Native Library Command Reference.

General steps 119

General steps
The general steps to perform a pattern matching operation are:

1. Create your model, using imPatAllocModel(), or restore a
previously saved model from disk, using imPatRestore().

2. Adjust search parameters, if the defaults are not suitable,
using the imPatSet...() functions.

3. If necessary, preprocess the model, using
imPatPreprocModel(), so as to increase search speed.

4. Allocate a pattern matching result buffer, using
imPatAllocResult(). A pattern matching result buffer is
used to store the results of a pattern matching operation.

5. Search for the model in a target image, using
imPatFindModel(). You might want to first process the
target image to improve its quality.

6. Transfer necessary results to the Host, using
imPatGetNumber() and/or imPatGetResult().

7. Repeat steps 5 and 6 for other target images, if necessary.

8. Free the model and the result buffer, using imPatFree().

120 Chapter 6: Pattern matching

An example The following code searches for a model in an image, then
transfers results to the Host. The model was allocated
previously and saved in a file. Note that this code is part of the
pat.c program and requires the Genesis display section. See
Appendix B for the complete pat.c program.

�NQPI�/QFGN��������������������2CVVGTP�OCVEJKPI�OQFGN���
�NQPI�4GUWNV�������������������2CVVGTP�OCVEJKPI�TGUWNV�DWHHGT���
�+/A2#6A4'57.6A56�4GU����������#NN�OCVEJ�TGUWNVU���
��
���4GUVQTG�VJG�OQFGN���
�KO2CV4GUVQTG
6JTGCF��/QFGN(KNG���/QFGN��
��
���#NNQECVG�C�RCVVGTP�OCVEJKPI�TGUWNV�DWHHGT���
�KO2CV#NNQE4GUWNV
6JTGCF������4GUWNV��

���5GCTEJ�HQT�VJG�OQFGN���
�KO2CV(KPF/QFGN
6JTGCF��+OCIG$WH��/QFGN��4GUWNV�����

���)GV�CNN�TGUWNVU���
�KO2CV)GV4GUWNV
6JTGCF��4GUWNV��+/A#..���4GU��

���%JGEM�KH�C�OCVEJ�YCU�HQWPF���
�KH�
4GU�PWODGT������
�]
���RTKPVH
�/QFGN�EQWNF�PQV�DG�HQWPF>P���
�_
�GNUG
�]
�����2TKPV�VJG�OCVEJ�RQUKVKQP�CPF�UEQTG���
���RTKPVH
�/QFGN�HQWPF�CV�
���H�����H��YKVJ�UEQTG�QH����H��>P��
�����������4GU�RQUKVKQPAZ��4GU�RQUKVKQPA[��4GU�UEQTG��
�_

Creating the model 121

Creating the model
Models are created from rectangular areas of existing images
(called model images). Before you create your model, you might
want to process the model image to improve its quality.

When you create a model, you should keep the following in
mind:

■ Matches might be missed if the model has a different size or
orientation in the target image. Therefore, do not use a model
that might appear with a different size or orientation in the
target image. Note that a difference in orientation of a few
degrees or a size difference of a few percent is normally
acceptable.

■ False matches can occur if something else in your target
image happens to look like your model. In general, a large
model has less chance of being confused with something else
because more of the model has to match. In addition, large
models are faster to find than small models due to the search
algorithm used by the pattern matching module (although
very large models can also be time-consuming). An efficient
model size is approximately 128x128 pixels if you are
searching a large area.

Note that the search algorithm is described later in the
chapter.

122 Chapter 6: Pattern matching

Preprocessing the model
To determine which shortcuts can be safely used during a
search, you can preprocess the model. Preprocessing attempts
to produce more efficient searches, without affecting results.
However, if you have a model that is difficult to find, shortcuts
might not be possible and the search will therefore not be faster.

Preprocessing makes the most difference on models with just a
few, large features. Models with many small-scale features do
not benefit as much. In addition, if you are performing just one
search, you might want to skip the preprocessing, since the
preprocessing might take more time than it saves.

Typical target images When you use imPatPreprocModel(), you can provide a typical
target image on which the model will be used. This can result
in further shortcuts and, therefore, in even more efficient
searches. However, you should only provide a target image if
all target images you will be using have the same type of
background. If the target images might have different
backgrounds, do not provide one to imPatPreprocModel().

Saving/restoring When you save a model to disk, the preprocessing changes are
also saved; there is no need to preprocess again after restoring
it. Therefore, you normally need to preprocess a model just
once, right after creating it. However, if you use
imPatSetDontCare() (discussed in the next section), the effect
of preprocessing is undone; in this case, you will need to

preprocess again.

Adjusting search parameters 123

Adjusting search parameters
With the Genesis Native Library, you can control certain
aspects of a pattern matching operation, using the imPatSet...()
functions. You can control:

■ The acceptance level, using imPatSetAcceptance().

■ The number of matches to find, using imPatSetNumber().

■ The search region, using imPatSetPosition().

■ The positional accuracy, using imPatSetAccuracy().

■ The certainty level, using imPatSetCertainty().

■ The model’s "don’t care" pixels, using imPatSetDontCare().

■ The effective center ("hot spot") of a model, using
imPatSetCenter().

■ The search speed, using imPatSetSpeed().

In addition to the above, you can control the search more
precisely using imPatSetSearchParameter(). To use this
function effectively, however, you need to understand the
algorithm used by the pattern matching module; see The
pattern matching algorithm section for details.

Acceptance level
A search is performed by assigning a match score to each pixel
in the target image, based on how closely the model and the

region around that pixel match. The acceptance level is the
match score above which a match is considered to be found. In
other words, if the match score of a pixel is above the acceptance
level, there is a match at that position; if the match score is
below the acceptance level, there is not a match.

124 Chapter 6: Pattern matching

Note that match scores of 100% are generally impossible
because of noise. When a region of the target image actually
matches the model, the match score will typically be between
80 and 100%. The default acceptance level is therefore slightly
below this (70%). If your images have a lot of noise, you might
have to set the acceptance level below 70%. Note, however, that
if you set the acceptance level too low, false matches might
occur.

Number of matches

By default, the search algorithm finds only one match: the one
with the highest match score above the acceptance level. If
necessary, however, you can specify that the search algorithm
find n matches. In this case, the n highest match scores above
the acceptance level are returned, in decreasing order of match
score. The more matches you require, the longer the search
process.

Note that the number of results returned might be less than
the number you requested since only matches above the
acceptance level are returned. Before you retrieve results using
imPatGetResult(), you can call imPatGetNumber() to determine
how much memory is required for the results. The
imPatGetNumber() function returns the actual number of
matches above the acceptance level. If you are sure you have
allocated enough memory, however, there is no need to call
imPatGetNumber() since imPatGetResult() can also return the
number of matches above the acceptance level.
Best reject score

Genesis Native Library keeps track of the largest match score
that was rejected during the search. After calling
imPatFindModel(), you can call imPatInquire() with
IM_PAT_BEST_REJECT_SCORE to get information about the
highest match score that was not returned as a match result
(either because it was below the acceptance level, or because
you did not ask for enough matches). A situation when this
inquiry is useful is when you expect only one match, but also
want to know if ever there are two (or more) matches. It is faster
to search for one match and inquire the best reject score than
to search for two (or more) matches.

Adjusting search parameters 125

Model’s hot spot
By default, the returned coordinates of a match are the
coordinates of the model’s center pixel (the model’s "hot spot"),
relative to the top-left corner of the image. There might be
cases, however, when you want the coordinates to refer to
something else. For example, if your model has a hole and you
want results for this hole, use the imPatSetCenter() function to
set the model’s hot spot to the coordinates of this hole, relative
to the top-left corner of the model.

Search region
The search region is the area of the target image in which to
search for the model (i.e., the area in which to find the model’s
hot spot). By default, the search region is the entire target
image. To increase search speed, however, you should make the
search region as small as possible. If, for example, you know
the model’s reference point in the target image, the search
region can simply be the expected location plus the maximum
amount of displacement expected.

Model Target image

Search region (area in which
to find occurence of model’s

Model’s
hot spot
❖ In general, you should not use child buffers when you want
the search region to be smaller than the entire target image.
Child buffers can cause misleading results because the
search algorithm will not use the area outside the child
buffer.

hot spot)
Area involved
in model match

126 Chapter 6: Pattern matching

Size of search region Note that, since the search region is the area in which to find
the model’s hot spot, the search region can be even smaller than
the model (as small as a single pixel).

Search in one
direction

To search in only one direction (x or y), set the other dimension
of the search area to 1 pixel. Note that, if a search region
dimension is 1 pixel, the model will not be found to sub-pixel
accuracy in that direction.

Positional accuracy
Once a match with a score above the acceptance level is found,
the search algorithm can refine the position of the match to
various degrees of accuracy. Specifically, the position can be
refined to within ± 0.5 pixels (low accuracy), ± 0.25 pixels
(medium accuracy), or ± 0.1 pixels (high accuracy).

The more accuracy you require, the longer the search process.

Certainty level

The certainty level is the match score (usually higher than that
of the acceptance level) above which the algorithm can assume
that it has found a match and can stop searching the rest of the
image for a better score. The certainty level is very important
because it can greatly affect the speed of the search. To
understand why, you need to know a little about how the search
algorithm works.

Since a brute force correlation of the entire model, at every point
of the image, might take several minutes, it is not practical.

Therefore, the algorithm has to be intelligent. It first performs
a rough but quick search to find likely match candidates, then
checks out these candidates in more detail to see which are
acceptable.

A significant amount of time can be saved if several candidate
matches never have to be examined in detail. This can be done
by setting an appropriate certainty level. A good level is slightly
lower than the expected score. If you absolutely must have the
best match in the image, set the level to 100%. This would be
necessary if, for example, you expect the image to contain other

Adjusting search parameters 127

patterns that look similar to your model. Unwanted patterns
might have a high score, but this will force the search algorithm
to ignore them.

Often, you know that the pattern you want is unique in the
image, so anything that reaches the acceptance level must be
the match you want; therefore, you can set the certainty and
acceptance levels to the same value.

Another common case is a pattern that usually produces very
good scores (say above 80%), but occasionally a degraded image
produces a much lower score (say 50%). Obviously, you must
set the acceptance level to 50% or you will never get a match in
the degraded image. But what value is appropriate for the
certainty level? If you set it to 50%, you take a risk that it will
find a false match (above 50%) in a good image before it finds
the real match that scores 90%. A better value is about 80%,
meaning that most of the time the search will stop as soon as
it sees the real match, but in a degraded image (where nothing
reaches the certainty level) it will take the extra time to look
for the best match that reaches the acceptance level.

"Don’t care" pixels

Model pixels that are set to the "don’t care" state are ignored
during the search process (they do not affect the match score).

Setting model pixels to "don’t care" can be useful if your model
contains areas that have nothing to do with the pattern for
which you are searching. For example, if the required pattern

is circular in shape, your model will necessarily contain some
unwanted areas of the model image (since models must be
rectangular). If these unwanted areas are different in the target
image, their presence will affect the match score and could
result in matches being missed or false matches being found.

128 Chapter 6: Pattern matching

Search speed
You can specify the speed (high, medium, low, very low) at which
to perform the search algorithm using imPatSetSpeed(). Note
that, as you increase the speed, the likelihood of finding the
model decreases slightly. In addition, match scores and
positional accuracies might be a little less accurate.

High speed You can search at high speed if you have a good quality target
image or a simple model. A high-speed search takes all possible
shortcuts that were determined by the preprocessing.
Searching at high speed is therefore most useful if you
preprocessed your model using imPatPreprocModel().

Note that you should not search at high speed if you need the
highest possible accuracy (search at medium or low speed
instead).

Medium speed You should search at medium speed (the default setting) if your
target images are of medium quality or if your model is complex.

Low speeds You should search at low or very low speeds only if your target
image is of particularly poor quality or if you have encountered
problems at higher speeds.

Speeding up the search 129

Speeding up the search
The following is a summary of the ways you can speed up a
search. Note that most of these were discussed in previous
sections of the chapter.

■ Search at the highest possible speed. Use imPatSetSpeed() to
set the search speed.

■ Preprocess the model, using imPatPreprocModel().

■ Use the smallest possible search region; the search time is
roughly proportional to the area searched. Use
imPatSetPosition() to define the search region.

■ Use the lowest possible positional accuracy; the more
accuracy you require, the longer the search process. Use
imPatSetAccuracy() to set the positional accuracy.

■ Set the certainty level to the lowest reasonable value (so that
the search can stop as soon as a good match is found). Use
imPatSetCertainty() to set the certainty level.

■ Use an efficient model size. Large models are generally faster
to find than small models (although very large models can
also be time-consuming). An efficient model size is
approximately 128x128 pixels if you are searching a large
area.

■ Use the fastest model allocation algorithm. If model
allocation is time critical in your application, you can speed

it up by passing one of the following two flag combinations
for the Type parameter of imPatAllocModel():

❐ IM_NORMALIZED + IM_FAST, or

❐ IM_NORMALIZED + IM_VERY_FAST.

Note that IM_FAST allocation leads to some very small
differences in the model, but this should not affect pattern
matching in most applications. Passing the IM_VERY_FAST
flag will allow the fastest possible model allocation, but is a
bit more likely to cause problems than IM_FAST.

❖ For a discussion of more advanced methods that allow you
to speed up the search, refer to The pattern matching
algorithm section of this chapter.

130 Chapter 6: Pattern matching

Managing models
Saving/restoring You can save a model to disk using imPatSave(), as well as

restore it from a file using imPatRestore(). Note that the model’s
search parameters are also saved/restored. If the model was
preprocessed, the preprocessing changes are also
saved/restored.

When you restore a model from file, you might want to inquire
about the model’s search parameters. You can do so using
imPatInquire().

Reading/writing You can read a model from an open file using imPatRead(), as
well as write it to an open file using imPatWrite(). This can be
useful if you want to save/restore several models to/from the
same file. As with the save/restore functions, the
characteristics of the model are also read/written.

Copying You can copy a model to an on-board buffer using imPatCopy().
This can be useful if you want to view the model. The
imPatCopy() function can also be used to copy only the model’s
"don’t care" pixels.

Rotating models You can rotate a model using imPatAllocRotatedModel(). This
function can rotate a model by 0, 90, 180, or 270°. This can be
useful if the model appears at a different angle in the target
image.

The pattern matching algorithm 131

The pattern matching algorithm
Normalized grayscale correlation is widely used in industry for
pattern matching applications. Although in many cases you do
not need to know how the search operation is performed, an
understanding of the algorithm can sometimes help you pick
an optimal search strategy.

Normalized Correlation

The correlation operation can be seen as a form of convolution,
where the pattern matching model is analogous to the
convolution kernel. In fact, ordinary (un-normalized)
correlation is exactly the same as a convolution:

In other words, for each result, the N pixels of the model are
multiplied by the N underlying image pixels, and these
products are summed. Note that the model doesn’t have to be
rectangular, because it can contain "don’t care" pixels that are
completely ignored during the calculation. When the
correlation function is evaluated at every pixel in the target
image, the locations where the result is largest are those where
the surrounding image is most similar to the model. The search
algorithm then has to locate these peaks in the correlation

r IiMi

i 1=

i N=

∑=
result, and return their positions.

132 Chapter 6: Pattern matching

Unfortunately, with ordinary correlation, the result increases
if the image gets brighter. In fact, the function reaches a
maximum when the image is uniformly white, even though at
this point it no longer looks like the model. The solution is to
use a more complex, normalized version of the correlation
function (the subscripts have been removed for clarity, but the
summation is still over the N model pixels that are not "don’t
cares"):

With this expression, the result is unaffected by linear changes
(constant gain and offset) in the image or model pixel values.
The result reaches its maximum value of 1 where the image
and model match exactly, gives 0 where the model and image
are uncorrelated, and is negative where the similarity is less
than might be expected by chance.

Normally, we are not interested in negative values, so results

are clipped to 0. In addition, we use r2 instead of r to avoid the
slow square-root operation. Finally, the result is converted to a
percentage, where 100% represents a perfect match. So, the
match score returned by imPatGetResult() is actually:

 Score = max(r, 0)2 x 100%

r

N IM∑ I∑ 
  M∑–

N I
2∑ I∑ 

  2
– N M

2∑ M∑ 
  2

–

---=
❖ If you are also interested in finding negative versions of the
model, you can take the absolute values of the scores, rather
than clipping negative scores to 0, using

imPatSetSearchParameter. In this case, Score = |r|2 x 100%.

The pattern matching algorithm 133

Note that some of the terms in the normalized correlation
function depend only on the model, and hence can be evaluated
once and for all when the model is defined. The only terms that
need to be calculated during the search are:

This amounts to two multiplications and three additions for
each model pixel.

A typical application might need to find a 128x128-pixel model
in a 512x512-pixel image. In such a case, the total number of
arithmetic operations needed for an exhaustive search is

5x5122x1282, or over 20 billion. Even on a ’C80, this would take
several minutes, much more than the 10 milliseconds or so the
search actually takes. Clearly, imPatFindModel() does much
more than evaluate the correlation function at every pixel in
the search area and return the location of the peak scores.

Hierarchical Search
A reliable method of reducing the number of computations is to
perform a so-called hierarchical search. Basically, a series of
smaller, lower-resolution versions of both the image and the
model are produced, and the search begins on a much-reduced
scale. This series of sub-sampled images is sometimes called a
resolution pyramid, because of the shape formed when the
different resolution levels are stacked on top of each other.

I∑ I
2∑ IM∑, ,
Each level of the pyramid is half the size of the previous one,
and is produced by applying a low-pass filter before
sub-sampling. If level 0 (the original image or model) is
512x512, then level 1 is 256x256, level 2 is 128x128, and so on.
Therefore, the higher the level in the pyramid, the lower the
resolution of the image and model.

The search starts at low resolution to quickly find likely match
candidates. It proceeds to higher and higher resolution to refine
the positional accuracy and make sure that the matches found
at low resolution actually were occurrences of the model.
Because the position is already known from the previous level
(to within a pixel or so), the correlation function need be
evaluated only at a very small number of locations.

134 Chapter 6: Pattern matching

Since each higher level in the pyramid reduces the number of
computations by a factor of 16, it is usually desirable to start
at as high a level as possible. However, the search algorithm
must trade off the reduction in search time against the
increased chance of not finding the pattern at very low
resolution. Therefore, it chooses a starting level according to
the size of the model and the characteristics of the pattern. In
the application described earlier (128x128 model and 512x512
image), it might start the search at level 4, which would mean
using an 8x8 version of the model and a 32x32 version of the
target image. You can, if desired, force a specific starting level,
using imPatSetSearchParameter().

The last (lowest) level used is usually determined by the
specified positional accuracy; however, you can set this
explicitly, using imPatSetSearchParameter().

The logic of a hierarchical search accounts for a seemingly
counter-intuitive characteristic of imPatFindModel(): large
models tend to be found faster than small ones. This is because
a small model cannot be sub-sampled as much without losing
all detail. Therefore, the search must begin at fairly high
resolution (low level), where the relatively large search area
results in a longer search time. Thus, small models can only be
found quickly in fairly small search areas.

Using the best reject
score and best reject
level

As mentioned earlier, after calling imPatFindModel(), you can
call imPatInquire() to determine the highest match peak score
that was rejected (not returned as a match result) during the

search. At the same time, because the peak’s match score might
have been rejected at a low resolution level where the score is
not very reliable, you can also inquire the level at which the
score was obtained. Both values can be inquired as follows:

KO2CV+PSWKTG
4GUWNV$WHHGT��+/A2#6A$'56A4','%6A5%14'���4GLGEV5EQTG��
KO2CV+PSWKTG
4GUWNV$WHHGT��+/A2#6A$'56A4','%6A.'8'.���4GLGEV.GXGN��

The pattern matching algorithm 135

Search Heuristics
Even though performed at very low resolution, the initial
search still accounts for most of the computation time if the
correlation is performed at every pixel in the search area. For
most models, match peaks (pixel locations where the
surrounding image is similar to the model and correlation
results are largest) are several pixels wide. These can be found
without evaluating the correlation function everywhere.
imPatPreprocModel() analyses the shape of the match peak
produced by the model, and determines if it is safe to try to find
peaks faster. If the pattern produces a very narrow match peak
(or the model was not pre-processed), an exhaustive initial
search is performed. The search algorithm tends to be
conservative; if necessary, force fast peak finding, using
imPatSetSearchParameter().

Genesis Native Library also allows you to set the threshold
level (in %) for rejecting candidate model peaks at low
resolution levels, using imPatSetSearchParameter() with
IM_PAT_REJECTION. Any candidates found below this
threshold level will be rejected. This can speed up the search
when some of the matches you request do not reach the
certainty threshold, or when you request more matches than
are really present in the image. The IM_PAT_REJECTION
threshold should usually be set much lower than the acceptance
threshold. For example, a good level to set it to is about 20% to
30%. Note that if it is too low, you will not see any increase in
speed. However, if it is too high, you risk rejecting real match

peaks.

At the last (high-resolution) stage of the search, the model is
large, so this stage can take a significant amount of time, even
though the correlation function is evaluated at only a very few
points. To save time, you can select high search speed, using
imPatSetSpeed(). Only every second model pixel will be used.
For most models, this has little effect on the score or accuracy,
but does increase speed. However, if accuracy is your primary
concern, you should use all model pixels, that is, avoid high
speed or force the use of all model pixels with
imPatSetSearchParameter().

136 Chapter 6: Pattern matching

Sub-Pixel Accuracy
The highest match score occurs at only one pixel position, and
drops off around this peak. The exact (sub-pixel) position of the
model can be estimated from the match scores found on either
side of the peak. A curve is fitted to the match scores around
the peak and, from the equation of the curve, the exact peak
position is calculated. The curve is also used to improve the
estimate of the match score itself, which should be slightly
higher at the true peak position than the actual measured value
at the nearest whole pixel.

The actual accuracy that can be obtained depends on several
factors, including the noise in the image and the particular
pattern of the model. However, if these factors are ignored, the
absolute limit on accuracy, imposed by the algorithm itself and
by the number of bits of precision used to hold the correlation
result, is about 0.05 pixels. This is the worst-case error
measured in X or Y when an image is artificially shifted by
fractions of a pixel. In a real application, accuracy better than
0.1 pixel might be achieved for low-noise images; however, it is
better not to rely on more than a 0.1 pixel accuracy. These
numbers apply if you select high search accuracy, using
imPatSetAccuracy(), in which case the search always proceeds
to resolution level 0.

If you select medium accuracy (the default), the search may stop
at resolution level 1, and hence the accuracy is about half of
what can be attained at level 0 (0.25 pixels). Selecting low

accuracy may cause the search to stop at level 2, so the accuracy
is reduced by an additional factor of two (to about 0.5 pixels).

Chapter 7: Compression

This chapter describes how to compress and decompress
images using the run-length encoding module and the
JPEG module.

138 Chapter 7: Compression

Introduction
Compression allows more images to be stored on-board than
would normally be possible. In addition, it reduces the amount
of data that must be transferred off-board when images are
saved to file, allowing quicker transfers. There are two methods
that the Genesis Native Library provides to compress and
decompress images: run-length encoding and JPEG
compression.

The run-length encoding method can be used to compress
images that are originally in a binary format, with 1- or 8-bit
pixel depth.

The JPEG compression method can be used to compress images
that are originally in a grayscale or color format with 8- or
16-bits per band, and from 1 to 4 bands. Note that the Genesis
Native Library does not support all JPEG modes, so you might
not be able to decompress a JPEG file that was compressed by
another package (refer to the section on JPEG compatibility
issues later in this chapter).

Run-length encoding and decoding
The run-length encoding module of the Genesis Native Library
allows you to compress and decompress images one at a time.
The run-length encoding module performs compression on
binary data by encoding information about a run of connected
background or foreground pixels in a single byte (8 bits), then

storing it into a buffer. A run is a continuous stretch of
connected pixels made up of foreground or background pixels.

Supported image types The run-length encoding algorithm can compress any image
that is in a binary format. This includes packed binary format
(1 bit/pixel), as well as monochrome (8 bits/pixel) image data.
For the purpose of run-length encoding, all pixels are treated
as either 0 or non-zero. All non-zero pixels are considered to be
foreground pixels.

Run-length encoding and decoding 139

Mode of operation Run-length encoding (compression)
The run-length encoding module performs compression on
binary data from an image buffer by storing each continuous
run of connected pixels as a single byte (8 bits). The most
significant bit (bit 7) is used to indicate the type of run: 1 for a
foreground run or 0 for a background run. Each run of pixels is
composed exclusively of background or foreground pixels.
Pixels that have a value of 0 are considered background pixels.
All pixels with a non-zero value are considered foreground
pixels.

The lower seven bits (bit 0 to bit 6) are used to indicate the
length of the run. Since seven bits are used to indicate the
length of a run, the maximum length of a single run is 127.
Accordingly, a run of pixels that is larger than 127 is broken
into multiple runs. For example, a run of 135 foreground pixels
will be broken into two foreground runs: one run of 127 pixels,
and the other run of 8 pixels.

It is important to note that a run can span lines. A run of pixels
is not broken at the end of a line, but continues on to the starting
position of the next line, as long as the type of pixel remains the
same (See run #3 in the diagram below).

Run 1: 10 pixel background run

Run 2: 9 pixel foreground run

Run-length encoding byte compression

Background pixel (0) Foreground pixel (1)
19 pixels

135 pixel background run:

Run 3: 127 pixel

background run

Run 4: 8 pixel

background run

Bit 7 6 5 4 3 2 1 0
Run 1:0 0 0 0 1 0 1 0

.

etc.

Run 2:1 0 0 0 1 0 0 1

Run 3:0 1 1 1 1 1 1 1

Run 4:0 0 0 0 1 0 0 0

.

.

Length of run

Type of run (0 or 1)

140 Chapter 7: Compression

Keep track of original
image dimensions

You should keep a record of the dimensions of the original
image, so that a buffer of suitable dimensions can be allocated
later for any subsequent decoding. This record is necessary
because the compressed buffer does not contain any header
information.

Important point to
consider...

Since images that are in a packed binary (1 bit/pixel) format
are already 8 times smaller than the typical monochrome 8-bit
image, using run-length encoding to compress data is only
useful if this type of compression would lead to an even greater
compression ratio. That is, if the average run length is greater
than 8.

Decoding run-length encoded images
(decompression)

The run-length module performs decompression of run-length
encoded data. Each consecutive byte can be decoded back into
the appropriate number of 1- or 8-bit pixels. When saving
decoded data in an 8-bit buffer, foreground pixels are set to 255
by default. Since the encoded data does not contain any header
information, the destination buffer must be exactly the right
size.

General steps
Encoding
(compression)

To encode images, you need to follow these steps:

1. Allocate a 1-dimensional, 8-bit buffer that is large enough

to hold the compressed data. Don’t worry if the compression
buffer you allocate is too big because the buffer size
necessary to contain the compressed data (in bytes) will be
written to the IM_RLE_SIZE control field.

2. Run-length encode the image data using imRleEncode().

3. Read the size of the compressed buffer by calling
imBufGetField() with IM_RLE_SIZE.

4. Keep a record of the dimensions of the original image, so
that a buffer of suitable dimensions can be allocated later
for any subsequent decoding.

General steps 141

One way to do so is to keep a record of the width (SizeX) and
height (SizeY) of the original image buffer within the
compressed buffer in user-defined fields.

5. If you want to append other image data to the compression
buffer, add the required start position control field
(IM_RLE_START) to the control buffer. Then, call
imRleEncode() again. This time, the value written to the
IM_RLE_SIZE control field will be that of the last
compressed image.

Repeat steps 4 and 5 as often as is required to encode
additional image data.

To perform a subsequent operation, such as save, with the
encoded data, follow these steps.

1. Allocate a child buffer (from parent compressed buffer) with
a buffer size (IM_RLE_SIZE) corresponding to the
compressed size of a particular run-length encoded image,
and appropriate offset (IM_RLE_START). This child buffer
will contain the compressed image data.

2. Use the child buffer to perform any subsequent processing
operations or image data transfers.

Decoding
(decompression)

To decode run-length encoded images, you need to follow these
steps:

1. Allocate a buffer with the original image buffer dimensions.

2. Decode the run-length encoded buffer into an image buffer,

using imRleDecode().

Control options With the Genesis Native Library, you can control certain
aspects of the compression/decompression process. This is done
using the control fields of a control buffer.

When encoding, you can control the starting position of the next
run-length encoded byte within the buffer. This allows you to
append images to the same compression buffer.

When decoding the image from a run-length compressed buffer,
you have the option to control the starting position
(IM_RLE_START in bytes) within the compression buffer to
run-length decode. If multiple images are encoded within the

142 Chapter 7: Compression

compression buffer, refer to your records on the size of each
image in bytes (IM_RLE_SIZE) to determine the appropriate
starting position within the buffer. In addition, you have the
option to choose the foreground and/or background color.

Example The following example allocates the appropriate image buffers,
uses imRleEncode() to compress, and prints the size of the
compressed buffer. The compressed buffer is then
decompressed using imRleDecode().

NQPI�5TE$WH��&UV$WH�
NQPI�%QOR$WH��%QOR%JKNF��%QPVTQN��5K\G��5K\G:��5K\G;�

���#NNQECVG�WPEQORTGUUGF�DWHHGTU�QH�EQTTGEV�UK\G����
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%���5TE$WH��
�KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%���&UV$WH��

���#UUWOG�5TE$WH�EQPVCKPU�C�DKPCT[�KOCIG�VQ�DG�TWP�NGPIVJ�GPEQFGF����
������
���#NNQECVG�C���&�DWHHGT�
OQTG�VJCP�NCTIG�GPQWIJ��HQT�VJG�EQORTGUUGF�KOCIG�����
�KO$WH#NNQE�F
6JTGCF��5K\G:�5K\G;��+/A7$;6'��+/A241%���%QOR$WH��

���#NNQECVG�C�EQPVTQN�DWHHGT�����
�KO$WH#NNQE%QPVTQN
6JTGCF���%QPVTQN��
�����������������
���'PEQFG
EQORTGUU��VJG�KOCIG�FCVC��6JGP��IGV�CPF�TGRQTV�EQORTGUUGF�UK\G����
�KO4NG'PEQFG
6JTGCF��5TE$WH��%QOR$WH��%QPVTQN�����
�KO$WH)GV(KGNF
6JTGCF��%QPVTQN��+/A4.'A5+<'���5K\G��
�RTKPVH
�%QORTGUUGF�UK\G���K>P���5K\G��

���1RVKQPCN��5CXG�EQORTGUUGF�EJKNF�DWHHGT�VQ�FKUM�YKVJ�WUGT�FGHKPGF�HKGNFU
�������������VQ�UCXG�QTKIKPCN�FKOGPUKQPU��
���
�KH�
5CXG�
�]
�����KO$WH%JKNF
6JTGCF��%QOR$WH��������5K\G�����%QOR%JKNF��

�����KO$WH2WV(KGNF
6JTGCF��%QOR%JKNF�����5K\G:��
�����KO$WH2WV(KGNF
6JTGCF��%QOR%JKNF�����5K\G;��
�����KO$WH5CXG
6JTGCF��(KNG0COG��+/A0#6+8'��%QOR%JKNF��
�����KO$WH(TGG
6JTGCF��%QOR%JKNF��
�_
���

���&GEQFG�
FGEQORTGUU��VJG�EQORTGUUGF�DWHHGT����
�KO4NG&GEQFG
6JTGCF��&UV$WH��%QOR$WH��%QPVTQN�����

JPEG Compression 143

JPEG Compression
The JPEG module of the Genesis Native Library also allows
you to compress and decompress images.

Modes of operation The module can compress images using the JPEG lossless
algorithm or the JPEG lossy algorithm (baseline sequential
mode). The JPEG lossless algorithm compresses images
without any loss of information. Typically, the JPEG lossless
algorithm compresses images by a factor of 2:1, although a
factor of 4:1 can sometimes be achieved. The JPEG lossy
algorithm introduces some loss of information but compresses
images by a variable factor. The higher the specified factor, the
more the compression, but the lower the image quality.

Note that lossless mode is the only mode supported by the NOA,
so it is the fastest way to do JPEG compression on Matrox
Genesis.

Supported types The JPEG lossless algorithm can compress 8-bit or 16-bit
buffers, with up to four bands. The JPEG lossy algorithm can
compress 8-bit buffers, with up to four bands.

Control options With the Genesis Native Library, you can control certain
aspects of the compression/decompression. For example, you
can use your own compression/decompression tables, or you can
compress an image piece by piece if it is too large to be held
entirely in memory.
File format and
restrictions

When the Genesis Native Library compresses an image, it adds
some Genesis-specific markers to the resulting image. Most
other packages will ignore these markers and therefore be able
to decompress the file. The Genesis Native Library itself
ignores unrecognized application-specific markers when it
decompresses a file. However, the Genesis Native Library can
still decompress a standard JFIF (JPEG File Interchange
Format) file that contains just a grayscale image. If the JFIF
file contains a multi-band image, the Genesis Native Library
can decompress it only if each band is stored separately in the
file (if the bands are stored in an interleaved fashion, the
Genesis Native Library cannot decompress it).

144 Chapter 7: Compression

General steps
Compression To compress images, you need to follow these steps:

1. Allocate a JPEG buffer, using imJpegAlloc(). JPEG buffers
are used to store compressed images.

2. Add the required controls to the JPEG buffer, if the defaults
do not meet your needs.

3. Compress the image, using imJpegEncode().

4. If necessary, save the compressed image from the JPEG
buffer to disk, using imJpegSave(). Alternatively, write the
data from the JPEG buffer to an ordinary (contiguous)
buffer, using imJpegWriteBuf(), and then save the data to
disk in whatever way is fastest on your system.

Decompression To decompress images, you need to follow these steps:

1. Load the compressed image into a JPEG buffer, using
imJpegRestore(), imJpegRead(), or imJpegReadBuf().
imJpegRestore() and imJpegRead() load compressed
images from files. imJpegReadBuf() loads compressed
images from ordinary (contiguous) buffers.

2. Decompress the JPEG buffer into an image buffer, using
imJpegDecode().

Note that the buffer to which you write the decompressed
image should be compatible with the original image buffer

(same size, number of bands, and data type). If you do not
know what these buffer parameters should be, you can use
imJpegInquire(). This function inquires about a specified
attribute of a JPEG buffer (such as the data type of the
original image), and returns the value of this attribute.

Freeing JPEG buffers Once a JPEG buffer is no longer needed, you should free the
memory allocated to it using imJpegFree().

General steps 145

Control options When a buffer is allocated using imJpegAlloc(), the default
values for all control settings are stored in that buffer. These
default values are suitable for most applications. However, you
can change these settings to meet your needs, using
imJpegControl(), imJpegControlBand(), and/or
imJpegPutTable(). Note that you must use imJpegControl() to
specify lossless compression (the default is lossy compression).

Some control settings only apply to JPEG lossless compressions
and some only apply to JPEG lossy compressions. JPEG
lossless controls are discussed in the section Controlling JPEG
lossless compression.

Note that, when loading a compressed image, all controls that
were used to perform the compression are copied to the JPEG
buffer. These should not be changed before decompressing
because, for the reconstructed image to match the original
image, the same controls must be used to decompress.

For a complete list of control settings and their default values,
see the Genesis Native Library Command Reference.

A compression
example

The following code compresses (encodes) an image using the
lossless mode. Note that this code is part of the jpeg.c program
and requires only the basic Genesis hardware. See Appendix B
for the complete jpeg.c program.

�NQPI�,RGI$WH�������%QORTGUUGF�KOCIG���

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JTGCF������,RGI$WH��
���5GNGEV�NQUUNGUU�OQFG���
�KO,RGI%QPVTQN
6JTGCF��,RGI$WH��+/A,2')A/1&'��+/A.155.'55��

���.QCF�VJG�WPEQORTGUUGF�KOCIG�KPVQ�C�RTQEGUUKPI�DWHHGT���
�KO$WH4GUVQTG
6JTGCF��+P(KNG��+/A6+((��+/A241%���+OCIG$WH��

���%QORTGUU�VJG�KOCIG���
�KO,RGI'PEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

���5CXG�VJG�EQORTGUUGF�KOCIG���
�KO,RGI5CXG
6JTGCF��1WV(KNG��,RGI$WH���

146 Chapter 7: Compression

Another compression
example

The following code is similar to the previous example, except
that it uses imJpegWriteBuf(), and then imBufMap(), to write
the data to disk. Depending on your system, this might be faster
than saving the data directly to disk using imJpegSave(). Note
that the buffer in which to write the compressed image was
allocated in Host memory. You could also allocate the buffer in
processing memory and then transfer it to the Host, if this is
faster. However, you should be aware of certain restrictions (see
the Genesis Native Library Command Reference for details).

A decompression
example

The following code decompresses (decodes) an image.
imJpegInquire() is first used to allocate an appropriate buffer
in which to save the decompressed image. Note that this code

�WPUKIPGF�EJCT��#FFTGUU�
����

���#NNQECVG�C�,2')�DWHHGT�CPF�UGNGEV�NQUUNGUU�OQFG���
�KO,RGI#NNQE
6JTGCF������,RGI$WH��
�KO,RGI%QPVTQN
6JTGCF��,RGI$WH��+/A,2')A/1&'��+/A.155.'55��

���%QORTGUU�VJG�KOCIG���
�KO,RGI'PEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

���#NNQECVG�C�EQPVKIWQWU�*QUV�DWHHGT�DKI�GPQWIJ�HQT�VJG�TGUWNV���
�KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A5+<'���5K\G��
�KO$WH#NNQE�F
6JTGCF��5K\G��+/A7$;6'��+/A*156���*QUV$WH��

���9TKVG�VJG�EQORTGUUGF�KOCIG�VQ�VJG�DWHHGT���
�KO,RGI9TKVG$WH
6JTGCF��*QUV$WH��,RGI$WH��������

���)GV�C�RQKPVGT�VQ�VJG�FCVC�KP�*QUV�OGOQT[�CPF�YTKVG�KV�VQ�FKUM���
�KO$WH/CR
6JTGCF��*QUV$WH��������
XQKF�����#FFTGUU���&WOO[���&WOO[��
�HYTKVG
#FFTGUU��5K\G�����5VTGCO��
is part of the jpeg.c program and requires only the basic Genesis
hardware. See Appendix B for the complete jpeg.c program.

�NQPI�,RGI$WH�������%QORTGUUGF�KOCIG���

���.QCF�VJG�EQORTGUUGF�KOCIG�KPVQ�C�,2')�DWHHGT���
�KO,RGI4GUVQTG
6JTGCF��+P(KNG���,RGI$WH��

���#NNQECVG�C�RTQEGUUKPI�DWHHGT�QH�VJG�UCOG�UK\G���
�KO$WH#NNQE
6JTGCF��KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A5+<'A:��07..��
��������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A5+<'A;��07..��
��������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A07/A$#0&5��07..��
��������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH��+/A,2')A6;2'��07..��
��������������������+/A241%���+OCIG$WH��

���&GEQORTGUU�VJG�KOCIG���
�KO,RGI&GEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

Controlling JPEG lossless compression 147

Controlling JPEG lossless compression
This section provides an overview of the JPEG lossless
algorithm, and of the controls you have over this algorithm. You
should only change these controls if you are familiar with the
JPEG lossless algorithm. Changing these controls might allow
you to achieve a higher compression ratio than would be
possible using the defaults of the Genesis Native Library.

