
^v

Part 2 / Software

1/ Disk Organization 1
Single Density Floppy Diskette 1
Double Density Floppy Diskette 1
5" 5-Meg Hard Disk 2
Disk Space Available to the User 2
Unit of Allocation 2

2l Disk Files 3
Methods of File Allocation 3

Dynamic Allocation 3
Pre-Allocation 3

Record Length 3
Record Processing Capabilities 4

Record Numbers 4

3/ TRSDOS File Descriptions 5
System Files (/SYS) 5
Utility Programs 7
Device Driver Programs 7
Filter Programs 7
Creating a Minimum Configuration Disk 7

4/ Device Access 9
Device Control Block (DCB) 9
Memory Header 10

5/ Drive Access 11
Drive Code Table (DCT) 11
Disk I/O Table 13
Directory Records 13
Granule Allocation Table (GAT) 16
Hash Index Table (HIT) 18

6/ File Control 23
File Control Block (FCB) 23

7/ TRSDOS Version 6 Programming Guidelines 27
Converting to TRSDOS Version 6 27
Programming With Restart Vectors 29
KFLAG$ (BREAK)((PAUSE), and (ENTER) Interfacing 29
Interfacing to (SPICNFG 32
Interfacing to @KITSK 33
Interfacing to the Task Processor 34
Interfacing RAM Banks 1 and 2 36
Device Driver and Filter Templates 40
@CTL Interfacing to Device Drivers 42

8/ Using the Supervisor Calls 45
Calling Procedure 45
Program Entry and Return Conditions 45
Supervisor Calls 46
Numerical List of SVCs 49
Alphabetical List of SVCs 52
Sample Programs 54

9/ Technical Information on TRSDOS Commands and Utilities 189

Appendix A/ TRSDOS Error Messages 193
Appendix B/ Memory Map 199
Appendix C/ Character Codes 201
Appendix D/ Keyboard Code Map 211
Appendix E/ Programmable SVCs 213
Appendix F/ Using SYS 13/SYS 215

Index 217

1/Disk Organization

TRSOOS Version 6 can be used with 51/4" single-sided floppy diskettes and
with hard disk. Floppy diskettes can be either single-or double-density. See the
charts betow for the number of sectors per track, number of cylinders, and so
on for each type of disk. (Sectors and cylinders are numbered starting with 0.)

Single-Density Floppy Diskette

Bytes Sectors Sectors Granules Tracks Cylinders
per per per per per per Total

Sector Granule Track* Track Cylinder Drive Bytes

256

256

(10)

(10)
40
40

256
1,280
2,560
2,560

102,400
102,400
(100K)**

Double-Density Floppy Diskette

Bytes Sectors Sectors Granules Tracks Cylinders
per per per per per per Total

Sector Granule Track* Track Cylinder Drive Bytes

256 — ——— - •• — ~———— - - — 256
1,536
4,608
4,608

184,320
256 6 (18) 3 1 40 184,320

(180K)**

The number of sectors per track is not included in the calculation because it
is equal to the number of sectors per granule times the number of granules
per track. (5 x 2 = 10 for single density, 6 x 3 = 18 for double density, and
16 x 2=32 for hard disk.)

**Note that this figure is the total amount of space in the given format. Keep in
mind that an entire cylinder is used for the directory and at least one granule
is used for the bootstrap code. This leaves 96.25K available for use on a
single-density data disk and 174K on a double-density data disk.

6

(•\o\ o(10) 0

(18) 3

i
40

1 40

Software 1

5" 5-Meg Hard Disk

Note: Because of continual advancements in hard disk technology, the number
of tracks and the number of tracks per cylinder may change. Therfore, any Infor-
mation that comes with your hard disk drive(s) supersedes the Information in
the table below.

Bytes Sectors Sectors Granules Tracks Cylinders
per per per per per per Total

Sector Granule Track* Track Cylinder Drive Bytes

1fiID

16

(32)

(32)

2

2 4
153
153

4,096
8,192

32,768
5,013,504
5,013,504

(4.896K)

*The number of sectors per track is not included in the calculation because it is
equal to the number of sectors per granule times the number of granules per
track. (5x2 = 10 for single density, 6x3 = 18 for double density, and
16 x 2 = 32 for hard disk.)

Disk Space Available to the User

One granule on cylinder 0 of each disk is reserved for the System. It contains
information about where the directory is located on that disk. If the disk contains
an Operating System, then all of cylinder 0 is reserved. This area contains infor-
mation used to load TRSDOS when you press the reset button.

One complete cylinder is reserved for the directory, the granule allocation table
(GAT), and the hash index table (HIT). (On single-sided diskettes, one cylinder
is the same äs one track.) The number of this cylinder varies, depending on the
size and type of disk. Also, if any portion of the cylinder normally used for the
directory is flawed, TRSDOS uses another cylinder for the directory. You can
find out where the FORMAT Utility has placed the directory by using the
Free :o*/7Ve command.

On hard disks, an additional cylinder (cylinder 1) is reserved for use in case
your disk drive requires Service. This provides an area for the technician to write
on the disk without harming any data. (If you bring your hard disk in for Service,
you should try to back up the Contents of the disk first, just to be safe.)

Unit of Allocation

The smallest unit of disk space that the System can allocate to a file is a gran-
ule. A granule is made up of a set of sectors that are adjacent to one another
on the disk. The number of sectors in a granule depends on the type and size
of the disk. See the Charts on the previous two pages for some typical sizes.

Software 2

2/Disk Fi

Methods of File Allocation

Record Length

TRSDOS provides two ways to allocate disk space for fites: dynamic allocation
and pre-allocation.

Dynamic Allocation
With dynamic allocation, TRSDOS allocates granules only at the time of write.
For example/when a file is first opened for Output, no space is allocated. The
first allocation of space is done at the first write. Additional space is added äs
required by fürt her writes.

With dynamically allocated files, unused granules are de-allocated (recovered)
when the file is closed.

Unless you execute the CREATE System command, TRSDOS uses dynamic
allocation.

Pre-Allocation
With pre-allocation, the file is allocated a specified number of granules when it
is created. Pre-allocated files can be created only by the System command
CREATE. (See the Disk System Owner's Manual for more information on
CREATE.)

TRSDOS automatically extends a pre-allocated file äs needed. However, it
does not de-allocate unused granules when a pre-allocated file is closed. To
reduce the size of a pre-allocated file, you must copy it to a dynamically allo-
cated file. The COPY (CLONE = N) System command does this automatically.

Files that have been pre-allocated have a 'C' by their names in a directory
listing.

TRSDOS transfers data to and from disks one sector at a time. These sectors
are 256-byte blocks, and are also called the system's "physical" records.

You deal with records that are 256 bytes in length or smaller, depending on
what size record you want to work with. These are known äs "logical" records.

You set the size of the logical records in a file when you open the file for the first
time. The size is the number of bytes to be kept in each record. There may be
from 1 to 256 bytes per logical record.

The Operating System automatically accumulates your logical records and
stores them in physical records. Since physical records are always 256 bytes in
length, there may be one or more logical records stored in each physical record.
When the records are read back from disk, the System automatically returns
one logical record at a time. These actions are known äs "blocking" and "de-
blocking," or "spanning."

For example, if the logical record length is 200, sectors 1 and 2 look like this:

Software 3

record'»

Since they are completely handled by the Operating System, you do not need to
concern yourself with physical records, sectors, granules, tracks, and so on.
This is to your benefit, äs the number of sectors per granule varies from disk to
disk. Also, physical record lengths may change in future versions of TRSDOS,
but the concept of logical records will not.

Note: All files are fixed-length record files with TRSDOS Version 6.

Record Processing Capabilities

TRSDOS allows both direct and sequential file access.

Direct access (sometimes called "random access") lets you process records in
any sequence you specify.

Sequential access allows you to process records in sequence: record n, n +1,
n+2, and so on. With sequential access, you do not specify a record number.
Instead, TRSDOS accesses the record that follows the last record processed,
starting with record 0.

With sequential access files, use the @READ Supervisor call to read the next
record, and the ©WRITE or @VER Supervisor call to Write the next record.
(When the file is first opened, processing Starts at record 0. You can use
@PEOF to position to the end of file.)

To read or write to a direct access file, use the @POSN Supervisor call to Posi-
tion to a specified record. Then use ©READ, ©WRITE, or ©VER äs desired.
Once ©POSN has been used, the End of File (EOF) marker will not move,
unless the file is extended by writing past the current EOF position.

Record Numbers
Using direct (random) access, you can access up to 65,536 records. Record
numbers Start at 0 and go to 65535.

Using a file sequentially, you can access up to 16,777,216 bytes. To calculate
the number of records you can access sequentially, use the formula:

16,777,216 4- logical record length = number of sequential
records allowed

Below are some examples.

lfthel_RL=256,then:
16,777,216 + 256 = 65,536 records

lftheLRL=128,then:
16,777,216 -s- 128 = 131,072 records

lfthel_RL= SO.then:
16,777,216 - 50 = 335,544 records

lftheLRL= 1,then:
16,777,216 -s- 1 = 16,777,216 records

Software 4

3/TRSDOS File Descriptions

This section describes four types of files found on your TRSDOS master disk-
ette (system files, Utilities, driver programs, and filter programs) and explains
their functions. It also describes how to construct a minimum system disk for
running applications packages.

System Files (/SYS)

TRSDOS Version 6 would occupy considerable memory space if all of it were
resident in memory at any one time. To minimize the amount of memory
reserved for system use, TRSDOS uses overlays.

Using an overlay-driven system involves some compromise. While a User's
application is in progress, different overlays may need to be loaded to perform
certain activities requested of the system. This could cause the system to run
slightly slower than a system which has more of its file access routines always
resident in memory.

The use of overlays also requires that a SYSTEM disk usually be available in
Drive 0 (the system drive). Since the disk containing the Operating system and
its Utilities ieaves little space available to the user, you may want to remove cer-
tain parts of the system Software not needed while a particular application is
running. You may in fact discover that your day-to-day operations need only a
minimal TRSDOS configuration. The greater the number of system functions
unnecessary for your application, the more space you can have available for a
"working" system disk. Use the PURGE or REMOVE library command to elim-
inate unneeded system files from the disk.

The following paragraphs describe the functions performed by each system
Overlay. (In the display produced by the DIR (SYS) library command, the system
overlays are identified by the file extension /SYS.)

Note: Two system files are put on the disk during formatting. They are DIR/SYS
and BOOT/SYS. These files should never be copied from one disk to another
or REMOVEd. TRSDOS automatically Updates any Information necessary
when performing a backup.

SYSO/SYS

This is not an Overlay. It contains the resident pari of the Operating system
(SYSRES). It is also needed to dynamically allocate file space used when writ-
ing files. Any disk used for booting the system must contain SYSO. It can be
purged from disks not used for booting.

SYS1/SYS

This Overlay contains the TRSDOS command Interpreter and the routines for
processing the @CMNDI, @CMNDR, @FEXT, @FSPEC, and @PARAM Sys-
tem vectors. This Overlay must be available on all SYSTEM disks.

SYS2/SYS

This Overlay is used for opening or initializing disk files and logical devices. It
also contains routines for processing the @CKDRV, @GTDCB, and @RENAM
system vectors, and routines for hashing file specifications and passwords.
This Overlay must be available on all SYSTEM disks.

SYS3/SYS

This Overlay contains all of the system routines needed to close files and logical
devices. It also contains the routines needed to service the @ FN AM E system
vector. This Overlay must not be removed from the disk.

Software 5

SYS4/SYS

This Overlay contains the System error dictionary. It is needed to issue such
messages äs "File not found," "Directory read error," etc. If you decide to
remove this Overlay from your working SYSTEM disk, all System errors will pro-
duce the error message "SYS ERROR" It is recommended that you not remove
this Overlay, especially since it occupies only one granule of space.

SYS5/SYS

This is the "ghost" debugger. It is needed if you intend to test out machine lan-
guage application Software by using the TRSDOS DEBUG library command. If
your Operation will not require this debugging tool, you may purge this Overlay.

SYS6/SYS

This Overlay contains all of the routines necessary to Service the library com-
mands identified äs "Library A" by the LIB command. This represents the pri-
mary library functions. Only very limited use can be made of TRSDOS if this
Overlay is removed from your working SYSTEM disk.

SYS7/SYS

This Overlay contains all of the routines necessary to Service the library com-
mands identified äs "Library B" by the LIB command. A great deal of use can
be made of TRSDOS even without this Overlay. It performs specialized func-
tions that may not be needed in the Operation of specific applications. You can
purge this Overlay if you decide it is not needed on a working SYSTEM disk.

SYS8/SYS

This Overlay contains all of the routines necessary to Service the library com-
mands identified äs "Library C" by the LIB command. A great deal of use can
be made of TRSDOS even without this Overlay. It performs specialized func-
tions that may not be needed in the Operation of specific applications. You can
purge this Overlay if you decide it is not needed on a working SYSTEM disk.

SYS9/SYS

This Overlay contains the routines necessary to Service the extended DEBUG
commands available after a DEBUG (EXT) is performed. This Overlay may be
purged if you will not need the extended DEBUG commands while running your
application. If you remove SYS5/SYS, then you may äs well remove SYS9/SYS,
äs it would serve no useful purpose.

SYS10/SYS

This System Overlay contains the procedures necessary to Service the request
to remove a file. It should remain on your working SYSTEM disks.

SYS11/SYS

This Overlay contains all of the procedures necessary to perform the Job Con-
trol Language execution phase. You may remove this Overlay from your working
disks if you do not intend to execute any JCL functions. If SYS6/SYS (which
contains the DO command) has been removed, keeping this Overlay would
serve no purpose.

SYS12/SYS

This System Overlay contains the routines that Service the @DODIR,
@GTMOD, and @RAMDIR System vectors. It should remain on your disks.

SYS13/SYS

This Overlay is reserved for future System use. It contains no code and takes up
no space on the disk. You may remove this Overlay if you wish to free up its
directory slot.

Software 6

• SYS2 must be on the System disk if a configuration file is to be loaded.

• SYS 11 must be present only if any JCL files will be used.

• All three libraries (SYS files 6, 7, and 8) may be purged if no library com-
mand will be used.

• SYS5 and SYS9 may be purged if the System DEBUG package is not
needed.

• SYSO may be removed from any disk not used for booting.

• SYS11 (the JCL processor) and SYS6 (containing the DO library com-
mand) must both be on the disk if the DO command is to be used. Also,
if you remove SYS6, you may äs well remove SYS11.

• SYS13 may be removed if you have not implemented an ECI, an IEP file,
or if you do not intend to use them.

The presence of any Utility, driver, or filter program is dependent upon your in-
dividual needs. You can save most of the TRSDOS features in a configuration
file using the SYSTEM (SYSGEN) command, so the driver and filter programs
will not be needed in run time applications. If you intend to use the HELP Utility,
your disk must contain the DOS/HLP file.

The owner (update) passwords for TRSDOS files are äs follows:

File Type Extension Owner Password

System files (/SYS) LSIDOS
Filter files (/FLT) FILTER
Driver files (/DVR) DRIVER
Utility files (/CMD) UTILITY
BASIC BASIC
BASIC overlays (/OV$) BASIC
CONFIG/SYS CCC
Drive Code Table (/DCT) UTILITY

Initializer

Software 8

4/Device Access

Device Control Block (DCB)

The Device Control Block (DCB) is an area of memory that contains Informa-
tion used to Interface the Operating System with various logical devices. These
devices Include the keyboard (*KI), the video display (*DO), a printer (*PR), a
Communications line (*CL), and other devices that you may define.

The following information describes each assigned DCB byte.

DCB+ 0 (TYPE Byte)

Bit 7—If set to "1," the Device Control Block is actually a File Control Block
(FCB) with the file open. Since DCBs and FCBs are similar, and
devices may be routed to files, a "device" with this bit set indicates
a routing to a file.

Bit 6—If set to "1," the device defined by the DCB is filtered or is a device
filter.

Bit 5—If set to "1," the device defined by the DCB is linked.

Bit 4—If set to "1," the device defined by the DCB is routed.

Bit 3—If set to "1," the device defined by the DCB is a NIL device. Any out-
put directed to the device is discarded. For any input request, the
Character returned is a null (ASCII value 0).

Bit 2—If set to "1," the device defined by the DCB can handle requests
generated by the @CTL Supervisor call. See the section on Super-
visor Calls for more information.

Bit 1 —If set to "1," the device defined by the DCB can handle Output
requests which normally come from the @PUT Supervisor call.

Bit 0—If set to "1," the device defined by the DCB can handle requests for
input which normally come from the @GET Supervisor call.

DCB + 1 and DCB+2

Contain the address of the driver routine that Supports the hardware assigned
to this DCB. (In the case of a routed or linked device, the vector may point to
another DCB.)

DCB + 3 through DCB+5

Reserved for System use.

DCB+6andDCB+7

These locations normally contain the two alphabetic characters of the devspec.
The System uses the devspec äs a reference in searching the device control
block tables.

Software 9

Memory Header

Modules that TRSDOS loads into memory (filters, drivers, and other memory
modules such äs a SPOOL buffer or the extended DEBUG code) are identified
by a Standard front-end header:

BEGIN: JR START

DEFW END-l

DEFB 10

DEFM 'NAMESTRING

MODDCB: DEFW $-$

DEFM 0

JGo to actual code
ibedinninä
»Contains the hi£hest bvte
»of Memory
»used bx the Module
»Lentfth of name » 1-15
»characters 5
ibits 4-7 reserued for
»systeM use
»Up to 15 alphanumeric
»characters» with the first
»Character A-Z. This should
»be a unisue name to
»positiuely identify the
iModule»
5DCB pointind to this
«Module (if applicable)
»Spare systeM pointer .
»'RESERVED

Any additional data stora*e tfoes here

START: Start of actual proäraM code

END: EQU $

As explained under the @GTMOD SVC in the "Supervisor Call" section, the
location of a specific header can be found provided all modules that are put into
memory use this header structure. You can locate the data area for a module
by using @GTMOD to find the Start of the header and then indexing in to the
data area.

Software 10

5/Drive Access

Drive Code Table (DCT)

TRSDOS uses a Drive Code Table (DCT) to Interface the Operating System with
specific disk driver routines. Note especially the fields that specify the allocation
scheme for a given drive. This data is essential in the allocation and accessi-
bility of file records.

The DCT contains eight 10-byte positions — one for each logical drive des-
ignated 0-7. TRSDOS Supports a Standard configuration of two-floppy
drives. You may have up to four floppy drives. This is the default initializa-
tion when TRSDOS is loaded.

Here is the Drive Code Table layout:

DCT+0

This is the first byte of a 3-byte vector to the disk I/O driver routines. This byte
is normally X'C3.' If the drive is disabled or has not been configured (see the
SYSTEM command in the Disk System Owner's Manual), this byte is a RET
instruction (X'C9').

DCT+1 and DCT-l-2

Contain the entry address of the routines that drive the physical hardware.

DCT+ 3

Contains a series of flags for drive specifications.

Bit 7—Set to "1" if the drive is Software write protected, "0" if it is not. (See
the SYSTEM command in the Disk System Owner's Manual.)

Bit 6—Set to "1" for DDEN (double density), or "0" for SDEN (single
density).

Bit 5—Set to "1" if the drive is an 8" drive. Set to "0" if it is a S1/»" drive.

Bit 4—A "1" causes the selection of the disk's second side. The first side
is selected if this bit is "0." This bit value matches the side indicator
bit in the sector header Written by the Floppy Disk Controller
(FDC).

Bit 3—A "1" indicates a hard drive (Winchester). A "0" denotes a floppy
drive(51/4"or8").

Bit 2—Indicates the time delay between selection of a SW drive and the
first poll of the Status register. A "1" value indicates 0.5 second and
a "0" indicates 1.0 second. See the SYSTEM command in the Disk
System Owner's Manual for more details.

If the drive is a hard drive, this bit indicates either a fixed or remov-
able disk: "1"=fixed, "0" = removable.

Bits 1 and 0—Contain the Step rate specification for the Floppy Disk Con-
troller. (See the SYSTEM command in the Disk System Owner's
Manual.) In the case of a hard drive, this field may indicate the drive
address (0-3).

DCT+4

Contains additional drive specifications.

Bit 7— (Version 6.2 only) If "1", no @CKDRV is done when accessing the
drive. If an application opens several files on a drive, this bit can be
set to speed I/O on that drive after the first successful open is
performed.

Software 11

In versions prior to TRSDOS 6.2, this bit is reserved for future use.
In order to maintain compatibility with future releases of TRSDOS,
do not use this bit.

Bit 6 — If "1", the Controller is capable of double-density mode.

Bit 5—"1" indicates that this is a 2-sided floppy diskette; "0" indicates a
1-sided floppy disk. Dp not confuse this bit with Bit 4 of DCT+3.
This bit shows if the disk is double-sided; Bit 4 of DCT + 3 teils the
Controller what side the current I/O is to be on.

If the hard drive bit (DCT + 3, Bit 3) is set, a "1" denotes double the
cylinder count stored in DCT+6. (This implies that a logical cylin-
der is made up of two physical cylinders.)

Bit 4—If "1," indicates an alien (non-standard) disk Controller.

Bits 0-3—Contain the physical drive address by bit selection (0001,0010,
0100, and 1000 equal logical Drives 0,1, 2, and 3, respectively, in
a default System). The System Supports a translation only where no
more than one bit can be set.

If the alien bit (Bit 4) is set, these bits may indicate the starting head
number.

DCT+5

Contains the current cylinder position of the drive. It normally Stores a copy of
the Floppy Disk Controllers track register contents whenever the FDC is
selected for access to this drive. It can then be used to reload the track register
whenever the FDC is reselected.

If the alien bit (DCT+4, Bit 4) is set, DCT + 5 may contain the drive Select code
for the alien Controller.

DCT+6

Contains the highest numbered cylinder on the drive. Since cylinders are num-
bered from zero, a 35-track drive is recorded äs X'22,' a 40-track drive äs X'27/
and an 80-track drive äs X'4F.' If the hard drive bit (DCT+3, Bit 3) is set, the true
cylinder count depends on DCT+4, Bit 5. If that bit is a "1," DCT+6 contains
only half of the true cylinder count.

DCT+7

Contains allocation Information.

Bits 5-7—Contain the number of heads for a hard drive.

Bits 0-4—Contain the highest numbered sector relative to zero. A 10-
sector-per-track drive would show X'Oä' If DCT+4, Bit 5 indicates
2-sided Operation, the sectors per cylinder equals twice this
number.

DCT+8

Contains additional allocation Information.

Bits 5-7—Contain the number of granules per track allocated in the for-
matting process. If DCT+ 4, Bit 5 indicates 2-sided Operation, the
granules per cylinder equals twice this number. For a hard drive,
this number is the total granules per cylinder.

Bits 0-4—Contain the number of sectors per granule that was used in the
formatting Operation.

DCT+9

Contains the number of the cylinder where the directory is located. For any
directory access, the System first attempts to use this value to read the direc-
tory. If this Operation is unsuccessful, the System examines the BOOT granule
(cylinder 0) directory address byte.

Software 12

Bytes DCT + 6, DCT + 7, and DCT + 8 must relate without conflicts. That is, the
highest numbered sector (+ 1) divided by the number of sectors per granule
(+1) must equal the number of granules per track (+1).

Disk I/O Table
TRSDOS Interfaces with hardware peripherals by means of Software drivers.
The drivers are, in general, coupled to the Operating System through data
Parameters stored in the system's many tables. In this way, hardware not cur-
rently supported by TRSDOS can easily be supported by generating driver Soft-
ware and updating the System tables.

Disk drive sub-systems (such äs Controllers for SW drives, 8" drives, and hard
disk drives) have many parameters addressed in the Drive Code Table (DCT).
Besides those Operating parameters, Controllers also require various com-
mands (SELECT, SECTOR READ, SECTOR WRITE, and so pn) to control the
physical devices. TRSDOS has defined command conventions to deal with
most commands available on Standard Disk Controllers.

The function value (hexadecimal or decimal) you wish to pass to the driver
should go in register B. The available functions are:

Operation PerformedHex Dec Function

X'00'

x'or
X'021

X'03'

X'04'

X'05'

X'06'

X'07'

X'08'

X'09'

X'0A'

X'0B'

X'0C'

X'0DF

X'0E'

X'0F

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

DCSTAT

SELECT

DCINIT

DCRES

RSTOR

STEPI

SEEK

TSTBSY

RDHDR

RDSEC

VRSEC

RDTRK

HDFMT

WRSEC

WRSYS

WRTRK

Test to see if drive is assigned in DCT

Select a new drive and return Status

Set to cylinder 0, restore, set Side 0

Reset the Floppy Disk Controller

Issue FDC RESTORE command

Issue FDC STEP IN command

Seek a cylinder

Test to see if requested drive is busy

Read sector header information

Read sector

Verify if the sector is readable

Issue an FDC track read command

Format the device

Write a sector

Write a System sector (for example, directory)

Issue an FDC track Write command

Function codes X'10' to X'FF* are reserved for future use.

Directory Records (D1REC)
The directory contains information needed to access all files on the disk. The
directory records section is limited to a maximum of 32 sectors because of
physical limitations in the Hash Index Table. Two additional sectors in the direc-
tory cylinder are used by the System for the Granule Allocation Table and the
Hash Index Table. The directory is contained on one cylinder. Thus, a 10-sector-
per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

Software 13

Sectors
per

Cylinder

10
20
18
36
16
32
30
60

Directory
Sectors

8
18
16
32
14
30
28
32

User Files
on Data
Disk**

62
142
126
254
110
238
222
254

User
Files on

SYS Disk

48
128
112
240
96

224
208
240

tion on the Hash Index Table for the formula to calculate the number of directory
sectors.

A directory record is 32 bytes in length. Each directory sector contains eight
directory records (256/32 = 8). On System disks, the first two directory records
of the first eight directory sectors are reserved for System overlays. The total
number of files possible on a disk equals the number of directory sectors times
eight (since 256/32 = 8). The number available for use is reduced by 16 on sys-
tem disks to account for those record slots reserved for the Operating System.
The following table shows the directory record capacity (file capacity) of each
format type. The dash suffix (-1 or -2) on the items in the density column rep-
resents the number of sides formatted (for example, SDEN-1 means single
density, 1-sided).

5" SDEN-1
5" SDEN-2
5" DDEN-1
5" DDEN-2
8" SDEN-1
8" SDEN-2
8" DDEN-1
8" DDEN-2
Hard Disk*

"Hard drive format depends on the drive size and type, äs well äs the user's
division of the physical drive into logical drives. After setting up and format-
ting the drive, you can use the FREE library command to see the available
files.

**Note: Two directory records are reserved for BOOT/SYS and DIR/SYS,
and are included in the figures for this column.

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible
Operating Systems in its directory format. The data contained in the directory
has been extended. An SVC is included to either display an abbreviated direc-
tory or place its data in a user-defined buffer area. For detailed information, see
the @DODIR and @RAMDIR SVCs.

The following information describes the Contents of each directory field:

DiR+e
Contains all attributes of the designated file.

Bit 7—If "0," this flag indicates that the directory record is the file's primary
directory entry (FPDE). If "1" the directory record is one of the file's
extended directory entries (FXDE). Since a directory entry can
contain information on up to four extents (see notes on the extent
fields, beginning with DIR+22), a file that is fractured into more
than four extents requires additional directory records.

Bit 6—Specifies a SYStem file if "1," a nonsystem file if "0."

Bit 5—If set to "1," indicates a Partition Data Set (PDS) file.

Bit 4—Indicates whether the directory record is in use or not. If set to "1,"
the record is in use. If "0," the directory record is not active,
although it may appear to contain directory information. In contrast
to some Operating Systems that zero out the directory record when
you remove a file, TRSDOS only resets this bit to zero.

Bit 3—Specifies the visibility. If "1," the file is INVisible to a directory dis-
play or other library function where visibility is a parameter. If a "0,"
then the file is VISible. (The file can be referenced if specified by
name by an @INIT or @OPEN SVC.)

Software 14

Bits 0-2—Contain the USER protection level of the file. The 3-bit binary
value is one of the following:

0 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE
1=REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS

DIR + 1

Contains various file flags and the month field of the packed date of last
modification.

Bit 7—Set to "1" if the file was "CREATEd" (see CREATE library com-
mand in the Disk System Owner's Manual). Since the CREATE
command can reference a file that is currently existing but non-
CREATEd, it can turn a non-CREATEd file into a CREATEd one.
You can achieve the same effect by changing this bit to a "1."

Bit 6—If set to "1," the file has not been backed up since its last modifica-
tion. The BACKUP Utility is the only TRSDOS facility that resets
this flag. It is set during the close Operation if the File Control Block
(FCB + 0, Bit 2) shows a modification of file data.

