Twenty Dollars

Cromemco’
68000 Linker

Instruction Manual

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Part No. 023-4055 _ : February 1983

Cromemco’
68000 Linker

Instruction Manual

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Part No. 023-4055

Copyright©1983
CROMEMCO, Inc.
All Rights Reserved

February 1983

This manual was produced using a Cromemco
System Three computer with a Cromemco HDD=22
Hard Disk Storage System running under the
Cromemco Cromix® Operating System. The text
was edited with the Cromemco Cromix Screen
Editor. The edited text was proofread by the
Cromemco SpellMaster™ Program and format-
ted by the Cromemco Word Processing System
Formatter II. Camera-ready copy was printed
on a Cromemco 3355B printer.

TABLE _OF CONTENTS

Chapter 1: LINK68 — 68000 LINKER
Chapter 2: 68000 CROMIX PROGRAM MEMORY ALLOCATION
Chapter 3: FORMAT OF 68000 CROMIX EXECUTABLE FILES

Chapter 4: CROMEMCO RELOCATABLE FILE FORMATS

Cromemco .068 Format

Order of Records

Addressing Mode Field Description
SVS .obj Format

Chapter 5: UTILITY PROGRAMS
PRTO68 - Structured Dump of .068 File
PRTORJ - Structured Dump of .obj File

CONVO68 - Convert .068 to .obj File
MAKLIB

INDEX

11
11
12

21

21
21
21
28

Cromemco 68000 Linker Reference Manual

1. Link68 - 68000 Linker

Chapter 1

LINK68 - 68000 LINKER

Link68 is a two-pass virtual linker that can be used to
link the relocatable .068 files produced by the Cromemco
Macro Assembler into an executable file.

The command format used to call the linker is:

link68 [options] filename ... [-s libname] ...

Options

=g

-z %

-0 outname

The -g option inhikits displaying
the link map on the terminal.

The -n option prevents creating the
link map. Otherwise, the link map
is created and written to a file
with the same filename as the .bin
file (defined by the -o option) but
with the filename extension .map.

The -z option is used to define the
amount of free space at the end of
the linked program. The linker
rounds the specified (decimal) value
(represented by #) up to the nearest
4K boundary and adds the computed
vglue to the total program size.
The result is that at least the
specified number of bytes 1is
available at the end of the user
program.

Specifies the created output
filename. The actual filename will
have the default extension .bin if
not otherwise specified. If the -o
option is not specified, the first
input filename will also be used as
the output filename.

Cromemco 68000 Linker Reference Manual

l.

Link68 - 68000 Linker

-s libname Declares the name of the library to
be searched for any missing modules.
The search proceeds sequentially
through the library so that the
library should be ordered correctly
in the sense that each module should
precede any modules it calls. A
library may be formed simply by
concatenating the modules (for
example, using the Cromix Type
utility) or by using the Maklib
utility, which sorts, and, if
necessary, duplicates modules before
concatenating them. Multiple -s
options are allowed.

Note that the programs themselves
may request the search through a
library by means of the *rellib
pseudo instruction.

Example:
1ink68 -z 5000 test subl sub2 -s asmrlib

This command line links the files test.o068, subl.o68,
sub2.068, searches through the 1library asmlib.o68 to
find the missing modulés, and writes the executable
program on the file test.bin and its map on the file
test.map. The linked program will have at least 5000
(decimal) bytes allocated at the end of the last module
for use by the program.

Cromemco 68000 Linker Reference Manual
2. 68000 Cromix Program Memory Allocaticn

Chapter 2

68000 CROMIX PROGRAM MEMORY ALLOCATION

When the Cromix Operating System loads the file
test.bin for execution, it allocates an additional 4K
bytes of memory at the end of the file. This 4K is used
to store the command line argument strings, the pointers
to them (argv) and the number of them (argc). At the
start of execution the stack pointer will point to argc.