For detailed information about the JPEG algorithm, refer to
the JPEG Technical Specification Revision 8.

JPEG lossless The JPEG lossless algorithm is basically a two-step process.
First, predictive coding is performed on the image. Then, the
result is Huffman encoded.

Predictive coding
Predictive coding is based on the fact that adjacent pixels in an
image generally have similar values. Therefore, the value of a
pixel can be "predicted" from the values of its neighbor(s). The
difference between the original value of the pixel and the
predicted value requires fewer bits to store than the original

Source
Image

Predictive
coding

Huffman
encoding

Compressed
Image
pixel value.

By default, the Genesis Native Library uses the pixel to the left
to predict values. This is suitable for most images. However,
you can specify that no predicting be done, using
imJpegControl(). In this case, the values after predictive coding
will be the same as the original values. This can be useful if you
have developed your own algorithm to take the place of
predictive coding and only need your images Huffman encoded.
Note that you must implement your own algorithm to use one
of the other "predictors" supported by the JPEG lossless
algorithm (the Genesis Native Library only directly supports
predictor #1: the "pixel to the left" predictor).

148 Chapter 7: Compression

Huffman encoding
After an image has been predictive coded, Huffman encoding
assigns a variable-length "code word" to each value. This code
is based on the number of bits by which adjacent values differ.
By storing the code word, rather than the actual difference
value, further compression can be achieved. Values are
assigned code words according to a Huffman table.

The Genesis default Huffman table can handle images with up
to 16-bits per band (for lossless mode). This same table is used
even for 8-bit images and is suitable for most images. However,
there are a few JPEG lossless decoders that require a smaller
Huffman table for 8-bit images. Refer to the example at the end
of this section for a good Huffman table to use on 8-bit images
when portability is important.

Using your own table If you do not want to use the default Huffman table provided,
require an optimal compression ratio, and are familiar with the
JPEG lossless algorithm, you can use your own Huffman table.
If you use your own Huffman table, you first need to represent
it by a one-dimensional array. The first 16 numbers in the array
should represent the number of code words used for a given code
length. For example, if the first 16 numbers are:
0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
it means that there are no 1-bit codes, one 2-bit code, five 3-bit
codes, one 4-bit code, one 5-bit code, etc.

The next numbers in the array determine which code word is
assigned to each value. Specifically, if these numbers are n , n ,
0 1
n2, etc., it means that the shortest code word is assigned to a
value whenever adjacent values differ by n0 bits; the next
shortest code word is assigned to a value whenever adjacent
values differ by n1 bits; etc. Note that, if these numbers are 0,
1, 2, etc., progressively longer words are assigned to larger
differences (this is usually the best sequence, since adjacent
values tend to be similar rather than different).

Controlling JPEG lossless compression 149

Once you have created the array, you need to transfer it to the
required JPEG buffer, using imJpegPutTable(). Specify that
you are transferring a DC Huffman table (see the following
example).

An example The following code compresses an image with a user-defined
Huffman table.

�NQPI�,RGI�
�WPUKIPGF�EJCT�*WHH6CDNG=��?���
�]��
���������������������������������������
�_�

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JT������,RGI��

���2WV�VJG�VCDNG�KPVQ�VJG�,2')�DWHHGT���
�KO,RGI2WV6CDNG
6JT��,RGI��+/A,2')A6#$.'A&%���������*WHH6CDNG��

���%QORTGUU�VJG�KOCIG�CPF�UCXG�KV�VQ�FKUM���
�KO,RGI'PEQFG
6JT��+OCIG��,RGI�����
�KO,RGI5CXG
6JT���NQUUNGUU�LRI���,RGI��

���(TGG�VJG�OGOQT[�CNNQECVGF�VQ�VJG�,2')�DWHHGT���
�KO,RGI(TGG
6JT��,RGI��

150 Chapter 7: Compression

Encoding a very large image
If an image is too large to be held entirely in memory, you can
compress it block by block into a JPEG buffer. This is done by
first specifying the number of blocks by which to divide an
image, using imJpegControl(). You then write a block of the
image to an image buffer, compress the image buffer into the
same JPEG buffer, and repeat until all blocks have been
compressed. Each compressed block is appended to the JPEG
buffer, until the entire image has been compressed.

There are some restrictions on the size of each block (except for
the last block). For a lossless compression, each block (except
the last) must have a Ysize that is a multiple of the
IM_JPEG_RESTART_ROWS item of imJpegControl() (restart
rows are discussed later in this chapter). For a lossy
compression, each block (except the last) must have a Xsize that
is a multiple of 8 times the IM_JPEG_RESTART_ROWS item, and
must have a Ysize that is a multiple of 8.

Note that, if necessary, you can stop a block-by-block
compression, using imJpegControl().

An example The following code compresses an image block by block.

�NQPI�,RGI�

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JT������,RGI��

���5RGEKH[�VJG�PWODGT�QH�DNQEMU���

�KO,RGI%QPVTQN
6JT��,RGI��+/A,2')A07/A$.1%-5��PDNQEMU��

���9TKVG�CPF�EQORTGUU��QPG�DNQEM�CV�C�VKOG���
��YJKNG�
PDNQEMU���
��]
��������.QCF�QT�ITCD�PGZV�DNQEM�QH�KOCIG���
���������

��������%QORTGUU�VJG�DNQEM���
������KO,RGI'PEQFG
6JT��+OCIG��,RGI�����
��_

���5CXG�VJG�EQORTGUUGF�KOCIG�VQ�C�HKNG���
�KO,RGI5CXG
6JT���VGUV�LRI���,RGI��

���(TGG�VJG�,2')�DWHHGT���
�KO,RGI(TGG
6JT��,RGI��

Writing/reading to or from open files 151

Writing/reading to or from open files
With the Genesis Native Library, you can read a compressed
image from an open file (using imJpegRead()) or write a
compressed image to an open file (using imJpegWrite()). This
can be useful if you are compressing/decompressing several
images to/from the same file (see the examples below). This can
also be useful if you need to write/read additional information
(such as header information) to/from the same file.

Note that, when an image is compressed, the tables used in the
compression are also saved to the JPEG buffer (by default). If
images are compressed with the same tables and written to the
same file, there is no need to save tables after the first image
is written. You can disable the saving of tables using
imJpegControl().

Writing to the same
file

The following code compresses several images and writes them
to the same file. The saving of tables is disabled after the first
image is written.

�(+.'��(KNG�
�NQPI�,RGI�

���1RGP�VJG�HKNG�HQT�YTKVKPI���
�(KNG���HQRGP
�VGUV�LRI����YD���

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JT������,RGI��

���%QORTGUU�CPF�YTKVG�VJG�HKTUV�KOCIG���
�KO,RGI'PEQFG
6JT��+OCIG���,RGI�����

�KO,RGI9TKVG
6JT��(KNG��,RGI��

���&QP	V�UCXG�VCDNGU�YKVJ�UWDUGSWGPV�KOCIGU���
�KO,RGI%QPVTQN
6JT��,RGI��+/A,2')A5#8'A6#$.'5��+/A&+5#$.'��

���%QORTGUU�CPF�YTKVG�UWDUGSWGPV�KOCIGU���
�KO,RGI'PEQFG
6JT��+OCIG���,RGI�����
�KO,RGI9TKVG
6JT��(KNG��,RGI��

�KO,RGI'PEQFG
6JT��+OCIG���,RGI�����
�KO,RGI9TKVG
6JT��(KNG��,RGI��

���(TGG�VJG�,2')�DWHHGT���
�KO,RGI(TGG
6JT��,RGI��

���%NQUG�VJG�HKNG��6JGTG�KU�PQ�PGGF�VQ�HKTUV�U[PEJTQPK\G�UKPEG���
���KO,RGI9TKVG
��KU�U[PEJTQPQWU���
�HENQUG
(KNG��

152 Chapter 7: Compression

Reading from the
same file

The following code decompresses several images from the same
file. Only one JPEG buffer is needed since, each time
imJpegRead() is called, tables and other controls in the file
overwrite the corresponding controls in the JPEG buffer. If
corresponding controls are not found in the file, the current
controls in the JPEG buffer are used.

�(+.'��(KNG�
�NQPI�,RGI�

���1RGP�VJG�HKNG�HQT�TGCFKPI���
�(KNG���HQRGP
�VGUV�LRI����TD���

���#NNQECVG�C�,2')�DWHHGT���
�KO,RGI#NNQE
6JT������,RGI��

���4GCF�CPF�FGEQORTGUU�VJG�HKTUV�KOCIG���
�KO,RGI4GCF
6JT��(KNG��,RGI��
�KO,RGI&GEQFG
6JT��+OCIG���,RGI�����

���4GCF�CPF�FGEQORTGUU�UWDUGSWGPV�KOCIGU���
�KO,RGI4GCF
6JT��(KNG��,RGI��
�KO,RGI&GEQFG
6JT��+OCIG���,RGI�����

�KO,RGI4GCF
6JT��(KNG��,RGI��
�KO,RGI&GEQFG
6JT��+OCIG���,RGI�����

���(TGG�VJG�,2')�DWHHGT���
�KO,RGI(TGG
6JT��,RGI��

���%NQUG�VJG�HKNG��6JGTG�KU�PQ�PGGF�VQ�HKTUV�U[PEJTQPK\G�UKPEG���
���KO,RGI4GCF
��KU�U[PEJTQPQWU���
�HENQUG
(KNG���

Restart markers 153

Restart markers
When an image is compressed, the Genesis Native Library adds
restart markers to the bit stream of the compressed image. A
restart marker is a special code that signifies that the encoded
bit stream has been padded to the next byte boundary before
the encoding process was restarted. Restart markers allow the
Genesis Native Library to decompress the image using multiple
processors. Files that were compressed by a package without
restart markers can still be decompressed by the Genesis
Native Library, although not as quickly.

By default, the Genesis Native Library places restart markers
after a certain number of rows of data have been encoded (for
lossless compressions) or after a certain number of 8x8 blocks
of data have been encoded (for lossy compressions). If necessary,
you can use imJpegControl() to specify that restart markers be
placed after every n rows of data or after every n 8x8 blocks of
data. This can be useful if you are transmitting the compressed
image over a medium that is susceptible to errors. If an error
does occur and there are no restart markers, the error will
propagate and affect subsequent data. However, if there are
restart markers, the error will be confined to the data between
markers. Therefore, if you specify that, for example, restart
markers be added after every row or after every 8x8 block, an
error will only affect one row or one block of the reconstructed
image.

❖ For a lossy compression with a high compression ratio, too

many restart markers can significantly increase the size of
the compressed image. In this case, you might want to
increase the restart interval, especially if you are not
transmitting the image over a noisy medium.

154 Chapter 7: Compression

JPEG compatibility issues
You might have problems reading Genesis JPEG files with
other software packages, or reading non-Genesis JPEG files
with the Genesis Native Library JPEG functions. There are
several reasons for this.

Color images First, Genesis only supports RGB color images saved in planar
format (each color band is encoded separately). Many other
software packages misinterpret these files and do not decode
or display them properly. This occurs for two reasons:

■ The three color bands might be recognized and decoded, but
they are assumed to be from a YUV color image instead of an
RGB image. Accordingly, an unnecessary color space
conversion is performed before displaying the image, and the
colors come out completely wrong.

■ The image is assumed to be monochrome because it is in
planar form, and is decoded as a 1-band image (as if it were
monochrome).

In addition, when a color image is compressed by another
package, it might not be readable by Genesis for two reasons:

■ The image might be encoded in interleaved format (the color
components are interleaved on a pixel by pixel basis, not by
band). In this case, Genesis will report an error that
interleaved format is not supported.
■ The image might be saved as YUV rather than RGB, possibly
with subsampling of the chrominance (UV) components.
Neither YUV format nor subsampling is supported by
Genesis so, again, an error will be reported.

Compression modes Matrox Genesis supports both lossy and lossless JPEG
compression modes, but many other software packages do not
support lossless mode (it is mainly used in medical imaging,
where often no loss of information is acceptable). So if you
encode an image in lossless mode and save it to disk, you will
likely get an error message when trying to open that file with
another software package.

JPEG compatibility issues 155

Furthermore, Genesis only supports a subset of the many
different lossy JPEG compression modes defined in the full
JPEG specification. Monochrome images encoded with the
baseline DCT method (8 bits per pixel) usually present no
problems and are interchangeable between Genesis and other
software packages.

Larger files for a given
image quality (or lower
quality for same file size)

During the encoding process on Matrox Genesis, the Genesis
Native Library only provides a default encoding table, but other
packages might optimize the tables for a particular image.
Therefore, it is possible that compression on Matrox Genesis
produces larger files for a given image quality (or produces
lower quality when compressing to a file of the same size).
However, Genesis does allow you to load custom tables.

Furthermore, after the image is encoded some extra
information is added to help speed up the decoding process.
This also makes the compressed file slightly larger. However,
you can reduce this extra information by increasing the
IM_JPEG_RESTART_ROWS value using imJpegControl().

JPEG files produced by other packages will not contain the
extra information that Genesis needs, so those files cannot be
decoded at full speed by Genesis. Note that this limitation only
applies to decoding using the’C80; decoding of JPEG lossless
files by the NOA is always done at full speed.

DC Huffman table And finally, one other known problem concerns the default DC
Huffman table. The Genesis default table can handle images

with up to 16-bits per band (for lossless mode); this table is used
even for 8-bit images. This should not cause any problems, but
there are a few lossless decoders that require a smaller
Huffman table for 8-bit images. There is an example presented
in the Huffman encoding subsection of this chapter for defining
a custom DC Huffman table. In fact, that table is a good one to
use on 8-bit images when portability is important.

156 Chapter 7: Compression

Chapter 8: Generating
graphics

This chapter describes the graphics functions available
with the Genesis Native Library.

158 Chapter 8: Generating graphics

Graphics
The Genesis Native Library contains a set of graphic functions.
These functions can draw into any 8-, 16-, or 32-bit integer
buffer, and drawing will be clipped to fit the buffer. Note,
however, that if you have the display section, you can instead
draw into the overlay buffer using the on-board
high-performance MGA-2064W graphics accelerator, and the
graphics functions provided by the Host operating system.
Although these functions are not portable, using the MGA is
suitable for graphic-intensive applications, because of the
increase in performance.

Available graphics
functions

With the Genesis Native Library, you can:

■ Draw rectangles, using imGraRect() or imGraRectFill().

■ Draw arcs, using imGraArc() or imGraArcFill().

■ Draw lines, using imGraLine().

■ Plot a series of points, using imGraPlot().

■ Write text, using imGraText().

imGraArc()

imGraText()

Good Morning!

imGraRectFill()
You can also fill an object, using imGraFill().

imGraArcFill()

imGraLine()

imGraRect()

imGraPlot()

Generating graphics 159

Generating graphics
When you generate graphics, you have to specify the drawing
color using the IM_GRA_COLOR field. The drawing color is the
color that is used to draw, plot, write, or fill.

Graphics and color
buffers

If you are generating graphics into a multi-band buffer, the
same drawing color is normally used in all bands. However, for
8-bit buffers with two to four bands, you can specify a different
drawing color for each band, using the IM_GRA_COLOR_MODE
field. In this case, the least-significant byte of the specified color
is used for the first band, the next byte is used for the second
band, etc.

XOR option Certain graphics functions give you the option of generating
graphics in the drawing color, or in the colors that result from
performing an XOR between this color and the pixels of the
destination buffer. The latter option is available so that you can
later remove the graphic by calling the function again.
Note that, when using the XOR option, the graphic will usually
be most visible if the drawing color is set to 0xFFFFFFFF.

To use the XOR option, set the IM_GRA_DRAW_MODE field.

A rectangle is drawn using
imGraRect(), with the XOR
option set. The drawing
color is 0xFFFFFFFF.

The rectangle can be removed
by again calling imGraRect()
with the XOR option (other options
and parameters should also
be the same as they were in
the first call).

160 Chapter 8: Generating graphics

Plotting
You can plot a series of points using imGraPlot(). This can be
used, for example, to draw the outline of some object or to plot
a histogram.

When you use imGraPlot(), you need to specify a
one-dimensional buffer containing the x-coordinates of the
points and another containing the y-coordinates of the points.
imGraPlot() can connect all the points with a single line,
connect each pair of points with a line, or simply draw a dot at
each point.

Note that imGraPlot() plots a series of lines much faster than
separate calls to imGraLine().

Scaling and offsetting
points

When you use imGraPlot(), you can scale and offset the x and
y points by specified factors. This could be used, for example,
to plot a histogram with the histogram origin ((0, 0)) at the
bottom left of a buffer. To do so, specify a y scale factor of -1.0
and a y offset equal to: the buffer height - 1 (see below).
(0, 0) (0, 0)

1 4 6 8 5 2 6 4 2 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

7 4 2 0 3 6 2 4 6 8
y-buffer

(histogram results)
scale = -1.0
offset = 8

x-buffer
scale = 1.0
offset = 0
(default)

(effective origin)

Generating graphics 161

Plotting a histogram The following code generates the histogram of an image, and
then plots it right-side up (that is, with its origin at the bottom
left of a buffer). The buffer in which to plot has dimensions
SizeX by SizeY. The y scale ensures that histogram results will
fit into this buffer, while the x scale ensures that the entire
width of this buffer is used.

Note that this code is part of the process.c program and requires
only the basic Genesis hardware. See Appendix B for the
complete process.c program.

�NQPI�:$WH�����������������������$WHHGT�YKVJ�:�XCNWGU�QH�RQKPVU���
�NQPI�;$WH�����������������������$WHHGT�YKVJ�;�XCNWGU�QH�RQKPVU����
�NQPI�/CZ8CN���������������������/CZKOWO�XCNWG�KP�JKUVQITCO���
�FQWDNG�%QGH=�?���]��������_�����%QGHHKEKGPVU�HQT�TCOR���

���#NNQECVG�DWHHGTU�HQT�VJG�:�CPF�;�XCNWGU�VQ�RNQV���
�KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���:$WH��
�KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���;$WH��

���;�RQKPVU�CTG�VJG�JKUVQITCO�TGUWNVU���
�KO+PV*KUVQITCO
6JTGCF��5TE$WH��;$WH��+/A&'(#7.6�����

���:�RQKPVU�CTG�LWUV�UGSWGPVKCN�PWODGTU���
�KO)GP�F
6JTGCF��:$WH��+/A21.;01/+#.�������������%QGH�����

���(KPF�VJG�OCZKOWO�XCNWG�KP�VJG�JKUVQITCO���
�KO+PV(KPF'ZVTGOG
6JTGCF��;$WH��;$WH��+/A/#:A2+:'.�����
�KO$WH)GV(KGNF
6JTGCF��;$WH��+/A4'5A/#:A2+:'.���/CZ8CN��
��
���5ECNG�RNQV�VQ�HKV�VJG�KOCIG�
WUG�:$WH�CU�VJG�EQPVTQN�DWHHGT����
�KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A5%#.'A;��
FQWDNG���
5K\G;��������/CZ8CN��
�KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A1((5'6A;��5K\G;������
�KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A5%#.'A:��
FQWDNG��5K\G:��������
�KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A%1.14�������

���2NQV�VJG�JKUVQITCO���
�KO$WH%NGCT
6JTGCF��&UV$WH��������

�KO)TC4GEV
6JTGCF�����&UV$WH��������5K\G:����5K\G;����
�KO)TC2NQV
6JTGCF��:$WH��&UV$WH��:$WH��;$WH�������
�KO)TC6GZV
6JTGCF�����&UV$WH�����������*KUVQITCO����

162 Chapter 8: Generating graphics

Filling
The imGraFill() function fills a connected region with a
specified color. A connected region is an area of touching pixels
that have the same value (horizontally and vertically adjacent
pixels are considered touching; diagonally adjacent pixels are
not). To specify the region to fill, you have to specify the position
of a pixel within the region (called a seed pixel).

Writing text
When using imGraText(), you need to specify the color with
which to write the text (called the foreground color), as well as
the x and y coordinates at which to start writing (the text is
written from the top-left corner of these coordinates). You also
need to specify the background against which to write the text.
The background can be a specific color or can be transparent

Seed pixel

Filling color = 0
(in which case only the strokes of the characters appear).

When writing text, you can use a small, medium, or large
version of the default font; you can also scale the size of
characters in the x and y directions by specified factors.

H i s t o g r a m

foreground color = 0
background color = 0xFFFFFFFF
(x, y) = (1, 1)

H i s t o g r a m

foreground color = 0
background color = transparent
(x, y) = (1, 1)

Chapter 9: Buffers and buffer
fields

This chapter discusses buffers. It shows you how to allocate
a buffer, how to use control buffers, child buffers, and tag
buffers, and how to copy buffer data.

164 Chapter 9: Buffers and buffer fields

Data buffers
The processing functions of the Genesis Native Library operate
on and store results in buffers. Before processing a buffer, you
must allocate it. When allocating a buffer, you must give it a
certain width and height, a certain number of bands, and a
specific data type. You can allocate buffers on-board (in
processing or display memory) or on the Host.

Fields A buffer can contain control fields. Control fields are used
because some functions have so many options that it is more
practical to store these options in one place (as control fields in
a buffer) than to have these options as parameters of the
function. When a buffer is used for this purpose, it is referred
to as a control buffer.

Child buffers A child buffer refers to a rectangular region within a buffer or
to a specific band of a multi-band buffer. You can therefore
allocate a child buffer to restrict processing to a specific region
or to a specific band of a buffer.

Copying buffer
data

You can copy data between buffers. This is an efficient operation
no matter where the source and destination buffers are located.

Tag buffers When you copy or grab data, you can avoid overwriting regions
of the destination buffer by using a tag buffer. A tag buffer
specifies which pixels of the destination buffer to leave as they
are, and which pixels to overwrite.
Transferring buffer
data

You can transfer data between a buffer and an array in Host
memory, or between a buffer and a file.

Mapping a buffer You can use imBufMap() to map a buffer into Host memory.
This allows you to access a buffer from the Host.

Creating a buffer You can use imBufCreate() to create a buffer out of memory that
has already been allocated. Among other things, this allows you
to operate on memory that was not allocated by Genesis (such
as memory on another board).

Allocating buffers 165

Allocating buffers
You must allocate a buffer before you can use it in a function
call. Allocate a buffer using the imBufAlloc(), imBufAlloc2d(),
or imBufAlloc1d() function. imBufAlloc1d() allocates a
one-band buffer with a certain width; imBufAlloc2d() allocates
a one-band buffer with a certain width and height; while
imBufAlloc() allocates a buffer with a certain width and/or
height, and with one or more bands. (imBufAlloc() can therefore
be used to allocate any type of buffer; the other functions are
provided for ease of use). Once you finish using a buffer, you
should free the memory allocated to it, using imBufFree().

Buffers are quite general purpose and can hold a variety of data.
For example, image LUTs, convolution kernels, and histogram
results are all stored in buffers of the appropriate size and data
type.

Note that some processing functions will not operate directly
on multi-band buffers. However, you can process a specific
component of a color image.

Color band 0
Color band 1

Color band 2

RGB
When you allocate a buffer, in addition to specifying its width,
height, and number of bands, you must specify:

■ Its data type.

■ The memory bank in which to allocate the buffer.

image buffer

166 Chapter 9: Buffers and buffer fields

Data type
Supported data types are: 1-bit packed binary; 8-, 16-, and
32-bit integer (signed and unsigned); 24-bit packed RGB; and
32- and 64-bit IEEE floating-point. Not all functions can
operate on all data types. For example, the functions of the
integer processing module can generally operate only on
integer-type buffers. When a function does not support a certain
data type, you can use imBinConvert(), imFloatConvert(), or
imIntConvert() to convert the source buffer to the required type.

Memory location

When you call imBufAlloc...(), you can allocate the buffer
on-board (in processing or display memory) or on the Host. If
you allocate the buffer on-board, it will reside on the same node
as the thread which executed the buffer allocation function.

Buffers of a processing
function

The source buffers of a processing function carried out by the
’C80 or NOA must be located in processing memory. In addition,
they must reside on the same node as the thread which will
execute the processing function. That is, these buffers must
reside in local processing memory. If these conditions are not
met, the results of the processing function will be undefined
because you can not read from a non-local buffer. In other
words, if you use a non-local buffer as a source buffer in a
processing operation, the operation might appear to work, but
the results will not be reliable.

The destination buffer of a processing function can be located

anywhere, except when the operation uses the NOA. However,
for maximum efficiency, it should also be in local processing
memory. Therefore, if you want to display the results of a
processing function, you should write the results to a buffer in
processing memory and then copy that buffer to a display
buffer, rather than using a display buffer as the destination of
the processing function.

❖ If the processing function is iterative, the destination buffer
must be in local processing memory because an iterative
function also reads from the destination buffer.

Control buffers 167

When the operation uses the NOA, not only is it inefficient to
process buffers that are not in local processing memory (buffers
in display memory, Host memory, or processing memory on
another node), their use is prohibited.

When a processing operation is carried out by the NOA, the
destination buffer must be in local processing memory. This
restriction comes about because the NOA can only access
buffers that are located on the same node as the thread which
will execute the processing function.

The buffer location restrictions discussed above do not apply to
the buffer copying functions (imBufCopy(), imBufCopyVM(),
and imBufCopyPCI()). In addition, you can use non-processing
functions, such as imBufInquire() or imBufGetField(), on any
buffer, regardless of its location.

Note that if you cannot send a processing function to a thread
that resides on the same node as the source and destination
buffers, you should first copy the buffers to the appropriate
node (using imBufCopy()).

Control buffers
A control buffer refers to a buffer whose control fields are used
to specify certain options of a function. The Genesis Native
Library uses control buffers because some functions have so
many options that it is impractical to have these options as

parameters of the function. Instead, you specify the options you
want performed by adding the required control fields to a buffer
and passing this buffer to the function.

Fields Each control field (or simply "field") holds a single value
(integer or floating-point). A field is identified by a unique "tag".
The tag itself is just an integer value.

Most fields have predefined tags, but you can add your own
fields as long as you use tags that don’t conflict with those used
by the Native Library.

168 Chapter 9: Buffers and buffer fields

Managing
control buffers

A control buffer can store fields that apply to many different
functions because a function will only use those fields that
apply to it. In addition, you can use any type of buffer as a
control buffer. You can even use the buffer that a function is
processing as the function’s control buffer. Therefore, when you
need a control buffer, you can avoid allocating a new buffer by
using a previously allocated buffer.

If you do need buffers solely to be used as control buffers, you
should allocate these buffers with imBufAllocControl(). This
function allocates a buffer that can only hold fields, not data,
so it can save you memory.

Regardless of which buffers you use as control buffers, you
should always set up your control buffers well before you use
them, so that, for example, you are not adding fields to a buffer
within a time-critical loop (this can be a significant overhead).

Managing fields You add a new field to a buffer or modify an existing field using
imBufPutField(). In addition, you remove a field from a buffer
using imBufRemoveField() and copy fields between buffers
using imBufCopyField(). You can read the value of a field using
imBufGetField(), imBufGetFieldDouble(), or
imBufGetNextField().

Defaults Most fields have default values, so if a field is not added to a
control buffer or if a control buffer is not passed to the function,
the function will use these default values. Fields that do not
have default values only affect the function if you add them to

the control buffer.

Reading results Some processing functions (specifically those that produce a
single value as a result, rather than a whole image) write their
result to a field in the destination buffer. You read back the
result using imBufGetField().

Child buffers 169

Child buffers
A child buffer refers to a specified rectangular region of interest
within a buffer or to a specific band of a multi-band buffer. The
buffer from which a child buffer is created is called its parent
buffer.

A child buffer is considered a data buffer in its own right and
can be used in the same way as any other buffer. However, no
new memory is allocated to a child buffer. Therefore, any
changes made to a parent buffer also affects its child buffer(s),
and vice-versa.

Child buffers are useful when you want to restrict processing
to a portion of a buffer, or when you want to copy/grab into a
portion of a buffer.

Child buffers are especially important with display buffers
since you usually want to know exactly where on the display
the buffer is allocated. In fact, you cannot display an image at
all until you have made a child display buffer to hold a copy of
the image you want to see.

Allocating child
buffers

Allocate child buffers using imBufChild() (this allocates a child
buffer from a region of a buffer) or imBufChildBand() (this
allocates a child buffer from a band of a multi-band buffer). You
can move and/or resize child buffers, allocated with
imBufChild(), using the imBufChildMove() function. Note that
it is more efficient to move an existing child buffer than to free

it and allocate a new one.

170 Chapter 9: Buffers and buffer fields

Copying buffer data
The Genesis hardware allows data to be copied efficiently
between buffers, no matter where they are located. You can use
one of the following functions:

■ imBufCopy(). This function uses whatever hardware can
perform the copy the fastest.

■ imBufCopyPCI(). This function uses the PCI bus.

■ imBufCopyVM(). This function uses the VMChannel.

Note that the above functions copy only image data, and not
any buffer fields that might be present. To copy a buffer’s fields,
use imBufCopyField().

Formatting options Both imBufCopyPCI() and imBufCopyVM() can perform a
variety of formatting operations on the data as it is copied (such
as zooming and packing). However, these functions depend on
the physical path involved, so you need to understand your
system’s architecture to exploit their capabilities. See the
section Using the advanced copy functions.

More on imBufCopy() When you use imBufCopy(), you don’t have to worry about the
physical path involved because the function will use whatever
path is available. imBufCopy() is a very important part of the
library because it performs the following common functions:

■ Copy an image from processing to display memory.
■ Copy an image from an on-board buffer to a buffer in Host
memory in the fastest possible way (and without tying up the
Host CPU during the transfer).

■ Copy an image from one processing node to another in a
multi-processing system.

In addition to the above, imBufCopy() automatically copies all
bands of a multi-band buffer, if the source and destination
buffers have the same number of bands. If the source buffer is
1-band and the destination is a 3-band display buffer,
imBufCopy() replicates the source buffer in all 3 bands. This
allows you to display a 1-band (grayscale) image when the
display is in color mode.

Using the advanced copy functions 171

Using the advanced copy functions
This section discusses some of the formatting options available
to imBufCopyPCI() and imBufCopyVM(). Note that, when data
is copied over the VMChannel, two (or more) VIAs are involved.
When data is copied over the PCI bus, only one VIA is involved.
If you use imBufCopyVM(), some options only apply to the
transmitting VIA, and some only apply to the receiving VIA. If
you use imBufCopyPCI(), some options only apply if the PCI
bus is the source of the data (that is, if the VIA is reading data
from the PCI bus and writing it to memory), and some only
apply if the PCI bus is the destination (that is, if the VIA is
reading data from memory and writing it to the PCI bus).

For a complete list of the options available to imBufCopyPCI()
and imBufCopyVM(), including when these options apply, see
the Genesis Native Library Command Reference.

If you use imBufCopyPCI() or imBufCopyVM(), you should be
familiar enough with the system architecture to ensure that
the copy can actually be performed over the specified path. For
example, if you use imBufCopyPCI(), you should be sure that
the source and destination buffers of the copy are actually
connected by the PCI bus. If they are not, the copy will not be
performed. You should also be familiar enough with the system
architecture to know which is the transmitting VIA, which is
the receiving VIA, and whether the PCI bus is the source or
destination of the data.
The diagram on the next page indicates the path(s) by which
various memory banks are connected. This can be used to
determine how two buffers are connected, which is the receiving
VIA, etc. Note, for example, that the VMChannel cannot be
used to copy between different systems or to the Host. However,
it can be used to copy between different boards in the same
system.

172 Chapter 9: Buffers and buffer fields

P
ro

c
e

s
s
in

g
M

e
m

o
ry

H
o

s
t

M
e

m
o

ry

s
in

g
ry

P
ro

c
e
s
s
o
r

b
o
a
rd

P
ro

c
e

s
s
in

g
M

e
m

o
ry

O
p

ti
o

n
a

l
D

is
p

la
y

M
e

m
o

ry

S
e
c
o
n
d

m
a
in

b
o
a
rd

S
y
s
te

m
0

S
y
s
te

m
1

o
a

rd

s

"B
"

o
r

M
o

n
o

fr
a

m
e

b
u

ff
e

r

"R
"

fr
a

m
e

b
u

ff
e

r

"G
"

O
v
e

rl
a

y
fr

a
m

e
b

u
ff
e

r

Analogdisplay
output

P
C

I
I/
F

F
la

s
h

B
IO

S

b
u

s

R
A

M
rt I
I/
F

O
p
ti
o
n
a
l

d
is

p
la

y
s
e
c
ti
o
n

R
A

M
D

A
C

P
ro

c
e

s
s

o
r

B
o

a
rd

P
C

I
I/
F

H
o

s
t

3
2

-b
it

P
C

I
lo

c
a

l
b

u
s

P
C

I-
to

-P
C

I
b

ri
d

g
e

S
e
c
o
n
d
a
ry

3
2
-b

it
P

C
I
b
u
s

P
C

I
I/
F

V
M

'C
8
0

p
o
rt

V
IA

P
C

I
I/
F

V
M

'C
8
0

p
o
rt

V
IA

S
D

R
A

M
b

u
ff
e

r
S

D
R

A
M

b
u

ff
e

r

'C
8
0

N
O

A

'C
8
0

N
O

A

V
M

C
h

a
n

n
e

l

o
f

v
ie

w
in

g
,

th
e

g
ra

b
m

o
d

u
le

a
n

d
g

ra
b

p
o

rt
s

a
re

n
o

t
s
h

o
w

n
.

P
C

I
b

u
s

V
M

C
h

a
n

n
e

l

P
ro

c
e

s
M

e
m

o

O
p

ti
o

n
a

l
D

is
p

la
y

M
e

m
o

ryM
a
in

b
o
a
rd

M
a

in
B

P
C

I
I/
F

H
o

s
t

3
2

-b
it

P
C

I
lo

c
a

l
b

u

P
C

I-
to

-P
C

I
b

ri
d

g
e

S
e

c
o

n
d

a
ry

3
2

-b
it

P
C

I

P
C

I
I/
F

V
M

'C
8
0

p
o
rt

P
ri
m

a
ry

V
IA

W p
o

P
C

V
M

D
is

p
la

y
V

IA

S
D

R
A

M
b
u
ff
e
r

'C
8
0

N
O

A

V
M

C
h

a
n

n
e

l F
o

r
e

a
s
e

*

Using the advanced copy functions 173

Tag buffers
When you copy data, you can avoid overwriting regions of the
destination buffer by using a tag buffer. A tag buffer specifies
which pixels of the destination buffer to leave as they are, and
which pixels to overwrite. This is useful when you want to write
into a non-rectangular region of a buffer (to write into a
rectangular region of a buffer, you could always allocate a child
buffer and then copy into that child buffer). Note that using a
tag buffer will not affect the speed at which the copy function
is performed.

How tag buffers work When you supply a tag buffer to a copy function (using the
IM_CTL_TAG_BUF field), a pixel of the destination buffer is
overwritten only if its corresponding pixel in the tag buffer has
the value 0; if its corresponding pixel has the value 1, it is not
overwritten.

Tag buffer
requirements

A tag buffer must be of type binary, have the same size as the
destination buffer, and be in the same memory bank as the
destination buffer. It must have either a single band or the same
number of bands as the destination buffer. If the tag buffer is
single band and the destination buffer is multi-band, the tag
buffer will be applied to each band of the destination buffer.

In addition to the above, the first pixel in the tag buffer must
be byte-aligned. Binary buffers are byte-aligned when
allocated, so the only way to violate this restriction is to use a
child buffer of a binary buffer, with an incorrect alignment. If

you use a child buffer as your tag buffer, the Xstart parameter
of imBufChild() should be a multiple of 8 when you create the
child buffer.

❖ The byte-alignment restriction does not apply to tag buffers
that are used with imBufPack().

174 Chapter 9: Buffers and buffer fields

Creating tag buffers In general, you create a tag buffer by processing an integer
buffer and then converting that buffer to binary (using
imBinConvert()). Depending on the region of the destination
buffer that you want to protect, there are various processing
functions you can use. For example, you can use the graphic
functions to draw a required pattern. Note that certain
processing functions can be performed directly on binary
buffers, so you might be able to avoid processing integer buffers
(which would be more efficient).

Zooming and subsampling
You can subsample or zoom the copied data (using the
IM_CTL_SUBSAMP_X, IM_CTL_SUBSAMP_Y, IM_CTL_ZOOM_X,
and IM_CTL_ZOOM_Y fields). Zooming in the x direction
replicates each column n times; zooming in the y direction
replicates each row n times. Subsampling in the x direction
causes only every nth column to be written to the destination
buffer (starting with the first column); subsampling in the y
direction causes only every nth row to be written to the
destination buffer (starting with the first row).

Extracting bytes
When the pixel depth is more than 8 bits, you can choose to copy
only 8 contiguous bits to the destination buffer (using the
IM_CTL_BYTE_EXT field). This is mainly useful when you are
copying to the display, since the display is limited to 8 bits per
pixel. Note that the most significant 8 bits are usually copied.
Swapping bytes
Sometimes, packed color images are stored as BGR instead of
RGB (or BGRa instead of RGBa). You can swap the 1st and 3rd
bytes of such images (using the IM_CTL_BYTE_SWAP field). The
packed images must be in 24-bit or 32-bit format. Note that if
the destination buffer is 3x8-bit, the copy function will
automatically separate the packed color image. Therefore,
packed BGR or BGRa images can be corrrectly displayed by
swapping bytes while copying to a 3x8-bit display buffer.

Note that the "a" in BGRa refers to any extraneous data that
the packed BGR image might contain.

Using the advanced copy functions 175

Reversing the direction of the copy
You can copy the data right to left instead of left to right, and
bottom to top instead of top to bottom (using the IM_CTL_DIR_X
and IM_CTL_DIR_Y fields). This can be useful if your optical
set-up has delivered images that are horizontally and/or
vertically reversed (it could be that a mirror was involved or
that parts passed under a line scanner from bottom to top).

Expanding RGB555 or 565 formats

With the Genesis Native Library, you can expand 16-bit color
images (either in RGB555 or RGB565 format) to 3x8-bit (using
the IM_CTL_FMTCVR field). If you want to display such images
in color, you must use this option when copying to the display
(the display is limited to 8 bits per pixel per band).

Write masks
A write mask can be used to protect certain bit planes of the
destination buffer (using the IM_CTL_WRTMSK field). This
option can only be used if you are copying to the display. It can
be useful, for example, if you want to prevent annotation in
certain bit planes from being overwritten. Note, however, that
Matrox Genesis contains an overlay buffer, so you would
normally not annotate the main display buffer. Instead, you
would draw in the overlay buffer and enable keying (see
Chapter 11 for details).

If you do use a write mask, you must specify the required value
using 24 bits. The low 8 bits of this value applies to the red

buffer, the next 8 bits to the green buffer, and the high 8 bits to
the blue buffer.

176 Chapter 9: Buffers and buffer fields

Reducing overhead
In order to reduce overhead, you can skip programming of most
VIA registers when you perform the copy (use the
IM_CTL_SETUP field). This is safe if the only difference from
the previous copy is the address of the source and/or destination
buffer. This is typically the case in a real-time, double-buffered
application, where two (or more) buffers are used over and over
again, and all other copy parameters stay the same.

