Twenty Dollars

Cromemco
68000 Macro Assembler

Instruction Manual

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Part No. 023-4053 February 1983

Cromemco’
68000 Macro Assembiler

Instruction Manual

CROMEMCO, Inc.
280 Bernardo Avenue
Mountain View, CA. 94043

Part No. 023-4053 A February 1983

Copyright© 1983
CROMEMCO, Inc.
All Rights Reserved

This manual was produced using a Cromemco
System Three computer with a Cromemco BEDD=22
Hard Disk Storage System running under the
Cromemco Cromix® Operating System. The text
was edited with the Cromemco Cromix Screen
Editor. The edited text was proofread by the
Cromemco SpellMaster™ Program and format-
ted by the Cromemco Word Processing System
Formatter 1II. Camera-ready copy was printed
on a Cromemco 3355B printer.

T ENT

Chapter 1: THE 68000 MACRO ASSEMBLER

Preparing a Program for Execution
The Assembler Input and Output Files
Inserting Code in a Module
Correcting Errors in the Program
System Calls

Chapter 2: ' STATEMENT SYNTAX

Basic Syntax
Field Delimiters
Acceptable Characters
Backslash Characters for ASCII Strings
The Label Field
.The Operation Field ‘
Automatic Substitution of ADD Instructions
Automatic Substitution of AND Instructions
Automatic Substitution of Compare Instructions
Automatic Substitution of Exclusive OR Instructions
Automatic Substitution of MOVE Instructions
Automatic Substitution of OR Instructions
Automatic Substitution of Subtract Instructions
The Operand Field
Labels Used as Operands
Constants Used as Operands
Expressions Used as Operands
Effective Addresses Used as Operands
Choosing Addressing Mode
The Comment Field

Chapter 3: MACROS, CONDITIONAL ASSEMBLY, AND REPEAT
EXPANSIONS

Macros
Macros Versus Subroutines
Sample Macros
Writing the Macro Definition
Writing the Macro Call
Nesting Macros
Conditional Assembly (If Conditions)
Writing the Basic Conditional Block
Writing the Expression
Writing IF-THEN-ELSE Conditional Blocks
Nesting Conditional Assemblies
Repeat Expansions
Basic Repeat Expansion

SR NN N ==

45

45
46
47
49

61
63
63
64
65
65
66
66

Iterative Repeat Expansion
Iterative Repeat Expansion with Characters

Chapter 4: PREPARING MODULES FOR LINKING

Basic Requirements for Linking Modules
Module Names
Defining the Starting Address
Resolving Global Labels
Program Segments
Options for Program Segment Attributes
The Standard Program Segment

Chapter 5: DECLARING VALUES AND RESERVING MEMORY

Reserving Memory
Equating Values

Chapter 6: THE ASSEMBLY LISTING

Page Layout

Page Length

Page Width

Title

Subtitle
Address Symbols Used in Assembly Listing
Program Listing

Address

Object Code

Symbols Used to Mark Source Code Statements

Error Messages
Options
Turning Off the Program Listing
Listing False Conditional Assembly Blocks

Listing the Object Code Created by DC Pseudo

Operation Codes
Listing Macro Call Expansions
Formfeeds
Cross—-Reference Tables
Symbol Table

Chapter 7: PSEUDO OPERATION CODES

ALIGN--Align Data Fields
CONMSG--Console Message
DC--Define Constant

DROP

DS--Define Storage
EJECT--Paper Eject

68
69

71

71
71
71
72
74

75
76

77

77
78

83

83
83
84
84
84
84
85
85
85
85
86
86
87
87

87
88
88

88

91

91
91
92
93
94
95

ELS--Conditional Execution

ELSE--Conditional Assembly

END--End of Assembly

ENDIF--End of Conditional Assembly

ENTRY--Entry Labels

EQU--Equate

EXITM--End Macro Expansion

EXTERN--External Labels

FI--IFcc Then Els Terminating Symbol

FORM--Paper Formfeed

IF--Begin Conditional Assembly

IFcc--If Then Els Programming Structure

*INCLUDE~-Include Source Code File

IRP--Iterative Repeat

IRPC--Iterative Repeat with Characters

JSYS--Cromix System Calls

LIST--Assembly Listing Options
ON--Turn On Assembly Listing
OFF--Turn Off Assembly Listing

COND--Begin Listing False Conditional Assemblies
NOCOND--Do Not Print False Conditional Assemblies

GEN--Begin Listing Generated Macros
NOGEN-~-Do Not Print Generated Macros
TEXT--Print Object Code
NOTEXT~-Do Not Print Object Code
XREF--Cross-Reference Symbols
NOXREF--Do Not Cross—~Reference Symbols

*MACLIB~-Include Macro Definition Library

MACRO--Begin Macro Definition

MEND--End Macro, Repeat Expansion, or Structure

Definition

NAME--Module Name

OPT--Choosing the Address Mode

POP

PSECT--Program Segment

PUSH

*RELLIB--Include Library of Relocatable Routines

*RELOBJ--Include Another Object File

REM--Remark

REPT--Repeat Expansion

SET-~-Set Equated Value

STRUCT--Structured Equate

SUBTTL--Assembly Listing Page Subtitle

TITLE--Assembly Listing Page Title

USING

VER--Version of the Program

95
95
96
97
97
98

98
99

100
100
102
104
105
106
106
107
107
107
108
108
108
108
109
109
109
109
110

111
111
112
112
113
114
115
116
116
117
117
118
119
119
120
121

Chapter 8: CALLING THE ASSEMBLER

Specifying the Source Code Files
Specifying the Destination of Object Code and Print
Listing Files
Specifying Options in the Assembler Call

Chapter 9: ERROR MESSAGES
Error Messages Generated Following a Call to

the Assembler
Error Messages Generated During Assembly

123
124
127
127
133

133
133

Table 2-1
Table 2-2

Table 2-3
Table 2-4

LIST OF TABLES

Alternate Forms of Operation Codes the
Assembler Can Automatically Substitute
Alternate Forms of Operation Codes the
Assembler Cannot Automatically Substitute
Hierarchy of Operators

Summary of Effective Address Modes

14

15
27
29

Cromemco 68000 Macro Assembler Instruction Manual
1. The 68000 Macro Assembler

Chapter 1

THE 68000 MACRO ASSEMBLER

The 68000 Macro Assembler translates 68000 assembly
language mnemonics into object code that can be linked
and executed under the Cromix Operating System. This
Assembler gives you a great deal of flexibility in
writing source code.

-- You can write macros to handle repetitive
functions. These macro definitions can appear
either in a single program or in a library where
any number of programs can use them. See Macros in
Chapter 3 for more information.

- You can write general routines that include blocks
of code that are needed only in certain cases.
Then when you assemble the routines, you control
what blocks of code are included and excluded
through the use of IF statements. See Conditional
Assembly in Chapter 3 for more information.

- You can use either relocatable or absolute
addressing. See Program Segments in Chapter 4.

- You can write a program in as many modules as you
wish and, as long as you assemble them with
relocatable addresses, link them together. See
Chapter 4.

This manual describes the features offered by the
Assembler and how to use them. It is assumed that you
already know the 68000 instruction set. If you don't,
see your Cromemco dealer for books describing this
instruction set.

The Assembler and the assembled programs can execute
only on Cromemco DPU (Dual Processing Unit) based
systems.

Cromemco 68000 Macro Assembler Instruction Manual
1. The 68000 Macro Assembler

PREPARING A PROGRAM FOR EXECUTION

The preparation of an assembly language program is a
two-step process. In the first, you prepare the source
code for the Assembler to translate into object code.
In the second, you prepare the object code for
execution. This manual primarily deals with the first
set of tasks, preparing the source code. 1In order to do
this effectively, though, you must be aware of the steps
and programs used in preparing both the source code and
object code.

The description of these tasks that follows is meant to
familiarize you with the steps and programs. Before you
actually begin preparing a program, you should read the
introductions of the manuals describing the programs
that you plan to use.

As the first step, use either the Screen Editor or some
other editor to enter the source code into a disk file.
Then use the Assembler to produce an object code version
of the source code. In the last step, use the Linker to
link the module and produce executable code from the
object code,.

The Assembler Input and Output Files

The basic input for the Assembler is a disk file
containing the assembly source code. This file contains
the 68000 assembly operation codes and the pseudo
operation codes that direct the Assembler. From this
input, the Assembler typically produces a disk file
containing the object code and a disk file containing
the assembly listing. Error messages go to the console.
(Error messages relating to problems with the source
code are also part of the assembly listing.)

Inserting Code in a Module

To understand the major options for preparing your
programs, you must understand the concept of a module.
A module is the executable code ultimately produced from
the source code in a single file. 1In the simplest case,
a module is the complete program produced from the
assembly of a single source code file.

In a more complex variation, you can have either the
Assembler or Linker insert code from other files into
the module. The inserted code becomes as much a part of
the module as the original code; the Assembler and
Linker treat the original and inserted code the same.

2

Cromemco 68000 Macro Assembler Instruction Manual
1. The 68000 Macro Assembler

Inserting code has many of the same advantages as using
macros and subroutines. You can, for example, write a
subroutine, place it in a file, and then have it
included in any module that needs it. You can do the
same with data tables, macro definitions, or any other
type of code you expect to use in more than one module.

You also might want to include code so it is in separate
files, where it is easier to maintain and does not
clutter up the primary source code file.

The Assembler provides several ways to include code:

- The #*INCLUDE pseudo operation code inserts the
entire contents of one file into another. The file
can contain any type of code. You can nest
included code up to eight levels deep. That is, a
module can include code that, in turn, includes
code and so forth up to eight include statements.

A module can have any number of included blocks of
code so long as no set of included code is the
result of more than eight levels of included code.

- The *MACLIB pseudo operation code inserts all the
macro definitions from a given file into the opcode
table. Only the names of such macros are inserted,
together with a pointer to their definition on the
disk. When such a macro is called, the definition
is stored in the memory the same way as if the
macro were defined in source text., If a macro from
a macro library is not called, it is not loaded.

- The *RELOBJ pseudo operation code inserts the
entire contents of one object code file into the

module as_it is linked. The file can contain any
type of object code.

RELOBJ works the same way INCLUDE does, except that
it inserts object code instead of source code into
the module.

- The *RELLIB pseudo operation code differs from the
other include pseudo operation codes because it
does not insert a file of code. Rather, it names a
file containing object code routines that the
Linker is to search for definitions of unresolved
global labels. The Linker inserts only those
routines that define the global labels. The rest
are not inserted. You may create an object library
by just concatenating individual object files, or
you may use the MAKLIB program to do 1it. The
MAKLIB program will sort the modules in the correct

3

Cromemco 68000 Macro Assembler Instruction Manual

1'

The 68000 Macro Assembler

order (duplicating them if necessary), so that the
linker will always find all required modules in a
single search pass.

You can name any number of libraries with this
pseudo operation code.

Chapter 7 describes the syntax of the pseudo operation
codes just summarized.

A module does not have to contain all the code of a
program. One of the Linker's major purposes is to link
different modules together into a complete program.
Chapter 4 describes the preparations you must take 1in
writing a module to have it linked with other modules.
The linker manual describes the Linker's ability to link
modules together.

Correcting Errors in the Program

If there are errors in your code, you will find them
after assembling a module, 1linking the program, or
executing the program. When you do find errors, you can
use the Debug program to execute the program,
instruction by instruction, and substitute new
instructions for the ones in error. Using Debug 1is
optional; you can change the source code instead and
should do so anyway once you have used Debug to find out
what corrections should be made.

SYSTEM CALLS

A system call is an instruction in the source code that
requests the operating system to perform a function.
The system calls principally perform input and output to
the disk drives, the terminals, the printers, and other
peripherals in a system. Some system calls perform
specialized functions such as requesting the date from
the operating system.

All input and output should be done with system calls so
that the programs can be independent of the requirements
and arrangement of the input/output devices. This
allows a program written for one Cromemco system to work
on other Cromemco systems. It also allows the device
drivers to be rewritten if necessary without requiring
changes in the programs because the system calls to the
device drivers do not need to change. If system calls
were not used, device drivers would have to be written
for every program.

Cromemco 68000 Macro Assembler Instruction Manual

1.

The 68000 Macro Assembler

To use a 68000 Cromix system call, load any needed
parameters into registers and then make the call with
the Jsys operation code, (Jsys is a special operation
code included in the Cromemco 68000 Macro Assembler.)
The Jsys operand specifies the function to be performed.

Two files supplied with the 68000 Macro Assembler,
jsysequ.asm and modeequ.asm, provide equates for the
system function names and mode options so that you do
not have to memorize the numbers that the system
actually uses. To use these files, include them in your
program with the *INCLUDE pseudo operation code. Refer
to Chapter 7.

This example shows the instructions needed to make a
system call to ring the bell on a terminal:

*INCLUDE 'jsysequ.asm'

MOVE #07H,DO Load the ASCII value for
terminal bell, 7,
into register DO

MOVE $#sSTDOUT,D1 Load the equated value
for standard output
channel
into register D1

JSYS # WRBYTE Call Cromix to

MO N NE NE N N Ne we N

write a byte of data

The system calls preserve the contents of all registers
except those containing return parameters.

Cromemco 68000 Macro Assembler Instruction Manual

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

Chapter 2

STATEMENT SYNTAX

The Cromemco 68000 Macro Assembler requires that all
instructions and pseudo operation codes be written in
the standard Assembler format shown here:

[label:] operation [operands] [; comments]

This chapter gives the basic limits on the use of the
format, For the rules applying to particular
instructions, refer to a 68000 user's manual. For the
rules applying to particular pseudo operation codes,
refer to Chapter 7.

The maximum line length accepted by the Assembler is 489
characters. (The last character must be a line feed
marking the end of the line.)

BASIC SYNTAX

The following rules apply to all statements.

Field Delimiters

Each field in a statement must be separated from the
other fields by one of these delimiters:

: The colon marks the end of the label if one
appears in the statement. It must be used if the
label does not begin in column 1 of the statement
and is optional if the label does begin in column
1. You must use one of the following characters
to mark the end of a label that begins in column
1: TAB (CONTROL-I), SPACE, semicolon (3), or
RETURN. ‘

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Blank A blank space marks the end of the operation
field and can be used to mark the end of a label
beginning in column 1. You can insert as many
spaces as you want between the fields of a
statement so long as the statement is less than
489 characters long.

TAB A TAB character (CONTROL-I) can mark the end of
the operation field and can be used to mark the
end of a label beginning in column 1. You can
insert as many TABs as you want between the
fields of a statement so long as the statement is
less than 489 characters long.

A semicolon marks the beginning of a statement's
comments., If a statement doesn't have comments,
then the semicolon doesn't have to be used. The
comment field extends from the semicolon to the
end of the statement. If the semicolon is the
first non-blank or non-TAB character on a line,
the entire line is treated as a comment. (The
REM pseudo operation can also be used to write a
comment as described in Chapter 7.)

~e

LF A line-feed character marks the end of a
statement.

RETURN can precede a line-feed character, so that each
line must be terminated by a LF or RETURN-LF
sequence. Note that the Screen editor gives you
a RETURN-LF pair when you press the RETURN key,
but if you are going to produce the source text
with a program, you are allowed to terminate
lines by the LF character only.

Within these rules, the formatting of a statement is
free form, and delimiters can be mixed at will to make
the statement as readable as possible.

Program hello

include ' /EQU/JSYSEQU.ASM'

~o M~ we

START: MOVE #STDOUT, D1
LEA MSG, A0
JSYS #_WRLINE
JSYS #_EXIT

write on standard output
point to message line
write it

exit to operating system

~e

~e WO w,

E:s.

SG: DC.B 'Hello, world\n\O'
END START

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

The colons following the labels in the example are
superfluous because the labels start in column 1 and are
included only to increase readability.

Acceptable Characters

The Assembler accepts any printable ASCII-encoded
character in a statement. (What the Assembler accepts,
however, and what works when the object code is executed
can be two separate items.) More specifically, the
Assembler accepts any hexadecimal value between 20 and
7E. It also accepts the CONTROL-I character (the TAB
character), the RETURN character, and the 1line-feed

character.

The Assembler doesn't distinguish between the upper and
lower cases of letters. To the Assembler, these
spellings are identical and produce the same object
code:

ADD Add add abd

Even though the Assembler treats upper- and lower-case
letters identically, it lists variation in case (e.g.,
ADD versus add) separately in the operation code and
label cross-reference tables. If you are consistent in
your use of upper and lower case, the use of labels and
mnemonics in different places is readily apparent in the
cross-references. For example, the labels in the source
code could all be written in lower case, while the
labels in macro definitions could all be written in
upper case.

Backslash Characters for ASCII Strings
The Assembler interprets several backslash (\)-character

combinations as control characters for printing ASCII
strings. These combinations are:

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

COMBINATION INTERPRETED AS ASCII VALUE
\N New line 0A
\L Line feed 0A
\F Formfeed 0C
\R RETURN 0D
\B Backspace 08
\T TAB 09
\0 Null 00
\Xhh Hex Digits hex value

The Assembler interprets these combinations as ASCII
control characters only when they are found within
single quotes ('). The following example shows a
message terminated by the combinations for a RETURN and
a line feed:

ERRMSG: DC.B 'INVALID ENTRY\R\N'

THE LABEL FIELD

When used, the label field contains a name to be equated
with a value, usually the current value of the program
counter. With a few pseudo operations, such as EQU, the
value is an expression given in the operand field of the
statement. The Assembler assigns the value of the
program counter to any label appearing on a line that
does not have an operation field. This statement:

LABELl:
is equivalent to this one:
LABELl EQU S

As described in Current Program_ Coun in this
chapter, the Assembler substitutes the value of the
current program counter for the dollar sign when it is
used as an operand.

The allowed use of labels varies from instruction to
instruction and from pseudo operation code to pseudo
operation code.

10

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Labels may be as long as one line, but are truncated by
the Assembler to the first 32 characters.

You can use the following characters in a label:

A - 2

a -z

0 -9

$ (dollar sign)
_ (underscore)

? (question mark)
@ (at sign)

The label field must be terminated by a colon, a SPACE,
a TAB, or a RETURN. If the label field does not begin
in column 1, it must be terminated by a colon.
The following examples show labels in statements (the
labels appear in bold letters):

START: LEA COUNT, A2

USER_TABLE_NAME_FIELD DS 15

LOAD:MOVE 2(A2,D3),D3 ; Load account no.

loop: addg #1, (A3)+

CONSTANT EQU OFFA3H

SHIET: MACRO \P1,\P2 ;:; SHIFT BITS MACRO

The following 1labels are illegal because the Assembler
considers them to be register names:

A0 Al A2 A3 A4 A5 A6 A7
DO Dl D2 D3 D4 D5 D6 D7

SP SR CCR

These labels are also illegal if written in lower case.

11

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

THE OPERATION FIELD

When it is used, the operation field contains either a
68000 instruction mnemonic or a pseudo operation code
instruction. The Assembler recognizes all the standard
68000 instruction mnemonics.

Most operation codes may begin on any column of a line
except column 1. The four pseudo operation codes that
begin with an asterisk -- *INCLUDE, *MACLIB, *RELLIB,
and *RELOBJ -- must begin in column 1. (See Chapter 7
for a description of the syntax of these pseudo
operation codes.) If a label appears in the statement,
a colon, SPACE or TAB must separate the label and the
operation. A SPACE, TAB, semicolon, or RETURN ends the
operation.

The following examples show instructions in statements
(the instructions are printed in bold letters):

AND.B #111001008, (Al)

NAME: DS 23 ¢ Name field
END

SHIFT: MACRO \Pl,\P2 :; SHIFT BITS MACRO
LSR.L #4 ,REGIS

The 68000 instruction set provides multiple forms of
several instruction types. The ADD function, for
example, comes as five separate instructions: the
normal Add (ADD), the Add Address (ADDA), the Add Quick
(ADDQ), the Add Immediate (ADDI), and the Add with
Extend (ADDX). Because it can be troublesome to
remember the different forms of these instructions, the
Assembler allows you to specify the normal form of these
instructions with the operands that are normally
reserved for the more specialized forms.

Say, for example, you want to add 10 to the value
specified by register A2. This operation requires that

you use the Add Immediate, ADDI, instruction. You could
just use the ADDI instruction:

ADDI #10, (A2)

12

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

or you could use the normal ADD instruction:

ADD #10, (A2)

When the Assembler encounters this instruction, it
examines the operands and finds that they require an
ADDI instruction, which the Assembler produces and
places into the object file:

ADDI #10, (A2)

The Assembler cannot substitute one specialized form for
another form. 1f, for instance, you used this
instruction:

ADDI D2, (A2)

the Assembler would not substitute the ADD instruction
for the incorrectly used ADDI instruction. Instead, it
would flag the statement as an error.