Suppose that the program test is executed by the call

test arga argb

Cromemco 68000 Linker Reference Manual
2. 68000 Cromix Program Memory Allocation

When the program test starts execution,
layout is as follows:

High [s e e
memory | Zero terminated string "argb"

| Pointer to string "arga" (4 bytes)
Yy

I ___________________________________
| Pointer to string "test" (4 bytes)

A7 --> | Number 3 (argc, 2 bytes)

l
| Free memory, the rest of 4K
| allocated by the system

|

|
| Additional free memory, 8K

! (i.e. 5000 rounded up) allocated
| by the linker in the response to
; the -z 5000 option

Low linker

I
| All code and data created by the
|

memory |

Note that "Low memory" will be at address

the memory

|
!

I
|
I
|

20000h or

higher as the first 20000h bytes of memory are used by

the system.

Cromemco 68000 Linker Reference Manual
3. Format of 68000 Cromix Executable Files

Chapter 3

FORMAT OF 68000 CROMIX EXECUTABLE FILES

Bin files linked to be executed under the 68000 Cromix
Operating System have the following format:

e +
| I
| Header l
I I
e ————————————— +
I Psect 0 header]
e +
| Psect 0 text |
e ———— +
l Psect 0 bitmap |
e e +
| Psect 1 header l
e ——— e +
I Psect 1 text !
e ———— +
| Psect 1 bitmap |
P +

L/\/N/N/N/NNNNNNNNNANAN

The bit map contains 1 bit for every word in the psect.
If the bit is set, then the long word at that position
is relocated.

Description of the .bin header

struct 0
bn_magic ds.w 1 : Magic number (0C7C7h)
bn_pvers ds.w 1 ; Version number of program
bn_1lvers ds.w 1 ; Version number of linker
bn_1nkid ds.b 1 ; Linker ID number
bn_npsect ds.b 1 : Number of psects
bn_allocate ds.1l 1l : Allocation size
bn_start ds.1l 1 ; Start of program

ds.b 16 ; Reserved for later use
bn_length ds.b 0 ; Length of header

mend

Cromemco 68000 Linker Reference Manual

3.

Format ¢f 68000 Cromix Executable Files

Description of the psect header

struct
psect_attr ds.w

ds.w
psect_load ds.l
psect_size ds.1l
psect_bmsize ds.1l
psect_len ds.b

mend

0
1
1
1
1
1
0

e ma Ne wo wE N

Attribute

Reserved

Load address for psect
Size for psect

Bitmap size

Length of psect header

Note that bn_allocate in the header may be patched with
the Cromix Patch utility to increase or decrease the

amount of free space.
of 4K bytes.

Bn_allocate should be a multiple

Cromemco 68000 Linker Reference Manual

4.

Cromemco Relocatable File Formats

Chapter 4

CROMEMCO RELOCATABLE FILE FORMATS

Cromemco supports two different formats of object files.
The first, referred to as .068 format, is produced by
the Assembler; the second is SVS .obj format, used by
the 68000 FORTRAN-77, Pascal, and C compilers. Link68
uses the .068 format and must be used to 1link the
assembly language modules, whereas the Crolinker has to
be used to link the compiled high-level language
modules. ‘

The following section briefly describes the two
relocatable file formats.

CROMEMCO .068 FORMAT

The object file consists of a number of records. Each
record is a group of bytes with the following structure:

o —————— e ———— e ——————
| header | size | =-— contents =---

where header is a number in the range 0 - 13 (the .068
format currently consists of 14 different record types),
size is a record size in bytes (in the range 2 - 255).
The contents depends on the header and currently can be
any of the following:

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

Module name

This record passes the module name to the linker. The
name is either the string defined via the NAME pseudo
instruction code, or the name of the file containing
that module (in case the NAME pseudo operation code has
not been used).

Psect

fmm b o e Fmm———— - +

| 1 | size | psect #| psect size| attr | name |

T tomm e T fom———— o ——— +
1 1 1 3 2 n

This record passes the psect characteristics to the
linker, It consists of psect # (it is actually the
ordinal number of the psect in the module), prsect size
in bytes, psect attributes and name.