Note that, if any copy parameter (except the address of the
source or destination buffer) is different, you should not skip
programming of any VIA register.

Specifying a VIA

This option only applies to imBufCopyPCI().

When a copy is performed over the PCI bus, only a single VIA
is involved. If the source and destination buffers are both
on-board, this VIA could either be the one local to the source
buffer or the one local to the destination buffer. You can specify
which VIA using the IM_CTL_VIA field. This can be useful if you
are performing several transfers in parallel since, for the
transfers to actually occur in parallel, you might need to ensure
that specific VIAs be used. Unless you are performing transfers
in parallel, however, it normally does not matter which VIA is
used.

Using the advanced copy functions 177

Writing a rectangular region
This option only applies to imBufCopyVM().

With the Genesis Native Library, you can choose to write a
rectangular subset of the source buffer to the destination buffer.
You would normally do this by allocating a child buffer from the
source buffer, and then copying that child buffer. However,
there might be cases when you don’t want all of the transmitted
data written to the destination buffer. For example, if you have
multiple nodes and want each to process a different part of an
image, you can use one VIA to transmit the image and several
others to receive just a portion of the image.

To define the region to write, use the IM_CTL_START_X,
IM_CTL_START_Y, IM_CTL_STOP_X, and IM_CTL_STOP_Y
fields.

Avoiding display artifacts

This option only applies to imBufCopyVM().

When copying to the display, you can force the copy to be
synchronized with updates of the display, in order to avoid
visible artifacts such as screen tearing. To do so, use the
IM_CTL_DISPLAY_SYNC field. Note that, by default, the copy is
performed as soon as possible. If you set the
IM_CTL_DISPLAY_SYNC field, the copy will be delayed, if
necessary, in order to avoid visible artifacts.

Continuous copying
This option only applies to imBufCopyVM().

With the Genesis Native Library, you can have the source buffer
continuously copied to the destination buffer (using the
IM_CTL_COUNT field), until you call imThrHalt().

This option could be used to maintain a continuous display of
a processing buffer. However, this would be very inefficient,
because the buffer would be copied much more frequently than
necessary (therefore wasting memory bandwidth) and the VIAs
involved in the copy would be prevented from doing any other
copies (which could interfere with other applications). It is
much better to copy the buffer only when it changes.

178 Chapter 9: Buffers and buffer fields

Copying to/from the VMChannel
This option only applies to imBufCopyVM().

With the Genesis Native Library, you can copy data to/from a
specified VM stream. This is useful when you have multiple
nodes and want to broadcast the same image to these nodes.
You specify the VM stream using the IM_CTL_STREAM_ID field.

If you are receiving data from an interlaced VM stream, you
can specify that the data be written using progressive scanning
(set the IM_CTL_ADDR_MODE field to IM_PROGRESSIVE). This
can be useful if you are receiving just one field from the stream
and want the lines written sequentially into the destination
buffer.

❖ You can write from two VM streams to two buffers
simultaneously, by using imDigGrab() to perform the other
transfer.

External VM devices The IM_CTL_STREAM_ID field can also be used if you have an
external (non-Matrox) VM device attached to the VMChannel
and want to transfer data to or receive data from this device.
You must know the VM stream ID being used by the device and
pass this ID to the IM_CTL_STREAM_ID field. Any other
formatting options that are specified (such as subsampling and
zooming) will still be performed.

Transferring buffer data to the Host 179

Transferring buffer data to the Host
Between a buffer
and an array

You can transfer data from an array in Host memory to a buffer
using the imBufPut(), imBufPut1d(), or imBufPut2d()
functions. imBufPut() writes data to the entire buffer, while
imBufPut1d() and imBufPut2d() write data to a specified block
of the buffer. If the buffer has more than one band, they are all
written into, one after another. The array should be large
enough to fill the buffer and be of the same data type as the
buffer.

You can transfer data from a buffer to an array in Host memory
using the imBufGet(), imBufGet1d(), or imBufGet2d()
functions. imBufGet() reads data from the entire buffer, while
imBufGet1d() and imBufGet2d() read data from a specified
block of the buffer. If the buffer has more than one band, each
band is read, one after another. The array should be large
enough to hold the data and be of the same data type as the
buffer.

❖ Note the differences between imBufPut/Get() and
imBufCopy(). imBufCopy() is the fastest way to transfer data
between Host and on-board memory because the VIA drives
the transfer without involving the Host CPU. However,
imBufCopy() can only work with Host buffers allocated with
imBufAlloc...(). On the other hand, imBufPut/Get() can work
with any type of Host memory, but are somewhat slower than
imBufCopy() and tie up the Host CPU (since the Host CPU
drives the transfer).
Between a buffer
and a file

You can transfer data from a file to a buffer using the
imBufLoad() or imBufRestore() function. imBufLoad() writes
data into an existing buffer (the buffer should be large enough
to hold the data, and have the same number of bits per pixel as
the file); imBufRestore() writes data into an automatically
allocated buffer.

You can transfer data from a buffer to a file using the
imBufSave() function.

180 Chapter 9: Buffers and buffer fields

Mapping a buffer
With the Genesis Native Library, you can map a buffer into Host
memory, using imBufMap(). This gives you a pointer to the
buffer data so that you can access it directly from the Host (see
the example below).

In addition to the pointer to the buffer, imBufMap() returns:

■ The buffer pitch. The pitch is needed to access a specific line
of a two-dimensional buffer. For example, the address of a
pixel 3 lines down from "addr" would be: (addr + 3*pitch).
Note that a buffer’s pitch is not necessarily the same as its
width in bytes (especially when the buffer is a child buffer).

■ The number of consecutive lines mapped. This is equal to:
(# of lines in the buffer) - (# of the first line mapped).

An example The following code draws the results of a histogram into a
buffer, from the Host. It performs a histogram on an image,
maps the buffer in which to draw into Host memory, and then
draws into this buffer from the Host.

Note that this code is part of the process.c program and requires
only the basic Genesis hardware. See Appendix B for the
complete process.c program.

�NQPI�*KUV$WH���������������*KUVQITCO�TGUWNV�DWHHGT���
�NQPI�*KUV8CNU=���?���������*QUV�CTTC[�VQ�JQNF�JKUVQITCO�TGUWNV���
�WPUKIPGF�EJCT��#FFTGUU�����*QUV�CFFTGUU�QH�HKTUV�RKZGN�KP�KOCIG����
�NQPI�2KVEJ�����������������/GOQT[�RKVEJ�QH�KOCIG�DWHHGT���
�NQPI�0.KPGU����������������0WODGT�QH�NKPGU�OCRRGF�KP�*QUV�OGOQT[���

�NQPI�/CZ8CN����������������/CZKOWO�XCNWG�KP�JKUVQITCO���
�WPUKIPGF�EJCT��2QKPVGT�����2QKPVGT�HQT�FKTGEV�CEEGUU�VQ�DWHHGT���

���#NNQECVG�JKUVQITCO�TGUWNV�DWHHGT���
�KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���*KUV$WH��

���2GTHQTO�C�JKUVQITCO�CPF�TGCF�KV�DCEM�VQ�VJG�*QUV���
�KO+PV*KUVQITCO
6JTGCF��5TE$WH��*KUV$WH��+/A&'(#7.6�����
�KO$WH)GV
6JTGCF��*KUV$WH��*KUV8CNU��

���(KPF�OCZKOWO�XCNWG�KP�JKUVQITCO���
�KO+PV(KPF'ZVTGOG
6JTGCF��*KUV$WH��*KUV$WH��+/A/#:A2+:'.�����
�KO$WH)GV(KGNF
6JTGCF��*KUV$WH��+/A4'5A/#:A2+:'.���/CZ8CN��

Mapping a buffer 181

���/CR�FGUVKPCVKQP�DWHHGT�KPVQ�*QUV�OGOQT[���
�KO$WH/CR
6JTGCF��&UV$WH��������
XQKF�����#FFTGUU���2KVEJ���0.KPGU��

���%NGCT�VJG�DWHHGT�DGHQTG�FTCYKPI���
�KO$WH%NGCT
6JTGCF��&UV$WH���������

���9CKV�HQT�VJG�ENGCT�VQ�HKPKUJ�DGHQTG�CEEGUUKPI�VJG�DWHHGT���
�KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&���

���&TCY�VJG�JKUVQITCO�FKTGEVN[�KPVQ�C�DWHHGT���
�HQT�
Z������Z��������Z

������FTCY�KP�C����Z����TGIKQP���
�]
����%CNEWNCVG�*QUV�CFFTGUU�QH�GCEJ�RQKPV�VQ�UGV���
�[���������
*KUV8CNU=Z?���������/CZ8CN��
��2QKPVGT���#FFTGUU�
�
[���2KVEJ��
�Z�

����9TKVG�FKTGEVN[�VQ�VJG�DWHHGT���
���2QKPVGT��������
�_

182 Chapter 9: Buffers and buffer fields

Creating a buffer from memory already
allocated
You can use imBufCreate() to create a buffer out of memory that
has already been allocated. This memory can be:

■ From one or more existing Genesis buffers. Creating a buffer
out of Genesis memory can be used to support multiple live
grabs on the display (see below for details).

■ Contiguous physical memory. Creating a buffer out of
contiguous memory is primarily useful when you need to copy
a buffer to memory on another board.

■ Virtual memory (for example, memory allocated with
malloc()). Creating a buffer out of virtual memory allows you
to use the buffer for DMA transfers. You must lock the buffer
in physical memory (using imBufControl()) before
attempting to copy it. The new buffer can only be used by
imBufCopy() or imBufCopyPCI(), not by any other function.

Note that imBufCreate() never allocates memory. In addition,
when a created buffer is freed using imBufFree(), no memory is
freed.

Multiple live grabs on
the display

When grabbing from synchronized monochrome cameras (or
from a color camera), you can view the input from each
monochrome camera (or view each color band) in a separate
display buffer. To do so, allocate a child buffer on the display,
using imBufChild(), for each monochrome camera or color

band. Then, use imBufCreate() to create a multi-band buffer
from these child buffers. When you grab using the ID of the
created buffer, the data from each monochrome camera or color
band will be displayed in a separate buffer.

Chapter 10: Grabbing
images

This chapter discusses how to grab images, and other
related topics.

184 Chapter 10: Grabbing images

Grabbing

To grab an image with the Genesis Native Library, you must
first allocate a camera definition that matches your camera
type, using imCamAlloc(). If you have more than one digitizer
in your system, you must also allocate the digitizer with which
to grab, using imDigAlloc(). You then pass the camera
definition identifier and if required, the digitizer identifier, to
the grab command, imDigGrab().

Note that the buffer in which to grab can be located anywhere
in your system (in processing or display memory on any node).

Controlling the grab There are several ways you can control how an image is
grabbed. You can:

■ Specify a number of options (such as zooming and
subsampling) through the control buffer passed to
imDigGrab(). These options are performed by the VIA, as it
is the VIA that takes data from the grab port and writes it to
memory. These options are therefore independent of the
digitizer or the camera type.

■ Change the settings of a particular camera definition, using
imCamControl().

■ Program the digitizer directly, using imDigControl().

imCamControl() vs. imCamControl() and imDigControl() basically produce the

imDigControl() same results. However, with imCamControl(), the digitizer is

programmed to a specific camera definition only when a grab
is issued with the identifier of that camera definition;
imDigControl() programs the digitizer directly. Therefore, you
should avoid using imDigControl() if you want to share the
digitizer between several applications.

Grabbing 185

The grab module
The grab module of the Genesis offers flexible, high-resolution,
high-speed acquisition. It features four analog video input
channels, for standard or non-standard video, four 8-bit analog
to digital converters, a look-up table (LUT) for each channel,
and a 32-bit digital interface (TTL/RS-422).

Digital
Interface

(TTL/RS-422)

8

8

8

8Gain
Low pass

filter

8-bit
A/D

8

8

8

8

Gain
Low pass

filter

8-bit
A/D

Gain
Low pass

filter

8-bit
A/D

Gain
Low pass

filter

8-bit
A/D

2

2 2

2

32

H,V&C sync

clock in
clock out

valid

user in
user out

trigger

exposure

to processing
section

Programmable
Sync

Generator

Sync Stripper/
PLL

Timer Trigger

look-up
table

look-up
table

look-up
table

look-up
table

Black
reference

White
reference

c
o
n
n
e
c
t
o
r

m
u
l
t
i
p
l
e
x
e
r

Analog
video
input

Analog
video
input

Analog
video
input

Analog
video
input
For more details on the grab module, including sampling rates,
see the Genesis Installation and Hardware Reference.

32
data (TTL only)

186 Chapter 10: Grabbing images

VIA options of the grab command

When you call imDigGrab(), you can specify a number of options
through the control buffer passed to this function. All these
options are independent of the digitizer section or the camera
type; they are carried out by the VIA local to the destination
buffer of the grab. Therefore, if you are grabbing to two or more
buffers at the same time, you can specify different options for
each grab.

Most of the options available to imDigGrab() are also available
to imBufCopyVM() and/or imBufCopyPCI(). These common
options are:

■ Tag buffers.

■ Zooming and subsampling.

■ Byte extraction.

■ Reversing the direction of the grab.

■ Write masks.

■ Reducing overhead.

■ Grabbing a rectangular region.

■ Using VM streams.

The above options were discussed in Chapter 9. This section
discusses some of these options in relation to imDigGrab(), and

some of the options that are unique to imDigGrab().

For a complete list of the options available to imDigGrab(), see
the Genesis Native Library Command Reference.

VIA options of the grab command 187

Number of iterations
With the Genesis Native Library, you can grab a specific
number of frames, fields, or lines; use the
IM_CTL_COUNT_MODE field to specify which one.
Alternatively, you can continuously grab frames until you call
imThrHalt().

Note that, to grab fields, your camera must use interlaced
scanning. In that case, you can start grabbing on the next odd
field, the next even field, or the very next field (use the
IM_CTL_START_FIELD field). In addition, you can specify that
the data be written using progressive scanning (set the
IM_CTL_ADDR_MODE field to IM_PROGRESSIVE). Progressive
scanning can be useful when you want to grab just one field
from the camera and you want the lines written sequentially
into the destination buffer.

Note that grabbing just one field from an interlaced camera
allows you to get a low-resolution image in half the time it would
take to grab the whole frame. This can be an important
optimization, as long as you do not need the full resolution.

Synchronizing multiple grabs
If you want to grab the same frame to two or more buffers at
the same time, you have to set the IM_CTL_CAPTURE_MODE
field to IM_SYNCHRONIZED on each grab; see the Grabbing to
two or more buffers section for details.
Grabbing a rectangular region
As with the copy functions, you can grab a rectangular region
of the image, rather than the entire image. This saves
unnecessary memory accesses. Note that this is most commonly
used when you have multiple nodes and want each node to grab
a different part of the same input frame.

To define the rectangular region, use the IM_CTL_START_X,
IM_CTL_START_Y, IM_CTL_STOP_X, and IM_CTL_STOP_Y
fields.

188 Chapter 10: Grabbing images

Grabbing a VM stream
You can use imDigGrab() to grab from a VM stream, instead of
grabbing from a camera. When you do, all options specified
through the control buffer (such as subsampling and zooming)
will still be performed. However, the camera settings and the
digitizer LUT will not have an effect, since the data is grabbed
only through the VIA and does not pass through the grab
module.

To specify the VM stream, use the IM_CTL_STREAM_ID field.

Reversing the direction of the grab
Reversing the direction of the grab can be particularly useful if
your images are reversed and you are grabbing to the display.
Without this option, you would need to grab the image to
processing memory, process it to correct the problem, and then
copy it to the display.

To reverse the direction of the grab, use the IM_CTL_DIR_X and
IM_CTL_DIR_Y fields.

Grab mode
You can execute imDigGrab() synchronously or
asynchronously. In synchronous mode (the default), the thread
to which imDigGrab() is sent behaves like any other thread, in
that it waits for the grab to complete before continuing to
execute. In asynchronous mode, the thread will not wait for the
grab to complete before continuing to execute. Asynchronous

mode is primarily useful when real-time processing (see
Chapter 4 for details).

To specify the grab mode, use the IM_CTL_GRAB_MODE field.

Reducing overhead

As with the copy functions, you can skip programming of most
VIA registers, in order to reduce overhead. When you grab, you
can also skip programming of the grab module, to further
reduce overhead. This is safe if you are using the same camera
as the previous grab and have not changed any camera
parameters with imCamControl().

To specify the necessary setup, use the IM_CTL_SETUP field.

VIA options of the grab command 189

Line interrupts
With the Genesis Native Library, you can enable line interrupts
during a grab. Line interrupts allow the ’C80 (or the Host in
the case of the Genesis-LC) to keep track of when each line of
a frame is written to memory. This can be useful when another
function needs to wait on the grab command, but only needs to
wait for a specific line, rather than the whole frame or field.

To enable line interrupts, use the IM_CTL_LINE field. You can
request a single interrupt after a specified line has been
grabbed, or you can request continuous interrupts. In the latter
case, interrupts will normally be produced as fast as the ’C80
(or the Host) can handle them (after every line, or after every
few lines if the line rate is too high). However, when you request
continuous interrupts, you can force a specific interval between
the interrupts, using the IM_CTL_LINE_INT_STEP field.

Synchronizing with a
line

When you enable line interrupts, you must pass an operation
status block (OSB) to imDigGrab(). The OSB will be updated
each time there is an interrupt. You can then wait for a specific
line to be grabbed by calling imSyncThread() or imSyncHost(),
as follows

where n specifies the line for which you are waiting. You can
also inquire about the current grab line, as follows

KO5[PE6JTGCF
6JTGCF��15$��+/A.+0'A+06�
�P������UKOKNCTN[�HQT�KO5[PE*QUV
����
Note that, when you wait for a specific line to be grabbed, the
thread (or Host) will be blocked until the grab line count is equal
to or greater than the specified line. Since the interrupt will not
occur until the end of that line, the data will already be in
memory when the thread (or Host) becomes un-blocked.

Interlaced cameras If your camera uses interlaced scanning and you request a
single line interrupt, it normally occurs during the second field
of the frame (or the first field if only a single field is grabbed).
To receive the interrupt during the first field or during both
fields, use the IM_CTL_LINE_INT_FIELD control field.

.KPG���KO5[PE*QUV
6JTGCF��15$��+/A.+0'A+06�
�+/A+037+4'��

190 Chapter 10: Grabbing images

Grabbing to two or more buffers

With the Genesis Native Library, you can grab to two or more
buffers at the same time. The buffers must be in different
memory banks, that is, in different nodes or in processing and
display memory on the same node.

Grabbing to two or more buffers at the same time can be useful
when you want to grab to more than one node in your system,
or when you want to simultaneously grab to processing and
display memory. Each grab command must be sent to a different
thread and must use compatible camera definitions (camera
definitions that do not force the digitizer to be re-programmed
between grab commands). Note that, if the grab commands
were sent to the same thread, they would run sequentially and
grab different frames. If the digitizer has to be re-programmed,
the same frame cannot be grabbed.

Synchronized capture To ensure that exactly the same frame is grabbed to two or more
buffers at the same time, you must request a synchronized
capture, by setting the IM_CTL_CAPTURE_MODE field of
imDigGrab() to IM_SYNCHRONIZED. You then explicitly enable
the capture, using imDigCapture(), when you know that all
grabs are ready. For example, the following grabs to two nodes
at the same time. A different thread is used for each grab
command, and a third thread is used to execute the
synchronization commands (since the first two threads are
blocked until their grabs have executed).
���5GNGEV�U[PEJTQPK\GF�ECRVWTG�OQFG���
�KO$WH2WV(KGNF
6JTGCF���%QPVTQN$WH��+/A%6.A%#2674'A/1&'��+/A5;0%*410+<'&��
�KO5[PE*QUV
6JTGCF������+/A%1/2.'6'&��

���3WGWG�DQVJ�ITCDU�KP�U[PEJTQPK\GF�OQFG���
�KO&KI)TCD
6JTGCF������%COGTC��$WH������%QPVTQN$WH��15$���
�KO&KI)TCD
6JTGCF������%COGTC��$WH������%QPVTQN$WH��15$���

���9CKV�WPVKN�DQVJ�PQFGU�CTG�TGCF[�VQ�ITCD���
�KO5[PE6JTGCF
6JTGCF���15$���+/A4'#&;��
�KO5[PE6JTGCF
6JTGCF���15$���+/A4'#&;��

���0QY�GPCDNG�VJG�ECRVWTG���
�KO&KI%CRVWTG
6JTGCF������%COGTC��+/A'0#$.'��

Grabbing to two or more buffers 191

Note that the call to imSyncHost() ensures that the grab
command sent to Thread2 does not execute until its control
buffer is set up. You could also ensure this by using two copies
of the control buffer and setting each one in the same thread as
it will later be used.

Synchronized capture
through triggers

Another way to perform a synchronized capture is to change
the camera definition so that it expects a software trigger, set
up all the grabs, then either provide the software trigger or
reselect the hardware trigger (if the camera normally uses a
hardware trigger). However, this method requires different
code for different types of cameras (triggered and
non-triggered). The method shown in the above code will work
regardless of the camera type.

Triggers are discussed in the Camera settings section.

Compatible camera
definitions

Note that camera definitions do not necessarily have to be the
same to be compatible. For example, they can have different
input channels if the cameras are physically synchronized, but
not if the cameras are unsynchronized. In addition, they can
have different gain and reference levels (but not different
timing parameters). See the Camera settings section for details
on input channels, gain and reference levels, and timing
parameters.

Different options Although you must use compatible camera definitions for each
grab, you can use different control buffers, since the options
specified through the control buffer are performed by the VIA

local to the destination buffer of the grab. Therefore, you could,
for example, zoom data sent to display memory but not to
processing memory.

192 Chapter 10: Grabbing images

Camera settings

Once a camera definition is allocated, you can change its
settings (such as its channel number and reference levels),
using imCamControl(). Note that using imCamControl() does
not change the original camera definition file in the
\GENESIS\DCF directory.

Changing camera
settings

Using different settings allows different tasks to grab from the
same camera, but using the settings appropriate to the task. If
necessary, you can make a copy of the camera definition before
changing it, using imCamClone(). This is useful when you want
several identifiers for the same camera, each with different
settings.

Note that the digitizer is only programmed to a specific camera
definition when a grab is issued with the identifier of that
camera definition. Therefore, using imCamControl() will not
affect the digitizer hardware; it will simply change a camera
definition already in memory.

❖ Even if you are performing a continuous grab, using
imCamControl() will not affect the digitizer hardware.

Settings The following sections discuss some of the settings you can
change using imCamControl(). Note that you should only
change a setting if you do not want to use the default value
specified in the original camera definition file.
Some of these settings, and their associated descriptions, also
apply to imDigControl(). For a complete list of settings
available to imCamControl() and imDigControl(), see the
Genesis Native Library Command Reference.

Camera settings 193

Input channel
The input channel is the camera channel from which to grab.
Monochrome cameras require one channel, while color cameras
require three. You specify the input channel(s) by setting the
IM_DIG_CHANNEL field to the appropriate channel(s):
IM_CHANNEL_0, IM_CHANNEL_1, IM_CHANNEL_2, or
IM_CHANNEL_3. For example, to grab from a single channel,
specify the channel number:

To grab from three channels, specify the three channels:

You could also set IM_DIG_CHANNEL to IM_CHANNEL(n). In
other words, IM_CTL_CHANNEL(3) is equivalent to
IM_CTL_CHANNEL_3. Using IM_CHANNEL(n) can be useful if,
for example, you are looping through several channels and want
the loop counter to specify the appropriate #define.

Note that, if you have only one camera connected to the default
channel(s) specified in your original camera definition file, you
don’t need to set IM_DIG_CHANNEL before grabbing.

The following are some cases when you will need to set
IM_DIG_CHANNEL before grabbing:

■ When you are grabbing from a monochrome camera that is

KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A%*#00'.��+/A%*#00'.A���

KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A%*#00'.�
�������������+/A%*#00'.A�
+/A%*#00'.A�
+/A%*#00'.A���
not connected to the default channel.

■ When you are grabbing from a color camera that is not
connected to the default channels.

■ When you want to grab from multiple channels to different
memory banks. For example, you might want to grab each
band of a color camera to different memory banks, or grab
from several synchronized monochrome cameras to different
memory banks. You might also want to grab from several
synchronized monochrome cameras to a multi-band buffer.
Grabbing from multiple channels is discussed in the
following sections.

194 Chapter 10: Grabbing images

❖ "Different memory banks" refers to buffers in different nodes
or to processing and display memory in the same node.

Settings for each
channel

If necessary, you can specify different settings (such as gain and
reference levels) for each channel. To do so, combine the #define
of the required setting with one or more of the channel #defines:

Note that, when you change a setting without specifying a
channel, the setting is changed on all channels currently
selected for the camera. This helps to keep the application code
independent of the camera type (color or monochrome). It also
means you don’t have to change settings on channels that you
are not using (but which might be being used by another
application running on the Genesis system at the same time).

Channel selection on
imDigGrab()

Once you have selected the required channel(s) and specified
their individual settings (if necessary), you are ready to grab.
If you are grabbing from only some of the selected channels
(perhaps because other nodes are grabbing from the other
selected channels), you need to set the IM_CTL_CHANNEL field
of imDigGrab() to specify which one(s); see the next section for
examples. If you are grabbing from all the channels that you
selected with imCamControl() (that is, the number of bands in
your destination buffer matches the number of channels
selected), you don’t need to set IM_CTL_CHANNEL.

Grabbing RGB into a When the destination buffer has fewer bands than the number

KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A)#+0�
�+/A%*#00'.A����������
packed buffer of available channels but a greater pixel depth than the grabbed
data, several channels will be packed into each pixel. This
allows you to, for example, grab RGB images into a single band
24- or 32-bit buffer. Each pixel will contain a packed RGB value
(the fourth byte will be unused in the case of a 32-bit destination
buffer).

Grabbing grayscale
into a color buffer

When the destination buffer has several bands but only one
channel is selected, the data will be replicated in all bands. This
allows you to use a monochrome camera in a color application
without modifying the color application.

Camera settings 195

Grabbing from multiple channels to a single memory
bank

Each memory bank has just one VIA capable of writing grabbed
data to it. Therefore, you cannot simultaneously grab the same
frame to different buffers in the same memory bank. However,
you can still grab from multiple synchronized cameras
simultaneously, by using a single grab command and a
multi-band destination buffer. For example, to grab from four
monochrome cameras simultaneously:

Grabbing from multiple channels to different memory
banks

When you want to grab from multiple channels to different
memory banks, you must issue a separate grab command for
each memory bank involved (since each grab command only
programs a single VIA). In addition, you must follow certain
rules if you want to ensure that the same frame is grabbed to
all nodes; these were discussed in the Grabbing to two or more

���#NNQECVG�C�HQWT�DCPF�DWHHGT���
�KO$WH#NNQE
6JTGCF��5K\G:��5K\G;�����+/A7$;6'��+/A241%���$WH��

���5GNGEV�CNN�HQWT�EJCPPGNU���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A%*#00'.�
��������������+/A%*#00'.A�
+/A%*#00'.A�
+/A%*#00'.A�
+/A%*#00'.A���

���)TCD�HTQO�HQWT�EJCPPGNU�UKOWNVCPGQWUN[���
�KO&KI)TCD
6JTGCF�����%COGTC��$WH�����������
buffers section.

An example The following code grabs from three channels to different nodes.
The three required channels are first selected using the
IM_DIG_CHANNEL field of imCamControl() (this would be
necessary if the channels are not the default channels of a color
camera or if you are grabbing from several monochrome

196 Chapter 10: Grabbing images

cameras). The channel to grab to each node is then set using
the IM_CTL_CHANNEL field of imDigGrab(). For clarity, the
code does not include any synchronization to ensure that the
same frame is grabbed.

Note that the above assumes that Thread1 and Buf1 were
allocated on one node, Thread2 and Buf2 on a second node, and
Thread3 and Buf3 on a third node.

An alternative
example

Instead of setting IM_CTL_CHANNEL for each grab, you could
grab from multiple channels to different nodes by: allocating a
camera definition for each node, selecting a different channel
for each camera definition, and then grabbing to a one-band
buffer on each node (using the different camera definitions).
There is no need to set IM_CTL_CHANNEL because only a single
channel is selected for each camera (see below).

�KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��

���5GNGEV�CNN�VJTGG�EJCPPGNU�VQIGVJGT���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A%*#00'.�
��������������+/A%*#00'.A�
+/A%*#00'.A�
+/A%*#00'.A���

���)TCD�QPN[�QPG�QH�VJG�CXCKNCDNG�EJCPPGNU�QP�GCEJ�PQFG���
�KO$WH2WV(KGNF
6JTGCF���$WH���+/A%6.A%*#00'.��+/A%*#00'.A���
�KO&KI)TCD
6JTGCF������%COGTC��$WH������$WH������

�KO$WH2WV(KGNF
6JTGCF���$WH���+/A%6.A%*#00'.��+/A%*#00'.A���
�KO&KI)TCD
6JTGCF������%COGTC��$WH������$WH������

�KO$WH2WV(KGNF
6JTGCF���$WH���+/A%6.A%*#00'.��+/A%*#00'.A���
�KO&KI)TCD
6JTGCF������%COGTC��$WH������$WH������
���5GNGEV�QPG�EJCPPGN�QP�GCEJ�PQFG���
�KO%CO#NNQE
6JTGCF���07..��+/A&'(#7.6���%COGTC���
�KO%CO%QPVTQN
6JTGCF���%COGTC���+/A&+)A%*#00'.��+/A%*#00'.A���

�KO%CO#NNQE
6JTGCF���07..��+/A&'(#7.6���%COGTC���
�KO%CO%QPVTQN
6JTGCF���%COGTC���+/A&+)A%*#00'.��+/A%*#00'.A���

�KO%CO#NNQE
6JTGCF���07..��+/A&'(#7.6���%COGTC���
�KO%CO%QPVTQN
6JTGCF���%COGTC���+/A&+)A%*#00'.��+/A%*#00'.A���

���)TCD�C�FKHHGTGPV�EJCPPGN�QP�GCEJ�PQFG���
�KO&KI)TCD
6JTGCF������%COGTC���$WH������������
�KO&KI)TCD
6JTGCF������%COGTC���$WH������������
�KO&KI)TCD
6JTGCF������%COGTC���$WH������������

Camera settings 197

As with the previous example, the above assumes that Thread1
and Buf1 were allocated on one node, Thread2 and Buf2 on a
second node, Thread3 and Buf3 on a third node, and does not
include any synchronization to ensure that the same frame is
grabbed.

Separate
applications

Note that the previous two examples are single applications
that use multiple channels. If you have multiple synchronized
monochrome cameras and each camera is used by a separate
application, each application can run on its own node (using its
own channel), without regard to what is happening on the other
nodes. In other words, each node can independently execute
code such as the following in real-time (no frames will be
missed):

Synchronization channel
The synchronization channel is the channel carrying the

���5GNGEV�VJG�CRRTQRTKCVG�EJCPPGN���
�KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A%*#00'.��+/A%*#00'.
%JCP���

���1RVKQPCNN[�CFLWUV�UGVVKPIU�QP�VJCV�EJCPPGN���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A4'(A9*+6'��4GH9JKVG��

���'PVGT�TGCN�VKOG�RTQEGUUKPI�NQQR���
�HQT�
���
�]�����KO&KI)TCD
6JTGCF�����%COGTC��$WH�����������
��������
�_
horizontal and vertical synchronization signals from the
camera. You specify the synchronization channel through the
IM_DIG_SYNC_CHANNEL field. The synchronization channel
can be a specific channel or the same channel used to grab the
data.

Gain and reference levels

For analog cameras, you can change the black and white
reference levels and the gain used by the analog-to-digital
converters. You specify the black and white reference levels
through the IM_DIG_REF_BLACK and IM_DIG_REF_WHITE
fields, respectively. You specify the gain through the
IM_DIG_GAIN field. To keep the application code

198 Chapter 10: Grabbing images

hardware-independent, you specify a value between 0 and
100% for these fields. The percentage is mapped internally to
one of the discrete values supported by the hardware.

Reference levels The black and white reference levels determine the zero and
full-scale levels, respectively, of the input voltage range. The
analog-to-digital converters convert voltages above the white
reference level to the maximum pixel value, and voltages below
the black reference level to a zero pixel value.

Adjusting
contrast/brightness

By reducing or increasing either or both the black and white
reference levels, you can affect the brightness of the resulting
image. By reducing one reference level and increasing the other,
you can affect the contrast of the resulting image.

Note that adjusting the brightness and contrast of an image is
usually an iterative process. You should generally choose an
appropriate gain first, then adjust the reference levels. If you
then change the gain, you should readjust the reference levels.

Black reference level White reference level

0

255

Gray level

Input voltage
Input LUTs
You can use the LUTs in the grab module to map the data being
grabbed. Note, however, that it is generally better to map data
in software, after it is grabbed, using imIntLutMap(). Using
imIntLutMap() is more flexible and is not dependent on the
digitizer capabilities. In addition, it allows an application to be
shared more efficiently with other applications that might also
be using the grab module (using the LUTs in the grab module
causes the digitizer to be re-programmed, possibly preventing
other applications from grabbing the same frame).

For details on imIntLutMap(), see Chapter 3.

Camera settings 199

Using the input LUTs If you do use the LUT in the grab module, specify the LUT buffer
with which to perform the mapping using the IM_DIG_LUT_BUF
field. You must not modify this buffer until the grab which uses
that buffer has started (since the values might not be copied
into the hardware until just before the grab starts). If you do
modify the buffer, you must again set IM_DIG_LUT_BUF.

LUT requirements The LUT buffer should be one-dimensional and allocated in
processing memory. The size of the LUT should match the pixel
size of the data being grabbed (for example, if the data being
grabbed is 8-bit, the LUT should have 256 entries). In addition,
the pixel size of the LUT should match the pixel size of the
destination buffer of the grab (that is, if the destination buffer
is 8-bit, each LUT entry should also be 8-bit).

Number of bands A LUT buffer can have one band or multiple bands. If the LUT
buffer has one band, the band will be used for all channels being
grabbed. If the LUT buffer has the same number of bands as
there are channels being grabbed, each band is used for the
corresponding channel (band 0 of the LUT buffer is used for the
first channel, band 1 for the second channel, etc.)

Note that you can achieve a pseudo-color effect when grabbing
grayscale images by using a 3-band LUT buffer and a 3-band
destination buffer.

LUT restrictions There are some restrictions in the way the LUTs in the grab

module can be used. These are:

■ When grabbing from an analog camera, the LUTs must be 8
bits in and 8 bits out (that is, 256 entries of 8 bits each). In
addition, to achieve a pseudo-color effect with an analog
camera, the camera must have a sampling rate of 35 MHz or
lower and use the first channel.

■ When grabbing one or two channels from a digital camera,
the LUTs can be up to 13 bits in and 8 or 16 bits out (that is,
up to 8K entries of 8 or 16 bits each). When grabbing from
more than two channels of a digital camera, the LUTs must
be 8 bits in and 8 bits out. To achieve a pseudo-color effect

200 Chapter 10: Grabbing images

with a digital camera, the LUT can be up to 13 bits in but
must be 8 bits out (for each band). In addition, you must grab
from the first channel.

Frame size

You can change the width and height of the grabbed frame using
the IM_DIG_SIZE_X and IM_DIG_SIZE_Y fields, respectively.
Adjusting the frame width can be useful if your input source is
capable of dynamically changing the number of pixels it sends
per line. For certain types of input sources, adjusting the frame
width can also be used to compensate for non-square pixels
(non-square pixels can lead to incorrect interpretations when
analyzing images). Adjusting the frame height can be useful if
the number of lines per frame needs to be changed dynamically
(in machine inspection, for example, the required number of
lines per frame often depends on the object being inspected).

Note that, if you simply want to grab a subset of a frame, you
should use the control buffer of imDigGrab() rather than set
IM_DIG_SIZE_X and/or IM_DIG_SIZE_Y; see the VIA options of
the grab command section for details.

Frame width When you change the frame width for analog cameras that have
the pixel clock generated by the Genesis grab module, you
change the number of positions at which the analog signal is
sampled on every line. Since the line period (the time between
horizontal syncs) is fixed, changing the number of positions at
which the analog signal is sampled is done by changing the
sampling frequency (the pixel clock). This changes the physical

distance spanned by each pixel. In this case, the blanking
period is automatically adjusted so that only the active portion
of each line is still digitized. In other words, the frame width in
pixels is changed, but the physical width is not.

Note that, if your input source provides its own pixel clock, and
dynamically changes the number of pixels it sends per line, you
must specify the new frame width before grabbing a frame with
the new size.

Camera settings 201

Frame height When you adjust the frame height, you do not change how each
line is sampled, only the number of lines grabbed per frame.
Adjusting the frame height is most useful for line scan cameras
that can be programmed to grab an arbitrary number of lines
in order to build up an image.

User bits
The connector on the grab module has several input and output
lines not designated for specific purposes; you can use them for
anything you want. To do so, use the IM_DIG_USER_IN or
IM_DIG_USER_OUT field, respectively. To select a specific user
bit, combine the #defines of these fields with IM_BITx (for
example, IM_DIG_USER_OUT+IM_BIT1). User bits can be set or
tested through software.

For user outputs, you can use imCamControl() or
imDigControl() to set a specific output low (0) or high (1). If you
use imCamControl(), the outputs will be set just before the
grab, when the rest of the digitizer is programmed. Therefore,
the outputs will not interfere with any other grabs that might
be in progress. If you use imDigControl(), the digitizer will be
programmed immediately, interfering with other grabs that
might be in progress.

For user inputs, use imDigInquire() to read the current
hardware value (0 or 1) of the input line.

Note that the grab module supports both TTL and RS422
formats for user inputs and outputs; different pins on the grab

connector are used in each case. You must specify which format
(and hence which connector pins) you want to use. To specify
whether to enable the TTL or RS422 user inputs, set the
IM_DIG_USER_IN_FORMAT field. To specify whether to enable
the TTL or RS422 user outputs, set the
IM_DIG_USER_OUT_FORMAT field.

202 Chapter 10: Grabbing images

Triggers
The grab module has a trigger input that allows you to grab a
frame upon occurrence of an event. In other words, when you
use a trigger input, nothing will happen when you call
imDigGrab(), until the event specified in the camera definition
file occurs. Triggering can be useful, for example, in an
automatic inspection application, where you want to grab a
frame only when the part to be inspected is under the camera.

Trigger sources The event that actually causes a frame to be grabbed is called
the trigger source and is specified through the
IM_DIG_TRIG_SOURCE field of imCamControl(). The trigger
source can be:

■ Software generated. Set IM_DIG_TRIG_SOURCE to
IM_SOFTWARE.

■ Hardware generated. Set IM_DIG_TRIG_SOURCE to
IM_HARDWARE.

■ Based on the programmable exposure timers of the grab
module. Set IM_DIG_TRIG_SOURCE to IM_EXPOSURE.

Note that, if you want to use the trigger source specified in the
original camera definition file, you don’t have to set the
IM_DIG_TRIG_SOURCE field.