Table 2-1 1lists the instructions that the Assembler
examines and the more specialized forms that it can
substitute. Table 2-2 lists the forms of these
instructions that the Assembler cannot substitute; that
is, you must use this form in- the source code. For
example, the Assembler cannot recognize an Add Extended,
ADDX, instruction from the- operands. You must specify
ADDX when you want to do an extended add.

13

Cromemco 68000 Macro Assembler Instruction Manual

2. Statement Syntax

Table 2-1: ALTERNATE FORMS OF OPERATION CODES
THE ASSEMBLER CAN AUTOMATICALLY SUBSTITUTE

Standard
Form

ADD

AND

CMP

EOR

MOVE

OR

SUB

Variation

ADD

ADDA
ADDQ
ADDI

AND
ANDI

CMP
CMPA

CMPM
CMPI

EOR
EORI

MOVE
MOVEA
MOVEQ

OR
ORI

SUB

SUBA
SUBI
SUBQ

14

Descri io

Add

Add address
Add quick
Add immediate

Logical AND
AND immediate

Compare

Compare address
Compare memory
Compare immediate

Exclusive OR
Exclusive OR immediate

Move
Move address
Move quick

Logical OR
OR immediate

Subtract

Subtract address
Subtract immediate
Subtract quick

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Table 2-2: ALTERNATE FORMS OF OPERATION CODES
THE ASSEMBLER CANNOT AUTOMATICALLY SUBSTITUTE

Standard
Form Varjation A Description
ADD ADDX Add with extend
MOVE MOVE from SR Move from status
register
MOVE to SR Move to status
register
MOVE to CCR Move to condition
codes
MOVE to USP Move to user
stack pointer
NEG NEGX Negate with extend
SUB SUBX Subtract with extend

The following sections provide more information on how
the Assembler substitutes instructions.

15

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Automatic Substitution of ADD Instructions

The Assembler can substitute specialized versions of the
ADD instruction as follows:

IF _YQOU SPECIFY: THE ASSEMBLER PRODUCES:
Normal ADD

ADD <ea>,Dn ADD <ea>,Dn

ADD D1,D2 ADD D1l,D2

ADD Dn,<ea> ADD Dn,<ea>

ADD D3, (A5) ADD D3, (A5)

ADD Address

ADD <ea>,An ADDA <ea>,An
ADD COUNT,Al ADDA - COUNT, Al

ADD Immediate

ADD #data,<ea> ADDI #data,<ea>
ADD #50,D2 ADDI #50,D2

ADD Quick

ADD #data,<ea> ADDQ #data,<ea>
ADD #3,D4 ADDQ #3,D4

Because the Assembler cannot automatically substitute
the ADDX instruction for the ADD instruction, you must
explicitly use the ADDX form when you want to perform an

add with extend.
Automatic Substitution of AND Instructions

The Assembler can substitute the AND immediate form of
the AND instruction as follows:

16

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

FY PECIFY: THE ASSEMBLER PRODUCES:
Normal AND

AND <ea>,Dn AND <ea>,DN

AND D4,D5 AND D4,D5

AND Dn,<ea> AND Dn,<ea>

AND D3, (A3) AND D3, (A3)

AND Immediate

AND #data,<ea> ANDI #data,<ea>

AND.B #100B, (Al) ANDI.B #100B, (Al)
Automatic Substitution of Compare Instructions

The Assembler can substitute specialized versions of the
compare instruction as follows:

IF YOU SPECIFY: THE ASSEMBLER PRODUCES:
Normal Compare

CMP <ea>,DN CMP <ea>,DN

CMP D1,D4 CMP D1,D4

Compare Address

CMP <ea>,An CMPA <ea>,An
CMP Al,A2 CMPA Al,A2

Compare Immediate

CMP #data,<ea> CMPI #data,<ea>
CMP #45FAh,D3 CMPI #45FAh,D3

Compare Memory

CMP (Ay)+, (Ax)+ CMPM (Ay)+, (Ax)+

CMP (Al)+, (A2) + CMPM (A1) +, (A2) +
Automatic Substitution of Exclusive OR Instructions

The Assembler can substitute specialized versions of the
exclusive OR instruction as follows:

17

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

IF YOU SPECIFY: THE ASSEMBLER PRODUCES:
Normal Exclusive OR

EOR Dn,<ea> EOR Dn,<ea>
EOR D3, (Ad)+ EOR D3, (A4)+

Exclusive OR Immediate

EOR #data,<ea> EORI #data,<ea>

EOR.B #0F45Bh,D4 EORI.B #0F45Bh,D4
Automatic Substitution of MOVE Instructions
The Assembler can substitute specialized versions of the
MOVE instruction as follows:

IF YOU SPECIFY: THE ASSEMBLER PRODUCES:

Normal Move

MOVE <ea>,<ea> MOVE <ea>,<ea>
MOVE D7, (A4) MOVE D7, (A4)

Move Address

MOVE <ea>,An MOVEA <ea>,An
MOVE TABLE,Al MOVEA TABLE,Al

Move Quick

MOVE #data,Dn MOVEQ #data,Dn

MOVE #345,DO0 MOVEQ #345,D0
Automatic Substitution of OR Instructions

The Assembler can substitute specialized versions of the
OR instruction as follows:

18

Cromemco 68000 Macro Assembler Instruction Manual
Statement Syntax

2.

F Y PECIFY:

Normal OR
OR <ea>,Dn
OR D4,D5

OR Dn,<ea>
OR D3, (A3)

OR Immediate

OR #data,<ea>
OR.B #100B, (Al)

IF YOU SPECIFY:

Normal Subtract

SUB <ea>,Dn
SUB D1,D2

SUB Dn,<ea>
SUB D3, (A5)

Subtract Address

SUB <ea>,An
SUB COUNT,Al

Subtract Immediate

SUB #data,<ea>
SUB #50,D2

Subtract Quick

SUB #data,<ea>
SUB #3,D4

THE ASSEMBLER PRODUCES:

OR <
OR D
OR D
OR D
ORI

ORI.B

THE ASSEMBLER PRODUCES:

SUB
SUB

SUB
SUB

SUBA
SUBA

SUBT
SUBI

SUBQ
SUBQ

19

ea>,DN
4,D5

n,<ea>
3, (A3)

¥data,<ea>

#100B, (Al)

Automatic Substitution of Subtract Instructions

<ea>,Dn
D1,D2

Dn,<ea>
D3, (A5)

<ea>,An
COUNT, Al

#data,<ea>
#50,D2

#data,<ea>
#3,D4

The Assembler can substitute specialized versions of the
SUB instruction as follows:

Because the Assembler cannot automatically substitute
the SUBX instruction for the SUB instruction,
explicitly use the SUBX form when you want to perform a
subtract with extend.

you must

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

THE OPERAND FIELD

The operand field provides data that is to be used
either by an instruction or by a pseudo operation code.
Operands can be:

- The name of any 68000 register.

- Any label defined in the module or declared as a
global label. (A global label is a label that can be
used in any module of a program regardless of the
module in which it is defined.)

- Any legal constant as described under the heading
Constants.

- Any legal expression as described under the heading
Expressions.

- Any effective address as described under the heading

Effective Addresses.

Each instruction and pseudo operation code requires that
specific kinds of data be provided in its operand field.
Names of macros may not be used as operands; instead,
they are used as operation codes, and the Assembler
substitutes the correct code at assembly time. Operands
for some pseudo operation codes, such as TITLE and
*INCLUDE, are not operands in the sense described here
and are subject to other restrictions.

Undefined expressions for the IF, EQU, DL, ORG, REPT,
STRUCT, and DS pseudo operation codes give errors on

pass 1 of an assembly. This avoids the generation of a
complex phase error during pass 2.

Labels Used as Operands
When you use labels as operands, the Assembler

substitutes the 1label's value for the 1label in the
statement. If you have these statements in a module:

LOOP: .

BRA LOOP

20

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

the Assembler will substitute the address of the
statement that defines LOOP for the word LOOP in the BRA
statement.

If another module defines the value for a label, you
must define that label as a global label. Then the
Linker will substitute the correct value for the label
when it links the modules of the program together. If
you do not declare a label to be global (Chapter 4
describes how this is done) and the Assembler does not
find a definition for the label in the module, it marks
any use of the label as an operand as an error.

Through the use of the EQU and SET pseudo operation
codes (see Chapter 5 for details), you can give a label
any value. The following example uses register D3 as a
counter. To make the code more readable, the programmer
uses EQU to give the label COUNTER the value of D3:

COUNTER EQU D3

Now the programmer can write statements whose functions
are obvious:

ADD #1,COUNTER
instead of the more cryptic:
ADD #1,D3

When using labels, be sure to use the appropriate
syntax. For instance, if you equate TABLE to register
A2, this statement:

MOVE D2,TABLE

would move the value from register D2 into register AZ,
while this statement:

MOVE D2, (TABLE)
would move the value from register D2 to the location in

memory specified by the value in register A2.

21

Cromemco 68000 Macro Assembler Instruction Manual
Statement Syntax

2.

Constants Used as Operands

The Assembler allows binary, octal, hexadecimal,
decimal, and ASCII constants according to the following
conventions:

Decimal

Binary

Octal

Hex

ASCII

Numbers formed from decimal digits (0-9) and
either left unterminated or terminated by the
character "D".

Example: MOVE #11130,D1

Numbers formed from binary digits (0,1) and
terminated by the character "B".

Example: MOVE #10101101111010B,Dl

Numbers formed from octal digits (0-7) and
terminated by the character "Q".

Example: MOVE #25572Q,D1

Numbers formed from hexadecimal digits (0-9
and A-F) and terminated by the character "h".
A hex number beginning with a letter must be
preceded by a "0" to distinguish it from a
label or register name.

Example: MOVE #2B7Ah,Dl1

Numbers represented by ASCII characters are
enclosed in single quotes. Single quotes are
represented by two single quote characters

(ll).
Example: MOVE #'+z',Dl

ASCII constants may be longer than 4
characters (32 bits). The Assembler will keep
all the characters if possible. If a 32-bit
quantity is required, the Assembler will
truncate a string to the last four characters.

22

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

Examples:

DC.B 'ABCDEF' gives 414243444546

-e

DC 'ABCDEF'+1 gives 43444547

~e

A pound sign (#) precedes constants' values so that the
Assembler recognizes the value as a constant and not as
a label. Each of the previous examples produces the
same value in the D1 register upon assembly and
execution.

Expressions Used as Operands

An expression is any operand that the Assembler must
evaluate to determine a value that it is to substitute
for that operand. 1In this statement:

MOVE #TABLE+100h,A3

the Assembler adds 100h to the value for the 1label
TABLE and then moves the sum into register A3. The
pound sign (#) preceding the expression tells the
Assembler to treat the result as a numeric value. (Or,
more technically, it tells the Assembler to treat the
expression as immediate data. See Immediate Data in
this chapter for more information on this form of
addressing.) The expression is legal without the pound
sign:

MOVE TABLE+100h,A3
Now, however, the Assembler places the value found at

the location TABLE+100h in memory into register A3.

In this statement:
IF COUNT>TOTAL

the Assembler determines if the value for COUNT is
greater than the value for TOTAL and then takes the
appropriate action. You can use expressions in place of
either address or constant operands provided they do not
evaluate to an illegal quantity.

23

Cromemco 68000 Macro Assembler Instruction Manual
2, Statement Syntax

If the result of an expression is 0, it is false; if the
result of an expression is other than 0 (specifically,
-1), it is true. These expressions are all true:

IF 1+1
LABEL EQU 1000h
IF LABEL
IF 2 >1
IF 'abcd! > 'aaaa'

These expressions are all false and give a value of

Zero:
IF 0
LABEL EQU 0
IF LABEL
IF l1>2
IF 1-1
IF 'abcde' = 'abcdef'

See Chapter 3 for more information on IF.
You can use relational expressions (e.g., equal to,

greater than, less than) to specify values for
instructions. This example:

ADD #2>1,D2

adds the value -1 (the result of evaluating 2>1) to
whatever value register D2 holds.,

Using Operators in Expressions - The following operators
may be used to form expressions:

+ Addition or Positive - binary or unary

- Subtraction or Negative - binary or unary

* Multiplication

24

Cromemco 68000 Macro Assembler Instruction Manual

2.

%

$ or MOD

> or GT

>= or GE

< or LT

<= or LE

= or EQ

<> or NE

<< or SHL

>> or SHR

~ or NOT

& or AND

] or OR

XOR

Statement Syntax

Division
Exponentiation
Modulus - Compute the remainder of a

division, X MOD Y is defined to be
X-(Y*INT(X/Y)). If ¥X=23 and ¥Y=7 then X MOD
¥Y=2., (INT is the largest integer value that
is less than or equal to the expression,)

Greater Than - True if the left operand is
greater than the right operand.

Greater Than or Equal - True 1if the left
operand is greater than or equal to the
right operand.

Less Than - True if the left operand is less
than the right operand.

Less Than or Equal - True if the 1left
operand is less than or equal to the right
operand.

Equals - True if the left and right operands
are equal.

Not Equal - True if the left and right
operands are not equal.

Shift Left Logical - Shift n places. If
X=2Ah, then X SHL 1=54h.
Shift RIGHT Logical - Shift n places If
X=2Ah, then X SHR 2=0Ah.

Logical NOT - Unary

Logical AND - If X=COh and Y=47h, then X AND
Y=40h.
then X OR

Logical OR - If X=COh and Y=47h,

Y=C7h,.
then X

Exclusive OR - If X=COh and Y¥Y=47h,

XOR ¥Y=87h,

Set bit as specified by the expression
following the operator. This is a unary
operator and may alter bit 0-31 to form an
integer constant. This operator has the
highest precedence.

25

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

Note: At present, keywords for operators such as AND
or OR are not implemented.

Unless otherwise stated, all operators perform binary
operations.

Operators written as symbols (e.g., +) can be separated
from their operands by a SPACE. Operators written as
one or more letters (e.g., GE) must be separated from
their operands by a SPACE.

The Assembler considers these operators to have a
hierarchy that determines which take precedence over
others. The list in Table 2-3 gives this hierarchy,
progressing downward from those of highest priority to
those of lowest priority; all those operations on the
same level are of equal priority. Operators that are on
the same level of the hierarchy would be evaluated from
left to right as they occur in an expression. Operators
or parts of expressions enclosed in parentheses or
brackets are evaluated first, beginning with the
innermost set. Operators of the same level are executed
in the order in which they occur.

26

Cromemco 68000 Macro Assembler Instruction Manual

2, Statement Syntax

Hierarchical
Level

Table 2-3: HIERARCHY OF OPERATORS

Operator Description

*% Exponentiation

+ Positive number

- Negative number

~ Logical NOT

° Bit

* Multiplication

/ Division

% Modulus

<< Shift left logical
>> Shift right logical
+ Addition

- " Subtraction

& Logical AND

I Logical OR

XOR Exclusive OR

Less than

Greater than

BEqual to

Not equal to

Less than or equal to
Greater than or equal to

VANILNVA
v

Comparing ASCII Strings - An ASCII string comparison is
of the following format:

"string-1" relational-operator "string-2"

where the relational operator can be any one of:

Operator

EQ
NE
GT
GE
LT
LE

(=)
(<>)
(>)
(>=)
(<)
(<=)

Description

Equal

Not equal

Greater than

Greater than or equal
Less than

Less than or equal

27

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

and string-1 and string-2 may be of any length., 1If one
string is shorter than the other, the shorter is
left-justified and padded with nulls. An example of a
string comparison would be:

IF "'\PARAMETER' EQ 'YES'

Current Program Counter ($) - The dollar sign ($) may be
used in the operand of any operation code allowing
expressions as operands. The dollar sign is used to
represent the current program counter of the Assembler.
Note that dollar sign points to the beginning of the
statement that contains it and not to the end. An
example of the way to use it is:

DATA: DC.B 0,11,3,2,7,24,17
COUNT: EQU $-DATA

The name COUNT has the value of 7, because this is the
number of entries in DATA (the address of DATA
subtracted from the current location). Elsewhere in the
source program, COUNT can be used to stand for the
number of entries in DATA. There is great advantage to
this representation; if it becomes necessary to change
the number of entries of DATA and reassemble, the value
of COUNT is changed automatically. If an absolute 7
were used instead of COUNT, every occurrence of the 7 in
the source program would have to be changed.

The dollar sign is often used in another way that is
actually poor programming practice. That is to use the
dollar sign in a relative jump instruction. The best
way to handle relative jumps is to label the location to
be jumped to, and use this label as the operand of the
jump instruction. The Assembler then calculates the
correct displacement.

Effective Addresses Used as Operands

Many instructions specify the location of one or more
operands through the use of effective addresses, which
are expressions defining locations. The Assembler
supports the full range of effective address modes
allowed in the 68000 assembly language. The following
sections define the syntax of the different modes and
give examples of each. Table 2-4 summarizes the
different modes. (Cromemco's Assembler uses the same
syntax as the Motorola Assembler.)

28

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Table 2-4: SUMMARY OF EFFECTIVE ADDRESS MODES

Effective
Address

Mode scription

Data Register
Direct Syntax: Dn
Example: MOVE DO,D5
Addressing Categories:
Data, Alterable

Address
Register Direct Syntax: An
Example: MOVEA DO,A5
Addressing Categories:
Alterable

Address Register
Indirect Syntax: (An)
Example: MOVE DO, (A5)
Addressing Categories:
Data, Memory
Control, Alterable

Address Register
Indirect with
Postincrement Syntax: (An)+
' Example: MOVE DO, (A5)+
Addressing Categories:
Data, Memory, Alterable

Address Register
Indirect with
Predecrement Syntax: -(An)
Example: MOVE DO,-(A5)
Addressing Categories:
Data, Memory, Alterable

Address Register
Indirect with
Displacement Syntax: d(An)
Example: MOVE DO0,4(A5)
Addressing Categories:
Data, Memory
Control, Alterable

29

Cromemco 68000 Macro Assembler Instruction Manual

2. Statement Syntax

Address Register
Indirect with
Index

Immediate Data

Program Counter
with Displacement

Program Counter
with Index

Absolute Short
Address

Absolute Long
Address

Data Register Direct

address is a data register.

Syntax: d(An,Rm.W)
d(An,Rm.L)
Examples: MOVE DO0,4(A5,Dl)

MOVE DO,4(A5,Dl.L)
Addressing Categories:
Data, Memory
Control, Alterable

Syntax: #expression
Example: MOVE #33+COUNT,DO
Addressing Categories:

Data, Memory
Syntax: label
Example: MOVE DO,COUNTER

Addressing Categories:
Data, Memory, Alterable

Syntax: label(Rm.W)
label (Rm.L)
Examples: MOVE DO,COUNTER(DS)

MOVE DO0,COUNTER(D5.L)
Addressing Categories:
Data, Memory, Alterable

Syntax: label
Example: MOVE DO,ADDRESS.W
Addressing Categories:

Data, Memory -

Control, Alterable
Syntax: label
Example: MOVE DO,ADDRESS.L

Addressing Categories:
Data, Memory
Control, Alterable

the effective
where n

In this mode,
The syntax is Dn,

is the number of the data register.

30

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Syntax: Dn
Example: ADD #10h,D5

Before execution:

Register D5 contains 3400
Changed values after execution:
Register D5 contains 3410

This example adds the value 10h to the value in register
D5.

Address Register Direct - In this mode, the effective

address is an address register. Note that the register
itself 1is the address, not the location in memory it
specifies. The syntax of this form is An, where n is
the number of the address register.

Syntax: An

Example: ADD #10h,A2
Before execution:
Register A2 contains ‘ 00004000
Changed values after execution:

Register A2 contains 00004010

This example adds the value 10h to the value in register

A2,

Address Register Indirect - In this mode, the effective
address is the location in memory specified by the value
in an address register. Note that it is the memory

location that is the address, not the register itself.
The syntax of this form is (An), where n is the number
of the address register.

31

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

Syntax: (An)
Example: ADD D1, (A3)

Before execution:

Register D1 contains 10
Register A3 contains 00004000
Location 00004000 contains 3821

Changed values after execution:

Location 00004000 contains 3831

This example adds the value in register D1, 10h, to the
value at location 00004000, 3821, with the result that
location 00004000 contains the wvalue 3831 after the
execution of this statement.

Address Register Indirect with Post-increment - In this
mode, the effective address is the location in memory
specified by the value in an address register. Once the
instruction is executed, the value in the address
register is incremented by 1 if the operand size is a
byte, by 2 if the operand size is a word, and by 4 if
the operand size is a long word. When the stack pointer
register is the address register and the operand size is
a byte, the value is incremented by 2 so that the stack
continues to point to a word boundary.