Entry

e Sttt e o m Fmm - fm———— +

| 2 | size | psect #| reserved | address | name |

e tmm————— tom - o Fo +
1 1 1 1 4 n

The entry record contains the information for an entry
point symbol. The data are the psect # (the ordinal
number of the psect in which the entry symbol is
defined), the address (relative to the given psect
start), followed by entry symbol name (defined via the
ENTRY pseudo operation).

External

tmm— - e ———— +

| 3] size | name |

tm e ———— e ————— +
1 1 n

This record declares an external symbol, giving its name
(defined by the EXTERN pseudo operation). The linker
assigns an integer number (starting with zero) to each
external symbol.

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

End of module

e Fom——————— Fm +

| 4 | size | psect # | address |

tm—m— e ——— tomm e —— +

1 1 1 3

This record declares the end of a module. It also
passes the start address to the linker. A psect number
= 255 and address = 0 signify the absence of a start
address.

Force search of library

fom ettt +

| 5 | size | library name |

fmm—tmmm——— e +
1 1 n

This record informs the linker to search the named
library. It is generated by the *RELLIB pseudo
operation code.

Force load a file

Fmm—tm————— dbm————— +

| 6 | size | name |

tm— e tom———— +
1 1 n

This record tells the linker to load a specific .068
file. It is generated by the *RELOBJ pseudo instruction
code.

Version number
fmm et ————— o ———— fm———————— +
| 7 | size | version | revision |

The sole purpose of this record is to insert the version
and revision numbers into the object file.

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

Write text record to binary output file

e et it o Fmm o e +

| 8 | size | text size | psect # | unused | address | text |

T ettt o fmmm e o ———— o m Fmmm—— +
1 1 1 1 1 3 n

This record is a part of the program text (i.e.,
assembled instructions or initialized data). The record
contains the size of the text, the psect number it
belongs to, its loading address relative to the start of
the psect given, and the text itself.

Fix external symbol
e T fo————— et fm ettt L L +

| 9 | size | type | psect # | addr | external id |

The information in this record tells the linker that the
external number "external id", referenced in psect # at
address "addr" must be relocated. The field "type"
describes the addressing mode, The structure of this
field is described at the end of this section.

Fix symbol in other psect
o Fom o ———— fo e et e +

| 10 | size | type | psect # | addr | psect # | reserved |

The information in this record tells the linker that the
symbol in psect #, referenced at address "addr", which
is actually defined in the psect with the second psect #
has to be relocated. The field "type" describes the
addressing mode.

Fix symbol in same psect
Fmm— e to————— Fom Fm————— +
| 11 | size | type | psect # | addr |

The information in this record tells the linker to
relocate the symbol at address "addr" in the psect
defined by "psect #". The field "type" contains the
information about the addressing mode.

10

Cromemco 68000 Linker Reference Manual

4.

Cromemco Relocatabkle File Formats

Fix forward reference

The information in this record tells the linker that the
actual address of the symbol, referenced in psect "psect
#1", at address "addrl", is to be relocated by the value
of "addr2". This symbol is defined in psect "psect #2",
and, in most cases, "psect #2" = "psect #1". The pseudo
operation code IFcc generates this record.

Declare entry symbol

This record declares an new entry symbol by defining its
name. The record is generated by the ENTRY pseudo
operation code.

Order of Records

Module name (0) must be the first record. Declare entry
records (13) must be next. The end module record (4)
must be last. Any fixup record must be after the record
to be fixed. External name records (3) must be in the
file before the external symbols listed with the
external name records are referenced.

Addressing Mode Field Description

This 2-byte field contains the information about the
addressing mode in fixup records. The following bits
are relevant:

Bit Meaning
4 Absolute
5 Long

6 Word

7 Byte

11

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

Bits are numbered in the standard way, 0 - 15, the
rightmost bit being least significant.