Bit 5 — If set to "1," indicates a file in an open condition with UPDATE
access or greater.

Bit 4—If the file was modified during a Session where the System date was
not maintained, this bit is set to "1." This specifies that the packed
date of modification (if any) stored in the next three fields is not the
actual date the modification occurred. If this bit is "1," the
directory command displays plus signs (4 -) between the date
fields.

Bits 0-3—Contain the binary month of the last modification date. If this
field is a zero, DATE was not set when the file was established or
since if it was updated.

DIR+2

Contains the remaining date of modification fields.

Bits 3-7—Contain the binary day of last modification.

Bits 0-2—Contain the binary year minus 80. For example, 1980 is coded
äs 000,1981 äs 001,1982 äs 010, and so on.

DIR+ 3

Contains the end-of-file offset byte. This byte and the ending record number
(ERN) form a pointer to the byte position that follows the last byte Written. This
assumes that programmers, interfacing in machine language, properly main-
tain the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was generated
or when it was later changed with a CLONE parameter.

DIR+5throughDIR + 12

Contain the name field of the filespec. The filename is left justified and padded
with trailing blanks.

DIR +13 through DIR +15

Contain the extension field of the filespec. It is left justified and padded with
trailing blanks.

DIR+16 and DIR+ 17

Contain the OWNER password hash code.

DIR+ 18 and DIR+ 19

Contain the USER password hash code. The protection level in DIR+0 is asso-
ciated with this password.

Software 15

DIR+20 and DIR+ 21

Contain the ending record number (ERN), which is based on füll sectors. If the
ERN is zero, it indicates that no writing has taken place (or that the file was not
closed properly). If the LRL is not 256, the ERN represents the sector where the
EOF occurs. You should use ERN minus 1 to account for a value relative to sec-
tor 0 of the file.

DIR+ 22 and DIR+23

This is the first extent field. Its Contents indicate which cylinder Stores the first
granule of the extent, which relative granule it is, and how many contiguous
grans are in use in the extent.

DIR+22—Contains the cylinder value for the starting gran of that extent.

DIR + 23, Bits 5-7—Contain the number of the granule in the cylinder indi-
cated by DIR+22 which is the first granule of the file for that
extent. This value is relative to zero ("0" denotes the first gran,
"1" denotes the second, and so on).

DIR+ 23, Bits 0-4—Contain the number of contiguous granules, relative
to 0 ("0" denotes one gran, "1" denotes two, and so on). Since
the field is five bits, it contains a maximum of X'1 F or 31, which
represents 32 contiguous grans.

DIR+ 24 and DIR+25

Contain the fields for the second extent. The format is identical to that for
Extent 1.

DIR+26 and DIR+27

Contain the fields for the third extent. The format is identical to that for Extent 1.

DIR+28 and DIR+29

Contain the fields for the fourth extent. The format is identical to that for
Extent 1.

DIR+ 30

This is a flag noting whether or not a link exists to an extended directory record.
If no further directory records are linked, the byte contains X'FP A value of X'FE'
in this byte establishes a link to an extended directory entry. (See "Extended
Directory Records" below.)

DIR+31

This is the link to the extended directory entry noted by the previous byte. The
link code is the Directory Entry Code (DEC) of the extended directory record.
The DEC is actually the ppsition of the Hash Index Table byte mapped to the
directory record. For more Information, see the section "Hash Index Table."

Extended Directory Records
Extended directory records (FXDE) have the same format äs primary directory
records, except that only Bytes 0,1, and 21-31 are utilized. Within Byte 0, only
Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of
which this is an extension. An extended directory record may point to yet
another directory record, so a file may contain an "unlimited" number of extents
(limited only by the total number of directory records available).

Granule Allocation Table (GAT)

The Granule Allocation Table (GAT) contains Information on the free and
assigned space on the disk. The GAT also contains data about the formatting
used on the disk.

Software 16

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a spec-
ified number of sectors. A group of sectors is allocated whenever additional
space is needed. This group is called a granule. The number of sectors per
granule depends on the total number of sectors available on a logical drive. The
GAT provides for a maximum of eight granules per cylinder.

In the GAT bytes, each bit set to "1" indicates a corresponding granule in use
(or locked out). Each bit reset to "0" indicates a granule free to be used. In a
GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the secönd rel-
ative granule, bit 2 the third, and so on. A SW single density diskette is format-
ted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder.
Thus, that configuration uses only bits 0 and 1 of the GAT byte. The remainder
of the GAT byte contains all 1's, denoting unavailable granules. Other formatting
conventions are äs follows:

Sectors
per

Cylinder

10
18
16
30
32

Sectors
per

Granule

5
6
8

10
16

Granules
per

Cylinder

2
3
2
3
8

Maximum
No.of

Cylinders

80
80
77
77

153

5" SDEN
5" DDEN
8" SDEN
8" DDEN
Hard Disk

*Hard drive format depends on the drive size and type, äs well äs the User's divi-
sion of the drive into logical drives. These values assume that one physical
hard disk is treated äs one logical drive.

The above table is valid for single-sided disks. TRSDOS supports double-sided
Operation if the hardware interfacing the physical drives to the CPU allows it. A
two-headed drive functions äs a single logical drive, with the secönd side äs a
cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table
(DCT+4, Bit 5) indicates one-sided or two-sided drive configuration.

A Winchester-type hard disk can be divided by heads into multiple logical
drives. Details are supplied with Radio Shack drives.

The Granule Allocation Table is the first relative sector of the directory cylinder.
The following information describes the layout and contents of the GAT.

GAT+XW through GAT+X'SP

Contains the free/assigned table information. GAT+0 corresponds to cylinder
0, GAT +1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so
on. As noted above, bit 0 of each byte corresponds to the first granule on the
cylinder, bit 1 to the secönd granule, and so on. A value of "1" indicates the
granule is not available for use.

GAT+XW through GAT+X'BF

Contains the available/locked out table information. It corresponds cylinder for
cylinder in the same way äs the free/assigned table. It is used during mirror-
image backups to determine if the destination diskette has the proper capacity
to effect a backup of the source diskette. This table does not exist for hard
disks; for this reason, mirror-image backups cannot be performed on hard disk.

GAT+X'C0' through GAT+X'CA'

Used in hard drive configurations; extends the free/assigned table from X'00'
through X'CA'.Hard drive capacity up to 203 (0-202) logical or 406 physical cyl-
inders is supported.

GÄT+X'CB'

Contains the Operating System version that was used in formatting the disk.
For example, disks formatted under TRSDOS 6.2 have a value of X'62'
contained in this byte. It is used to determine whether or not the disk
contains all of the parameters needed for TRSDOS Operation.

Software 17

GAT+X'CC'

Contains the number of cylinders in excess of 35. tt is used to minimize the time
required to compute the highest numbered cylinder formatted on the disk. It is
excess 35 to provide compatibility with allen Systems not maintaining this byte.
If you have a disk that was formatted on an allen System for other than 35 cyl-
inders, this byte can be automatically configured by using the REPAIR Utility.
(See the section on the REPAIR Utility in the Disk System Owner's Manual.)

GAT+X'CD'

Contains data about the formatting of the disk.

Bit 7—If set to "1," the disk is a data disk. If "0," the disk is a System disk.

Bit 6—If set to "1," indicates double-density formatting. If "0," indicates
single-density formatting.

Bit 5—If set to "1," indicates 2-sided disk. If "0," indicates 1-sided disk.

Bits 3-4—Reserved.

Bits 0-2—Contain the number of granules per cylinder minus 1.

GAT+X'CE' and GAT+X'CF

Contain the 16-bit hash code of the disk master password. The code is stored
in Standard Iow-order, high-order format.

GAT+X'DO' through GAT+X'D7'

Contain the disk name. This is the name displayed during a FREE or DIR Oper-
ation. The disk name is assigned during formatting or during an ATTRIB disk
renaming Operation. The name is left justified and padded with blanks.

GAT+X'D8' through GAT+X'DP

Contain the date that the diskette was formatted or the date that it was used äs
the destination in a mirror Image backup Operation in the format mm/dd/yy.

GAT+X'EO' through GAT+X'FP

Reserved for system use.

In Version 6.2:

GAT+X'EO' through GAT + XT4'

Reserved for system use.

GAT+XT5' through GAT+X'FF

Contain the Media Data Block (MDB).

GAT + XT5' through GAT + X'FS' — the identifying header. These four
bytes contain a 3 (X'03'), followed by the letters LSI (X'4C',X'53',X'49').

GAT + X'F8' through GAT9 + X'FF' — the last seven bytes of the DCT
in use when the media was formatted. FORMAT, MemDISK, and
TRSFORM6 install this Information. See Drive Control Table (DCT) for
more information on these bytes.

Hash Index Table (HIT)
The Hash Index Table is the key to addressing any file in the directory. It pin-
points the location of a file's directory with a minimum of disk accesses, keeping
overhead Iow and providing rapid file access.

The system's procedure is to construct an 11-byte filename/extension field. The
filename is left-justified and padded with blanks. The file extension is then
inserted and padded with blanks; it occupies the three least significant bytes of

Software 18

the 11-byte field. This field is processed through a hashing algorithm which pro-
duces a single byte value in the ränge X'01' through X'FR (A hash value of XW
indicates a spare HIT position.)

The System then Stores the hash code in the Hash Index Table (HIT) at a Posi-
tion corresponding to the directory record that contains the file's directory. Since
more than one 11-byte string can hash to identical codes, the opportunity for
"collisions" exists. For this reason, the search algorithm scans the HIT for a
matching code entry, reads the directory record corresponding to the matching
HIT position, and compares the filename/extension stored in the directory with
that provided in the file specification. If both match, the directory has been
found. If the two fields do not match, the HIT entry was a collision and the algo-
rithm continues its search from the next HIT entry.

The position of the HIT entry in the hash table is called the Directory Entry Code
(DEC) of the file. All files have at least one DEC. Files that are extended beyond
four extents have a DEC for each extended directory entry and use more than
one filename slot. To maximize the number of file slots available, you should
keep your files below five extents where possible.

Each HIT entry is mapped to the directory sectors by the DEC's position in the
HIT. Think of the HIT äs eight rows of 32-byte fields. Each row is mapped to one
of the directory records in a directory sector: The first HIT row is mapped to the
first directory record, the second HIT row to the second directory record, and so
on. Each column of the HIT fieid (0-31) is mapped to a directory sector. The first
column is mapped to the first directory sector in the directory cylinder (not
including the GAT and HIT). Therefore, the first column corresponds to sector
2, the second column to sector 3, and so on. The maximum number of HIT col-
umns used depends on the disk formatting according to the formula:
N = number of sectors per cylinder minus two, up to 32.

The following chart shows the correlation of the Hash Index Table to the direc-
tory records. Each byte value shown represents the position in the HIT. This
position value is the DEC. The actual contents of each byte is either a X(00)
indicating a spare slot, or the 1-byte hash code of the file that occupies the cor-
responding directory record.

Columns

Row1 00 01 02 03 04 05 06 07 08 09 0A OB 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

Row 2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 20 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

Row 3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Row 4 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

Row 5 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

Row 6 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

Row7 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CG CD CE CF
DO D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

Row 8 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

A 51/4" single density disk has 10 sectors per cylinder, two of which are reserved
for the GAT and HIT. Since only eight directory sectors are possible, only the
first eight positions of each HIT row are used. Other formats use more columns
of the HIT, depending on the number of sectors per cylinder in the formatting
scheme.

The eight directory records for sector 2 of the directory cylinder correspond to
assignments in HIT positions 00, 20, 40, 60, 80, A0, CO, and EO. On System

Software 19

disks, the following positions are reserved for System overlays. On data disks,
these positions (except for 00 and 01) are available to the user.

00 — BOOT/SYS 20 — SYS6/SYS
01 — DIR/SYS 21 — SYS7/SYS
02 — SYSO/SYS 22 — SYS8/SYS
03 — SYS1 /SYS 23 — SYS9/SYS
04 — SYS2/SYS 24 — SYS1 O/SYS
05 — SYS3/SYS 25 — SYS11 /SYS
06 — SYS4/SYS 26 — SYS12/SYS
07 — SYS5/SYS 27 — SYS13/SYS

These entry positions correspond to the first two rows of each directory sector
for the first eight directory sectors. Since the Operating System accesses these
overlays by position in the HIT rather than by filename, these positions are
reserved on System disks.

The design of the Hash Index Table limits the number of files on any one drive
to a maximum of 256.

Locating a Directory Record

Because of the coding scheme used on the entries in the HIT table, you can
locate a directory record with only a few instructions. The instructions are:

AND 1FH
ADD A » 2

(calculates the sector)
and

AND 0E0H
(calculates the offset in that sector)

For example, if you have a Directory Entry Code (DEC) of X'84',the following
occurs when these instructions are performed:

Value of accumulator
A=X'84'

AND 1FH
A = X'04'

ADD A » 2
A = X'06'
The record is in the seventh
sector of the directory cylinder
(0-6)

Using the Directory Entry Code (DEC) again, you can find the offset into the
sector that was found using the above instructions by executing one
instruction:

Value of accumulator
A=X'84'

AND 0E0H
A = X'80'
The directory record is X'80' (128)
bytes from the beginning of
the sector

If the record containing the sector is loaded on a 256-byte boundary (LSB of the
address is X'OO') and HL points to the starting address of the sector, then you
can use the above value to calculate the actual address of the directory record
by executing the instruction:

LD L »A

Software 20

When executed after the calculation of the offset, this causes HL to point to the
record. For example:

A=X'80'
LD H L »4 2 0 0 H ; Where sector is loaded
L D L »A ;Replace LSB with offset

HL now contains 4280H, which is the address of the directory record you
wanted.

If you cannot place the sector on a 256-byte boundary, then you can use the
following instructions:

A=X'80'
LD H L »4 2 5 6 H ; Where sector is loaded
L D E »A ;Put offset in E (LSB)

LD D »0 ;Put a zero in D (MSB)
A D D H L t D E ;Add two values together

HL now contains 42D6H, which is the address of the directory record.

Note that the first DEC found with a matching hash code may be the file's
extended directory entry (FXDE). Therefore, if you are going to write System
code to deal with this directory scheme, you must properly deal with the FPDE/
FXDE entries. See Directory Records for more information.

Software 21

6/File Control

File Control Block (FCB)

The File Control Block (FCB) is a 32-byte memory area. Betöre the file is
opened, this space holds the file's filespec. After an @OPEN or @INIT Super-
visor call is performed, the System uses this area to Interface with the file, and
replaces the filespec with other information. When the file is closed, the filespec
(without any specified password) is returned to the FCB.

While a file is open, the Contents of the FCB are dynamic. As records are Written
to or read from the disk file, specific fields in the FCB are modified. Avoid chang-
ing the contents of the FCB during the time a file is open, unless you are sure
that the change will not affect the integrity of the file.

During most System access of the FCB, the IX index register is used to refer-
ence each field of data. Register pair DE is used mainly for the initial reference
to the FCB address. The information contained in each field of the FCB is äs
follows:

FCB+0

Contains the TYPE code of the control block.

Bit 7—If set to "1," indicates that the file is in an open condition; if "0," the
file is assumed closed. This bit can be tested to determine the
"open" or "closed" Status of an FCB.

Bit 6—Is set to "1" if the file was opened with UPDATE access or higher.

Bit 5—Indicates a Partition Data Set (PDS) type file.

Bits 4-3—Reserved for future use.

Bit 2—Is set to "1" if the System performed any WRITE Operation on this
file. It is used to Update the MOD flag in the directory record when
the file is closed.

Bits 1 -0—Reserved for future use.

FCB + 1

Contains Status flag bits used in read/write operations by the System.

Bit 7—If set to "1," indicates that I/O operations will be either füll sector
operations or byte operations of logical record length (LRL) less
than 256. If "0," only sector operations will be performed. If you are
going to use only full-sector I/O, you can reduce System overhead
by specifying the LRL at open time äs 0 (indicating 256). An LRL
of other than 256 sets bit 7 to "1" on open.

Bit 6—If set to "1," indicates that the end of file (EOF) is to be set to ending
record number (ERN) only if next record number (NRN) exceeds
the current value of EOF. This is the case if random access is to be
used. During random access, the EOF is not disturbed unless you
extend the file beyond the last record slot. Any time the position
routine (@POSN) is called, bit 6 is automatically set. If bit 6 is "0,"
then EOF will be updated on every WRITE Operation.

Bit 5—If "0," then the disk I/O buffer contains the current sector denoted
by NRN. If set to "1," then the buffer does not contain the current
sector. During byte I/O, bit 5 is set when the last byte of the sector
is read. A sector read resets the bit, showing the buffer to be
current.

Software 23

Bit 4—If set to "1" indicates that the buffer contents have been changed
since the buffer was read from the file. It is used by the System to
determine whether the buffer must be Written back to the file before
reading another record. If "0," then the buffer contents were not
changed.

Bit 3—Used to specify that the directory record is to be updated each time
the NRN exceeds the EOF. (The normal Operation is to Update the
directory only when an FCB is closed.) Some unattended opera-
tions may use this extra measure of file protection. It is specified by
adding an exclamation mark ("!") to the end of a filespec when the
filespec is requested at open time.

Bits 2-0—Contain the user (access) protection level äs retrieved from the
directory of the file. The 3-bit binary value is one of the following:

0 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE
1=REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS

FCB+ 2

Used by Partition Data Set (PDS) files.

FCB+ 3 and FCB+ 4

Contain the buffer address in Iow-order, high-order format. This is the buffer
address specified in register pair HL when the @INIT or @OPEN SVC is
performed.

FCB+ 5

Contains the relative byte offset within the current buffer for the next I/O Oper-
ation. If this byte has a zero value, then FCB +1, Bit 5 must be examined to see
if the first byte in the current buffer is the target position or if it is the first byte of
the next record.- If you are performing sector I/O of byte data (that is, maintain-
ing your own buffering), then it is important to maintain this byte when you close
the file if the true end of file is not at a sector boundary.

FCB+ 6

Bits 3-7—Reserved for System use.

Bits 0-2—Contain the logical drive number in binary of the drive contain-
ing the file. Do not modify this byte; altering this value may damage
other files. This byte and FCB + 7 are the only links to the file's
directory Information.

FCB+7

Contains the directory entry code (DEC) for the file. This code is the offset in the
Hash Index Table where the hash code for the file appears. Do not modify this
byte; altering this value may damage other files. This byte and FCB + 6 are the
only links to the directory information for the file.

FCB+8

Contains the end-of-file byte offset. This byte is similar to FCB + 5 except that it
pertains to the end of file rather than to the next record number.

FCB+9

Contains the logical record length that was in effect when the file was opened.
This may not be the same LRL that exists in the directory. The directory LRL is
generated at the file creation and never changes unless the file is overwritten.

FCB+ 10 and FCB+ 11

Contain the next record number (NRN), which is a pointer for the next I/O Oper-
ation. When a file is opened, NRN is zero, indicating a pointer to the beginning.
Each sequential sector I/O advances NRN by one.

Software 24

FCB + 12andFCB + 13
Contain the ending record number (ERN) of the file. This is a pointer to the sec-
tor that contains the end-of-file indicator. In a null file (one with no records),
ERN equals 0. If one sector has been Written, ERN equals 1.

FCB + 14andFCB + 15
Contain the same Information äs the first extent of the directory. This represents
the starting cylinder of the file (FCB +14) and the starting relative granule within
the starting cylinder (FCB +15). FCB +15 also contains the number of contig-
uous granules allocated in the extent. These bytes are used äs a pointer to the
beginning of the file referenced by the FCB.

FCB +16 through FCB +19

This 4-byte entry contains granule allocation information for an extent of the file.
Relative bytes 0 and 1 contain the total number of granules allocated to the file
up to but not including the extent referenced by this field. Relative byte 2 con-
tains the starting cylinder of this extent. Relative byte 3 contains the starting rel-
ative granule for the extent and the number of contiguous granules.

FCB + 20 through FCB + 23

Contain information similar to the above but for a second extent of the file.

FCB+24 through FCB + 27

Contain information similar to the above but for a third extent of the file.

FCB + 28 through FCB + 31

Contain information similar to the above but for a fourth extent of the file.

The file control block contains information on only four extents at one time. If
the file has more than four extents, additional directory accessing is done to
shift the 4-byte entries in order to make space for the new extent information.

Although the System can handle a file of any number of extents, you should
keep the number of extents small. The most efficient file is one with a single
extent. The number of extents can be reduced by copying the file to a disk that
contains a large amount of free space.

Software 25

7/TRSDOS Version 6
Programming Guidelines

Converting to TRSDOS Version 6

This section provides suggestions on writing programs effectively with
TRSDOS Version 6, and on converting programs created with TRSDOS 1.3
and LDOS 5.1 Operating Systems for use with TRSDOS Version 6. This infor-
mation is by no means complete, but presents some important concepts to
keep in mind when using TRSDOS Version 6.

When programming in assembly language, you can use TRSDOS Version 6
routines for commonly used operations. These are accessed through the
Supervisor calls (SVCs) instead of absolute call addresses. Nothing in the sys-
tem can be accessed via any absolute address reference (except Z-80 RST
and NMI jump vectors).

IMPORTANT NOTE: TRSDOS provides all functions and storage through
Supervisor calls. No address or entry point below 3000H is documented or sup-
ported by Radio Shack.

The keyboard is not accessible via "peeking," and the Video RAM cannot be
"poked." The keyboard and Video are accessible only through the appropriate
SVCs.

Another distinction is that TRSDOS Version 6 handling of logical byte I/O
devices (keyboard, Video, printer, Communications line) completely Supports
error Status feedback. A FLAG convention is uniform throughout these device
drivers äs well äs physical byte I/O associated with files. The device handling
in TRSDOS Version 6 is completely independent. That means that byte I/O,
both logical and physical, can be routed, filtered, and linked. Therefore, it is
important to test Status return codes in all applications using byte I/O regard-
less of the device that the application expects to be used, since re-direction to
some other device is possible at the TRSDOS level. Appropriate action must be
taken when errors are detected.

Modules loaded into memory and protected by Iowering HIGH$ must Include
the Standard header, äs described earlier under "Memory Header." The
@GTMOD Supervisor call requires that this header be present in every resident
module for proper Operation.

The file password protection terms of UPDATE and ACCESS have been
changed in TRSDOS Version 6 to OWNER and USER, respectively. The addi-
tional file protection level of UPDATE has been added. A file with UPDATE pro-
tection level can be read or Written to, but its end of file cannot be extended.
This protection can be useful in a random access fixed-size file or in a file where
shared access is to take place.

Files opened with UPDATE or greater access are indicated äs open in their
directory. Attempting to open the file again forces a change to READ access
protection and a "File already open" error code. It is therefore important for
applications to CLOSE files that are opened.

For the convenience of applications that access files only for reading, you can
inhibit the "file open bit." If you set bit 0 of the System flag SFLAG$ (see the
@FLAGS Supervisor call), the file open bit is not set in the file's directory. Once
set, the next @OPEN or @INIT SVC automatically resets bit 0 of SFLAG$.
Note that you cannot use this procedure for files being Written to, since it inhibits
the CLOSE process.

Software 27

Some application programs need access to certain System parameters and
variables. A number of flags, variables, and port images can be accessed rel-
ative to a flag pointer obtained via the @FLAGS Supervisor call. These Param-
eters are only accessible relative to this pointer, äs the pointer's location may
change. (See the explanation of the @FLAGS SVC.)

All applications must honor the contents of HIGH$. This pointer contains the
highest RAM address usable by any program. You can retrieve and change
HIGH$ by using the @HIGH$ SVC.

TRSDOS Version 6 library commands and Utilities supply a return code (RC) at
completion. The RC is returned in register pair HL. The value returned is eitner
zero (indicating no error), a number from one through 62 (indicating an error äs
noted in Appendix A, TRSDOS Error Messages), or X'FFFF' (indicating an
extended error which is currently not assigned an error number). TRSDOS Ver-
sion 6 Job Control Language (JCL) aborts on any program terminating with a
non-zero RC value. Applications should therefore properly set the return code
register pair HL before exiting.

TRSDOS Version 6 library commands are also invokable via the @CMNDR
SVC which executes the command. Library commands properly maintain the
Stack Pointer (SP) and exit via a RET instruction. In this manner, control is
returned to the invoking program with the RC present for testing. For com-
mands invoked with the @CMNDI SVC or prompted for via the @EXIT SVC,
the SP is restored to the System Stack. The top of the Stack will contain an
address suitable for simulating an @EXIT SVC; thus, if your application pro-
gram properly maintains the integrity of the Stack pointer, it can exit after setting
the RC via a RET instruction instead of an @EXIT SVC.

TRSDOS Version 6 diskette and file structure is identical to that used in LDOS
5.1. This includes formatting, directory structure, and data address mark con-
ventions. TRSDOS Version 6 System diskettes, however, use the entire BOOT
track (track 0). This compatibility means that data files may be used inter-
changeably between LDOS 5.1 equipped machines and TRSDOS Version 6
equipped machines; the diskettes themselves are readable and writable across
both Operating Systems.

The methods of Internal handling of device linking and filtering have been
changed from LDOS 5.1. (It is beyond the scope of this manual to explain the
intemal functioning of TRSDOS Version 6.) Device filters must adhere to a strict
protocol of linkage in order to function properly. See the section on "Device
Driver and Filter Templates" for Information on device driver and filter protocol.

Stack Handling Restrictions*
Interrupt tasks and filters that deal with the keyboard or Video must not place
the Stack pointer above X'F3FF! This is because any Operation that requires the
keyboard or Video RAM Switches in the 3K bank at X'F400' and suppresses the
Stack until it is switched out again. If the System accesses the Stack at any time
during this period, the integrity of the Stack is destroyed.

*ln TRSDOS 6.0.0, the Stack cannot be placed above X'F3FF for any reason.

Software 28

Programming With Restart Vectors

The Restart instruction (RST) provides the assembly language programmer
with the ability to call a subroutine with a one-byte call. If a routine is called
many times by a program, the amount of space that is saved by using the RST
instruction (instead of a three-byte CALL) can be significant.

In TRSDOS a RST instruction is also used to interface to the Operating System.
The System uses RST 28H for Supervisor calls. RSTS 00H, 30H, and 38H are
for the system's Internal use.

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some pro-
grams, such äs BASIC, may use some of these RSTs.

Each RST instruction calls the address given in the Operand field of the instruc-
tion. For example, RST 18H causes the System to push the current program
counter address onto the Stack and then set the program counter to address
0018H. RST 20H causes a jump to location 0020H, and so on.

Each RST has three bytes reserved for the subroutine to use. If the subroutine
will not fit in three bytes, then you should code a jump instruction (JP) to where
the subroutine is located. At the end of the subroutine, code a return instruction
(RET). Control is then transferred to the instruction that follows the RST.

For example, suppose you want to use RST 18H to call a subroutine named
"ROUTINE." The following routine loads the restart vector with a jump instruc-
tion and saves the old Contents of the restart vector for later use.

SETRST: LD IX,0018H «Restart area address
LD IY»RDATA »Data area address
LD B»3 »Nuwber of bytes to moue

LOOP: LD A»(IX) iRead a bvte frow
»restart area

LD C»(IY) iRead a bvte from data
i area

LD (IX) tC »Store this bvte in
irestart area

LD (IY)»A »Store this bvte in data
iarea

INC IX »Increment restart area
»Pointe r

INC IY »Increment data area
»pointe r

DJNZ LOOP »Loop till 3 bytes moued
RET »Return when done

RDATA: DEFB 0C3H »Jump instruction (JP)
DEFW ROUTINE »Operand (nawe of

»sub routine)

Before exiting the program, calling the above routine again puts the original
contents of the restart vector back in place.

KFLAG$ (BREAK). (PAUSE), and
Interfacing

ft

KFLAG$ contains three bits associated with the keyboard functions of BREAK,
PAUSE ((SHIFT) (D), and ENTER. A task processor Interrupt routine (called the
KFLAG$ Scanner) examines the physical keyboard and sets the appropriate
KFLAG$ bit if any of the conditions are observed. Similarly, the RS-232C driver
routine also sets the KFLAG$ bits if it detects the matching conditions being
received.

Software 29

Many applications need to detect a PAUSE or BREAK while they are running.
BASIC checks for these conditions after each logical Statement is executed
(that is, at the endofa line or at a ":"). That is how, in BASIC, you can stop a
program with the [BREAK) key or pause a listing.

One method of detecting the condition in previous TRSDOS Operating Systems
was to issue the @KBD Supervisor call to check for BREAK or PAUSE
((SfllETXM)), ignoring all other keys. Unfortunately, this caused keyboard type-
ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if
any other keystrokes were stacked up.

Another method was to scan the keyboard, physically examining the keyboard
matrix. An undesirable side effect of this method was that type-ahead stored up
the keyboard depression for some future unexpected input request. Examining
the keyboard directly also inhibits remote terminals from passing the BREAK or
PAUSE condition.