The syntax of this form is (An)+ where n is the number
of the address register.

Syntax: (An) +

Example: ADD #3,(A3)+

Before execution:

Register A3 contains 00004000
Location 00004000 contains 3821

Changed values after execution:

Register A3 contains 00004002
Location 00004000 contains 3824

32

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

This example adds the value 3 to the value at location
00004000, 3821, with the result that location 00004000
contains the value 3824 after the execution of this
statement. The value in register A3, 00004000, is
incremented by 2 because the operand size is a word.

Address Register Indirect with Pre-decrement - In this
mode, the effective address is the location in memory
specified by the value in an address register minus a
value equal to the length of the operand. Before the
instruction is executed, the wvalue in the address
register is decremented by 1 if the operand size is a
byte, by 2 if the operand size is a word, and by 4 if
the operand size is a long word. When the stack pointer
register is the address register and the operand size is
a byte, the value is decremented by 2 so that the stack
continues to point to a word boundary.

The syntax of this form is ={An) where n is the number
of the address register. ‘

Syntax: -(An)
Example: ADDQ #3,-(A3)

Before execution:

Register A3 contains 00004000
Location O00003FFE contains 3825

Changed values after execution:

Register A3 contains 0COO03FFD
Location 00003FFE contains 3828

This example decrements the value of register A3,
00004000, by 2 ‘because the operand size is a word. It
then adds the value 3 to the value at location 000Q3FFE
(the result of 00004000-2), 3825, with the result that
location O000O3FFE contains the value 3828 after the
execution of this statement.

Address Register Indirect with Displacement - In this
mode, the effective address is the location in memory
specified by the value in an address register plus a
displacement. The syntax of this form is d(An) where d
is the displacement and n is the number of the address
register.

33

Cromemco 68000 Macro Assembler Instruction Manual
2, Statement Syntax

Syntax: d (An)
Example: ADDQ #3,100h(A3)

Before execution:

Register A3 contains 00004000
Location 00004100 contains 3825

Changed values after execution:
Location 00004100 contains 3828

This example adds the value of register A3, 00004000,
with the displacement, 100h. It then adds the value 3
to the wvalue at location 00004100 (the result of
00004000+100), 3825, with the result that 1location
00004100 contains the value 3828 after the execution of
this statement.

Address Register Indirect with Index - In this mode, the
effective address is the location in memory specified by
the value in an address register plus a displacement and
an index value. The syntax of this form is d(An,Rm.W)
or d(An,Rm.L) where d is the displacement and n is the
number of the address register, Rm is either a data or
address register, W means the index value is 2 bytes
long, and L means the index value is 4 bytes long. 1If
the size of the index is not specified, it is assumed to
be word (.W).

Syntax: d(An,Rm,W)
d(An,Rm.L)
Example: ADDQ #3,10h(A3,D2)

Before execution:

Register A3 contains 00004000
Register D2 contains 00000050
Location 00004060 contains 3825

Changed values after execution:

Location 00004060 contains 3828
This example adds the value of register A3, 00004000,
with the displacement, 10h and the value of the index

register, 50h. It then adds the value 3 to the value at
location 00004150 (the result of 00004000+100+50), 3825,

34

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

with the result that location O00003FFD contains the
value 3828 after the execution of this statement.

Immediate Data - In this mode, the effective address 1is
an expression in the statement. The syntax of this form
is #expression where the expression can be any legal
expression and can be 1, 2, or 4 bytes long.

Syntax: Dn
Example: ADDI #5+COUNT,D5
Before execution:

COUNT has the value 0005
Register D5 contains 3400

Changed values after execution:

Register D5 contains 340A

This example adds the value 0Ah (the result of 5+5) to
the value in register D5,

Program Counter with Displacement - In this mode, the
effective address 1is the location specified by an
expression or label. The Assembler calculates the

difference between the current program counter and the
specified location and uses the difference as a
displacement.

Syntax: label or expression
Example: ADD COUNTER,D5

Before execution:

COUNTER has the value 0100
Location 0100h contains 0004
Register D5 contains 0005

Changed values after execution:

Register D5 contains 0009

35

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

This example adds the value at the location specified by
COUNTER, 4 to the value in register D4, 5, with the
result that register D5 contains the value 9 after the
execution of this statement.

Program Counter with Index - In this mode, the effective
address is the sum of the address in the program
counter, the given (8-bit) displacement and the contents
of the index register.

The Assembler calculates the difference between the
current program counter and the specified location and
uses the difference as a displacement. The syntax of
this form is d(Rm.W) or (Rm.L) where d is the
displacement, Rm is either a data or address register,
W means the value is 2 bytes long, and L means the value
is 4 bytes long.

Syntax: d(Rm.W)
d(Rm.L)
Example: ADD COUNTER+10h(A2),D5

Before execution:

COUNTER has the value 0100
Register A2 has the value 1000
Location 1110h contains 0004
Register D5 contains 0005

Changed values after execution:

Register D5 contains 0009

This example adds the value at the location specified by
COUNTER, 4, plus 10h, plus the value in register A2,
1000h, to the wvalue in register D4, 5, with the result
that register D5 contains the value 9 after the
execution of this statement.

Absolute Short Address - In this mode, the effective
address is the absolute location in memory specified by
the value of a label or expression. In the absolute
short address mode, the value is 2 bytes long.

36

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

Syntax: label or expression
Example: ADD COUNTER.W,D5

Before execution:

COUNTER has the value 1000
Location 1000h contains 0004
Register D5 contains 0005

Changed values after execution:

Register D5 contains 0009

This example adds the value at location 1000h, 4, to the
value in register D5, 5, with the result that register
D5 contains the value 9 after the execution of this

statement.

Absolute Long Address - In this mode, the effective
address is the absolute location in memory specified by
the value of a label or expression. In the absolute
long address mode, the value is 4 bytes long.

Syntax: label or expression
Example: ADD COUNTER.L,D5

Before execution:

COUNTER has the wvalue 10000000
Location 10000000h contains 0004
Register D5 contains 0005

Changed values after execution:
Register D5 contains 0009
This example adds the value at location 10000000h, 4, to
the value in register D5, 5, with the result that

register D5 contains the value 9 after the execution of
this statement.

Choosing the Addressing Mode
When the Assembler finds a label in the position of the
effective address, e.g., in the instruction

CLR LABEL

37

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

it must decide what actual form the effective address
should take. The various possibilities are:

absolute long address

absolute short address

program counter relative address
address register with displacement

For a detailed description of the fourth possibility,
see the description of USAGE and DROP pseudo operation
codes,

It is not obvious, to the Assembler or to the
programmer, which one is best. This section contains a
discussion of the advantages and drawbacks to the use of

each addressing modes.

Absolute long addresses can always be used, but each
occupies 4 bytes. ' ‘

Absolute short addresses are limited to 32K bytes in the
program. If you know that the complete program will
reside within memory addresses 000000h - OO7FFFh, then
the use of absolute short addresses is certainly a good
choice. Currently, no user program can occupy these
locations. Actual addresses of the user program will be
020000h or higher, which rules out absolute short
addresses altogether.

Program counter (PC) relative addressing seems to be the
best, though it has two drawbacks. First, the range is
again limited to 32K bytes. A more serious drawback is
that many instructions do not allow PC relative
addressing. (PC addressing is supposed to apply only to
a read-only part of the memory; therefore each 68000
instruction that writes into memory does not allow PC
relative addressing to be used).

Address register with displacement seems to be very
convenient, except for the fact that:

1. At least one A register has to be set aside.

2. The programmer must issue an appropriate USING
' instruction.

3. The programmer is responsible for the loading of

the designated A register with the correct
information.

38

Cromemco 68000 Macro Assembler Instruction Manual
2. Statement Syntax

This means that A register with displacement addressing
is not so convenient at all.

This discussion leads to the conclusion that the
Assembler simply cannot be smart enough to make the best
choice. The programmer must help to make the most
critical decisions by setting a number of address mode
selection bits in the Assembler. These bits govern the
decision process of choosing the appropriate effective
address form. This section lists the meaning of those
bits.

Bit ABS_L Specifies the type of absolute address.
0 means all absolute addresses will be short (2 bytes).
1 means all absolute addresses will be long (4 bytes).

As has been discussed, 1 is the necessary choice with
the current operating system.

Bit EXT_PC Specifies that PC relative addressing is
allowed for external symbols.
0 means PC relative addressing is not allowed for
external symbols.
1 means PC relative addressing is allowed for

external symbols.

In general, PC relative addressing should be allowed for
external symbols. If the instruction does not allow it,
the Assembler will not use it. However, if you plan to
create a program larger than 32K bytes, the Linker may
not be able to link the program because of a reference
that exceeds the range of PC relative addressing. If
so, the Linker will print an error message, and the
resulting bin file will not be executable.

Bit EXT_ABS Specifies that absolute addressing is
allowed for external symbols.

0 means external references should not be translated
into absolute addresses.,
1 means external references may be translated into

absolute addresses,

Remember there are two absolute addressing modes, short
and long, as previously discussed under ABS_L.

39

Cromemco 68000 Macro Assembler Instruction Manual
2, Statement Syntax

At first, bit EXT_ABS seems to be the complement of the
bit EXT_PC: If PC relative addressing should not be
used, then the Assembler must use absolute addressing,
and vice versa. However, this is not true. There is
also address register with displacement as a possibility
and the meaning of the bit is what it says: if absolute
addresses are allowed, the Assembler may, but not must,
use them, If disallowed, absolute addresses will not be
used and the Assembler will use another addressing mode
if one is available. If there is no choice, the
Assembler will generate the ADDRESS MODE error.

Bit OTH_PC Specifies that PC relative addressing may
be used for the symbols in some other PSECT.

0 means PC relative addressing may not be used for
symbols in another PSECT.

1 means PC relative addressing may be used for
symbols in another PSECT.

This bit does the same for symbols in another PSECT as
EXT_PC does for external symbols.

Bit OTH_ABS Specifies that absolute addressing may be
used for symbols in another PSECT.

0 means absolute addressing may not be used for
symbols in another PSECT.

1 means absolute addressing may be used for symbols
in another PSECT.

This bit does the same for symbols in another PSECT as
EXT_ABS does for external symbols.

Bit FWD_L Specifies that forward references must be
long absolute addresses.

0 means forward references need not be (but may be)
long (absolute addresses).

1l means forward references must be long absolute
addresses.

40

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

First of all, this bit has an effect only in the case
that ABS_L = 1, i.e., long absolute addresses are
selected. In general, this bit is not set. You can set
it if you want to make the Assembler foolproof in the
selection of addressing modes. If all forward
references assemble into long absolute addresses, the
Assembler will not discover in the second pass that it
cannot assemble the program.

Bit FWD_S Specifies that forward references must be
2-byte addresses.

0 means forward references may be (but need not be)
2-byte addresses.

1 means forward references must be 2-byte addresses.

This bit becomes effective only if ABS_L = 1. In
general, this bit is not set. It should be set only if
the Assembler can use another addressing mode, e.g., PC
relative or address register with displacement.

The overview of the FWD bits follows:

FWD_L FWD_S

0 0 Assembler will use PC relative
addressing if the instruction permits;
otherwise, it will use absolute 1long
addresses,

0 1l Assembler will choose a short address in
the first pass. 1In the second pass, the
Assembler assumes that either PC
relative or address register mode with
displacement will work,. If the
Assembler cannot use PC relative or
address register mode, it will display
the ADDRESS MODE error. This
combination produces the most compact
code, where short addresses suffice for
all references.

1 0 All forward references will be assembled
into long absolute addresses., This is
the safest (and the most expensive)
solution.

41

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

It should be stressed that the preceding discussion is
meaningless if you have selected short absolute
addresses. In this case, all addressing modes use
2-byte addresses and forward references present no
special problem.

Bit ABS_ALLOW Specifies that absolute (i.e., not
relocatable) addresses are allowed.

0 Nonrelocatable addresses are not allowed.

1 Nonrelocatable addresses are allowed.

The so-called absolute addresses (short and long) are
still relocatable in the sense that the final value is
computed by the linker and the operating system program
loader. A nonrelocatable address is a number or a label
equated to such a number. In general, there is no need
to use such addresses because the program does not have
to know where in memory any of the information is
actually stored. Nonrelocatable addresses usually
result from a programming error, for example:

MOVE 45,D0

instead of

MOVE #45,D0

There are rare instances where a nonrelocatable address
is required, for example:

MOVE.L chk_routine, 18h ;18h is CHK trap address

All such instructions, however, interfere with the
CROMIX Operating System, and it is therefore preferable
to disable nonrelocatable addresses. They may be
enabled by setting bit ABS_ALLOW. The effect of this
bit may be overridden by writing .W or .L after an
address, for example:

MOVE.L chk_routine, 0018h.W
The address 18h will be assembled into absolute word
(for .W) address, which is nonrelocatable regardless of

the settings of any bits.
42

Cromemco 68000 Macro Assembler Instruction Manual

2.

Statement Syntax

These bits are stored in a 2-byte word in the Assembler.
There is a special pseudo instruction, OPT, with the
syntax

OPT <value>

which sets this word to an arbitrary combination of
bits. To simplify programming, an include file
optequ.asm on the distribution diskette defines the
numbers of these bits, including the standard setting:

OPT_DEFAULT equ “ABS_L | “EXT_ABS | "OTH_ABS

so that, for example, restoring to this combination may
be achieved by

oPT OPT_DEFAULT

Similarly, you can use

~

OPT OPT_DEFAULT | "FWD_S

to prevent long forward references.

THE COMMENT FIELD

The comment field can contain anything you want,
although it is typically used to explain the execution
of the program. The field is free-format and can
include any printable ASCII characters, as long as the
comment is preceded by a semicolon (;). The comment may
follow an operation code, operand, or label or may exist
on a line by itself. The semicolon must be the first
non-blank or non-TAB character on the 1line for the
comment to be on the line by itself. Multiple blanks or
TABs may be used before or within the comment to improve
readability. A RETURN terminates the comment. Comments
may appear on any line except those that have the pseudo
operation codes TITLE, SUBTTL, EJECT, or FORM as the
operation.

43

Cromemco 68000 Macro Assembler Instruction Manual

44

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

Chapter 3

MACROS, CONDITIONAL ASSEMBLY, AND
REPEAT EXPANSIONS

The three facilities described in this chapter provide
much of the Assembler's power. They make your code both
simpler to write and more flexible:

-— Macros and repeat expansions simplify the writing.
They allow you to define a block of code once and
then have that block appear any number of times in a
module. However, the two facilities do differ. The
Assembler can repeat a macro anywhere within a
module. The Assembler can repeat a repeat expansion
only at the place you define it.

-- Macros, conditional assembly, and repeat expansions
make the code more flexible. Conditional assembly
allows you to specify the conditions under which the
Assembler includes a particular code block in the
module. Macros and repeat expansions allow you to
vary the blocks of code. Each time they appear,
they can be tailored to a specific situation.

MACROS

Macros allow you to define a block of code that the
Assembler can insert anywhere in a module. They give
you more flexibility than in-line source code because
you can modify their code each time you use them with
parameters., Suppose, for example, you frequently need
to move blocks of 100 and 500 bytes. You could rewrite
the statements for the moves each time you need them.
Writing a single macro that accepts the appropriate
parameters, however, saves time,

Macros have other advantages:

- You can use macros to make your modules more
readable.

45

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

- You can create libraries of macros that anyone can
use.

- You can change the functions of the 68000 instruction
mnemonics.,

- You need to debug a macro once, no matter how many
times it is used.

While macros provide flexibility and power, use them
with a certain amount of restraint. As with the GOTO
statement of high-level languages, excessive and
inconsistent use of macros can make a program difficult
to read and modify.

When several programmers work on the same project, it is
wise to have everyone use a standard macro library.
This way each programmer writes code that can be easily
read and modified by the other programmers.

At assembly time the macro expands and the source code
generated is printed on consecutive lines following the
macro call pseudo operation code (unless NOGEN is
selected--see Assembler call options in Chapter 8 and
the pseudo operation code descriptions in Chapter 7).
Each of these 1lines has a plus sign (+) immediately
following the line number of the print 1listing to
distinguish these lines as belonging to a macro
expansion.

Macros Versus Subroutines

You may wonder how macros differ from subroutines, since
subroutines may also be used to reduce the coding of
frequently executed blocks of code. One distinction is
that subroutines call other parts of the program, while
macros generate in-line code. However, a macro does not
necessarily generate the same source code each time it
is called. The source code the macro generates can be
changed by changing the parameters in the macro call.
Also, macro parameters can be tested at assembly time by
the conditional assembly (IF) construction. These two
features enable a general-purpose macro definition to
generate customized source code for a particular
situation.

The biggest difference between macros and subroutines is
that macros can produce customized in-line code.
Subroutines, on the other hand, reside in the source
program and require extra execution time (especially if
the subroutines perform any conditional operations).

46

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

There is a trade-off, however, between the extra memory
required for macros (in-line code) and the longer
execution time of subroutines. In most cases, using a
single subroutine rather than multiple in-line macros
reduces the overall program size. However, the use of
macros may be more efficient in situations involving a
large number of parameters. Note that macros can call
subroutines, and subroutines can contain macro calls.

Sample Macros

An example of a simple macro definition illustrates some
of the features of macros. Suppose you wanted to shift
the bits in a long word four bits to the right a number
of times in a source module. You could write a macro to
do this that has a name that clearly specifies the
function to be done:

SHIFT: MACRO
LSR.L #4,D0
MEND

The general format of a macro definition can be seen
from this example. The word SHIFT is the macro name.
To call this macro, simply use the word SHIPFT as an
operation code in the source code. The Assembler
inserts the LSR operation code as in-line source code
following the SHIPT macro operation code. This process
is known as the macro expansion. The MEND statement
informs the Assembler that the macro definition is
complete.

Suppose now that, rather than having the macro shift
only the DO register, you want it to operate on any of
the data registers. The following defines such a macro:

SHIFT: MACRO \REGIS
LSR.L #4 ,\REGIS
MEND

This macro uses the parameter REGIS, the value of which
the Assembler determines when the SHIFT macro is called.
The backslash symbol (\) precedes the parameter in the
macro definition to distinguish it from other, fixed,
parts of the definition.

47

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

Since SHIFT now expects one parameter, the call for the
macro is:

SHIFT register

where the word register is replaced with the name of the
register you want to shift. Upon finding this call, the
Assembler generates in-line code using the correct
register name. For example, if the macro call

SHIFT D4

were used, the Assembler would generate the in-line
code:

LSR.L #4,D4

The next example shows a macro that moves a block of
data:

BMOVE: MACRO \SOURCE , \SRCEND, \DESTIN

LEA \SOURCE, A0
LEA \DESTIN, Al
MOVE #\SRCEND-SOURCE-1,D0

AA\SYM: MOVE.B (AO0)+,(Al)+
DBRA DO ,AA\SYM
MEND

Three parameters are expected: 1) a starting location
for the source; 2) an ending location for the source;
and 3) a destination. The macro call for this example
might be part of a module with code such as:

INIT: DC 0,1,2’3’4’5
INITEND:
DATA_AREA: DS.B INITEND-INIT

48

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

To perform a block move that would initialize DATA_AREA
with the values stored between INIT and INITERD, you
would use the call:

BMOVE INIT,INITEND,DATA_AREA

which would produce the code:

LEA INIT,AO

LEA DATA_AREA,Al

MOVE #INITEND~-INIT-1,D0
AA000000: MOVE.B (AD)+, (A1) +

DBRA DO ,AA000000

The Assembler produces the label AA000000 through a
special feature that generates awunique label each time

the macro is called. Defining Labels in Macro
Definitions in this chapter describes this feature in

more detail.

The Assembler allows you to define macros in either the
source file or in special macro definition libraries.
Any macros you define in a source file must appear
before the first call to that definition.

To -use a macro library, you must write the #*MACLIB
pseudo instruction (see Chapter 7). With one important
exception, the result is almost the same as if you
simply *INCLUDE the macro library. If a macro
definition is included in the source file, the Assembler
stores the macro body into memory. With *MACLIB only
the name of the macro is stored; the body is stored only
if the macro is actually called.

Note: Macro libraries are not yet implemented.

Writing the Macro Definition
A macro definition follows this format:
name: MACRO[.\param0] [\paraml,\param2,...]
macéo body

(no label) MEND (no operand)

49

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

where:

name:

is the name of the macro and must be given. Use
the name to call the macro. (See Writing the Macro
Call in this chapter.)

The syntax rules applying to macro names are the
same rules applying to writing labels in general.
The name can be of any length and may consist of
any letters, any numerals, the dollar sign, the
underscore symbol, the gquestion mark, and the at
sign (@). A colon, SPACE, or TAB separates the
name from the MACRO pseudo operation code.