SVS .0OBJ FORMAT

An .obj file is a file of bytes, as is a .068 file, but
with a somewhat different organization. The file
consists of records according to the rule:

<Module file> ::= <module>* EOF mark

<module>

+= <module name record>
<other record>+
<end record>

where * means "0 or more occurrences," + means "1 or
more occurrences," and <other record> may be any of the
following:

Entry recorad

External record

Start record

Code record

Relocation record

Common relocation record

Common definition record

Short external record

Data initialization record

FORTRAN data area definition record
FORTRAN data area initialization record
FORTRAN data area reference record
FORTRAN data area relocation record

‘.
The organization of a library file (such as paslib.obj
or ftnlib.obj) is as follows:

<library file> ::= Library module record+
Library entry record+
Library starting address record*
<module>+ text record*
EOF mark

with module having the above-defined structure. The
descriptions of these records follow:

12

Cromemco 68000 Linker Reference Manual
4. Cromemco Relocatable File Formats

Module name record

Fommm b ————— tmm e Fo Fo e ———— Fom e ——— +
| 80 | size | module name | segment name | csize | comment |
o ——— o ————— Fmm Fmm————— fmm— - +
1 3 8 8 4 n size
where:
80 - Hexadecimal 80.
size - Number of bytes in this record.
module name - Blank padded ASCII name of the module.
segment name - ASCII name of the segment in which
this module will reside.
csize - Number of bytes in the code for this
) module.
comments - Arbitrary information. 1Ignored by the
linker.

End record

fmm— o ———— +
| 81 | size | csize |
fo o ———— - +
1 3 4
where:
81 - Hexadecimal 81
size - Number of bytes in this record; always
08h.
csize - Number of bytes in the code record for

this module.

Entry record

Fmm——t—————— o —————— o Fo e ———— Fom +

| 82 | size | link name | user name | 1loc | comment |

Fom e Fo e ————— o e Fom—————— o +

1 3 8 8 4 n size

where:

82 - Hexadecimal 82.

size - Number of bytes in this record.

link name - Blank padded ASCII linker name of
entry point.

user name -~ Blank padded ASCII user name of entry
point.

13

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

loc - Location of entry point relative to
this module.

comments - Arbitrary information. Ignored by the
linker.

External record

T e fo e ———— o —————— o o o e o t————— tm—————— +

| 83 | size | link name | user name | ref 1 | ...

et b e ——————— Fmm e —————— fm Fo———— tm————— +

1 3 8 8 4

where:

83 - Hexadecimal 83.

size - Number of bytes in this record.

link name - Blank padded ASCII linker name
external reference.

user name -~ Blank padded ASCII user name of
external reference.

ref 1 - Location of first reference relative
to this module.

e Other references.

ref n ~ Locaticn of last reference.

Start record

tmm e Fom e fm—mm +

| 84 | size | start | gsize | comments |

et L S e Fomm——— Fo e —— o +

1 3 4 4 n size

where:

84 - Hexadecimal 84.

size - Number of bytes in this record.

start ~ Starting address relative to this
module.

gsize - Number of bytes in the global data
area.

comments - Arbitrary information. Ignored by the
linker.

14

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

Code record

Fom e ————— et L Lt Ce L +
| 85 | size | addr | object code ... |
e ettt Fmm———— o ———— +
1 3 4 size
where:
85 - Hexadecimal 85,
size - Number of bytes in this record.
addr - Module relative address of first byte
of code.
object code - The object code. Always an even

number of bytes.

Relocation record: (32 bit)

Fom— Fom e ——— Fom———— Fmm +
| 86 | size | addr 1] ... | addr n|
e S Fom————— Fom——— Fom e ——— +
1 3 4 4 size
where:
86 - Hexadecimal 86,
size - Number of bytes in this record.
addr 1 - Location of first byte to relocate.
v ~ Other references.
addr n - Location of last byte to relocate.

Common record

o —— fm Fm e ————— t————— e ———— +

| 87 | size | common name | ref 1 | ... | ref n |

tom e ——— e ——————— e tm—————— tm———— o ————— +

1 3 8 4 4 size

where:

87 - Hexadecimal 87.

size - Number of bytes in this record.

common name - Blank padded ASCII name of common
record.

ref 1 - Location of first reference relative
to this module.

ces - Other references.

ref n - Location of last reference.