In TRSDOS Version 6, the KFLAG$ Scanner examines the keyboard for the
BREAK, PAUSE, and ENTER functions. If any of these conditions are detected,
appropriate bits in the KFLAG$ are set (bits 0,1, and 2 respectively).

Note that the KFLAG$ Scanner only sets the bits. It does not reset them
because the "events" would occur too fast for your program to detect. Think of
the KFLAG$ bits äs a latch. Once a condition is detected (latched), it remains
latched until something examines the latch and resets it—a function to be per-
formed by your KFLAG$ detection routine.

Under Version 6.2, you can use the @CKBRKC SVC, SVC 106, to see if the
BREAK key has been pressed. If a BREAK condition exists, @CKBRKC resets
the break bit of KFLAG$.

For Illustration, the following example routine uses the BREAK and PAUSE
conditions:

KFLAG$
SFLAGS
@KBD
@KEY
@PAUSE
CKPAWS LD A»@FLAGS iGet F lasTs pointer

» into realste r IY
»Get the KFLAG$
«Bit 0 to carrx
5Go on BREAK
iBit l to carrx
»Return if no pause
»Reset the flad

FLUSH

PROMPT

RESKFL

RESKFL1

EQU
EOU
EQU
EOU
EOU
LD
RST
LD
RRCA
JP
RRCA
RET
CALL
PUSH
LD
RST
JR
POP
PUSH
LD
RST
POP
CP
JP
CP
JR
PUSH
PUSH
LD
RST
LD
AND

10
101
8
1
16
A»@FLAGS
28H
A»<IY+KFLAG$)

C»GOTBRK

NC
RESKFL
DE
A»@KBD
28H
Z »FLUSH
DE
DE
A»@KEY
28H
DE
80H
Z»GOTBRK
60H
Z »PROMPT
HL
AF
A»@FLAGS
28H
A»(IY+KFLAG*)
0F8H

•

»
!
i
»
•i
•
9

9

•

•

•

•

5

5
•»
•*
*
5
i
• ii

iFlush type-ahead
»buffe r while
i i ?no rinS e rro rs

»Wait on Key entry

»Abort on

»Isrnore PAUSE»
»e i se » * «
; reset KFLAG$

»Get f lads pointer
» into red is te r IY
»Get the f lasf
»Strip ENTER»

Software 30

LD (IY+KFLAG$)»A
PUSH BC
LD B»16
LD A»@PAUSE
RST 28H
POP BC
LD A»(IY+KFLAG$)
AND 3
JR NZ»RESKFL1
POP AF
POP HL
RET

i PAUSE* BREAK

»Pause a while

»ChecK if finaer is
«st i 11 on Key
»Reset it adain
»Restore reäisters
»and exit

The best way to explain this KFLAG$ detection routine is to take it apart and
discuss each subroutine. The first piece reads the KFLAG$ contents:

KFLAG$
CKPAWS

EOU
LD
RST
LD
RRCA
JP
RRCA
RET

10
A»@FLAGS
28H
A»(IY+KFLAG$)

C»GOTBRK

NC

»Get Flads pointer
Jinto resister IY
«Get the KFLAG*
«Bit 0 to carrv
?Go on BREAK
»Bit l to carry
»Return if no pause

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your
application uses the IY index register, you should save and restore it within the
CKPAWS routine. (Altematively, you could use @FLAGS to caiculate the loca-
tion of KFLAG$, use register HL instead of IY, and place the address into the LD
instructions of CKPAWS at the beginning of your application.)

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a
BREAK condition is in effect, the subroutine branches to "GOTBRK," which is
your BREAK handling routine.

If there is no BREAK condition, the second rotate places what was originally in
the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine
returns to the caller.

This sequence of code gives a higher priority to BREAK (that is, if both BREAK
and PAUSE conditions are pending, the BREAK condition has precedence).
Note that the GOTBRK routine needs to clear the KFLAG$ bits after it Services
the BREAK condition. This is easily done via a call to RESKFL.

The next part of the routine is executed on a PAUSE condition:

FLUSH

CALL
PUSH
LD
RST
JR
POP

RESKFL
DE
A»@KBD
28H
Z»FLUSH
DE

«Reset the flad

»Flush type-ahead
»buffer while
i i dno rinä e rro rs

First the KFLAG$ bits are reset via the call to RESKFL. Next, the routine takes
care of the possibility that type-ahead is active. If it is, the PAUSE key was prob-
ably detected by the type-ahead routine and so is stacked in the type-ahead
buffer also. To flush out (remove all stored characters from) the type-ahead
buffer, @KBD is called until no characters remain (an NZ is retumed).

Now that a PAUSEd state exists and the type-ahead buffer is cleared, the rou-
tine waits for a key input:

PROMPT PUSH
LD
RST
POP
CP
JP

DE
A » @ K E Y
28H
DE
80H
Z»GOTBRK

»Wai t on Key en t ry

» A b o r t on (BfiEÄR)

Software 31

CP
JR

60H
Z»PROMPT

«Unore PAUSE i
« e i s e » * *

The PROMPT routine accepts a BREAK and branches to your BREAK han-
dling routine. It ignores repeated PAUSE (the 60H). Any other Character causes
it to fall through to the following routine which clears the KFLAG$:

RESKFL PUSH HL
PUSH AF
LD A»@FLAGS
RST 28H

RESKFL1 LD A t(lY+KFLAG$)
AND 0F8H
LD <IY+KFLAG$)»A
PUSH BC
LD B»16
LD ABPAUSE
RST 28H
POP BC
LD A»<IY+KFLAG$>
AND 3
JR NZtRESKFLl
POP AF
POP HL
RET

ireset KFLAG$

«Get flaas pointer
5 into resf iste r IY
«Get the flaö
iStrip ENTER»
; PAUSE, BREAK

«Pause a while

»ChecK if fintfer is
ist i 11 on Key
«Reset it adain
iRestore reöisters
«and exit

The RESKFL subroutine should be called when you first enter your application.
This is necessary to clear the flag bits that were probably in a "set" condition.
This "primes" the detection. The routine should also be called once a BREAK,
PAUSE, or ENTER condition is detected and handled. (You need to deal with
the flag bits for only the conditions you are using.)

Interfacing to @ICNFG
With the TRSDOS library command SYSGEN, many users may wish to SYS-
GEN the RS-232C driver. Before doing that, the RS-232C hardware (UART,
Baud Rate Generator, etc.) must be initialized. Simply using the SYSGEN com-
mand with the RS-232C driver resident is not enough; some initialization
routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is
included in TRSDOS to provide a way to invoke a routine to initialize the RS-
232C driver when the System is booted. It also provides a way to initialize the
hard disk Controller at power-up (required by the Radio Shack hard disk
System).

The final stages of the booting process loads the configuration file CONFIG/
SYS if it exists. After the configuration file is loaded, an initialization subroutine
CALLs the @ICNFG vector. Thus, any initialization routine that is part of a
memory configuration can be invoked by chaining into @ICNFG.

If you need to configure your own routine that requires initialization at power-up,
you can chain into @ICNFG. The following procedure illustrates this link. The
first thing to do is to move the Contents of the @ICNFG vector into your initiali-
zation routine:

LD A»@FLAGS
RST 28H
LD A»(IY+28)
LD (LINK)»A
LD L»(IY+28)
LD H»(IY+30)
LD (LINK+1) »HL

«Get flads pointer
«into refiste r IY
iGet opcode

»Get address LOW
«Get address HIGH

This subroutine does this by transferring the 3-byte vector to your routine. You
then need to relocate your routine to its execution memory address. Once this

Software 32

ft

is done, transfer the relocated initialization entry point to the @ICNFG vector äs
ajumpinstruction:

LD HL»INIT ;Get (relocated)
LD (IY+29)»L »init address
LD (IY+30)»H
LD A»0C3H »Set JP instruct ion
LD < I Y + 2 8) * A

If you need to invoke the initialization routine at this point, then you can use:

CALL ROUTINE » I n v o K e your routine

Your initialization routine would be unique to the function it was to perform, but
an overall design would look like this:

INIT CALL ROUTINE »Start of init
LINK DEFS 3 »Continue on
ROUTINE •

your initialization routine

RET

After linking in your routine, perform the SYSGEN. If you have followed these
procedures, your routine will be invoked every time you Start up TRSDOS.

Interfacing to @KITSK
Background tasks can be invoked in one of two ways. For tasks that do not
require disk I/O, you can use the RTC (Real Time Clock) Interrupt and one of
the 12 task slots (or other external interrupt). For tasks that require disk I/O, you
can use the keyboard task process.

At the beginning of the TRSDOS keyboard driver is a call to @KITSK. This
means that any time that @KBD is called, the @KITSK vector is also called.
(The type-ahead task, however, bypasses this entry so that @KITSK is not
called from the type-ahead routine.) Therefore, if you want to interface a back-
ground routine that does disk I/O, you must chain into @KITSK.

The interfacing procedure to @KITSK is identical to that shown in the section
"Interfacing to @ICNFG," except that IY+31 through IY + 33 is used to refer-
ence the @KITSK vector. You may want to Start your background routine with:

START CALL ROUTINE »InuoKe task
LINK DEFS 3 »For SKITSK hook
ROUTINE EOU $ »Start of the task

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and
@CMNDR (which is in SYS1/SYS). This invocation is from the @KEYIN call,
which fetches the next command line after issuing the "TRSDOS Ready" mes-
sage. If your background task executes and opens or closes a file (or does any-
thing to cause the execution of a System Overlay other than SYS1), then SYS1
is overwritten by SYS2 or SYS3. When your routine finishes, the @KEYIN han-
dler tries to return to what called it—SYS1, which is no longer resident. There-
fore, any task chained to @KITSK which causes a resident SYS1 to be over-
written must reload SYS1 before returning.

You can use the following code to reload SYS1 if SYS1 was resident prior to
your task's execution:

ROUTINE LD A»SFLAGS iGet MasTs pointer
RST 28H »into reöister IY
LD At(IY-l) »Get resident over-
AND 8FH »lay and remoue
LD (OLDSYS+1)»A »the entry code

Software 33

rest of vour task

EXIT EQU $
OLDSYS LD A»0 »Get old Overlay *

CP 83H »Was it SYS1?
RET NZ JReturn if not! eise
RST 28H ;Get SYS1 per re«r. A

»(no RET needed)

Interfacing to the Task Processor
This section explains how to integrale Interrupt tasks into your applications.

One of the hardware interrupts in the TRS-80 is the real time Clock (RTC). The
RTC is synchronized to the AC line frequency and pulses at 60 pulses per sec-
ond, or once every 16.67 milliseconds. (Computers Operating with 50 Hz AC
use a 50 pulses per second RTC Interrupt. In this case, all time relationships
discussed in this section should be adjusted to the 50 Hz base.)

A Software task processor manages the RTC Interrupt in performing back-
ground tasks necessary to specific functions of TRSDOS (such äs the time
Clock, blinking Cursor, and so on). The task processor allows up to 12 individual
tasks to be performed on a "time-sharing" basis.

These tasks are assigned to "task slots" numbered from 0 to 11. Slots 0-7 are
considered "Iow priority" tasks (executing every 266.67 milliseconds). Slots 8-
10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 is a
high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33
milliseconds SYSTEM (SLOW))- Task slots 3, 7,9, and 10 are reserved by the
System for the ALIVE, TRAGE, SPOOL, and TYPE-AHEAD functions,
respectively.

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains
12 vectors, one for each of the 12 task slots. TRSDOS contains five Supervisor
calls that manage the task vectors. The five SVCs and their functions are:

@CKTSK Checks to see whether a task slot is unused or active
@ADTSK Adds a task to the TCBVT
@RMTSK Removes a task from the TCBVT
@KLTSK Removes the currently executing task
@RPTSK Replaces the TCB address for the current task

The TRSDOS Task Control Block Vector Table contains vector pointers. Each
TCBVT vector points to an address in memory, which in turn contains the
address of the task. Thus, the tasks themselves are indirectly addressed.

When you are programming a task to be called by the task processor, the entry
point of the routine needs to be stored in memory. If you make this storage loca-
tion the beginning of a Task Control Block (TCB), the reason for indirect vector-
ing of Interrupt tasks will become more clear. Consider an example TCB:

MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFS l
MYTASK RET

This is a useless task, since the only thing it does is return from the interrupt.
However, note that a TCB location has been defined äs "MYTCB" and that this
location contains the address of the task. A few more data bytes immediately
following the task address storage have also been defined.

Upon entry to a Service routine, index register IX contains the address of the
TCB. You can therefore address any TCB data using index instructions. For
example, you could use the instruction "DEC (IX+2)" to decrement the value
contained in COUNTER in the above routine.

Software 34

Here is the routine expanded slightly:

MYTCB DEFW
COUNTER DEFB
TEMPY DEFB
MYTASK DEC

RET
LD
RET

MYTASK
15
0
(I X + 2)
NZ
(I X + 2) » 1 5

This version makes use of the counter. Each time the task executes, the counter
is decremented. When the count reaches zero, the counter is restored to its
original value.

In order to be executed, all tasks must be added to the TCBVT. The @ADTSK
Supervisor call does this. For the above routine, assume the task slot chosen is
Iow-priority slot 2. You can ascertain that slot 2 is available for use by using the
©CKTSKSVCasfollows:

LD C»2 »Reference slot 2
LD A»28 iSet for @CKTSK SVC
RST 28H »An "NZ" indication
JP NZ»INUSE isaxs that the slot is

»beinö used «

Once you determine that the slot is available (that is, not being used by some
other task), you can add your task routine. The following code adds this task to
the TCBVT:

LD
LD
LD
RST

DE»MYTCB
C»2
A »29
28H

»Point to the TCB
»Reference slot 2
.Set for 0ADTSK SVC
»Issue the SVC

The above program lines point register DE to the TCB, load the task slot num-
ber into register C, and then issue the @ADTSK Supervisor call. If you want this
task to run regardless of what is in memory, you can place it in high memory (of
bank 0) and protect it by moving HIGH$ below it via the @HIGH$ Supervisor
call.

Once a task has been activated, it is sometimes necessary to deactivate it. You
can do this in two ways. The most common way is to use the @RMTSK Super-
visor call:

LD

LD
RST

C»2

A »30
28H

»Designate the tasK
»slot
»Set for 0RMTSK SVC
»Issue the SVC

You identify the task slot to remove by placing a value in register C, and then
you issue the Supervisor call.

You can use another method if you want to remove the task while it is being
executed. Examine the routine modified äs follows:

MYTCB DEFW
COUNTER DEFB
TEMPY DEFB
MYTASK DEC

RET
LD
RST

MYTASK
10
0
(IX+2)
NZ
A »32
28H

iSet for SKLTSK
ilssue the SVC

SVC

The @KLTSK Supervisor call removes the currently executing task from the
TCBVT. The System does not return to your routine, but continues äs if you had
executed a RET instruction. For this reason, the @KLTSK SVC should be the
last instruction you want executed. In this example, MYTASK decrements the
counter by one on each entry to the task. When the counter reaches zero, the
task is removed from slot 2.

Software 35

The last task processor Supervisor call is @RPTSK. The @RPTSK function
Updates the TCB storage vector (the vector address in your Task Control Block)
to be the address immediately following the @RPTSK SVC instruction. As with
@KLTSK, the System does not return to your Service routine alter the SVC is
made, but continues on with the task processor. The following example illus-
trates how @RPTSK can be used in a program:

6ADTSK
8RPTSK
6RMTSK
@EXIT
SVDCTL
BEGIN

TCB
COUNTER
TASKA

TASK

TASKB

ORG
EQU
EQU
EQU
EQU
EQU
LD
LD
LD
RST
LD
RST
DEFW
DEFB
LD
RST
LD
LD
LD
RST
DEC
RET
LD
LD
RST
LD
LD
LD
RST
DEC
RET
LD
JR
END

9000H
29
31
30
22
15
DE»TCB
C»0
A»@ADTSK
28H
A»@EXIT
28H
TASK
15
A»@RPTSK
28H
BC»027CH
HL»004FH
A»@YDCTL
28H
(IX+2)
NZ
(IX+2) »15
A»@RPTSK
28H
BC»022DH
HL»004FH
A»@VDCTL
28H
(IX+2)
NZ
(IX+2)»15
TASKA
BEGIN

iPoint to TCB
»and add the tasK
«to slot 0

JExit to TRSDOS

»Replace current
itasK with TASKA
i Put a characte r
»at Row 0» Col« 79

»Decrement the counter
«and return if not
» e x p i r e d » eise reset
»Replace the previous
»task with TASKB
»Put a Character
iat Row 0» Col. 79

This task routine contains no method of relocating it to protected RAM. The
Statements starting at the label BEGIN add the task to TCBVT slot 0 and return
to TRSDOS Ready. The task contains a four-second down counter and a rou-
tine to put a Character in Video RAM (80th Character of Row 0). At four-second
intervals, the Character toggles between 'j' and ' -'. This is done by using the
@RPTSK SVC to toggle the execution of two separate routines which perform
the Character display.

TRSDOS uses bank-switched memory. In order to properly control and man-
age this additional memory, certain restrictions are placed on tasks. All tasks
must be placed either in Iow memory (addresses X'0000' through X7FFF) or
in bank zero of high memory (addresses X'8000' through X'FFFF'). The task
processor always enables bank zero when performing background tasks. The
assembly language programmer must ensure that tasks are placed in the cor-
rect memory area.

Interfacing RAM Banks 1 and 2
The proper use of the RAM bank transfer techniques described here requires a
high degree of skill in assembly language programming. This section on bank
switching is intended for the Professional.

Software 36

The TRS-80 Model 4 can optionally support a second set of 64K RAM, bringing
the total RAM to 128K. TRSDOS designates this extra 64K RAM äs two banks
of 32K RAM each, which are banks 1 and 2 of bank-switched RAM. The upper
32K of Standard RAM is designated bank 0. At any one time, only one of the
banks is resident. The resident bank is always addressed at X'8000' through
X'FFFF.' When a bank transfer is performed, the specified bank becomes
addressable and the previous bank is no longer available. Since memory
refresh is performed on all banks at all times, nothing in the previously resident
bank is altered during whatever time it is not addressable (that is, not resident).

You can access this additional RAM by means of the @BANK Supervisor call
(SVC 102). When you power up your Computer or press reset, TRSDOS looks
to see which banks of RAM are installed in your machine. TRSDOS maintains
a bit map in one byte of storage, with each bit representing one of the banks of
RAM. This byte is called "Bank Available RAM" (BAR), and its information is set
when you boot TRSDOS. Bit 0 corresponds to bank 0, bit 1 corresponds to
bank 1, and so on up to bit 7. From a hardware standpoint, the Model 4 has a
maximum of three banks. You have either bank 0 only (a 64K machine), or
banks 0-2 (a 128K machine).

Another bit map is used to indicate whether a bank is reserved or available for
use. This byte is called the "Bank Used RAM" (BUR). Again, bit 0 corresponds
to bank 0, bit 1 to bank 1, and so on. TRSDOS design Supports the use of banks
1 and 2 primarily for data storage (for example, a spool buffer, Memdisk, etc.).
The management of any memory space within a particular bank of RAM
(excluding bank 0) is the responsibility of the application program "reserving" a
particular bank.

TRSDOS requires that any device driver or filter that is relocated to high mem-
ory (X'8000' through X'FFFF) reside in bank 0. The TRSDOS device handler
always invokes bank 0 upon execution of any byte I/O Service request (@PUT,
@GET, @CTL, äs well äs other byte I/O SVCs that use @PUT/@GET/@CTL).
This ensures that any filter or driver attached to the device in question will be
available. If a RAM bank other than 0 was resident, it is restored upon return
from the device handler. This ensures that device I/O is never impacted by bank
switching.

TRSDOS also requires that all Interrupt tasks reside in bank 0 or Iow memory
(X'0000' through X7FFF). The Interrupt task processor always enables bank 0
and restores whatever bank was previously resident. An Interrupt task may per-
form a bank transfer from 0 to another bank provided the necessary linkage
and Stack area is used. This is discussed in more detail later.

All bank transfer requests must be performed using the @BANK SVC. This
SVC provides four functions, three of which are interrogatory and one of which
performs the actual bank switching.

As mentioned previously, the contents of banks other than 0 are managed by
the application, not by TRSDOS. Therefore, the application needs a way of find-
ing out if any given bank is available. For example, if an application wants to
reserve use of bank 1, it must first check to see if bank 1 is free to use. This is
done by using function 2 äs follows:

LD C » l »Specify bank l
LO B»2 »Check BUR if banK in use
LD A»@BANK »Set @BAIMK SVC (102)
RST 28H
JR NZ,INUSE »NZ if bank alreadv in use

Note that the return condition (NZ or Z) shows whether or not you can use the
specified bank (it may not even be installed).

If the specified bank is available, you then need to reserve it. Do this by using
function 3 äs foliows:

LD C» l iSpeci fy banK l
LD B»3 »Set BUR to show "in use"

Software 37

LD A,@BANK !Set 6BANK SVC (102)
RST 28H
JR NZ »ERROR

You must check for an error by examining the Z flag. In general (discounting a
System error), an NZ condition returned means t hat the specified bank is
already in use. If you had performed a function 2 (testing to see if the bank was
available) and got a not-in-use indication, but got an NZ condition on function
3, then the @BANK SVC routine has been altered and is probably unusable.

When an application no longer requires a memory bank, it can return the bank
to a "free" state by using function 1 äs follows:

LD C»l iSpecify banK l
LD B»l iSet BUR to show free
LD A,@BANK JSet 0BAIMK SVC (102)
RST 28H

No error condition is checked, äs none is returned by TRSDOS. If you should
mistakenly use function 1 with a bank that is nonexistent, an error is returned if
you try to invoke the nonexistent bank.

To find out which bank is resident at any time, use function 4 äs follows:

LD B»4 »Which banK is resident?
LD A»@BANK !Set @BANK SVC (102)
RST 28H

The current bank number is returned in register A.

To exchange the current bank with the specified bank, use function 0. Since a
memory transfer takes place in the address ränge X'8000' through X'FFFF,'
the transfer cannot proceed correctly if the Stack pointer (SP) contains a value
that places the Stack in that ränge. @BANK inhibits function 0 and returns an
SVC error if the Stack pointer violates this condition.

A bank can be used purely äs a data storage buffer. The application's routines
for invoking and indexing the bank switching probably reside in the user ränge
X'3000' through X7FFF.' As an example, the following code invokes a previ-
ously tested and reserved bank (via functions 2 and 3), accesses the buffer,
and then restores the previous bank:

LD C»l »Specify banK l
LD B»0 iBrin? UP banK
LD A»@BANK 5Set @BANK SVC (102)
RST 28H
JR NZ»ERROR iBrror trap
PUSH BC »Säue old banK data
»
your code to access the buffer redion
*
POP BC «Recouer old banK data
LD A,@BANK 5Set 3BANK SVC (102)
RST 28H
JR IMZ»ERROR lError trap

Note that the @BANK function 0 conveniently retums a zero in register B to
effect a function 0 later, äs well äs provides the old bank number in register C.
This means that you only have to save register pair BC, pop it when you want
to restore the previous bank, and then issue the @BANK SVC.

Suppose you want to transfer to another bank from a routine that is executing
in high memory. (Recall that the only limitation is that the Stack must not be in
high memory.) The @BANK SVC function 0 provides a technique for automat-
ically transferring to an address in the new bank. This technique is called the
transfer function. It relies on the assumption that since you are managing the
entire 32K bank 1 or 2, your application should know exactly where it needs to
transfer (that is, where the application originally placed the code to execute).

Software 38

The code to perform a bank transfer is similar to the above example. Register
pair HL is loaded with the transfer address. Register C, which contains the num-
ber of the bank to invoke, must have its high order bit (bit 7) set. After the spec-
ified bank is enabled, control is passed to the transfer address that is in HL.
Upon entry to your routine in the new bank (referred to here äs "PROGB"), reg-
ister HL will contain the old return address so that PROGB will know where to
return transfer. Register C will also contain the old bank number with bit 7 set
and register B will contain a zero. This register set-up provides for an easy
return to the routine in the old bank that invoked the bank transfer. An Illustra-
tion of the transfer code follows:

RETADR

LD
LD
LD

SET

LD
RST
JR

B»0
HL»(TRAADR)

7,C

A»@BANK
28H
NZ »ERROR

»Specify bank l
5Brin«f UP banK 0
iSet the transfer
5address
iand denote a
5t ransfe r
«Set 0BANK SVC (102)

Control is returned to "RETADR" under either of two conditions. If there was an
error in executing the bank transfer (for example, if an invalid bank number was
specified or the Stack pointer is in high memory), the returned condition is NZ.
If the transfer took place and PROGB transferred back, the returned condition
is Z. Thus, the Z flag shows whether or not there was a problem with the
transfer.

If PROGB needs to provide a return code, it must be done by using register pair
DE, IX, or IY, äs registers AF, BC, and HL are used to perform the transfer. (Or,
some other technique can be used, such äs altering the return transfer address
to a known error trapping routine.)

PROGB should contain code that is similar to that shown earlier. For example,
PROGB could be:

PROGB PUSH
PUSH

BC
HL

iSaue old
»Saue the
5address

banK
RET

data

your PROGB routines

POP

POP

LD
RST
JR

HL

BC

A,102
28H
NZ»ERROR

»Recouer transfer
iaddress
»Get banK transfer
5 data
»Set @BANK SVC

iErro r t rap

PROGB saves the bank data (register BC). Don't forget that a transfer was
effected and register C has bit 7 already set when PROGB is entered. PROGB
also saves the address it needs to transfer back (which is in HL). It then per-
forms whatever routines it has been coded for, recovers the transfer data, and
issues the bank transfer request. As explained earlier, an NZ return condition
from the @BANK SVC indicates that the bank transfer was not performed. You
should verify that your application has not violated the integrity of the Stack
where the transfer data was stored.

Never place disk drivers, device drivers, device filters, or Interrupt Service rou-
tines in banks other than bank 0. It is possible to segment one of the above
modules and place segments in bank 1 or 2, provided the segment containing
the primary entry is placed in bank 0. You can transfer between segments by
using the bank transfer techniques discussed above.

Software 39

Device Driver and Filter Templates

Device independence has its roots in "byte I/O." Byte I/O is any I/O passed
through a device channel one byte at a time.

Three primitive routines are available at the assembly language level for byte
I/O. These byte I/O primitives can be used to build larger routines. The three
primitives are the TRSDOS Supervisor calls @GET, @PUT, and @CTL @GET
is used to input a byte from a device or file. @PUT is used to Output a byte to a
device or file. @CTL is used to communicate with the driver routine servicing
the device or file.

Other Supervisor calls perform byte I/O, such äs @KBD (scan the keyboard and
return the Key code if a key is down), @DSP (display a Character on the video
screen), and @PRT (Output a Character to the line printer). These functions
operate by first loading register pair DE with a pointer to a specific Device Con-
trol Block (DCB) assigned for use by the device, then issuing a @GET or
@PUT SVC for input or Output requests.

When TRSDOS passes control over to the device driver routine, the Z-80 flag
conditions are unique for each different primitive. This enables the driver to
establish which primitive was used to access the routine, so it can turn over the
I/O request to the proper driver or filter subroutine according to the type of
request—input, Output, or control.

The following table shows the FLAG register conditions upon entry to a driver
or filter:

C,NZ = @GET primitive
Z,NC = @PUT primitive
NZ.NC = @CTL primitive

Register B contains the I/O direction code: 1 =@GET, 2 = @PUT, 4 = @CTL
Register C contains the Character code that was passed in the @PUT or @CTL
Supervisor call. Register IX points to the TYPE byte (DCB + 0) of the Device
Control Block. Registers BC, DE, HL, and IX have been saved on the Stack and
are available for use. Register AF is not saved; if you want it preserved, your
program must do so.

Your driver must Start with a Standard front-end header (see "Memory
Header"):

BEGIN JR START 5Go to actual code
»be^inninö

DEFW MODEND-1 »Last byte used bv
»Module

DEFB 7 »Lenöth of name
DEFM 'MODNAME' iName

MODDC6 DEFW $-$ »DCB ptr, for this
»module

DEFM 0 »Reserued bx TRSDOS

At the start of the actual module code, test the condition of the F register flags
for @GET, @PUT, and @CTL:

START EOU $
i Actual module code start

JR C»WASGET »Go if @GET request
JR Z»WASPUT »Go if 8PUT request
» »Was @CTL request

At the label START, a test is made on the carry flag. If the carry was set, then
the disk primitive must have been an input request (@GET). An input request
could be directed to a part of the driver which only handles input from the
device.