Software triggers

When you use a software trigger, a frame is grabbed once you

call imDigCapture() (after calling imDigGrab()):

KO%CO#NNQE
6JTGCF���07..��+/A&'(#7.6���%COGTC��
KO%CO%QPVTQN
6JTGCF���%COGTC��+/A&+)A64+)A5174%'��+/A51(69#4'��
KO&KI)TCD
6JTGCF������%COGTC��&UV$WH���������������YCKVU�HQT
���UQHVYCTG�VTKIIGT
���
�
�
KO&KI%CRVWTG
6JTGCF������%COGTC��+/A'0#$.'������IKXG�UQHVYCTG�VTKIIGT�����

Camera settings 203

A software trigger can also be enabled by calling
imDigControl(), setting its IM_DIG_TRIGGER field to
IM_ENABLE. However, imDigCapture() is more general; it
works even if the grab is triggered indirectly by software (for
example, if software is used to start the timer).

Hardware triggers

When you use a hardware trigger, a frame is grabbed once the
signal on the specified hardware trigger generates:

■ A positive or negative pulse.

■ A level-sensitive (low or high) signal.

To select a specific hardware trigger, combine the required
trigger with IM_HARDWARE (for example,
IM_HARDWARE+IM_TRIGGER2). If you do not select a specific
hardware trigger, the one on the same connector as the camera
is used (trigger 1 is the trigger input on the analog connector
and trigger 2 is the trigger input on the digital connector).

To specify whether to wait for a positive or negative pulse, or a
level-sensitive signal, set the IM_DIG_TRIG_MODE field of
imCamControl().

To disable a level-sensitive signal, call imDigControl(), setting
its IM_DIG_TRIGGER field to IM_DISABLE.

If you are not using the hardware trigger specified in the
original camera definition file, you must specify whether you

are using the TTL or RS422 trigger input on the grab connector.
To enable either the TTL or RS422 trigger, use the
IM_DIG_USER_IN_FORMAT field.

204 Chapter 10: Grabbing images

An example The following code grabs a frame once a positive pulse is
generated on trigger 1.

Note that the above could be used in an automatic inspection
application to ensure that a frame is grabbed only when the
part to be inspected is under the camera, assuming that:

■ The signal generated by a part-present sensor is connected
to trigger 1.

■ The part-present sensor generates a positive pulse when a
part is detected.

Programmable timers
When you use one of the timers of the grab module as a trigger,
a frame is grabbed a specified amount of time after the timer
is started. To select a specific timer (IM_TIMER1, IM_TIMER2,
etc.) as a trigger, combine it with IM_EXPOSURE. For example:

Once a timer is started, it produces an output signal after a
specified delay. This is known as the exposure signal. The

KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��
KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A64+)A5174%'��+/A*#4&9#4'
+/A64+))'4���
KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A64+)A/1&'��+/A4+5+0)A'&)'��
KO&KI)TCD
6JTGCF�����%COGTC��&UV$WH���������������YCKVU�HQT
��JCTFYCTG�VTKIIGT
��
�
�

KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A64+)A5174%'��+/A':21574'
+/A6+/'4���
exposure signal remains active for a specified amount of time
(known as the exposure time).

timer
started

delay

exposure time

Camera settings 205

The exposure signal can be fed to the camera to control the
exposure time (or used for some other purpose, such as firing a
strobe light).

Specify the exposure time through the IM_DIG_EXP_TIME field.
Specify the delay through the IM_DIG_EXP_DELAY field.

Starting the timer A timer can be started by a hardware trigger that generates a
positive or negative pulse, by software, or by the horizontal or
vertical syncs of the camera signals. It can also be started by
the exposure signal of another timer. Specify the source of the
timer with the IM_DIG_EXP_SOURCE field. Note that a timer
cannot be started by a level-sensitive hardware trigger.

If the exposure output was not specified in the original camera
definition file, you must specify whether you want to use the
TTL or RS422 output pin on the grab connector. To enable either
the TTL or RS422 exposure output, use the
IM_DIG_USER_OUT_FORMAT field.

From hardware When you use a hardware trigger, the timer starts once the
signal on the specified hardware trigger input generates a
positive or negative pulse. By default, the trigger on the same
connector as the camera is used (trigger 1 is the trigger input
on the analog connector and trigger 2 is the trigger input on the
digital connector). If you want to select a specific trigger,
combine it with IM_HARDWARE. For example,

KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A5174%'��+/A*#4&9#4'
+/A64+))'4���
To specify whether to wait for a positive or negative pulse, use
the IM_DIG_TRIG_MODE field.

From software When you use software, the timer starts once you call
imDigControl() with its IM_DIG_EXPOSURE field set to
IM_ENABLE.

From horizontal or
vertical syncs

Horizontal or vertical syncs are typically used when the camera
does not require a trigger, but you still need to output exposure
signals for every line or frame.

206 Chapter 10: Grabbing images

An example An application that might need exposure signals is one that
uses an asynchronous-reset camera to capture an image of a
part along an inspection line. An asynchronous-reset camera is
a type of camera that can be reset at any time to force it to start
a new frame. It is often used when the time interval between
the receipt of a trigger and the capture of an image is critical.
A strobe light is often used in such an application to freeze parts
at precise moments in time. Assuming that the signal
generated by a part-present sensor is connected to a trigger
input of the grab module, the sequence of events could be:

1. Once the required pulse (positive or negative) is generated
on the trigger, send a signal to reset the camera. The first
exposure signal of the grab module can be used for this
purpose. Usually, the signal must remain active for some
minimum amount of time in order to reset the camera
properly. Note that the hardware trigger must be specified
as the source that starts the timer.

2. Send a second signal to fire the strobe light. This must also
be timed very precisely, and is usually output just after the
camera reset signal. The second exposure signal of the grab
module can be used for this purpose, and the first exposure
signal is specified as the source (so that the delay before
firing the strobe is measured relative to the camera reset
signal).

3. Capture the first frame after the camera is reset. Since the
first exposure signal resets the camera, it is used as the

trigger source.

Camera settings 207

The code is shown below. Note that all the time-critical events
are controlled by the hardware of the grab module; software
only has to make sure that the grab command is queued before
the trigger is received.

���4GUGV�VJG�ECOGTC���µU�CHVGT�VJG�JCTFYCTG�VTKIIGT�YKVJ�C�RWNUG�QH���µU���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A5174%'
+/A6+/'4���+/A*#4&9#4'��
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A64+)A/1&'��+/A4+5+0)A'&)'��
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A/1&'
+/A6+/'4���+/A#%6+8'A*+)*��
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A&'.#;
+/A6+/'4�������'����
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A6+/'
+/A6+/'4�������'����

���(KTG�VJG�UVTQDG���µU�CHVGT�TGUGVVKPI�VJG�ECOGTC���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A5174%'
+/A6+/'4���+/A6+/'4���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A/1&'
+/A6+/'4���+/A#%6+8'A*+)*��
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A&'.#;
+/A6+/'4�������'����
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A':2A6+/'
+/A6+/'4�������'����

���6TKIIGT�VJG�ITCD�QPN[�CHVGT�VJG�ECOGTC�KU�TGUGV���
�KO%CO%QPVTQN
6JTGCF��%COGTC��+/A&+)A64+)A5174%'��+/A':21574'
+/A6+/'4���

���9CKV�HQT�JCTFYCTG�VTKIIGT�VJGP�ITCD���
�KO&KI)TCD
6JTGCF�����%COGTC��&UV$WH������������

208 Chapter 10: Grabbing images

Running multiple applications

If you are running several applications simultaneously on a
Genesis system and if more than one of these applications grab
images, there are some specific guidelines you should follow to
ensure that the digitizer is shared properly. (Note that general
guidelines were given in Chapter 2). These specific guidelines,
which also ensure that applications will run unchanged on
different Genesis configurations or with different camera types,
are:

■ If your application is not dependent on a particular camera
type, set the CamFile parameter of imCamAlloc() to NULL so
that the camera definition file that you specified during
installation is allocated.

■ Use imCamInquire() to obtain the size of the buffer needed
for a grabbed image. You can also use imCamInquire() to
obtain the number of bands needed for the grabbed image, if
your application does not require a specific number of bands.
Note, however, that you can always grab a color image into a
single-band buffer and a monochrome image into a
multi-band buffer. In addition, you do not need to know the
number of bands when grabbing into display memory, since
most functions which operate on display buffers will
transparently work with one or three bands.

■ Avoid re-programming the digitizer. This means that, after
you allocate a camera definition (using imCamAlloc()), avoid

using imCamControl(). If you use imCamControl(), the
camera definition might become incompatible with those
used by other applications, forcing the digitizer to be
re-programmed (if the digitizer has to be re-programmed, the
same frame cannot be grabbed by several applications). Note
that imDigControl() programs the digitizer immediately, so
you should never call this function if you want to share the
digitizer between several applications.

■ Avoid doing a continuous grab unless absolutely necessary.
A continuous grab will prevent other applications from
grabbing into the same memory bank.

Chapter 11: Displaying
images

This chapter describes how to display images, and other
related topics.

210 Chapter 11: Displaying images

The display section
The display section, which is optional on the Genesis main
board, consists of two separate frame buffers: a main (underlay)
frame buffer and an overlay frame buffer. The overlay frame
buffer is powered by the 64-bit Matrox MGA Millennium
2064W graphics accelerator, and interfaces directly with the
on-board secondary PCI bus.

The display section has up to 8 MBytes of frame buffer memory:
2 MBytes for the overlay frame buffer and either 2 or 6 MBytes
for the main frame buffer (depending on whether you have the
monochrome or color version of the display section).

The display section has a maximum resolution of 1600 x 1200,
with an 85-Hz non-interlaced refresh rate. It supports the
display of captured video in real time.

A 128-bit RAMDAC provides digital-to-analog conversion. The
RAMDAC has three 8-bit LUTs that map the contents of the
overlay frame buffer. When the overlay is not required, these
LUTs can map the contents of the main frame buffer.

The display section 211

Below is a block diagram of the display section. Note that you
will find more detail on some of the components in the Genesis
Installation and Hardware Reference.

or
Mono
frame
buffer
2 MB

Overlay
frame
buffer
2 MB

PCI I/F

Host 32-bit PCI local bus

PCI-to-PCI
bridge

64

3232
32

PCI I/F

32

64

8

16Secondary 32-bit PCI bus

64
Grab

WRAM
port

PCI I/F

VM

Display
VIA

A
na

lo
g

di
sp

la
y

ou
tp

ut

Hsync
Vsync

G
R

B

RAMDAC

Flash
BIOS

A

D

"B"

frame
buffer
2 MB

2
MB

"G""R"

to/from VMChannel

from grab

212 Chapter 11: Displaying images

Display memory On Matrox Genesis, processing memory and display memory
are physically distinct. Although the destination buffer of a
processing function can be located in display memory, it is more
efficient if it is in the memory directly attached to the ’C80 (that
is, the SDRAM) and then copied to the display when necessary.
In this case, display memory is being used to hold a second copy
of a buffer. Note that if the processing function uses the NOA,
the destination buffer must be located in local processing
memory.

To display an image, you should not allocate memory in the
main or overlay frame buffer. Instead, you should use
imBufChild() to create a child buffer on the screen (at the
location you wish to display the image) and then copy the
processed buffer to this on-screen child buffer when you need
to see it.

Grayscale images vs. color images 213

Grayscale images vs. color images
There are two versions of the display section:

■ Monochrome version.

■ Color version.

When you set the Buf parameter of imBufChild() to IM_DISP,
the resulting on-screen child buffer will automatically have one
band if the display is in monochrome mode and three bands if
it is in color mode. Note, however, that you rarely need to know
how many bands there are, since most functions which operate
on display buffers will transparently work with one or three
bands.

Using the monochrome version
When displaying an image on the monochrome version of the
board, the same data is sent to all three color display guns
(RGB). As a result, the image is displayed in grayscale.

frame

buffer

frame

buffer

RAMDAC

R

G

B

Note that, if a color application is run on the monochrome
version of the board, only one band of the color image can be
displayed (the first band). To display this band, allocate an
on-screen child buffer (use imBufChild(), setting its Buf
parameter to IM_DISP) and then copy the color image to this
buffer. The color image will be displayed in grayscale. If you
prefer that the color application not be able to run on the
monochrome version of the board, try to allocate a 3-band child
display buffer (set the Buf parameter of imBufChild() to
IM_DISP_COLOR). This will fail on the monochrome version of
the board (the buffer identifier will be returned as 0 and an
error will be logged).

214 Chapter 11: Displaying images

Using the color version
When displaying an image on the color version of the board,
each band of the image is sent to a different color display gun
(RGB). As a result, images are displayed in true color.

To display a grayscale image on the color version of the board,
you need to copy the image to all three display buffers. This is
done automatically if you copy or grab a one-band image into
an on-screen child buffer that was allocated by setting the Buf
parameter of imBufChild() to IM_DISP. Therefore, there is no
need to modify a monochrome application if it is to run on the
color version of the board. In addition, you can display grayscale
images at the same time as color images.

In specialized applications, the color version of the board can
also be used to drive three independent monochrome outputs.

Changing the display On the color version of the board, you can change the display
mode to monochrome (using imDispControl()). This can be

frame
buffer
frame
buffer

frame
buffer
frame
buffer

frame
buffer
frame
buffer

RAMDAC

R

R

G

G

B

B

mode
useful if a monochrome application needs the extra display
memory (for example, for extra storage or to double buffer the
display). Note, however, that you do not need to change the
display mode to monochrome to display grayscale images. In
addition, if you select monochrome mode, you will interfere
with color applications that might also be using the display.
Therefore, you should only change the display mode to
monochrome if an application has exclusive use of the display
and needs the extra display memory.

In monochrome mode, the color version of the board behaves
just like the monochrome version, except that you can allocate
on-screen child buffers in a specific buffer (red, green, or blue).

Using the overlay 215

Using the overlay
The display section consists of two frame buffer surfaces: the
main (underlay) frame buffer and the overlay frame buffer. This
allows you to work in either a single-screen or a dual-screen
mode, which is determined at installation time.

Single-screen mode When you are working in single-screen mode, the overlay frame
buffer is used by the Matrox MGA 2064W graphics accelerator
to display the Host operating system’s user interface.

In this mode, you can use the overlay frame buffer to write
and/or draw non-destructively over the main frame buffer. If
you are working with Windows, use the Windows GDI functions
to do so. You should not normally use Genesis functions to
access the overlay in single-screen mode since they might
interfere with Windows.

Dual-screen mode When you are working in dual-screen mode, one screen displays
the Host operating system’s user interface, while the other
displays the Genesis frame buffers.

In this mode, you can also use the overlay frame buffer to write
and/or draw non-destructively over the main frame buffer.
However, this time, you will normally use Genesis functions to
access the overlay. As with the main display, the best way to
use the overlay with the Genesis functions is to allocate a
two-dimensional region of interest (using imBufChild()) and
then copy the data you want to overlay from a processing buffer

to the overlay display buffer. However, if you are drawing only
a small amount of annotation into the overlay (with the graphic
functions, for example), it might be more efficient to draw it
directly into the overlay (that is, give the overlay child buffer
as the destination buffer).

216 Chapter 11: Displaying images

Resolution On Genesis, the Matrox MGA 2064W graphics accelerator only
supports 8 bits per pixel for the overlay. In single-screen mode
under Windows, use the MGA Display Properties utility to
configure the overlay frame buffer to the desired 8-bit
resolution. Otherwise, use the GENVCFLD utility. The main
frame buffer resolution is automatically set to be the same as
the overlay resolution. See the Genesis Installation and
Hardware Reference for details on changing resolution and the
GENVCFLD utility.

Note that you should not change the resolution while
applications are using the display, since all display buffers will
become invalid.

Keying 217

Keying
Keying is an effect that switches between two display sources
according to pixel values in one of the sources (that is, according
to a keying color). On Genesis, keying is usually used to make
portions of the overlay frame buffer transparent so that
corresponding areas of the main frame buffer can show through
it. Keying is controlled with the imDispControl() function (use
the IM_DISP_KEY_MODE field to specify the keying mode and
the IM_DISP_KEY_LOW and IM_DISP_KEY_HIGH fields to
specify the range of the keying color).

In single-screen mode
By default, only the overlay frame buffer is visible in
single-screen mode. To use keying in a way that will not
interfere with other applications that might also be using the
display, you should first inquire about the current keying mode.
If keying is disabled, you should enable it and use a single
keying color. If keying is already enabled, you should inquire
about the current keying color and use that color as your keying
color. For example,

KH�
KO&KUR+PSWKTG
6JTGCF�����+/A&+52A-';A/1&'��07..�����+/A-';A1((�
]
����-G[8CN������������%JQQUG�CP[�U[UVGO�EQNQT�VJCV	U�TCTGN[�WUGF���
����KO$WH2WV(KGNF
6JTGCF��%QPVTQN$WH��+/A&+52A-';A/1&'��+/A-';A+0A4#0)'��
����KO$WH2WV(KGNF
6JTGCF��%QPVTQN$WH��+/A&+52A-';A.19��-G[8CN��
����KO$WH2WV(KGNF
6JTGCF��%QPVTQN$WH��+/A&+52A-';A*+)*��-G[8CN��
����KO&KUR%QPVTQN
6JTGCF�����%QPVTQN$WH��+/A(4#/'��
_

You should then fill, with the keying color, those areas of the
overlay that you want transparent (use Windows functions to
do so). You should not disable keying when the application
terminates, since this will interfere with other applications
using the display.

GNUG
����-G[8CN���KO&KUR+PSWKTG
6JTGCF�����+/A&+52A-';A.19��07..��

218 Chapter 11: Displaying images

In dual-screen mode
By default, only the main frame buffer is visible in dual-screen
mode. If your application is intended to run in dual-screen mode
and does not use the overlay buffer, you should not enable
keying. This will also make the program useable in
single-screen mode, since you can simply run a separate
program (such as the GENKEY utility) to enable keying. See
the Genesis Installation and Hardware Reference for details on
the GENKEY utility.

A dual-screen application that does use the overlay will never
work well with other applications, especially single-screen
applications under Windows. Such a dual-screen application
can therefore explicitly enable keying, using any keying mode
it requires.

Panning, scrolling, and zooming 219

Panning, scrolling, and zooming
You can move the source of your on-screen display by panning,
scrolling, or zooming. Use the imDispControl() function. Note
that panning, scrolling, and zooming are only display effects
and do not modify the data in the frame buffers.

You can pan and scroll images in the main frame buffer (this
can be useful when the images are larger than the display
resolution). You can zoom images (by a factor of 2 or 4), although
zooming affects both the main and overlay frame buffers.

Modify the data
instead

It is usually better (especially in single-screen mode when
several applications might be sharing the display) not to use
imDispControl() for display effects. Rather, you should modify
the data before or during the copy to the display (limited
zooming, for example, can be performed by the advanced copy
functions). In this way, different effects can be applied to each
displayed image. If you want to use zoom factors other than
those supported by the copy functions, or if you prefer zoom
with interpolation, you can use the appropriate geometric
function (imIntZoom(), imIntScale(), or
imIntWarpPolynomial()). Note that, if you are using integer
factors without interpolation, imIntZoom() is the fastest of the
three functions. If you are using integer factors with
interpolation, imIntScale() is the fastest. If you are using
non-integer factors, imIntScale() is the fastest but has more
restrictions than imIntWarpPolynomial().

220 Chapter 11: Displaying images

Look-up tables
The main frame buffer does not have dedicated display LUTs.
You can, however, map your data using imIntLutMap() and
then copy the result to the display. Alternatively, you can use
the LUTs in the RAMDAC, if they are not being used to map
the overlay frame buffer (to do so, disable the overlay frame
buffer using imDispControl()). However, using imIntLutMap()
is more flexible, since each image to be displayed can be mapped
in a different way. Note that mapping a color image requires
three calls to imIntLutMap() (one for each band) while mapping
a one-band image requires just one call.

Displaying in
pseudo-color

You can display a grayscale image in pseudo-color through
three separate mappings of the one-band image (send one
mapping to the red display buffer, one to the green display
buffer, and one to the blue display buffer). However, it is more
efficient to map each value of the one-band image to an RGBa
value in a single call to imIntLutMap() (use a 32-bit destination
buffer and a LUT with 256 entries of 32 bits each). You can then
copy the 32-bit buffer directly to the display; the color
components will automatically be separated into the correct
display buffers.

Grab and display 221

Grab and display
There will be times when you want to display immediately the
images you are grabbing, especially when grabbing
continuously. To do so, use imDigGrab() with an on-screen child
buffer as the destination. Use imBufChild() to allocate the
on-screen child buffer (to ensure that the same code will work
on either the monochrome or color version of the display, set the
Buf parameter of imBufChild() to IM_DISP).

When you call imDigGrab(), you can specify a number of options
through the control buffer passed to this function. Many of
these options are particularly useful when grabbing to the
display (such as extracting the most-significant byte of images
with a pixel depth of more than 8 bits). These options were
described in Chapter 10.

Non-rectangular
windows

To grab into a non-rectangular window of the display, you have
to use tag buffers. Tag buffers were described in Chapter 9.

222 Chapter 11: Displaying images

Using the hardware cursor
The Genesis display section has a hardware cursor that can be
displayed and positioned on-screen through the use of Genesis
Native Library functions. These functions allow you to, for
example, interface a secondary pointing device with the
Genesis hardware cursor. The cursor functions should be used
only in a dual-screen display configuration because they will
interfere with the Windows display driver in a single-screen
display configuration.

The Native Library cursor functions are synchronous and
executed by the Host, rather than being queued to the Genesis
board; therefore, they have no thread parameter. They do,
however, have a device parameter to indicate which Genesis
board should be used to display the cursor when more than one
board is present.

General steps to using a cursor
To use the Genesis hardware cursor, you need to perform the
following steps (steps 1, 2, and 7 are only needed when defining
a new cursor; these steps can be omitted if you use the default
cursor).

1. Allocate a Genesis Native Library cursor by calling
imCurAlloc().

2. Define and set the cursor’s shape (and hot spot) and color
attributes by calling imCurDefine() and imCurSetColor(),

respectively.

3. Load the cursor attributes into the physical hardware and
select the software copy of the cursor to the display by
calling imCurSelect().

4. Set the cursor’s initial display position by calling
imCurSetPosition().

5. Enable the hardware cursor, that is, make the hardware
cursor visible, by calling imCurEnable().

6. Track and move the cursor using the imCurGetPosition()
and imCurSetPosition() functions.

Using the hardware cursor 223

7. Free the cursor and any cursor-related resources when it is
no longer needed by calling imCurFree().

Allocating the cursor As with other Native Library resources, a cursor must first be
allocated. You can allocate any number of cursors with
imCurAlloc() because cursor allocation just sets up a virtual
(software) copy. When a cursor is allocated, its attributes are
initially undefined.

The cursor should be freed when no longer needed.

Defining the cursor’s
shape and hot spot

The cursor’s shape and hot spot are specified by calling
imCurDefine(). The maximum dimensions for a cursor are
64x64 (width x height), and the hot spot is defined relative to
the top-left corner (0,0). The hot spot is the coordinate of a
specific pixel within the defined cursor to which all cursor
positions refer. Valid positions for the hot spot are between (0,0)
and (63,63), inclusive.

Instead of defining your own cursor, you can also use the default
cursor.

Default cursor There is a default arrow cursor with its hot spot defined at the
tip of the arrow. To use it, you simply have to select it (load it
into the hardware); you do not have to allocate or define it. To
do so, call imCurSelect() and pass 0 as the cursor ID. Then,
enable this cursor (make it visible). For example:

�KO%WT5GNGEV
&GXKEG�����
�KO%WT'PCDNG
&GXKEG��+/A'0#$.'��
Defining the cursor’s
colors

The cursor’s on-screen appearance is specified by calling
imCurSetColor(). The cursor is essentially a pixel image. Each
cursor pixel has a value. A cursor pixel with a value of 0 is
always transparent. Cursor pixel values of 1, 2, and 3 represent
the three user-definable colors. The three cursor colors are set
by calling imCurSetColor() and specifying their red, green, and
blue color components. For each color component, the valid
pixels values range from 0 to 255.

Note that when a cursor smaller than 64x64 is defined, the
remaining area will not be visible.

224 Chapter 11: Displaying images

Selecting a cursor to
appear on-screen

The cursor attributes that you specify are loaded into the
hardware and a cursor is selected to the display, overriding the
existing cursor by calling imCurSelect(). It is important to note
that although you can allocate and set the display properties of
an unlimited number of cursors, only one cursor can be loaded
into the hardware (selected) at a time.

Once a cursor is selected, the hardware cursor can be made
visible or invisible by calling imCurEnable().The cursor
appears on-screen as a non-destructive pixel image displayed
on top of the underlay and overlay frame buffers, with a defined
shape and color scheme. Since the hardware cursor is not
always needed as a display effect, the hardware cursor can also
be made invisible with imCurEnable(). Keep in mind that since
the hardware cursor is initially undefined, a cursor should be
selected to the display before being enabled.

Moving and tracking
the cursor

After you select a cursor, the cursor position is initially
undefined. You should call imCurSetPosition() to set the
position at which to display the cursor. Keep in mind that when
you set the cursor’s position, the coordinates are those of the
hot spot, measured from the top-left corner of the screen.

Note that if you specify a position that is not valid for the
current screen resolution, the cursor will not be visible.

You are responsible for tracking the cursor using the
imCurGetPosition() and imCurSetPosition() functions. For
example, when the cursor is accessed by simultaneous

processes dispatched to multiple threads, you can use
imCurGetPosition() to read back the current cursor position
before executing an operation on a particular thread. Similarly,
if you zoom and/or pan the display with imDispControl(), a
subsequent call to a cursor function will take the zoom factor
into account; however, the cursor’s current position on the
screen will not be not changed automatically. You should reset
the cursor position after the display is panned or zoomed by
calling imCurSetPosition().

Note that the cursor itself is only zoomed in the X direction
when the display is zoomed; due to a hardware restriction, it
keeps its size in the Y direction. Despite these limitations, the
cursor functions normally when zoomed.

Using the hardware cursor 225

An example
The following example demonstrates how to define, select, and
make visible a cross-shaped cursor with dimensions of 32x32
and its hot spot at coordinates (15,15). The color scheme is
chosen so that the cursor appears in the form of a red and white
cross.

NQPI�%WTUQT�������%WTUQT�+&���
WPUKIPGF�EJCT�%WT&CVC=�����?��
]
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
���
_�
���
EQPV����

226 Chapter 11: Displaying images

The full example is included in the Genesis Native Library
\EXAMPLES\HOST\MISC\ directory that is on the CD.

���#NNQECVG�CPF�FGHKPG�C���Z���EWUVQO�EWTUQT�YKVJ�JQV�URQV�CV�
����������
�KO%WT#NNQE
&GXKEG��+/A&'(#7.6���%WTUQT��
�KO%WT&GHKPG
&GXKEG��%WTUQT������������������%WT&CVC��

���5GV�HKTUV�VYQ�EQNQTU����
�KO%WT5GV%QNQT
&GXKEG��%WTUQT������������������������4GF���
�KO%WT5GV%QNQT
&GXKEG��%WTUQT������������������������9JKVG���

���5GNGEV�KV�CU�VJG�EWTTGPV�EWTUQT�CPF�OCMG�KV�XKUKDNG����
�KO%WT5GNGEV
&GXKEG��%WTUQT��
�KO%WT5GV2QUKVKQP
&GXKEG��2QU:��2QU;��
�KO%WT'PCDNG
&GXKEG��+/A'0#$.'��
�������

Display memory as extra storage space 227

Display memory as extra storage space
You can use your off-screen display memory as extra linear
storage space for images. This can be useful if you are using a
tag buffer during a grab or VM transfer to the display (a tag
buffer must be in the same memory bank as the destination
buffer).

To allocate off-screen display memory, use imBufAlloc...(),
setting its Location parameter to IM_DISP. There are no
restrictions on the type or size of buffer that you can allocate in
display memory, although there is a limited amount of
off-screen memory available.

Host memory
vs. display memory

If all you want is extra general-purpose storage space (for
example, you are not using tag buffers which must be in display
memory), you can use Host memory instead of display memory.
Your Host memory is probably not as limited as your display
memory, and you can always add more to suit your
requirements.

Processing speed Note that, if you need to process a buffer allocated in display
(or Host) memory, you must first copy it to processing memory,
since the source buffers of a processing function must be in local
processing memory, that is, in processing memory on the same
node as the thread which will execute the processing function.
For maximum efficiency, the destination buffer of a processing
function should also be in local processing memory. Note that

the destination buffer of a processing function that uses the
NOA must be located in local processing memory.

Displaying the buffer It is still possible to display an image allocated in a linear
format, provided it is 8 bits deep. Note, however, that this is not
recommended, since only one such image can be displayed at a
time. (Only one image can be displayed because the start
address and pitch of the display must be set to be the same as
those of the image, and won’t necessarily be compatible with
other images currently in display memory.) Use
imDispControl() to display your data and specify the ID of the
buffer to display.

228 Chapter 11: Displaying images

Running multiple applications
This section is a summary of the guidelines you should follow
if you want to properly share the display between multiple
applications at the same time. Note that most of these
guidelines were mentioned in previous sections of this chapter
and that general guidelines regarding multiple applications
were given in Chapter 2.

■ When you allocate an on-screen child buffer, always set the
Buf parameter of imBufChild() to IM_DISP. This will allow
the application to run on either the monochrome or color
version of the display.

■ Avoid changing the display mode to monochrome (this is
possible if you have the color version of the display section).
The only time you should change the display mode to
monochrome is when an application has exclusive use of the
display and needs the extra display memory.

■ Do not use Genesis functions to access the overlay in
single-screen mode; this might interfere with Windows.

■ Enable keying only after you have inquired about the current
keying mode and ensured that keying was disabled.

■ Do not disable keying when an application terminates; this
will interfere with other applications using keying.

■ Do not enable keying in a dual-screen application that does
not use the overlay. This will at least make the program

useable in single-screen mode, since you can simply run a
separate program (such as the GENKEY utility) to enable
keying (see the Genesis Installation and Hardware Reference
for details on the GENKEY utility).

■ Do not use imDispControl() to pan, scroll, or zoom your
on-screen display. If you need these display effects, perform
them before or during the copy to the display.

■ If you allocate off-screen display memory, use imBufAlloc...(),
setting its Location parameter to IM_DISP.

Chapter 12: Error handling

This chapter describes the various error mechanisms
available with the Genesis Native Library.

230 Chapter 12: Error handling

Error mechanisms
Genesis and error
reporting

Often, it is important to check that functions have performed
successfully (such as after allocating resources). However, most
functions in the Native Library are asynchronous; they queue
their command to the hardware and then immediately return
control to the Host. Therefore, the return values of most
functions cannot indicate whether they were performed
successfully; but at most whether they were successfully sent
to the board. Synchronous functions could return a meaningful
error value but these would be tedious to check after every call.
For these reasons, errors are only reported when requested, not
through the return values of functions.

Error mechanisms With the Genesis Native Library, you can:

■ Check application-wide errors, using either imAppGetError()
or imAppCatchError(). imAppGetError() returns
information about the first error detected in the application.
imAppCatchError() calls a user-defined function once an
error in the application is detected.

■ Check a specific thread, using imThrGetError(). This
function returns information about the first error detected in
a specific thread.

■ Check a specific asynchronous function, using
imSyncGetError(). This function checks the outcome of a
specific function call.
When using imAppGetError() or imThrGetError(), the error
returned is the first to occur since error information about the
application or thread was last cleared. You clear error
information by specifying an IM_ERR_RESET flag when calling
these functions.

❖ Errors can only be detected for functions that have finished
executing. Therefore, imAppGetError() might not detect
errors caused by asynchronous functions, unless some
synchronization is performed to ensure that these functions
have finished executing. Since functions in a thread execute
serially, imThrGetError() does not have this problem.

Which error mechanism to use 231

Which error mechanism to use
In general, you should check application-wide errors when you
do not expect errors but still need to be sure that none have
occurred. However, if your application uses only a single thread,
imThrGetError() is generally a better alternative to
imAppGetError() because it requires no explicit
synchronization. Then, errors will usually be handled in the
following manner:

Note that there are two types of errors that imAppGetError()
can detect that imThrGetError() cannot. These are invalid
thread IDs, and errors caused by functions not sent to a thread.

XQKF�OCKP
�
]
����EJCT�GTTQT=+/A'44A5+<'?
�������
����KO$WH#NNQE�F
VJTGCF������������+/A7$;6'��+/A241%���DWH���
����KO$WH#NNQE�F
VJTGCF������������+/A7$;6'��+/A241%���DWH���
����KO&KI)TCD
VJTGCF�����ECO��DWH������������
����KO+PV%QPXQNXG
VJTGCF��DWH���DWH���+/A5/116*��������
�������

������%JGEM�HQT�GTTQTU���
����KH�
KO6JT)GV'TTQT
VJTGCF��+/A'44A/5)A(70%��GTTQT��
��������RTKPVH
��U>P���GTTQT��
����GNUG
��������RTKPVH
�%QORNGVGF�UWEEGUUHWNN[>P���

�����(TGG�TGUQWTEGU���
������
_

Checking a specific
function

You can use imSyncGetError() when you want to check the
outcome of a specific asynchronous function call. If a function
produces an error, it will always be recorded in that function’s
OSB, and can then be retrieved by imSyncGetError().
(imAppGetError() and imThrGetError() will only report the
error if it is the first to occur since error information was last
cleared).

232 Chapter 12: Error handling

More about application-wide errors
You can check application-wide errors using either
imAppGetError() or imAppCatchError().

Using
imAppGetError()

When you use imAppGetError(), information is returned about
the first error detected in the application since error
information about the application was last cleared. You clear
error information about an application by specifying an
IM_ERR_RESET flag when calling imAppGetError():

When you call imAppGetError(), you can retrieve the code of
the detected error, the name of the function that caused the
detected error, and the message generated by the detected
error. When you clear, all these items are simultaneously
cleared. This ensures that, at any time, all error items pertain
to the same detected error. Note that you should only clear error
information when retrieving the last required error item.

Using
imAppCatchError()

When you use imAppCatchError(), a user-defined function is
called if an error in the application is detected. You can have
this function called on subsequent errors by clearing error
information within the user-defined function (call
imAppGetError() with the IM_ERR_RESET flag). In addition,
you can have a specified parameter value passed to the
function.

KO#RR)GV'TTQT
+/A'44A/5)A(70%�
�+/A'44A4'5'6��GTTOUI��
imAppCatchError() can be used to establish a standard
response to errors. For example, the following shows you how
to use imAppCatchError() so that error messages are printed
whenever an error is detected:

More about application-wide errors 233

���
XQKF�O[JCPFNGT
XQKF��

XQKF�OCKP
�
]
�������'UVCDNKUJ�GTTQT�JCPFNKPI���
�����KO#RR%CVEJ'TTQT
+/A&'(#7.6��O[JCPFNGT��07..��

�������(TQO�PQY�QP��O[JCPFNGT
��YKNN�DG�ECNNGF�QP�GTTQT���
��������
_

XQKF�O[JCPFNGT
�
]
�����EJCT�GTTOUI=+/A'44A/5)A5+<'?��GTTHWPE=+/A'44A(70%A5+<'?�

�������)GV�VJG�GTTQT�OGUUCIG���
�����KO#RR)GV'TTQT
+/A'44A/5)��GTTOUI��

�������)GV�VJG�PCOG�QH�VJG�QHHGPFKPI�HWPEVKQP�CPF�ENGCT�GTTQT�KVGOU���
�����KO#RR)GV'TTQT
+/A'44A(70%�
�+/A'44A4'5'6��GTTHWPE��

�������2TKPV�VJGO�QWV���
�����RTKPVH
�'TTQT�KP��U
�����U >P���GTTHWPE��GTTOUI��
_

234 Chapter 12: Error handling

Places to check for errors
To some degree, the placement of the error checking functions
imAppGetError() and imThrGetError() is
application-dependent. However, there are a few places where
they should normally be used:

■ After the initialization section of the application, where
buffers and other resources are usually allocated. Since it is
quite possible that some of the allocations failed, it is a good
idea to check for errors and, if any allocations did fail, clean
up and exit. Since the first error in a sequence of functions is
recorded, you only need to make a single call to
imAppGetError() or imThrGetError().

■ At the end of the application, just before freeing buffers and
other resources. Note that errors would not usually be
expected here if your application has been correctly written.
However, during the development phase, it is common to
have bugs (for example, bad buffer IDs caused by passing
incorrect parameters). Checking for errors during
application development can save you debugging time.

A simple application can usually make do with just the second
method. Even if some buffer allocations failed early in the
application, they will return invalid buffer IDs which will be
trapped by subsequent processing functions. Therefore, the
error will eventually be reported when you call
imAppGetError() or imThrGetError() at the end of the

application.

A more complex application might require extra error checking.
For example, an application with a long processing loop should
check for errors before entering the loop, to avoid the possibility
of looping with, say, a bad buffer ID. You might even want to
check for errors within the loop, unless the loop is a very
time-critical one.

Chapter 13: Optimizing your
application

This chapter describes how to improve the performance
of your application.

236 Chapter 13: Optimizing your application

Overview
With the Genesis Native Library, there are various ways you
can improve the performance of your application. Two simple
but effective ways, which apply to any application, are:

■ Use the smallest possible data type. In general, functions
run faster when you use a smaller data type. For example,
many processing functions run up to twice as fast on 8-bit
data than they do on 16-bit data. There can be a much greater
difference in speed between binary and other data types, so
when possible, you should use binary buffers for binary data
(rather than, say, 8-bit buffers with only the values
0 and 0xFF).

■ Choose the best function. With the Genesis Native
Library, there are sometimes different ways of doing the
same thing. Therefore, if a function or sequence of functions
is too slow for your application, you should consider others;
see the Genesis Native Library Command Reference.

Multiprocessing You can also improve performance by multiprocessing (that is,
by executing operations in parallel). You can often execute
several operations in parallel on a single node. In addition,
almost any application can be made to run faster if you have
more than one node in your system.

Programming the
’C80

In those few cases where the Native Library does not provide
sufficient performance, you can program the ’C80 directly. To

do so, you need to use the optional Genesis Developer’s Toolkit,
in conjunction with Texas Instruments’ TMS320C8x software
development tools. Note that the ’C80 is a complex chip, so
programming it should not be undertaken lightly, even though
it gives you complete access to all features of the board.

Estimating performance 237

Estimating performance
To estimate the performance of your application, benchmarks
of functions with common data types have been provided. These
can be found in the optimize.doc file in the \GENESIS\DOC
directory. This section describes how to estimate performance
for cases not listed in the file. In general, the rules given here
apply to all functions; any exceptions are described in the
optimize.doc file.

Note that, while the rules given here allow you to quickly
estimate the performance of a function, it is always more
accurate to use imSysClock() to measure execution time. For
details, see the Genesis Native Library Command Reference.

General formula
In general, when adjusting a benchmark to your specific case,
you need to subtract the function’s overhead from the
benchmark, scale the result by an appropriate factor, then add
the overhead, i.e.,

 Performance = (Benchmark case - Overhead) x Scale + Overhead.

A function’s overhead can be determined from its total
execution time and its processing rate (as described in the
Overheads section).