15

Cromemco 68000 Linker Reference Manual

4.

Cromemco Relocatable File Formats

Common definition record

e to e Fm————— dmm +

| 88 | size | common name | dsize | comments |

o trm e ———————— Fmm————— o ———— +

1 3 8 4 size

where:

88 - Hexadecimal 88,

size - Number of bytes in this record.

common name - Blank padded ASCII name of common
area.

dsize -~ Number of bytes in this common data
area.

comments - Arbitrary information. Ignored by the
linker.

Short external record

Fr— e ——— o e e fm—————— e Fmm————— +

| 89 | size | link name | user name | ref 1 | ... | ref n |

tm———p e ———— o fm e ——— e —————— o ———— e +

1 3 8 8 2 2 size

where:

89 - Hexadecimal 89

size -~ Number of bytes in this record.

link name - Blank padded ASCII linker name of
external reference

user name - Blank padded ASCII user name of
external reference.

refl - Location of first reference relative
to this module.

oo Other references.

ref n - Location of last reference.

FORTRAN data area definition record

ik tatat o ——————————— fmm———— +
| 8A | size | d.area name | dsize |
B et T p— e ——————————— Fm e —— +
1 3 8 4 size

16

Cromemco 68000 Linker Reference Manual
4. Cromemco Relocatable File Formats

where:

8A - Hexadecimal B8A.

size - Number of bytes in this record.

d.area name - Blank padded ASCII name of FORTRAN
fixed data area.

dsize -~ Size of this data area.

FORTRAN data area initialization record

et o —————————— - ———— fmm——————— F=———t
| 8B | size | d.area name | daddr | data... | 0 |
tmm——t Fmm————————— Fm—————— Fmm e ————— 4=t

1 3 8 4 size
where
8RB - Hexadecimal 8B.
size - Number of bytes in this record.
d.area name - Blank padded ASCII name of FORTRAN

fixed data area.

daddr - Starting address of this data.
data - The initialization data.
0 ~ One byte of 00 if size id odd.
FORTRAN data area reference record
fmm e fmm————— o ————— fm———— o ———— +
| 8C | size | d.area name | ref 1 | ... | ref n |
e o ————————— Fm—————— tm————— o ————— +

1 3 8 4 4 size
where:
8C -~ Hexadecimal 8C.
size - Number of bytes in this record.
d.area name - Blank padded ASCII name of FORTRAN

fixed data area.

ref 1 -~ Address of first reference.
e — Other references.
ref n - Location of last reference.

17

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

FORTRAN data area relocation record

B o e tom—————— o —————— +
| 8D | size | d.area name 1 | offset |d.area name 2 |
i T T STRPEI e ———————— e o o o e e e e e +

1 3 8 4 8 size
where:
8D - Hexadecimal 8D.

size
d.area name 1

offset
d.area name 2

- Number of bytes in this record.

- Blank padded ASCII name of FORTRAN
data area in which reference
appears.

-~ Offset in data area 1.

- Blank padded ASCII name of FORTRAN
data area to be relocated to.

Library module record

e e fm e —————————— tmm————— fm—————— fm e ——— t=—

| 90 | size | module name | msize | caddr | taddr | ...
Fm—m tor e ———————— tm o ———— B il e ———— o

1 3 8 4 4 4
_____ J._._—-——__.L_.-—_._.._.{._____.! _.__.____+

eee | #mods mod 1 | ... | mod n |
----- e ettt HEE o B R

2 2 2 size
where:
90 - Hexadecimal 90.
size - Number of bytes in this record.
module name - Name of this module.
msize -~ Size of code for this module in bytes.
caddr - Disk address of the module.
taddr - Disk address of text record if
present. Zero otherwise.
tsize - Size of text record.
#mods - Number of other modules referenced by
this module.

mod 1 -~ Number of first module referenced.

.o - QOther references.
mod n - Number of last module referenced.