Software 40

If the request was not from the @GET primitive, the carry will not be set. The
next test checks to see if the zero flag is set. The zero condition is preset when
a @PUT primitive was the initial request. The jump to WASPUT can go to a part
of the driver that deals specifically with Output to the device.

If neither the zero nor carry flags are set, the routine falls through to the next
instruction (not shown), which would begin the part of the driver that handles
@CTL calls. For example, you may want to have an RS-232C driver handle a
BREAK by issuing a @CTL call so that the RS-232C driver emits a true modern
break, but a CONTROL C would @PUT a X'03.'

Some drivers are Written to assume that @CTL requests are to be handled
exactly like @PUT requests. This is entirely up to the author and the function of
the driver.

Note that when a device is routed to a disk file, TRSDOS ignores @CTL
requests. That is, the @CTL codes are not Written to the disk file.

On @GET requests, the Character input should be placed in the accumulator.
On Output requests (either @PUT or @CTL), the Character is obtained from
register C. It is important for drivers and filters to observe return codes. Specif-
ically, if the request is @GET and no byte is available, the driver returns an NZ
condition and the accumulator contains a zero (that is, OR 1 : LD A,0 : RET). If
a byte is available, the byte is placed in the accumulator and the Z flag is set
(that is, LD A.CHAR : CP A : RET). If there is an input error, the error code is
returned in the accumulator and the Z flag is reset (that is, LD A.ERRNUM : OR
A : RET). On Output requests, the accumulator will contain the byte Output with
the Z flag set if no error occurred. In the case of an Output error, the accumulator
must be loaded with the error code and the Z flag reset äs shown above.

A filter module is inserted between the DCB and driver routine (or between the
DCB and the current filter when it is applied to a DCB already filtered). The
insertion is performed by the TRSDOS FILTER command once the filter mod-
ule is resident and attached to a phantom DCB. The usual linkage for a filter is
to access the chained module by calling the (2 CHNIO Supervisor call with spe-
cific linkage data in registers IX and BC. Register IX is loaded with the filter's
DCB pointer obtained from the memory header MODDCB pointer. Register B
must contain the I/O direction code (1 =@GET, 2 = @PUT, 4 = @CTL). This
code is already in register B when the filter is entered. You can either keep reg-
ister B undisturbed or load it with the proper direction code. Also, Output
requests expect the Output byte to be in register C.

The DCB pointer obtained from MODDCB is passed in register DE by the SET
command and is loaded into MODDCB by your filter initialization routine. The
initialization routine needs to relocate the filter to high memory and attach itself
to the DCB assigned by the SET command. If the initialization front end had
transferred the DCB pointer from DE to IX, then the following code could be
used to establish the TYPE byte and vector for the filter:

LD (IX)»47H Unit DCB type to
LD <IX+1)»E 5FILTER» G/P/C I/O»
LD (IX+2)»D i& stuff vector

A filter module can operate on input, Output, control, or any combination based
on the author's design. The memory header provides a region for user data
storage conveniently indexed by the module.

An Illustration of a filter follows. The purpose of this filter is to add a linefeed on
Output whenever a carriage return is to be sent. Although the filter requires no
data storage, the technique for accessing data storage is shown.

Software 41

BEGIN

MODDCB

•

CR
LF
DATA*
DATA1

DATA2

START

FLTPUT

RX01

GOTPUT
RX02

RX03

FLTEND
•

RELTAB
TABLEN

START
FLTEND-1
S
'SAMPLE'
0
0

storade area
0DH
0AH
$
$-DATA*
0
*-DATA$
0

of filter
Z»GOTPUT

JR
DEFW
DEFB
DEFM
DEFW
DEFW
Data
EOU
EOU
EQU
EOU
DEFB
EOU
DEFB
Start
JR Z»GOTPUT »Go if @PUT
@GET and @CTL re^uests are chained to
the next Module attached to the deuice*
This is accornpl ished by fallina throuäh
to the @CHNIO c a l l « Note that the sample
filter does not affect the B realster»
so the filter does not haue to load it

code .
«Saue xour data
«pointe r

iGrab the DCB uector
«and chain to it

iBranch to Start
»Last byte used
«Name lenäth
«Name
»Link to DCB
iRese rued

fo r your filter

«Data storaäe

»Data storade

wi th the di rect ion
PUSH

LD
EQU
LD
RST
POP
RET
Filter
LD
EOU
LD

CP
JR
CALL
EQU
RET
LD
JR
EOU

IX

IX»(MODDCB)
$-2
A»@CHNIO
28H
IX

code
IX»PFDATA$
$-2
A» C

CR
NZ »FLTPUT
FLTPUT
$-2
NZ
C»LF
FLTPUT
$

«Base reäiste r
«used to index
»Get Character
«test
«If not CR» put

«eise put i t

»Back on e rro r
«Add linefeed

is
data
to

it

Relocation table
DEFW RX01»RX02»RX03
EOU $-RELTAB/2

The relocation table, RELTAB, would be used by the filter initialization relocation
routine.

@CTL Interfacing to Device Drivers

This section discusses the @CTL functions supported by the System device
drivers. To invoke a @CTL function, point register pair DE to the Device Control
Block (DCB), load the function code into register C, and issue the @CTL Super-
visor call. You can locate the DCB address by either 1) using the @GTDCB
SVC, or 2) using the @OPEN SVC to open a File Control Block containing the
device specification and using the FCB address. See the @CTL Supervisor call
for a (ist of the function codes and their meanings.

Software 42

The @CTL functions are listed below for each driver.

Keyboard Driver (resident driver assigned to *KI)

A function value of X'03' clears the type-ahead buffer. This serves the same
purpose äs repeated calls to @KBD until no Character is available.

A function value of X'FF' is reserved for System use.

All other function values are treated äs @GET requests.

The module name assigned to this driver is "$«!'.'

Video Driver (resident driver assigned to *DO)

All @CTL requests are treated äs if they were @PUT requests.

The module name assigned to this driver is "$DO"

Printer Driver (resident driver assigned to *PR)

The printer driver is transparent to all code values when requested by the
@F*UT SVC. That means that all values from XW through X'FF (0-255) can
be sent to the printer. If the FORMS filter is attached to the *PR device, then
various codes are trapped and used by the filter according to parameters spec-
ified with the FORMS library command, äs follows:

X'OD' —Generates a qarriage return and optionally a linefeed (ADOLF).
Generates form feeds äs required.

X'OA' —Treated the same way äs X'OD.'
X'OC' —Generates form feeds (via repeated line feeds if soft form feed).

(FFHARD = OFF)
X'09' —Advances to next tab column.
X'06' —Sets top-of-form by resetting the internal line counter to zero.

Other Character codes may be altered if the user translation Option of the
FORMS command (XLATE) is set.

The printer driver accepts a function value of XW via the @CTL request to
return the printer Status. If the printer is available, the Z flag will be set and reg-
ister A will contain X'30.' If the Z flag is reset, register A will contain the four high-
order bits of the parallel printer port (bits 4-7).

The module name assigned to the printer driver is "$PFT The module name of
the FORMS filter is"$FF':

COM Driver (non-resident driver for the RS-232C)

This driver handles the interfacing between the RS-232C hardware and byte
I/O (usually the *CL device).

A @CTL function value of X'00' returns an image of the RS-232 Status register
in the accumulator. The Z flag will be set if the RS-232 is available for "sending"
(that is, if the transmit holcjing register is empty and the flag conditions match
äs specified by SETCOM).

A function value of X'01' transmits a "modern break" until the next Character is
@PUTto the driver.

A function value of X'02' re-initializes the UART to the values last established
by SETCOM.

A function value of X'04' enables or disables the WAKEUP feature.

All other function values are ignored and the driver retums with register A con-
taining a zero value and the Z flag set.

The WAKEUP feature is useful for application Software specializing in com-
munications. The RS-232 hardware can generate a machine Interrupt under
any of three conditions: when the transmit holding register is empty, when a
received Character is available, or when an error condition has been detected
(framing error, parity error, and so on). The COM driver makes use of the

Software 43

"received Character available" Interrupt to take control when a fully formed Char-
acter is in the holding register. The COM driver Services the Interrupt by reading
the Character and storing it in a one-character buffer. COM then normally
returns from the Interrupt.

An application can request that, instead of returning, control be passed to the
application for immediate attention. Note that this action would occur during
Interrupt handling, and any processing by the application must be kept to a min-
imum betöre control is returned to COM via a RET instruction.

II you use a @CTL function value of X'04,' then register IY must contain the
address of the handling routine in your application. Upon return from the @CTL
request, register IY contains the address of the previous WAKEUP vector. This
should be restored when your application is finished with the WAKEUP feature.

When control is passed to your WAKEUP vector upon detection of a "receive
Character available" Interrupt, certain Information is immediately available. Reg-
ister A contains an Image of the UART Status register. The Z f lag is set if a valid
Character is actually available. The Character, if any, is in the C register.

Since System overhead takes a small amount of time in the @GET Supervisor
call, you may need to @GET the Character via Standard device interfacing. This
ensures that any filtering or linking in the *CL device chain will be honored. If,
on the other hand, your application is attempting to transfer data at a very high
rate (9600 baud or higher), you may need to bypass the @GET SVC and use
the Character immediately available in the C register. Note that this procedure
bypasses the normal device chain (device routing and linking).

The module name of the COM driver is "$CL.'

Software 44

8/Using the Supervisor Calls
Supervisor Calls (SVCs) are Operating System routines that are avaNable to
assembly language programs. These routines alter certain System functions
and conditions, provide file access, and perform various computations. They
also perform I/O to the keyboard, video display, and printer.

Each SVC has a number which you specify to invoke it. These numbers ränge
fromOto 104.

In addition, under Version 6.2, you can write your own Operating System rou-
tines using the numbers 124 through 127 to install your own SVC's. See Ap-
pendix E, "Programmable SVCs" for more information.

Calling Procedure
TocallaTRSDOSSVC:

1. Load the SVC number for the desired SVC into register A. Also load any
other registers which are needed by the SVC, äs detailed under Supervisor
Calls.

2. Execute a RST 28H instruction.

Note: If the SVC number supplied in register A is invalid, the System prints the
message "System Error xx" where xx is usually 2B. It then returns you to
TRSDOS Ready (not to the program that made the invalid SVC call).

The alternate register set (AF; BC,' DE,' HL) is not used by the Operating System.

Program Entry and Return Conditions
When a program executed from the @CMNDI SVC is entered, the System
return address is placed on the top of the Stack. Register HL will point to the first
non-blank Character following the command name. Register BC will point to the
first byte of the command line buffer.

Three methods of return from a program back to the System are available: the
©ABORT SVC, the @EXIT SVC, and the RET instruction. For application pro-
grams and Utilities, the normal return method is the @EXIT SVC. If no error con-
dition is to be passed back, the HL register pair must contain a zero value. Any
non-zero value in HL causes an active JCL to abort.

The @ABORT SVC can be used äs an error return back to the System; it auto-
matically aborts any active JCL processing. This is done by loading the value
X'FFFF into the HL register pair and intemally executing an @EXIT SVC.

If Stack integrity is maintained, a RET instruction can be used since the System
return address is put on the Stack by @CMNDI. This allows a retum if the pro-
gram was called with @CMNDR.

Most of the SVCs in TRSDOS Version 6 set the Z f lag when the Operation spec-
ified was successful. When an Operation fails or encounters an error, the Z fiag
is reset (also known äs NZ flag set) and a TRSDOS error code is placed in the
A register. The remaining SVCs use the Z/NZ flag in differing ways, so you
should refer to the description of the SVCs you are using to determine the exit
conditions.

Software 45

Supervisor Calls

The TRSDOS Supervisor Calls are:

Keyboard SVCs Byte I/O SVCs

@CKBRKC @CTL
@KBD @GET
@KEY @PUT
@KEYIN File Contro. SVCs

Printer and Video SVCs
©CLOSE

@CLS @FEXT
@DSP @FNAME
@DSPLY @FSPEC
@LOGER @INIT
@LOGOT @REMOV
@MSG ©OPEN
@PRT @RENAM

@VDCTL Disk File Handler SVCs

Disk SVCs @BKSP
@CKEOF

@DCINIT @LOC
@DCRES @LOF
@DCSTAT @PEOF
@RDSEC @POSN
@RDSSC ©READ
@RSLCT @REW
@RSTOR @RREAD
@SEEK @RWRIT
@SLCT ©SEEKSC
@STEPI @SKIP
@VRSEC @VER
@WRSEC @WEOF
@WRSSC ©WRITE

©WRTRK TRSDOS Task Control SVCs

System Control SVCs ©ADTSK
-*• ©CKTSK

©ABORT ©KLTSK
©BREAK ©RMTSK
©CMNDI ©RPTSK
©CMNDR
©EXIT
©FLAGS
@HIGH$
©IPL
©LOAD
©RUN

Special Purpose Disk SVCs Speciai Overlay SVCs

©DIRRD ©CKDRV
©DIRWR ©DEBUG
©GTDCT ©DODIR
©HDFMT ©ERROR
©RDHDR ©PARAM
©RDTRK ©RAMDIR

Software 46

Miscellaneous SVCs Special Purpose SVCs

@BANK @CHNIO
@DATE @GTDCB
@DECHEX @GTMOD
@DIV8
@DIV16
@HEXDEC
@HEX8
@HEX16
@MUL8
@MUL16
©PAUSE
©SOUND
@TIME
@WHERE

See the pages that follow for a detaiied description of each Supervisor call.

Software 47

@ABORT SVC Number 21

Abort Program
Loads HL with an X'FFFF error code and exits through the @EXIT Supervisor
call. Any active JCL processing is aborted.

Entry Conditions:

A = 21 (X'151)

General:

This SVC does not retum.

Example:

See the example for @EXIT in Sample Program B, lines 206-207.

Software 48

@ADTSK SVC Number 29

Add an Interrupt Level Task
Adds an Interrupt level task to the real time clock task table. The task slot num-
ber can be 0-11; however, some slots are already assigned to certain functions
in TRSDOS. Slot assignments 0-7 are Iow priority tasks executing every 266.67
milliseconds. Slots 8-10 are medium priority tasks executing every 33.33 milli-
seconds. Slot 11 is a high priority task, executing every 16.66 milliseconds High
Speed or 33.33 milliseconds Low Speed. The System uses task slots 3, 7, 9,
and 10 for the ALI VE, TRAGE, SPOOL, and TYPE-AHEAD functions,
respectively.

It is a good practice to remove an existing task (using the @RMTSK or
@KLTSK SVC) before installing a new task in the same task slot.

Entry Conditions:
A =29(X'1D')
DE=pointer to Task Control Block (TCB)
C = task slot assignment (0-11)

Exit Conditions:

Success always.
HL and AF are altered by this SVC.

The Task Control Block, or TCB, is a 2-byte block of RAM which contains the
address of the task driver entry point. If your task is prefixed with the memory
header described earlier under "Device Access," then the TCB can be stored in
the memory header data storage area. If the task is not a driver or filter, the TCB
can be stored in the memory header location MODDCB. Upon entry to your
task routine, the IX register contains the TCB address.

Example:

See Sample Program F, lines 109-120.

Software 49

(a BANK SVCNumber102

Memory Bank Ilse
Controls 32K memory bank Operation. The top half of the main 64K block is
bank 0, and the alternate 64K block is divided into banks 1 and 2. The System
maintains two locations to perform bank management. These areas are known
äs "bank available RAM" (BAR) and "bank in use RAM" (BUR).

If the Stack Pointer is not X7FFE* or Iower, the SVC aborts with an Error 43 only
ifB = 0.

Entry Conditions:
A= 102(X'66')
B selects one of the following functions:

If B = 0, the specified bank is selected and is made addressable.
The 32K bank Starts at X'8000' and ends at X'FFFR

C = bank number to be selected (0-2)
If bit 7 is set, then execution will resume in the newly loaded
bank at the address specified.

HL = address to Start execution in the new bank
If B = 1, reset BUR and show the bank not in use.

C=bank number to be selected (0-2)
If B = 2, test BUR if bank is in use.

C=bank number to be selected (0-2)
If B = 3, set BUR to show bank in use.

C=bank number to be selected (0-2)
If B = 4, return number of bank currently selected.

Exit Conditions:

lfB = 0:
Success, Z flag set.

C = the bank number that was replaced. If bit 7 was set in register
C on entry, it is also set on exit.

HL = SVC return address. By keeping the Contents of C and HL,
you can later return to the instruction following the first
@BANK SVC. See "Interfacing RAM Banks 1 and 2" for more
Information.

Failure, NZ flag set. Bank not present or parameter error.
A = error number

lfB=1:
Success, Z flag set. Bank available for use.
Failure, NZ flag set. Bank not present.

lfB = 2:
Success always.

If Z flag is set, then the bank is available for use.
If NZ flag is set, then test register A:

If A 4 X'2B,' then the bank is either in use or it does not exist on
your machine. Banks 1 and 2 produce this error on a 64K
machine.

If A=X'2B,' then an entry parameter is out of ränge.

lfB = 3:
Success, Z flag set. Bank is now reserved for your use.
Failure, NZ flag set. Test register A:

If A ^ X'2B,' then the bank is already in use or does not exist. Banks
1 and 2 produce this error on a 64K machine.

If A=X'2B; then an entry parameter is out of ränge.

Software 50

lfB=4:
Success always.

A=number of the bank which is currently resident

General:
AF is altered for all functions.
BC is altered if the SVC is successful.

Example:
See the section "Interfacing RAM Banks 1 and 2."

Software 51

@BKSP SVC Number 61

Backspace One Logical Record
Performs a backspace of one logical record.

Entry Conditions:
A =61 (X'3DF)
DE=pointer to FCB of the file to backspace

Exit Conditions:
If the Z flag is set or if A=X'1 C' or X'1 D,' then the Operation was successful.

The LOC pointer to the file was backspaced one record. Otherwise,
A. = errornumber.
If A=X'1 C' is returned, the file pointer is positioned at the end of the file.
Any Appending operations would be performed here.
If A=X'1 D' is returned, the file pointer is positioned beyond the end of
the file.

General:
Only AF is altered by this SVC.
If the LOC pointer was at record 0 when the call was executed, the results

are indeterminate.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 52

@BREAK SVC Number 103
Set Break Vector

Sets a user or System break vector. The BREAK vector is an abort mechanism;
there is no return.

The BREAK vector executes whenever the following conditions occur at the
same time: 1) the Program Counter is greater than X'2400; 2) the BREAK key
is pressed, and 3) a real time Clock Interrupt which executes 30 times per sec-
ond occurs.

After executing this SVC, you must reset bit 4 of SFLAG$. The BREAK flag in
KFLAG$ (bit 0) requires the setting of SFLAG$ bit 4 and a delay of 0.1 to 0.5
second to clear any other Interrupts that may be pending. Then you can enter
your BREAK key handler (in which the BREAK key bit in SFLAG$ is reset). See
KFLAG$ and SFLAG$ in the section about the @FLAGS SVC for more
Information.

Entry Conditions:
A =103(X'67')
HL=user break vector
HL = 0 (sets System break vector)

Exit Conditions:
Success always.
HL = existing break vector (if user break vector was set)

Note: @EXIT and @CMNDI automatically restore BREAK to the System han-
dler. @CMNDR does not do this.

Software 53

@CHNIO SVC Number 20

Pass Control to Next Module in Device Chain
Passes control to the next module in the device chain.

Entry Conditions:
A =20(X'14')
IX=contents of DCB in the header block
B = GET/PUT/CTL direction code (1/2/4)
C = Character (if Output request)

General:
IX is not checked for validity.

Example:
See the section "Device Driver and Filter Templates."

Software 54

(«CKBRKC SVCNumbeMOS

Check BREAK bit and clear it Version 6.2 only
Checks to see if the BREAK key has been pressed. If a BREAK condition exists,
@CKBRKC resets the break bit, Bit 0 of KFLAG$.

Entry Conditions:

A=106(X'6A')

Exit Conditions:

Success always.
If Z flag is set, the break bit was not detected. If NZ flag is set, the
break bit was detected and is cleared. If the BREAK key is being de-
pressed, the SVC will not return until the key is released.

General:

Only AF is altered by this SVC.

Software 55

(aCKDRV SVC Number 33

Check Drive
Checks a drive reference to ensure that the drive is in the System and a
TRSDOS Version 6 or LDOS 5.1.3 (Model III Hard Disk Operating System) for-
matted disk is in place.

Entry Conditions:
A = 33(X'2T)
C=logical drive number (0-7)

Exit Conditions:
Success always.

If Z flag is set, the drive is ready.
If CF is set, the disk is write protected.

If NZ flag is set, the drive is not ready. The user may examine DCT + 0
to see if the drive is disabled.

Example:
See Sample Program D, lines 35-55.

Software 57

@ CKEOF SVC Number 62
Check for End-Of-File

Checks for the end of file at the current logical record number.

Entry Conditions:
A = 62(X'3E)
DE = pointer to the FCB of the file to check

Exit Conditions:
Success always.

If Z flag is set, LOC does not point at the end of file (LOC < LOP).
If NZ flag is set, test A for error number:

If A = X'1 Q' LOC points at the end of the file (LOC = LOP).
If A=X'1 D,' LOC points beyond the end of the file (LOC > LOP).
If A =£ X' 1C' or X' 1 D,' then A = error number.

General:
Only AP is altered by this SVC.

Example:
See Sample Program C, lines 352-353.

Software 58

(a CKTSK SVC Number 28

Check if Task Slot in Use
Checks to see if the specified task slot is in use.

Entry Conditions:
A = 28(X'1C')
C=task slot to check (0-11)

Exit Conditions:
Success always.

If Z flag is set, the task slot is available for use.
If NZ flag is set, the task slot is already in use.

General:
AF and HL are altered by this SVC.

Example:
See Sample Program F, lines 70-73.

Software 59

@CLOSE SVC Number 60

Close a File or Device
Terminates Output to a file or device. Any unsaved data in the buffer area is
saved to disk and the directory is updated. All files that have been Written to
must be closed, äs well äs all files opened with UPDATE or higher access.

If you remove a diskette containing an open file, any attempt to close the file
results in the message:

** CLOSE FAULT ** error message, <ENTER> to retry, <BREAK> to
abort

where error message is usually "Drive not ready" You may put the diskette
backinthedriveand:

1. Press CENTER) to close the file.
2. Press (BREAK) to abort the close.

If you press (BREAK), the NZ flag is set and Register A contains X'20', the error
code for an Illegal drive number error.

Entry Conditions:
A =60(X'3C')
DE=pointer to FCB or DCB to close

Exit Conditions:
Success, Z flag set. The file or device was closed. The filespec (excluding

the password) or the devspec is returned to the FCB or DCB.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 360-368.

Software 60

@CLS SVCNumbeMOS

Clear Video Screen Version 6.2 only

Clears the Video screen by sending a Home Cursor (X'1 C') and Clear to End of
Frame (X'1 F') sequence to the video driver.

Entry Conditions:

A = 105(X'69')

Exit Conditions:

Success, Z flag is set.
Failure, NZ is set.

A = errornumber

General:

Only AF is altered by this SVC.

Software 61

(a CM N DI SVC Number 24

Execute Command with Return to System
Passes a command string to TRSDOS for execution. After execution is com-
plete, control retums to TRSDOS Ready. If the command gets an error, it still
returns to TRSDOS Ready.

Entry Conditions:
A =24(X'18')
HL=pointer to buffer containing command string terminated with X'OD'

(up to 80 bytes, including the X'OD')

General:
This SVC does not retum.

Example:
See Sample Program E, lines 43-58.

Software 63

(a CM N DR SVC Number 25

Execute Command
Executes a command or program and returns to the calling program. The exe-
cuted program should maintain the Stack Pointer and exit via a RET instruction.
All TRSDOS library commands comply with this requirement.

If bit 4 of CFLAG$ is set (see the @FLAGS SVC), then @CMNDR executes
only system library commands.

Entry Conditions:
A = 25(X'19f)
HL=pointer to buffer containing command string terminated with X'OD'

(up to 80 bytes, including the X'OD')

Exit Conditions:
Success always.

HL = return code (See the section "Converting to TRSDOS Version 6"
for Information on return codes.)

Registers AF, BC, DE, IX, and IY are altered by the command or pro-
gram executed by this SVC.

If the command invokes a user program which uses the alternate reg-
isters, they are modified also.

Example:
See Sample Program E, lines 18-29.

Software 64

@CTL SVC Number 5

Output a Control Byte
Outputs a control byte to a logical device. The DCB TYPE byte (DCB + 0, Bit 2)
must permit CTL Operation. See the section "@CTL Interfacing to Device Driv-
ers" for information on which of the functions listed below are supported by the
System device drivers.

Entry Conditions:
A = 5(X'05')
DE=pointer to DCB to control Output
C selects one of the following functions:

If C = 0, the Status of the specified device will be returned.
If C = 1, the driver is requested to send a BREAK or force an Interrupt.
If C = 2, the initialization code of the driver is to be executed.
If C = 3, all buffers in the driver are to be reset. This causes all pending

I/O to be cleared.
If C = 4, the wakeup vector for an interrupt-driven driver is specified by

the caller.
IY = address to vector when leaving driver. If IY = 0, then

the wakeup vector function is disabled. The RS-232C
driver COM/DVR ($CL), is the only System driver that
provides wakeup vectoring.

If C = 8, the next Character to be read will be returned. This allows data
to be "previewed" before the actual @GET returns the Character.

Exit Conditions:
lfC = 0,

Z flag set, device is ready
NZ flag set, device is busy

A=Status Image, if applicable
Note: This is a hardware dependent image.

lfC = 1,
Success, Z flag set. BREAK or Interrupt generated.
Failure, NZ flag set

A=error number
lfC=2,

Success, Z flag set. Driver initialized.
Failure, NZ flag set

h=error number
lfC = 3,

Success, Z flag set. Buffers cleared.
Failure, NZ flag set.

A=error number
lfC = 4,

Success always.
IY = previous vector address

This function is ignored if the driver does not support wakeup
vectoring.

lfC = 8,
Success, Z flag set. Next Character returned.

A=next Character in buffer
Failure, NZ flag set. Test register A:

If A=0, no pending Character is in buffer
If A=£0, A contains error number. (TRSDOS driver returns Error 43.)

Software 65

General:
BC, DE, HL, and IX are saved.
Function codes 5 to 7, 9 to 31, and 255 are reserved for the System. Function codes

32 to 254 are available for user definition.
Entry and exit conditions for user-defined functions are up to the design of the user-

supplied driver.

Example:
See the section "Device Driver and Filter Templates."

Software 66

@DATE SVC Number 18
GetDate

Returns today's date in display format (MM/DD/YY).

Entry Conditions:» A = 18(X'12')
HL=pointer to 8-byte buffer to receive date string

Exit Conditions:
Success always.

HL=pointer to the end of the buffer supplied +1
DE=pointer to Start of DATE$ storage area in TRSDOS
BC is altered by this SVC.

Example:
See Sample Program F, lines 252-253.

Software 67

@DCINIT SVC Number 42

Initialize the FDC
Issues a disk Controller initialization command. The floppy disk driver treats this
the same äs @RSTOR (SVC 44).

Entry Conditions:
A = 42(X'2A')
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

Example:
See the example for @CKDRV in Sample Program D, lines 38-39.

Software 68

@ DCRES SVC Number 43

Reset the FDC
Issues a disk Controller reset command. The floppy disk driver treats this the
same äs @RSTOR (SVC 44).

Entry Conditions:
A = 43(X'2B')
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

Example:
See the example for @CKDRV in Sample Program D, lines 38-39.

Software 69

@DCSTAT SVC Number 40

Test if Drive Assigned in DCT
Tests to determine whether a drive is defined in the Drive Code Table (DCT).

Entry Conditions:
A= 40(X'28')
C=logical drive number (0-7)

Exit Conditions:
Success always.

If Z is set, the specified drive is already defined in the DCT.
If NZ is set, the specified drive is not defined in the DCT.

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 27-33.

Software 70

@ DEBUG SVC Number 27

Enter DEBUG
Forces the System to enter the DEBUG Utility. Pressing © (ENTER) from the
DEBUG monitor causes program execution to continue with the next instruc-
tion. If you want to use the functions in the extended debugger when DEBUG
is entered in this fashion, you must issue the DEBUG (E) command (optionally
with the @CMNDR SVC) betöre this SVC is executed.

Entry Conditions:
A = 27(X'1B')

General:
This SVC does not return unless © is entered in DEBUG.

Example:
See Sample Program A, lines 54-60.

Software 71

@DECHEX SVC Number 96

Convert Decimal ASCII to Binary
Converts a decimal ASCII string to a 16-bit binary number. Overflow is not
trapped. Conversion stops on the first out-of-range Character.

Entry Conditions:
A =96(X'60')
HL=pointer to decimal string

Exit Conditions:
Success always.