MACRO
is the MACRO pseudo operation code.

The macro name and the parameters appear on the
macro statement,

\param0

is an optional parameter that the Assembler
substitutes with the string given as the size
extension in the macro call. The backslash
indicates that this is a parameter and must precede
the parameter name everywhere it appears in the
macro definition. The name can be any length that
fits on the statement. Any printable character can
appear in the name. Only the preceding period and
backslash separates the parameter name from the
MACRO pseudo operation code.

Parameters in this chapter gives more information
on the use of parameters.

\paraml ,\param2,...

are optional "dummy" names that the Assembler
substitutes with values given in the macro call.
As many parameters can appear as will fit on the
MACRO statement.

The Assembler treats the parameters as the MACRO
statement's operands. The rules given in Chapter 2
for placing the operand on a statement apply to the
parameter names.

50

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

The backslash indicates that these are parameters
and must precede the parameter names everywhere
they appear in the macro definition. The name can
be any 1length that fits on the statement. Any
printable character can appear in the name. Commas
separate the parameter names.

Parameters in this chapter gives more information
on the use of parameters.

macro body

are the instructions and pseudo operation codes
that the Assembler substitutes for the macro call.
You can use any legal 68000 instruction or pseudo
operation code within the macro body. The macro
body can be any length. If you include parameters
within the body, the Assembler substitutes them
with values given in the macro call.

MEND

is the required MEND pseudo operation code that
marks the end of the macro definition.

The following sections describe various features of the
macro definition in more detail.

Specifying Labels in Macro Definitions - A standard
label appearing in a macro definition would generate a
multiple definition error if you call that macro more
than once. Each expansion of the macro would produce
the same label, an illegal situation. (Labels appearing
on SET pseudo operation codes within the macro
definition are not subject to the above restriction
because they can be multiply defined in the same
module,) To avoid this problem, the Assembler provides
a general label name for macro definitions that is used
by assigning a short name to the label name followed by
the characters \SYM. Each time the source code calls
the macro, the Assembler replaces the \SYM with a
six-digit number.

51

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

For example, the "dummy" label name AA\SYM in this
macro:

BITEST: MACRO cee

°
.

AA\SYM: LEA ASyeee

BRA AA\SYM

would be assigned the actual label name AA000000 if
BITEST is the first macro called in the module, The
expanded macro would then look like this:

AA000000: LEA AS5,...
BRA AAQ00000

The six-digit number starts at 000000 and is incremented
by one each time any macro is called, whether or not it
is a macro with a \SYM label. For the first macro call
in the source file, the \SYM would be replaced with
000000, the second call would produce 000001, the third,
000002, and so on.

In general, do not use \SYM as the name of a parameter
in a macro definition. 1If you do, the current value of
\SYM is used instead of the desired parameter,

Using Parameters - Parameters give macros their power.
With them, each use of the definition can produce unique
code tailored to the needs of a given situation.

Within a macro definition, "dummy" names represent the
parameters. When the Assembler expands the macro call,
it will take values given for the parameters in the call
and substitute the values for their corresponding names
in the definition.

Each parameter used in the definition must be listed as
an operand of the MACRO statement. The Assembler
assigns values given as operands of the macro call to
the parameters in the order in which they appear.

52

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

If you do not give a value for one or more of the
parameters, the Assembler substitutes a null value for
the parameter names. In this example:

EXAMPLE: MACRO \ADDRESS_REG, \DISPLACEMENT, \DATA_REG
ADD \DISPLACEMENT (ADDRESS_REG) ,\DATA_REG
MEND

you can skip the displacement value as needed by just
not giving a value for the displacement parameter as is
done here:

EXAMPLE A2,,D3

When you want to skip a parameter in the beginning or
middle of a series of parameters, you must use commas to
indicate the omitted parameters. When you want to skip
a parameter at the end of a series, you can either use
commas to indicate the parameters or end the parameters
with the last parameter that is to have a value.

If a macro has three parameters, you would use these
calls to selectively skip each of the parameters:

First parameter: EXAMPLE ,20,D3
Second parameter: EXAMPLE Al,,D3

Third parameter: EXAMPLE Al,20, or
EXAMPLE Al,20

When the Assembler expands a macro definition, it first
substitutes the values for the parameters to generate
new source code statements,. It then produces object
code from the expanded source code. You must ensure
that the values for the parameters have the proper
syntax for their use. For example, this macro:

EXAMPLE: MACRO \ADDRESS_REGISTER
ADD -#10,\ADDRESS_REGISTER
MEND

53

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

could be used to add 10 to the value in an address
register with this call:

EXAMPLE A4

or could be used to add 10 to the value of the location
specified by an address register with this call:

EXAMPLE (A4)

If the macro call is written with parentheses
surrounding the parameter name on the ADD statement:

EXAMPLE: MACRO \ADDRESS_REGISTER
ADD #10, (\ADDRESS_REGISTER)
MEND :

the address register parameter always refers to a
location in memory. Additional examples in which the
syntax associated with the parameter determines the
meaning of the statement follow:

CMP. \COUNT, (A2) versus CMP #\COUNT, (A2)

MOVE \COUNT,D4 versus MOVE '\COUNT',D4

Naming Parameters -- A name preceded by a backslash
character (\) represents each parameter within the
definition, The names can be any length that fits on
the definition's statements and can be composed of any
printable ASCII character except the backslash.
Examples of legal parameter names follow:

\P
\addresses-of-users-table
\NAME

\PRINTER#%

\%

\register

54

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

Each parameter must have a name that is unique within
the definition. Different macros, though, can use the
same name, Several macros in a module, for instance,
might have a parameter named \register.

Not only must you ensure that parameter names are
unique, you must specify any names that are subsets of
other names after the longer name. In this example:

EXAMPLE: MACRO \OPER, \OPERAND
\OPER \OPERAND
MEND

OPER is a subset of OPERAND, but is specified before the
longer name. When the Assembler expands this macro, it
replaces the OPER in OPERAND with the value for the
parameter OPER.

This call:
EXAMPLE BRA,LOOP
produces this nonsense code:

BRA BRAAND

You can get around this problem by specifying the longer
name first:

EXAMPLE: MACRO \OPERAND, \OPER
\OPER \OPERAND
MEND

Then when you call the macro:
EXAMPLE: LOOP,BRA
you get a usable statement out of the expansion:

BRA LOOP

55

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

Using Regular Parameters -- Use the macro's regular
parameters to substitute instructions or operands or to
substitute characters within those parts. The following
example shows a macro that uses its parameters to
specify values for the operands of a macro:

SHIFT: MACRO \NO-OF~BITS, \REGISTER
LSR #\NO-OF~-BITS,\REGISTER
MEND

This call:
SHIFT 4,D5

produces this code after the Assembler expands the
macro:

LSR #4,D5

The next example uses the parameter to specify the value
of a single character in the macro's instruction.

SHIFT: MACRO N\DIRECTION
LS\DIRECTION #4,D5
MEND

To right-shift register D5, the macro call is:
SHIFT R

which produces the following code:
LSR #4,D5

Using the Size Parameter -- Use this parameter to
specify the size extension of the operands for one or
more instructions. Suppose you want to write a macro
that would right-shift bits in long or short words. A
macro definition written this way:

56

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

SHIFT: MACRO.\SIZE
LSR.\SIZE #4,D0
MEND

could be called this way to right-shift a long word:
SHIFT.L

producing:
LSR.L #4,D0

Combining Regular Parameters and Size Extension
Parameters -- You can mix the use of size extension
parameter with other parameters. This example uses
parameters to specify the direction of the shift, the
length of the word, and the register for a logical shift
instruction:

SHIFT: MACRO.\SIZE \DIR,\REGIS
LS\DIR.\SIZE #4 ,\REGIS
MEND

This call:

SHIFT.L R,D7

to this macro produces this code:

LSR.L #4,D7

Comments - The Assembler allows two types of comments in
a macro definition. A comment that is to appear in the
assembly 1listing is preceded by a single semicolon in
the normal fashion. A comment that is not to appear in
the assembly 1listing (that is, a comment that describes
the definition only and has no bearing on the source
code) is preceded by two semicolons. This saves memory
during the assembly and also creates a shorter assembly
listing.

57

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

EXITM Pseudo Operation Code - When the Assembler
encounters the EXITM pseudo operation code, it does not
expand the balance of the macro. This can be used to
advantage in conjunction with conditional assemblies.

In this example:

SAMPLE ~ MACRO \ARG

IF LOCAL
EXITM
ENDIF

MEND

If you set LOCAL to true, the Assembler executes EXITM
and doesn't expand the last portion of the macro. This
last portion of the macro might include special
processing needed only in modules preparing reports for
the local, but not federal, governments.

Argument Substrings - You can access any character or
group of characters from a parameter assigned an ASCII
value. You reference these characters through this

syntax:

\parameter-name (first-position,last-position)
\parameter-name (position)

where the positions are numeric indices to character
positions based on this indexing scheme:

first character
second character

nu

second to last character
last character

HNe » o N

This scheme allows the same character to be addressed by
its position relative to the beginning or end of the
string.

58

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

The following macro definition provides an example of
argument substrings:
SAMPLE: MACRO \ARG
FPLD1: DC.B '"\ARG(1,26)"
FLD2: DC.B '"\ARG(1l,-1)"
FLD3: DC.B '"\ARG(1,5)"
FLD4: DC.B "\ARG(11,14)"'
FLD5: DC.B "\ARG(~14,-11)"
FLD6: DC.B "\ARG(16) "'
FLD7: DC.B "\ARG (-7) '
MEND
When called with the alphabet as the argument:
SAMPLE ABCDEFGHIJKLMNOPQRSTUVWXYZ
this macro produces:
FLDl: DC.B ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '
FLD2: DC.B ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
FLD3: DC.B 'ABCDE!
FLD4: DC.B 'KLMN'
FLD5: DC.B 'MNOP'!
FLDG6: DC.B 'p!
FLD7: DC.B '
Writing the Macro Call
The format of a macro call is:
[label:] name[.size-ext] [paraml,param2,;...]
where:
label:
is an optional label for the statement.
name
is the name of the macro as given on the MACRO

statement of the macro definition.

59

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

size—-ext

is an optional size extension that the Assembler
substitutes for the size extension parameter in the
macro definition. The Assembler ignores any size
extension in the call if the macro definition does
not have a size extension parameter.

A period (.) separates the name and the size
extension.

parameterl ,parameter2,...

are optional operands that supply values for
parameters defined in the macro definition. The
values are associated to the parameters in the
definition by their order on the call statement.
The Assembler assigns the first value to the first
parameter, the second value to the second
parameter, and so forth, If you do not give a
value for a parameter, the Assembler assigns that
parameter a null value. If you give more values
than the macro has parameters, the Assembler
ignores the extra values.

You must separate values with a comma (,).
When calling macros, you must give values for the

parameters that are appropriate for their use in the
expanded code. For example, if you call this macro:

SHIFT: MACRO \DIRECTION
LS\DIRECTION #4,\D5
MEND

using the letter Q as the value instead of R or L:
SHIFT Q

causes the Assembler to generate:
LSQ #4,D5

Because LSQ is not a legal instruction, a. syntax error
results.

60

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

As with any other parameter, the value you give for the
size extension parameter must be legal for the way it is
used in the macro definition. If the preceding example
had a size extension parameter, and you used this call:

SHIFT.P R
the Assembler would expand the macro to produce:
LSR.P #4,D0

Because P is an illegal extension, a syntax error
results.

In the same way, giving B as the extension for a macro
containing this line:

CMPA.\SIZE POINTER, A4
produces:
CMPA.B POINTER, A4

which also causes a syntax error because you cannot do
byte operations on address registers.

Nesting Macros

Macro definitions may be nested. A macro definition can
contain a macro definition that contains a macro
definition, and so on. The Assembler cannot expand a
macro definition within a larger, outside macro
definition until the larger definition is called. This
means that the outside macro should be called before the
inside macro to avoid generating an assembly error.

Macro calls may be nested to a maximum of eight levels.
A macro definition can contain a macro call, whose macro
definition contains a macro call, whose macro definition
contains a macro call, and so on, up to eight levels.
Exceeding this limit generates a nesting error. A macro
may also call itself, provided there is a way of ending
the self-calling before the ninth level.

61

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

The benefit of nesting macro definitions may not be
obvious; the following example illustrates one level of
nesting used to define several different macros:

DEFINE: MACRO \1,\2
NG\1\2: MACRO

NEG \1
NEGX \2
MEND
MEND

This nested definition may then be called in a source
module as follows:

DEFINE DO,D1
START: cee

NGDOD1

The call to DEFINE created the macro NGDODl. Other
calls to DEFINE could create macros such as NGD1D2 or
NGD4D7. DEFINE must be called once for every macro that
it defines--this call must precede the call to the
nested macro.

The preceding functions could also be implemented by a
single macro:

NG: MACRO \1,\2
NEG \1
NEGX \2
MEND

The difference here is that you specify the registers
each time you call the macro:

NG Al,A2

62

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

CONDITIONAL ASSEMBLY (IF CONDITIONS)

The IF pseudo operation code allows you to write a
source module in which certain blocks of code are
assembled or not depending on the satisfaction of
particular conditions.

This is especially useful in conjunction with the MACRO
and *INCLUDE pseudo operation codes. When using the IF
pseudo operation code with *INCLUDE, particular files
may be included or not depending on values in the source
module, Such a file might be a series of macros that
are needed in the source module only under certain
conditions.

The IF pseudo operation code is useful with macro
definitions as a means of determining the desired number
of levels of nesting of a macro within itself. The
feature may also be used to cause a macro to set up a
subroutine the first time the macro is called, and to
generate a subroutine call upon subsequent macro calls,

Writing the Basic Conditional Block

The format of the IF pseudo operation code 1is as
follows:

(no label) IF expression

source code

(no label) ENDIF (no operand)

where:

IF

is the IF pseudo operation code.

expression

is any legal expression as defined in Chapter 2.
The expression is considered true if it evaluates
to any non-zero value.

All terms of the expression must have been

previously defined. The expression must evaluate
to an absolute quantity.

63

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

source code

is the source code to be included in the module if
the expression is true.

ENDIF

is an ENDIF pseudo operation codé that marks the
end of the source code that is to be included if
the expression is true.

Writing the Expression

The expression following the IF may be any legal label
name, expression, or constant as described in the
beginning of this chapter. The Assembler evaluates it
to determine whether it is true or false; a false
expression is one that evaluates to 0, and a true
expression is one that evaluates to -1 (OFFFFh).
However, any non-zero value is considered to be true.
The IF pseudo operation code evaluates the expression as
a 32-bit quantity. All the terms of the expression must
have been previously defined to avoid errors; also, the
expression must evaluate to an absolute quantity.

An example of an IF pseudo operation code with an
expression is: ‘

IF COUNT = 0

This generates a value of true (or -1) if COUNT is equal
to 0. The example could also be written:

COUNT': EQU 1

IF COUNT

In this case, COUNT has the value of 1, which also
stands for true (non-zero).

Note the difference between the two examples. In the
first, COUNT must equal 0 for the expression to be true.
In the second, COUNT must equal anything but zero for
the expression to be true.

64

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

After evaluating the expression, the Assembler assembles
the code following the IF pseudo operation code if--and
only if--the expression was evaluated to be true. If
the expression was false, the block of code bounded by
the IF and ENDIF pseudo operation codes is ignored by
the Assembler. It is possible to suppress the print
listing of such ignored code by using either the NOCOND
Option (see Chapter 8) or the LIST NOCOND pseudo
operation code (see Chapter 7).

Writing IF-THEN-ELSE Conditional Blocks

The ELSE pseudo operation codes allow conditional
assemblies to be written so that one block of code is
included if the condition is true and another block of
code is written if the condition is false. In this
example:

IF POUND

(code to convert pounds to dollars)
ELSE

(code to convert francs to dollars)

ENDIF

the code for converting pounds to dollars is included in
the module if POUND is true and the code for converting
francs to dollars is included if POUND is false. 1In an
IF-ELSE construction, the code preceding the ELSE is
included if the condition is true, and the code
following the ELSE is included if the condition is
false.

Nesting Conditional Assemblies

IF pseudo operation codes may be nested up to eight
levels deep; more than this generates an error message.
IF pseudo operation codes may also be nested in macros,
making it possible for a macro to call itself the number
of times specified by the IF pseudo operation code (an

example is given in the following section). Macro
parameters may be used in the expression of the IF
pseudo operation code. The following example

illustrates this:

65

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

ROTATE: MACRO \DIREC

IF '"\DIREC' = 'R
LSR #4,D0

ENDIF

IF '"\DIREC' = 'L'
LSL #4,D0

ENDIF

MEND

Note that the actual ASCII value of the parameter may be
specified by enclosing it in single quotation marks as
with any ASCII string.

The two IF pseudo operation codes check to see if the
parameter specified when calling ROTATE is R or L. If
it is neither, no source code is assembled. If R or L
is specified, the corresponding left or right rotates
are generated. :

REPEAT EXPANSIONS

The Repeat Expansions feature allows you to write
repetitive code in a structured fashion so that it may
be more easily written, understood, debugged, and
modified. The expansions do not generate code
containing 1loops. Rather, they expand the code as is
demonstrated in the examples.

Basic Repeat Expansion
A repeat expansion written with the REPT pseudo

operation code repeats the generation of a given section
of code a specified number of times. The format is:

[label:] REPT expression

source code

MEND

66

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

This

where:

label

is an optional label that is assigned the value of
the program counter for the first byte of the first
instruction of the first expansion.

REPT

is the REPT pseudo operation code. The label, if
any, and the expression appear on the REPT
statement.

expression

is any legal expression as defined in Chapter 2
that gives a numeric value defining the number of
times the definition is to be repeated.

source code

is the instructions and pseudo operation codes that
are to be repeated the number of times specified in
the expression. Any operation codes or pseudo
operation codes can be used.

MEND

is a MEND pseudo operation code that marks the end
of the repeat expansion,

repeat definition:

REPT 256
DC.B OFFh
MEND

generates the following code:

DC.B OFFh

(256 times)

DC.B OFFh

67

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

Iterative Repeat Expansion

A repeat expression written with the IRP pseudo
operation code repeats a given section of code,
substituting a new value for a given argument, until it
runs out of values.

The format is:

[label:] IRP \arg,valuel[,value2,value3,...]

source code

MEND
where:
label

is an optional label that is assigned the value of
the program counter for the first byte of the first
instruction of the first expansion.

\arg

is the argument that is substituted with the values
given in this statement. The argument name can be
any valid label preceded by a backslash character

(\) .
valuel,value2,value3,..-.

are the values to be substituted for the argument
in the expansions. The values can be any quantity
or expression that is appropriate for use in the
expansion., The values are substituted exactly as
they appear in the IRP statement. At least one
value must be given; as many more can be given as
will f£it on one statement. The values must be
separated by a comma. The Assembler ignores SPACEs
and TABs except within values.

source code
is the instructions and pseudo operation codes that
are to be repeated the number of times specified in

the expression. Any operation codes or pseudo
operation codes can be used.

68

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

This

MEND

is a MEND pseudo operation code that marks the end
of the repeat expansion.

iterative repeat definition:

IRP \VAR,X,Y,7Z
MOVE D4,\VAR
MEND

generates the following code:

MOVE D4,X
MOVE D4,Y
MOVE D4,Z

Iterative Repeat Expansion with Characters

A repeat expression written with the IRPC pseudo
operation code repeats a given section of code,
substituting a new character for a given argument, until
it runs out of characters. The format is:

[label:] IRPC \arg,‘'character-string’

source code

MEND
where:
label

is an optional label that is assigned the value of
the program counter for the first byte of the first
instruction of the first expansion.

\arg

is the argument that is substituted with the values
given in this statement. The argument name can be
any valid label preceded by a backslash character

(\).

69

Cromemco 68000 Macro Assembler Instruction Manual
3. Macros, Conditional Assembly, and Repeat Expansions

This

*character-string’

is a string of characters, each of which is used
once as the substitution for the argument. Any
valid ASCII character can be used within the
string. The string must be enclosed by single
quotation marks ('). At least one character must
be given; as many more can be given as will fit in
one instruction.

source code
is the instructions and pseudo operation codes that
are to be repeated the number of times specified in

the expression. Any operation codes or pseudo
operation codes can be used.