18

Cromemco 68000 Linker Reference Manual
4, Cromemco Relocatable File Formats

Library entry record

e s et ettt T Fmm e +

| 91 | size | link name | module | address |

e e Fom tom e ——— - +

1 3 8 2 4 size

where:

91 - Hexadecimal ©°1.

size - Number of bytes in this record.
Always 12h.

link name - Blank padded ASCII link name of entry
point.

module - Module in which entry point resides.

address -~ Relative address of entry point to

that module.

Unit record

Fm— e ———— Fo—————————— e ———— dm————— fom e ——— fm————— +

| 92 | size | unit name | caddr | taddr | tsize | gsize |

e e ——————— fm————— tmm———— o ———— o ————— +
1 3 8 4 4 4 4 size

where:

92 - Hexadecimal 92.

size - Number of bytes in this record.

unit name -~ Name of this unit.

caddr - Disk address of module.

taddr - Disk address of text record.

tsize - Size of text record.

gsize - Number of bytes of globals in this

unit.

Library starting address record

el PP b ———— +
| 96 | size | module |
tm e ——— o ————— +
1 3 2
where:
96 - Hexadecimal 92.
size - Number of bytes in this record.
module - Module # in the library, which

contains the starting address
record.

19

Cromemco 68000 Linker Reference Manual
4, Cromemco Relccatable File Formats

This record appears after all "90" records and before
all "91" records.

Text record

e N S +

| textual data ... |

N 0 M +
1 1 1

The format of a text record is operating system
dependent. The current version uses UCSD text file
format, excluding the two initial header records. It is
always stored on disk record boundaries.

Eof mark

00 00 - Hexadecimal 0000

20

Cromemco 68000 Linker Reference Manual
5. Utility Programs

Chapter 5

UTILITY PROGRAMS

PRTO68 — STRUCTURED DUMP OF .068 FILE

A special program, prto68.bin, is supplied with the
68000 Assembler package. It can be used to display the
contents of any .068 file. The calling format is:

PRTO68 [—-g] <pathname>

where:

-g is an optional parameter. If
specified, prto68 will not display the
contents of code records.

{pathname> is the pathname of the .068 file to be
dumped.

PRTOBJ - STRUCTURED DUMP OF .0OBJ FILE

Prtobj is a program similar to prto68 and can be used to
display the contents of an SVS .obj file. Its calling
syntax is also:

PRTOBJ [-g] <pathname>

CONVO68 — CONVERT .068 TO .OBJ FILE

Cromemco 68000 Pascal, 68000 C, and FORTRAN-77 all
generate relocatable files with the .obj format, which
is different from the .068 format generated by the
Cromemco 68000 Macro Assembler. Sometimes it may be
necessary for a high-level language program to perform
an action that can be done only by an assembly language
subroutine. The program Convo68, which converts a .068
file to .obj format can be used in such a case.

21

Cromemco 68000 Linker Reference Manual
5. Utility Programs

The calling syntax is:

convo68 [-v] <pathname> [<pathname>]

where:

-V

is an optional parameter (verbose),
which causes Convo68 to display some
information about what it is doing.

<pathname> is a name of the file (.068) to be

converted to .obj format. The
extension need not be given, for
Convo68 assumes the .068 extension,
If the extension is given, Convoé8
will not append the .068 extension.
If only one pathname is given, the
resulting output file will have the
same name as the input file, with the
extension changed to .obj. Otherwise,
the first pathname specifies the input
file (.068) and the second, the output
file (.obj).

Because of significant differences between the two
object file formats, there are some strong
restrictions imposed on Convo68:

Only one code psect per module is allowed.
Convo68 recognizes a psect as a code psect if
it is an executable psect (see Chapters 4 and
7 of the 68000 Macro Assembler manual).

Only one data psect per module is allowed.
Convo68 recognizes a psect as a data psect 1if
it is not an executable psect (EXE attribute)
and not a common psect (COM attribute). (For
details, see the 68000 Macro Assembler manual,
Chapters 4 and 7.)