BC=binary conversion of ASCII string
HL = pointer to the terminating byte
AF is altered by this SVC.

Example:
See Sample Program B, lines 88-95.

Software 72

i

@DIRRD SVC Number 87

Directory Record Read
Reads a directory sector that contains the directory entry for a specified Direc-
tory Entry Code (DEC). The sector is placed in the System buffer and the reg-
ister pair HL points to the first byte of the directory entry specified by the DEC.

Entry Conditions:
A = 87(X'57')
B = Directory Entry Code of the file
C = logical drive number (0-7)

Exit Conditions:
Success, Z flag set.

HL=pointer to directory entry specified by register B
Failure, NZ flag set.

A = error number
HL is altered.

General:
AF is always altered.
If the drive does not contain a disk, this SVC may hang indefinitely waiting

for formatted media to be placed in the drive. The programmer should
perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Gare
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See Sample Program C, lines 152-174.

Software 73

@DIRWR SVC Number 88

Directory Record Write
Writes the System buffer back to the disk directory sector that contains the
directory entry of the specified DEC.

Entry Conditions:
A = 88(X'58')
B = Directory Entry Code of the file
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.

HL=pointer to directory entry specified by register B
Failure, NZ flag set.

A = error number
HL is altered.

General:
AF is always altered.
If the drive does not contain a disk, this SVC may hang indefinitely waiting

for formatted media to be placed in the drive. The programmer should
perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Gare
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See the example for @DIRRD in Sample Program C, lines 152-174.

^^^^

Software 74

@ DI V8 SVC Number 93

8-Bit Divide

i
Performs an 8-bit unsigned integer divide.

Entry Conditions:
A = 93(X'5D')
E = dividend
C=divisor

Exit Conditions:
Success always.

A = quotient
E = remainder
No other registers are altered.

Example:
See Sample Program B, lines 61-64.

Software 75

@DIV16 SVC Number 94

16-Bit by 8-Bit Divide
Performs a division of a 16-bit unsigned integer by an 8-bit unsigned integer.

Entry Conditions:
A =94(X'5E')
HL = dividend
C =divisor

Exit Conditions:
Success always.

HL = quotient
A = remainder
No other registers are altered.

Example:
See Sample Program B, lines 105-109.

Software 76

@DODIR SVC Number 34
Do Directory Display/Buffer

Reads files from a disk directory or finds the free space on a disk. The directory
Information is either displayed on the screen (in five-across format) or sent to a
buffer. The directory Information buffer consists of 18 bytes per active, visible
file: the first 16 bytes of the directory record, plus the ERN (ending record num-
ber). An X'FF' marks the buffer end.

Entry Conditions:
A = 34(X'22')
C=logical drive number (0-7)
B selects one of the following functions:

If B = 0, the directory of the visible, non-system files on the disk in the
specified drive is displayed on the screen. The filenames are dis-
played in columns, 5 filenames per line.

If B= 1, the directory is Written to memory.
HL=pointer to buffer to receive Information

If B = 2, a directory of the files on the specified drive is displayed for files
that are visible, non-system, and match the extension partspec
pointed to by HL.
HL=partspec for the filename's extension

This field must contain a valid 3-character extension, padded
with dollar signs ($). For example, to display all visible, non-
system files that have the letter 'C' äs the first Character of the
extension, HL should point to the string "C$$'.'

If B = 3, a directory of the files on the specified drive is Written to the buffer
that is specified by HL for files that match the extension partspec
pointed to by HL.
HL=pointer to the 3-byte partspec and to the buffer to receive the

directory records (see general notes)
Keep in mind that the area pointed to by HL is shared. If you are

using this buffer more than once, you have to re-create the
partspec in the buffer before each call because the previous
call will have erased the partspec by writing the directory
records.

If B = 4, the disk name, original free space, and current free space on the
disk is read.
HL=pointer to a 20-byte buffer to receive Information

Exit Conditions:
Success, Z flag set.

If B = 1 or 3, the directory records have been stored.
HL=pointer to the beginning of the buffer

If B = 0 or 2, the filenames or matching filenames are displayed with 5
filenames per line.

If B = 4, the disk name and free space information are stored in the
format:

Bytes 0-7 = Disk name. Disk name is padded on the right
with blanks (X'20').

Bytes 8-15 = Creation date (the date the disk was formatted
or was the target disk in a mirror Image
backup). The date is in the format MM/DD/YY.

Bytes 16-17 = Total K originally available in binary LSB-MSB
format.

Bytes 18-19 = Free K available now in binary LSB-MSB
format.

HL=po/>?ter to the beginning ofthe data area
Failure, NZ flag set.

A=error number

Software 77

General:
AF is the only register altered by this SVC.
The size of the buffer to receive directory records must be large enough to

hold directory entries for the maximum number of files allowed on the
drive and disk you specify. For example, if the drive is a hard disk, you
must be able to störe 256 directory entries, and each entry requires 18
bytes of storage. For more information on calculating the amount of
space needed for this buffer, see the tables under "Directory Records."
They give the maximum number of entries allowed on a given type of
disk. You must add 2 records to this value when B = 1 to störe the direc-
tory entry for DIR/SYS and BOOT/SYS.

Example:
See Sample Program E, lines 32-40.

Software 78

@DSP SVC Number 2
Display Character

Outputs a byte to the Video display. The byte is displayed at the current Cursor
Position.

Entry Conditions:
A = 2(X'02')
C=byte to display

Exit Conditions:
Success, Z flag set.

A = byte displayed
Failure, NZ flag set.

A = e/ror number

General:
DE is altered by this SVC.

Example:
See Sample Program C, lines 219-221.

Software 79

@DSPLY SVC Number 10
Display Message Line

Displays a message line, starting at the current Cursor position. The line must
be terminated with either a carriage return (X'OD1) or an ETX (X'031). If an ETX
terminates the line, the Cursor is positioned immediately after the last Character
displayed.

Entry Conditions:
A =10(X'0A')
HL=pointer to first byte of message

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF and DE are altered by this SVC.

Example:
See Sample Program C, lines 35-37.

O

Software 80

@ERROR SVC Number 26

Entry to Post an Error Message
Provides an entry to post an error message. If bit 7 of register C is set, the error
message is displayed and return is made to the calling program. If bit 6 is not
set, the extended error message is displayed. Under versions prior to 6.2 the
error display is in the following format:

E r r c o d = x x » E r ro r m e s s a t f e s Irin a ***
< f i l e s p e c or d e u s p e c >

R e f e r e n c e d a t X ' d d d d '

Under Version 6.2 the error display is in the following format:

* * E r r o r c o d e = x x t R e t u r n s t o X ' d d d d '
* * E r r o r m e s s a 3 e s t r i n S
< f i lespec t decs pec / o r o Pen FCB/DCB Status>
Last SMC = nnn t R e t u r n e d t o)(' r r r r '

dddd is the return address of the TERROR SVC in the application program.
nnn is the last SVC executed before the (a ERROR SVC request.
rrrr is the address the previous SVC returned to in the application program.

If bit 6 is set, then only the "Error message string" is displayed. This bit is
ignored if bit 6 of SFLAG$ (the extended error message bit) is set. If bit 6 of
CFLAG$ is set, then no error message is displayed. If bit 7 of CFLAG$ is set,
then the "Error message string" is placed in a user buffer pointed to by register
pair DE. See @FLAGS (SVC 101) for more information on SFLAG$ and
CFLAG$.

Entry Conditions:
A = 26(X'1A)
C=error number with bits 6 and 7 optionally set

Exit Conditions:
Success always.

General:
To avoid a looping condition that could result from the display device gen-

erating an error, do not check for errors after returning from @ERROR.
If you do not set bit 6 of register C, then you should execute this SVC only

after an error has actually occurred.

Example:
See Sample Program C, lines 379-389.

Software 81

@ EXIT SVC Number 22
Exit to TRSDOS

This is the normal program exit and return to TRSDOS. An error exit can be
done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error
äs described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL
causes an active JCL to abort.)

Entry Conditions:
A =22(X'16')
HL = Return Code

If HL = 0, then no error on exit.
If HL^O, then the @ABORT SVC returns X'FFFF' in HL automatically.

General:
This SVC does not return.

Example:
See Sample Program B, lines 206-207.

Software 82

@FEXT SVC Number 79
Set Up Default File Extension

Inserts a detault file extension into the File Control Block if the file specification
entered contains no extension. @FEXT must be done before the file is opened.

Entry Conditions:
A =79(X'4F)
DE=po/nterfoFCß
HL=pointer to default extension (3 characters; alphabetic characters

must be upper case and first Character must be a letter)

Exit Conditions:
Success always.

AF and BC are altered by this SVC.
If the default extension is used, HL is also altered.

Example:
See Sample Program C, lines 111-132.

Software 83

@FLAGS SVC Number101

Point IY to System Flag Table
Points the IY register to the base of the System flag table. The Status flags listed
below can be referenced off IY. You can alter those bits marked with an asterisk
(*). Bits without an asterisk are indicators of current conditions, or are unused
or reserved.

Note: You may wish to save KFLAG$ and SFLAG$ if you intend to modify them
in your program, and restore them on exit.

Entry Conditions:
A=101 (X'651)

Exit Conditions:
Success always.
IY=pointer to the following System Information:
IY-1 Contains the Overlay request number of the last System module

resident in the System Overlay region.
IY + 0 = AFLAG$ (allocation flag under Version 6.2 only)

Contains the starting cylinder number to be used when
searching for free space on a diskette. It is normally 1.
If the starting cylinder number is larger than the number
of cylinders for a particular drive, 1 is used for that drive.

IY + 2 =CFLAG$
* bit 7 — If set, then (TERROR will transfer the "Error message

string" to your buffer instead of displaying it. The mes-
sage is terminated with X'OD.'

* bit 6 — If set, do not display System error messages 0-62. See
(TERROR (SVC 26) for more information.

* bit 5 — If set, sysgen is not allowed.
* bit 4 — If set, then @CMNDR will execute only System library

commands.
bit 3 — If set, @RUN is requested from either the SET or

SYSTEM (DRIVER =) commands.
bit 2 — If set, @KEYIN is executing due to a request from

SYS1.
bit 1 — If set, @CMNDR is executing. This bit is reset by

@EXITand@CMNDI.
* bit0 — If set, HIGH$ cannot be changed using @HIGH$

(SVC 100). This bit is reset by @EXIT and @CMNDI.
IY + 3 =DFLAG$ (device flag)

* bit 7 — "1" if GRAPH IC printer capability desired on screen
print ((CONTROÜ © causes screen print. See the SYS-
TEM (GRAPHIC) command under "Technical Infor-
mation on TRSDOS Commands and Utilities.")

bit 6 — "1" if KSM module is resident
bit 5 — Currently unused
bit 4 — "1" if MemDisk active
bit 3 — Reserved
bit 2 — "1" if Disk Verify is enabled

* bit 1 — "1" if TYPE-AHEAD is active
bit0 — "1" if SPOOL is active

IY + 4 = EFLAG$ (ECI flag under Version 6.2 only)
Indicates the presence of an ECI program. If any of the
bits are set, an ECI is used, rather than the SYS1 Inter-
preter. The ECI program may use these bits äs necce-
sary. However, at least one bit must be set or the ECI is
not executed.

Software 84

i

IY + 5 =FEMSK$ (maskforportOFEH)
IY + 8 =IFLAG$ (international flag)

* bit 7 — If "1" 7-bit printer filter is active
If "0," normal 8-bit filters are present

* bit 6 — If "1," international Character translation will be per-
formed by printer driver
If "0," characters received by printer driver will be sent
to the printer unchanged

bit 5 — Reserved for future languages
bit 4 — Reserved for future languages
bit 3 — Reserved for future languages
bit 2 — Reserved for future languages
bit 1 — If "1," German version of TRSDOS is present
bit 0 — If "1f French version of TRSDOS is present
If bits 5-0 are all zero, then USA version of TRSDOS is present.

lY +10 = KFLAG$ (keyboard flag)
bit 7 — "1" if a Character is present in the type-ahead buffer
bit 6 — Currently unused

* bit 5 — "1" if CAPS lock is set
bit 4 — Currently unused
bit 3 — Currently unused

* bit 2 — "1" if (ENTER) has been pressed
* bit 1 — "1" if (SHIFT) (D has been pressed (PAUSE)
* bit 0 — "1" if (BREAK) has been pressed

Note: To use bits 0-2, you must first reset them and then test to
see if they become set.

IY +12 = MODOUT (image of port 0ECH)
IY+13= NFLAG$ (network flag under Version 6.2)

bit 7 — Reserved for System use.
bit 6 — If set, the application program is in the task processor.

Programmers must not modify this bit.
bit 5 — Reserved for System use.
bit 4 — Reserved for System use.
bit 3 — Reserved for System use.
bit 2 — Reserved for System use.
bit 1 — Reserved for System use.

* bit 0 — If set, the "file open bit" is Written to the directory.
IY+ 14=OPREG$ (memory management & video control image)
IY+17= RFLAG$ (retry flag under Version 6.2 only)

Indicates the number of retrys for the floppy disk driver.
This should be an even number larger than two.

IY +18 = SFLAG$ (System flag)
bit 7 —"1"if DEBUG is tobe turnedon

* bit 6 —"1" if extended error messages desired (see
@ERROR for message format); overrides the setting
of bit 6 of register C on @ERROR (SVC 26) and
should be used only when testing

bit 5 — "1" if DO commands are being executed
* bit 4 — "1" if BREAK disabled

bit 3 — "1" if the hardware is running at 4 mhz (SYSTEM
(FAST)). If "0," the hardware is running at 2 mhz (SYS-
TEM (SLOW)).

* bit 2 — "1" if LOAD called from RUN
* bit 1 — "1" if running an EXECute only file
* bit 0 — "1" specifies no check for matching LRL on file open

and do not set file open bit in directory. This bit should
be set just before executing an @OPEN (SVC 59) if
you want to force the opened file to be READ only dur-
ing current I/O operations. As soon äs either call is
executed, SFLAG$ bit 0 is reset. If you want to disable
LRL checking on another file, you must set SFLAG$
bit 0 again.

Software 85

IY + 19 = TFLAG$ (type flag under Version 6.2 only)
Identifies the Radio Shack hardware model. TFLAG$
allows programs to be aware of the hardware environ-
ment and the Character sets available for the display.
Current assignments are:

2 indicates Model II
4 indicates Model 4
5 indicates Model 4P

12 indicates Model 12
IY + 20= UFLAG$ (user flag under Version 6.2 only)

May be set by application programs and is sysgened
properly.

IY + 21 =VFLAG$
bit 7 — Reserved for System use

* bit 6 — "1" selects solid Cursor, "0" selects blinking Cursor
bit 5 — Reserved for System use

* bit 4 — "1" if real time clock is displayed on the screen
bits 0-3 — Reserved for System use

IY + 22 = WRINTMASKS (mask for WRINTMASK port)
IY + 26 = SVCTABPTR$ (pointer to the high order byte of the SVC table

address; Iow order byte = 00)
IY + 27 = Version ID byte (60H = TRSDOS version 6.0.x.x,

61H = TRSDOS version 6.1.x.x, etc.)
IY - 47 = Operating System release number. Provides a third and fourth

Character (12H = TRSDOS version x.x.1.2)
IY + 28
to
IY + 30 = @ICNFGvector
IY + 31
to
IY + 33 = @KITSKvector

C

Software 86

@ FN AM E SVC Number 80
Get Filename

P
Gets the filename and extension from the directory using the specified Direc-
tory Entry Code (DEC) for the file.

Entry Conditions:
A = 80(X'50')
DE=pointer to 15-byte buffer to receive filename/extension:drive, fol-

lowed by a X'OD' äs a terminator
B = DEC of desired file
C = logical drive number of drive containing file (0-7)

Exit Conditions:
Success, Z flag set.

HL=pointer to directory entry specified by register B
Failure, NZ flag set.

A = error number
HL is altered.

General:
AF and BC are always altered.
If the drive does not contain a disk, this SVC may hang indefinitely waiting

for formatted media to be placed in the drive. The programmer should
perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Gare
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See Sample Program C, lines 274-286.

Software 87

@FSPEC SVC Number 78

Assign File or Device Specification
Moves a file or device specification from an input buffer into a File Control Block
(FCB). Conversion of Iower case to upper case is made automatically.

Entry Conditions:
A =78(X'4E')
HL=pointer to buffer containing filespec or devspec
DE=pointer to 32-byte FCB or DCB

Exit Conditions:
Success always.

If the Z flag is set, the file specification is valid.
HL=pointer to terminating Character
DE=pointer to Start of FCB

If the NZ flag is set, a syntax error was found in the filespec.
HL=pointer to invalid Character
DE=pointer to Start of FCB
A = invalid Character

General:
AF and BC are altered.

Example:
See Sample Program C, lines 53-65.

Software 89

@GET SVC Number 3
Get One Byte From Device or File

Gets a byte from a logical device or a file. The DCB TYPE byte (DCB + 0, Bit 0)
must permit a GET Operation for this call to be successful.

Entry Conditions:
A =3(X'03')
DE=pointer to DCB or FCB

Exit Conditions:
Success, Z flag set.

A = Character read from the device or file
Failure, NZ flag set. Test register A:

If A = 0, no Character was available.
If A ± 0, A contains error number.

Example:
See the section "Device Driver and Filter Templates."

j^*-^***.

C

Software 90

@GTDCB SVC Number 82
Get Device Control Block Address

Finds the location of a Device Control Block (DCB). If DE = 0 (no device name
specified), HL returns the address of the first unused DCB found.

Entry Conditions:
A =82(X'52')
DE = 2-character device name (E = first Character, D = second Character)

Exit Conditions:
Success, Z flag set. DCB was found.

HL=pointer to Start of DCB
Failure, NZ flag set. No DCB was available.

A = Error 8 (Device not available)
HL is altered.

General:
AF is always altered by this SVC.

Example:
See the section "Device Driver and Filter Templates."

Software 91

@GTDCT SVC Number 81
Get Drive Code Table Address

Gets the address of the Drive Code Table for the requested drive.

Entry Conditions:
A = 81 (X'511)
C=logical drive number (0-7)

Exit Conditions:
Success always.

IY=pointer to the DCT entry for the specified drive
AF is always altered by this SVC.

General:
If the drive number is out of ränge, the IY pointer will be invalid. This call

does not return Z/NZ to indicate if the drive number specified is valid
(0-7) or enabled.

Example:
See the example for @DCSTAT in Sample Program D, lines 27-33.

Software 92

P

@GTMOD SVC Number 83
Get Memory Module Address

Locates a memory module, if the Standard memory header is at the Start of the
module. The scanning Starts with the System drivers in Iow memory, then
moves to any high memory modules. If any routine is encountered that does not
start with a proper header, scanning stops.

Entry Conditions:
A =83(X'53')
DE=pointer to memory module name in upper case, terminated with any

Character in the ränge 00-31

Exit Conditions:
Success always.

If the Z flag is set, the module was found.
HL=pointer to first byte of memory header
DE=pointer to first byte after module name

If the NZ flag is set, the module was not found.
HL is altered.

General:
AF is always altered by this SVC.

Example:
See Sample Program F, lines 144-154.

Software 93

@HDFMT SVC Number 52
Hard Disk Format

Passes a format drive command to a hard disk driver. If the hard disk Controller
accepts it äs a valid command, then it formats the entire disk drive. If the hard
disk Controller does not accept it, then an error is returned. Radio Shack hard-
ware does not currently support @HDFMT.

Entry Conditions:
A = 52(X'34')
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

Software 94

@HEXDEC SVC Number 97
Convert Binary to Decimal ASCII

i
Converts a binary number in HL to decimal ASCII.

Entry Conditions:
A =97(X'61')
HL = number to convert
DE=pointer to 5-character buffer to hold converted number

Exit Conditions:
Success always.

DE=pointer to end of buffer +1
AF, BC, and HL are altered by this SVC.

Example:
See Sample Program B, lines 73-76.

Software 95

@HEX8 SVC Number 98
Convert 1 Byte to Hex ASCII

Converts a 1-byte number to hexadecimal ASCII.

Entry Conditions:
A =98(X'62')
C = number to convert
HL=pointer to a 2-character buffer to hold the converted number

Exit Conditions:
Success always.

HL=pointer to the end of buffer +1
Only AF is altered by this SVC.

Example:
See Sample Program B, lines 236-246.

G

Software 96

@HEX16 SVC Number 99
Convert 2 Bytes to Hex ASCII

i
Converts a 2-byte number to hexadecimal ASCII.

Entry Conditions:
A =99(X'63')
DE=number to convert
HL=pointer to 4-character buffer to hold converted number

Exit Conditions:
Success always.

HL=pointer to end of buffer +1
Only AF is altered by this SVC.

Example:
See Sample Program B, lines 248-258.

Software 97

@HIGH$ SVCNumbeMOO

Get or Alter HIGH$ or LOW$
Provides the means to read or alter the HIGH$ and LOW$ values.

Note: HIGH$ must be greater than LOW$. LOW$ is reset to X'2FFF' by @EXIT,
©ABORT, and @CMNDI.

Entry Conditions:
A=100(X'64')
B selects HIGH$ or LOW$

If B = 0, SVC deals with HIGH$
If B =£ 0, SVC deals with LOW$

HL selects one of the following functions:
If HL = 0, the current HIGH$ or LOW$ is returned
If HL=£0, then HIGH$ or LOW$ is set to the value in HL

Exit Conditions:
Success, Z flag set.

HL = current HIGH$ or LOW$. If HL ± 0 on entry, then HIGH$ or LOW$
is now set to that value.

Failure, NZ flag set.
A = error number

General:
If bit 0 of CFLAG$ is set (see @FLAGS), then HIGH$ cannot be changed

with this call. The call returns error 43, "SVC parameter error!'

Example:
See Sample Program F, lines 75-86.

G

Software 9&

i

@INIT SVC Number 58
Open or Initialize File

Opens a file. If the file is not found, this SVC creates it according to the file
specification.

Entry Conditions:
A =58(X'3A)
HL=pointer to 256-byte disk I/O buffer
DE=pointer to FCB containing the file specification
B = Logical Record Length to be used while file is open

Exit Conditions:
Success, Z flag set. File was opened or created.

The CF flag is set if a new file was created.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.
The file open bit is set in the directory if the access level is UPDATE or

greater.

Example:
See Sample Program C, lines 260-272.

J

Software 99

@IPL _ SVC Number 0
Reboot the System

Does a Software reset. Floppy drive 0 must contain a System disk. @IPL uses
the Standard boot sequence, the same äs for a hard reset (pressing the reset
button). Memory locations X'41 E5'-X'4225' and X'4300'-X'43FF' are altered
during the boot of the machine.

Entry Conditions:

General:
This SVC does not return.

O

Software 100

(g KBD SVC Number 8
Scan Keyboard and Return

Scans the keyboard and returns a Character if a key is pressed. If no key is
pressed, a zero value is returned.

Entry Conditions:
A = 8(X'08')

Exit Conditions:
Success, Z flag set.

A = Character pressed
Failure, NZ set.

If A = 0, no Character was available.
If A =£ 0, then A contains error number.

General:
DE is altered by this SVC.

Example:
See Sample Program C, lines 198-200.

Software 101

@KEY _ SVC Number 1
Scan *KI Device, Wait for Character

Scans the *KI device and returns with a Character. It does not return until a
Character is input to the device.

Note: The System suspends execution of the program that issued the SVC until
a Character can be obtained. Background tasks will continue to run normally.

Entry Conditions:

^^^^^

Exit Conditions:
Success, Z flag set.

A = Character entered
Failure, NZ flag set.

A = error number

General:
DE is altered by this SVC.

Example:
See Sample Program B, lines 202-203.

Software 102

p

@KEYIN SVC Number 9
Accept a Line of Input

Accepts a line of input until terminated by either an (ENTER) or a (BREAK). Entries
are displayed on the screen, starting at the current Cursor position. Backspace,
tab, and line delete are supported. If JCL is active, the line is fetched from the
active JCL file.

Entry Conditions:
A =9(XW)
HL=pointer to userline bufferof length B+1
B = maximum number of characters to input
C =0

Exit Conditions:
Success, Z flag set.

HL=pointer to Start of buffer
B = actual number of characters input
CF is set if (BREAK) terminated the input.

Failure, NZ flag set.
A = error number

General:
DE and C are altered by this SVC.

Example:
See Sample Program C, lines 39-47.

J

Software 103

@KLTSK SVC Number 32
Remove Currently Executing Task

When calied by an executing task driver, removes the task assignment from the
task table and returns to the foreground application that was interrupted.

Entry Conditions:
A = 32(X'20')

General:
This SVC does not return.

Example:
See the example for @RMTSK in Sample Program F, lines 134-142.

Software 104

(g LOAD SVC Number 76
Load Program File

i
Loads a program file. The file must be in load module format.

Entry Conditions:
A =76(X'4C')
DE = pointer to FCB containing filespec of the file to load

Exit Conditions:
Success, Z flag set.

HL = transfer address retrieved from file
Failure, NZ flag set.

A = e/ror number

Example:
See Sample Program A, lines 50-56.

Software 105

@LOC SVC Number 63
Caiculate Current Logical Record Number

Returns the current logical record number.

Entry Conditions:
A =63(X'3F)
DE = pointer to the file's FCB

Exit Conditions:
Success, Z flag set.

BC=logical record number
Failure, NZ flag set.

A = error number

General:
AF is altered by this SVC.

Example:
See Sample Program C, lines 305-311.

Software 106

@LOF SVC Number 64
Calculate the EOF Logical Record Number

Returns the EOF (End of File) logical record number.

Entry Conditions:
A = 64(X'40')
DE = pointer to FCB for the file to check

Exit Conditions:
Success, Z flag set.

BC = the EOF logical record number
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 107

@LOGER SVC Number 11
Issue Log Message

Issues a log message to the Job Log. The message can be any Character string
terminating with a carriage return (X'OD1).

Entry Conditions:
A =11 (X'OB1)
HL=pointer to first Character in message line

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
LD HL»TEXT iPoint at messaSe to Output
LD A»@LOGER »and outpi.it i t t o the Job

»Lo*
RST 28H iCall the ÜLOGER SUC
» « *

TEXT: DEFM 'This is a message for the Job Los'
DEFB 0DH »Message must be terminated

jwith an <ENTER>.

Software 108

i

@LOGOT SVC Number 12
Display and Log Message

Displays and logs a message. Performs the same function äs @DSPLY fol-
lowed by @LOGER.

Entry Conditions:
A =12(X'0C')
HL=po/nter to first Character in message line

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.
To avoid a looping condition that could result from the display device gen-

erating an error, no error checking should be done after returning from
@LOGOT.

Example:
LD HL»TEXT iPoint at messatfe to Output
LD A»@LOGOT »and Output it to the Job

»Lo* AND the display
RST 28H iCall the @LOGOT SVC
« < «

TEXT: DEFM 'This wessaae w i l l be displa/ed both in'
DEFM 'the Job Los and on the display.'
DEFB 0DH iMust terminate text with an

5<ENTER>,

Software 109

@MSG SVC Number 13
Send Message to Device

Sends a message line to any device or file.

Entry Conditions:
A =13(X'0D')
DE=pointer to DCB or FCB of device or file to receive Output
HL=pointer to message line terminated with X'OD' or X'03'

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
LD HL»TEXT »Point a t messaäe to Output
LD DE»DCBP !Point at the d e v i c e control

»blocK for o u r device
LD A»@MSG »and write this text to it
RST 28H »Call the @MSG SVC
« * *

TEXT: DEFM 'D555-555<LOGIN USER>' »Text to write to
»t h i s d e v i c e » In this case»
j i t is a d i a l i n 3 modern«

DEFB 03H »Terminate the message

^^^V

C

Software 110

@MUL8 SVC Number 90
8-Bit Multiplication

Performs an 8-bit by 8-bit unsigned integer multiplication. The resultant product
must fit into an 8-bit field.

i
Entry Conditions:

A = 90(X'5A')
C=multiplicand
E-multiplier

Exit Conditions:
Success always.

A=product
DE is altered by this SVC.

Example:
See Sample Program B, lines 150-153.

Software 111

@MUL16 SVC Number 91
16-Bit by 8-Bit Multiplication

Performs an unsigned integer multiplication of a 16-bit multiplicand by an 8-bit
multiplier. The resultant product is stored in a 3-byte register field.

Entry Conditions:
A =91 (X'5B')
HL = multiplicand
C = multiplier

Exit Conditions:
Success always.

HL = two high-order bytes of product
A = Iow-order byte of product
DE is altered by this SVC.

Example:
See Sample Program B, lines 183-187.

^^^^

O

Software 112

@OPEN SVC Number 59
Open Existing File or Device

Opens an existing file or device.