MEND

is a MEND pseudc operation code that marks the end
of the repeat expansion. '

iterative repeat definition:

IRPC \CHAR, 'STRING'
MOVE.B #\CHAR, (A0) +
MEND

generates the following code:

MOVE.B #'S',(A0)+
MOVE.B #'T', (A0)+
MOVE.B #'R', (AO)+
MOVE.B #'I',(A0)+
MOVE.B #'N', (A0)+
MOVE.B #'G', (A0)+

70

Cromemco 68000 Macro Assembler Instruction Manual
4, Preparing Modules for Linking

Chapter 4

PREPARING MODULES FOR LINKING

Assembling your program is just one step in preparing it
for execution. Linking is just as important. This
chapter describes the features the Assembler provides to
control that linking.

Before writing an assembly program, you should become
familiar with the capabilities of the 68000 Linker
because its capabilities may affect the amount of
linking information you put in the source code of a
module.

BASIC REQUIREMENTS FOR LINKING MODULES

At the minimum, the linker needs a name for each file
containing a module it is to 1link together to form a
program, and it needs a starting address for the
program.

Module Names

The linker needs a name that uniquely identifies each
module to be linked together into a program. The name
of a module can be assigned with a NAME pseudo operation
code placed within the module. If a name is not
assigned this way, the 1linker uses the first 1-32
characters of the module's filename as the name. If the
filename is 32 characters or less, the linker uses the
entire filename as the linker name.

Defining the Starting Address

In any program, but especially in multi-module programs,
you often do not want execution to start at the
beginning of the linked program either because the
program begins with a data area or because it does not
begin with the correct program area. If you specify a
location at which execution is to begin, the 1linker

71

Cromemco 68000 Macro Assembler Instruction Manual
4, Preparing Modules for Linking

ensures that execution begins at that location. In this
way, any intervening data areas or program code are
jumped over.

You can specify a program's starting address within the
program with the END pseudo operation code. While the
main purpose of END is to mark the end of a module, in
one module of a program it can also be used to specify a
starting address for the program. The following example
shows the easiest way to do this:

START: LEA ces
END START

In this example, the label START marks the starting
address. The END statement then uses the START label to
specify that execution of the program is to begin at
START.

The starting address specified with END must be within
the module itself. Also, if you specify starting
addresses in two or more modules of the same program,
the linker uses the first address specified and ignores
the subsequent address.

RESOLVING GLOBAL LABELS

The Assembler and the 1linkers recognize two kinds of
labels in a module: those that are local to a module
and those that are globally available to all modules in
a program. With one exception, you define and use the
two types identically. The difference is that you can
use global labels in modules other than the one in which
you assign their value. Because of this, it is often
the linker that must resolve the value for global
labels--not the Assembler as is the case with 1local

labels.

For the linker to resolve the values of global labels,
you must:

-- Use the ENTRY pseudo operation code to declare in
each module those labels that are referenced in
other modules. The ENTRY statement informs the
linker that this module defines the named labels.

72

Cromemco 68000 Macro Assembler Instruction Manual
4, Preparing Modules for Linking

-- Use the EXTERN pseudo operation code to declare in
each module those labels whose values are declared
in other modules. The EXTERN statement prevents the
Assembler from £flagging the named labels as
undefined.

The following example comes from a module that uses
ENTRY to declare that the values for three labels are
defined in that module, The module contains the code
for two subroutines and a conversion table used to
convert metric measurements to English measurements, and
vice versa.

ENTRY METRIC,ENGLISH,CONVERSION_TABLE

REM METRIC TO ENGLISH CONVERSIONS
METRIC: ...

RTS
REM ENGLISH TO METRIC CONVERSIONS
ENGLISH: ...

RTS
REM CONVERSION TABLES

CONVERSION_TABLE:

END

The next example is from another module that uses EXTERN
to declare that the values for three labels are defined
in another module. This program calls both subroutines
used in the previous example and uses the conversion
table to pass parameters.

EXTERN METRIC,ENGLISH,CONVERSION_TABLE
START: * o0

LEA CONVERSION_TABLE,AQ
MOVE (A3) ,D3

JSR METRIC

ADDQ #1,A0

MOVE (AO) ,D3

JSR ENGLISH

END START

73

Cromemco 68000 Macro Assembler Instruction Manual
4., Preparing Modules for Linking

Just as you cannot define local labels more than once
within a module, you cannot define global labels more
than once within a program. If you do multiply define a
global label, it is impossible to determine what its
value will be at any given time.

If a module lists a label on an ENTRY statement and no
other module lists the label on an EXTERN statement, the
linker treats the label as a local label. On the other
hand, if a module lists a label on an EXTERN statement
and no other module 1lists the label on an ENTRY
statement, the linker treats the label as an undefined
label and gives an error messade.

PROGRAM SEGMENTS

A program segment is a block of code that shares common
attributes, such as the addressing mode, and that the
linker treats as a unit within the program. Program
segments are similar to the code segments of some
Assemblers. An example may make the concept of program
segments and their use clearer. Assume you are writing
a program that will eventually have the program portions
placed in Read Only Memory (ROM) and the data portions
placed in Random Access Memory (RAM). You might write
the source code such that the data areas are defined
immediately after the routines using them.

By using program segments, you can specify the type of
addressing for each program segment (the program area
might be absolute and the data area might be
relocatable) and have the linker separate the two areas.

There are two types of program segments: standard
segments the Assembler provides and user-defined

segments.

The standard segment is the Blank segment (denoted by
empty string ''), intended for relocatable program code.
This segment meets the requirements of most programs.
When you need additional segments or segments with
special attributes, you can define additional segments.

You use the PSECT pseudo operation code to define
program Ssegments. The code that follows each PSECT
statement with the same name is part of the same program
segment. The remainder of this section describes the
possible attributes for a program segment.

74

Cromemco 68000 Macro Assembler Instruction Manual
4, Preparing Modules for Linking

Options for Program Segment Attributes

REA

WRI

EXE

SHA

COM

If a program segment has the REA attribute, it
is a readable segment. If it does not have
this attribute, the processor is not supposed
to read the data from the program segment.

If a program segment has the WRI attribute, it
is a writable segment, i.e., the processor
should be allowed to write into the segment.
If a program segment does not have this
attribute, the processor is not supposed to
write into it.

A program segment that has the EXE attribute
is an executable segment. You may branch
(jump) only to an address in an executable
segment. If a program segment does not have
this attribute, the processor cannot branch
into it.

A program segment that has this attribute is
sharable in the sense that more than one
process has access to it. If it does not have
this attribute, the program segment is
intended to be used by only one process.

A program segment with this attribute is a
common program segment that can be used to
implement FORTRAN-like common blocks. Suppose
that two modules declare a program segment
named ABC, with the REA and WRI attributes.
The linker will concatenate them into a larger
unit. The linker would concatenate them even
if they had different names, as long as they
have identical attributes. However, 1if the
segment ABC also has the COM attribute, the
linker will not concatenate the ABC segments
from both modules, but will "overlay" them in
the sense that both modules will access the
same locations in the memory when they use the
ABC segment, In the case of common segments,
the segment name is important.

A segment with this attribute is not supposed

to be relocatable. At present, the linker
does not support absolute segments.

75

Cromemco 68000 Macro Assembler Instruction Manual
4, Preparing Modules for Linking

THE STANDARD PROGRAM SEGMENT

Every program contains the default program segment, even
if its length is zero. The default program segment has
no name (or has the name '') with the attributes REA,
WRI, EXE. For the majority of programs, this is all you
need. Different program segments can be introduced by
the PSECT pseudo operation code (see Chapter 7).

76

Cromemco 68000 Macro Assembler Instruction Manual
5. Declaring Values and Reserving Memory

Chapter 5

DECLARING VALUES AND RESERVING MEMORY

The Assembler provides several pseudo operation codes
that you can use to declare values and to reserve memory
for data areas, This chapter summarizes the functions
of these pseudo operation codes so that you can select
those that meet your needs. Before using any of these
gseudo operation codes, you should read its complete
escription in Chapter 7.

RESERVING MEMORY

The Assembler provides two pseudo operation codes for
reserving memory that is to be used for data areas.
These are:

DS{.B,.W,.L} The DS pseudo operation code reserves a
specified number of bytes, 2-byte words,
or 4-byte words of memory. The Assembler
does not initialize the bytes.

In this example:
ADDRSTABL: DS 20

the Assembler would reserve 20, 2-byte
words of memory that might be used as a
table of 20 entries (2 bytes per entry).

DC{.B,.W,.L} The DC pseudo operation code reserves a
string of bytes, 2-byte words, or 4-byte
words and initializes the string with the
value or values given in the statement.
As much memory is reserved as is needed
to store the value(s).

In this example:

LOGIN: DC.B ‘'TERMINAL LOGGED IN\n\O'

77

Cromemco 68000 Macro Assembler Instruction Manual
5. Declaring Values and Reserving Memory

the quotes will cause the string to be
converted to ASCII characters and stored
in consecutive bytes.

In this example:
DC -2'—'4’-6’10’11117

the numbers are converted to binary and
stored in consecutive 2-byte words.

When reserving bytes, the field may end on an odd
address, If the subsequent information is also built
from bytes, nothing is wrong. However if the
information contains words, lengths, or instructions
(which must reside on an even address), the Assembler
forces the address to the next even value and issues a
warning. You can avoid these warning messages if you
always reserve an even number of bytes, or, more simply,
by following each DC.B or DS.B statement by an ALIGN
pseudo operation:

LOGIN: DC.B 'LOGIN\n\O'
NAME : DS.B 23
ALIGN

Declaring zero (0) values for DS and DC has different
effects for the two pseudo operation codes as described
here:

DS 0 Specifying zero with DS has the Assembler not
reserve any memory.

DC 0 Specifying zero with DB has the Assembler

reserve one 2-byte word of memory initialized
with the value zero.

EQUATING VALUES
The Assembler provides three basic ways to equate a

label with a value that can be any legal constant,
address, or expression:

78

Cromemco 68000 Macro Assembler Instruction Manual
5. Declaring Values and Reserving Memory

EQU The EQU pseudo operation code allows you to
equate a label to a value. A label assigned a
value with EQU cannot have that value
re-defined later on in a module.

SET The SET pseudo operation code allows you to
equate a label to a value. SET differs from
EQU in that values declared with SET can be
re-defined within a module.

STRUCT The STRUCT pseudo operation code equates
values that are used to define a series of
offsets from a base. STRUCT is described in
detail later in this section.

Equated values are local to the module in which they are
defined and cannot be used as global labels (see Chapter
4).

The EQUATE pseudo operation code is useful for
simplifying or clarifying source code. For example,
suppose the ASCII characters for carriage return (CR)
and line feed (LF) were to be used throughout a source
program, Instead of using their values, a clearer
procedure would be to include the statements:

CR EQU ODh
LF EQU 0Ah

somewhere in the source program and then use the labels
CR and LF to stand for the values as in:

STRING: DB 'end of text',CR,LF

You can also use EQUATE to quickly change the value of a
quantity throughout a program. Suppose that you are
testing a program with different values for a timer.
Suppose further that this value ‘is used 10 times
throughout the source code, If the original value is
used in each of those 10 places, then you must change
the timer wvalue in all 10 places to test a new time
increment, However, if each of the 10 places uses the
label TIMER and the following statement appears
somewhere in the module:

TIMER EQU value

79

Cromemco 68000 Macro Assembler Instruction Manual
5. Declaring Values and Reserving Memory

then the TIMER value can easily be changed. This
assures upon re-assembly that all the places TIMER is
used will be changed.

The STRUCT pseudo operation code is defined differently
than any of the other equate pseudo operation codes. It
is used to define a series of equated values that are
usually used to reference tables, The format of the
STRUCT construction is:

STRUCT expression
[label] DS{.B,.W,.L} size
[label] DS{.B,.W,.L} size

2 ee se &

MEND

where the expression on the STRUCT statement gives the
initial offset, the labels on the DS statements are the
labels to be equated, the size on the DS statements give
the offset values, and the MEND statement ends the
construction, The DS statements used in a STRUCT
construction do not reserve memory; they merely specify
offsets. The following structure:

STRUCT 10
FIELD1 DS 4
FIELD2 DS 2
FIELD3 DS 4

MEND

is the equivalent of:

FIELD1 EQU 10
FIELD2 EQU 18
FIELD3 EQU 22

The advantage of STRUCT is that it automatically
calculates the offsets, making it easy to add fields,
re—arrange their order, or change their lengths without
having to specify new values for each of the other
fields. “ '

80

Cromemco 68000 Macro Assembler Instruction Manual
5. Declaring Values and Reserving Memory

You might use STRUCT when using several tables that have
identical formats. You might, for example, have three
tables of 100 bytes each that have identical formats.
You could address them by assigning a 1label to each
field of each table as is done here for one field:

TBL1FLD4 DS 4

Then, however, you must code those labels into your
program as follows:

LEA Al,TBL1FLD4

Referencing fields this way reduces the flexibility of
your code because your programs must use the labels for
each field.

With STRUCT, you can write general routines that use
offsets to reference the fields. You could define
offsets that apply to several tables, for example:

STRUCT O

FIELD1 DS 4

FIELD2 DS 2

FIELD3 DS 4
MEND
LEA TABLEl,A2
BSR VERIFY
LEA TABLE2 ,A2
BSR VERIFY

VERIFY ces
MOVE FIELD2 (A2) ,DO

In this case, the fields of TABLE1l and TABLE2 can be
referenced by loading the starting address of the tables
in a register and then adding the offsets to the
starting address. This approach gives you flexibility
because you can easily change the structure of the
tables without having to rewrite other sections of code.
It also allows you to write general routines, such as
the VERIFY subroutine of this example, that can work
with either table.

81

Cromemco 68000 Macro Assembler Instruction Manual
5. Declaring Values and Reserving Memory

A common practice with STRUCT is to use the value of the
offsets to define the lengths of the tables to which the
offsets apply as in this example:

STRUCT 10
FIELD1 DS 4
FIELD2 DS 2
FIELD3 DS 4
LENGTH DS 0

MEND
TABLE1l DS LENGTH
TABLE2 DS LENGTH

The advantage of using the offset value for LENGTH to
define the lengths of the tables is that if you change
the structure of the offsets in any way, the length of
the tables is automatically changed, too.

82

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

Chapter 6

THE ASSEMBLY LISTING

The Assembler produces an assembly 1listing for each
program assembled that can include a program listing and
a symbol table. This chapter describes the listing and
its options. The last section of this chapter contains
a sample listing.

The Assembler normally places the assembly listing in a
file of the name:

filename.prn

where the filename is the same name as the filename of
the file containing the source code and extension
changed to prn. This source file normally resides in
the current directory, or in the directory specified by
-asm option (see Chapter 8). By means of the -prn
option (Chapter 8), the listing file may be placed in
any directory provided that the user has the correct
access privileges to write into that directory.

PAGE LAYOUT

The Assembler allows you considerable control over the
page layout of the listing. The only fixed feature of
the listing is the page heading.

The following features of the page 1layout can be
changed: '

Page Length
The default page length of 59 lines can be changed with

the PAGE option of the Assembler call. (Refer to
Chapter 8.)

83

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

Page Width

The default page width of 128 characters can be changed
with the TRUNC option of the Assembler call. (Refer to
Chapter 8.) Any lines longer than selected length are
truncated. The WIDTH option of the Assembler Call can
be used to wrap lines longer than the specified width to
the next line. The TRUNC and WIDTH options are mutually
exclusive.

Title

A title, which will appear one line below the page
heading, can be specified with the TITLE pseudo
operation code. (Refer to Chapter 7.) If you do not
specify a title, the Assembler will use the filename of
the source code file.

Subtitle

A subtitle, which will appear two lines below the page
heading, can be specified with the SUBTTL pseudo
operation code. (Refer to Chapter 7.) If you do not
specify a subtitle, none will appear in the listing.

ADDRESS SYMBOLS USED IN ASSEMBLY LISTING

Three symbols are used to flag addresses in the program
listing and cross-references to indicate the type of
code (for example, relocatable) to which they belong.
These addresses are flagged wherever they occur in the
program, For example, this object code listing of an
instruction:

000000 33FA 0006 O00000O0OCA! 0001 move a,b
0002

000008 (00000002) 0003 a: ds 1

00000A (00000002) 0004 b: ds 1

Symbol 0000000A, in the first 1line, is flagged with a
single quotation mark because it is the address relative
to the beginning of the current segment of code.

The following symbols are used to mark the addresses
that will be modified by the linker.

84

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

Single Quotation Mark (')

The Assembler marks all addresses that are relative to
the beginning of the current PSECT by a single
quotation.

Percent (%)

The Assembler marks all addresses that are relative to
the beginning of some other PSECT by a percent sign.

Pound Sign (#)

The Assembler marks all addresses that are relative to
some external symbol by a pound sign.

PROGRAM LISTING

The program listing contains a listing of the original
source code, the assembled object code, and error
messages, if any.

Each of the items in the program is described below:

Address

The address is the hexadecimal address of the first byte
of memory that is created by the instruction being
listed on this 1line. No address is given for those
pseudo operation codes that do not require memory.

Object Code

The instruction or data created by the operation code or
pseudo operation code being listed on this 1line is
displayed in this column. No object code is given for
those pseudo operation codes that do not require memory
or for lines that only have a comment on them.

Symbols Used to Mark Source Code Statements

The Assembler uses four symbols to flag source code
statements in the program listing:

85

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

Asterisk (*) - The Assembler places an asterisk (%)
before the line number of an instruction that uses a
longer address form than necessary.

P - The Assembler marks all privileged instructions by a
letter P immediately before the line number.

Plus Sign (+) - The Assembler places a plus sign after
the line number of any statement that is included in the
program listing as the result of a macro expansion.

Minus Sign (-) - If the STRUCT pseudo operation code is
used to equate offset values, the statements used to
define the offsets are marked with a minus sign after
the line number.

Statement Line Number - This column gives the ordinal
number of the source code line in the program. Each
line of the source code is numbered whether it is listed
or not. (Several options of the LIST pseudo operation
code [refer to Chapter 7] and the Assembler call
statement [refer to Chapter 8] control whether or not
certain parts of the source code are listed.)

Source Code Statement - The original line of source code
is listed in the last column exactly as it appears in
the source code. Portions of each source code statement
may be truncated (see the TRUNC option in Chapter 8) or
wrapped around to the next line (see the WIDTH option in
Chapter 8).

ERROR MESSAGES

The Assembler flags all source code lines that contain
errors with one of the error messages listed in Chapter

9.

OPTIONS

The Assembler gives you a number of options to control
what information is printed in the program listing.

86

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

Turning Off the Program Listing

The printing of the program listing can be controlled
with the LISTON and LISTOFF options of the Assembler
call statement (refer to Chapter 8) or with the ON and
OFF options of the LIST pseudo operation code (refer to
Chapter 7). The Assembler call options control the
printing of the entire program listing while the LIST
options control only the printing of the program listing
following their appearance in the source code.

The default is to print the entire program listing.

Listing False Conditional Assembly Blocks

The printing of the source code that is part of false
conditional assembly blocks (also known as IF assembly
blocks) 1is controlled with the COND and NOCOND options
of the Assembler call statement (refer to Chapter 8) and
with the COND and NOCOND options of the LIST pseudo
operation code (refer to Chapter 7). The default is to
list the source code of the conditional assembly blocks
found to be false during the assembly.

The source code of true conditional assembly blocks is
always listed unless the program listing is suppressed
with the LISTOFF option of the Assembler call statement.

The Assembler call options control the printing of the
entire program 1listing while the LIST options control
only the printing of the program listing following their
appearance in the source code.

Listing the Object Code Created by DC Pseudo Operation
Codes

The printing of the object code that is generated by the
DC pseudo operation code is controlled with the TEXT and
NOTEXT options of the Assembler call statement (refer to
Chapter 8) and with the TEXT and NOTEXT options of the
LIST pseudo operation code (refer to Chapter 7). The
default is to list only one line for each DC
instruction,

The DC pseudo operation code itself is always listed
unless the program listing is suppressed with the
LISTOFF option of the Assembler call statement.
Complicated DC instructions may produce more than one
line of listing unless the NOTEXT option is in effect.

87

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

The Assembler call options control the printing of the
entire program listing while the LIST options control
only the printing of the program listing following their
appearance in the source code.

Listing Macro Call Expansions

The printing of the source code that is generated by the
expansion of macro calls is controlled with the GEN and
NOGEN options of the Assembler call statement (refer to
Chapter 8) and with the GEN and NOGEN options of the
LIST pseudo operation code (refer to Chapter 7). The
default is to list the source code created by the
expansion of macro calls.

The macro call itself is always listed unless the
program listing is suppressed with the LISTOFF option of
the Assembler call statement.

The Assembler call options control the printing of the
entire program listing while the LIST options control
only the printing of the program listing following their
appearance in the source code.