For all functions, benchmarks have to be scaled according to
the new image size involved. For example, if a function with a
0.5 ms overhead takes a total of 2.5 ms for a 512x512 image,

then for a 256x256 image, it will take:

 (2.5 - 0.5) x (2562/5122) + 0.5 = 1.0 ms.
For a 1024x1024 image, it will take:

 (2.5 - 0.5) x (10242/5122) + 0.5 = 8.5 ms.

In addition to the new image size, benchmarks for I/O bound
functions have to be scaled according to the bytes/pixel involved
(as described in the I/O bound functions section).

238 Chapter 13: Optimizing your application

Overheads
All functions have a fixed overhead. This means that an image
cannot be processed in less time than this overhead, no matter
how small the image is. It also means that functions become
less efficient when operating on small images, since the
overhead becomes a greater part of the total execution time.

A function’s overhead can be determined from its total
execution time and its processing rate, both of which are listed
in the optimize.doc file. For example, if a function takes 3.2 ms
to process a 512x512 image and has a processing rate of
94 MPixels/sec, its overhead is

Overheads might be reduced in the future, so you should always
consult the latest version of the optimize.doc file when
determining a function’s overhead.

Note that simple asynchronous functions (such as
imBufPutField()), and other functions that don’t operate on
images, have the lowest overhead (currently about 0.2 ms).
Synchronous functions (such as imBufGetField() and
imBufChild()) have the highest overhead (currently about
0.6 ms under Windows NT, slightly less under DOS). Processing
functions usually have an overhead somewhere in-between
(currently about 0.5 ms).

3.2 ms
512

2
pixels

94 MPixels/sec
------------------------------------– 0.4 ms≈
I/O bound functions

A function is I/O bound if its performance is limited by the speed
at which it can access data in memory. Note that functions
which use the parallel processors (PPs) always work by
transferring the image from external memory into on-chip
memory, a block at a time. Each block is processed in on-chip
memory, then the results are transferred back to external
memory. Processing and transferring can overlap, in which case
the PPs are not kept waiting for data. However, if the data is
processed faster than it can be transferred, the PPs are kept
waiting at least part of the time, and the function is said to be
I/O bound.

Estimating performance 239

A function can be assumed to be I/O bound if the optimize.doc
file indicates that it requires a bandwidth of about
300 MBytes/sec.

To estimate the performance of I/O bound functions for cases
not listed in the optimize.doc file, you need to scale according
to the number of bytes/pixel involved, in addition to the image
size involved. For example, assume a function with two source
buffers and one destination buffer has the following
benchmarks when its source and destination buffers are
512x512 pixels large and 8 bits deep.

The overhead, as calculated in the previous section, is 0.4 ms.

Given the above information, you can estimate the performance
for buffers of different sizes and/or depths. For example, if the
source and destination buffers are 512x512 but 16-bit, there are
twice as many bytes involved, so performance should be
(3.2 - 0.4)x2 + 0.4 = 6.0 ms. If the source and destination buffers
are 8-bit but 256x256, there are 1/4 as many pixels involved

(2562/5122 = 1/4), so performance should be
(3.2 - 0.4)x1/4 + 0.4 = 1.1 ms. If the source and destination
buffers are 256x256, the source buffers are 8-bit, and the
destination buffer is 16-bit, there are 1/4 as many pixels
involved and 4/3 as many bytes, so performance should be

Time with overhead: 3.2 ms
Rate without overhead: 94 MPixels/sec
I/O without overhead: 280 MBytes/sec
(3.2 - 0.4)x1/4x4/3 + 0.4 = 1.3 ms.

Note that, in the benchmark case, the total I/O is 3 bytes/pixel
(since there are two source buffers and one destination buffer).
To determine the total I/O for other cases, simply scale
according to the number of pixels and bytes involved. For
example, when the source and destination buffers are 512x512
but 16-bit, the total I/O is 3x2 = 6 bytes/pixel.

240 Chapter 13: Optimizing your application

Compute bound functions
A function is said to be compute bound if its performance is
limited strictly by the speed at which it can process the data,
and not by other factors such as how fast the data can be
accessed in memory. Benchmarks for most compute bound
functions are listed in the optimize.doc file. However, for
neighborhood functions that support user-defined kernels,
benchmarks are not given for all possible kernel sizes. To
estimate performance when your case is not given, scale the
appropriate benchmark according to the number of values in
your kernel. For example, if the processing rate using a 5x5
kernel (25 kernel values) is 7.65 MPixels/sec, then using a 7x7
kernel (49 kernel values), it should be
7.65x25/49 = 3.90 MPixels/sec.

Note that, for some functions, the performance estimated using
the above rule might not always agree with the actual
performance. For example, the performance of imIntConvolve()
also depends on the content of the kernel. Specifically, when
kernel values are all the same (or where only the center value
is different), performance is faster than when kernel values are
completely arbitrary.

NOA setup overhead

It takes quite a long time to set up the NOA for a processing
pass, and this overhead can be very significant for small images
(it can represent about a 40% overhead even on a 512x512

image when using small kernels). To reduce the NOA set-up
time, you can save some or all of the hardware register values
in a cache buffer. This is useful when performing an operation
with imBinMorphic(), imIntConvolve(), or imIntErodeDilate().
Doing so can reduce processing time for a subsequent call to
any of these functions. The first call to one of these functions
will take slightly longer because the registers must be fully
calculated and saved, but subsequent calls will be faster. The
increase in speed depends on the number of parameters that
have changed since the setup information was saved. The
increase is biggest when everything is the same (same buffers,
kernel, control fields). The increase is slightly less if only the
source and/or destination buffer addresses have changed (same

Estimating performance 241

size and type of buffer, same kernel, same control fields). This
is useful if performing a double buffering operation. There is
also some set-up time saved when only the kernel is the same
as before (although buffers and control fields might have
changed).

You have the option to allocate the cache buffer yourself (this
will save a little time on the first call), or have it allocated
automatically. Note that if you choose to allocate it yourself,
then you need to allocate a one-dimensional, 8-bit buffer of size
IM_CACHE_BUF_SIZE. Either way, you are responsible for
freeing the buffer when you no longer need it.

Example The following example demonstrates how to reduce NOA setup
overhead when using the imIntConvolve() command.

���(KTUV�EQPXQNWVKQP�VQ�UCXG�VJG�01#�UGVWR���
���KO$WH2WV(KGNF
6JTGCF��%VTN$WH��+/A%6.A%#%*'A$7(�����
���KO$WH2WV(KGNF
6JTGCF��%VTN$WH��+/A%6.A5'672��+/A5#8'��
���KO+PV%QPXQNXG
6JTGCF��5TE$WH��&UV$WH��-GT$WH��%VTN$WH�����

���5GNGEV�HCUV�UGVWR��DWV�CNNQY�5TE�QT�&UV�DWHHGTU�VQ�DG�FKHHGTGPV���
���KO$WH2WV(KGNF
6JTGCF��%VTN$WH��+/A%6.A5'672��+/A#&&4'55A10.;��

���5WDUGSWGPV�EQPXQNWVKQPU�YKVJ�VJKU�EQPVTQN�DWHHGT�YKNN�DG�HCUVGT���
����HQT�
���
����]
��������KO+PV%QPXQNXG
6JTGCF��5TE$WH��&UV$WH��-GT$WH��%VTN$WH�����
����������
����_

���(TGG�VJG�ECEJG�DWHHGT�YJGP�[QW�PQ�NQPIGT�PGGF�KV���
���KO$WH)GV(KGNF
6JTGCF��%VTN$WH��+/A%6.A%#%*'A$7(���%CEJG$WH��
���KO$WH(TGG
6JTGCF��%CEJG$WH��

242 Chapter 13: Optimizing your application

Multiprocessing
There are several levels of parallelism on a Genesis system. For
example, there are multiple processors within a node: a master
processor (MP), four parallel processors (PPs), and an optional
accelerator (the NOA). In addition, a system can consist of
many processing nodes connected by the grab port,
VMChannel, and PCI bus.

There are two main reasons why you would want to exploit the
parallelism of your system:

■ It might be the only way to achieve a certain task (for
example, to process an image while maintaining real-time
acquisition).

■ It might be required to achieve a certain task fast enough.
For example, you might need several processing nodes
working together to achieve the performance you require.

Multiple threads

For your application to exploit the parallelism of your system,
you need to allocate multiple threads on the Genesis board, so
that operations can run in parallel. Recall that, in the Genesis
Native Library, an operation is sent to a thread, and the
operation executes on the node associated with this thread.
Threads execute independently of one another, allowing
operations to run in parallel, within and/or across nodes.

In general, you should use as many threads as you need to

exploit the parallelism of your system, but no more. Using too
many threads can make your application less efficient because,
among other things, you will need extra synchronization
functions.

Multiprocessing 243

Multiple threads within a node

When a function is sent to a node to execute, it will normally
use as many resources in that node as it needs to run at
maximum speed. However, you can use imThrControl() to
specify that functions sent to a thread use no more than a
specified number of PPs, or that they not use the NOA (if
available). This can be useful when you want your application
to execute several processing threads simultaneously and you
have only one node. Note, however, that there is usually no
point in executing two functions at the same time if they both
use the same processors. For example, if you have allocated two
threads on a node and have limited each to two PPs, then two
functions will run at the same time, but each at only half speed,
so there is no net gain in performance. This is true whether the
functions are compute bound (each runs at half speed because
it only has half of the processors) or I/O bound (each runs at
half speed because it only gets access to memory half of the
time).

If two functions use different processors (for example, the PPs
and the MP, or the PPs and the NOA), there will still be no
advantage to executing them in parallel if both are I/O bound,
since both still access memory only half of the time. However,
if one or both functions are compute bound, there can be some
advantage to running them in parallel.

An application that can benefit from using two threads on the
same node is one that processes an image while copying the

previously-processed image to the display. If the processing and
copy commands were sent to the same thread, they would run
serially, so the total execution time would simply be the
processing time plus the copy time. If the processing and copy
commands were sent to different threads and properly
synchronized, the copy command would still only begin when
the processing completes, but it would not prevent processing
of the next image from starting. Therefore, part or all of the
copy time is "hidden", depending on how I/O intensive the
processing functions are. For details on implementing such an
application, see the examples in the \GENESIS\EXAMPLES
directory.

244 Chapter 13: Optimizing your application

Host threads

When your application contains several distinct parts that you
want to run in parallel, it is often easier to design it so that each
part is controlled by a separate thread (or task) on the Host.
For example, if you have two processing tasks that run in
parallel, it is easier to have each controlled by a separate Host
thread.

Note that Host threads are only supported by multi-tasking
operating systems.

Host threads and
synchronization

When you use Host threads and need to synchronize, you can
use either the Host synchronization services (such as
Windows NT event objects) or the Genesis synchronization
functions. Note, however, that the Host synchronization
services cannot be used when you want to synchronize on-board
events that are running asynchronously with respect to the
Host (this is likely to be often).

When using the Genesis synchronization functions, you can
refer to the OSB states using the defines IM_NON_SIGNALLED
and IM_SIGNALLED, instead of IM_WAITING and
IM_COMPLETED (to comply with Windows NT conventions).

Multiprocessing 245

Multiple nodes
Various Genesis hardware and software features allow you to
make maximum use of the multiple nodes in your system. For
example:

■ Grabbed images are broadcast to all nodes in a system. Each
node can take the whole image or only part of it.

■ The VMChannel connects all nodes, so that results are easily
sent to a specific node for display or further processing.

■ Each ’C80 can make random accesses to any other node over
the PCI bus. This is normally used for message passing and
sharing small amounts of data.

■ You can execute functions on any node in the system.

In accordance with the above, there are different ways you can
divide an application between nodes:

■ Let each node grab a different part of the same input frame,
and work only on that (see the Grabbing part of the same
frame section below).

■ Let each node grab and process a complete frame. Each
successive frame goes to a different node (see the Grabbing
successive frames section below).

■ Dedicate one node to grabbing, and let it do the first part of
the processing before passing the partial results on to the
next node in the pipeline.
Any combination of the above methods can also be used. Which
method is best depends on the individual application.

Examples Multi-node examples can be found in the
\GENESIS\EXAMPLES directory.

246 Chapter 13: Optimizing your application

Grabbing part of the same frame

Letting each node grab a different part of the same input frame
results in the lowest possible latency before an output image is
produced. However, it is not suitable for algorithms that need
access to a whole image. For example, to count the number of
blobs in an image, you should not sub-divide the image and then
sum the results (some blobs might be counted more than once).

To grab part of the same input frame to multiple nodes
simultaneously, you need to use the IM_CTL_START_X,
IM_CTL_START_Y, IM_CTL_STOP_X, and IM_CTL_STOP_Y fields
of imDigGrab(). In addition, you need to synchronize the nodes
to ensure that they all grab the same frame. See Chapter 10 for
details.

Grabbing successive frames

When each node grabs and processes successive frames, the
latency will be longer than when each node grabs a different
part of the same input frame. However, performance scales
linearly with the number of nodes for almost any algorithm
(that is, if you have n nodes, your application will run n times
faster using this method).

To grab successive frames to different nodes, you must wait for
the start of the previous grab before trying to grab the next
frame (if you wait for the end of the previous grab, it will be too
late to grab the next frame; if you do not wait at all, you might
grab the same frame). For example:
Note that the above assumes that Thread1 and Buf1 were
allocated on the first node, and Thread2 and Buf2 on the other
node.

���)TCD�C�HTCOG�QP�VJG�HKTUV�PQFG���
�KO&KI)TCD
6JTGCF������%COGTC��$WH���������15$��

���/CMG�VJG�UGEQPF�PQFG�YCKV�HQT�VJG�ITCD�VQ�UVCTV���
�KO5[PE6JTGCF
6JTGCF���15$��+/A56#46'&��
���
���6JG�UGEQPF�PQFG�ITCDU�VJG�PGZV�HTCOG���
�KO&KI)TCD
6JTGCF������%COGTC��$WH������������

Programming tips 247

Programming tips
The following are some miscellaneous tips that will help your
application run at maximum speed:

■ Don’t use a display buffer as the destination of a processing
function; it is much better to use a buffer in processing
memory, and then copy that buffer to display memory when
results need to be seen.

■ Avoid large look-up tables; they are slow. If you need to
perform a LUT mapping on 16-bit data, try to use several
smaller LUT mappings instead.

■ Avoid dividing an image by a constant or another image; this
is a slow operation. If you are dividing by a constant, it is
better to invert the constant and multiply (making sure to
use enough bits to avoid loss of precision).

■ Use only those control options that you need; some functions
run slower if you select certain options (such as saturation
and clipping of results).

■ Avoid synchronous functions within time-critical loops; they
break the processing pipeline because the Host has to wait
for a reply from the board. Since the allocation functions are
synchronous, you should allocate all resources at the
beginning of your application.

■ Don’t add fields to a buffer inside a loop. This can cause a
significant overhead, especially if you are processing small

images.

■ If possible, pack small images into a single large buffer and
process them all at once (it is more efficient to process large
buffers than small ones).

■ If your application requires that one or more regions of
interest (ROIs) be processed, it might be more efficient to
process the whole image than to define and process several
ROIs. This is because there is less overhead involved.

■ When retrieving blob analysis or pattern matching results,
retrieve a group of results rather than retrieving results
individually.

248 Chapter 13: Optimizing your application

Appendix A: Glossary

This appendix defines some of the specialized terms used
in the Genesis documentation.

250 Appendix A: Glossary

■ ALU

Arithmetic and Logic Unit. The hardware used to perform
arithmetic and logical operations.

■ ASIC

Application-specific integrated circuit. A custom-made
integrated circuit made to meet the requirements of a specific
application by integrating several digital and/or analog
functions into a single die. Integrating the functions into a
single die results in a reduction in cost, board area, and power
consumption, while improving performance when compared
to an equivalent implementation using off-the-shelf
components.

■ Asynchronous function

A function that queues its command to the hardware and
then immediately returns control to the caller.

See also synchronous function.

■ Backplane

A circuit board that acts as a pathway between multiple
Genesis boards. If a backplane is inserted between the grab
ports of Genesis boards and one is inserted between the
VMChannels of these boards, the boards are part of the same
system and can share data through their VMChannel and
grab port interface.
■ Band

One of the surfaces of a buffer. A grayscale image requires
just one band. A color image requires three bands, one for
each color component.

■ Bandwidth

A term describing the capacity to transfer data. Greater
bandwidth is needed to sustain a higher transfer rate.
Greater bandwidth can be achieved, for example, by using a
wider bus.

Appendix A: Glossary 251

■ Bicubic interpolation

An interpolation mode that takes a weighted average of the
sixteen pixels nearest a point. The pixels closest to the point
are given the most weight. Bicubic interpolation produces
more accurate results than bilinear interpolation but is
slower.

■ Bilinear interpolation

An interpolation mode that takes a weighted average of the
four pixels nearest a point. The pixels closest to the point are
given the most weight. Bilinear interpolation produces less
accurate results than bicubic interpolation (it tends to blur
the image slightly). However, it is faster than bicubic
interpolation.

■ Binarize

To convert data to one of two values.

■ Bit

A digit of a binary number. An image is referred to as 1-bit,
8-bit, 16-bit, etc., meaning that many bits are available to
store the value of each pixel in the image.

■ Broadcast

To send data to multiple memory banks at the same time. On
Matrox Genesis, this can be done for data passing through
the grab port and the VMChannel, but not for data passing

through the PCI bus.

■ Blanking period

The portion of a video signal after the end of a line or frame,
and before the beginning of a new line or frame. During this
period, the video signal is "blank" so that a scan line can be
brought back to the beginning of the new line or frame. The
portion of a video signal after the end of a line and before the
beginning of a new line is known as the horizontal blanking
period. The portion of a video signal after the end of a frame
and before the beginning of a new frame is known as the
vertical blanking period.

252 Appendix A: Glossary

■ Blob

An area of touching pixels that have the same value.
Horizontally and vertically adjacent pixels are considered
touching. Usually, you can specify whether diagonally
adjacent pixels are considered touching. Pixels in the image
that are not part of a blob make up the background.

Also known as a connected region.

■ Buffer pitch

The number of bytes from a pixel to its neighboring pixel on
the line below. Note that a buffer’s pitch is not necessarily
the same as its width in bytes, since the buffer could be a
child buffer or could have been allocated with some padding
at the end of each line.

Also known as line pitch or pitch.

■ Byte-aligned

Describes a packed binary buffer which starts on an 8-bit
boundary, that is, whose first pixel represents bit 0 of a data
byte. Note that packed binary buffers are byte-aligned when
allocated; the only way to have a misaligned packed binary
buffer is to create a child buffer with an origin that is not a
multiple of 8.

■ ’C80

A single-chip multiprocessor device that performs most of the

processing on the Genesis board. It includes four parallel
processors (these are advanced, 32-bit integer DSPs), a 32-bit
RISC master processor with an IEEE-754 floating-point unit,
and a transfer controller (this transfers data between
external and internal memory). The 'C80 is much more
flexible than custom ASICs or other specialized hardware
because it is fully programmable.

Also known as the TMS320C80.

■ C-binding

The set of functions, callable from a Host C (or C++)
application, available for controlling the Genesis system.

Appendix A: Glossary 253

■ Child buffer

A buffer corresponding to a rectangular region within
another buffer, or to a specific band of a multi-band buffer.
Child buffers are therefore useful when you want to restrict
processing to a rectangular region of a buffer, or to a band of
a buffer.

■ Clip

To replace overflows (or underflows) in an operation with the
highest (or lowest) possible value that can be held in the
destination buffer of the operation.

■ Closing

A dilation followed by an erosion.

See also opening.

■ Color component

One of the components that make up a color space. Typically,
each component of a color image is stored in a separate band
of a multi-band buffer.

■ Color space

The way color information in a color image is represented.
Common color spaces are RGB and HSL.

■ Composite sync

A synchronization signal made up of two components: one

horizontal and one vertical.

■ Compression ratio

The ratio of the uncompressed data size of an image to its
compressed data size.

■ Compute bound

Describes a function whose performance is limited strictly by
the speed at which the ’C80 can process the data, and not by
other factors such as how fast the data can be accessed in
memory.

See also I/O bound.

254 Appendix A: Glossary

■ Connected region

See blob.

■ Contiguous memory

A block of memory occupying a single, unbroken series of
addresses.

■ Control buffer

A buffer whose control fields specify certain options of a
function. The Genesis Native Library uses control buffers
because some functions have so many options that it is
impractical to have these options as parameters of the
function. Instead, you specify the options you want performed
by adding the required control fields to a buffer and passing
this buffer to the function.

■ Control field

A field that is used to specify a certain option of a function.
The option is performed by adding the field to the function’s
control buffer. A field holds a single value (integer or
floating-point) and is identified by a unique "tag". The tag
itself is just an integer value.

■ Convolution

A neighborhood operation that determines the new value for
a pixel based on the weighted sum of the pixel and the pixel’s
neighboring values.
■ Dilation

A morphological operation that adds layers to objects in an
image. In general, this is done by changing background pixels
that touch object pixels into object pixels.

See also erosion.

■ Display artifacts

Unwanted visual effects sometimes seen when the transfer
of data to display memory is not synchronized with the
reading of display memory by the RAMDAC.

Appendix A: Glossary 255

■ Display buffer

See main frame buffer.

■ Double buffering

Alternating the destination of an operation between two
buffers. Double buffering allows you to, for example, process
one buffer while grabbing into the other buffer.

■ DSP

Digital Signal Processor. Microprocessor designed for
high-speed processing of digital signals.

■ Dual-screen mode

A display configuration using two monitors; one to display
images from the Genesis display memory, and another to
display the Host operating system’s user interface.

See also multi-display mode and single-screen mode.

■ Dynamic range

The range of values present in a buffer. An unsigned 8-bit
buffer, for example, has an allowable range of 0 to 255; its
dynamic range can be any range within these values.

■ Erosion

A morphological operation that peels layers from objects in
an image. In general, this is done by changing object pixels
that touch background pixels into background pixels.
See also dilation.

■ Exposure signal

The signal generated by one of the programmable timers of
the grab module. The exposure signal can be used to control
external hardware. For example, it can be fed to the camera
to control its exposure time or used to fire a strobe light.

■ Exposure time

Refers to the period during which the image sensor of a
camera is exposed to light. As the length of this period
increases, so does the image brightness.

256 Appendix A: Glossary

■ Field

One of the two halves that together make up the image
grabbed from an interlaced camera. One half consists of the
image’s odd lines (known as the odd field); the other half
consists of the image’s even lines (known as the even field).

■ Fixed-point

A format for representing non-integer values that contains a
fixed number of digits for the integer and fractional parts. A
16-bit fixed-point buffer, for example, might contain 8 integer
bits and 8 fractional bits. Fixed-point buffers are a
compromise between floating-point and integer buffers, since
they offer the speed of integer processing with some of the
precision of floating-point processing.

■ Floating-point

A format for representing numbers that contains two parts:
a mantissa and an exponent. The mantissa specifies the
digits in the number, while the exponent expresses the
magnitude of the number. This format provides a constant
number of significant digits of precision over a very large
dynamic range. Floating-point buffers take longer to process
than integer buffers.

■ Frame

A single image grabbed from a video camera.

■ Gain level
The factor by which an analog input signal is scaled. The gain
affects the brightness and contrast of the resulting image.

■ Gain and offset correction

To offset and multiply each pixel in an image by specified
values:
new pixel value = (old pixel value - offset) * gain.
The offset and gain values can be constant for the whole
image, or they can be different for each pixel. The latter can
be useful when performing shading corrections.

Appendix A: Glossary 257

■ Geometric operation

A processing operation that repositions pixels in an image.

■ Grab

To acquire an image from a camera.

■ Histogram

A statistical operation that measures the frequency with
which each pixel value occurs in an image.

■ Histogram equalization

A point-to-point operation that changes each pixel value in
an image so as to reshape the image’s histogram in a specified
way. A histogram equalization operation can be used to
improve the contrast or brightness of an image.

■ Horizontal blanking period

The portion of a video signal after the end of a line and before
the beginning of a new line. During this period, the video
signal is "blank".

See also vertical blanking period.

■ Horizontal sync

The part of a video signal that indicates the end of a line and
the start of a new one.

See also vertical sync.
■ HSL

A color space that represents color using components of hue,
saturation, and luminance. The hue component describes the
actual color of a pixel. The saturation component describes
the concentration of that color. The luminance component
describes the combined brightness of the primary colors.

■ In-place operation

Describes a processing operation in which the results
overwrite one of the source buffers.

258 Appendix A: Glossary

■ Interlaced scanning

Describes a transfer of data in which the odd-numbered lines
of the source are written to the destination buffer first, and
then the even-numbered lines (or vice-versa).

See also progressive scanning.

■ Interpolation

A neighborhood operation that estimates the intensity at a
point in an image between pixel positions. To estimate the
intensity, the operation takes a weighted-sum of the point’s
neighboring pixel values. Two common interpolation modes
are bicubic interpolation and bilinear interpolation.

■ I/O bound

Describes a function whose performance is limited by the
speed at which it can access data in memory.

See also compute bound.

■ JPEG

Joint Photographic Experts Group. A standard for
compressing images.

■ Kernel

The set of numbers that are used by a neighborhood operation
to determine new pixel values. The type of neighborhood
operation determines how the kernel is used.
Also known as a structuring element (particularly for
morphological operations).

■ Keying

A display effect that switches between two display sources
depending on the pixel values in one of the sources. On
Genesis, keying is usually used to make portions of the
overlay frame buffer transparent so that corresponding areas
of the main frame buffer can show through it.

■ Latency

The time from when an operation is started to when the final
result is produced.

Appendix A: Glossary 259

■ Line pitch

See buffer pitch.

■ Live processing

See real-time processing.

■ LUT mapping

Look-up table mapping. A point-to-point operation that uses
a table to define a replacement value for each possible pixel
value in an image.

■ Main frame buffer

The buffer whose contents are displayed by the display
section of Matrox Genesis. If keying is enabled, those areas
of the overlay frame buffer that have a specified color allow
the main frame buffer to show through.

Also known as the display buffer.

■ Message

The operation code and its various optional parameters that
a C-binding function sends to the board so that the board can
execute the function.

■ MGA

Matrox Graphics Architecture. As part of Matrox Genesis’s
display section, it allows you to draw into the overlay buffer
using the graphics functions of the Host operating system.
■ Morphological operation

A neighborhood operation that determines the new value for
a pixel based on the results of a comparison between the
pixel’s neighborhood and the operation’s kernel, or based on
the extreme values in the pixel’s neighborhood.

■ Multi-display mode

A multi-board configuration that uses Genesis boards and/or
MGA Millennium boards to create one large desktop on two,
three, or four screens.

260 Appendix A: Glossary

■ Multi-processing

Executing two or more operations in parallel.

Also known as parallel processing.

■ Neighborhood operation

A processing operation that replaces a pixel’s value according
to the values of its surrounding pixels (called its
neighborhood). The size of the neighborhood is determined
by the operation’s kernel. The type of operation determines
how the new pixel value is determined. Convolutions and
morphological operations are two types of neighborhood
operations.

■ NOA

Neighborhood Operations Accelerator. A Matrox-designed
ASIC that can accelerate neighborhood operations such as
convolutions and morphology.

■ Node

The basic building block of a Genesis system; it consists of
the TMS320C80 (’C80), the VIA, and processing memory. A
node can also include a NOA.

■ Normalized grayscale correlation

A neighborhood operation that determines the new value for
a pixel (r), based on a specified kernel (model):

where M = the value of a model pixel and I = the value of the
underlying image pixel. Note that the above equation reaches
its maximum value of 1 where the image and model match
exactly, gives 0 where the image and model are uncorrelated,
and is negative where the similarity is less than might be
expected by chance (reaching -1 when the image is a negative
version of the model). Normalized grayscale correlation is
widely used in industry for pattern matching applications.

r

N IM∑ I∑ 
  M∑–

N I
2∑ I∑ 

  2
– N M

2∑ M∑ 
  2

–

---=

Appendix A: Glossary 261

■ Normalization

Adjusting the results of a processing operation so that they
have the correct magnitude. After multiplying an image by a
fixed-point integer, for example, normalization is needed to
right-shift results to remove the fractional bits.

■ Off-screen display memory

Memory that is allocated in the main or overlay frame buffer
(in Matrox Genesis’s display section) that is not visible on the
screen.

■ Opening

An erosion followed by a dilation.

See also closing.

■ Operand

One of the terms of an arithmetic or logical operation. In the
arithmetic operation A + B, for example, the operands are A
and B. In the Genesis Native Library, one of the operands of
an arithmetic or logical operation must be a buffer; the
other(s) can be buffers or constants. Note that the buffers can
hold any type of data, for example, image data, LUT values,
and kernel values.

■ Overflows

Results of a processing operation that are above the range of
the destination buffer. For example, in an unsigned 8-bit

destination buffer, overflows are those results above 255.

See also underflows.

■ Overlay frame buffer

The buffer used to annotate the main frame buffer. On
Genesis, portions of the overlay frame buffer that have a
specified color allow the corresponding areas of the main
frame buffer to show through (if keying is enabled). Note that,
in single-screen mode, the overlay frame buffer is also used
to display the Host operating system’s user interface.

■ Parallel processing

See multi-processing.

262 Appendix A: Glossary

■ Pitch

See buffer pitch.

■ Point-to-point operation

A processing operation that does not use a pixel’s neighbors
when determining the pixel’s new value. Examples of
point-to-point operations are LUT mappings, arithmetic
operations, and logical operations.

■ Processing operation

An operation that results in a new image. Examples of
processing operations are geometric operations,
point-to-point operations, and neighborhood operations.

See also statistical operation.

■ Progressive scanning

Describes a transfer of data in which the lines of the source
are written sequentially into the destination buffer.

See also interlaced scanning.

■ RAMDAC

Random Access Memory Digital-to-Analog Converter. A chip
that converts data from digital to analog so that it can be
displayed on a monitor. The RAMDAC can also implement
various display effects.

■ Rank filter operation
A neighborhood operation that sorts a pixel’s neighborhood
values in increasing order, and then replaces the pixel’s value
with the nth highest value in the list. A median filter is a type
of rank filter that uses the middle value in the list.

■ Real-time processing

The processing of an image as quickly as the next image is
grabbed.

Also known as live processing.

Appendix A: Glossary 263

■ Reference levels

The zero and full-scale levels of an analog-to-digital
converter. Voltages below a black reference level are converted
to a zero pixel value; voltages above a white reference level
are converted to the maximum pixel value. Together with the
analog gain factor, the reference levels affect the brightness
and contrast of the resulting image.

■ RGB

A color space that represents color using the primary colors
(red, green, and blue) as components.

■ RISC

Reduced Instruction Set Computing. A microprocessor design
that focuses on efficiently processing a small set of
instructions.

■ ROI

Region of interest. The area of a buffer that is processed. The
region of interest can be the entire buffer or a rectangular
portion of the buffer.

■ Run

A horizontal sequence of consecutive pixels with the same
value. Often used in blob analysis, since each blob can be
efficiently described as a list of runs.

■ Saturate
To replace overflows (or underflows) in an operation with the
highest (or lowest) possible value that can be held in the
destination buffer of the operation.

■ Scalability

Describes a board whose configuration is designed to include
additional modules, if desired. The Genesis main board, for
example, can include a display section and/or grab module.
In addition, one or more processor boards can be added to
increase performance.

264 Appendix A: Glossary

■ SDRAM

Synchronous Dynamic Random Access Memory. A type of
memory used for processing. SDRAM allows the ’C80 to
access data as fast as possible, which is important for
I/O-bound functions.

■ Shearing

A geometric operation that translates pixels along only one
axis, by an amount proportional to the distance from that axis
(see below).

■ Signed

Describes a buffer that can have negative values. A signed

-y shearing

+y shearing

original
image

+x shearing-x shearing
8-bit buffer, for example, has values between -128 and 127.

See also unsigned.

■ Sign-extension

To extend a value from one data type to a larger data type by
copying the sign bit of the source type to all the higher bits
of the destination (that is, by copying 1’s if the value is
negative; 0’s if the value is positive).

See also zero-extension.

Appendix A: Glossary 265

■ Single-screen mode

A display configuration using a single monitor to display both
the Host operating system’s user interface and images from
the Genesis display memory.

See also dual-screen mode and multi-display mode.

■ Spatial filtering operation

See convolution.

■ Statistical operation

An operation that extracts information from an image. A
histogram is an example of a statistical operation.

See also processing operation.

■ Structuring element

See kernel.

■ Synchronous function

A function that does not return control to the caller until it
has finished executing.

See also asynchronous function.

■ System

A group of Genesis boards (main board(s) and/or processor
board(s)) connected to each other by the grab port and the
VM port.
■ Temporal filtering

An operation that takes a weighted sum of the currently
grabbed frame and the previous output of the filter operation.
Temporal filtering is often used to remove the effects of
random noise because it acts as an averaging filter.

■ Thickening

A morphological operation that converts background pixels
into object pixels when the neighborhood exactly matches a
kernel. Thickening is similar to dilation except that it is more
selective because, when iterated, it will not convert all pixels
to object pixels. Instead, it will eventually reach a steady
state (known as idempotence).

266 Appendix A: Glossary

■ Thinning

A morphological operation that converts object pixels into
background pixels when the neighborhood exactly matches a
kernel. Thinning is similar to erosion except that it is more
selective because, when iterated, it will not convert all pixels
to background pixels. Instead, it will eventually reach a
steady state (known as idempotence).

■ Thread

An execution queue. In the Genesis Native Library, all
functions are sent to a specified thread, and execute on the
node associated with this thread. Threads execute
independently of one another, allowing operations to run in
parallel.

■ Threshold

A point-to-point operation that converts pixels whose values
are above, below, and/or within a specified range, to a
specified value.

■ TMS320C80

See ’C80.

■ Translation

A geometric operation that displaces an image vertically
and/or horizontally.

■ Underflows
Results of a processing operation that are below the range of
the destination buffer. For example, in an unsigned 8-bit
destination buffer, underflows are those results below 0.

See also overflows.

■ Unsigned

Describes a buffer that can have only positive values. An
unsigned 8-bit buffer, for example, has values between 0 and
255.

See also signed.

Appendix A: Glossary 267

■ Vertical blanking period

The portion of a video signal after the end of a frame and
before the beginning of a new frame. During this period, the
video signal is "blank".

See also horizontal blanking period.

■ Vertical sync

The part of a video signal that indicates the end of a frame
and the start of a new one.

See also horizontal sync.

■ VIA

Video Interface ASIC. A custom ASIC that connects all the
data buses on Matrox Genesis (the grab, VMChannel, ’C80
and PCI bus) to one another, and directs and monitors data
flow "traffic" throughout the system. It is a video interface
that provides various ways of inputting and outputting data.

■ VMChannel

Vesa Media Channel. An industry standard 32-bit bus
designed for carrying video data. On Genesis, it is used
primarily to copy images between nodes or from processing
to display memory.

■ WRAM

Window Random Access Memory. A type of dual-ported
memory used for displays.
■ Zero-extension

To extend a value from one data type to a larger data type by
copying 0’s into all the higher bits of the destination.

See also sign-extension.

268 Appendix A: Glossary

Appendix B: Examples

This appendix gives the complete source code of each
example referenced in this manual. To compile these
examples, refer to the readme.txt file in the
\GENESIS\DOC directory. Note that there might be more
up-to-date or other examples in the \GENESIS\EXAMPLES
directory.