Entry Conditions:
A =59(X'3B')
HL=pointer to 256-byte disk I/O buffer
DE=pointer to FCB or DCB containing filespec or devspec
B = logical record length for open file

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF is altered by this SVC.
The file open bit is set in the directory if the access level is UPDATE or

greater.

Example:
See Sample Program C, lines 134-150.

^^^fgpP

Software 113

(aPARAM _ SVC Number 17
Parse Parameter String

Parses an optional parameter string. Its primary function is to parse command
Parameters contained in a command line starting with a parenthesis. The
acceptable parameter format is:

PARM = X'nnnn'....hexadecimal entry
PARM = nnnnndecimal entry
PARM = "string" ...alphanumeric entry
PARM = flagON, OFF, Y, N, YES, or NO

Note: Entering a parameter with no equal sign or value is the same äs
using PARM = ON. Entering PARM= with no value is the same äs
using PARM = OFF.

Entry Conditions:
A =17(X'11f)
DE= pointer to beginning of your parameter table
HL = pointer to command line to parse (the parameter string is enclosed

within parentheses)

Exit Conditions:
Success always.

If Z is set, either valid parameters or no parameters were found.
If NZ is set, a bad parameter was found.

General:
NZ is not returned if parameter types other than those specified are

entered. The application must check the validity of the response byte.

The valid parameters are contained in a user table which must be in one of the
following formats. (Parameter names must consist of alphanumeric charac-
ters, the first of which is a letter.)

For use with TRSDOS Version 6, use this format:

The parameter table Starts with a single byte X'80.' Each parameter is
stored in a variable length field äs described below.

1) Type Byte (Type and length byte)
Bit 7 — If set, accept numeric value
Bit 6 — If set, accept flag parameter
Bit 5 — If set, accept "string" value
Bit 4 — If set, accept first Character of name äs abbreviation
Bits 3-0 — Length of parameter name

2) Actual Parameter Name

3) Response byte (Type and length found)
Bit 7 — Numeric value found
Bit 6 — Flag parameter found
Bit 5 — String parameter found
Bits 4-0 — Length of parameter entered. If length is 0 and the 2-byte

vector points to a Quotation mark (X'221), then the parameter
was a null string. Otherwise, a length of 0 indicates that the
parameter was longer than 31 characters.

4) 2-byte address vector to receive the parsed parameter values.

The 2-byte memory area pointed to by the address field of your table
receives the value of PARM if PARM is non-string. If a string is entered, the
2-byte memory area receives the address of the first byte of "string." The
entries ON, YES, and Y return a value of X'FFFF'; OFF, NO, and N return
X'0000.' If a parameter name is specified on the command line and is fol-

Software 114

S* "N
l jx^pr

Iowed by an equal sign and no value, then X'0000' or NO is returned. If a
Parameter name is used on the command line without the equal sign, then
a value of X'FFFF1 or ON is assumed. For any allowed parameter that is
completely omitted on the command line, the 2-byte area remains
unchanged and the response byte is 0.

The parameter table is terminated with a single byte X'00.'

For compatibility with LDOS 5.1.3, use this format:

A 6-character "word" left justified and padded with blanks followed by a 2-
byte address to receive the parsed values. Repeat word and address for äs
many parameters äs are necessary. You must place a byte of X'00' at the
end of the table.

Example:

COMAND

PARM:

RESP:

VAL:

LD HL»COMAND »Point at command buffer
LD DE»PARM »Point at Parameter list
LD A»0PARAM »Parse the items on the

icommand line
RST 28H »Call the 0PARAM SUC
JR NZ»ERROR i An error occurred (not

» i n c l u d e d here)
LD A»(RESP) »Get response code
AND 040H »Test response flatfs
JR Z»BAD iUser specified somethina

i l i K e UPDATE=X'1234/ or
;UPDATE="HELLO"

LD A»(VAL) »Get Ist byte of VAL word
OR A »Test the value
JR Z»OFF !UPDATE = OFF o r UPDATE = NO was

»spec i f ied
JR ON 5UPDATE = ON o r UPDATE = YES was

ispecified
» » •
DEFS 80 »Area where command is

5 st o red
DEFB 80H »Table header code
DEFB 40H+6 »40 savs we want a fla*

»(YES/NO)» 6 is lensth of
»th e Parameter name

DEFM 'UPDATE' »'Parameter name
DEFB 0 »Response area
DEFW *,'AL »^ector t o UAL
DEFB 0 »End of Table code
DEFS 2 »Area to receiue a Parameter

»ualue

Software 115

@PAUSE SVC Number 16
Suspend Program Execution

Suspends program execution for a specified period of time and goes into a
"holding" state. The delay is at least 14.3 microseconds per count.

Entry Conditions:
A =16(X'10')
BC = delay count

Exit Conditions:
Success always.

Example:
LD BC»3SA2H iWait for about 200 m i l l i -

» s e c o n d s « 14«3 usecs *
51398S is approx. 200
5 m s e c s

LD Af@PAUSE iSuspend execution
RST 28H iCall the 0PAUSE SVC

O

Software 116

@PEOF SVC Number 65
Position to End Of File

Positions an open file to the End Record Number (ERN). An end-of-file-
encountered error (X'1C') is returned if the Operation is successful. Your pro-
gram may ignore this error.

Entry Conditions:
A =65(X'41')
DE = pointer to FCB of the file to position

Exit Conditions:
NZ flag always set.

If A = X'1 C,' then success.
If A ± X'IQ'thenfailure.

A = error number

General:
AF is always altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Softwaren?

@POSN
Position File

SVC Number 66

Positions a file to a logical record. This is useful for positioning to records of a
random access file.

When the @POSN routine is used, Bit 6 of FCB +1 is automatically set. This
ensures that the EOF (End Of File) is updated when the file is closed only if the
NRN (Next Record Number) exceeds the current ERN (End Record Number).

Note that @POSN must be used for each write, even if two records are side by
Side.

Entry Conditions:
A =66(X'42')
DE=pointer to FCB for the file to position
BC = the logical record number

Exit Conditions:
If Z flag is set or A = X'1 C' or X'1 D; then success.

The file was positioned.
Otherwise, failure.

A = error number

General:
AF is always altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 118

@PRINT SVC Number 14
Prints Message Line

Outputs a message line to the printer. The line must be terminated with either a
carriage return (X'OD1) or an ETX (X'031).

Entry Conditions:
A =14(X'0E')
HL=pointer to message to be Output

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF and DE are altered by this SVC.

Example:
LD HL»TEXT »Text to be Output to the

» P r i n t e r
LD A»@PRINT » W r i t e this message to the

» P r i n t e r deuice
RST 28H »Call the @PRINT SVC
» » »

TEXT: DEFB 0CH JDo a TOP of For«
DEFM 'Report continued Pa3e
DEFB 3 »Terminate with a <ETX> or

»an <ENTER>

Software 119

@PRT SVC Number 6
Send Character to Printer

Outputs a byte to the line printer.

Entry Conditions:
A = 6(X'06')
C=Character to print

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = e/ror number

General:
AF and DE are altered by this SVC.
If the line printer is attached but becomes unavailable (out of paper, out of

ribbon, turned off, off-line, buffer füll, etc.), the printer driver waits approx-
imately ten seconds. If the printer is still not ready, a "Device not avail-
able" error is returned.

Example:
LD A»(PAGE) »Get the paSe number
ADD A»'0' »Make it ASCII
LD C »A iPut the ualue here
LD A»@PRT » W r i t e this Character to the

» P r i n t e r
RST 28H »Call the @PRT SVC
» » •

PAGE: DEFB 2 »Start with pa«Je 2

G

Software 120

i

@PUT SVC Number 4
Write One Byte to Device or File

Outputs a byte to a logical device or file. The DCB TYPE byte (DCB + 0, Bit 1)
must permit PUT Operation.

Entry Conditions:
A =4(X'04')
DE=pointer to DCB or FCB of the Output device
C = byte to Output

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF is always altered by this SVC.

Example:
See the section "Device Driver and Filter Templates."

Software 121

@RAMDIR SVC Number 35
Get Directory Record or Free Space

Reads the directory information of visible files from a disk directory, or gets the
amount of free space on a disk.

Entry Conditions:
A =35(X'23')
HL=pointer to RAM buffer to receive information
B = logical drive number (0-7)
C selects one of the following functions:

If C = 0, get directory records of all visible files.
If C = 255, get free space information.
If C = 1-254, get a single directory record (see below).

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

Each directory record requires 22 bytes of space in the buffer. If C = 0, one addi-
tional byte is needed to mark the end of the buffer.

For single directory records, the number in the C register should be one less
than the desired directory record. For example, if C = 1, directory record 2 is
fetched and put in the buffer. If a single record request is for an inactive record
or an 'Invisible file, the A register returns an error code 25 (File access denied).

The directory information is placed in the buffer äs follows:

Byte Contents
00-14 filename/ext:d (left justified, padded with spaces)
15 protection level, 0 to 6
16 EOF offset byte
17 logical record length, 0 to 255
18-19 ERNoffile
20-21 file size in K (1024-byte blocks)
22 LAST RECORD ONLY. Contains" -l-" to mark buffer end.

If C = 255, HL should point to a 4-byte buffer. Upon return, the buffer contains:

Bytes 00-01 Space in use in K, stored LSB, MSB
Bytes 02-03 Space available in K, stored LSB, MSB

Example:
See the example for @DODIR in Sample Program E, lines 32-40.

^̂ BUsIrâ ^

Software 122

@RDHDR SVC Number 48
Read a Sector Header

Reads the next ID header when supported by the Controller driver. The floppy
disk driver supplied treats this äs a @RDSEC (SVC 49).

i Entry Conditions:
A =48(X'30')
HL=pointer to buffer to receive the data
D = cylinder to read
C = logical drive number
E = sector to read

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = e/ror number

Example:
See the example for @RDSEC in Sample Program D, lines 63-66.

(^"*v

J

Software 123

@RDSEC SVC Number 49
Read Sector

Transfers a sector of data from the disk to your buffer.

Entry Conditions:
A =49(X'3T)
HL=pointer to the buffer to receive the sector
D = cylinder to read
E = sector to read
C = logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC

Example:
See Sample Program D, lines 63-66.

Software 124

@RDSSC SVC Number 85

Read System Sector
Reads the specified System (directory) sector. If the cylinder number in register
D is not the directory cylinder, the value in D is changed to reflect the real direc-
tory cylinder and the sector is then read.

Entry Conditions:
A =85(X'55')
HL=pointer to the buffer to receive the sector
D = cylinder to read
E = sector to read
C = logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 78-92.

Software 125

@RDTRK SVC Number 51
Read a Track

Reads an entire track when supported by the Controller driver. The floppy disk
driver supplied treats this äs a @RDSEC (SVC 49) and does not do a track
read.

Entry Conditions:
A =51 (X'331)
HL=pointer to buffer to receive the sector
D = track to read
C = logical drive number
E = sector to read

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF is altered by the supplied floppy disk driver.

Example:
See the example for @RDSEC in Sample Program D, lines 63-66.

G

^fi^^^S^.

Software 126

(5 READ SVC Number 67
Read a Record

p
Reads a logical record from a file. If the LRL defined at open time was 256
(specified by 0), then the NRN sector is transferred to the buffer established at
open time. For LRL between 1 and 255, the next logical record is placed into a
user record buffer, UREC. The 3-byte NRN is updated afterthe read Operation.

Entry Conditions:
A =67(X'43')
DE=pointer to FCB for the file to read
HL=pointer to user record buffer UREC (needed if LRL = 1-255; unused if

LRL = 256)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

Example:
See Sample Program C, lines 300-304.

1̂ ^̂ ^

Software 127

(a REMOV SVC Number 57
Remove File or Device

Removes a file or device.

If a file is to be removed, the File Control Block must be in an open condition.
When this SVC is performed, the file's directory is updated and the space occu-
pied by the file is deallocated.

If a device was specified, the device is closed. To remove a device, use the
REMOVE library command.

Entry Conditions:
A =57(X'39')
DE = pointer to FCB or DCB to remove

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

Example:
See Sample Program C, lines 223-231.

G

jrfdlRH^̂ .

Software 128

@RENAM SVC Number 56
Rename File or Device

Changes a file's filename and/or extension.

Entry Conditions:
A =56(X'38')
DE=pointer to an FCB containing the file's current name

This FCB must be in a closed state.
HL=pointer to new filename string terminated with a X'OD' or X'03.' This

filespec must be in upper case and must be a valid filespec. You can
convert the filespec to upper case and check its validity by using the
@FSPEC SVC before using @RENAM.

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
After the call is completed, the FCB pointed to by DE is altered.
Only AF is altered by this SVC.

Example:
LD DE»FCB

LD HL»NEW

LD A»@RENAM

RST 28H

FCB: DEFS 32

NEW: DEFM 'NEWNAME/TXT '

DEFB 0DH

»Point at a closed FCB
»containinsf the old
» f i l e s p e c
»Point to the new filespec
»to use
»ChanSe the name of the
5f ile
»Call the 0RENAM SVC

»A File Control BlocK used
!bv the 0RENAM SVC, In
ith is example » i t i s
»assumed that an @FSPEC
»SVC has loaded a filespec
»into the FCB before the
»0RENAM SVC is perforwed.
»The new filespec for the
»f ile
»Terwinate the filespec

Software 129

@REW SVC Number 68
Rewind File to Beginning

Rewinds a file to its beginning and resets the 3-byte NRN to 0. The next record
to be read or Written sequentially is the first record of the file.

Entry Conditions:
A =68(X'44')
DE = pointer to FCB for the file to rewind

Exit Conditions:
Success, Z flag set. File positioned to record number 0.
Failure, NZ flag set.

A = error number

General:
AF is always altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

^̂ *w**»ii-.

Software 130

@RMTSK SVC Number 30
Remove Interrupt Level Task

Removes an Interrupt level task from the Task Control Block table.

Entry Conditions:
A = 30(X'1E')
C=task slot assignment to remove (0-11)

Exit Conditions:
Success always.
HL and DE are altered by this SVC.

Example:
See Sample Program F, lines 134-142.

^tjjjfr

Software 131

@RPTSK SVC Number 31
Replace Task Vector

Exits the task process executing and replaces the currently executing task's
vector address in the Task Control Block table with the address following the
SVC instruction. Return is made to the foreground application that was
interrupted.

Entry Conditions:
A = 31 (X'1F)

General:
This SVC does not return.

Example:
LD A»RPTSK »Replace this task with the

ione located at the
ifollowinS address:

RST 28H iCall the @RPTSK SVC
NEWADD: DEFW 0 »Address of the new tasK is

iloaded h e r e « This word
»must be iwwediately after
ithe iRPTSK SVC. The label
»NEWADD is present onlv to
iallow the address to be
5stored»

Software 132

@RREAD SVC Number 69
Reread Sector

p
Forces a reread of the current sector to occur betöre the next I/O request is per-
formed. Its most probable use is in applications that reuse the disk I/O buffer for
multiple files, to make sure that the buffer contains the proper file sector. This
routine is valid only for byte I/O or blocked files. Do not use it when positioned
at the start of a file.

Entry Conditions:
A = 69(X'45')
DE = pointer to FCB for the file to reread

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF is always altered by this SVC.

Example:
LD DE»FCB »Point to File Control BlocK

»of the file that re^uires
5the re-read

LD A»8RREAD »Before next I/O» reload
»the current sector into
ithe system buffer for
»this file

RST 28H »Call the 0RREAD SVC

Software 133

@RSLCT SVC Number 47

Test for Drive Busy
Performs a test of the last selected drive to see if it is in a busy state. If busy, it
is re-selected until it is no longer busy.

Entry Conditions:
A = 47(X'2F)
C=logical drive number (0-7)

Exit Conditions:
Success always.
Only AF is altered by this SVC.

Example:
LD C»l Test Driue l to see if it

i s bus v.
LD Af@RSLCT

RST 28H

If it i s » continue
selectinS it
Call the @RSLCT SMC

Software 134

@RSTOR SVC Number 44

Issue FDC RESTORE Command
Issues a disk Controller RESTORE command.

Entry Conditions:
A = 44(X'2C')
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

Example:
See the example for @CKDRV in Sample Program D, lines 38-39.

Software 135

(5 RUN SVC Number 77
Run Program

Loads and executes a program file. If an error occurs during the load, the sys-
tem prints the appropriate message and returns.

Entry Conditions:
A =77(X'4D')
DE=pointer to FCB containing the filespec of the file to RUN
Note: The FCB must be located where the program being loaded will not
overwrite it.

Exit Conditions:
Success, the new program is loaded and executed.
Failure, the error is displayed and return is made to your program.

HL = return code (See the section "Converting to TRSDOS Version 6"
for information on return codes.)

General:
HL is returned unchanged if no error occurred and can be used äs a

pointer to a command line.

Example:
See Sample Program A, lines 62-74.

Software 136

@ RWRIT SVC Number 70
Rewrite Sector

Rewrites the current sector, following a write Operation. The @WRITE function
advances the NRN after the sector is Written. @RWRIT decrements the NRN
and writes the disk buffer again. Do not use @RWRIT when positioned to the
start of a file.

Entry Conditions:
A =70(X'46')
DE=pointer to FCB for the file to rewrite

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

Example:
LD DE»FCB »Point to the File Cont ro l

i O l o c k
LD A » @ R W R I T i P e r f o r m a r e - w r i t e of the

> c u r rent s e c t o r
RST 28H iCall the @ R W R I T SVC

Software 137

@SEEK SVC Number 46
Seek a Cylinder

Seeks a specified cylinder and sector. @SEEK does not return an error if you
specified a non-existent drive or an invalid cylinder. @SEEK performs no action
if the specified drive is a hard disk.

Note: Seek of a sector is not supported by TRS-80 hardware. An implied seek
is included in sector reads and writes.

Entry Conditions:
A = 46(X'2E')
C=logical drive number
D=cylinder to seek
E = sector to seek

Exit Conditions:
Success always.
Only AF is altered by this SVC.

Software 138

@SEEKSC SVC Number 71
Seek Cylinder and Sector

Seeks the cylinder and sector corresponding to the next record of the specified
file. (This is done by examining the NRN field of the FCB.) No error is returned
on physical seek errors.

Entry Conditions:
A =71 (X'471)
DE=pointer to the file's FCB

Exit Conditions:
Success always.

Example:
LD DE»FCB »Point to the File Control

»Block
LD A»@SEEKSC iCause the next sector to be

iSEEKed before it is
»actually needed

RST 28H iCall the 0SEEKSC SVC

Software 139

@SKIP SVC Number 72
Skip a Record

Causes a skip past the next logical record. Only the record number contained
in the FCB is changed; no physical I/O takes place.

Entry Conditions:
A =72(X'48')
DE=pointer to FCB for the file to skip

Exit Conditions:
If the Z flag is set or if A = X'1 C' or X'1 D,' then the Operation was successful.

Otherwise, A = error number. If A = X'1C' is returned, the file pointer is
positioned at the end of the file. Any Appending operations would be
performed here. If A = X'1 D' is returned, the file pointer is positioned
beyond the end of the file.

General:
AF is altered by this SVC.
BC contains the current record number. This is the same value äs that

returned by the @LOC SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 140

@SLCT SVC Number 41

Select a New Drive
Selects a drive. The time delay specified in your configuration (SYSTEM
(DELAY = Y/N)) is made if the drive selection requires it.

Entry Conditions:
A = 41 (X'291)
C=logical drive number (0-7)

Exit Conditions:
Success, Z f lag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Software 141

(r/ SOUND SVC Number 104
Sound Generation

Generates sound using specified tone and duration codes. Interrupts are dis-
abled during execution.

Entry Conditions:
A=104(X'68')
B = function code

bits 0-2: tone selection (0-7 with 0 = highest and 7 = Iowest)
bits 3-7: tone duration (0-31 with 0 = shortest and 31 = longest)

Exit Conditions:
Success always.

Only AF is altered by this SVC.

Example:
See Sample Program B, lines 43-45.

Software 142

@STEPI SVC Number 45

Issue FDC STEP IN Command
Issues a disk Controller STEP IN command. This moves the drive head to the
next higher-numbered cylinder. @STEPI is intended for sequential read/write
operations, such äs disk formatting.

Entry Conditions:
A = 45(X'2D')
C=logical drive number

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Software 143

(a TIME SVC Number 19

Get Time
Gets the System time in display formal (HH:MM:SS).

Entry Conditions:
A =19(X'13')
HL=pointer to buffer to receive the time string

Exit Conditions:
Success always.

HL=pointer to the end of buffer +1
DE=pointer to Start of TIME$ storage area in TRSDOS
AF and BC are altered by this SVC.

Example:
See the example for @DATE in Sample Program F, lines 252-253.

Software 144

@VDCTL SVC Number 15
Video Functions

i
Performs various functions related to the video display. The B register is used
to pass the function number.

Entry Conditions:
A=15(X'0F)
B selects one of the following functions:

If B = 1, return the Character at the screen position specified by HL.
H=row on the screen (0-23), where 0 is the top row
L = column on the screen (0-79), where 0 is the leftmost column

If B = 2, display the specified Character at the position specified by
HL

C=Character to be displayed
H = row on the screen (0-23), where 0 is the top row
L = column on the screen (0-79), where 0 is the leftmost column

If B = 3, move the Cursor to the position specified by HL. This is done
even if the Cursor is not currently displayed.

H = roiv on the screen (0-23), where 0 is the top row
L = column on the screen (0-79), where 0 is the leftmost column

If B = 4, return the current position of the Cursor.

If B = 5, move a 1920-byte block of data to video memory.
HL=pointer to 1920-byte buffer to move to video memory

If B = 6, move a 1920-byte block of data from video memory to a
buffer you supply. In 40 line by 24 Character mode, there must
be a Character in each alternating byte for proper display.

HL=pointer to 1920-byte buffer to störe copy of video memory HL
must be in the ränge X'23FF' < HL < X'ECOI.

If B = 7, scroll protect the specified number of lines from the top of the
screen.

C=number of lines to scroll protect (0-7). Once set, scroll protect
can be removed only by executing @VDCTL with B = 7 and
C = 0, orby resetting the System. Clearing the screen with
(SHiFTJfCLl-Sff) erases the data in the scroll protect area, but the
scroll protect still exists.

If B = 8, change Cursor Character to specified Character. If the Cursor
is currently not displayed, the Character is accepted anyway
and is used äs the Cursor Character when it is turned back on.
The default Cursor Character is an underscore (X'5F') under
Version 6.2 and a X'B0' under previous versions.

C = Character to use äs the cursor Character

If B = 9, (under Version 6.2 only) transfer 80 characters to or from
the screen.

If C = 0, move characters from the buffer to the screen
If C = 1, move characters from the screen to the buffer
H = row on the screen
DE=pointer to 80 byte buffer

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K).
The first 1920 bytes can be displayed. The remaining bytes contain the
type-ahead buffer and other System buffers.

Software 145

Exit Conditions:
lfB = 1:

Success, Z flag set.
A = Character found at the location specified by HL
DE is altered.

Failure, NZ flag set.
A = error number

lfB = 2:
Success, Z flag set.

DE is altered.
Failure, NZ flag set.

A = error number

lfB = 3:
Success, Z flag set.

DE and HL are altered.
Failure, NZ flag set.

A = error number

lfB = 4:
Success always.

HL = roiv and column position of the Cursor. H = row on the
screen (0-23), where 0 is the top row; L = column on the
screen (0-79), where 0 is the leftmost column.

lfB = 5:
Success always.

HL=pointer to the last byte moved to the video +1
BC and DE are altered.

If B = 6:
Success always.

BC, DE, and HL are altered.

lfB = 7:
Success always.

BC and DE are altered.

lfB = 8:
Success always.

A=previous Cursor Character
DE is altered.

If B = 9 (under Version 6.2 only):
Success, Z flag set.

BC, HL, DE are altered.
Failure, NZ flag set because H is out of ränge.

A= error code 43 (X'2B').

General:
Functions 5, 6, and 7 do not do ränge checking on the entry parameters.
If HL is not in the valid ränge in functions 5 and 6, the results may be

unpredictable.
Only function 3 (B = 3) moves the Cursor.
If C is greater than 7 in function 7, it is treated äs modulo 8.
AF and B are altered by this SVC.

Example:
See Sample Program F, lines 304-327.

Software 146

@VER SVC Number 73
Write and Verify a Record

Performs a @WRITE Operation followed by a test read of the sector (if the write
required physical I/O) to verify that it is readable.

If the logical record length is less than 256, then the logical record in the user
buffer UREC is transferred to the file. If the LRL is equal to 256, a füll sector
write is made using the disk I/O buffer identified at file open time.

Entry Conditions:
A =73(X'49')
DE=pointer to FCB for the file to verify

Exit Conditions:
Success, Z flag set.

HL=pointer to user buffer containing the logical record
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 338-346.

Software 147

@VRSEC SVC Number 50
Verify Sector

Verifies a sector without transferring any data from disk.

Entry Conditions:
A = 50(X'32')
D=cylinder to verify
E=sector to verify
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set

A = error number

General:
AF is always altered by this SVC.
If the sector is a System sector, the sector is readable if an error 6 is

returned; any other error number signifies an error has occurred.

Example:
See the example for @WRSEC in Sample Program D, lines 68-76.

^^^

O

Software 148

@WEOF SVC Number 74
Write End Of File

P
Forces the System to Update the directory entry with the current end-of-file
information.

Entry Conditions:
A = 74(X'4A)
DE=pointer to the FCB for the file to WEOF

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF is always altered by this SVC.

Example:
LD DE»FC§ iPoint at the File Control

JBlocK
LD A»0WEOF »Force the dire c t o r y entry

ito be updated now>
iinstead of uhen the file
i is closed

RST 28H »Call the 6WEOF SVC

Software 149

@WHERE SVC Number 7
Locate Origin of SVC

Used to resolve the relocation address of the calling routine.

Entry Conditions:
A = 7(X'07')

Exit Conditions:
Success always.

HL=pointer to address following RST28H instruction
AF is always altered by this SVC.

Example:
See Sample Program F, lines 36-60.

Software 150

@WRITE SVC Number 75

Write a Record
Causes a write to the next record identified in the File Control Block.

If the logical record length is less than 256, then the logical record in the user
buffer UREC is transferred to the file. If the LRL is equal to 256, a füll sector
write is made using the disk I/O buffer identified at file open time.

Entry Conditions:
A =75(X'4B')
HL=pointer to user record buffer UREC (unused if LRL=256)
DE=pointer to FCB for the file to write

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
AF is always altered by this SVC.

Example:
See the example for @VER in Sample Program C, lines 338-346.

Software 151

@ WRSEC SVC Number 53

Write a Sector
Writes a sector to the disk.

Entry Conditions:
A =53(X'35')
HL=pointer to the buffer containing the sector of data
D = cylinder to write
E = sector to write
C = logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 68-76.

Software 152

@WRSSC SVC Number 54
Write a System Sector

Writes a System sector (used in directory cylinder).

Entry Conditions:
A =54(X'36')
HL=pointer to the buffer containing the sector of data
D = cylinder to write
E = sector to write
C = logical drive number

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 94-104.

Software 153

@WRTRK SVC Number 55

Write a Track
Writes an entire track of properly formatted data. The data format must conform
to that described in the disk controller's reference manual. @WRTRK must
always be preceded by @SLCT.

Entry Conditions:
A =55(X'37')
HL=pointer to format data
D = track to v/rite
C = logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:
Only AF is altered by this SVC.