Formfeeds

The FORM and EJECT pseudo operation codes (refer to
Chapter 7) cause the listing to advance to the top of
the next page whenever they are found in the source
code. The pseudo operation codes themselves are never
listed.

Cross-Reference Table

The Assembler can currently print a symbol table only.

Symbol Table

The symbol table contains an alphabetical listing of all
symbols used in the program and their values. When the
value is an address that is not absolute, the address is
followed by one of the address symbols described earlier
in this chapter. The value given for symbols defined by
EXT pseudo operation codes is the address of their first
use in the program.

88

Cromemco 68000 Macro Assembler Instruction Manual
6. The Assembly Listing

The SYMBOL option of the Assembler call statement (refer
to Chapter 8) must be specified to get a copy of this
table. Any symbols following the NOXREF option of the
LIST pseudo operation code but preceding an XREF option

of LIST or the end of the source code will not be
included in the symbol table.

89

Cromemco 68000 Macro Assembler Instruction Manual

90

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

Chapter 7
PSEUDO OPERATION CODES
This chapter describes each of the pseudo operation
codes recognized by the Assembler and gives examples of

their pse. The description of the pseudo operation code
gives a reference to the chapter describing its use.

ALIGN--ALIGN DATA FIELDS

Use the ALIGN pseudo operation code to force the
location counter on a word (long word) boundary.

The format is:

ALIGN{.w,.1}

CONMSG—-CONSOLE MESSAGE
Use the CONMSG pseudo operation code to have the
Assembler send a message to the console during the
second pass of the Assembler.
The format is:

CONMSG [any-message]

where:

any-message

is any string of ASCII characters. The string can
be any length and is not enclosed in quotes.

In the following example:

91

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

IF MONTH EQ 12
CONMSG YEAR-END CALCULATIONS INCLUDED

ENDIF

the message, "YEAR-END CALCULATIONS INCLUDED" is sent to
the console if the conditional block is included in the
object code.

DC—--DEFINE CONSTANT
Use the DC pseudo operation code to reserve a block of
memory as a data area initialized with the values given
in the statement., As much memory will be reserved as is
needed to hold the values given.
The format is:
[label:] DC{.B,.W,.L} values
where:
label:
is an optional label that the Assembler will assign
the value of the program counter for the first byte
of the data area.

.B

has the Assembler reserve one byte for each value
given in the statement.

W

has the Assembler reserve one 2-byte word for each
value given in the statement. This is the default.

.L

has the Assembler reserve one 4-byte word for each
value given in the statement.

92

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

values

are values that may be constants, as described in
Chapter 2, ASCII strings enclosed in single quotes
('), or expressions, as described in Chapter 2. As
many values can be given in a single statement as
will fit on that statement.

ASCII strings are treated as a sequence of quoted
characters, so that
DC.B tabc!
is equivalent to
DC.B tat, 'b', ‘'c'
Note that the statement
DC tab!
produces the same result as
DC 'a', 'b!

i.e., two words, containing 0061h and 0062h,
respectively.

Chapter 5 gives examples of the use of DC.

DROP
The format is:
[label:] DROP <A-register>
This pseudo instruction informs the Assembler that the
specified address register <A register> is no longer to

be used for addressing purposes by the Assembler. See
also the USING pseudo instruction.

93

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

DS--DEFINE STORAGE

Use the DS pseudo operation code to reserve a block of
memory that is not initialized with any value.

The format is:

[label:] DC{.B,,W,.L} expression

where:

label:

is an optional label that the Assembler will assign
the value of the program counter for the first byte
of the data area,

B

has the Assembler reserve the number of bytes
specified by‘the expression,

W

has the Assembler reserve the number of 2-byte
words specified by the expression. This is the
default.

.L

has the Assembler reserve the number of 4-byte
words specified by the expression.

expression

is a legal expression as defined in Chapter 2 that
specifies the amount of memory to be reserved.

Chapter 5 gives examples of the use of DS.
when used with the STRUCT pseudo operation code, DS
equates values to be used as offsets rather than

reserving memory. For more information on this use of
DS, see Chapter 5.

94

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

EJECT--PAPER EJECT

Use the EJECT pseudo operation code to have the
Assembler advance the assembly listing to the top of the
next page.

The format is:
(no label) EJECT (no operands)

EJECT is used for clarity in a print 1listing. For
example, the beginning of a routine can be more clearly
jdentified if it starts at the top of a page.

The EJECT pseudo operation code in the source code will
not be printed on the 1listing. Multiple EJECT pseudo
operation codes are ignored. The FORM pseudo operation
code may be used in exactly the same way as EJECT to
force a paper feed to the top of the next page.

ELS--CONDITIONAL EXECUTION

The ELS pseudo instruction code marks the end of
conditional code initiated by an IFcc instruction.
Simultaneously it means the start of code that is to be
executed if the condition stated in the IFcc instruction
is not true (see the IFcc pseudo operation code).

The syntax is:
(no label) ELS[.S,.W]
As the ELS pseudo instruction is converted to a branch

instruction, the size extension supplied is applied to
the branch instruction.

ELSE—--CONDITIONAL ASSEMBLY

Use the ELSE pseudo operation code to mark the beginning
of a block of code in a conditional assembly block that
the Assembler is to include if the condition tested in
the IF statement is false.

The format is:

(no label) ELSE (no operand)

95

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

Chapter 3 shows the use of ELSE in conditional
assemblies.

END--END OF ASSEMBLY

Use the END pseudo operation code to terminate the
assembly of a module and to specify the address where
execution of the program is to begin (transfer address).

The format is:

[label:] . END [expression]

where:

label

is a label that will be assigned the current value
of the program counter.

expression

is a value or label that specifies the starting
address of the program. Use the expression only in
the module in which execution of the program is to
begin. The expression can be any legal expression
as defined in Chapter 2 or any label defined in
that module.

Chapter 4 describes the use of the END pseudo operation
code to specify the address at which program execution
is to begin.

Following is a sample use of the END pseudo operation
code to terminate assembly of a main module:

ENTRY MAIN
MAIN: LEA A7,1800h

END MAIN

This sample shows termination of a sub-module to be
linked to the main module:

96

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

BEGIN: MOVE #10,D2

END

The END pseudo operation code is a signal to the
Assembler that a logical body of code is complete.
Therefore, only one END pseudo operation code should
appear in a module. Should the END appear in the middle
of a block of code, everything following the pseudo
operation code will be ignored by the Assembler.

ENDIF--END OF CONDITIONAL ASSEMBLY

Use the ENDIF pseudo operation code to mark the end of a
conditional assembly block.

The format is:
(no label) ENDIF (no operand)

Chapter 3 shows the use of ENDIF pseudo operation codes
in conditional assemblies,

ENTRY-—ENTRY LABELS
Use the ENTRY pseudo operation code to declare that a
module contains definitions for the global labels

listed. The labels must have their values assigned
within the module.

The format is:
(no label) ENTRY labell[,label2,...]
where:
labell,label2,...

are the names of global labels defined within the
module.

As many labels may be named in a single statement

as will fit. Multiple ENTRY statements can be
given in a module.

97

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

ENTRY statements may appear anywhere within a program
module, but are typically written at the top of a file
to be easily found in the print listing.

EQU-—-EQUATE

Use the EQU pseudo operation code to assign a value to a
label.

The format is:
label EQU expression
where:
label
is the label to be equated with the value.
expression |
is any legal expression, as defined in Chapter 2,
specifying the value. All the terms of the

expression must have been previously defined.

Chapter 5 gives examples of the use of equated values.

EXITM~-END MACRO EXPANSION
Use the EXITM pseudo operation code to unconditionally
halt the expansion of a macro. The EXITM pseudo
operation code unconditionally halts the expansion of a
macro expansion.
The format is:

(no label) EXITM (no operand)

Chapter 3 gives examples of the use of EXITM statements.

EXTERN—-EXTERNAL LABELS
Use the EXTERN pseudo operation code to declare that

global labels used in a module are assigned values in
another module of the program.

98

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

The format is:

(no label) EXTERN labell[,label2,...]

where:
labell,label2,...

are the names of global 1labels defined in other
modules.,

As many labels may be named in a single statement
as will fit, Multiple EXTERN statements can be
given in a module.

EXTERN statements may appear anywhere within a program
module, but are typically written at the top of a file
to be easily found in the print listing.

Note that a 1label name declared as an external to a

module may hot be redefined (i.e., used in the label
field) within that module.

FI--IPcc THEN ELS TERMINATING SYMBOL
The FI pseudo instruction marks the end of the

conditional block of code initiated by an IFcc or the
ELS instruction (see the IFcc pseudo instruction code).

The format is:

(no label) FI

FORM--PAPER FORMFEED

Use the FORM pseudo operation code to have the Assembler
advance the assembly listing to the top of the next

page.
The format is:
(no label) FORM (no operands)
FORM is used for clarity in a print 1listing. For
example, the beginning of a routine can be more clearly

identified if it starts at the top of a page. The FORM
pseudo operation code in the source code will not be

99

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

printed on the listing. Multiple FORM pseudo operation
codes are ignored. The EJECT pseudo operation code may
be used in exactly the same way as FORM to force a paper
feed to the top of the next page.

IF--BEGIN CONDITIONAL ASSEMBLY

Use the IF pseudo operation code to define a conditional
expression that the Assembler will evaluate to decide
whether or not to include the block of code following
the IF statement. If the expression 1is true, the
Assembler includes the block; if it is false, the block
is not included.

The format is:
(no label) IF expression
where:
expression
is any legal expression, as defined in Chapter 2.

The expression is considered true if it evaluates
to any non-zero value.

All the terms of the expression must have been
previously defined. The expression must evaluate
to an absolute guantity.

The IF pseudo operation code is used with the ELSE and
ENDIF pseudo operation codes to define conditional
assembly blocks. See Chapter 3 for more information on
these blocks.

IFcc—-—IF THEN ELS PROGRAMMING STRUCTURE
The syntax of IFcc pseudo instruction is:

[label:] IFcc[.S,.W]
ELS

FI

Size extension, if used, is applied to the branch
instruction to which IFcc is converted.

100

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

To simplify writing conditional statements in the
assembly language, the Assembler has special pseudo
operation codes. For example, the program fragment

BNE LABEL
<some instructions>

label:

has the meaning that <some instructions> are executed if
the zero flag in the CCR is set as the result of some
previous instruction. The same program segment can be
written in a more structured way:

IFEQ
<some instructions>
FI

There are 14 such conditional instructions:

IFCC, IFCS, IFEQ, IFGE, IFGT, IFHI ,IFLE

IFLO, IFLT, IFMI, IFNE, IFPL, IFVC ,IFVS

one for each possible branch condition. Such
instructions are referred to by the common name IFcc.
Each instruction is translated into conditional branch
on the complementary condition to a location defined by
the FI statement, The lines of code between the IFcc
and the FI instruction form the conditional block of
code. There is also an extended form of the conditional
structure, for example:

CMP #5,d0

IFGT

<some code>

ELS

<some other code>
FI

101

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

This program fragment is equivalent to

CMP #5,D0

BLE LARELl

<some code>

BRA LABEL2
LABELl: <some other code>
LABEL2:

with the obvious meaning that if the value in the DO
register is greater than 5, then <some code> is
executed, else <some other code> is executed.

The IFcc instructions offers two benefits:

- You do not have to invent labels to mark the position
you want to jump to.

- Programming is more natural. - Instead of writing "if
condition is not true, then jump over some code," you
really write "if condition is true, then execute some
code."

Conditional structures formed by IFcc may be nested to

16 levels, i.e., there may be an IFcc structure within
an IFcc structure, and so on, up to 16 times.

* INCLUDE--INCLUDE SOURCE CODE FILE
Use the *INCLUDE pseudo operation code to specify a file
containing assembly language source code that the
Assembler is to insert within the module it is
assembling.
The format is:

*INCLUDE 'pathname’

where:

pathname

is the name of the file to be included.
The *INCLUDE pseudo operation code must begin with the
asterisk in column 1. No label field is permitted with

this operation code. The quoted pathname may follow the
*INCLUDE after at least one delimiter (SPACE or TAB).

102

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

All of the named file is included in the present file.
If the included file has an END pseudo operation code,
this END pseudo operation code will terminate assembly
of the including module when it is encountered.

An example illustrates this. Suppose this is the source
file to be assembled:

BEGIN: LEA D70

*INCLUDE '/USERS/ACCT/USERFILE.ASM'

LEA AC,...
BSR cee
END

and suppose the following is USERFILE.ASM:

START: MOVE Dl,...
MOVE D2,...
END

Because the USERFILE contains an END pseudo operation
code, the Assembler will never see the second LEA and
the BSR statements, Assembly will be terminated
following the inclusion of USERFILE. To avoid this
problem, simply leave off the END pseudo operation codes
of files that are to be included in the assembly of
other files, or put the *INCLUDE pseudo operation code
as the last one in a source program and leave off that
source's END pseudo operation code.

The *INCLUDE pseudo operation code is particularly
useful in conjunction with conditional assembly blocks
of code. (See the discussion of conditional assembly in
Chapter 3.) For example, a file may be included
depending on whether or not an IF pseudo operation code
is satisfied. Also, the IF pseudo operation code can be
used to determine which of several files will be
included.

An example of this use of *INCLUDE follows. One of
three different files will be included and the others
ignored depending on the value of the label DECIDE
(defined earlier in the source): '

103

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

IF DECIDE EQ O
*INCLUDE 'MOVROUTN.ASM'

ENDIF

IF DECIDE EQ 1
*INCLUDE 'SAVROUTN,.ASM'

ENDIF

IF DECIDE EQ 2
*INCLUDE 'LOADROUT.ASM'

ENDIF

*INCLUDEs may be nested up to eight levels; more than
this will generate a nesting error.

IRP--ITERATIVE REPEAT

Use the IRP pseudo operation code to write a repeat
expansion definition that substitutes a new value for
the argument each time the definition is repeated. The
expansion is repeated until each argument has been used
once.

The format is:
[label:] IRP \arg,valuel[,value2,value3,...]

where:
label

is an optional 1label that will be assigned the
value of the program counter for the first byte of
the first instruction of the first expansion.

\arg

is the argument that will be substituted with the
values given in this statement. The argument name
can be any valid label preceded by a backslash
character (\).

valuel ,value2,value3,...

are the values to be substituted for the argument
in the expansions. The values can be any quantity
or expression that is appropriate for its use in
the expansion. The values are substituted exactly

104

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

as they appear in the IRP statement. At least one
value must be given; as many more can be given as
will f£it on one statement. The wvalues must be

separated by a comma.

Chapter 3 contains a complete description of repeat
expansions.

IRPC--ITERATIVE REPEAT WITH CHARACTERS

Use the IRPC pseudo operation code to write a repeat
expansion definition that substitutes a new character
from a string of characters for the argument each time
the definition is repeated. The expansion is repeated
until each character has been used once.

The format is:
[label:] IRPC \arg,'character-string'
where:
label

is an optional 1label that will be assigned the
value of the program counter for the first byte of
the first instruction of the first expansion.

\arg

is the argument that will be substituted with the
values given in this statement. The argument name
can be any valid label preceded by a backslash
character (\).

‘character-string’

is a string of characters, each of which will be
used once as the substitution for the argument.
Any valid ASCII character can be used within the
string. The string must be enclosed by single
quote marks (').

Chapter 3 contains a complete description of repeat
expansions.

105

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

JSYS--CROMIX SYSTEM CALLS

JSYS is a pseudo operation code which is translated into
TRAP 0 instruction, followed by the system call number.
The syntax is:

[label:] JSYS <system call number>
where:
system call number

is an immediate operand whose value is the system
call number.

System call numbers are defined in the file
/equ/jsysequ.asm, To use a system call, load the
registers with required values and execute the
appropriate JSYS instruction. As in Z80 Cromix, if an
error is found during the system call, the carry flag is
set in the CCR, and the register DO contains the error
number. The program HELLO, given at the beginning of
chapter 2, is an example of how to use JSYS.

LIST--ASSEMBLY LISTING OPTIONS

The LIST pseudo operation code is used to set the
Assembler print-listing options. The options set do not
affect the actual object code produced by the Assembler.
They simply suppress undesired or repetitive sections of
the assembly 1listing. The format of the LIST pseudo
operation code is:

(no label) LIST [optionl,option2,...]
where:
optionl,option2,...

are the LIST options described in the following
paragraphs. The number of options that may be
placed on a line is limited only by the line
length. However, five is the practical 1limit
because more than this will result in duplicate or
conflicting options. Options may be given in any
order.

If conflicting options are given (conflicting options
are the pairs GEN-NOGEN, COND-NOCOND, ON-OFF
TEXT-NOTEXT, and XREF-NOXREF), only the last one of the
pair on the line will be used.

106

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

The LIST pseudo operation code may be used as often as
desired throughout a source code file. However, the
following options of the Assembler call override any
specifications made with the LIST pseudo operation code

-cond -nocond
-gen -nogen
-liston -listoff
-text -notext
-xref -noxref

(Refer to Chapter 8 for more information on these
options.) For example, if the LIST Option -gen is
specified when calling the Assembler, all NOGEN operands
of LIST in the source would be overridden. However, the
other operands of LIST in the source would still be
effective.

The descriptions of the 10 LIST pseudo operation code
options follow:

ON--Turn On Assembly Listing

Resumes printing of the program listing. Since the
default is to print the listing, this option normally
would be specified only after printing has been turned
off by the LIST OFF option.

OFP--Turn Off Assembly Listing

Suppresses the printing of the program listing until the
end of code or a LIST ON option is encountered. The
default is to print the entire program listing.

COND--Begin Listing False Conditional Assemblies

Lists all blocks of code that are included in the source
file as part of a conditional assembly. The blocks are
listed regardless of whether or not the IF condition is
true or false during assembly.

Since the Assembler normally prints all blocks of
conditional assembly, this option has effect only if
printing has been turned off with the LIST NOCOND

option.

107

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

NOCOND--Do Not Print Palse Conditional Assemblies

The Assembler does not list conditional assembly blocks
of code that are not included in the object code because
the IF for the block is false. The Assembler still
lists blocks that are included in the object file
because the IF for the block is true.

This option will remain selected until the end of code
or a COND option, The option is turned off when
assembly of a program begins and thus must first be
selected using the LIST pseudo operation code.
Selection of NOCOND in no way affects the object code of
an assembled file.

GEN-—-Begin Listing Generated Macros

Forces the printing of the macro expansion £following
every macro call, until end of code or a NOGEN option.
GEN is the default when assembly of a source file
begins; therefore, it would generally be selected only
to override a previous NOGEN option. '

NOGEN--Do Not Print Generated Macros

Forces the Assembler to not print macro expansions.
However, macro definitions are always printed, as are
the macro calls themselves; it is only the code that the
macro generates that is not printed. This option
remains selected until the end of code or a GEN option.
The option 1is turned off when assembly of a program
begins and thus must first be selected using the LIST
pseudo operation code. Selection of NOGEN in no way
affects the object code of generated macros of an
assembled source file.

TEXT--Print Object Code

Causes the additional lines created by DC pseudo
operation codes to be listed as part of the assembly
listing. Since the default is not to print the
additional lines, this option may be turned on at the
beginning of the assembly.

108

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

NOTEXT--Do Not Print Object Code

Suppresses the printing of the additional lines created
by DC pseudo operation codes in the assembly listing
until the end of code or a LIST TEXT option is
encountered.

XREF--Cross—Reference Symbols

The Assembler includes all symbols found after this
option in the Symbol Cross-Reference and in the Symbol
Table if it is generated as part of the assembly
listing. Including symbols in the cross reference 1is
the default when assembly of a source file begins;
therefore, it would generally be specified only to
override a previous NOXREF option.

NOXREF--Do Not Cross—Reference Symbols

The Assembler does not include any symbols found after
this option in the Symbol Cross-Reference and in the
Symbol Table if it is generated. This option remains
selected until the end of code or an XREF option is
found. The default at the beginning of the assembly is
to include symbols in the cross-reference.

A typical reason for selecting this option is to prevent
the cross-referencing of symbols found in files that are
included in the code because of the *INCLUDE and *MACLIB

pseudo operation codes when not all of the symbols in
the included code are used in the main program.

*MACLIB--INCLUDE MACRO DEFINITION LIBRARY
Use the *MACLIB pseudo operation code to have the
Assembler copy the contents of a macro definition
library into the source code. Up to 16 different
libraries may be defined during one assembly.
The format is:

*MACLIB 'pathname'

where:

pathname

is the name of the macro library to be included.

109

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

The *MACLIB pseudo operation code must begin with the
asterisk in column 1. No label field is permitted with
this operation code. The filename may follow the
*MACLIB after at least one delimiter (SPACE or TAB).