As many as 19 common psects are allowed.
Convo68 recognizes a psect as a common psect
if it has a COM attribute.

Convo68 will not convert a file containing a
main program. This 1s not a severe
restriction because the main program will
always be written in a high-level language.

22

Cromemco 68000 Linker Reference Manual
5. Utility Programs

- Force search of library record is not allowed.
- Force load a file record is not allowed.
- Fix the external symbol record should be

generated with PC relative addressing mode
because this record is converted into the SVS

short external reference record. In other
words, all references to code should be PC
relative. (This can be accomplished by

setting the EXT_PC bit via the OPT pseudo
operation code.)

- References to data should use absolute 1long
addressing mode.

- Fix symbol in same psect record is not
allowed. That means that the module to be
converted cannot contain any absolute (long or
short) addresses, but all references must be
PC relative, Thus, the following segment of
an assembly language program cannot be
converted:

addr: move dl, d3
dc.l addr

because the DC.L pseudo operation code will
produce the absolute long address.

- Fix symbol forward record not allowed. The
68000 Macro Assembler will generate this
record for every IFcc pseudo operation code.

- Version record is ignored.

To illustrate the usage of Convo68, two sample programs
are given, In the first example, the main program is
written in Pascal, which calls the assembly 1language
subroutine. The subroutine uses the .gettime Cromix
system call and returns the system time via the
parameter list. The second example is a FORTRAN-77 main
program which calls a similar assembly language
subroutine. The second assembly language routine
differs from the first in that it returns the time via
the labelled COMMON.

23

Cromemco 68000 Linker Reference Manual
5. Utility Programs

Example 1
program timel;
type tm = packed array [1..3] of char;

var time : tm;
err : integer; {Cromix return code}

function getiml (var t : tm) : integer;
external;

begin
erry := getiml (time);
if err = 0 then
writeln ('Time : ',ord (time[l]):2,':"',
ord (timef2]):2,':",
ord (time[3]):2)
else
writeln ('Error no., ',err)
end.

The assembly language module getiml should be:
entry getiml

68000 Pascal interface to Cromix
gettime system call

% we we wa we

include '/equ/jsysequ.asm'

irst: equ 4

~s) ~e

struct first ; start of parameters
ra: ds.1 1 ; return address
parl: ds.1l 1 ; first parameter
next: ds 0 ; end of parameters
fv: ds 1 ; function value

mend
getiml:

link a6, #0 Establish stack area

~e

jsys #_gettime

bce.s noerr
move d0,fv(a6)
bra.s exit

If carry set return
return the error #

~ e

24

Cromemco 68000 Linker
5. Utility Programs

noerr:
clr
move,l
move.b
move.b
move.b
exit:

move.l
pop.1
add
jmp

~e

end

The commands to produce the executable

Reference Manual

fv(a6)
parl(aé6) ,al

dl, (a0)+
d2,(al)+

d3, (a0)

ra(a6),al

a6

#next-first,sp

(a0)

e NS we “e N we

~8 W8 we N8

else

return zero

pointer to parameter
put hours

minutes

and seconds

get return address
unlink

adjust stack pointer
and return to caller

(time[1])

.bin file are

(supposing that main program is stored in the file
examplel.pas and the subroutine in the file getiml.asm):

pascal examplel
code examplel.i

asm getiml
convo6 8 get

iml

crolinker examplel getiml /usr/lib/paslib

25

Cromemco 68000 Linker Reference Manual

5. Utility Programs

Example 2
Program time?2
c
integer hour, min, sec
common /time/ hour, min, sec
integer rerr
c
getim2 is an integer function, its value
C is the Cromix error return code
c
rerr = getim2 (dummy)
o)
if (rerr .eqg. 0) then
write (*, 100) hour, min, sec
else
write (*, 110) rerr
endif
c
100 format ('Time ¢ ',i2,':',i2,':',1i2)
110 format ('Error no. ',i3)

end

with the getim2 assembly language subroutine:

entry getim2

gettime system call

® we we wo

68000 Fortran interface to Cromix

s
*include '/equ/jsysequ.asm'
*include '/equ/optequ.asm’
H
OPT DEFAULT | "FWD_L
getim2:
7
jsys #_gettime
bcc.s noerr ; if carry set (error)
move.l do0,4(a6) : return the error #
bra.s exit ¢ and exit
noerr: : else
;
clr.l 4 (a6) ; return zero (no error)
move.l dl,h : put hours into common
move.l d2,m ; minutes
move.l d3,s ; seconds
14
exit:)
pop.l a0 ; retrieve return address