Software 154

Numerical List of SVCs
Following is a numerical list of the SVCs:

Dec Hex Label Function

0
1
2

3
4
5

6
7
8
9

10
11
12
13
14
15

16
17
18

19

20

21

22
23
24

25

26
27
28
29
30
31

32
33
34
35

36-39
40
41
42
43
44
45

00
01
02

03
04
05

06
07
08
09
0A
0B
0C
0D
0E
0F

10
11
12

13

14

15

16

18

19

1A
1B
1C
1D
1E
1F

20
21
22
23

28
29
2A
2B
2C
2D

@IPL
@KEY
@DSP

@GET
@PUT
@CTL

@PRT
@WHERE
@KBD
@KEYIN
@DSPLY
@LOGER
@LOGOT
@MSG
@PRINT
@VDCTL

@PAUSE
@PARAM
@DATE

@TIME

@CHNIO

@ABORT

@EXIT

@CMNDI

@CMNDR

©ERROR
@DEBUG
@CKTSK
@ADTSK
@RMTSK
@RPTSK

@KLTSK
@CKDRV
@DODIR
@RAMDIR

@DCSTAT
@SLCT
@DCINIT
@DCRES
@RSTOR
@STEPI

Reboot the System
Scan *KI device, wait for Character
Display Character at Cursor, advance
Cursor
Get one byte from a logical device
Write one byte to a logical device
Make a control request to a logical
device
Send Character to the line printer
Locate origin of CALL
Scan keyboard and return
Accept a line of input
Display a message line
Issue a log message
Display and log a message
Message line handler
Print a message line
Position/locate Cursor, get/put Char-
acter at cursor
Suspend program execution
Parse an optional parameter string
Get System date in the format MM/
DD/YY
Get System time in the format
HH:MM:SS
Pass control to the next module in a
device chain
Load HL with X'FFFF' error and goto
@EXIT
Exil program and return to TRSDOS
Reserved for future use
Entry to command interpreter with
return to the System
Entry to command interpreter with
return to the user
Entry to post an error message
Enter DEBUG
Check if task slot in use
Add an Interrupt level task
Remove an interrupt level task
Replace the currently executing task
vector
Remove the currently executing task
Check for drive availability
Do a directory display/buffer
Get directory record(s) or free space
into RAM
Reserved for future use
Test if drive is assigned in DCT
Select a new drive
Initialize the FDC
Reset the FDC
Issue FDC RESTORE command
Issue FDC STEP IN command

Software 155

Dec Hex Label Function

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83

84
85
86
87
88
89
90
91

92
93
94

95
96

97

2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40

41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50

51
52
53

55

57
58

5A
5B

5D
5E

60

61

@SEEK
@RSLCT
@RDHDR
@RDSEC
@VRSEC
@RDTRK
@HDFMT
@WRSEC
@WRSSC
@WRTRK
@RENAM
@REMOV
@INIT
@OPEN
@CLOSE
@BKSP
@CKEOF
@LOC

@LOF

@PEOF
@POSN
@READ
@REW
@RREAD
@RWRIT
@SEEKSC
@SKIP
@VER
@WEOF
@WRITE
@LOAD
@RUN
@FSPEC
@FEXT
@FNAME

@GTDCT
@GTDCB
@GTMOD

@RDSSC

@DIRRD
@DIRWR

@MUL8
@MUL16

@DIV8
@DIV16

@DECHEX

@HEXDEC

Seek a cylinder
Test if requested drive is busy
Read a sector Header
Read a sector
Verify a sector
Read a track
Hard disk format
Write a sector
Write a System sector
Write a track
Rename a file
Remove a file or device
Open or initialize a file or device
Open an existing file or device
Close a file or device
Backspace one logical record
Check for end of file
Calculate the current logical record
number
Calculate the EOF logical record
number
Position to the end of file
Position a file to a logical record
Read a record from a file
Rewind a file to its beginning
Reread the current sector
Rewrite the current sector
Seek a specified cylinder and sector
Skip the next record
Write a record to a file and verify
Write end of file
Write a record to a file
Load a program file
Load and execute a program file
Fetch a file or device specification
Set up a default file extension
Fetch filename/extension from
directory
Get Drive Code Table address
Find specified or first free DCB
Find specified memory module
address
Reserved for future use
Read a System sector
Reserved for future use
Read directory record
Write directory record
Reserved for future use
Multiply 8-bit unsigned integers
Multiply 16-bit by 8-bit unsigned
integers
Reserved for future use
Divide 8-bit unsigned integers
Divide 16-bit by 8-bit unsigned
integers
Reserved for future use
Convert decimal ASCII to 16-bit
binary value
Convert a number in HL to decimal
ASCII

^^^^

>(̂ ^̂ *k.

Software 156

Dec Hex Label Function

98 62 @HEX8 Convert a 1-byte number to hex ASCII
99 63 @HEX16 Convert a 2-byte number to hex ASCII

100 64 @HIGH$ Obtain or set the highest and Iowest
unused RAM addresses

101 65 @FLAGS Point IY to the System flag table
102 66 @BANK Check, set, or reset a 32K bank of

memory
103 67 ©BREAK Set user or System break vector
104 68 @SOUND Generate sound (tone and duration)

105-127 Reserved for future use.

Software 157

Alphabetical List of SVCs
Following is an alphabetical

Label

@ABORT
@ADTSK
@BANK
@BKSP
©BREAK
@CHNIO
@CKDRV
@CKEOF
@CKTSK
@CLOSE
@CMNDI
@CMNDR
@CTL
@DATE
@DCINIT
@DCRES
@DCSTAT
©DEBUG
@DECHEX
@DIRRD
@DIRWR
@DIV8
@DIV16
@DODIR
@DSP
@DSPLY
©ERROR
@EXIT
@FEXT
@FLAGS
@FNAME
@FSPEC
@GET
@GTDCB
@GTDCT
@GTMOD
@HDFMT
@HEXDEC
@HEX8
@HEX16
@HIGH$
@INIT
@IPL
@KBD
@KEY
@KEYIN
@KLTSK
@LOAD
@LOC
@LOF
@LOGER
@LOGOT
(5)MSG

list of the SVC labels and numbers:

Dec

21
29

102
61

103
20
33
62
28
60
24
25
5

18
42
43
40
27
96
87
88
93
94
34
2

10
26
22
79

101
80
78
3

82
81
83
52
97
98
99

100
58
0
8
1
9

32
76
63
64
11
12
13

Hex

15
1D
66
3D
67
14
21
3E
1C
3C
18
19
5

12
2A
2B
28
1B
60
57
58
5D
5E
22
2

0A
1A
16
4F
65
50
4E
3

52
51
53
34
61
62
63
64
3A
0
8
1
9

20
4C
3F
40
0B
0C
0D

c

Software 158

Label Dec Hex

@MUL8 90 5A
@MUL16 91 5B
@OPEN 59 3B
@PARAM 17 11
©PAUSE 16 10
@PEOF 65 41
@POSN 66 42
@PRINT 14 0E
@PRT 6 6
@PUT 4 4
@RAMDIR 35 23
@RDHDR 48 30
@RDSEC 49 31
@RDSSC 85 55
@RDTRK 51 33
@READ 67 43
@REMOV 57 39
@RENAM 56 38
@REW 68 44
@RMTSK 30 1E
@RPTSK 31 1F
@RREAD 69 45
@RSLCT 47 2F
@RSTOR 44 2C
@RUN 77 4D
@RWRIT 70 46
@SEEK 46 2E
@SEEKSC 71 47
@SKIP 72 48
@SLCT 41 29
@SOUND 104 68
@STEPI 45 2D
@TIME 19 13
@VDCTL 15 0F
@VER 73 49
@VRSEC 50 32
@WEOF 74 4A
@WHERE 7 7
©WRITE 75 4B
@WRSEC 53 35
@WRSSC 54 36
@WRTRK 55 37

Software 159

Sample Programs
The following sample programs use many of
the Supervisor calls described in this man-
ual. These programs are not meant to be
examples of the most efficient programming,
but are designed to illustrate äs many Super-
visor calls äs possible.

^^^^^

Software 160

Sample Program A

Ln # Source Line

00001
00002
00003
00004
00005
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067

/
7
7

/

@DEBUG:
@DSPLY:
@FSPEC:

@KEY:
@LOAD :
@RUN:

MESS1:

PROGRM:

FCBl:

7

START :

r

»

;

y

r

;

RUNIT:

This program asks the user whether to run a program
or debug it and executes the SVCs required to perform
the chosen action.

PSECT 5000H ;The program begins at x'50001

Define the equates for the SVCs that will be used.

EQU 27 ; Enter the debugger (DEBUG)
EQU 10 ; Display a message
EQU 78 ;Verify a filespec or devspec and

;load it into a File Control Block
EQU 1 ;Get a Character from the keyboard
EQU 76 ;Load a program into memory
EQU 77 ;Execute a program

DEFM 'Do you wish to RUN this Program or DEBUG it ?'
DEFB 0AH ;This moves the cursor to the next line
DEFM 'Press <ENTER> to RUN or <BREAK> to DEBUG1

DEFB 0DH ;Terminate the message string

DEFM 'DIREX/CMD1 ; Sample program to debug or execute
DEFB 0DH ;Terminate the filespec

DEFS 32 ;File Control Block for the program

Get the File Control Block for the program 'DIREX/CMD1 .

LD HL,PROGRM ; Point at the filespec we want to
; execute or load into memory

LD DE, FCBl ; Point at the File Control Block
LD A,@FSPEC jPerform a validity check on the filespec

;and copy the filespec into the FCB.
RST 28H ;Call the @FSPEC svc

LD HL,MESS1 ; Point at our prompting message
LD A,@DSPLY ;and print it on the display
RST 28H ;Call the @DSPLY svc

LD A,@KEY ;Get the reply from the keyboard
RST 28H ;Call the @KEY svc

CP 0DH ;Was the Character an <ENTER>?
JR Z, RUNIT ;If Z was set , then run the program

If it wasn't an <ENTER> , then we assume it was a <BREAK> and
load the program and enter the debugger .

LD DE, FCBl ;Point at the File Control Block
LD A,@LOAD ;and have this program loaded into memory
RST 28H ;Call the @LOAD svc

Note that this program must not be overwritten by the program
we are loading. In this example, it is known that the program
we are loading Starts at x'3000' and ends below x1 5000'.

LD A,@DEBUG ;Now invoke the system debugger, DEBUG
RST 28H ;Call the @DEBUG svc

;Note that ©DEBUG does not return

Execute the program

LD DE, FCBl ;Point at the File Control Block
LD A,@RUN ;Tell TRSDOS to load and execute the

;program
RST 28H ;Call the @RUN svc

Software 161

oampie rrogram M, conimuea

00068 ;Note that @RUN returns only if it can't
00069 ;find the program
00010
00011 ; Note that the program that is loaded by the @RUN svc must not
00012 ; overwrite the File Control Block in this program. In this case,
00013 ; it is known that the program we are executing Starts at x'3000'
00014 ; and ends below the starting point of this program, x'5000*.
00015
00016 END START

Software 162

Sample Program B

00002
00003
00004
00005
00006
00007
00008
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

;This program accepts numbers from the keyboard
;and uses them to demonstrate the
;arithmetic and numeric conversion SVCs.

;It also uses the söund function to produce a tone at the
;beginning of the program.

PSECT 3000E

; These are the SVCs used in this program.

@DECHEX
@DIV8:
@DIV16:
@DSP:
@DSPLY:
@EXIT:
@HEX8:
@HEX16:
QHEXDEC
@KEY:
@KEYIN:
@MUL8:
@MUL16:
@SOUND:

7

NUM5:
NÜM4:
NUM3:
NUM2:
NÜM1:
BRK:
CCC:

:EQU
EQÜ
EQU
EQU
EQÜ
EQU
EQU
EQU
:EQU
EQU
EQU
EQU
EQU
EQU

Other

EQU
EQU
EQU
EQU
EQU
EQU
EQU

96
93
94
2
10
22
98
99
97
1
9
90
91
104

equates .

5
4
3
2
1
80H
0DH

rConvert decimal ASCII to binary
rPerform 8-bit division
;Perform 16-bit division
^Display a Character
^Display a message
;Return to TRSDOS Ready or the caller
;Convert an 8-bit value to hex ASCII
;Convert a 16-bit value to hex ASCII
;Convert a binary value to Decimal ASCII
rRead a Character from *KI
;Accept an input line from *KI
;Perform 8-bit multiplication
;Perform 16-bit multiplication
rProduce a tone

;Character code for <BREAK> key
;Next line position

;Perform a subroutine 2 times to display prompting messages, key in
;and display divisor and dividend, convert those numbers to
;binary for the divide, and position the Cursor.

START: LD
LD
RST
CALL
LD
LD
LD
CALL
LD
LD
CALL
CALL
LD
LD

B,SAH
A,@SOUND
28H
KEYIN
A,C
(DIVDl),A
HL,MESS9
DSPLAY
A, (DIVDl)
CfA
HEX8
KEY IN
A,C
(DIVRl),A

;Make the longest, hiqhest tone
;Make the noise

;Perform keyin subroutine for dividend

;Store the dividend in memory
;Address of hex message
;Display hex message
;Get the divisor into C for conversion
;from binary to hex
;Convert the number to hex
;Perform subroutine for divisor

;Store the divisor in memory

;Npw we are ready to perform the divide on the numbers entered.

LD
LD
LD
LD
RST

C,A
A,(DIVDl)
E,A
A,@DIV8
28H

;Put the divisor back for the @DIV8 SVC
;Get the dividend into E
;for the @DIV8 SVC
;Call the @DIV8 SVC

;Now display the answer and the remainder in decimal.

LD (ANSI),A ;Store the answer in memory

Software 163

Sample Program B, continued

LD A, E
LD (REM1) ,A
LD HL, MESS 3
CALL DSPLAY
LD A, (ANSI)
LD L, A
LD H , 0
CALL HEXDEC
LD HL, MESS 4
CALL DSPLAY
LD A,(REM1)
LD L, A
LD H,0
CALL HEXDEC

;Get the remainder
; Store the remainder in memory
;Load address of answer message
;Display the message
;Get the answer into L for conversion
;Number to convert
;Put a 0 in the MSB
; Perform subroutine to display decimal value
;Address of remainder message
;Display remainder message
;Put remainder in A for hex conversion
; Number to convert
;Put 0 in the MSB
;Display decimal value

;Now divide with a 16-bit dividend.

LD HL, MESS 6
CALL DSPLAY
LD A,@KEYIN
LD HL,BÜF6
LD B , NUM5
LD C,J0
RST 28H
LD A,eDECHEX
RST 28H
LD (DIVD2),BC
LD HL, MESS 9
CALL DSPLAY
LD DE,(DIVD2)
CALL HEX16
CALL KEY IN
LD A,C
LD (DIVR1),A
LD HL, MESS 3
CALL DSPLAY
LD HL,(DIVD2)
LD A,(DIVRl)
LD C,A
LD A,@DIV16
RST 28H
LD (REM1),A
LD (ANS2),HL
CALL HEXDEC
LD HL, MESS 4
CALL DSPLAY
LD A,(REM1)
LD L, A
LD H,0
CALL HEXDEC

;Now try some multiplication of

LD HL,MESS8
CALL DSPLAY
LD A,8KEYIN
LD HL,BUF2
LD B,NUM2
LD C,0
RST 28H
LD A,@DECHEX
RST 28H
LD (MCAND1),BC
LD HL, MESS 10
CALL DSPLAY
LD A,@KEYIN
LD HL,BUF2

; Address of 2nd dividend message
;Display next message
;Key in up to 5 digits
; Store the number
;Maximum length of number

;Convert the number to binary

; Store the dividend
;Address of hex message
;Display hex message
;Put dividend into DE for conversion
;Convert the number from binary to hex
;Key in divisor
;Put the divisor into A
; Store the divisor in memory
;Address of answer message
;Display the message
;Put dividend into HL
;Get divisor into C

;Store the remainder
;Put the answer into HL
;Display answer in decimal
;Address of remainder message
;Display remainder message
;Get the remainder
;into L
;Put a 0 in MSB
;Convert the remainder to decimal

8 bits.

; Address of MUL8 message
;Display first multiplicand message
;Key in a 2-digit number
;Put i t here
;Maximum number of characters

;Convert the number to binary for math

;Store the multiplicand
;Address of MUL8 multiplier message
;Display first multiplier message
;Key in the multiplier
;Put it here

^^^^

Software 164

sample program B, contmuea

00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203

LD
LD
RST
LD
RST
LD
LD
LD
RST

;Now multiply

LD
LD
LD
LD
LD
RST
LD
LD
CALL

;Now multiply

LD
CALL
LD
LD
LD
LD
RST
LD
RST
LD
LD
CALL
LD
LD
LD
LD
RST
LD
RST
LD
LD
LD
RST
LD
LD
LD
LD
RST
LD

LD
LD
LD
RST
LD
LD
LD
LD
RST
LD
LD
RST
LD
RST

B,NUM1
C,0
28H
A,@DECHEX
28H
(MIERl) ,BC
HL , MESS 13
A, @DSPLY
28H

the two numbers

A, (MCAND1)
C,A
A, (MIERl)
E, A
A,@MUL8
28H
Lf A
H,0
HEXDEC

a 16-bit by an

HL,MESS11
DSPLAY
A, @ KEYIN
HL,BUF5
B,NUM4
c,0
28H
A,@DECHEX
28H
(MC AND 2) ,BC
HL,MESS12
DSPLAY
A, §KEYIN
HL,BUF3
B , NUM2
c,0
28H
A, @DECHEX
28H
(MIERl) ,BC
HL, MESS 13
A,@DSPLY
28H
HL, (MCAND2)
A, (MIERl)
C,A
A,@MUL16
28H
H, L

L, A
DE,BUF5
A, @ HEXDEC
28H
A,CCC
(DE) ,A
HL,BUF5
A,@DSPLY
28H
HL,MESS14
A,@DSPLY
28H
A,@KEY
28H

; Maximum number of characters

;Convert the multiplier to binary for math

;Store multiplier in memory
;Address of multiplier message
;Display multiplier message

just entered.

;Get the multiplicand into C

;Get the multiplier into E

;Put the product into L
;Put 0 in the MSB
;Convert the product to decimal

8-bit.

;Address of multiplicand message
;Display 2nd multiplicand message
; Enter larger multiplicand
;Put it here
;Maximum number of characters

;Convert the number to binary for math

; Store the multiplicand in memory
;Address of multiplier message
;Display message
;Enter larger multiplier
;Put it here
/Maximum number of characters

;Convert the number to binary for math

; Store the multiplier in memory
;Address of product message
;Display the message

;Put multiplicand into HL
;Get the multiplier into C

; Multiply the two numbers

;Get the 2nd byte of the product into
;H for conversion
;Get the LSB into L for conversion
;Convert the high-order byte to decimal
;for the display

;Tell the display when to stop

; Display the product

;Address of end message
;Display end message

;Allow the user to enter any Character
;or hit <BREAK>

Software 165

Sample Program B, continued

00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271

CP
JP
LD
RST

BRK
NZ,START
A,@EXIT
28H

;Is it <BREAK>?
;Yes, go back to beginning
;No, exit the program

;These are the subroutines used by the calls to
;display a message, key in a 3-digit number, and convert it
;from decimal to binary.

KEYIN: LD
CALL
LD
LD
LD
LD
RST
LD
RST
RET

HL,MESSl
DSPLAY
HL,BUF4
B,NUM3
C,0
A,@KEYIN
28H
A,@DECHEX
28H

;Display message
;Put the number here
; Maximum number of characters

;Key in a number

;Convert the number to binary

;Return to next sequential instruction

;Display what was loaded into HL before the call

DSPLAY: LD
RST
DEC
LD

DSPLYLP:LD
LD
RST
DJNZ
RET

A,@DSPLY ;@DISPLAY SVC
28H
HL ;Set HL back to blank byte
B,(HL) ;Load B with the number of bytes
C,1 ' ;Put a blank into C
A,@DSP ;Display the blank
28H ;until the correct number
DSPLYLP ;of blanks have been displayed

;Return to next instruction

;Convert l byte to hexadecimal.

HEX8: LD
LD
RST
LD
LD
LD
LD
RST
RET

A,@HEX8
HL,BUF3
28H
A,CCC
(HL) ,A
A,@DSPLY
HL,BUF3
28H

;Convert l byte to hex ASCII
;Put the converted value here

;Tell display when to stop
;Put CCC at end of buffer
;Display the hex value

;Return to next instruction

;Convert 2 bytes to hexadecimal.

HEX16 LD
LD
RST
LD
LD
LD
LD
RST
RET

A,@HEX16
HL,BUF6
28H
A, CCC
(HL),A
A,@DSPLY
HL,BUF6
28H

;Convert a 2-byte number to hex ASCII
;Put the converted value here

;CCC at end of buffer so display
;knows when to stop
;Display the converted value
;Address of converted value

;Return to next instruction

;Convert from binary to decimal and display decimal value.

HEXDEC LD
LD
RST
LD
LD
LD
LD
RST
RET

A,§HEXDEC
DE,BUF5
28H
A, CCC
(DE),A
A,@DSPLY
HL,BÜF5
28H

;Convert from binary to decimal
;Put converted value here

;CCC at end of buffer so display
;knows when to stop
;Display the hex value
;It's here

;Return to next instruction

Software 166

Sample Program B, continued

00212
00273
00214
00215
00216
00211
00218
00219
00280
00281
00282
00283
00284
00285
00286
00281
00288
00289
00290
00291
00292
00293
00294
00295
00296
00291
00298
00299
00300
00301
00302
00303
00304
00305
00306
00301
00308
00309
00310
00311
00312
00313
00314
00315
00316
00311
00318
00319
00320
00321
00322
00323

; These

BUF6:
BUF5
BUF4:
BUF3:
BUF2:
DIVRl:
DIVD1:
ANSI:
REM1:
MC AND 1:
MIER1:
MC AND 2:
DIVD2:
ANS 2:

;Below

MESS1:

MESS 3:

MESS 4:

MESS 6:

MESS8 :

MESS 9:

MESS 10:

MESS11:

MESS12:

MESS13:

MESS14:

are the

DEFS
DEFS
DEFS
DEFS
DEFS
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFW
DEFW
DEFW

storage declarations .

6
5
4
3
2
0
0
0
0
0
0
0
0
0

are messages and prompting text used in the program.

DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

END

13 ;Number of blanks to print after message 1
'Enter a number (1-255).'
3 ;Message-terminating Character
21 ;Number of blanks to print after message 3
'The answer is1

3 ;Terminating Character
18 ;Blanks after message
'The remainder is1

3 ;Terminating Character
6 ;Blanks after message
'Enter a number (4369-65535).'
3 ;Terminating Character
15 ;Blanks after message
'Enter a number (1-28).'
3 ;Terminating Character
16 ;Blanks after message
'In hex ASCII, that is'
3 ;Terminating Character
17 ;Blanks after message
'Enter a number (1-9).'
3 ;Terminating Character
11 ;Blanks after message
'Enter a number (1-4100). '
3 ;Terminating Character
15 ;Blanks after message
'Enter a number (1-15).'
3 ;Terminating Character
'The product of those 2 numbers is '
3 ;Terminating Character
'Press <BREAK> to end or any other key to continue.'
0DH ;Terminating Character

START

Software 167

Sample Program C

Ln # Source'Dine

00001
00002
00003
00004
00005
00006
00008
00009
00010
00011
00012
00013
00014
00015
00016
00011
00018
00019
00020
00021
00022
00023
0002 A
00025
00026
00021
00028
00029
00030
00031
00032
00033
00034
00035
00036
00031
00038
00039
00040
00041
00042
00043
00044
00045
00046
00041
00048
00049
00050
00051
00052
00053
00054
00055
00056
00051
00058
00059
00060
00061
00062
00063
00064
00065
00066
00061

i
t
i
i

•/
*i

©CLOSE:
8DIRRD:
©DSP:
©DSPLY:
©ERROR:
©EXIT:
©FEXT:
©FNAME:
©FSPEC:
©HEXDEC
©INIT:
©KBD:
©KEYIN:
©LOC:
©OPEN:
©READ:
©REMOV:
©VER:

;

BEGIN:

J

/
*i

»

This program pro
file, and create
file is copied t
the current reco

PSECT 3000H

First, declare t
This is not mand

EQU 60
EQU 87
EQU 2
EQU 10
EQU 26
EQU 22
EQU 79
EQU 80
EQU 78
:EQU 97
EQU 58
EQU 8
EQU 9
EQU 63
EQU 59
EQU 67
EQU 57
EQU 73

First, prompt fo

LD HL,MESG1
LD A, ©DSPLY
RST 28H

Now, read the fi

LD HL,FILE1
LD B, 24
LD C,0
LD A, ©KEYIN
RST 28H
JP C,QUIT
JP NZ,ERR

LD A, B
OR A
JR Z, BEGIN

The user has typ«
using the ©FSPEC

LD HL,FILE1
LD DE,FCB1

LD A, ©FSPEC

RST 28H
JR Z,ASK2

At this point th<

Then the data in the first
.le. While the Copy progresses,

;This program Starts at x'30001

This is not mandatory, but it makes the program easier to follow.

;Close a file or device
;Read a directory record
;Display Character at cursor
;Display a message
;Display an error message
;Exit and return to TRSDOS or the caller
;Add a default file extension
;Fetch a filespec from the directory
;Verify and load a filespec into the FCB
;Convert a binary value to decimal ASCII
;Open an existing file or create a new file
;Scan the keyboard for a Character
;Accept a line of text from the *KI device
;Return the current logical record number
;Open an existing file
;Read a record from an open file
;Delete a file from disk
;Write a record to disk. Does the same thing
;as ©WRITE (Svc 75), but it also makes sure
;the Written data is readable.

;Get the first message
;Display a line on the screen
;Call the ©DSPLY svc

;Put the name of the Ist file here
;Allow up to 24 characters
;A zero is required by the svc
;Get a filename from the user
;Call the ©KEYIN svc
;The user pressed <Break>
;An Error occurred

;Get the number of characters
;See if that value was zero
;Nothing was entered, ask again

rPoint at the text the user entered
;Point at the File Control Block
;that is to be used for the source file.
rThe ©FSPEC svc will make sure the filename
;that is in buffer named "filel" is valid.
;If it is, it is copied into the File
rControl Block (FCB) to be used by the ©OPEN
?or ©INIT svc later on.
rCall the ©FSPEC svc
?The name for file l is ok, so skip this

X^N

O

Software 168

Sample Program C, continued

00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135

to be in an invalid format.
error message.

The following code will print the

ASK2:

F20K:

FDIV:

EXTN:

LD
LD
RST
JR

HL,BADFIL
A,@DSPLY
28H
BEGIN

;Point at the bad filename message
;Display it
;Call the @DSPLY svc
;Start over

At this point, the source filename appears to be valid.
The code below asks for the second filename and checks it for
validity also.

LD
LD
RST
LD
LD
LD
LD
RST
JP
JP

LD
OR
JR

HL,MESG2
A,@DSPLY
28H
HL,FILE2
B,24
C,0
A,@KEYIN
28H
C,QUIT
NZ,ERR

A,B
A
Z,ASK2

;Prompt for the target filename
;Print that on the screen
;Call the @DSPLY svc
;Put the name of the 2nd file here
;Allow up to 24 characters
;A zero is required by the svc
;Get a filename from the user
;Call the @KEYIN svc
;The user pressed <Break>
;An Error occurred

;Get the number of characters
;See if that value was zero.
;Nothing was entered, ask again

The user has typed something, so it must be checked for validity
using the @FSPEC svc.

LD
LD
LD
RST
JR

HL,FILE2
DE,FCB2
A,@FSPEC
28H
Z,F20K

;Point at the text the user entered
;Point at the File Control Block
;Check the name for validity
;Call the @FSPEC svc
;The name for file 2 is ok, so skip this

The name for file 2 is invalid so print an error message

LD
LD
RST
JR

HL,BADFIL
A,@DSPLY
28H
BEGIN

;Point at the bad filename message
;Display it
;Call the @DSPLY svc
; Star t; over

Now we will attempt to add an extension to the target file
if the user did not specify one. We use the extension that
was specified on the source file. If it does
not have one, then we will not try to add one to the target file.

LD

LD
CP
JR
CP
JR
CP
JR
INC
JR

INC
LD
LD
RST

HL,FCB1+1

A,(HL)
'/'
Z,EXTN
0DH
Z,NOEXT
03H
Z,NOEXT
HL
FDIV

HL
DE,FCB2
A,@FEXT
28H

;Point at the source filename
;We start with the second Character since
;the filename must be at least one Character
;Get a Character from the filespec
;Is the Character the extension prefix?
;Yes, this will be our default extension
;Have we reached the end of the filespec?
;Yes, there is no extension so don't add one
;Test both terminators

;Advance the pointer to the next Character
;Keep looking

;Advance pointer to first byte of extension
;Point at FCB for the target file (file 2)
;Add an extension if one is not present
;Call the @FEXT svc

Now we have two filenames.
to make sure it exists.

First we will open the source file

Software 169

Sample Program C, continued
00136
00131
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
J00198
00199
00200
00201
00202
00203

NOEXT:

SIZ

WAIT:

LD
LD

LD

LD
RST
JR
CP
JP

DE,FCB1
HL,BUF1

B,0

A,@OPEN
28H
Z,SIZ
42
NZ,ERR

;Point at the File Control Block for filel
;Point at the System buffer. This buffer
;is used by the System to block data that
;is Written to disk and de-block data that
;is read from disk when the Logical Record
?Length of the file is not 256. If it is
;256, then this buffer is not used.
;Use LRL 256 for now since we don't know
;what to use yet.
rOpen the file
;Call the @OPEN svc
rThe file opened and is LRL 256.
;Was the error a LRL Open Fault?
;No, perhaps the file does not exist.

^̂ ^̂

At this point, the file is open and we can now examine the
directory to find out what LRL it was created with so we can
use that value to make the copy.