At present, the *MACLIB pseudo operation code is not
implemented.

MACRO—-BEGIN MACRO DEFINITION

Use the MACRO pseudo operation code to mark the
beginning of a macro definition, to name the macro, and
to specify the parameters used within the macro. The
names of macros defined with this pseudo operation code
are cross-referenced in the symbol cross-reference
table.

The format is:

name MACRO[.\parameter(] [\parémeterl,\parameterz,,..]
where:
name

is a legal Assembler label, as described in Chapter
2. The name is used to call the macro.

\parameter0

is an optional "dummy" name that the Assembler will
substitute with a value given as an extension of
the macro name in the macro call. The backslash
indicates that this is a parameter and must precede
the parameter name everywhere it appears in the
macro definition.

\parameterl ,\parameter2,...

are "dummy" names that the Assembler will
substitute with values given in the macro call.
The backslash character must precede the parameters
both in the MACRO statement and in the macro
definition. As many parameters may be named as
will fit on one statement. Commas must separate
the parameters. A SPACE ends the parameter list.

Parameter names that appear early in the 1list

should not be subsets of parameters that appear
later in the list because the Assembler has no way

110

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

of determining the end of a parameter. Chapter 3
gives examples of legal and illegal parameters.

Chapter 3 gives a complete description of using and
writing macros.

MEND--END MACRO, REPEAT EXPANSION, or STRUCTURE
DEFINITION

Use the MEND pseudo operation code to terminate the
block of code that forms a macro, repeat expansion, or
structure definition.,

The format is:
(no label) MEND (no operand)

The rules for using MEND in macro and repeat expansion
definitions are given in Chapter 3. The rules for using
MEND in structure definitions are discussed in Chapter
5.

NAME--MODULE NAME

Use the NAME pseudo operation code to assign a name to a
module for use by the linker. The format is:

(no label) NAME name
where

name

is the name of the module and follows the same
syntax rules as those given for 1labels in Chapter
2.

The NAME pseudo operation code is optional; it is not
required for 1linking of modules. However, if the NAME
pseudo operation code is omitted, the Assembler
automatically assigns the filename to be the module
name. Chapter 4 describes the requirements for naming
modules.

NAME is different from TITLE. The TITLE pseudo
operation code merely tells the Assembler to print a
heading at the top of each page of the listing but has
no effect on the object code. NAME forces the name of
the module to be saved as part of the object code file.

111

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

Thus, a library manager program is able to locate object
code files by name.

OPT--CHOOSING THE ADDRESS MODE

To help the Assembler in making the correct choice from
various addressing modes, an internal variable whose
(bit) structure defines the allowed addressing modes is
provided. The structure of that variable, together with
a discussion on choosing the optimal mode in a given
situation, 1is described in Chapter 2. The variable
containing the mode setting information is initialized
to the value OPT_DEFAULT (see the file /equ/optequ.asm),
with the consequence that:

- All absolute addresses will be long absolute
addresses.

- All external references will be translated to
absolute addresses.

- All references to other program sections will be
translated to absolute addresses.

- Forward references will be translated into program
counter (PC) relative addresses if the instruction

allows it; otherwise, they are translated into long
addresses.

~ Absolute values for addresses are considered to be
programming errors.

The OPT pseudo instruction has the syntax:
OPT <expression>
which sets the above-mentioned internal variable to the

value of a given expression. Obviously, the expression
should be built using the bit numbers from the

/equ/optequ.asm file.

POP

To simplify the stack manipulation there are two forms
of the POP pseudo operation code, with the syntax:

[{label:] POP[.W,.L] <ea>
[label:] POP[.W,.L] {register list>
112

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

where:
<ea>

is the effective address of the value to be popped
from the stack.

<register list>

is a list of two or more registers that are popped
from the stack by the MOVEM instruction.

In the first form, the POP instruction is converted into
MOVE{.W, .L] (A7) +,<ea>

This means that all forms of the effective address are
allowed and the condition code register is affected by
the move (unless <ea> is an address register).

In the second form, the register list may be any
combination of address and data registers. The
condition code register is not affected. The <register

list> may be built from individual registers (in any
order), separated by the "/" character as in:

POP.L D2/A4/D0

or a range of registers as in:
POP.W D1-D4

or both as in:
POP DO-D3/A2-A4/D5

PSECT-—PROGRAM SEGMENT

Use the PSECT pseudo operation code to define the
characteristics of a program segment,

The format is:
[label:] PSECT [name] (<attrib>,<attrib>,...)1]1]
113

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

name

identifies the program segment. Name must follow
the syntax for label, or it may be written in
gquotes and then can be an arbitrary string. Each
PSECT must have a unique name.

attrib

may be one of the following:

REA readable
WRI writable
EXE executable
SHA sharable
COM ~ common

ABS absolute

The meaning of the attributes is discussed in
chapter 4.

The first time a program segment is selected, the PSECT
pseudo operation code must define all the attributes.
Subsequent usages of the same program segment should
just define its name. Note that the assembly starts in
the default program segment with no name and attributes
REA, WRI and EXE. Additional program segments are
assigned attributes REA and WRI unless otherwise

specified.

Chapter 4 describes the use of program segments.

PUSH

To simplify the stack manipulation, there are two forms
of the PUSH pseudo operation code, with the syntax:

[label:] PUSH[.W, .L] <ea>

[label:] PUSH[.W,.L] <register list>
where:

<ea>

is the effective address of the value to be pushed
on the stack.

114

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

<register 1list>

is a list of two or more registers that are pushed
on the stack by the MOVEM instruction.

In the first form the PUSH instruction is converted into

This means that all forms of the effective address are
allowed, and the condition code register is affected by
the move (unless <ea> is an address register).

In the second form the register list may be any
combination of address and data registers., The
condition code register is not affected. The <register
list> may be built from individual registers (in any
order), separated by the "/" character as in:

PUSH.L D2/A4/D0
or a range of registers as in:
PUSH.W D1-D4

or both -as in:

o

PUSH D0-D3/A2-A4/D5

*RELLIB-—-INCLUDE LIBRARY OF RELOCATABLE ROUTINES
Use the relocatable 1library pseudo operation code to
have the linker search a library of relocatable routines
for definitions of unresolved global labels.
The format is:

*RELLIB 'filename'

where:

filename

is the name of the file containing the routines.

115

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

*RELOBJ--INCLUDE ANOTHER OBJECT FILE

Use the force load pseudo operation code to have the
linker load some other file.

The format is:
*RELOBJ 'filename'
where:
filename

is the name of the file that the linker will 1load
automatically.

REM--REMARK

Use the REM pseudo operation code to write a comment
that will be printed starting in column 1 of the program
listing. The REM pseudo operation code itself is never
printed.

The format is:
(no label) REM [remark]
where:
remark

is any character string you want printed. It does
not have to be enclosed.in quotes and can be as
long as will fit in one statement.

The Cromemco 3703 Printer will expand a line if the line
contains the CONTROL-N (0Eh) character. With CONTROL-~N
as the first character of a remark, the printer expands
the line to make it more noticeable. However, when
using this feature, be sure that the remark to be
printed does not exceed half the width specification of
the WIDTH and TRUNC options of the Assembler call
statement. (Refer to Chapter 8.) For example, most
listings use the default value of TRUNC=128; thus, the
number of characters in the REM pseudo operation code
that use CONTROL-N should not exceed 64. This prevents
the printer from printing off the paper. '

116

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

REPT--REPEAT EXPANSION

Use the REPT pseudo operation code to write a repeat
expansion definition that repeats the definition a fixed
number of times.

The format is:
[label:] REPT expression
where:

label

is an optional 1label that will be assigned the
value of the program counter for the first byte of
the first instruction of the first expansion.

expression

is any 1legal expression, as defined in Chapter 2,
that gives a numeric value defining the number of
times the definition is to be repeated.

Chapter 3 contains a complete description of repeat
expansions.

SET--SET EQUATED VALUE

Use the SET pseudo operation code to assign a value to a
label.

The format is: ’
label SET expression
where:
label
is the label to be equated with the value.
expression
is any legal expression, as defined in Chapter 2,
specifying the value. The terms of the expression
must have been previously defined. Note that SET

may redefine the wvalue of a label (opposite to the
EQU pseudo operation code).

117

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

Chapter 5 gives examples of the use of equated values.

STRUCT--STRUCTURED EQUATE

Use the STRUCT pseudo operation code to define a series
of equated values to be used as offsets from a base.

The format is:
(no label) STRUCT expression
where:
expression

specifies the initial value for the offset. You
must give a value, even if it is zero.

As described in Chapter 5, the STRUCT statement is used
with DS and MEND statements to define the offsets.

For example, the following structure:

STRUCT 20
X DS.B 4
Y DS.B 2
Z: DS.B 1
SIZE: DS.B 0
MEND

is the functional equivalent of:

X: EQU 20
Y: EQU 24
YA EQU 26
SIZE: EQU 27

Each of these sections of code defines offsets of the
labels X, ¥, Z, and SIZE,

The DS pseudo operation code does not reserve storage
area within the bounds of a structure definition.

118

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

SUBTTL--ASSEMBLY LISTING PAGE SUBTITLE

Use the SUBTTL pseudo operation code to print a subtit;e
at the top of each page of a print listing beginning in
column 1. The format is:

(no label) SUBTTL [subtitle]
or

(no label) TITLE2 [subtitle]

where:

subtitle

is an optional ASCII character string that does not
need to be enclosed in quotes and can be as long as
will fit in the statement or on the line of the
assembly listing.

As with the REM pseudo operation code, the Subtitle
phrase may contain the character CONTROL-N (0OEh) . On
the Cromemco 3703 Printer, this character expands the
line to twice its normal width. For this reason, when
using CONTROL-N in a SUBTTL pseudo operation code, the
number of characters in the Subtitle phrase should not
exceed half the number of characters that will be
specified in the WIDTH or TRUNC option of the Assembler
call statement (refer to Chapter 8).

The SUBTTL pseudo operation code should be the second
line of a program in order to be printed on page 1 as
well as on the other pages. Subtitles may be changed in
the middle of a source program simply by giving a new
SUBTTL pseudo operation code. In this case, SUBTTL
causes an automatic formfeed. The Assembler inserts a
blank line where the Subtitle phrase would be if SUBTTL
is not specified.

TITLE--ASSEMBLY LISTING PAGE TITLE

Use the TITLE pseudo operation code to print a title at
the top of each page of a print listing beginning in
column 1. The format is:

(no label) TITLE [title]

119

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

where:
title

is an optional ASCII character string that does not
need to be enclosed in gqguotes and can be as long as
will fit in the statement or on the line of the
assembly listing.

As with the REM pseudo operation code, the title may
contain the character CONTROL-N (0Eh). On the Cromemco
3703 Printer this character expands the line to twice
its normal width. For this reason when using CONTROL-N
in a TITLE pseudo operation code, the number of
characters in the title should not exceed half the
number of characters that will be specified in the WIDTH
or TRUNC option of the Assembler call statement (refer
to Chapter 8).

The TITLE pseudo operation code should be the second
line of a program in order to be printed on page 1 as
well as on the other pages. Titles may be changed in
the middle of a source program simply by giving a new
TITLE pseudo operation code. In this case, TITLE causes
an automatic formfeed.

USING

The format is:
[label:] USING <value>, <A-register>

Use the USING pseudo operation code to help the
Assembler generate shorter addresses. USING tells the
Assembler that the specified address register
<A-register> is loaded with the declared <value> so that
it can generate the effective address of an instruction
in the form of "address register with displacement."

For the Assembler to generate such an effective address,
the address specified in the instruction should be in
the same program segment as the declared value and
within a range of 32 Kbytes of it. The USING
instruction is in effect until the end of the program,
or until the corresponding DROP pseudo instruction is
encountered. It is the programmer's responsibility to
load the A register with the declared value. The USING
pseudo instruction merely notifies the Assembler it is
there.

120

Cromemco 68000 Macro Assembler Instruction Manual
7. Pseudo Operation Codes

VER--VERSION OF THE PROGRAM

The format is:

VER <version>,<revision>

VER <version>.<revision>

may be used to include the version and revision number
of the program into the generated object file.
<revision> and <version> may be arbitrary expressions

which evaluate to an absolute value in the range 0 to
255,

121

Cromemco 68000 Macro Assembler Instruction Manual

122

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

Chapter 8

CALLING THE ASSEMBLER

Once you have prepared the source file, you can assemble
it by calling the Assembler program, ASM. For each
source code file listed in your call to the Assembler,
ASM:

1. Reads the source code file;
2, Assembles the 68000 source code;

3. Produces a file containing the object code module;
and

4, Produces a file containing the 1listing for the
assembly.

The figure also shows the use of file extensions by the
Assembler. The source code file must have the extension
.asm. The object code file is given the extension .068,
and the print listing file is given the extension .prn.

Chapter 9 describes the error messages that the
Assembler can produce.

The format of the Assembler call is:

asm <options and source-code-filenames>

where:

asm

Calls the Assembler.
source-code—filenames

Are the names of one or more files containing
source code to be assembled. You can prefix the
filenames with pathnames specifying the directories
containing the files. Specifying Source Code
Files in this chapter gives more detailed
information.

123

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

options

Are various optional parameters specifying default
directories or requesting special options in the
physical layout of the print listing, the
information to be included in the print listing, or
other features. The available options are

described in this chapter.

You can mix the options and filenames in any order.
Each option applies to the files that follow that
option.

SPECIFYING THE SOURCE CODE FILES

When ybu call the Assembler, you must tell it:

1. The names of the files you want assembled; and

2. The directories in which the files reside.

The filenames must match the names of the files that

contain the source code. This means that any name given
must contain 1 to 24 characters from the following set:

A-Z a-z 0-9 $ _ .

The source filename will have the extension .asm. If
you do not write the extension, the Assembler appends
it.

You can use ambiguous characters in the filenames in
your call to represent strings of characters in the
names of files. Say, for example, that a directory
contains -- among other files -- three files named
sortl.asm, sort2.asm, and sort3.asm. If you want to
assemble all three files, you could list them separately
in the call:

asm sortl sort2 sort3
or use the Cromix Shell ambiguous character expansion:

asm sort?.asm

124

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

where ? matches any single character, For example,
suppose a directory contains these files:

sortvl.asm manvl.asm purvl.asm
sortv2.asm manv2.asm purv2,.asm
purv3.asm

and vl, v2, and v3 in the filenames represent different
versions of modules. If you want to assemble all the
modules that begin with manv, you could use this call:

asm manv?.asm

The Assembler will assemble every file whose name
contains the characters manv, followed by a single
character, followed by the filename extension .asm. In
this directory, this would be the files manvl.asm and
manv2.asm.,

If you want to assemble only the second version of the
modules (containing the string v2) you could use this
call:

asm *v2.asm

where * matches any string.

The Assembler will assemble every file whose name begins
with any number of characters, followed by v2, followed
by the filename extension .asm. 1In this directory, this
would be the files sortv2.asm, manv2.asm, and purv2.asm.

In a similar manner, if you want to assemble all the
modules in the directory, you could use this call:

asm *.asm
where * matches any string preceding the filename
extension .asm.

You have three options for specifying the directory in
which a file resides:

- You can give a pathname for the directory as part of
the filename:

125

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

asm /assembly/library/sortvl “/root

In this example, the Assembler uses the pathname
/assembly/library to find the file sortvl.asm and
uses the pathname °/ to find the file root.asm.

If you give a pathname, the Assembler always looks in
the specified directory for the file.

- You can use the -asm parameter to specify a default
directory:

asm -asm /assembly/manufacturing manv2 purv3

In this example, the Aésembler looks in the directory
/assembly/manufacturing for the files manv2.asm and

purv3.asm.

Unless you give a pathname as part of the filename,
the Assembler looks in the default directory for a
file.

- You can refer to the current directory by specifying
neither a pathname nor a default directory:

asm *.,asm

In this example, the Assembler assembles every file
having the extension .asm that is in the current
directory.

You can mix the various forms of specifying a directory:
asm /library/sortvl —asm /manufacturing manv#*.asm

In this example, the Assembler looks for the file
sortvl.asm in the directory library because the pathname
is given as part of the filename. The Assembler looks
for the files that match manv*.asm in the directory
manufacturing because this is the default directory.

Provided the length of the call does not exceed 128

characters, you can specify any number of files to be
assembled with a single command to the Assembler.

126

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

SPECIFYING THE DESTINATION OF OBJECT CODE AND PRINT
LISTING FILES

The Assembler normally places the object code and print
listing files for each module in the same directory from
which it read the source code file. You can override
this placement with two parameters:

The -068 parameter specifies a directory into which
all object code files are to be placed, regardless of
where the source code files reside. 1In this example:

asm -068 /object /library/sort2 /manufacturing/root

the object code from the files modules sort2 and
root would go in the directory /object.

The -prn parameter specifies a directory into which
all print listing files are to be placed, regardless
of where the source code files reside. In this

example:
asm -prn /print /library/sort2 /manufacturing/root

the print listing from the files modules sort2 and
root would go in the directory /print.

Specifying Options in the Assembler Call

You can specify the following types of options when
calling the Assembler:

Options that specify default directories for the
source code files, the object code files, and the
print listing files. The options that fall into this
group are —asm, -068, and -prn.

Options that control the type of information placed
in the assembly listing.

For example, you can include a cross-reference of the
program's labels in the assembly 1listing, while
excluding the listing of the program's symbols. The
options that fall into this group are -COND, ~NOCOND,
-GEN, -NOGEN, -LISTON, -LISTOFF, -XREF, -NOXREF,
-SYMBOL, -TEXT, and, -NOTEXT,.

127

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

~ Options that control the layout of the assembly
listing.

For example, you can control the width of lines in
the listing. The options that fall into this group
are —-PAGE, -TRUNC, and -WIDTH.

You can specify any number of options in a single
Assembler call, as long as the total call is not more
than 128 characters, If your terminal automatically
generates a RETURN before 128 characters are reached,
you can issue a CONTROL-E (a physical but not logical
RETURN) to continue the line up to the maximum length.
You can specify options in any order, but they must be
separated by at least one blank space. You can specify
the options in upper—~ or lower-case letters, or a
mixture of the two.

The following sections describe these options.

-ASM - Using the -ASM option specifies a default
directory for source code files. The Assembler searches
this directory for any file for which you do not
specifically give a pathname. Specify the default
directory in this way:

-ASM pathname

The pathname specifies the default directory either by
specifying the path from the root directory or from the
current directory.

If you do not specify a default directory, the Assembler
uses the current directory.

-COND, -NOCOND - If ~-COND is specified, the Assembler
lists all blocks of code that are included in the source
file as part of an IF pseudo operation code condition.
The blocks are listed regardless of whether or not the
IF condition is true or false during the assembly. If
-NOCOND is specified, the Assembler does not list any
blocks of code that are part of a false IF condition.

The -COND and -NOCOND options override any specification
made with the LIST pseudo operation cocde in the source
file. If you do not use either option when calling the
Assembler, then any specification made with the LIST
pseudo operation code takes affect. It

128

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

you do not use either the options or LIST, then all
blocks of code that are part of an IF condition are
included, regardless of whether or not the condition is
true or false.

—-GEN, -NOGEN - If -GEN is specified, the Assembler lists
the source code and object code produced by macro calls
in the source file. If -NOGEN is specified, the
Assembler does not list the code produced by macro
calls. Either way, the macro call itself appears in the

assembly listing.

The -GEN and -NOGEN options override any specification
made with the LIST pseudo operation code in the source
file. If you do not use either option when calling the
Assembler, any specification made with the LIST pseudo
operation code takes affect. If you do not use either
the options or LIST, then the code produced by the macro
calls will be shown.

-LISTON, -LISTOFF - If -LISTON is specified, the
Assembler lists the source code and object code in the
assembly listing. If -LISTOFF is specified, the
Assembler does not list these codes.

The -LISTON and -LISTOFF options override any
specification made with the LIST pseudo operation code
in the source file. If you do not use either option
when calling the Assembler, then any specification made
with the LIST pseudo operation code takes affect. If
you do not use either the options or LIST, the codes are
listed. -

-PAGE - The -PAGE option controls the number of lines
that will appear on each page of the assembly listing.
This number includes the space for the heading printed
at the top of each page, but does not include the blank
lines used to separate one page from another. Use this
option if you do not wish to have 59 lines, the default,
of listing per page. You may specify as few as 10 or as
many as 256 lines per page. The format of this option
is:

-PAGE lines-per-page

129

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

~SYMBOL - If -SYMBOL is specified, the Assembler prints
a listing of all symbols found in the source file,
together with their associated value. If you do not
specify -SYMBOL, you do not get this listing.