26

Cromemco 68000 Linker Reference Manual
5, Utility Programs

jmp (a0) ; and return to caller

psect '/time /' (REA, WRI, COM)

h: ds.l1 1 ; four bytes allocated
ms ds.1 1 ; because FORTRAN uses
S: ds.1l 1 ; long integers.

end

OPT pseudo operation code is used to select the absolute
long addresses for the move instructions. As previously
noted, references to data (in this case, psect
'/time /') must all be absolute long. Because the data
psect 1is placed after the code psect, the Assembler
needs help determining whether forward references should
be short or long addresses. The problem would be
simpler if all data segments were placed before the code
segment, in which case, references to data would be
backward references. Because the default address mode
setting (OPT pseudo opcode) is for references to other
psects to be absolute long addresses, the Assembler 1is
able to choose the correct addressing mode without
additional help.

To estabklish the connection with the /time/ 1labeled
common declared in the main (FORTRAN 77) program, the
psect name should be defined as a quoted string, as in
the preceding example (see Chapters 4 and 7 of the 68000
Macro Assembler manual).

The commands to produce the .bin file (using the same
assumptions as Example 1) are:

fortran example2

code example2.i

asm getim2

convo68 getim2

crolinker example2 getim2 /usr/lib/ftnlib

If fortran.bin is version 1.0, the last command should
be:

crolinker example2 getim2 /usr/lib/ftnlib /usr/lib/paslib

27

Cromemco 68000 Linker Reference Manual
5. Utility Programs

MAKLIB

Maklib can be used to construct a 68000 .068 relocatable
library. The program reads all the modules, determines
which module is calling which module, and sorts them so
that 1linking any user program finds all the modules
necessary. (The program will duplicate some modules if
required). If Maklib encounters modules with the same
name, it keeps only the first one.

The calling syntax is:
maklib <argl>, ..., <argn>

where arguments may be:

-y verbose

-m filename file name of the marp
generated (extension
.map)

-0 filename file name of the created
library (extension .rel)

filename, filename, ... input files, (extension
.rel)

28

Cromemco 68000 Linker Reference Manual
Index

-n option,
-0 option,
-q option,
-s option,
-z option,

N b et

.068 format, 7
.o0bj file, 12
.0bj format, 7

Addressing mode field, 11

Bin file format, 5
Bit map, 5

Convo63, 21

Description of the .bin header, 5

Eof mark, 20

File format, 5

Linker, 1
Linking the program, 1

Maklib, 28
Memory allocation, 3
Memory layout, 4

Object files, 7
Options, 1
Order of records, 11

Prto68, 21

Prto68 - structured dump of .068 file, 21
Prtobj - structured dump of .obj file, 21
Psect header, 5

Record, code, 15
Record, common, 15

29

Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,
Record,

Svs

Cromemco 68000 Linker Reference Manual

common definition, 16

declare entry symbol, 11

end, 13

end of module, 9

entry, 8, 13

external,; 8, 14

fix external symbol, 10

fix forward reference, 11

fix symbol in other psect, 10

fix symbol in same psect, 10
force load a file, 9

force search of library, 9
fortran data area definition, 16
fortran data area initialization,
fortran data area reference, 17
library entry, 19

library module, 18

module name, 8, 13

psect, 8
relocation, 15
short external,
start, 14

text, 20

unit, 19
version numnber, 9

17

16

write text record to binary output file, 10

.0bj format, 12

Utility programs, 21

30