270 Appendix B: Examples

blob.c
��
��
���&GOQPUVTCVG�VJG�WUG�QH�VJG�$.1$�OQFWNG�
��
���
0QVG�VJCV�KH�[QW�CTG�TWPPKPI�KP�UKPING�UETGGP�OQFG�WPFGT�9KPFQYU�
����[QW�YKNN�PQV�UGG�CP[VJKPI�KP�VJG�)GPGUKU�KOCIG�DWHHGT�WPVKN�[QW
����GPCDNG�MG[KPI�YKVJ�C�UGRCTCVG�RTQITCO��
��
��

�KPENWFG��UVFKQ�J
�KPENWFG��UVFNKD�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCVJ�J

�KPENWFG��KOCRK�J�

���/CZKOWO�DNQDU�VQ�FTCY���
��FGHKPG�/#:A$.1$5���

���.KUV�QH�UWRRQTVGF�HWPEVKQPU���
��FGHKPG�%1706��������
��FGHKPG�$1:����������
��FGHKPG�(+.6'4�������

XQKF�OCKP
KPV�CTIE��EJCT���CTIX�
]
����NQPI�&GXKEG����������������������)GPGUKU�FGXKEG���
����NQPI�6JTGCF����������������������6JTGCF�VQ�GZGEWVG�CNN
�������������������������������������HWPEVKQPU���
����NQPI�+FGPV$WH��������������������$NQD�KFGPVKHKGT�KOCIG���
����NQPI�&KUR$WH���������������������&KURNC[�DWHHGT���
����NQPI�(GCV.KUV��������������������$NQD�HGCVWTG�NKUV���
����NQPI�4GUWNV����������������������$NQD�TGUWNV�DWHHGT���
����NQPI�5K\G:��������5K\G;����������+OCIG�5K\G���
����NQPI�(WPE������������������������6JG�HWPEVKQP�VQ�WUG���

����EJCT�'TTQT=+/A'44A5+<'?����������5VTKPI�VQ�JQNF�GTTQT�OGUUCIG���
����NQPI�K�

������%JGEM�CTIWOGPVU���
����KH�
CTIE�����^^��CTIX=�?�==�	!	�
����]
��������RTKPVH
�7UCIG��$.1$�HWPE>P���
��������RTKPVH
�HWPE�����F��%QWPV�PWODGT�QH�DNQDU>P���%1706��
��������RTKPVH
����������F��(KPF�DQWPFKPI�DQZ�QH�GCEJ�DNQD>P���$1:��
��������RTKPVH
����������F��(KNVGT�WPYCPVGF�DNQDU>P���(+.6'4��
��������GZKV
���
����_
����KH�
CTIE� ���
��������UUECPH
CTIX=�?����NK����(WPE��

blob.c 271

������#NNQECVG�C�FGXKEG�CPF�C�VJTGCF���
����KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
����KO6JT#NNQE
&GXKEG������6JTGCF��

������#NNQECVG�VJG�DNQD�KFGPVKHKGT�KOCIG���
����KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%���+FGPV$WH��

������#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
����KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���&KUR$WH��
����KO$WH%NGCT
6JTGCF��&KURDWH��������

������&TCY�TCPFQO�DNQDU�KP�VJG�KFGPVKHKGT�KOCIG���
����KO$WH%NGCT
6JTGCF��+FGPV$WH��������
����KO$WH2WV(KGNF
6JTGCF��+FGPV$WH��+/A)4#A%1.14�������
����HQT�
K������K���/#:A$.1$5��K

�
����]
��������KO)TC#TE(KNN
6JTGCF��+FGPV$WH��+FGPV$WH��TCPF
����5K\G:��
���������������������TCPF
����5K\G;��TCPF
�������
�����
���������������������TCPF
�������
�������������
����_

������%QR[�VJG�KOCIG�VQ�VJG�FKURNC[���
����KO$WH%QR[
6JTGCF��+FGPV$WH��&KUR$WH��������

������2GTHQTO�VJG�UGNGEVGF�RTQEGUUKPI�QRGTCVKQP���
����UYKVEJ�
(WPE�
����]
��������ECUG�%1706�
��������]
������������RTKPVH
�%QWPV�VJG�PWODGT�QH�DNQDU���>P���

��������������#NNQECVG�C�DNQD�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
������������KO$NQD#NNQE(GCVWTG.KUV
6JTGCF���(GCV.KUV��
������������KO$NQD#NNQE4GUWNV
6JTGCF���4GUWNV��

��������������+PETGCUG�URGGF�D[�PQV�UCXKPI�TWPU���
������������KO$NQD%QPVTQN
6JTGCF��4GUWNV��+/A$.1$A5#8'A4705��+/A&+5#$.'��

��������������%QWPV�VJG�DNQDU���

������������KO$NQD%CNEWNCVG
6JTGCF��+FGPV$WH�����(GCV.KUV��4GUWNV�
����������������������������+/A%.'#4�����

��������������)GV�VJG�PWODGT���
������������RTKPVH
�6JGTG�CTG��NK�DNQDU>P���KO$NQD)GV0WODGT
6JTGCF�
�������������������4GUWNV��07..���

��������������(TGG�VJG�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
������������KO$NQD(TGG
6JTGCF��(GCV.KUV��
������������KO$NQD(TGG
6JTGCF��4GUWNV��

������������DTGCM�
��������_

272 Appendix B: Examples

��������ECUG�$1:�
��������]
������������RTKPVH
�(KPF�VJG�DQWPFKPI�DQZ�QH�GCEJ�DNQD���>P���

������������NQPI�0WODGT��������������������0WODGT�QH�DNQDU���
������������+/A$.1$A)4172�A56��)TQWR�������4GUWNVU���

��������������#NNQECVG�C�DNQD�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
������������KO$NQD#NNQE(GCVWTG.KUV
6JTGCF���(GCV.KUV��
������������KO$NQD#NNQE4GUWNV
6JTGCF���4GUWNV��

��������������5GNGEV�DQZ�HGCVWTG�HQT�ECNEWNCVKQP���
������������KO$NQD5GNGEV(GCVWTG
6JTGCF��(GCV.KUV��+/A$.1$A$1:�
��������������������������������+/A&'(#7.6��

��������������+PETGCUG�URGGF�D[�PQV�UCXKPI�TWPU���
������������KO$NQD%QPVTQN
6JTGCF��4GUWNV��+/A$.1$A5#8'A4705��+/A&+5#$.'��

��������������%CNEWNCVG�UGNGEVGF�HGCVWTGU���
������������KO$NQD%CNEWNCVG
6JTGCF��+FGPV$WH�����(GCV.KUV��4GUWNV�
����������������������������+/A%.'#4�����

��������������)GV�VJG�PWODGT�QH�DNQDU���
������������KO$NQD)GV0WODGT
6JTGCF��4GUWNV���0WODGT��

��������������#NNQECVG�GPQWIJ�OGOQT[�HQT�VJG�TGUWNVU���
������������)TQWR����
+/A$.1$A)4172�A56����
����������������������OCNNQE
0WODGT���UK\GQH
+/A$.1$A)4172�A56���

��������������)GV�VJG�TGUWNVU���
������������KO$NQD)GV4GUWNV
6JTGCF��4GUWNV��+/A$.1$A)4172���
����������������������������+/A&'(#7.6��)TQWR���

��������������/CTM�VJG�DQWPFKPI�DQZGU���
������������HQT�
K������K���0WODGT��K

�
����������������KO)TC4GEV
6JTGCF�����+FGPV$WH��)TQWR�=K?�DQZAZAOKP����
��������������������������)TQWR�=K?�DQZA[AOKP��)TQWR�=K?�DQZAZAOCZ�
��������������������������)TQWR�=K?�DQZA[AOCZ��
��������������&KURNC[�VJG�TGUWNV���
������������KO$WH%QR[
6JTGCF��+FGPV$WH��&KUR$WH��������

��������������(TGG�VJG�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
������������HTGG
)TQWR���
������������KO$NQD(TGG
6JTGCF��(GCV.KUV��
������������KO$NQD(TGG
6JTGCF��4GUWNV��

������������DTGCM�
��������_

blob.c 273

��������ECUG�(+.6'4�
��������]
������������RTKPVH
�(KPF�EQPXGZ�DNQDU�VJCV�FQP	V�VQWEJ�VJG�GFIG�QH
�������������������VJG�KOCIG���>P���

��������������#NNQECVG�C�DNQD�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
������������KO$NQD#NNQE(GCVWTG.KUV
6JTGCF���(GCV.KUV��
������������KO$NQD#NNQE4GUWNV
6JTGCF���4GUWNV��

��������������5GNGEV�VJG�TGSWKTGF�HGCVWTGU�HQT�ECNEWNCVKQP���
������������KO$NQD5GNGEV(GCVWTG
6JTGCF��(GCV.KUV��+/A$.1$A$1:�
��������������������������������+/A&'(#7.6��
������������KO$NQD5GNGEV(GCVWTG
6JTGCF��(GCV.KUV�
��������������������������������+/A$.1$A417)*0'55��+/A&'(#7.6��

��������������%CNEWNCVG�UGNGEVGF�HGCVWTGU���
������������KO$NQD%CNEWNCVG
6JTGCF��+FGPV$WH�����(GCV.KUV��4GUWNV�
����������������������������+/A%.'#4�����

�������������'ZENWFG�DNQDU�VJCV�VQWEJ�CP[�GFIG�QH�VJG�KOCIG���
������������KO$NQD5GNGEV
6JTGCF��4GUWNV��+/A':%.7&'�
�������������������������+/A$.1$A$1:A:A/+0��+/A&'(#7.6��+/A'37#.��������
������������KO$NQD5GNGEV
6JTGCF��4GUWNV��+/A':%.7&'�
�������������������������+/A$.1$A$1:A:A/#:��+/A&'(#7.6��+/A'37#.�
�������������������������5K\G:���������
������������KO$NQD5GNGEV
6JTGCF��4GUWNV��+/A':%.7&'�
�������������������������+/A$.1$A$1:A;A/+0��+/A&'(#7.6��+/A'37#.��������
������������KO$NQD5GNGEV
6JTGCF��4GUWNV��+/A':%.7&'�
�������������������������+/A$.1$A$1:A;A/#:��+/A&'(#7.6��+/A'37#.�
�������������������������5K\G;���������

��������������'ZENWFG�DNQDU�VJCV�CTG�VQQ�TQWIJ����
������������KO$NQD5GNGEV
6JTGCF��4GUWNV��+/A':%.7&'�
�������������������������+/A$.1$A417)*0'55��+/A&'(#7.6��+/A)4'#6'4�
����������������������������������
��
��������������(KNN�VJG�VYQ�ITQWRU�QH�DNQDU�YKVJ�FKHHGTGPV�EQNQWTU���
������������KO$NQD(KNN
6JTGCF��4GUWNV��+FGPV$WH��+/A':%.7&'&A$.1$5��
�������������������������������

������������KO$NQD(KNN
6JTGCF��4GUWNV��+FGPV$WH��+/A+0%.7&'&A$.1$5�
�������������������������������

��������������&KURNC[�VJG�TGUWNV���
������������KO$WH%QR[
6JTGCF��+FGPV$WH��&KUR$WH��������

��������������(TGG�VJG�HGCVWTG�NKUV�CPF�TGUWNV�DWHHGT���
������������KO$NQD(TGG
6JTGCF��(GCV.KUV��
������������KO$NQD(TGG
6JTGCF��4GUWNV��

������������DTGCM�
��������_

��������FGHCWNV�
������������RTKPVH
�7PUWRRQTVGF�HWPEVKQP>P���
������������DTGCM�
����_

274 Appendix B: Examples

������9CKV�HQT�GXGT[VJKPI�VQ�HKPKUJ��VJGP�EJGEM�HQT�GTTQTU���
����KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��
����KH�
KO#RR)GV'TTQT
+/A'44A/5)A(70%��'TTQT��
��������RTKPVH
��U>P���'TTQT��

������%NGCP�WR���
����KO$WH(TGG
6JTGCF��+FGPV$WH��
����KO$WH(TGG
6JTGCF��&KUR$WH��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

first.c 275

first.c
��
��
���#�XGT[�UKORNG�)GPGUKU�RTQITCO�
���+H�CP[VJKPI�IQGU�YTQPI��CP�GTTQT�OGUUCIG�YKNN�DG�RTKPVGF�
��
���
0QVG�VJCV�KH�[QW�CTG�TWPPKPI�KP�UKPING�UETGGP�OQFG�WPFGT
����9KPFQYU��[QW�YKNN�PQV�UGG�CP[VJKPI�KP�VJG�)GPGUKU�KOCIG�DWHHGT
����WPVKN�[QW�GPCDNG�MG[KPI�YKVJ�C�UGRCTCVG�RTQITCO��
��
��

�KPENWFG��UVFKQ�J

�KPENWFG��KOCRK�J�

���2TQVQV[RG�HQT�GTTQT�JCPFNGT�HWPEVKQP���
�XQKF�'TT*CPFNGT
XQKF��2CTCO��

XQKF�OCKP
XQKF�
]
����NQPI�&GXKEG������������)GPGUKU�FGXKEG���
����NQPI�6JTGCF������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
����NQPI�2TQE$WH�����������$WHHGT�CNNQECVGF�KP�RTQEGUUKPI�OGOQT[���
����NQPI�&KUR$WH�����������$WHHGT�CNNQECVGF�KP�FKURNC[�OGOQT[���
����NQPI�5WEEGUU�����������(NCI�VQ�TGEQTF�UWEEGUU�QT�HCKNWTG���

����RTKPVH
�#NNQECVKPI�VJG�)GPGUKU�U[UVGO���>P���

������'UVCDNKUJ�CP�GTTQT�JCPFNGT���
����KO#RR%CVEJ'TTQT
+/A&'(#7.6��'TT*CPFNGT��
XQKF�����5WEEGUU��

������#NNQECVG�VJG�DQCTF�CPF�C�VJTGCF���
����KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
����KO6JT#NNQE
&GXKEG������6JTGCF��

������#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���

����KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���&KUR$WH��
����KO$WH%NGCT
6JTGCF��&KUR$WH��������

������#NNQECVG�C�RTQEGUUKPI�DWHHGT���
����KO$WH#NNQE�F
6JTGCF������������+/A7$;6'��+/A241%���2TQE$WH��

276 Appendix B: Examples

������%NGCT�VJG�DWHHGT�CPF�VJGP�YTKVG�VGZV�KP�KV���
����KO$WH%NGCT
6JTGCF��2TQE$WH��������
����KO)TC4GEV
6JTGCF�����2TQE$WH����������������������
����KO)TC6GZV
6JTGCF�����2TQE$WH�������������/CVTQZ�)GPGUKU���

������%QR[�KV�VQ�VJG�FKURNC[���
����KO$WH%QR[
6JTGCF��2TQE$WH��&KUR$WH��������

������5[PEJTQPK\G�VQ�IKXG�CNN�GTTQTU�C�EJCPEG�VQ�DG�TGRQTVGF���
����KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��

������+H�PQ�GTTQTU�QEEWTTGF��TGRQTV�UWEEGUU���
����KH�
5WEEGUU�
��������RTKPVH
�%QORNGVGF�UWEEGUUHWNN[>P���

������%NGCP�WR���
����KO$WH(TGG
6JTGCF��&KUR$WH��
����KO$WH(TGG
6JTGCF��2TQE$WH��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

XQKF�'TT*CPFNGT
XQKF��5WEEGUU�
]
����EJCT�'TTQT=+/A'44A5+<'?�
����
�����)GV�VJG�GTTQT�OGUUUCIG�CPF�RTKPV�KV��&QP	V�TGUGV�VJG�GTTQT
�����DGECWUG�YG�QPN[�YCPV�VJG�HKTUV�VQ�DG�RTKPVGF�
�����
����KO#RR)GV'TTQT
+/A'44A/5)A(70%��'TTQT��
����RTKPVH
��U>P���'TTQT��

������4GEQTF�VJCV�VJG�GTTQT�QEEWTTGF���
�����
NQPI���5WEEGUU�����
_

grab.c 277

grab.c
���
��
���)TCD�CP�KOCIG��CPF�QRVKQPCNN[�UCXG�KV�
��
���
0QVG�VJCV�KH�[QW�CTG�TWPPKPI�KP�UKPING�UETGGP�OQFG�WPFGT
����9KPFQYU��[QW�YKNN�PQV�UGG�CP[VJKPI�KP�VJG�)GPGUKU�KOCIG�DWHHGT
����WPVKN�[QW�GPCDNG�MG[KPI�YKVJ�C�UGRCTCVG�RTQITCO��
��
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVFNKD�J
�KPENWFG��UVTKPI�J

�KPENWFG��KOCRK�J�

XQKF�OCKP
KPV�CTIE��EJCT���CTIX�
]
����NQPI�&GXKEG����������������)GPGUKU�FGXKEG���
����NQPI�6JTGCF����������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
����NQPI�&KUR$WH���������������$WHHGT�CNNQECVGF�KP�FKURNC[�OGOQT[���
����NQPI�5ETGGP$WH�������������&KURNC[�DWHHGT�HWNN�UK\G�QH�UETGGP���
����NQPI�%COGTC����������������%COGTC���
����NQPI�5K\G:��5K\G;����������+OCIG�5K\G���
����EJCT�'TTQT=+/A'44A5+<'?����5VTKPI�VQ�JQNF�GTTQT�OGUUCIG���
����KPV�5CXG������K������������/KUEGNNCPGQWU�XCTKCDNGU���

������%JGEM�CTIWOGPVU���
����KH�
CTIE� �������CTIX=�?�==�	!	�
����]
��������RTKPVH
�7UCIG��)4#$�=HKNG�VKH?�=�Z?�=�[?>P���
��������RTKPVH
���������Z�UK\G>V�+OCIG�:�UK\G>P���
��������RTKPVH
���������[�UK\G>V�+OCIG�;�UK\G>P���
��������GZKV
���
����_
����KH�
CTIE� �������CTIX=�?����	�	�
��������5CXG�����

������#NNQECVG�VJG�DQCTF��C�VJTGCF�CPF�C�ECOGTC���
����KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
����KO6JT#NNQE
&GXKEG������6JTGCF��
����KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��

������&GVGTOKPG�VJG�KOCIG�UK\G���
����KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A:���5K\G:��
����KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A;���5K\G;��

278 Appendix B: Examples

������%JGEM�KH�VJG�WUGT�TGSWGUVGF�C�FKHHGTGPV�UK\G���
����HQT�
K������K���CTIE��K

�
����]
��������KH�
�UVTEOR
CTIX=K?����Z���
������������UUECPH
CTIX=K
�?����NK����5K\G:��
��������GNUG�KH�
�UVTEOR
CTIX=K?����[���
������������UUECPH
CTIX=K
�?����NK����5K\G;��
����_

����RTKPVH
�+OCIG�UK\G�KU��NKZ�NK>P���5K\G:��5K\G;��

������#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
����KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���5ETGGP$WH��
����KO$WH%NGCT
6JTGCF��5ETGGP$WH��������

������#NNQECVG�C�DWHHGT�CV�C�URGEKHKE�NQECVKQP�QP�VJG�FKURNC[���
����KO$WH%JKNF
6JTGCF��+/A&+52��������5K\G:��5K\G;���&KUR$WH��

������5VCTV�C�EQPVKPWQWU�ITCD�KPVQ�VJG�FKURNC[�DWHHGT���
����KO&KI)TCD
6JTGCF�����%COGTC��&KUR$WH��+/A%106+07175��������

������*CNV�YJGP�VJG�WUGT�JKVU�'PVGT���
����RTKPVH
�2TGUU��'PVGT �VQ�UVQR���
����IGVEJCT
��
����KO6JT*CNV
6JTGCF��+/A(4#/'��

������1RVKQPCNN[�UCXG�VJG�KOCIG���
����KH�
5CXG�
����]
��������KH�
KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A07/A$#0&5��07..��==���
��������]
��������������5CXG�CNN�DCPFU�KH�EQNQWT���
������������KO$WH5CXG
6JTGCF��CTIX=�?��+/A6+((��&KUR$WH��
��������_
��������GNUG
��������]
��������������5CXG�LWUV�VJG�HKTUV�DCPF�QH�VJG�FKURNC[�KH�PQV�EQNQWT���
������������NQPI�/QPQ$WH�
������������KO$WH%JKNF$CPF
6JTGCF��&KUR$WH������/QPQ$WH��
������������KO$WH5CXG
6JTGCF��CTIX=�?��+/A6+((��/QPQ$WH��
������������KO$WH(TGG
6JTGCF��/QPQ$WH��
��������_
����_

������9CKV�HQT�GXGT[VJKPI�VQ�HKPKUJ��VJGP�EJGEM�HQT�GTTQTU���
����KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��
����KH�
KO#RR)GV'TTQT
+/A'44A/5)A(70%��'TTQT��
��������RTKPVH
��U>P���'TTQT��

������%NGCP�WR���
����KO%CO(TGG
6JTGCF��%COGTC��
����KO$WH(TGG
6JTGCF��&KUR$WH��
����KO$WH(TGG
6JTGCF��5ETGGP$WH��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

jpeg.c 279

jpeg.c
���
��
���&GOQPUVTCVG�VJG�WUG�QH�VJG�,2')�OQFWNG�
��
���
0QVG�VJCV�KH�[QW�CTG�TWPPKPI�KP�UKPING�UETGGP�OQFG�WPFGT�9KPFQYU�
���[QW�YKNN�PQV�UGG�CP[VJKPI�KP�VJG�)GPGUKU�KOCIG�DWHHGT�WPVKN�[QW
���GPCDNG�MG[KPI�YKVJ�C�UGRCTCVG�RTQITCO��
��
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVFNKD�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCVJ�J

�KPENWFG��KOCRK�J�

���.KUV�QH�UWRRQTVGF�HWPEVKQPU���
��FGHKPG�%1/24'55��������
��FGHKPG�&'%1/24'55������

XQKF�OCKP
KPV�CTIE��EJCT���CTIX�
]
����NQPI�&GXKEG����������������)GPGUKU�FGXKEG���
����NQPI�6JTGCF����������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
����NQPI�+OCIG$WH��������������7PEQORTGUUGF�KOCIG���
����NQPI�,RGI$WH���������������%QORTGUUGF�KOCIG���
����NQPI�&KUR$WH���������������&KURNC[�DWHHGT���
����NQPI�(WPE������������������6JG�HWPEVKQP�VQ�WUG���
����EJCT�'TTQT=+/A'44A5+<'?����5VTKPI�VQ�JQNF�GTTQT�OGUUCIG���
����EJCT�+P(KNG=���?�����������0COG�QH�KPRWV�KOCIG�HKNG���
����EJCT�1WV(KNG=���?����������0COG�QH�QWVRWV�KOCIG�HKNG���

������%JGEM�CTIWOGPVU���
����KH�
CTIE�����^^��CTIX=�?�==�	!	�
����]

��������RTKPVH
�7UCIG��,2')�KPHKNG�QWVHKNG�=HWPE?>P���
��������RTKPVH
�HWPE�����F��.QCF�6+((�HKNG��EQORTGUU��CPF�UCXG�,2')
���������������HKNG>P���%1/24'55��
��������RTKPVH
����������F��.QCF�,2')�HKNG��FGEQORTGUU��CPF�UCXG�6+((
���������������HKNG>P���&'%1/24'55��
��������RTKPVH
��������
FGHCWNV�KU�FGVGTOKPGF�HTQO�HKNG�V[RGU�>P���
��������RTKPVH
�>P���
��������RTKPVH
�'Z�����,2')�HKNG�VKH�HKNG�LRI��YKNN�EQORTGUU>P���
��������RTKPVH
��������,2')�HKNG�LRI�LRGI�VKH��YKNN�FGEQORTGUU>P���
��������GZKV
���
����_
����UVTER[
+P(KNG��CTIX=�?��
����UVTER[
1WV(KNG��CTIX=�?��

280 Appendix B: Examples

������&GVGTOKPG�YJGVJGT�VQ�EQORTGUU�QT�FGEQORTGUU���
����KH�
CTIE� ���
��������UUECPH
CTIX=�?����NK����(WPE��
����GNUG
����]
��������KH�

UVTUVT
+P(KNG����VKH���^^�UVTUVT
+P(KNG����6+(������
������������
UVTUVT
1WV(KNG����LRI���^^�UVTUVT
1WV(KNG����,2)����
������������(WPE���%1/24'55�
��������GNUG�KH�

UVTUVT
+P(KNG����LRI���^^�UVTUVT
+P(KNG����,2)������
������������
UVTUVT
1WV(KNG����VKH���^^�UVTUVT
1WV(KNG����6+(����
������������(WPE���&'%1/24'55�
��������GNUG
��������]
������������RTKPVH
�%CPPQV�FGVGTOKPG�YJCV�VQ�FQ�HTQO�HKNG�PCOGU
�������������������CNQPG>P���
������������GZKV
���
��������_
����_

������#NNQECVG�C�FGXKEG�CPF�C�VJTGCF���
����KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
����KO6JT#NNQE
&GXKEG������6JTGCF��

������2GTHQTO�VJG�UGNGEVGF�RTQEGUUKPI�QRGTCVKQP���
����UYKVEJ�
(WPE�
����]

��������ECUG�%1/24'55�
��������]
������������RTKPVH
�.QCF�6+((�HKNG��EQORTGUU��CPF�UCXG�,2')�HKNG>P���

��������������#NNQECVG�C�,2')�DWHHGT���
������������KO,RGI#NNQE
6JTGCF������,RGI$WH��

��������������5GNGEV�NQUUNGUU�OQFG���
������������KO,RGI%QPVTQN
6JTGCF��,RGI$WH��+/A,2')A/1&'��+/A.155.'55��

��������������.QCF�VJG�WPEQORTGUUGF�KOCIG�KPVQ�C�RTQEGUUKPI�DWHHGT���
������������KO$WH4GUVQTG
6JTGCF��+P(KNG��+/A6+((��+/A241%���+OCIG$WH��
��������������%QORTGUU�VJG�KOCIG���
������������KO,RGI'PEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

��������������5CXG�VJG�EQORTGUUGF�KOCIG���
������������KO,RGI5CXG
6JTGCF��1WV(KNG��,RGI$WH��

��������������(TGG�VJG�,2')�DWHHGT���
������������KO,RGI(TGG
6JTGCF��,RGI$WH��

������������DTGCM�
��������_

jpeg.c 281

�������ECUG�&'%1/24'55�
��������]
������������RTKPVH
�.QCF�,2')�HKNG��FGEQORTGUU��CPF�UCXG�6+((�HKNG>P���

��������������.QCF�VJG�EQORTGUUGF�KOCIG�KPVQ�C�,2')�DWHHGT���
������������KO,RGI4GUVQTG
6JTGCF��+P(KNG���,RGI$WH��

��������������#NNQECVG�C�RTQEGUUKPI�DWHHGT�QH�VJG�UCOG�UK\G���
������������KO$WH#NNQE
6JTGCF��KO,RGI+PSWKTG
6JTGCF��,RGI$WH�
���+/A,2')A5+<'A:��07..��
�������������������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH���
���+/A,2')A5+<'A;��07..��
�������������������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH�
���+/A,2')A07/A$#0&5��07..��
�������������������������������KO,RGI+PSWKTG
6JTGCF��,RGI$WH�
���+/A,2')A6;2'��07..��
���+/A241%���+OCIG$WH��

��������������&GEQORTGUU�VJG�KOCIG���
������������KO,RGI&GEQFG
6JTGCF��+OCIG$WH��,RGI$WH�����

��������������5CXG�VJG�FGEQORTGUUGF�KOCIG���
������������KO$WH5CXG
6JTGCF��1WV(KNG��+/A6+((��+OCIG$WH��

��������������(TGG�VJG�,2')�DWHHGT���
������������KO,RGI(TGG
6JTGCF��,RGI$WH��

������������DTGCM�
��������_

��������FGHCWNV�
������������RTKPVH
�7PUWRRQTVGF�HWPEVKQP>P���
������������DTGCM�
����_

������#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
����KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���&KUR$WH��
����KO$WH%NGCT
6JTGCF��&KUR$WH��������
������%QR[�VJG�WPEQORTGUUGF�KOCIG�VQ�VJG�FKURNC[���
����KO$WH%QR[
6JTGCF��+OCIG$WH��&KUR$WH��������

������9CKV�HQT�GXGT[VJKPI�VQ�HKPKUJ��VJGP�EJGEM�HQT�GTTQTU���
����KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��
����KH�
KO#RR)GV'TTQT
+/A'44A/5)A(70%��'TTQT��
��������RTKPVH
��U>P���'TTQT��

������%NGCP�WR���
����KO$WH(TGG
6JTGCF��+OCIG$WH��
����KO$WH(TGG
6JTGCF��&KUR$WH��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

282 Appendix B: Examples

pat.c
���
��
���&GOQPUVTCVG�VJG�WUG�QH�VJG�2#6�OQFWNG�
��
���
0QVG�VJCV�KH�[QW�CTG�TWPPKPI�KP�UKPING�UETGGP�OQFG�WPFGT�9KPFQYU�
���[QW�YKNN�PQV�UGG�CP[VJKPI�KP�VJG�)GPGUKU�KOCIG�DWHHGT�WPVKN�[QW
���GPCDNG�MG[KPI�YKVJ�C�UGRCTCVG�RTQITCO��
��
��

�KPENWFG��UVFKQ�J
�KPENWFG��UVFNKD�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCVJ�J

�KPENWFG��KOCRK�J�

���.KUV�QH�UWRRQTVGF�HWPEVKQPU���
��FGHKPG�5#8'���������
��FGHKPG�4'5614'������

XQKF�OCKP
KPV�CTIE��EJCT���CTIX�
]
����NQPI�&GXKEG����������������)GPGUKU�FGXKEG���
����NQPI�6JTGCF����������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
����NQPI�+OCIG$WH��������������/QFGN�QT�VCTIGV�KOCIG���
����NQPI�&KUR$WH���������������&KURNC[�DWHHGT���
����NQPI�&KUR$WH���������������&KURNC[�DWHHGT���
����NQPI�5ETGGP$WH�������������&KURNC[�DWHHGT�HWNN�UK\G�QH�UETGGP���
����NQPI�/QFGN�����������������2CVVGTP�OCVEJKPI�OQFGN���
����NQPI�4GUWNV����������������2CVVGTP�OCVEJKPI�TGUWNV�DWHHGT���
����NQPI�5K\G:��5K\G;����������+OCIG�5K\G���
����NQPI�(WPE������������������6JG�HWPEVKQP�VQ�WUG���
����EJCT�'TTQT=+/A'44A5+<'?����5VTKPI�VQ�JQNF�GTTQT�OGUUCIG���
����EJCT��+OCIG(KNG����DQCTF�OKO�������0COG�QH�KOCIG�HKNG���
����EJCT��/QFGN(KNG����OQFGN�OQF�������0COG�QH�OQFGN�HKNG���

����NQPI�/QFGN1HH:��������/QFGN1HH;�������
����NQPI�/QFGN5K\G:��������/QFGN5K\G;�������

���%JGEM�CTIWOGPVU���
����KH�
CTIE�����^^��CTIX=�?����	!	�
����]
��������RTKPVH
�7UCIG��2#6�HWPE>P���
��������RTKPVH
�HWPE�����F��&GHKPG�CPF�UCXG�OQFGN>P���5#8'��
��������RTKPVH
����������F��4GUVQTG�CPF�HKPF�OQFGN>P���4'5614'��
��������GZKV
���
����_
����KH�
CTIE� ���
��������UUECPH
CTIX=�?����NK����(WPE��

���#NNQECVG�C�FGXKEG�CPF�C�VJTGCF���
�KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
�KO6JT#NNQE
&GXKEG������6JTGCF��

pat.c 283

���.QCF�VJG�KOCIG�KPVQ�C�RTQEGUUKPI�DWHHGT���
�KO$WH4GUVQTG
6JTGCF��+OCIG(KNG��+/A6+((��+/A241%���+OCIG$WH��

���#NNQECVG�VYQ�FKURNC[�DWHHGTU�QH�VJG�UCOG�UK\G���
�KO$WH+PSWKTG
6JTGCF��+OCIG$WH��+/A$7(A5+<'A:���5K\G:��
�KO$WH+PSWKTG
6JTGCF��+OCIG$WH��+/A$7(A5+<'A;���5K\G;��
�KO$WH%JKNF
6JTGCF��+/A&+52��������5K\G:��5K\G;���&KUR$WH���
�KO$WH%JKNF
6JTGCF��+/A&+52��5K\G:�����5K\G:��5K\G;���&KUR$WH���

���#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
�KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���5ETGGP$WH��
�KO$WH%NGCT
6JTGCF��5ETGGP$WH��������

���%QR[�VJG�KOCIG�VQ�VJG�FKURNC[���
�KO$WH%QR[
6JTGCF��+OCIG$WH��&KUR$WH���������

���2GTHQTO�VJG�UGNGEVGF�RTQEGUUKPI�QRGTCVKQP���
�UYKVEJ�
(WPE�
�]

�����ECUG�5#8'�
�����]
���������RTKPVH
�&GHKPG�OQFGN�CPF�UCXG>P���

������������#NNQECVG�C�RCVVGTP�OCVEJKPI�OQFGN���
����������KO2CV#NNQE/QFGN
6JTGCF��+OCIG$WH��/QFGN1HH:�
��������������������������/QFGN1HH;��/QFGN5K\G:�
��������������������������/QFGN5K\G;��+/A014/#.+<'&���/QFGN��

������������2TGRTQEGUU�VJG�OQFGN�HQT�C�HCUVGT�UGCTEJ���
����������KO2CV2TGRTQE/QFGN
6JTGCF�����/QFGN��+/A&'(#7.6�����

������������5GNGEV�OGFKWO�URGGF�CPF�JKIJ�CEEWTCE[���
����������KO2CV5GV5RGGF
6JTGCF��/QFGN��+/A/'&+7/��
����������KO2CV5GV#EEWTCE[
6JTGCF��/QFGN��+/A*+)*��

������������5CXG�VJG�OQFGN���
����������KO2CV5CXG
6JTGCF��/QFGN(KNG��/QFGN��
������������(TGG�VJG�OQFGN���
����������KO2CV(TGG
6JTGCF��/QFGN��

����������DTGCM�
������_

������ECUG�4'5614'�
������]
�����������RTKPVH
�4GUVQTG�OQFGN�CPF�HKPF�KP�VCTIGV�KOCIG>P���

�����������NQPI�6GOR$WH������������������6GORQTCT[�DWHHGT���
�����������+/A2#6A4'57.6A56�4GU����������#NN�OCVEJ�TGUWNVU���
�����������+/A2#6A+037+4'A56�+PS���������#NN�OQFGN�RCTCOGVGTU���

�����������4GUVQTG�VJG�OQFGN���
���������KO2CV4GUVQTG
6JTGCF��/QFGN(KNG���/QFGN��

284 Appendix B: Examples

�����������+PSWKTG�CNN�RCTCOGVGTU���
���������KO2CV+PSWKTG
6JTGCF��/QFGN��+/A#..���+PS��

�����������#NNQECVG�C�RCVVGTP�OCVEJKPI�TGUWNV�DWHHGT���
���������KO2CV#NNQE4GUWNV
6JTGCF������4GUWNV��

�����������5GCTEJ�HQT�VJG�OQFGN���
���������KO2CV(KPF/QFGN
6JTGCF��+OCIG$WH��/QFGN��4GUWNV�����

�����������)GV�CNN�TGUWNVU���
���������KO2CV)GV4GUWNV
6JTGCF��4GUWNV��+/A#..���4GU��

�����������%JGEM�KH�C�OCVEJ�YCU�HQWPF���
���������KH�
4GU�PWODGT������
���������]
������������RTKPVH
�/QFGN�EQWNF�PQV�DG�HQWPF>P���
���������_
���������GNUG
���������]
���������������2TKPV�VJG�OCVEJ�RQUKVKQP�CPF�UEQTG���
�������������RTKPVH
�/QFGN�HQWPF�CV�
���H�����H��YKVJ�UEQTG�QH
������������������������H��>P���4GU�RQUKVKQPAZ��4GU�RQUKVKQPA[�
���������������������4GU�UEQTG��

���������������/CTM�VJG�OCVEJ�RQUKVKQP���
�������������KO)TC.KPG
6JTGCF�����+OCIG$WH��
NQPI��
4GU�RQUKVKQPAZ������
�����������������������
NQPI��
4GU�RQUKVKQPA[���
�����������������������
NQPI��
4GU�RQUKVKQPAZ
�����
�����������������������
NQPI��
4GU�RQUKVKQPA[���
�������������KO)TC.KPG
6JTGCF�����+OCIG$WH��
NQPI��
4GU�RQUKVKQPAZ��
�����������������������
NQPI��
4GU�RQUKVKQPA[������
�����������������������
NQPI��
4GU�RQUKVKQPAZ��
�����������������������
NQPI��
4GU�RQUKVKQPA[
�����
�������������KO)TC4GEV
6JTGCF�����+OCIG$WH��
�����������������������
NQPI��
4GU�RQUKVKQPAZ���+PS�EGPVGTAZ��
�����������������������
NQPI��
4GU�RQUKVKQPA[���+PS�EGPVGTA[��
�����������������������
NQPI��
4GU�RQUKVKQPAZ���+PS�EGPVGTAZ�

�����������������������+PS�UK\GAZ��
�����������������������
NQPI��
4GU�RQUKVKQPA[���+PS�EGPVGTA[�

�����������������������+PS�UK\GA[���
�������������KO$WH%QR[
6JTGCF��+OCIG$WH��&KUR$WH���������
���������_

�����������%QR[�VJG�OQFGN�VQ�C�VGORQTCT[�DWHHGT��VJGP�VQ�VJG�FKURNC[���
���������KO$WH#NNQE�F
6JTGCF��+PS�UK\GAZ��+PS�UK\GA[��+/A7$;6'��+/A241%�
�����������������������6GOR$WH��
���������KO2CV%QR[
6JTGCF��/QFGN��6GOR$WH��+/A&'(#7.6�����
���������KO$WH%QR[
6JTGCF��6GOR$WH��&KUR$WH���������
���������KO$WH(TGG
6JTGCF��6GOR$WH��

�����������(TGG�VJG�OQFGN�CPF�TGUWNV�DWHHGT���
���������KO2CV(TGG
6JTGCF��/QFGN��
���������KO2CV(TGG
6JTGCF��4GUWNV��

���������DTGCM�
�����_

pat.c 285

��������FGHCWNV�
������������RTKPVH
�7PUWRRQTVGF�HWPEVKQP>P���
������������DTGCM�
����_

������9CKV�HQT�GXGT[VJKPI�VQ�HKPKUJ��VJGP�EJGEM�HQT�GTTQTU���
����KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��
����KH�
KO#RR)GV'TTQT
+/A'44A/5)A(70%��'TTQT��
��������RTKPVH
��U>P���'TTQT��

������%NGCP�WR���
����KO$WH(TGG
6JTGCF��+OCIG$WH��
����KO$WH(TGG
6JTGCF��&KUR$WH���
����KO$WH(TGG
6JTGCF��&KUR$WH���
����KO$WH(TGG
6JTGCF��5ETGGP$WH��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

286 Appendix B: Examples

process.c
���
��
���.QCF�C�6+((�HKNG�CPF�RGTHQTO�C�XCTKGV[�QH�RTQEGUUKPI�QRGTCVKQPU�
���/QUV�QRGTCVKQPU�YKNN�YQTM�QP�GKVJGT�OQPQEJTQOG�QT�EQNQWT�KOCIGU�
��
���6JG�RWTRQUG�KU�UKORN[�VQ�KNNWUVTCVG�VJG�WUCIG�QH�RTQEGUUKPI�HWPEVKQPU
���VJCV�CTG�PQP�VTKXKCN�VQ�WUG�HQT�VJG�HKTUV�VKOG�YKVJQWV�CP�GZCORNG�
��
���
0QVG�VJCV�KH�[QW�CTG�TWPPKPI�KP�UKPING�UETGGP�OQFG�WPFGT�9KPFQYU�
���[QW�YKNN�PQV�UGG�CP[VJKPI�KP�VJG�)GPGUKU�KOCIG�DWHHGT�WPVKN�[QW
���GPCDNG�MG[KPI�YKVJ�C�UGRCTCVG�RTQITCO��
��
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVFNKD�J
�KPENWFG��UVTKPI�J
�KPENWFG��OCVJ�J

�KPENWFG��KOCRK�J�

���2TQVQV[RG�HQT�GTTQT�JCPFNGT�HWPEVKQP���
�XQKF�'TT*CPFNGT
XQKF��2CTCO��

���.KUV�QH�UWRRQTVGF�HWPEVKQPU���
��FGHKPG�%1081.8'�����
��FGHKPG�416#6'�������
��FGHKPG�/'4)'��������
��FGHKPG�.76����������
��FGHKPG�/142*+%������
��FGHKPG�((6����������
��FGHKPG�$7(/#2�������
��FGHKPG�2.16���������
��FGHKPG�9#42/#64+:���
��FGHKPG�2#%-���������
��FGHKPG�9#42.76������

��FGHKPG�5*#&+0)������

XQKF�OCKP
KPV�CTIE��EJCT���CTIX�
]
����NQPI�&GXKEG����������������)GPGUKU�FGXKEG���
����NQPI�6JTGCF����������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
����NQPI�5TE$WH����������������5QWTEG�DWHHGT�
QTKIKPCN�KOCIG����
����NQPI�&UV$WH����������������&GUVKPCVKQP�DWHHGT�
RTQEGUUGF�KOCIG����
����NQPI�5TE&KUR$WH������������&KURNC[�DWHHGT�HQT�QTKIKPCN�KOCIG���
����NQPI�&UV&KUR$WH������������&KURNC[�DWHHGT�HQT�RTQEGUUGF�KOCIG���
����NQPI�5ETGGP$WH�������������&KURNC[�DWHHGT�HWNN�UK\G�QH�UETGGP���
����NQPI�5K\G:��5K\G;����������+OCIG�UK\G���
����NQPI�0WO$CPFU��������������0WODGT�QH�DCPFU�KP�KOCIG���
����NQPI�(WPE������������������6JG�HWPEVKQP�VQ�WUG���

process.c 287

������%JGEM�CTIWOGPVU���
����KH�
CTIE�����^^��CTIX=�?�==�	!	�
����]
��������RTKPVH
�7UCIG��241%'55�HKNG�VKH�=HWPE?>P���
��������RTKPVH
�HWPE�����F��7UGT�FGHKPGF�EQPXQNWVKQP>P���%1081.8'��
��������RTKPVH
����������F��+OCIG�TQVCVKQP>P���416#6'��
��������RTKPVH
����������F��6JTGG�KPRWV�#.7�QRGTCVKQP>P���/'4)'��
��������RTKPVH
����������F��.76�IGPGTCVKQP�CPF�OCRRKPI>P���.76��
��������RTKPVH
����������F��$KPCT[�OQTRJQNQI[>P���/142*+%��
��������RTKPVH
����������F��(QWTKGT�6TCPUHQTO>P���((6��
��������RTKPVH
����������F��*QUV�CEEGUU�VQ�KOCIG�DWHHGT>P���$7(/#2��
��������RTKPVH
����������F��2NQV�JKUVQITCO�YKVJ�ITCRJKEU�HWPEVKQPU>P��
����������������2.16��
��������RTKPVH
����������F��/CVTKZ�FGHKPGF�YCTRKPI>P���9#42/#64+:��
��������RTKPVH
����������F��0QP�TGEVCPIWNCT�41+U>P���2#%-��
��������RTKPVH
����������F��.76�FGHKPGF�YCTRKPI>P���9#42.76��
��������RTKPVH
����������F��5JCFKPI�EQTTGEVKQP>P���5*#&+0)��
��������GZKV
���
����_
����KH�
CTIE� ���
��������UUECPH
CTIX=�?����NK����(WPE��

������'UVCDNKUJ�CP�GTTQT�JCPFNGT���
����KO#RR%CVEJ'TTQT
+/A&'(#7.6��'TT*CPFNGT��07..��

������#NNQECVG�C�FGXKEG�CPF�C�VJTGCF���
����KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
����KO6JT#NNQE
&GXKEG������6JTGCF��

������.QCF�VJG�KOCIG�KPVQ�C�RTQEGUUKPI�DWHHGT���
����KO$WH4GUVQTG
6JTGCF��CTIX=�?��+/A6+((��+/A241%���5TE$WH��

������+PSWKTG�VJG�KOCIG�UK\G�CPF�PWODGT�QH�DCPFU���
����KO$WH+PSWKTG
6JTGCF��5TE$WH��+/A$7(A5+<'A:���5K\G:��
����KO$WH+PSWKTG
6JTGCF��5TE$WH��+/A$7(A5+<'A;���5K\G;��
����KO$WH+PSWKTG
6JTGCF��5TE$WH��+/A$7(A07/A$#0&5���0WO$CPFU��

������#NNQECVG�VYQ�FKURNC[�DWHHGTU�
VJG[�OC[�DG�ENKRRGF�VQ�HKV�QP�VJG
������UETGGP����

����KO$WH%JKNF
6JTGCF��+/A&+52��������5K\G:��5K\G;���5TE&KUR$WH��
����KO$WH%JKNF
6JTGCF��+/A&+52��5K\G:�����5K\G:��5K\G;���&UV&KUR$WH��

������#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
����KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���5ETGGP$WH��
����KO$WH%NGCT
6JTGCF��5ETGGP$WH��������

������%QR[�VJG�QTKIKPCN�KOCIG�VQ�VJG�FKURNC[���
����KO$WH%QR[
6JTGCF��5TE$WH��5TE&KUR$WH��������

������%NQPG�VJG�KOCIG�DWHHGT�UKPEG�UQOG�HWPEVKQPU�ECP	V�YQTM�KP�RNCEG���
����KO$WH%NQPG
6JTGCF��5TE$WH��+/A241%���&UV$WH��

288 Appendix B: Examples

������2GTHQTO�VJG�UGNGEVGF�RTQEGUUKPI�QRGTCVKQP���
����UYKVEJ�
(WPE�
����]

��������ECUG�%1081.8'�
��������]
������������RTKPVH
�7UGT�FGHKPGF�EQPXQNWVKQP>P���
������������NQPI�-GT$WH������������-GTPGN�DWHHGT���
������������UJQTV�-GT8CNU=�?�������#TTC[�QH�MGTPGN�XCNWGU���
������������]
���������������������������
���������������������������
��������������������������
������������_�

��������������#NNQECVG�MGTPGN�DWHHGT���
������������KO$WH#NNQE�F
6JTGCF��������+/A5*146��+/A241%���-GT$WH��

��������������5GV�MGTPGN�XCNWGU���
������������KO$WH2WV
6JTGCF��-GT$WH��-GT8CNU��

��������������5RGEKH[�CDUQNWVG�XCNWG�CPF�ENKR���
������������KO$WH2WV(KGNF
6JTGCF��-GT$WH��+/A-'4A#$51.76'��+/A'0#$.'��
������������KO$WH2WV(KGNF
6JTGCF��-GT$WH��+/A-'4A%.+2��+/A'0#$.'��

��������������2GTHQTO�VJG�EQPXQNWVKQP���
������������KO+PV%QPXQNXG
6JTGCF��5TE$WH��&UV$WH��-GT$WH��������

��������������(TGG�VJG�MGTPGN�DWHHGT���
������������KO$WH(TGG
6JTGCF��-GT$WH��
������������DTGCM�
��������_

��������ECUG�416#6'�
��������]
������������RTKPVH
�+OCIG�TQVCVKQP>P���
������������NQPI�%QGH$WH������%QGHHKEKGPV�DWHHGT�
CNUQ�EQPVTQN�DWHHGT����

�������������#NNQECVG�YCTR�EQGHHKEKGPV�DWHHGT���

������������KO$WH#NNQE�F
6JTGCF��������+/A(.1#6��+/A241%���%QGH$WH��

�������������)GPGTCVG�EQGHHKEKGPVU�HQT����FGITGG�TQVCVKQP�CDQWV�EGPVTG���
������������KO)GP9CTR�UV1TFGT
6JTGCF��%QGH$WH��+/A64#05.#6'���5K\G:���
�������������������������������5K\G;����+/A%.'#4�����
������������KO)GP9CTR�UV1TFGT
6JTGCF��%QGH$WH��+/A416#6'������������
������������������������������+/A01A%.'#4�����
������������KO)GP9CTR�UV1TFGT
6JTGCF��%QGH$WH��+/A64#05.#6'��5K\G:���
������������������������������5K\G;����+/A01A%.'#4�����

��������������5GNGEV�DKNKPGCT�KPVGTRQNCVKQP�CPF�TGRNCEG�QXGTUECP���
������������KO$WH2WV(KGNF
6JTGCF��%QGH$WH��+/A%6.A4'5#/2.'��+/A$+.+0'#4��
������������KO$WH2WV(KGNF
6JTGCF��%QGH$WH��+/A%6.A18'45%#0��+/A4'2.#%'��

process.c 289

��������������4QVCVG�VJG�KOCIG���
������������KO+PV9CTR2QN[PQOKCN
6JTGCF��5TE$WH��&UV$WH��%QGH$WH�
��������������������������������%QGH$WH�����

��������������(TGG�VJG�EQGHHKEKGPV�DWHHGT���
������������KO$WH(TGG
6JTGCF��%QGH$WH��

������������DTGCM�
��������_

���������������ECUG�/'4)'�
��������]
������������RTKPVH
�6JTGG�KPRWV�#.7�QRGTCVKQP>P���

������������NQPI�5TE$$WH�����������5QWTEG�DWHHGT�HQT�#.7�$�KPRWV���
������������NQPI�5TE%$WH�����������5QWTEG�DWHHGT�HQT�#.7�%�KPRWV���

��������������7UG�C�PGICVGF�EQR[�QH�VJG�QTKIKPCN�KOCIG�CU�UQWTEG�$���
������������KO$WH%NQPG
6JTGCF��5TE$WH��+/A241%���5TE$$WH��
������������KO+PV/QPCFKE
6JTGCF��5TE$WH�������5TE$$WH��+/A57$A0')�����

��������������&TCY�C�EKTEWNCT�OCUM�KP�VJG�UQWTEG�%�DWHHGT���
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%�
��������������������������5TE%$WH��
������������KO$WH%NGCT
6JTGCF��5TE%$WH��������
������������KO)TC#TE(KNN
6JTGCF�����5TE%$WH��5K\G:����5K\G;���
�������������������������5K\G:����5K\G;����������������

��������������%QR[�QTKIKPCN�KOCIG�KPUKFG�VJG�EKTENG��CPF�PGICVGF�KOCIG
��������������QWVUKFG�KV���
������������KO+PV6TKCFKE
6JTGCF��5TE$WH��5TE$$WH��5TE%$WH��&UV$WH����
�������������������������+/A22A/'4)'��+/A&'(#7.6�����

��������������(TGG�VJG�VGORQTCT[�DWHHGTU���
������������KO$WH(TGG
6JTGCF��5TE$$WH��
������������KO$WH(TGG
6JTGCF��5TE%$WH��

������������DTGCM�
��������_
��������ECUG�.76�
��������]
������������RTKPVH
�.WV�OCRRKPI>P���
������������NQPI�.WV$WH�������������������������.76�DWHHGT���
������������FQWDNG�%QGH=�?���]�����������_������%QGHHKEKGPVU�HQT
��KPXGTUG�TCOR���

�������������#NNQECVG�.76���
������������KO$WH#NNQE�F
6JTGCF�������+/A7$;6'��+/A241%���.WV$WH��

��������������)GPGTCVG�CP�KPXGTUG�TCOR���
������������KO)GP�F
6JTGCF��.WV$WH��+/A21.;01/+#.�������������%QGH�����

��������������2GTHQTO�VJG�.76�OCRRKPI���
������������KO+PV.WV/CR
6JTGCF��5TE$WH��&UV$WH��.WV$WH�����

290 Appendix B: Examples

��������������(TGG�VJG�.76���
������������KO$WH(TGG
6JTGCF��.WV$WH��

������������DTGCM�
��������_

��������ECUG�/142*+%�
��������]
������������RTKPVH
�$KPCT[�VJKPPKPI>P���

������������NQPI�5MGN$WH���������������$WHHGT�HQT�MGTPGN���
������������NQPI�$KP�$WH��$KP�$WH������$KPCT[�YQTM�DWHHGTU���

��������������&GHKPG�GKIJV��Z��MGTPGNU������OGCPU��FQP	V�ECTG����
������������UJQTV�5MGN8CNU=�?=�?��
������������]
��
��
��
��
��
��
��
���
������������_�

��������������#NNQECVG�CP���DCPF�MGTPGN�DWHHGT���
������������KO$WH#NNQE
6JTGCF�����������+/A5*146��+/A241%���5MGN$WH��

��������������#NNQECVG�DKPCT[�YQTM�DWHHGTU���
������������KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��+/A$+0#4;�
�����������������������+/A241%���$KP�$WH��
������������KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��+/A$+0#4;�
�����������������������+/A241%���$KP�$WH��

��������������5GV�MGTPGN�XCNWGU�
CNN�GKIJV�DCPFU�CV�QPEG����
������������KO$WH2WV
6JTGCF��5MGN$WH��5MGN8CNU��

��������������$KPCTK\G�VJG�KOCIG�TGCF[�HQT�VJKPPKPI���

������������KO$KP%QPXGTV
6JTGCF��5TE$WH��$KP�$WH��+/A)4'#6'4�������������

��������������6JKP�VQ�C�UMGNGVQP�WUKPI�TGRNCEG�QXGTUECP���
������������KO$WH2WV(KGNF
6JTGCF��5MGN$WH��+/A%6.A18'45%#0��+/A4'2.#%'��
������������KO$KP/QTRJKE
6JTGCF��$KP�$WH��$KP�$WH��5MGN$WH��+/A6*+0�
�������������������������+/A+&'/216'0%'��5MGN$WH�����

��������������%QPXGTV�DCEM�VQ�CP���DKV�KOCIG�HQT�FKURNC[���
������������KO$KP%QPXGTV
6JTGCF��$KP�$WH��&UV$WH��+/A&'(#7.6�������������

��������������(TGG�VJG�VGORQTCT[�DWHHGTU���
������������KO$WH(TGG
6JTGCF��5MGN$WH��
������������KO$WH(TGG
6JTGCF��$KP�$WH��
������������KO$WH(TGG
6JTGCF��$KP�$WH��

������������DTGCM�
��������_

process.c 291

��������ECUG�((6�
��������]
������������RTKPVH
�(QWTKGT�6TCPUHQTO>P���

������������NQPI�+PV4$WH���������4GCN�EQORQPGPV�KP�HKZGF�RQKPV���
������������NQPI�+PV+$WH���������+OCIKPCT[�EQORQPGPV�KP�HKZGF�RQKPV���
������������NQPI�(NV4$WH���������4GCN�EQORQPGPV�KP�HNQCVKPI�RQKPV���
������������NQPI�(NV+$WH���������+OCIKPCT[�EQORQPGPV�KP�HNQCVKPI�RQKPV���

��������������#NNQECVG����DKV�DWHHGTU�HQT�((6�
��������������
UK\G�OWUV�DG�C�RQYGT�QH������
������������KO$WH#NNQE�F
6JTGCF������������+/A.10)��+/A241%���+PV4$WH��
������������KO$WH#NNQE�F
6JTGCF������������+/A.10)��+/A241%���+PV+$WH��
������������KO$WH#NNQE�F
6JTGCF������������+/A(.1#6��+/A241%���(NV4$WH��
������������KO$WH#NNQE�F
6JTGCF������������+/A(.1#6��+/A241%���(NV+$WH��

��������������%QPXGTV�UQWTEG�HTQO���DKV�TGCN�VQ����DKV�
��������������HKZGF�RQKPV�EQORNGZ��
������������KO$WH%NGCT
6JTGCF��+PV4$WH������������%NGCT�KP�ECUG�DKIIGT�
���VJCP�UQWTEG���
������������KO$WH%NGCT
6JTGCF��+PV+$WH������������+OCIKPCT[�RCTV�KU�����

��������������#FF����HTCEVKQPCN�DKVU�HQT�GZVTC�RTGEKUKQP���
������������KO+PV/QPCFKE
6JTGCF��5TE$WH������+PV4$WH��+/A5*+(6�����

��������������5GV�EQPVTQN�HKGNFU�HQT�HQTYCTF�VTCPUHQTO���
������������KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A&+4'%6+10��+/A(149#4&��
������������KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A014/#.+<'��+/A'0#$.'��

��������������2GTHQTO�VJG�((6�
KP�RNCEG�VQ�UCXG�OGOQT[����
������������KO+PV((6
6JTGCF��+PV4$WH��+PV+$WH��+PV4$WH��+PV+$WH�
���������������������+PV4$WH�����

��������������%QPXGTV�((6�TGUWNV�VQ�HNQCVKPI�RQKPV�
��������������HQT�HWTVJGT�RTQEGUUKPI���
������������KO(NQCV%QPXGTV
6JTGCF��+PV4$WH��(NV4$WH��+/A&'(#7.6�����
������������KO(NQCV%QPXGTV
6JTGCF��+PV+$WH��(NV+$WH��+/A&'(#7.6�����

��������������5GV�EQPVTQN�HKGNFU�HQT�TGXGTUG�VTCPUHQTO���

������������KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A&+4'%6+10��+/A4'8'45'��
������������KO$WH2WV(KGNF
6JTGCF��+PV4$WH��+/A%6.A014/#.+<'��+/A&+5#$.'��

��������������2GTHQTO�VJG�TGXGTUG�((6���
������������KO+PV((6
6JTGCF��+PV4$WH��+PV+$WH��+PV4$WH��+PV+$WH�
���������������������+PV4$WH�����

��������������4GOQXG�HTCEVKQPCN�DKVU�
YKVJ�TQWPFKPI�HQT�GZVTC�
��������������RTGEKUKQP����
������������KO+PV/QPCFKE
6JTGCF��+PV4$WH���������+PV4$WH��+/A#&&�����
������������KO+PV/QPCFKE
6JTGCF��+PV4$WH�������+PV4$WH��+/A5*+(6�����

��������������%NKR�TGCN�RCTV�VQ���DKVU�
KOCIKPCT[�RCTV�UJQWNF�DG�\GTQ����
������������KO+PV%QPXGTV
6JTGCF��+PV4$WH��&UV$WH��+/A%.+2�����

��������������&KURNC[�TGCN�RCTV�
KV�UJQWNF�DG�VJG�UCOG�CU�
��������������QTKIKPCN�KOCIG����
������������KO$WH%QR[
6JTGCF��&UV$WH��&UV&KUR$WH��������

292 Appendix B: Examples

��������������%CNEWNCVG�RQYGT�URGEVTWO�QH�VJG�((6�HQT�FKURNC[���
������������KO(NQCV&[CFKE
6JTGCF��(NV4$WH��(NV+$WH��(NV4$WH�
��������������������������+/A537#4'A#&&�����
������������KO(NQCV7PCT[
6JTGCF��(NV4$WH��(NV4$WH��+/A5346�����

��������������6CMG�USWCTG�TQQV�CICKP�LWUV�VQ�TGFWEG�VJG�F[PCOKE�TCPIG���
������������KO(NQCV7PCT[
6JTGCF��(NV4$WH��(NV4$WH��+/A5346�����

��������������%QPXGTV�DCEM�VQ����DKV�KPVGIGT���
������������KO(NQCV%QPXGTV
6JTGCF��(NV4$WH��+PV4$WH��+/A6470%#6'�����

��������������%QPXGTV�DCEM�VQ���DKV�KPVGIGT�HQT�FKURNC[���
������������KO+PV%QPXGTV
6JTGCF��+PV4$WH��&UV$WH��+/A%.+2�����

��������������*KUVQITCO�GSWCNK\G�
LWUV�VQ�DG�UWTG�UQOGVJKPI�KU�
��������������XKUKDNG����
������������KO+PV*KUVQITCO'SWCNK\G
6JTGCF��&UV$WH��&UV$WH������
�����������������������������������+/A70+(14/���������������
�����������������������������������+/A&'(#7.6�����

��������������(TGG�VJG�VGORQTCT[�DWHHGTU���
������������KO$WH(TGG
6JTGCF��+PV4$WH��
������������KO$WH(TGG
6JTGCF��+PV+$WH��
������������KO$WH(TGG
6JTGCF��(NV4$WH��
������������KO$WH(TGG
6JTGCF��(NV+$WH��

������������DTGCM�
��������_

��������ECUG�$7(/#2�
��������]
������������RTKPVH
�/CR�DWHHGT�QP�JQUV>P���>
������������NQPI�*KUV$WH���������������*KUVQITCO�TGUWNV�DWHHGT���
������������NQPI�*KUV8CNU=���?���������*QUV�CTTC[�VQ�JQNF�JKUVQITCO
��TGUWNV���
������������WPUKIPGF�EJCT��#FFTGUU�����*QUV�CFFTGUU�QH�HKTUV�RKZGN�KP
���������������������������������������KOCIG���
������������NQPI�2KVEJ�����������������/GOQT[�RKVEJ�QH�KOCIG�DWHHGT���
������������NQPI�0.KPGU����������������0WODGT�QH�NKPGU�OCRRGF�KP�JQUV

���������������������������������������OGOQT[���
������������NQPI�/CZ8CN����������������/CZKOWO�XCNWG�KP�JKUVQITCO���
������������NQPI�Z��[������������������.QQR�EQWPVGTU���
������������WPUKIPGF�EJCT��2QKPVGT�����2QKPVGT�HQT�FKTGEV�CEEGUU�VQ
���������������������������������������DWHHGT���

��������������#NNQECVG�JKUVQITCO�TGUWNV�DWHHGT���
������������KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���*KUV$WH��

��������������2GTHQTO�C�JKUVQITCO�CPF�TGCF�KV�DCEM�VQ�VJG�JQUV���
������������KO+PV*KUVQITCO
6JTGCF��5TE$WH��*KUV$WH��+/A&'(#7.6�����
������������KO$WH)GV
6JTGCF��*KUV$WH��*KUV8CNU��

��������������(KPF�OCZKOWO�XCNWG�KP�JKUVQITCO���
������������KO+PV(KPF'ZVTGOG
6JTGCF��*KUV$WH��*KUV$WH��+/A/#:A2+:'.�����
������������KO$WH)GV(KGNF
6JTGCF��*KUV$WH��+/A4'5A/#:A2+:'.���/CZ8CN��
������������RTKPVH
�/CZKOWO�XCNWG�KP�JKUVQITCO�KU��NK>P���/CZ8CN��

process.c 293

��������������/CR�FGUVKPCVKQP�DWHHGT�KPVQ�JQUV�OGOQT[���
������������KO$WH/CR
6JTGCF��&UV$WH��������
XQKF�����#FFTGUU���2KVEJ�
����������������������0.KPGU��
�
��������������%NGCT�VJG�DWHHGT�DGHQTG�FTCYKPI���
������������KO$WH%NGCT
6JTGCF��&UV$WH���������

��������������9CKV�HQT�VJG�ENGCT�VQ�HKPKUJ�DGHQTG�CEEGUUKPI�VJG�DWHHGT
��������������FKTGEVN[���
������������KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��

��������������&TCY�VJG�JKUVQITCO�FKTGEVN[�KPVQ�VJG�DWHHGT���
������������HQT�
Z������Z��������Z

�������FTCY�KP�C����Z����TGIKQP���
������������]
������������������%CNEWNCVG�JQUV�CFFTGUU�QH�GCEJ�RQKPV�VQ�UGV���
����������������[���������
*KUV8CNU=Z?���������/CZ8CN��
����������������2QKPVGT���#FFTGUU�
�
[���2KVEJ��
�Z�

������������������9TKVG�FKTGEVN[�VQ�VJG�DWHHGT���
�����������������2QKPVGT�������
������������_

��������������(TGG�VJG�JKUVQITCO�TGUWNV���
������������KO$WH(TGG
6JTGCF��*KUV$WH��

������������DTGCM�
��������_

��������ECUG�2.16�
��������]
������������RTKPVH
�&TCY�JKUVQITCO�YKVJ�KO)TC2NQV
�>P���

������������NQPI�:$WH��������������$WHHGT�YKVJ�:�XCNWGU�QH�RQKPVU�VQ
�����������������������������������RNQV���
������������NQPI�;$WH��������������$WHHGT�YKVJ�;�XCNWGU�QH�RQKPVU�VQ
�����������������������������������RNQV���
������������NQPI�/CZ8CN������������/CZKOWO�XCNWG�KP�JKUVQITCO���
������������FQWDNG�%QGH=�?���]��������_��������%QGHHKEKGPVU�HQT�TCOR���
��������������#NNQECVG�DWHHGTU�HQT�:�CPF�;�XCNWGU�VQ�RNQV���
������������KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���:$WH��
������������KO$WH#NNQE�F
6JTGCF�������+/A.10)��+/A241%���;$WH��

��������������;�XCNWGU�EQOG�HTQO�VJG�JKUVQITCO���
������������KO+PV*KUVQITCO
6JTGCF��5TE$WH��;$WH��+/A&'(#7.6�����

��������������:�XCNWGU�CTG�LWUV�UGSWGPVKCN�PWODGTU���
������������KO)GP�F
6JTGCF��:$WH��+/A21.;01/+#.�������������%QGH�����

��������������(KPF�OCZKOWO�XCNWG�KP�JKUVQITCO���
������������KO+PV(KPF'ZVTGOG
6JTGCF��;$WH��;$WH��+/A/#:A2+:'.�����
������������KO$WH)GV(KGNF
6JTGCF��;$WH��+/A4'5A/#:A2+:'.���/CZ8CN��
������������RTKPVH
�/CZKOWO�XCNWG�KP�JKUVQITCO�KU��NK>P���/CZ8CN��

294 Appendix B: Examples

��������������5ECNG�VJG�RNQV�VQ�HKV�KOCIG�
WUG�:$WH�VQ�JQNF�ITCRJKE
��������������EQPVGZV��
������������KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A5%#.'A;��
��������������������������
FQWDNG���
5K\G;�������/CZ8CN��
������������KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A1((5'6A;��5K\G;������

������������KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A5%#.'A:��
��������������������������
FQWDNG��5K\G:��������
������������KO$WH2WV(KGNF
6JTGCF��:$WH��+/A)4#A%1.14�������
��������
��������������2NQV�VJG�JKUVQITCO���
������������KO$WH%NGCT
6JTGCF��&UV$WH��������
������������KO)TC4GEV
6JTGCF�����&UV$WH��������5K\G:����5K\G;����
������������KO)TC2NQV
6JTGCF��:$WH��&UV$WH��:$WH��;$WH�������
������������KO)TC6GZV
6JTGCF�����&UV$WH�����������*KUVQITCO���

��������������(TGG�VJG�:�CPF�;�DWHHGTU���
������������KO$WH(TGG
6JTGCF��:$WH��
������������KO$WH(TGG
6JTGCF��;$WH��

������������DTGCM�
��������_

��������ECUG�9#42/#64+:�
��������]
������������RTKPVH
�2GTURGEVKXG�VTCPUHQTO>P���
������������NQPI�%QGH$WH�����������9CTR�EQGHHKEKGPV�DWHHGT���
������������NQPI�:.WV$WH�����������:�CFFTGUU�.76�DWHHGT���
������������NQPI�;.WV$WH�����������;�CFFTGUU�.76�DWHHGT���

��������������#NNQECVG�YCTR�EQGHHKEKGPV�CPF�CFFTGUU�.76�DWHHGTU���
������������KO$WH#NNQE�F
6JTGCF��������+/A(.1#6��+/A241%���%QGH$WH��
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%�
��������������������������:.WV$WH��
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%�
��������������������������;.WV$WH��

��������������)GPGTCVG�EQGHHKEKGPVU�HQT�RGTURGEVKXG�VTCPUHQTO���
������������KO)GP9CTR�%QTPGT
6JTGCF��%QGH$WH�

��������������������������������5K\G;����5K\G:����5K\G;���
�������������������������������5K\G:������5K\G;����5K\G:������5K\G;���
�����������������������������������5K\G:����5K\G;����+/A&'(#7.6�����

��������������)GPGTCVG�CFFTGUU�.76U�HTQO�VJG�EQGHHKEKGPVU�
��������������
WUG���HTCE�DKVU����
������������KO$WH2WV(KGNF
6JTGCF��:.WV$WH��+/A%6.A24'%+5+10�����
������������KO)GP9CTR.WV/CVTKZ
6JTGCF��:.WV$WH��;.WV$WH��%QGH$WH�
�������������������������������:.WV$WH�����

��������������5GNGEV�DKNKPGCT�KPVGTRQNCVKQP���
������������KO$WH2WV(KGNF
6JTGCF��:.WV$WH��+/A%6.A4'5#/2.'��+/A$+.+0'#4��

��������������9CTR�VJG�KOCIG���
������������KO+PV9CTR.WV
6JTGCF��5TE$WH��&UV$WH��:.WV$WH��;.WV$WH�
�������������������������:.WV$WH�����

process.c 295

��������������(TGG�VJG�EQGHHKEKGPV�CPF�.76�DWHHGTU���
������������KO$WH(TGG
6JTGCF��%QGH$WH��
������������KO$WH(TGG
6JTGCF��:.WV$WH��
������������KO$WH(TGG
6JTGCF��;.WV$WH��

������������DTGCM�
��������_

��������ECUG�2#%-�
��������]
������������RTKPVH
�7UG�KO$WH2CEM
��VQ�RTQEGUU�C�PQP�TGEVCPIWNCT�41+>P���

������������NQPI�6CI$WH������������$KPCT[�VCI�DWHHGT���
������������NQPI�$[VG6CI$WH����������DKV�XGTUKQP�QH�VCI�DWHHGT���
������������NQPI�2CEMGF$WH�����������F�DWHHGT�DKI�GPQWIJ�VQ�JQNF�VCIIGF
�����������������������������������RKZGNU���
������������NQPI�41+$WH��������������F�DWHHGT�GZCEVN[�VJG�TKIJV�UK\G���
������������NQPI�0WO6CIIGF���������0WODGT�QH�VCIIGF�RKZGNU���

��������������#NNQECVG�VCI�DWHHGT�
��DKV�CPF���DKV�XGTUKQPU����
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A$+0#4;��+/A241%�
��������������������������6CI$WH��
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A7$;6'��+/A241%�
��������������������������$[VG6CI$WH��

��������������#NNQECVG���F�DWHHGT�HQT�RCEMGF�RKZGNU�
��������������
OCMG�UWTG�KV	U�DKI�GPQWIJ����
������������KO$WH#NNQE
6JTGCF��5K\G:�5K\G;�����0WO$CPFU��+/A7$;6'�
�����������������������+/A241%���2CEMGF$WH��

��������������&TCY�C�EKTEWNCT�OCUM�KP�VJG�VCI�DWHHGT�
��������������
OWUV�WUG���DKV�XGTUKQP����
������������KO$WH%NGCT
6JTGCF��$[VG6CI$WH��������
������������KO)TC#TE(KNN
6JTGCF�����$[VG6CI$WH��5K\G:����5K\G;���
�������������������������5K\G:����5K\G;����������������

��������������/CMG�VJG�TGCN�DKPCT[�VCI�DWHHGT���
������������KO$KP%QPXGTV
6JTGCF��$[VG6CI$WH��6CI$WH��+/A)4'#6'4��
����������������������������������
�������������2CEM�VJG�VCIIGF�RKZGNU���
������������KO$WH2CEM
6JTGCF��5TE$WH��6CI$WH��2CEMGF$WH��+/A2#%-A������

��������������(KPF�QWV�JQY�OCP[�RKZGNU�YGTG�VCIIGF���
������������KO$WH)GV(KGNF
6JTGCF��2CEMGF$WH��+/A4'5A07/A2+:'.5�
���������������������������0WO6CIIGF��
������������RTKPVH
�0WODGT�QH�VCIIGF�RKZGNU�KU��NK>P���0WO6CIIGF��

��������������/CMG�C�DWHHGT�YKVJ�LWUV�VJQUG�RKZGNU�KP�VJG�
��������������PQP�TGEVCPIWNCT�41+���
������������KO$WH%JKNF
6JTGCF��2CEMGF$WH��������0WO6CIIGF������41+$WH��

��������������2TQEGUU�VJG�PQP�TGEVCPIWNCT�41+���
������������KO+PV/QPCFKE
6JTGCF��41+$WH������41+$WH��+/A#&&A5#6�����

296 Appendix B: Examples

��������������7PRCEM�VJG�RTQEGUUGF�RKZGNU�HQT�FKURNC[���
������������KO$WH%NGCT
6JTGCF��&UV$WH��������
������������KO$WH2CEM
6JTGCF��41+$WH��6CI$WH��&UV$WH��+/A702#%-A������

��������������(TGG�VJG�VGORQTCT[�DWHHGTU���
������������KO$WH(TGG
6JTGCF��6CI$WH��
������������KO$WH(TGG
6JTGCF��$[VG6CI$WH��
������������KO$WH(TGG
6JTGCF��2CEMGF$WH��
������������KO$WH(TGG
6JTGCF��41+$WH��
������������DTGCM�
��������_

��������ECUG�9#42.76�
��������]
������������RTKPVH
�.76�FGHKPGF�YCTRKPI>P���

������������NQPI�:.WV$WH�����������:�CFFTGUU�.76�DWHHGT���
������������NQPI�;.WV$WH�����������;�CFFTGUU�.76�DWHHGT���
������������UJQTV��:.WV8CNU��������*QUV�CTTC[�VQ�JQNF�:�.76�XCNWGU���
������������UJQTV��;.WV8CNU��������*QUV�CTTC[�VQ�JQNF�;�.76�XCNWGU���
������������KPV�1Z��1[�������������1TKIKPCN�RKZGN�EQQTFKPCVGU���
������������KPV�9Z��9[�������������9CTRGF�RKZGN�EQQTFKPCVGU���

��������������#NNQECVG�CFFTGUU�.76�DWHHGTU���
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%�
��������������������������:.WV$WH��
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A5*146��+/A241%�
��������������������������;.WV$WH��

��������������#NNQECVG�JQUV�OGOQT[�KP�YJKEJ�VQ�ETGCVG�VJG�.76U���
������������:.WV8CNU���
UJQTV����OCNNQE
UK\GQH
UJQTV����5K\G:���5K\G;��
������������;.WV8CNU���
UJQTV����OCNNQE
UK\GQH
UJQTV����5K\G:���5K\G;��
������������KH�
:.WV8CNU�==�07..�^^�;.WV8CNU�==�07..�
������������]
����������������RTKPVH
�%QWNFP	V�CNNQECVG�JQUV�OGOQT[>P���
����������������DTGCM�
������������_

������������

�������������%CNEWNCVG�VJG�
:�;��UQWTEG�CFFTGUU�HQT�GCEJ�FGUVKPCVKQP��
�������������RKZGN��7UG�KPVGIGT�CFFTGUU�XCNWGU�HQT�PGCTGUV�PGKIJDQWT
�������������TGUCORNKPI�
�������������
������������HQT�
1[������1[���5K\G;��1[

�
������������]
����������������HQT�
1Z������1Z���5K\G:��1Z

�
����������������]
����������������������(NKR�VJG�KOCIG�KP�VJG�:�FKTGEVKQP���
��������������������9Z���5K\G:�������1Z�

����������������������#FF�C�UKPG�YCXG�QHHUGV�KP�VJG�;�FKTGEVKQP���
��������������������9[���1[�
�
KPV��
�������UKP
1Z����������

process.c 297

����������������������&QP	V�NGV�VJG�CFFTGUU�HCNN�QWVUKFG�VJG�
����������������������UQWTEG�KOCIG���
��������������������KH�
9Z�����^^�9Z� ��5K\G:�^^�9[�����^^�9[� ��5K\G;�
��������������������]
�����������������������9Z�����
�����������������������9[�����
��������������������_
������������
����������������������9TKVG�VJG�
:�;��CFFTGUU�KP�VJG�.76U���
��������������������:.WV8CNU=1Z�
�1[�5K\G:?���
UJQTV��9Z�
��������������������;.WV8CNU=1Z�
�1[�5K\G:?���
UJQTV��9[�
����������������_
������������_

��������������.QCF�VJG�CFFTGUU�.76�DWHHGTU���
������������KO$WH2WV
6JTGCF��:.WV$WH��:.WV8CNU��
������������KO$WH2WV
6JTGCF��;.WV$WH��;.WV8CNU��

�������������9CTR�VJG�KOCIG�
WUKPI�VJG�FGHCWNV�PGCTGUV�PGKIJDQWT�OQFG���
������������KO+PV9CTR.WV
6JTGCF��5TE$WH��&UV$WH��:.WV$WH��;.WV$WH��������

��������������(TGG�VJG�.76�DWHHGTU���
������������KO$WH(TGG
6JTGCF��:.WV$WH��
������������KO$WH(TGG
6JTGCF��;.WV$WH��

��������������(TGG�JQUV�OGOQT[���
������������HTGG
:.WV8CNU��
������������HTGG
;.WV8CNU��

������������DTGCM�
��������_

��������ECUG�5*#&+0)�
��������]
������������RTKPVH
�5JCFKPI�EQTTGEVKQP>P���

������������NQPI�)CKP$WH�������������������2GT�RKZGN�ICKP�DWHHGT���
������������WPUKIPGF�UJQTV��)CKP8CNU�������*QUV�CTTC[�VQ�JQNF�ICKP
���XCNWGU���

������������NQPI�(TCE$KVU������������������0Q��QH�HTCEVKQPCN�DKVU�KP
���ICKP�XCNWGU���
������������KPV�Z��[�����������������������.QQR�EQWPVGTU���
������������HNQCV�&KUV:��&KUV;��&KUV��)CKP�����7UGF�KP�ICKP�ECNEWNCVKQP��

��������������#NNQECVG�ICKP�DWHHGT���
������������KO$WH#NNQE�F
6JTGCF��5K\G:��5K\G;��+/A75*146��+/A241%�
��������������������������)CKP$WH��

��������������#NNQECVG�JQUV�OGOQT[�HQT�ICKP�XCNWGU���
������������)CKP8CNU���
WPUKIPGF�UJQTV����
������������������������OCNNQE
UK\GQH
WPUKIPGF�UJQTV����5K\G:���5K\G;��
������������KH�
)CKP8CNU�==�07..�
������������]
����������������RTKPVH
�%QWNFP	V�CNNQECVG�JQUV�OGOQT[>P���
����������������DTGCM�
������������_

298 Appendix B: Examples

������������
�������������%CNEWNCVG�VJG�ICKP�XCNWG�HQT�GCEJ�RKZGN��#UUWOG�VJCV�VJG
�������������NKIJVKPI�KU�DTKIJVGUV�KP�VJG�EGPVTG�QH�VJG�KOCIG��CPF
�������������FGETGCUGU�YKVJ�FKUVCPEG�HTQO�VJG�EGPVTG��6Q�EQORGPUCVG�HQT
�������������VJKU�VJG�ICKP�XCNWGU�OWUV�DG�DKIIGUV�CV�VJG�GFIGU��CPF
�������������UOCNNGUV�KP�VJG�EGPVTG��
�������������
������������HQT�
[������[���5K\G;��[

�
������������]
����������������HQT�
Z������Z���5K\G:��Z

�
����������������]
����������������������%CNEWNCVG�FKUVCPEG�HTQO�RKZGN�VQ�KOCIG�EGPVTG���
��������������������&KUV:���
HNQCV��
Z���5K\G:����
��������������������&KUV;���
HNQCV��
[���5K\G;����
��������������������&KUV���
HNQCV��USTV
&KUV:�&KUV:�
�&KUV;�&KUV;��

����������������������)CKP�KU�����CV�EGPVTG��CPF�����CV�VJG�GFIGU���
��������������������)CKP���
HNQCV��
����
�
&KUV���
5K\G:������
������������
����������������������9TKVG�VJG�ICKP�XCNWG�CU�C�HKZGF�RQKPV�KPVGIGT����
��������������������)CKP8CNU=Z�
�[�5K\G:?���
WPUKIPGF�UJQTV��
)CKP���
����������������������������
�����(TCE$KVU��
������
����������������_
������������_

��������������.QCF�VJG�ICKP�XCNWGU�KPVQ�VJG�ICKP�DWHHGT���
������������KO$WH2WV
6JTGCF��)CKP$WH��)CKP8CNU��

��������������#RRN[�VJG�ICKP�EQTTGEVKQP��CPF�ENKR�CP[�QXGTHNQYU���
������������KO+PV)CKP1HHUGV
6JTGCF��5TE$WH��&UV$WH�����)CKP$WH�
����������������������������(TCE$KVU�������+/A%.+2�����

��������������(TGG�VJG�)CKP�DWHHGT���
������������KO$WH(TGG
6JTGCF��)CKP$WH��

��������������(TGG�JQUV�OGOQT[���
������������HTGG
)CKP8CNU��

������������DTGCM�

��������_

��������FGHCWNV�
������������RTKPVH
�7PUWRRQTVGF�HWPEVKQP>P���
������������DTGCM�
����_

������%QR[�VJG�RTQEGUUGF�KOCIG�VQ�VJG�FKURNC[���
����KO$WH%QR[
6JTGCF��&UV$WH��&UV&KUR$WH��������

������)KXG�CP[�GTTQTU�C�EJCPEG�VQ�DG�TGRQTVGF���
����KO5[PE*QUV
6JTGCF�����+/A%1/2.'6'&��

process.c 299

������%NGCP�WR���
����KO$WH(TGG
6JTGCF��5TE&KUR$WH��
����KO$WH(TGG
6JTGCF��&UV&KUR$WH��
����KO$WH(TGG
6JTGCF��5ETGGP$WH��
����KO$WH(TGG
6JTGCF��5TE$WH��
����KO$WH(TGG
6JTGCF��&UV$WH��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

XQKF�'TT*CPFNGT
XQKF��2CTCO�
]
����EJCT�'TTQT=+/A'44A5+<'?�

������2CTCO�KU�PQV�WUGF�KP�VJKU�ECUG���
����KH�
2CTCO���

����
�����)GV�VJG�GTTQT�OGUUUCIG�CPF�RTKPV�KV��&QP	V�TGUGV�VJG�GTTQT
�����DGECWUG�YG�QPN[�YCPV�VJG�HKTUV�VQ�DG�RTKPVGF�
�����
����KO#RR)GV'TTQT
+/A'44A/5)A(70%��'TTQT��
����RTKPVH
��U>P���'TTQT��
_