-TEXT, -NOTEXT - If -TEXT is specified, the Assembler
prints all the lines of the object code generated by DB
pseudo operation codes in the assembly listing. If
~-NOTEXT is specified, the Assembler prints only one line
of the object code.

The -TEXT and -NOTEXT options override any specification
made with the -TEXT, -NOTEXT options of the LIST pseudo
operation code in the source file. If you do not use
either option when calling the Assembler, any
specification made with -TEXT, -NOTEXT in the source
file takes affect. If you do not use either the options
or pseudo operation codes, only one line of code
generated by a DC pseudo operation is listed.

-TRUNC - The -TRUNC option specifies the maximum line
length used in the assembly 1listing. Lines over the
specified length are truncated. Use this option if you
want to specify a line length other than the default
(128 characters) and to truncate lines that exceed the
selected length. You can specify a line length between
39 and 255 characters. The format of this option is:

-TRUNC 1line-width

The -TRUNC and -WIDTH options are mutually exclusive,
If both are used in the same Assembler call, the last
one in the call is used. The -TRUNC option differs from
the -WIDTH option in that, if the -TRUNC option is in
effect, lines 1longer than the maximum specified are
truncated. If the -WIDTH option is in effect, lines
longer than the maximum specified are wrapped around to
the next line of the assembly listing.

If you specify neither -TRUNC nor -WIDTH, the Assembler
truncates any line over 128 characters.

-WIDTH - The -WIDTH option specifies the maximum line
length used in the assembly 1listing. Lines over the
specified length are wrapped around, that is, continued,
on the succeeding 1line. Use this option if you want
lines shorter or longer than 128 characters, the
default, and you want lines exceeding the length you

130

Cromemco 68000 Macro Assembler Instruction Manual
8. Calling the Assembler

select to be wrapped around. You can specify a 1line
length between 39 and 255 characters. The format of
this option is:

-WIDTH 1line-width

The -TRUNC and -WIDTH options are mutually exclusive.
If both are used in the same Assembler call, the last
one in the call is used. The -TRUNC option differs from
the -WIDTH option in that if the -TRUNC option is in
effect, lines 1longer than the maximum specified are
truncated. If the -WIDTH option is in effect, lines
longer than the maximum specified are wrapped around to
the next line of the assembly listing.

If you specify neither -TRUNC or -WIDTH, the Assembler
truncates any line over 128 characters.

-XREF, -NOXREF - If -XREF is specified, the Assembler
prints a cross-reference of all labels found in the
source file as part of the assembly listing. If —-NOXREF
is specified, the Assembler does not print the
cross—-reference. The default is to print the
cross—-reference,

131

Cromemco 68000 Macro Assembler Instruction Manual

132

Cromemco 68000 Macro Assembler Instruction Manual

9.

Error Messages

Chapter 9

ERROR MESSAGES

The Assembler generates two kinds of error messadges.
Some messages inform you of errors in the call to the
Assembler, while others note errors in the source code
as it is assembled.

ERROR MESSAGES GENERATED FOLLOWING A CALL TO THE
ASSEMBLER

When an error is detected in a call to the Assembler,
the Assembler aborts and returns control to the Cromix
Operating System.

Cannot open input file <pathname>

This message is generated if the specified pathname does
not exist or the user does not have the correct access

privileges.

Cannot open output file <pathname>

This message is generated if the user does not have the
correct access privileges to write into the directory.

Cannot open print file <pathname>

\
This message is generated if the user does not have the
correct access privileges to write the file into the
directory.

ERROR MESSAGES GENERATED DURING ASSEMBLY

Error messages generated during assembly of source code
inform you of a wide range of incorrect specifications,
such as misspelled opcodes, invalid addresses, etc.
When an error occurs, the Assembler prints the

133

Cromemco 68000 Macro Assembler Instruction Manual

9.

Error Messages

applicable error message on the line immediately
following the error. The message is a complete
expression (not a number), occupying an entire line in
the program listing. A copy of the message is also sent
to the console,.

In most cases, the Assembler, upon encountering an
error, assembles the code such that the correct number
of bytes are reserved. Thus (if possible) the addresses
are numbered correctly, and the assembled instruction is
as close to the "correct form" as possible,

A string of asterisks precedes and trails each error
message. Following assembly the total number of errors
is printed.

Absolute value required

Some instructions require an absolute (i.e.
nonrelocatable) expression, '

Address mode error

Invalid address mode - may be caused by incorrect OPT
setting.

Address register required

Instruction requires an address register.

Address required

Instruction requires an address of some form.

Cannot open include file

Include file was not found, or the user has no privilege

to read it.

Data register required

Instruction requires an data register.

134

Cromemco 68000 Macro Assembler Instruction Manual
9. Error Messages

EXITM without MACRO

EXITM must be located within a macro body.

Entry/External conflict

Entry point name must not be the same as the name of an
external symbol,

Evaluation stack empty

This message signals an error in expression evaluation.

Expression error

Syntax error in expression evaluation.

External symbol not allowed

Instruction does not allow labels declared to be
externals.

IFs nested too deep

Too many nested IF statements.

Illegal transfer address

The END pseudo instruction has an illegal transfer

address.

Immediate operand needed

Instruction requires an immediate operand.

Label - register name conflict

Register name should not be the same as a label name.

135

Cromemco 68000 Macro Assembler Instruction Manual
9. Error Messages

Label not allowed

This pseudo instruction code does not allow the label
field.

Label required

This instruction must have the label field.

MACRO not terminated

Macro instruction should be terminated by a MEND pseudo
instruction.

MEND without macro

MEND instruction makes sense only within a macro
definition.

Macro needs a name

Self-explanatory.

Missing END

Every module must be terminated by an END pseudo
instruction.

Multiple definition

A symbol (or a macro name) was defined more than once.

Nested too deep

Macro calls nested too deep.
No comma between arguments

Multiple arguments should generally be separated by a
comma. ,

136

Cromemco 68000 Macro Assembler Instruction Manual

9.

Error Messages

No matching FI

IFcc without a matching FI.

No matching IF

ENDIF without a matching IF,

No matching IFcc

FI or ELS without a matching IFcc.

Phase error

The Assembler found a different definition for a symbol
in the second pass than it found in the first. This
indicates an error in the Assembler.

Range error

Expression is too big to be taken as a displacement.
The actual limit on the size depends on the instruction.

SET/EQU conflict
A symbol may be used in an EQU statement or in a SET

statement but not in both.,

Size error

Unacceptable size extension for this instruction.

Syntax error

Syntax error of any kind in an instruction.

Too many ‘('

Error in expression.

137

Cromemco 68000 Macro Assembler Instruction Manual
9. Error Messages

Too many nested IFcc

Self-explanatory.

Too many nested includes

Self-explanatory.

Too many psects

Self-explanatory. (A maximum of 10 psects is allowed.)

Undefined opcode

Unrecognized operation code.

Undefined symbol

A symbol that was not defined was used in the
instruction.

Undefined symbol in pass 1

Some pseudo instructions (such as IF, REPT) require
expressions that are defined before they are used.
Unknown * directive

The only pseudo instructions starting with an asterisk
in column 1 are INCLUDE, RELLIB and RELOBJ.

Unknown PSECT option

Self-explanatory.

Warning: The Assembler has word_aligned the previous
instruction

The Assembler skipped a byte to align the location
counter to an even address.

138

Cromemco 68000 Macro Assembler Instruction Manual
Index

*Include p.o.Cc., 3, 12

*Include pseudo operation code, 5, 20, 63
*Maclib p.o.c., 3, 12

*Maclib pseudo operation code, 49, 109
*Rellib p.o.c., 3, 12

*Rellib pseudo operation code, 115
*Relobj p.o.c., 3, 12

~Asm option, assembler call, 128
-Cond option, assembler call, 128
-Gen option, assembler call, 129
~Listoff option, assembler call, 129
-Liston option, assembler call, 129
~Nocond option, assembler call, 128
-Nogen option, assembler call, 129
~Notext option, assembler call, 130
-Noxref option, assembler call, 131
-Page option, assembler call, 129
-Symbol option, assembler call, 130
-Text option, assembler-call, 130
-Trunc option, assembler call, 130
-Width option, assembler call, 130
-Xref option, assembler call, 131

Absolute address usage, 42

Absolute addressing, 1

Absolute long addresses, 38

Absolute long addressing, 37

Absolute program segment, 75

Absolute short addresses, 38

Absolute short addressing, 36

Acceptable characters, statements, 9

Add instruction, automatic substitution, 16

Address mode error, 40

Address mode selection, 112

Address register direct addressing, 31

Address register indirect addressing, 31

Address register indirect with displacement addressing
33 ~

Address register indirect with index addressing, 34

Address register indirect with post increment, 32

Address register indirect with pre-decrement, 33

Address register with displacement, 38, 120

Address symbols used in assembly listing, 84

Addresses used as operands, 28

Addresses, assembly listing, 85

Align data fields P.0O.C., 91

Align P.0O.C., 91

Align pseudo operation, 78

Alternate forms of op codes, 14

And instructions, automatic substitution, 16

139

Cromemco 68000 Macro Assembler Instruction Manual
Index

Argument substrings, 58

ASCII string comparison, 27

ASCII strings, backslash characters, 9

Assembler call statement options, 127

Assembler call, -asm option, 128

Assembler call, -cond option, 128

Assembler call, =gen option, 129

Assembler call, -listoff option, 129

Assembler call, -liston option, 129

Assembler call, -nocond option, 128

Assembler call, -nogen option, 129

Assembler call, -notext option, 130

Assembler call, -noxref option, 131

Assembler call, -page option, 129

Assembler call, -symbol option, 130

Assembler call, -text option, 130

Assembler call, =-trunc option, 130

Assembler call, -width option, 130

Assembler call, -xref option, 131

Assembler call, cond option, 87, 107

Assembler call, gen option, 88, 107

Assembler call, listoff option, 87, 88, 107

Assembler call, liston option, 87, 107

Assembler call, nocond option, 87, 107

Assembler call, nogen option, 88, 107

Assembler call, notext option, 87, 107

Assembler call, noxref option, 107

Assembler call, page option, 83

Assembler call, symbol option, 89

Assembler call, text option, 87, 107

Assembler call, trunc option, 84, 86, 116, 119, 120

Assembler call, width option, 84, 86, 116, 119, 120

Assembler call, xref option, 107

Assembly listing, 83

Assembly listing file, 2, 83

Assembly listing options pseudo operation code, 106

Assembly listing page layout, 83

Assembly listing page subtitle pseudo operation code
119

Assembly listing page title pseudo operation code, 119

Assembly listing, address symbols, 84

Assembly listing, cross reference tables, 88

Assembly listing, macros, 46

Assembly listing, page length, 83, 129

Assembly listing, page subtitle, 84

Assembly listing, page title, 84

Assembly listing, page width, 84

Assembly listing, program listing, 85

Assembly listing, symbol table, 88, 130

Automatic substitution of operation codes, 12

Backslash characters for ASCII strings, 9

140

Cromemco 68000 Macro Assembler Instruction Manual
Index

Basic repeat expansion, 66

Basic requirements for linking modules, 71

Basic statement syntax, 7

Begin conditional assembly, 100

Begin macro definition pseudo operation code, 110

Call operating system pseudo operation code, 106
Calling the assembler, 123

Choosing addressing mode, 37

Choosing the effective address form, 39

Cmp instructions, automatic substitution, 17
Code segments, 74

Comment field, statements, 37

Comments, macros, 57

Common program segment, 75

Compare instructions, automatic substitution, 17
Cond assembler call option, 107

Cond option, assembler call, 87

Cond option, list pseudo operation code, 87, 107
Conditional assembly, 1, 100

Conditional assembly (endif pseudo operation code), 95
Conditional assembly (if pseudo operation codes), 63
CONMSG Pseudo operation code, 91

Console message pseudo operation code, 91
Constants, 20

Constants used as operands, 22

Correcting errors in the program, 4

Cromix operating system, 1

Cromix system calls, 106

Cross reference tables, 88

Current program counter - $, 28

Data register direct addressing, 30

DB Pseudo operation code, 77

DC Pseudo operation code, 92

Debug program, 4

Declaring values, 77

Default source code file directory, 128
Define constant pseudo operation code, 92
Define storage pseudo operation code, 94
Defining the starting address, 71
Delimiters, statement field, 7

Device drivers, 4

Directory, default source code file, 128
D1 pseudo operation code, 20

Drop, 38

Drop pseudo instruction code, 93

Ds pseudo operation code, 20, 77, 80, 94, 118

Edit program, 2
141

Cromemco 68000 Macro Assembler Instruction Manual
Index

Effective addresses, 20

Effective addresses used as operands, 28

Eject pseudo operation code, 43, 88, 95, 99

Else pseudo operation code, 65, 95

End macro expansion pseudo operation code, 98

End macro, repeat expansion, or structure pseudo
operation code, 111

End of assembly pseudo operation code, 96

End of conditional assembly pseudo operation code, 97

End pseudo operation code, 72, 96, 103

Endif pseudo operation code, 64, 95, 97, 100

Entry point pseudo operation code, 97

Entry pseudo operation code, 11, 72, 97, 98

Equ operation code, 20

Equ pseudo operation code, 10, 79, 98

Equate pseudo operation code, 98

Equating values, 78

Error message, program listing, 86

Error messages, 2

Examples of macros, 47

Exclusive or, automatic substitution, 17

Executable program segment, 75

EXITM Pseudo Operation Code, 58, 98

Expressions, 20

Expressions used as operands, 23

Expressions, undefined, 20

Ext pseudo operation code, 85, 88

Extern pseudo operation code, 11, 72, 97, 98

External labels, 85

External modules, 98

FI, 99

Field delimiters, statement, 7

Fields, statement, 7

Form pseudo operation code, 43, 88, 95, 99
Functions of the assembler, 1

Gen assembler call option, 107

Gen option, assembler call, 88

Gen option, list pseudo operation code, 88, 108
Global labels, 72

If pseudo operation code, 1, 20, 51, 61, 63, 64, 95, 97
100

If then else programming structure, 95, 99

Immediate data addressing, 35 :

Include library of relocatable routines pseudo operation

code, 115
Include macro definition library pseudo operation code

109
142

Cromemco 68000 Macro Assembler Instruction Manual

Index

Include pseudo operation code (also see listings under
*include, 102

Input and output, 2, 4, 123
Inserting code in a module, 2

Irp pseudo operation code, 68, 104
Irpc pseudo operation code, 69, 105

Iterative
Iterative
Iterative

Iterative

repeat expansion, 68

repeat expansion with characters, 69

repeat pseudo operation code, 104

repeat with characters pseudo operation code

105

JSYS Pseudo operation code, 106
Jsysequ.asm, 5

Label fields, statements, 10
Labels used as operands, 20
Labels, external, 85
Labels, external modules,
Labels, macro, 51

Labels, statement, 20
Length, statements, 7
Linker, 71

Linker program, 2
Linkers, function of, 111
Linkers, functions of, 97
Linking the program, 71
Linking, basic requirements, 71
List pseudo operation code,

98

106, 128, 129,

List pseudo
List pseudo
List pseudo
List pseudo
List pseudo
List pseudo
List pseudo
List pseudo
List pseudo
List pseudo

operation
operation
operation
operation
operation
operation
operation
operation
operation
operation

code,
code,
code,
code,
code,
code,
code,
code,
code,
code,

cond option, 87

gen option, 88

nocond option, 65, 87
nogen option, 46, 88
notext option, 87
noxref option, 89

off option, 87

on option, 87

text option, 87

xref option, 89

Listoff assembler call option, 107
Listoff option, assembler call, 87
Liston assembler call option, 107
Liston option, assembler call, 87

Macro
Macro
Macro
Macro
Macro
Macro

assembler call option, 49
assembly, 45

calls, 45

calls, nesting, 61

calls, writing, 59
definition, 45

143

Cromemco 68000 Macro Assembler Instruction Manual
Index

Macro definition libraries, 49, 109
Macro definitions, 49, 98, 110, 111
Macro expansion, 98

Macro expansions, program listing, 86
Macro labels, 51

Macro listings in program listing, 108
Macro names, 20

Macro parameters, 52, 65

Macro pseudo operation code, 49, 63, 110
Macro substitution, 3

Macros, 1, 45

Macros versus subroutines, 46

Macros, assembly listing, 46

Macros, comments, 57

Macros, general examples, 47

Macros, nesting, 61

Memory, reserving, 77

Mend pseudo operation code, 49, 66, 80, 111, 118
Modeequ.asm, 5

Module name pseudo operatlon code, 111
Module names, 71

Modules, 1

Modules, inserting code, 2

Move instruction, automatic substitution, 18

Name pseudo operation code, 71, 111

Naming modules, 71

Naming parameters, 54

Nesting macros, 61

Nocond assembler call option, 65, 107

Nocond option, assembler call, 87

Nocond option, list pseudo operation code, 65, 87, 108
Nogen assembler call option, 46, 107

Nogen option, assembler call, 88

Nogen option, list pseudo operation code, 46, 88, 108
Notext assembler call option, 107

Notext option, assembler call, 87

Notext option, list pseudo operation code, 87, 109
Noxref assembler call option, 107

Noxref option, list pseudo operation code, 89, 109

Object code file, 2

Object code files, 97, 98, 111

Object code, program listing, 85

Object library creation, 4

Off option, list pseudo operation code, 87, 107
Omacro pseudo operation code, 50

On option, list pseudo operation code, 87, 107
Operand field, statement, 20

Operation field, statements, 11

Operators used in expressions, 24

144

Cromemco 68000 Macro Assembler Instruction Manual
Index

Opt P.0.C, 112

Optequ.asm include file, 112

Options, assembler call statement, 127

Or instructions, automatic substitution, 18
Org pseudo operation code, 20

Page layout, assembly listing, 83

Page length, assembly listing, 83, 129
Page option, assembler call, 83

Page width, assembly listing, 84

Paper formfeed, 99

Parameters, macro, 52

Parameters, naming, 54

Phase error, 137

Pop pseudo operation code, 112
Preparing a program for execution, 2
Preparing modules for linking, 71
Privileged instructions, 86

Program counter, 10

Program counter relative addressing, 38
Program counter with displacement, 35
Program counter with index addressing, 36
Program listing, 85, 107

Program segment P.0.C., 113

Program segments, 1, 74

Psect P.0.C., 113

Psect pseudo operation code, 74

Pseudo operation codes, 91

Push Pseudo Operation Code, 114

Range error, 137

Readable program segment, 75

Register names, 20

Relobj P.0.C., 116

Relocatable addressing, 1

Relocatable files, 102

Relocatable object code files, 115, 116
Rem pseudo operation code, 116

Remark pseudo operation code, 116

Repeat expansion definitions, 111

Repeat expansion pseudo operation code, 117
Repeat expansion, iterative, 68, 104

Repeat expansion, iterative with characters, 69, 105
Repeat expansions, 66, 117

.Rept pseudo operation code, 20, 66, 117
Reserving memory, 77

Resolving global labels, 72

Screen editor, 2
Set pseudo operation code, 51, 79, 117

145

Cromemco 68000 Macro Assembler Instruction Manual
Index

Sharable program segment, 75

Source code file, 2

Source code file, default directory, 128
Starting address, defining, 71

Statement comment field, 37

Statement field delimiters, 7

Statement labels, 20

Statement length, 7

Statement operand field, 20

Statement operation field, 11

Statements, acceptable characters, 9
Statements, label field, 10

String comparison, 27

Struct listing in assembly listing, 86
Struct pseudo operation code, 206, 79, 118
Structure definitions, 111, 118

Structure pseudo operation code, 118

Sub instruction, automatic substitution, 19
Subroutines versus macros, 46

Subtitle pseudo operation code, 119
Subtitle, assembly listing, 84

Subtract instruction, automatic substitution, 19
Subttl pseudo operation code, 43, 84
Symbol cross reference table, 109

Symbol option, assembler call, 89

Symbol table, 88, 130

Syntax, statement, 7

System calls, 4

Text assembler call option, 107

Text option, assembler call, 87

Text option, list pseudo operation code, 87, 108
Title pseudo operation code, 20, 43, 84, 111, 119
Title, assembly listing, 84

Transfer address, 96

Trunc option, assembler call, 84, 86

Trunc, assembler call option, 116, 119, 120

Undefined expressions, 20
Usage, 38

Using regular parameters, 56
Using the size parameter, 56

Version and release number, 121

Width option, assembler call, 84, 86

width, assembler call option, 116, 119, 120
Writable program segment, 75

Writing macro calls, 59

146

Cromemco 68000 Macro Assembler Instruction Manual
Index

Writing macro definitions, 49

Xor, automatic substitution, 17
Xref assembler call option, 107

Xref option, list pseudo operation code, 89, 109

147