300 Appendix B: Examples

tfilter.c
���
��
���6GORQTCN�HKNVGTKPI�
KP�OQPQEJTQOG�QT�EQNQWT��
��
���6JKU�GZCORNG�FGOQPUVTCVGU�JQY�ITCD�KU�FQWDNG�DWHHGTGF
���VQ�CEJKGXG�TGCN�VKOG�RTQEGUUKPI��#U[PEJTQPQWU�ITCD�OQFG�KU�WUGF
���UQ�VJCV�QPN[�C�UKPING�VJTGCF�KU�PGGFGF�
��
���

�KPENWFG��UVFKQ�J
�KPENWFG��UVFNKD�J
�KPENWFG��UVTKPI�J
�KPENWFG��VKOG�J
�KPENWFG��EQPKQ�J

�KPENWFG��KOCRK�J�

XQKF�OCKP
KPV�CTIE��EJCT���CTIX�
]
����NQPI�&GXKEG�������������������)GPGUKU�FGXKEG���
����NQPI�%COGTC�������������������%COGTC���
����NQPI�6JTGCF�������������������6JTGCF�VQ�GZGEWVG�CNN�HWPEVKQPU���
����NQPI�)TCD15$=�?���������������15$U�WUGF�HQT�U[PEJTQPK\CVKQP���
����NQPI�+P$WH=�?�����������������&QWDNG�DWHHGTGF�KPRWV�DWHHGT���
����NQPI�1WV$WH�������������������5KPING�QWVRWV�DWHHGT���
����NQPI�&KUR$WH������������������&KURNC[�DWHHGT���
����NQPI�)TCD%VTN$WH��������������)TCD�EQPVTQN�DWHHGT���
����NQPI�8/5TE%VTN$WH�������������8/�UQWTEG�EQPVTQN�DWHHGT���
����NQPI�8/&UV%VTN$WH�������������8/�FGUVKPCVKQP�EQPVTQN�DWHHGT���
����NQPI�5K\G:��5K\G;�������������+OCIG�5K\G���
����NQPI�0WO$CPFU�����������������0WODGT�QH�DCPFU�KP�KOCIG���
����NQPI�<QQO���������������������9JGVJGT�VQ�\QQO�VJG�FKURNC[���
����NQPI�C������������������������+PRWV�YGKIJV���
����NQPI�O������������������������(TCEVKQPCN�DKVU�KP�	C	���
����NQPI�P������������������������(TCEVKQPCN�DKVU�KP�QWVRWV���

����NQPI�1WV6[RG���+/A75*146������1WVRWV�DWHHGT�V[RG���
����EJCT�'TTQT=+/A'44A5+<'?�������'TTQT�OGUUCIG���
����NQPI�K��HTCOGU�����
����FQWDNG�VKOG��FC�������

������%JGEM�CTIWOGPVU���
����KH�
CTIE� �������CTIX=�?�==�	!	�
����]
��������RTKPVH
�7UCIG��6(+.6'4�=�C?�=�Z?�=�[?�=�\QQO?>P���
��������RTKPVH
���������C���PP>V�+PRWV�YGKIJV�
FGHCWNV����H�>P���FC��
��������RTKPVH
���������Z�UK\G>V�+OCIG�:�UK\G>P���
��������RTKPVH
���������[�UK\G>V�+OCIG�;�UK\G>P���
��������RTKPVH
���������\QQO>V�<QQO�D[��>P���
��������GZKV
���
����_

tfilter.c 301

������#NNQECVG�VJG�FGXKEG�CPF�C�VJTGCF���
����KO&GX#NNQE
������07..��+/A&'(#7.6���&GXKEG��
����KO6JT#NNQE
&GXKEG������6JTGCF��

������#NNQECVG�C�ECOGTC���
����KO%CO#NNQE
6JTGCF��07..��+/A&'(#7.6���%COGTC��

������&GVGTOKPG�VJG�KOCIG�UK\G�CPF�PWODGT�QH�DCPFU���
����KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A:���5K\G:��
����KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A5+<'A;���5K\G;��
����KO%CO+PSWKTG
6JTGCF��%COGTC��+/A&+)A07/A$#0&5���0WO$CPFU��

������%JGEM�KH�VJG�WUGT�URGEKHKGF�C�FKHHGTGPV�UK\G�QT�YGKIJV���
����HQT�
K������K���CTIE��K

�
����]
��������KH�
�UVTEOR
CTIX=K?����C���
������������UUECPH
CTIX=K
�?����NH����FC��
��������GNUG�KH�
�UVTEOR
CTIX=K?����Z���
������������UUECPH
CTIX=K
�?����NK����5K\G:��
��������GNUG�KH�
�UVTEOR
CTIX=K?����[���
������������UUECPH
CTIX=K
�?����NK����5K\G;��
��������GNUG�KH�
�UVTEOR
CTIX=K?����\QQO���
������������<QQO�����
����_

������%QPXGTV�YGKIJV�VQ�HKZGF�RQKPV���
����C���
NQPI��
FC���
�����O��
������

������(QT�EQNQWT�WUG�CP���DKV�QWVRWV�DWHHGT�VQ�TGFWEG�RTQEGUUKPI�VKOG���
����KH�
0WO$CPFU� ���
����]
��������P�����
��������1WV6[RG���+/A7$;6'�
����_

������#NNQECVG�RTQEGUUKPI�CPF�EQPVTQN�DWHHGTU���
����KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��+/A7$;6'��
���������������+/A241%���+P$WH=�?��
����KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��+/A7$;6'��

���������������+/A241%���+P$WH=�?��
����KO$WH#NNQE
6JTGCF��5K\G:��5K\G;��0WO$CPFU��1WV6[RG��
���������������+/A241%���1WV$WH��
����KO$WH#NNQE%QPVTQN
6JTGCF���)TCD%VTN$WH��
����KO$WH#NNQE%QPVTQN
6JTGCF���8/5TE%VTN$WH��
����KO$WH#NNQE%QPVTQN
6JTGCF���8/&UV%VTN$WH��

������#NNQECVG�C�HWNN�UETGGP�FKURNC[�DWHHGT�CPF�ENGCT�KV���
����KO$WH%JKNF
6JTGCF��+/A&+52��������+/A#..��+/A#..���&KUR$WH��
����KO$WH%NGCT
6JTGCF��&KUR$WH��������

������#NNQECVG�15$U�HQT�U[PEJTQPK\CVKQP���
����KO5[PE#NNQE
6JTGCF���)TCD15$=�?��
����KO5[PE#NNQE
6JTGCF���)TCD15$=�?��

������+PKVKCNK\G�VJG�QWVRWV�VQ�����
����KO$WH%NGCT
6JTGCF��1WV$WH��������

302 Appendix B: Examples

������5GNGEV�CU[PEJTQPQWU�ITCD�OQFG���
����KO$WH2WV(KGNF
6JTGCF��)TCD%VTN$WH��+/A%6.A)4#$A/1&'�
������������������+/A#5;0%*410175��

������5RGEKH[�D[VG�GZVTCEVKQP�QP�8/�VTCPUHGT�KH�PGEGUUCT[���
����KH�
P� ���
��������KO$WH2WV(KGNF
6JTGCF��8/5TE%VTN$WH��+/A%6.A$;6'A':6����
�P��

������1RVKQPCNN[�\QQO�D[���QP�8/�VTCPUHGT���
����KH�
<QQO�
����]
��������KO$WH2WV(KGNF
6JTGCF��8/&UV%VTN$WH��+/A%6.A<11/A:�����
��������KO$WH2WV(KGNF
6JTGCF��8/&UV%VTN$WH��+/A%6.A<11/A;�����
����_

������(KTUV�ITCD���
����VKOG���KO5[U%NQEM
6JTGCF�������
����KO&KI)TCD
6JTGCF�����%COGTC��+P$WH=�?�����)TCD%VTN$WH��)TCD15$=�?��
����RTKPVH
�2TGUU�'PVGT�VQ�UVQR>P���

����K�����
����YJKNG�
�KO#RR)GV'TTQT
+/A'44A%1&'��07..��
����]
����������3WGWG�PGZV�ITCD�KPVQ�QVJGT�DWHHGT���
��������KO&KI)TCD
6JTGCF�����%COGTC��+P$WH=K?�����)TCD%VTN$WH�
������������������)TCD15$=K?��
�����
����������5YKVEJ�DWHHGTU���
��������K�������K�

����������2TQEGUU�GCEJ�HTCOG�CU�UQQP�CU�VJG�ITCD�EQORNGVGU���
��������KO5[PE*QUV
6JTGCF��)TCD15$=K?��+/A%1/2.'6'&��
��������KO+PV/CE�
6JTGCF��+P$WH=K?��1WV$WH��1WV$WH��C��P��
���O��C�
������������������O�����

����������%QR[�CP���DKV�XGTUKQP�VQ�VJG�FKURNC[�
QRVKQPCNN[�\QQOGF����
��������KO$WH%QR[8/
6JTGCF��1WV$WH��&KUR$WH��8/5TE%VTN$WH��
��������������������8/&UV%VTN$WH�����
����������5VQR�YJGP�C�MG[�KU�JKV���
��������HTCOGU

�
��������KH�
MDJKV
��
������������DTGCM�
����_

������%CNEWNCVG�RTQEGUUKPI�TCVG���
����VKOG���KO5[U%NQEM
6JTGCF��VKOG��
����KH�
HTCOGU� ���
��������RTKPVH
�2TQEGUUKPI�TCVG������H�HRU>P���HTCOGU���VKOG��

tfilter.c 303

������%JGEM�HQT�CP[�GTTQTU���
����KH�
KO#RR)GV'TTQT
+/A'44A/5)A(70%�
�+/A'44A4'5'6��'TTQT��
��������RTKPVH
��U>P���'TTQT��

������%NGCP�WR���
����KO$WH(TGG
6JTGCF��&KUR$WH��
����KO$WH(TGG
6JTGCF��1WV$WH��
����KO$WH(TGG
6JTGCF��+P$WH=�?��
����KO$WH(TGG
6JTGCF��+P$WH=�?��
����KO$WH(TGG
6JTGCF��)TCD%VTN$WH��
����KO$WH(TGG
6JTGCF��8/5TE%VTN$WH��
����KO$WH(TGG
6JTGCF��8/&UV%VTN$WH��
����KO5[PE(TGG
6JTGCF��)TCD15$=�?��
����KO5[PE(TGG
6JTGCF��)TCD15$=�?��
����KO%CO(TGG
6JTGCF��%COGTC��
����KO6JT(TGG
6JTGCF��
����KO&GX(TGG
&GXKEG��
_

304 Appendix B: Examples

Index

A

acceptance level 123–124, 126
allocating

blob analysis feature list 97
blob analysis result buffer 97
camera definition files 33, 184, 208
child buffers 169
control buffers 168
data buffers 29, 31–32, 165
digitizer 184
display 31
Host memory 166
JPEG buffer 140, 144
nodes 27, 29, 38
off-screen display memory 227–228
on-screen child buffers 213, 228
operation status block 36
pattern matching result buffer 119
resources 38, 247
threads 27, 29

analog cameras 199–200
annotating images 175
applications

checking for errors 230–232, 234
color 194, 213–214
dividing between nodes 245
dual-screen 217–218, 228

asynchronous functions 29, 35–36, 230, 238
asynchronous grab mode 84, 188
asynchronous-reset cameras 206

B

benchmark information 237
BGR/BGRa images 174
bicubic interpolation 91
bilinear interpolation 91
binary buffers 44–45, 77, 173–174, 236
binary template matching 60, 65
bit planes, protecting 175
blanking period 200
blob analysis

acquiring an image for 99
adjusting controls 97, 101
assigning label values 104
background 96
binary features 96
blob identifier image 96
calculating 97
copying results 97, 112
defined 96
example 98
excluding blobs 97
feature list 97
features 106
freeing buffers 97
grayscale features 96
grouping results 101, 104
identifying blobs 101
estimating performance 237
latency 246
MIL vs Native Library 14
monochrome 213–214
multiple 38, 208, 228
optimizing 236
porting 15
programming tips 247
real-time 22, 38, 83–84, 188, 197
single-screen 217–218, 228
typical steps 26

arithmetic and logical operations
deriving opcodes for 81
divisions 247
with three operands 80–81

non-square pixels 102–103
number of blobs 97, 112–113
number of Feret angles 101
pixel aspect ratio 101–103
result buffer 97, 101
runs 101, 115
segmentation 97, 99
selecting features 97
steps 97
time slice 102
timeout period 101, 105
transferring results 97, 247

blob.c program 270

blobs
area 106
assigning label values 104
breadth 108
center of gravity 110
central moments 110
compactness 109
convex perimeter 107, 109
counting 97
defining 96, 101
deleting 111
dimensions 107
excluding 97, 110–111
features 106
Feret diameter 107–108
filling 104
grouping 101, 104
identifying 96, 99
length 107–108
location 106, 110
long, thin 108
moments 110
number of holes 109
number of runs in 115
ordinary moments 110
perimeter 106, 109
processing 111
removing 111
separating from image 96, 99
shape 106, 109
size 109
spurious 99

color 42, 74, 165, 175
control 30, 164, 167–168
converting data type 166
copying 31, 164, 170
creating 164, 182
data types 236
display 169, 247
fields 30, 167–168
freeing 165
mapping to Host 164, 180
memory location of 166
multi-band 42, 74–75, 165, 170
packed 47, 247
parent 169
pitch 180
RGB packed 45
single-band 165
supported data types 166
tag 29, 47, 164, 173, 186
transfer to/from a file 179
transfer to/from the Host 179

byte-aligned buffers 173

C

C80 16, 18–19, 31
and multiple nodes 245
block diagram 43
code 21
multiple 19
porting 15
programming 43, 236
touching borders 110–111
touching each other 99
unwanted 100, 111
width 107

board
Genesis-LC 20
main 16, 18–19, 21, 171
processor 16, 18–19, 21, 171

brightness, adjusting on grab 198
broadcasting to all nodes 245
buffers

1d 165
2d 165
allocating 29, 165
binary 44–45, 77, 173, 236
child 29, 42, 47, 74, 169

camera definition files
allocating 33, 184, 208
changing 184, 192
compatible 83, 190–191
creating 33
that produce non-square pixels 103

camera settings
frame size 200
gain levels 198
input channel 193–194
LUT 198–199
reference levels 198
synchronization channel 197
triggers 202
user bits 201

cameras
analog 199–200
asynchronous-reset 206
color 182, 193
digital 200
line scan 201
monochrome 182, 193–195, 197

cellular mapping 71
certainty level 123, 126, 129
Chamfer 3-4 transform 67
Chessboard transform 66
child buffers 29, 42, 47, 74, 169

on the display 31, 212–213, 221, 228
City Block transform 66
clearing error information 230, 232
clipping 50, 247
color buffers

copying 75
copying to display 175
processing 42, 74

color space
HSL 74–75
RGB 74–75

command queues 85
compressing images

achievable ratios 143
an example 145, 149–151
controlling 145, 147
of JFIF files 143
overview of algorithm 147
saving tables during 151
steps 140, 144, 222

converting
between data types 45
RGB to HSL 75

convex perimeter 107
convolutions 58–59
copy

16-bit color images 175
available functions 170
between nodes 170
between on-board and Host 170
between processing and display 170
blob results 97, 112
bottom to top 175
color images 75
continuously 177
control fields 168
extracting bytes during 174
multi-band buffers 75, 170
over the PCI bus 170–171
over the VMChannel 170–171
pattern matching models 130
rectangular region 177
reducing overhead during 176
RGB images 75
RGB555/565 images 175
right to left 175
swapping bytes during 174
to non-rectangular regions 173
to rectangular regions 169
to the display 174–175, 177
to/from a VM stream 178
with a specific VIA 176
to open files 151
transmitting 153
when image is large 150
with restart markers 153
with your own table 149

compute bound functions 58, 240, 243
connected region, filling 162
connectivity mapping 71
contiguous physical memory 182
continuous grab 34, 187, 192, 208

an example 34
contrast, adjusting on grab 198
control buffers 30, 164, 167–168
control fields 30, 167–168, 247

with subsampling 174
with tag 164, 173
with VIA options 171
with write masks 175
with zoom 174

counting blobs 97

D

data paths 18, 171
data types

converting between 45–46
mixed 49
speed 236
supported 44, 166

decompressing images
an example 146, 152
controls 145
from open files 151
restrictions 143
steps 141, 144

development tools 43, 236
digital cameras 200
digitizer

allocating 184
programming 184

dilation 60–61, 99
direct memory access 182
display

allocating 31
as two-dimensional surface 31, 212
block diagram 211
buffers 169, 247
child buffers 31, 212–213, 221, 228
color images 213–214
color version of 210, 213–214, 221, 228
copying to 174–175
dual-screen mode 215–216, 218, 228
effects 219, 228
grabbing to 221
grayscale images 170, 213–214
in pseudo-color 220
keying 217–218, 228
LUTs 210
memory 18, 31, 212, 214, 227–228
mode 214
monochrome version of 210, 213, 221, 228

drawing
an object’s outline 160
arcs 158
lines 158
rectangles 158

dual-screen display mode 215–216, 218, 228

E

erosion 60–61, 99
error information, clearing 230, 232
error messages, printing 232
error reporting

a function 230
a thread 230–231
and asynchronous functions 230–231
application-wide 230–232
when to check 35, 234
which mechanism to use 231

estimating performance 237
event objects 244
example of

an FFT 93
basic program 28
blob analysis 98
blob analysis result transfer 113
blob analysis timeout feature 105
checking for errors 231
compressing images 145, 149–151
decompressing images 146, 152
defining kernels 69
grabbing continuously 34
multiple live grabs on 182
off-screen buffers 227
overview 18, 210
panning 219, 228
refresh rate 210
resolution 210, 216, 219
scrolling 219, 228
single-screen mode 215–218, 228
zooming 219, 228

display artifacts, avoiding 177
distance transforms 60, 66
distortions, geometric 86, 103
dividing images 247
DMA transfers 182
double buffering 83, 176

grabbing from multiple channels 196–197
grabbing successive frames 83, 246
grabbing to two or more buffers simulta-
neously 190

grabbing with timers 207
hardware triggers 204
keying 217
LUT mapping 51
LUT warping 90
mapping buffer to Host 180
pattern matching 120
perspective warping 89
plotting 161
printing error messages 232
processing non-rectangular regions 48

real-time processing 84
rotating images 87
software triggers 202
synchronizing operations 36
thinning to skeleton 63
transferring to Host 32

examples, overview 23
exposure signals 204
exposure time 204
extracting bytes

during copy 174
during grab 186

F

fast peak finding 135
Feret diameter 107–108
FFTs 92–93

an example 93
fields (camera), grabbing 187
filling objects 158
first.c program 275
first-order warpings 86, 89

an example 87
generating coefficients for 86

flipping images 72
floating-point buffers 45, 72, 166
formatting

copied data 171
grabbed data 186

frame buffers 210, 215–217, 219–220
frame size 200

grab.c program 277
grabbing

asynchronously 84, 188
bottom to top 186
color images 194, 208
continuously 34, 187, 192, 208, 221
extracting bytes during 186
fields 187
frames 187
from a specific channel 194
from interlaced cameras 187
from multiple channels 195–196
general steps 184
line interrupts 189
lines 187
low-resolution image 187
monochrome images 208
multiple live, on display 182
part of the same frame 246
rectangular region 186
reducing overheads during 188
right to left 186
successive frames 83, 246
to multiple nodes 190
to non-rectangular regions 221
to rectangular regions 169
to the display 208, 221
to two or more buffers simultaneously 187,
190

to/from a VM stream 186, 188
with subsampling 186
with tag 186
frames, grabbing 187

G

gain levels 198
Genesis Developer’s Toolkit 43, 236
Genesis shell 21
Genesis-LC 20
GENKEY utility 218, 228
GENVCFLD utility 216
geometric operations 42

advanced 72, 86
basic 72

grab module 18, 185
grab port 19

with VIA options 186
with write masks 186
with zoom 186

graphics
and color buffers 159
available functions 158
drawing color 159
using the MGA 158
XOR option 159

H

hardware triggers 191, 202–203, 205
an example 204

histogram 77
plotting right-side up 160–161
transferring results 32

histogram equalization 57
hit-or-miss transformation 60, 65
horizontal syncs 197, 200, 205
Host

allocating memory on 32
and asynchronous functions 29
and command queues 85
and synchronous functions 29
copying to/from 170
halting execution on 36
mapping buffers to 164, 180
memory 22, 29, 166, 227
operating system 30, 158, 215
synchronizing with 36, 244
threads 244
transfer data to/from 19, 26, 31–32, 97,
112, 119, 164, 179

transfer rate 16
hot spot 123, 125
HSL color space 74–75
Huffman encoding 147–148

I

I/O bound functions 49, 237–239, 243
imAppCatchError() 35, 230, 232
imAppGetError() 35, 230–232, 234
imBinConvert() 45, 166, 174
imBinMorphic() 60, 62–63, 65, 99, 118

imBlobInquire() 105
imBlobLabel() 101
imBlobSelect() 97, 100, 111
imBlobSelectFeature() 97, 112
imBlobSelectFeret() 97, 108
imBlobSelectMoment() 97, 110
imBufAlloc() 32, 165, 227–228
imBufAlloc1d() 50, 165, 227–228
imBufAlloc2d() 68, 165, 227–228
imBufAllocControl() 168
imBufChild() 27, 31, 47, 169, 182, 212–215,
221, 228

imBufChildBand() 74, 169
imBufChildMove() 169
imBufClear() 27
imBufControl() 182
imBufCopy() 27, 31–32, 45, 75, 170, 182
imBufCopyField() 168, 170
imBufCopyPCI() 31, 44, 47, 170–171, 182,
186

imBufCopyVM() 31, 44, 47, 170–171, 186
imBufCreate() 164, 182
imBufFree() 30, 165, 182
imBufGet() 32, 77, 114, 179
imBufGet1d() 32, 77, 179
imBufGet2d() 32, 179
imBufGetField() 77, 168
imBufGetFieldDouble() 168
imBufGetNextField() 168
imBufLoad() 179
imBufMap() 164, 180
imBufPack() 47–48, 173
imBinTriadic() 80–82
imBlobAllocFeatureList() 97
imBlobAllocResult() 97
imBlobCalculate() 97, 101, 104–105
imBlobControl() 97, 101, 103, 105, 107–108,
115

imBlobCopyResult() 112, 114
imBlobCopyRuns() 101, 115
imBlobFill() 101, 111
imBlobFree() 97
imBlobGetLabel() 101
imBlobGetNumber() 112–113
imBlobGetResult() 112–114
imBlobGetResultSingle() 112, 114
imBlobGetRuns() 101, 115

imBufPut() 32, 50, 68, 179
imBufPut1d() 32, 179
imBufPut2d() 32, 179
imBufPutField() 168
imBufRemoveField() 168
imBufRestore() 179
imBufSave() 179
imCamAlloc() 33, 184
imCamClone() 192
imCamControl() 184, 188, 192, 196–197,
201, 208

imCamInquire() 208
imDevAlloc() 27, 29, 38
imDevFree() 30
imDevInquire() 85
imDigAlloc() 33, 184

imDigCapture() 190, 202
imDigControl() 184, 192, 201, 203, 208
imDigGrab() 33, 83–84, 178, 186, 196–197,
202, 221

imDigInquire() 201
imDispControl() 214, 217, 219–220, 227–228
imFloatConvert() 45, 166
imGen1d() 50
imGenWarp1stOrder() 86
imGenWarp4Corner() 89
imGenWarpLutMatrix() 89
imGraArc() 158
imGraArcFill() 158
imGraFill() 162
imGraLine() 158
imGraPlot() 158, 160
imGraRect() 27, 158
imGraRectFill() 158
imGraText() 27, 158, 162
imIntBinarize() 99
imIntConnectMap() 71
imIntConvert() 46, 99, 166
imIntConvertColor() 75
imIntConvolve() 59, 68, 99
imIntCorrelate() 118
imIntCountDifference() 77
imIntDistance() 66
imIntDyadic() 49
imIntErodeDilate() 61, 99
imIntFFT() 92
imIntFindExtreme() 77
imIntFlip() 72

imJpegDecode() 141, 144
imJpegEncode() 140–141, 144
imJpegFree() 144
imJpegInquire() 144
imJpegPutTable() 145, 149
imJpegRead() 144, 151
imJpegReadBuf() 141, 144
imJpegRestore() 144
imJpegSave() 144, 146
imJpegWrite() 151
imJpegWriteBuf() 141, 144, 146
imPatAllocModel() 119
imPatAllocResult() 119
imPatAllocRotatedModel() 130
imPatCopy() 130
imPatFindModel() 119, 133–134
imPatFree() 119
imPatGetNumber() 119, 124
imPatGetResult() 119, 124, 132
imPatInquire() 130
imPatPreprocModel() 119, 122, 128–129
imPatRead() 130
imPatRestore() 119, 130
imPatSave() 130
imPatSetAcceptance() 123
imPatSetAccuracy() 123, 129, 136
imPatSetCenter() 123, 125
imPatSetCertainty() 123, 129
imPatSetDontCare() 123
imPatSetNumber() 123–124
imPatSetPosition() 123, 129
imPatSetSearchParameter() 123, 132, 134–
imIntHistogram() 77
imIntHistogramEqualization() 57
imIntLocateEvent() 77
imIntLutMap() 50–51, 54, 56, 220
imIntMonadic() 49
imIntRank() 99
imIntScale() 73, 219
imIntSubsample() 72–73
imIntThickThin() 62–63
imIntTriadic() 47, 80–82
imIntWarpLut() 88–89
imIntWarpPolynomial() 86, 219
imIntZoom() 72–73, 219
imJpegAlloc() 140, 144–145
imJpegControl() 145, 147, 150–151, 153
imJpegControlBand() 145

135
imPatSetSpeed() 123, 128–129
imPatWrite() 130
imSyncAlloc() 36
imSyncControl() 36
imSyncGetError() 230–231
imSyncHost() 36, 38, 84–85, 189, 191
imSyncThread() 85, 189
imSysClock() 237
imThrAlloc() 27, 29
imThrControl() 243
imThrFree() 30
imThrGetError() 35, 230–231, 234
imThrHalt() 33, 177, 187
input channels 193–194
integer buffers 44–46, 158, 174

interlaced scanning 187, 189
interpolated LUT mappings 55–56
interpolation modes 86, 91

J

JPEG compression
achievable ratios 143
an example 145, 149–151
by blocks 150
controlling 145, 147
of JFIF files 143
overview of lossless algorithm 147
restart markers 153
saving tables during 151
steps 140, 144, 222
to open files 151
transmitting compressed images 153
with large images 150
with your own table 149

jpeg.c program 279

K

kernels
an example 69
center coordinates 68
custom 58–59, 68
predefined 58

keying 217–218, 228
an example 217

M

main board 16, 18–19, 21
block diagram 16, 18, 171

main frame buffer 210, 215–219
mapping buffer to Host 180

an example 180
mapping through LUT

displayed images 220
grabbed images 198

match peaks 135
match score 123, 128, 132, 136
memory

display 18, 31, 33, 166, 212, 227–228
freeing 144
Host 29, 32, 164, 170, 227
invalid access 50
linear 16, 227
main frame buffer 210
off-screen 227–228
operation status block 36
overlay frame buffer 210
physical 182
processing 16, 18, 21, 29, 31, 33, 166,
212, 227

virtual 182
memory banks

defined 194
how connected 171

merging images 47, 80
message passing 245
L

level-sensitive trigger 203
line interrupts 189
line scan cameras 201
live grabs, multiple 182
loops 38, 234, 247
LUT

in the grab section 198–199
in the RAMDAC 50, 210, 220
large vs small 247
mappings 50–51, 55–56, 220
warpings 86, 88

MGA 210, 215–216
MIL vs Native Library 14–15
model (pattern matching)

complex 128
copying 130
creating 119, 121
defined 118
don’t care pixels 123, 127
effective center 123, 125
efficient 129
freeing 119
hot spot 123, 125
inquiring about 130
large features 122
masking 123, 127
orientation 121

reading from open file 130
restoring 119, 122, 130
rotating 130
saving 122, 130
size 121, 129
small-scale features 122
writing to open file 130

model images 121, 127
monochrome cameras 182, 194–195, 197
morphological operations 58, 60
multi-band buffers 42, 74, 165

copying 75, 170
processing 74

multiple live grabs, on display 182
multi-processing 22, 36, 236, 242

N

Native Library
overview 14
vs MIL 14–15

nearest-neighbor interpolation 91
neighborhood operations 16, 42, 48, 58, 70
NOA 16, 18, 21, 243
nodes

allocating 27, 29, 38
broadcasting to 245
defined 21
multiple 177–178, 187, 245

non-square pixels 101–103, 200
normalized grayscale correlation 131

O

P

packed buffers 47, 247
packed color images 174
panning the display 219, 228
parallel processing 22, 36, 236, 242
parent buffers 169
part-present sensor 204, 206
pat.c program 282
pattern matching

acceptance level 123–124
adjusting parameters 119, 123
algorithm 131
certainty level 123, 126, 129
controlling search 123
copying models 130
creating model 119, 121
defined 118
example 120
false matches 121, 127
fast peak finding 135
masking model 123, 127
match peaks 135
match score 123
model 118, 129
number of matches 123–124
positional accuracy 123, 126, 129
preprocessing 119, 122, 129
reading models from open file 130
resolution level 133
restoring models 119, 122, 130
objects, filling 158
open files 130, 151
operating system 30, 158, 215
operations, synchronizing 36
optimize.doc file 237–240
OSB

allocating 36
and Windows NT 244

overheads 237–238
reducing, when copying 176
reducing, when grabbing 188

overlay frame buffer 210, 215–220, 228
overscan pixels 70

result buffer 119
returned coordinates of 123, 125
rotating models 130
saving models 122, 130
search in one direction 126
search parameters 119
search region 123, 125, 129
search speed 123, 128–129
searching for model 119
speeding up 129
steps 119
supported buffers 118
target image 118, 122
transferring results 119, 247
uses 118
writing models to open file 130

PCI bus, copying over 19, 170–171, 245
performance, estimating 237
perspective warpings 86, 88–89
physical memory 182
pitch 180
pixel aspect ratio 101–103
pixel clock 200
plotting 158, 160

an example 161
point-to-point operations 42, 48–49
polynomial warpings 86, 89

an example 87
positional accuracy 123, 126, 128–129
predictive coding 147
preprocessing models 119, 122, 128–129
printing, error messages 232
process.c program 286
processing

a band of a buffer 164
color buffers 42, 74
non-rectangular regions 29, 47–48
rectangular regions 29, 47, 164, 169, 247

processing memory 16, 18, 29, 31, 166, 212,
227

processing operations 42, 166
processor board 16, 18–19, 21

block diagram 19, 171
programming

’C80 43, 236
digitizer 184

programming tips 247
progressive scanning 187

resizing images 86
resolution levels 133
resolution, of display 210, 216, 219
resources 21, 29, 38, 247

freeing 27, 30
restart markers 153
restoring

compressed images 145
models 122, 130

reversed images 175, 186, 188
RGB color space 74–75
RGB packed buffers 45
RGB555/565 formats 175
rotating images 72, 86–87

an example 87
RS422 format 201, 203, 205
runs in a blob 101, 115

S

sampling frequency 200
saturation 49–50, 247
saving

compressed images 144–145, 151
models 122, 130

scaling images 72–73
screen tearing, avoiding 177
scrolling the display 219, 228
SDRAM 18, 31, 212
search parameters 123
segmentation 96, 99
shearing images 86
protecting bit planes 175
pseudo-color effect, achieving 199, 220

R

RAMDAC 210
reading from open files

compressed images 151
models 130

reading results 168
real-time processing 22, 83–84

an example 84
reference levels 198
refresh rate 210
replace overscan 70

single-band buffers 165
single-screen display mode 215–218, 228
software triggers 191, 202

an example 202
spatial filtering operations 58–59
spatial patterns, locating 92
square pixels 101–103
statistical operations 42, 77
subsample

copied data 174
grabbed data 186
images 72–73

swapping bytes, during a copy 174
synchronization channel 197

synchronizing
an example 36
grabs 190
Host threads 244
operations 36
threads 36

synchronous functions 29, 32, 35, 230, 238,
247

systems 21, 171

T

tag buffers 29, 47, 164, 173–174, 186, 227
target images 118, 122, 128
text, writing 158, 162
tfilter.c program 300
thickening 60, 62–63
thinning 60, 62–63

an example 63
threads

allocating 27, 29
checking for errors 230
defined 22
multiple 242–243
on the Host 244
synchronizing 36

timers, on the grab 202, 204
an example 207

transfer to/from a file, buffer data 179
transfer to/from the Host

achievable rates 16
an example 32

U

user bits 201

V

vertical syncs 197, 201, 205
VIA options

during a copy 171
during a grab 186

virtual memory 182
visible artifacts, avoiding 177
VM device 18, 178, 186
VM stream 178, 186
VMChannel

and multiple nodes 245
copying data over 18, 170–171

W

warping
an example 87
first-order 86, 89
generating coefficients for 86
how performed 86
interpolation modes 91
perspective 88
through a LUT 88, 90

Windows NT 30, 244
WRAM 18
write masks 175, 186
blob results 97, 112, 247
buffer data 19, 32, 138, 164, 179
pattern matching results 119, 247

translating images 86–87
transmitting compressed images 153
transparent overscan 70
triggers

hardware 191, 202–203, 205
software 191, 202
sources 202
timers 202, 204

TTL format 201, 203, 205

writing a rectangular region 177, 186
writing text 158, 162
writing to open file

compressed images 151
models 130

Z

zoom
copied data 174
display 219, 228
grabbed data 186
images 72–73, 219

Product Support

Product Assistance Request Form

Name:
Company:
Address:
Phone: Fax:
E-mail:

Hardware Specific Information
Computer: CPU:
System memory: PCI Chipset:
System BIOS rev:
Video card used: Resolution:
Network Card: Network Software:
Other cards in system:

Software Specific Information
Operating system: Rev:
Matrox SW used: Rev:
Compiler: Rev:

Describe the problem:

	Matrox Genesis Native Library 2.1 User Guide
	Contents
	Chapter 1: Introduction
	The Matrox Genesis Native Library
	The Matrox Genesis imaging boards
	The Genesis main board
	The Genesis processor board
	The Genesis-LC

	Basic software concepts
	A word about examples

	Chapter 2: Getting started
	Getting started
	Basic steps
	A simple example

	Your resources
	Allocating resources
	Freeing allocated resources

	Displaying an image
	Transferring to/from the Host
	Grabbing an image
	Error reporting
	Synchronization
	Running multiple applications

	Chapter 3: Processing functions
	General overview
	Basic architecture of the ’C80

	Data types
	Converting between types

	Processing a specific region of an image
	Rectangular region
	Non-rectangular region

	Point-to-point processing
	Mixed data types
	LUT mappings
	Mapping with a non-interpolated LUT
	Mapping with an interpolated LUT
	Histogram equalization

	Neighborhood processing
	Spatial filtering operations
	Morphological operations
	Defining your own kernel
	Specifying the overscan pixels
	Connectivity mapping

	Geometric processing
	Flip/rotate
	Scale by integer factors
	Scale by non-integer factors

	Color processing
	Choosing a color space

	Statistical processing
	Histograms

	Chapter 4: Advanced processing
	Three-input arithmetic and logical operations
	Live processing
	Grabbing a sequence of frames in real-time
	Real-time processing

	Geometric warpings
	First-order polynomial warpings
	Using a LUT to perform a warping
	Interpolation modes

	Fourier transforms

	Chapter 5: Blob analysis
	Blob analysis
	General steps
	Segmentation
	Adjusting controls
	Pixel aspect ratio
	Grouping results
	Timeout period

	Features
	Area and perimeter
	Dimensions
	Shape
	Blob location

	Selecting blobs
	Transferring or copying results
	Transferring or copying runs

	Chapter 6: Pattern matching
	Pattern matching
	General steps
	Creating the model
	Preprocessing the model
	Adjusting search parameters
	Acceptance level
	Number of matches
	Model's hot spot
	Search region
	Positional accuracy
	Certainty level
	"Don't care" pixels
	Search speed

	Speeding up the search
	Managing models
	The pattern matching algorithm
	Normalized Correlation
	Hierarchical Search
	Search Heuristics
	Sub-Pixel Accuracy

	Chapter 7: Compression
	Introduction
	Run-length encoding and decoding
	Run-length encoding (compression)
	Decoding run-length encoded images (decompression)

	General steps
	JPEG Compression
	General steps
	Controlling JPEG lossless compression
	Predictive coding
	Huffman encoding

	Encoding a very large image
	Writing/reading to or from open files
	Restart markers
	JPEG compatibility issues

	Chapter 8: Generating graphics
	Graphics
	Generating graphics
	Plotting
	Filling

	Writing text

	Chapter 9: Buffers and buffer fields
	Data buffers
	Allocating buffers
	Data type
	Memory location

	Control buffers
	Child buffers
	Copying buffer data
	Using the advanced copy functions
	Tag buffers
	Zooming and subsampling
	Extracting bytes
	Swapping bytes
	Reversing the direction of the copy
	Expanding RGB555 or 565 formats
	Write masks
	Reducing overhead
	Specifying a VIA
	Writing a rectangular region
	Avoiding display artifacts
	Continuous copying
	Copying to/from the VMChannel

	Transferring buffer data to the Host
	Mapping a buffer
	Creating a buffer from memory already allocated

	Chapter 10: Grabbing images
	Grabbing
	The grab module

	VIA options of the grab command
	Number of iterations
	Synchronizing multiple grabs
	Grabbing a rectangular region
	Grabbing a VM stream
	Reversing the direction of the grab
	Grab mode
	Reducing overhead
	Line interrupts

	Grabbing to two or more buffers
	Camera settings
	Input channel
	Synchronization channel
	Gain and reference levels
	Input LUTs
	Frame size
	User bits
	Triggers
	Programmable timers

	Running multiple applications

	Chapter 11: Displaying images
	The display section
	Grayscale images vs. color images
	Using the monochrome version
	Using the color version

	Using the overlay
	Keying
	In single-screen mode
	In dual-screen mode

	Panning, scrolling, and zooming
	Look-up tables
	Grab and display
	Using the hardware cursor
	General steps to using a cursor
	An example

	Display memory as extra storage space
	Running multiple applications

	Chapter 12: Error handling
	Error mechanisms
	Which error mechanism to use
	More about application-wide errors
	Places to check for errors

	Chapter 13: Optimizing your application
	Overview
	Estimating performance
	General formula
	Overheads
	I/O bound functions
	Compute bound functions
	NOA setup overhead

	Multiprocessing
	Multiple threads
	Multiple nodes

	Programming tips

	Appendix A: Glossary
	Appendix B: Examples
	blob.c
	first.c
	grab.c
	jpeg.c
	pat.c
	process.c
	tfilter.c

	Index
	Product Support