LD A, (FCBl+6)

AND
LD
LD

LD
PUSH
LD
RST

POP
LD
RST

LD
LD

7
C,A
A, (FCBl+7)

B, A
BC
A,@CLOSE
28H

BC
A,@DIRRD
28H

IX, HL
A, (IX+4)

LD (LRL),A

;Get the byte in the FCB which contains
;the drive number the file is on
;Erase all other information in that byte
;Save that value here
;This reads the Directory Entry Code (DEC)
;out of the FCB so we can use it
;Store the DEC here
;Save that value for now
;We can close the source file for now
;Call the @CLOSE svc

;Get the DEC value back off the Stack
;Read the directory record for that file
;Call the @DIRRD svc

;Put the pointer to the directory record
;here and read the DIR+4 entry which
;contains the LRL of the source file.
;Save that value

Before we go any further, we should check to see if the target file
already exists.

LD
LD
LD
LDIR

LD
LD
LD
LD
RST
JR
CP
JR

EXISTS: LD

LD
RST

LD
RST
JR

CP
JR

DE,COPY
HL,FCB2
BC,32

DE,FCB2
HL,BUF2
B,0
A,@OPEN
28H
Z, EXISTS
42
NZ,NOFILE

HL,FEXST

A,@DSPLY
28H

A,@KBD
28H
NZ, WAIT

Z,KILLIT

;First, make a copy of the FCB
;in case we have to delete a file
;Move the entire block

;Point at the target File Control Block
;Use this äs the buffer for now
;Use LRL 256 for now
;0pen it and see if it is there
;Call the @OPEN svc
;The file already exists, better ask
;Was the error a LRL mismatch?
;No, so the file does not exist.

;Point at a prompt asking if it is ok
;to erase the file that already exists
;Print that message
;Call the @DSPLY svc

;Wait for the user to type Y or N
;Call the @KBD svc
;Loop until something is typed

;Was a 'Y1 typed?
;Then kill the file

ÎSSIŜ

Software 170

Sample Program C, continued

00204
00205
00206
00201
00208
00209
00210
00211
00212
00213
00214
00215
00216
00211
00218
00219
00220
00221
00222
00223
00224
00225
00226
00221
00228
00229
00230
00231
00232
00233
00234
00235
00236
00231
00238
00239
00240
00241
00242
00243
00244
00245
00246
00241
00248
00249
00250
00251
00252
00253
00254
00255
00256
00251
00258
00259
00260
00261
00262
00263
00264
00265
00266
00261
00268
00269
00210

CP
JR
CP
JR
CP
JR

SHUT: LD
LD
RST
JP

•yi

Z, KILLIT
'N'
Z, SHUT
'n'
NZ, WAIT

DE,FCB2
A,@CLOSE
28H
QUIT

; At this point, we
that

KILLIT: LD
LD
RST

LD
LD
RST

JP

LD
LD
LD
LDIR

; Now
; copy
; with

NOFILE: LD
LD
RST
LD
LD
RST

LD
LD
LD
LD
LD
RST
JP

LD
LD
RST

LD
LD
CP
JR
LD
JR

LRL256: LD

has the same

C,0DH
A,@DSP
28H

DE,FCB2
A,@REMOV
28H

NZ,ERR

HL, COPY
DE,FCB2
BC,32

we know what

;Check for lowercase too

;Do they want to leave the file alone?
;No, just close the file and quit
;Was it a lowercase 'N'?
;No, loop until we see something we like

;Close the target file

;Call the ©CLOSE svc
;Exit to TRSDOS

have been given the OK to delete the file
name äs the target file.

;First move display to a new line
;Display an <Enter>
;Call the @DSP svc

;Point at the target file's FCB
;Delete the file from disk
;Call the @REMOV svc. (This is the same
;as the @KILL call on other TRSDOS Systems
;An error occurred, print it and quit
;Note that after a @REMOV succeeds ,
;the filespec is removed from the FCB.
;So we have to keep a copy around
;in case we need it.
;Get the copy
;Put i t here
;Move up to 32 bytes
;Copy the FCB so we can continue

Logical Record Length (LRL) to use in the

.)

, so we can open the source file and create the target file
the correct

HL, FCB 1
A,@DSPLY
28H
HL,SPACES
A,@DSPLY
28H

DE,FCB1
HL,BUF1
A, (LRL)
B, A
A,@OPEN
28H
NZ,ERR

HL, ARROW
A,@DSPLY
28H

DE,FCB2
A, (LRL)
0
Z,LRL256
HL,BUF2
LRLCOM
HL,BUF1

record lengths .

; Point at the filename in the FCB
; Print that name
;Call the @DSPLY svc
; Point at some spaces
;Space over a few places on the screen
;Call the @DSPLY svc

;Point at File Control Block for source file
;Put data in this
;Read the Logical Record Length
;Load the Logical Record Length
;Open the source file
;Call the @OPEN svc
;Open failed

; Point at the arrow text
;Print that to show the direction of copy
;Call the @DSPLY svc

;Point at File Control Block for target file
;Get the Logical Record Length
;Is the LRL 256?
;Then we do something special
;Use a different buffer for target file
;Jump to common code
;We use the same buffer when the LRL is 256
;since there is no need to block and de-block

LRLCOM: LD
LD

B, A
A,@INIT

;the data.
;Load the Logical Record Length
;Open the target file

Software 171

Sample Program C, continued

00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
00284
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338

RS T
JR

LD

28H
NZ,ERR

DE,FILE2

LOOP:

EDIT:

NUMBR:

LD
LD
LD
AND
LD
LD
RST
LD
LD
RST

LD
LD
RST

A, (FCB2+7)
B,A
A,(FCB2+6)
7
C,A
A,@FNAME
28H
HLrFILE2
A,@DSPLY
28H

HL,SPACES
A,@DSPLY
28H

;Call the @INIT svc
.;Init failed

;We are going to get the filename for
;the target file from the system
;instead of using the one we have. The
;reason for this is that the system will
;append the drive number to the filename
;if one was not specified.
;Get the Directory Entry Code for the file
;Put the DEC here
;Get the Drive Number from the FCB
;Lose all data except the drive number
;Store drive number here
;Have the system produce a filespec
;Call the @FNAME svc
;Now point at the filespec produced
;and print it out
;Call the @DSPLY svc

;Space over a few more places
;so the display will look neat
;Call the @DSPLY svc

At this point, both files are open and ready to be used.
The following code reads a record from the source file
and writes it to the target file. This is done until an
end of file is encountered.

LD
LD
LD
RST
JR
LD

Bef ore

DE,FCB1
HL, BUFFER
A, @ READ
28H
NZ, EOF
DE, FCB 2

;Point at file 1 (source file)
;Put data here
;Read a record from the source file
;Call the @READ svc
;Jump if the eof has been reached
;Point at file 2 (target file)

writing the record, display the record number, which
is obtained from the

LD
RST

PUSH
POP
LD
LD
RST

LD
LD
CP
JR
INC
JR

DEC
LD
LD

LD
LD
RST

A,@LOC
28H

BC
HL
DE,LOCMSG+1
A,@HEXDEC
28H

A,1 '
HL,LOCMSG
(HL)
NZ , NÜMBR
HL
EDIT

HL
A, ' ('
(HL) ,A

HL,LOCMSG
A,@DSPLY
28H

@LOC svc.

;Get the current record number
;Call the @LOC svc

;Get the current record number
;and put it in register HL
; Store the result here.
;Convert binary to ASCII in decimal format
;Call the @HEXDEC svc

;Get a blank
;Look at the front of the buffer
;Is the Character a blank?
;A number has been found
;Advance the pointer
;Loop until we find a number

;Back up one position
;Get the Character we want to insert
;Store that Character.
;The buffer now contains
; <none or more spaces> (record number)
;<7 left-cursor characters><etx>
; Point at this text
;and display it on the screen
;Call the @DSPLY svc

C

Now write the record to the target file.

LD DE,FCB2 ;Point at the FCB for the target file

Software 172

Sample Program C, continued

00339
003 40
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405

EOF;

EOFYES

QUIT:

ERR:

SPACES

ARROW:

OK:

MESG1:

MESG2:

FEXST:

LD
LD

RST
JR

JR

HL,BUFFER
A,@VER

28H
NZfERR

LOOP

;Point at the data read from file l
;Write a record to the target file
;The @VER does the same thing äs the
;@WRITE svc, only it also checks the
;data to make sure it is readable.
;Call the @VER svc
;An error occurred on write; possibly
;the disk is füll.
;Loop until an error occurs.

This code checks the error to make sure it was an end of file
condition and, if so, closes the source & target files.

CP
JR
CP
JR

28
Z,EOFYES
29
NZ,ERR

;Was it an end of file encountered?
;Yes, close the file
;Was it "Record number out of ränge"?
;No, must be some other error

It is possible to get Error 29 if the file being copied has
an EOF that is not a multiple of the file's LRL

LD
LD
RST
JR

LD
LD
RST
JR

LD
LD
RST

LD
RST

DE,FCB1
A,§CLOSE
28H
NZ,ERR

DE,FCB2
A, ©CLOSE
28H
NZ,ERR

HL, OK
A,©DSPLY
28H

A,@EXIT
28H

;Point at file l (source file)
;Close the file
;Call the ©CLOSE svc
;An error occurred„ abort

;Point at file 2 (target file)
;Close it also
;Call the ©CLOSE svc
;An error occurred, abort

;Print a message saying the copy is done

;Call the ©DSPLY svc

;Exit to TRSDOS or the calling program
;Call the ©EXIT svc

The ©EXIT svc does not return.

OR

LD
LD
RST

040H

C,A
A, ©ERROR
28H

;Turn on bit 6, which
;will cause the TERROR svc to print
;the short error message. Bit 7
;is not set, which instructs the ©ERROR
;to abort this program and return to
;TRSDOS Ready.
;Put error code & flags in register C
;Call the system error displayer
;Call the ©ERROR svc

Because bit 7 is not set, the ©ERROR svc will not return.

Storage Declaration

;ASCII Space char.for display formatting

;Arrow for display shows data direction

DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

;Advance cursor 10 spaces without erasing
;üsed to indicate the Copy is complete
;Terminated with an <Enter>

3
'=> '
3
10%25
1[Ok]'
0DH
'Copy Filespec >'
3
'To Filespec >'
3
'Destination File Already Exists - Ok to Delete it (Y/N) ?'
3

Software 173

Sample Program C, continued

00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424

BADFIL: DEFM 'Invalid Filename - Try Again1

DEFB 0DH
LOCMSG: DEFM ' 12345)' ;This will be used in building the LOC

;Display will appear äs (d) to (ddddd).
DEFB 7%24 ;Backspace without erasing
DEFB 3 ;Etx, used to get the @DSPLY svc to stop

;User Text Originally placed here
;Target Filename goes here
;32 bytes for the File Control Block
;32 bytes for the File Control Block
;An extra copy of the target FCB goes here
;The Logical Record Length of the source
;file will be stored here

DEFS 256 ;System buffer for File l
DEFS 256 ;System buffer for File 2
DEFS 256 ;Data buffer for both files

END BEGIN ;"begin" is the starting address

FILEl:
FILE2:
FCB1:
FCB 2:
COPY:
LRL:

DEFS
DEFS
DEFS
DEFS
DEFS
DEFB

32
32
32
32
32
0

BÜF1:
BUF2:
BUFFER;

c

Software 174

Sample Program D

Ln # Source Line

P
00001
00002
00003
00004
00005
00006
JW07
00009
00010
00011
JW12
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
J30024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067

7
j
;
;
;

r

@ ABORT:
@CKDRV:
@DCSTAT
TERROR:
@EXIT :
@RDSEC:
0RDSSC:
@WRSEC:
@WRSSC:

7

SYSSEC:
USRSEC:

;

START:

;
;

7
;

This program will read a sector from the disk in Drive 0
and will write it to a disk in Drive 1. The disk in Drive 1
must be formatted, but should not have anything important on
it. This program makes an assumption that the directory is
located on cylinder 20 (x'141).

PSECT 3000H ;This program begins at x'3000'.

Define the equates for the SVCs that will be used.

EQü 21 7 Abort and return to TRSDOS
EQU 33 ?Test to see if a drive is ready
:EQU 40 ;Verify that a drive is defined in the DCT
EQU 26 7Display an error message
EQU 22 7 Return to TRSDOS or the calling program
EQU 49 7Read a sector
EQU 85 ?Read a System sector
EQU 53 ;Write a sector
EQU 54 ;Write a System sector

Other Equates

EQU 1400H 7The System sector is Cylinder 20, Sector 0
EQU 0000H ?The regulär sector is Cylinder 0, Sector 0

First, test the target drive and make sure it is defined.

LD C,l ,-Select Drive 1
LD A,@DCSTAT ,-Ask if the drive is listed in the DCT
RST 28H ,-Call the @DCSTAT svc
JR NZ, ERROR ;If NZ, then the drive is not defined

?and we will abort execution.

Now, test and make sure the target drive contains a formatted
disk and is write-enabled.

LD C,l 7Select Drive 1
LD A,@CKDRV ,-Test to see if the disk is formatted

?and is write-enabled. Note that the
7 disk must be formatted by TRSDOS 6.x
7or by LDOS 5.1.x to be cons idered
7 "formatted" by this svc.

RST 28H ?Call the @CKDRV svc
LD A, 8 7This will become the error number if the

7drive was not ready. This is done
7because the @CKDRV svc does not return error
;codes .

JR NZ, ERROR ?The drive is not ready
LD A, 15 7This will become the error number if the

7drive is ready and is write-protected.
7 As above, this is done because @CKDRV does
?not return error messages .

JR C, ERROR ;The disk is formatted, but it is
7write-protected. In either case, abort.

Now that we know the target drive is ready, read a sector
from the source drive and write it to the target drive (Drive 1).

LD C,0 7Select Drive 0
LD DE, USRSEC 7 Read the first sector on the disk,

7Cylinder 0, Sector 0.
LD HL,BUFF 7?oint to a buffer which will hold the sector
LD A,@RDSEC 7 Read a non-system sector
RST 28H ,-Call the @RDSEC svc
JR NZ, ERROR ?If NZ, an error occurred, so abort

Software 175

Sample Program D, continued

00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127

Nowf write the sector to the target drive.

ERROR:

BÜFF:

LD
LD

LD
LD
RST
JR

DE,USRSEC

HL,BUFF
A,@WRSEC
28H
NZ,ERROR

;Select Drive l
;Write the sector to Cylinder 0, Sector 0
;on Drive l
;Point to the buffer containing the sector
;Write the sector to disk
;Call the @WRSEC svc
;If NZ, an error occurred, so abort

Now we will read a system sector from Drive 0 and write it on
drive 1. The difference between a System sector and a non-system
sector is that the Data Address Marks (DAM) are different. These
were Written to the disk when it was formatted. TRSDOS 6.x uses
these äs an extra check to make sure that a write of user data
does not accidentally get placed over a sector containing system
data. All of the sectors in the directory cylinder are marked
äs system sectors.

LD
LD
LD
LD
RST
JR

C,0
DE,SYSSEG
HL,BUFF
A,§RDSSC
28H
NZ,ERROR

;Select Drive 0
;Read Cylinder 20, Sector 0
;Store the sector at this address
;Read a system sector
;Call the @RDSSC svc
;An error occurred, so abort

Now write the sector to the target drive äs a system sector
There is no requirement that a sector must be placed at the
same cylinder and sector location äs it was read from, but
for simplicity, we are doing that.

LD
LD
LD
LD
RST
JR.

LD
RST

DE,SYSSEC
HL,BUFF
A,@WRSSC
28H
NZ,ERROR

A,§EXIT
28H

;Select Drive l
;Write Cylinder 20, Sector 0
;Point to the data to be Written
;Write a system sector
;Call the @WRSSC svc
;An error occurred, so abort

;Return to TRSDOS or the calling program
;Call the @EXIT svc

G
This routine displays an error message if anything goes wrong
Note that @CKDRV does not return an error message, so §ERROR
cannot be used for it without some manipulation.

OR
LD
LD

RST

LD

0C0H
C,A
A,§ERROR

28H

A,0ABORT

RST 28H

DEFS 256

;Set bit 7
;Load error number into register C
;This will display the error message
;and return to the calling program
;Call the @ERROR svc

;Nowf force an abort. This will return
;to TRSDOS Ready and will abort any
;JCL file that is currently executing
;Call the @ABORT svc

;256-byte buffer to störe the sector that
;is read and then Written

END START

Software 176

Sample Program E

Ln #

9

00001
00002
00003
J00004
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067

Thi
; Dri

PS E

; Fir
Thi

@CMNDI: EQU

@CMNDR: EQU

@DODIR: EQU

; Fir
; exe

START : LD
LD
RST

You
the1

; comi
; a @<
; sor

; Now

LD

LD
LD

RST

; Now
; the

to 1

LD
LD

RST

Not«
the
thal
to 1
mem<
the

Conj

DIR0: DEFJ

DEFI

END

Source Line

This program displays the filenames of the disk in
Drive 0 three different ways.

PSECT 3000H ;Program begins at x'30001

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

24

25

34

;Execute a TRSDOS command and return
;to TRSDOS Ready
;Execute a TRSDOS command and return
;to the calling program
;Display visible filenames on the
;specified disk drive

First, pass a "DIR :0" command to the system. TRSDOS will
execute this command and then return to this program.

HL,DIR0
A,@CMNDR
28H

;Point at command we want to execute
;Execute the specified command and return
;Call the @CMNDR svc

You may have noticed that the DIR displayed the files, but that
they were not sorted alphabetically. This is because the DIR
command will not use memory above x'3000' when it is invoked with

@CMNDR svc. This prevents the DIR command from performing a
sort of the filenames.

Now do a directory command using the @DODIR svc

B,0

A,@DODIR

28H

;Use Function 0 which displays all
;visible files in the directory.
;Put source drive number in register C
;The filenames will be read from the
;directory and displayed in the
;order they appear in the directory.
;Call the @DODIR svc

»s a "DIR :0" command to the system. This time
the command will be executed and then TRSDOS will not return
to this program, but will return to TRSDOS Ready.

HL,DIR0
A,@CMNDI

28H

;Point at the command we want performed
;and execute it, but don't return to
;this program.
;Call the QCMNDI svc
;This svc returns to TRSDOS Ready.

Note that when the library command DIR is performed this time,
the display of files is sorted. This is because DIR determines

: was invoked with a @CMNDI svc, and it will not return
to the calling program. Therefore, DIR is free to use the
memory above x'30001 to perform the sort of the filenames in
the directory.

'DIR :0'

0DH

START

;This command is passed to TRSDOS
;via the @CMNDR and 0CMNDI SVCs.
;It must be terminated with an <ENTER>

Software 177

Sample Program F

Ln # Source Line

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067

>
,

@ADTSK:
@CKTSK:
@DATE:
@DSPLY:
@EXIT:
@GTMOD :
@HEXDEC
@HIGH$:
@RMTSK:
@VDCTL:
@WHERE :

CALLR :

J
i
i
i
i

This program adds to the system task scheduler a task
which displays the date and a running count of the number
of times the task has been executed .
For simplicity, the program tries to use task slot 0.
If it is already in use, it assumes that the task using that
slot is this program, and it kills the task. It then tries to
recover the memory used by the task in high memory.
If the task slot is not in use, the task is placed in high memory,
and the address of the task is passed to the task scheduler.
The first time you run this program it adds the task, and the
next time you run this program, it removes the task.

PSECT 3000H ;This program Starts at x'3000'

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

EQU 29 ;Add a task entry to the scheduler
EQU 28 ;Check to see if a task slot is in use
EQU 18 ;Return the date in ASCII format
EQU 10 ;Display a message
EQU 22 ; Return to TRSDOS Ready or the caller
EQU 83 ;Locate a memory module
:EQU 97 ;Convert a binary value to decimal ASCII
EQU 100 ;Read or modify HIGH$ or LOW$
EQU 30 ;Remove a task entry from the scheduler
EQU 15 ;Perform video operations
EQU 7 ;Find out where the program counter is

;when this SVC is executed. This is
;useful in relocatable code that must
;make absolute address references to
;call subroutines or modify data.

Below we will define a macro to simulate a call relative
instruction. Since the task must be able to run no matter
where it is placed, it must use relative jumps and calls.
The Z80 instruction set has a jump relative (JR) , but does
not have a call relative instruction. This can be simulated
using the @WHERE SVC, which returns the address of the caller
in a register. This address can be adjusted and placed on
the Stack äs a return address. Then a jump relative can be used
to reach the subroutine.

MACRO #1 ;#1 will be the address you want to call
PUSH HL ;Save the regist er s we damage
PUSH BC ;Save it
PUSH AF ;Save it
LD A,@WHERE ;Get our current address
RST 28H ;Call the @WHERE svc
LD BC, 3+1+1+1+1+2 ;Get the lengths of the instructions after

;the SVC. This will allow the subroutine
;to return to the correct address.

ADD HL,BC ;Add that off set to where we are
POP AF ;Put Stack back
POP BC ;Restore registers
EX (SP) ,HL ;Put return address on Stack and restore HL
JR #1 ;Jump to the subroutine
ENDM ;End of the macro

This is the main program. It loads at x'30001. It decides
if it needs to add or remove the task in the scheduler tables .
If it adds the task, it moves a copy to the top of memory and
protects it, and adds a task entry to the scheduler.
If it is removing a task, it kills the entry in the scheduler

c

^̂ WWSSHsRk

Software 178

Sample Program F, continued

P

00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00 ff 8 S
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135

tables, and then attempts to recover the memory used by the task

BEGIN: LD
LD
RST
JR

C,0
A, @CKTSK
28H
NZ,KILLIT

;First, we will test slot 0
;to see if anyone is using it
;Call the @CKTSK svc
;There is a task using slot 0, kill it

At this point, we want to add a task to high memory.
First we find the value for HIGH$ and put a copy of the
task there. Then we protect the task by moving HIGH$ below
the new task.

LD
LD
LD
RST
LD

LD
LD
LD

LDDR

LD
LD
LD
RST

HL,0
B,H
A,@HIGH$
28H
(ENDADD),HL

;First, get the value of HIGH$
;Read HIGH$

;Call the @HIGH$ svc
;Save this value äs the last address
;that the task will be stored in once it
;is moved to high memory

DE,HL ;Put that value here
HL,MODEND-1 ;Point at the end of the module
BC,MODEND-MODULE;Move the module from where it is

;right now to a position below HIGH$
;Do the copy

HL, DE
B,0
A, @HIGH$
28H

;Now protect the module using HIGH$
;Update HIGH$

;Call the @HIGH$ svc

Now we need to load the TCE entry in the module with the address
of the first instruction to be executed.

LD IX,HL ;IX now points at memory header
LD BC,ENTRY-MODULE+1 ;Get the offset into the module

;of the first instruction
ADD HL,BC ;HL now contains the actual starting address
LD (IX+(1+MODTCB-MODULE)),L ;Store LSB of the address
LD (IX+l+d+MODTCB-MODULE)) ,H ;Store MSB of the address

Now the task is ready to run.
scheduler table.

We now add the entry to the task

LD

PUSH
POP
ADD
LD
LD
LD
RST

The main

LD
LD
RST

LD
RST

BC,MODTCB-MODULE+1 ;Get offset into the

IX
HL
HL,BC
DE, HL
C,0
A,@ADTSK
28H

program has

HL,ADDED
A,@DSPLY
28H

A,@EXIT
28H

; module of the TCB word
;Get a copy of the base address
;Put base address here
;Now HL points at TCB address
;Put that value in DE
;Add this entry to task slot 0
;Add this task, to be run every
;Call the @ADTSK svc

now done its work and can exit.

; Point at a message saying what
;and print it
;Call the @DSPLY svc

;Now exit
;Call the @EXIT svc

266.67 msec

was done

This SVC does not return.

This part of the code removes the task from the scheduler
tables and then attempts to recover the memory that was used

Software 179

Sample Program F, continued

by the task in high memory. If another high memory module
was added AFTER this task was added, then the memory that
was used by this task cannot be recovered.

KILLIT: LD
LD
RST

C,J3
A,@RMTSK
28H

;We want to remove the task in slot 0

;Call the §RMTSK svc

At this point, the task is no longer called by the Operating
system. Now we want to determine if we can
reclaim the memory it was using.

^̂ X̂

LD
LD
RST
JR

LD
LD
LD

LD
RST
INC
PUSH
POP
XOR
SBC
JR

DE,MODNAM
A,@GTMOD
28H
NZ,CAMT

IX,HL
B,0
HL,0

A,@HIGH$
28H
HL
IX
DE
A
HL, DE
NZ,CANT

;Point at the name of the module
;Look for a module with that name
;Call the @GTMOD svc
;If NZ is set, then we killed some other
;task that was using slot 0. Oops.
r In that case, just stop and don't do any
;more damage.
rSet IX to point to the module.
;Read the current value of HIGH$
?to see if this is the first program in
;high memory
?If it is, then we can recover the space
;Call the @HIGH$ svc
;Move HIGH$ up by one byte
;Take the address of our module
rand störe it here
rCompare these
rAre they the same?
rNo, the high memory module can't be removed

At this point, we know it is ok to reclaim the memory used by the
high memory task.

LD

LD
LD
RST

LD
LD
RST

LD
RST

HL,(IX+2)

B,J2f
A,@HIGH$
28H

HL, OK
A,@DSPLY
28H

A,@EXIT
28H

;Read the end of module value out of the
;header Information
;Update the HIGH$ value

;Call the @HIGH$ svc

;Point to a message saying all is well
;and print it
;Call the @DSPLY svc

;Exit the main program
;Call the @EXIT svc

CANT

Here we will display a message saying we removed the task from
the scheduler table, but we cannot reclaim the memory that was
used.

LD
LD
RST

LD
RST

HL,RECLM
A,@DSPLY
28H

A,@EXIT
28H

;Point to the message
;and display it
;Call the @DSPLY svc

;Now exit
;Call the @EXIT svc

; Messages

ADDED: DEFM 'Task placed in high memory and scheduled.1

DEFB 0DH
OK: DEFM 'Task removed from scheduler table and memory reclaimed.1

DEFB J3DH
RECLM: DEFM 'Task removed from scheduler table, but memory could not '

Software 180

Sample Program F, continued

00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00211
0021B
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262

DEFM 'be recovered.
DEFB 0DH

The Task begins at this point. This part of the program loads
in low memory but is relocated to a point just below HIGH$.

This is the Memory Header Block. This block of data allows
the System to locate this module in memory by name,
using the @GTMOD svc.

MODULE: JR
ENDADD: DEFW

DEFB
MODNAM: DEFM

MODTCB: DEFW

DEFW

ENTRY
0

MODTCB-MODNAM
•UPTIME'

;Jump (relative) to the starting address
?The highest address in the program.
;This value is patched in before the program
;is relocated. This will be used
;later in recovering the memory used by
?this task.
fNumber of bytes in the name field below.
?This is the name of the module and is
rused to identify the module.
;Actual address to Start execution. This
;value is patched in after the program is
: relocated.
;Spare System pointer - RESERVED

This area contains data used by the task. It is addressed using
the IX register which points to the task when it is executed.

COUNTERrDEFW
DATBUF: DEFS

;Count of how many times we have run
;The date is stored here

This is the actual task.
On entry to the task, IX points at the Task Control Block (TCB),
which in this program is the label 'MODTCB1. All data is
referenced by indexing from that address.

ENTRY: PUSH IY ;Save this register. It is not saved by
;the Task Scheduler, and we use it.
;Registers AF, BC, DE, and HL are saved

Now we will read the current date.

;Get a copy of the index pointer
BC,DATBUF-MODTCB;Get the offset needed to access the date

;Now we have a pointer to the date

;Save the pointer to the start of the task
;Save a copy of that pointer
;Ask the system what the date is
;Call the @DATE svc

;Terminate the date string

;Put pointer to the date here
;We will use this pointer later on
;Put the Cursor on the top line,
;specified in register HL
;at the 41st position on the screen
;Write the message at the position
;Save the registers we damage
;Save it
;Save it
;Get our current address
;Call the @WHERE svc
;Get the lengths of the instructions after
;the SVC. This will allow the subroutine
;to return to the correct address.

LD
LD
ADD

PUSH
PUSH
LD
RST

LD

POP
PUSH
LD

CALLR
PUSH
PUSH
PUSH
LD
RST
LD

HL, IX
BC,DATBUF-MODT
HL,BC

IX
HL
A,@DATE
28H

(HL) ,0

DE
DE
HL,0028H

WRITE
HL
BC
AF
A,@WHERE
28H

BC, 3+1+1+1+1+2

Software 181

Sample Program F, continued

ADD
POP
POP
EX
JR

HL,BC
AF
BC
(SP),HL
WRITE

;Add that offset to where we are
;Put Stack back
;Restore registers
;Put return address on Stack and restore HL
;Jump to the subroutine
;Note that the above was actually a macro
;which performs a relative call.

This part of the task displays a count of the number of times
the task has been executed.

POP
POP

PUSH
LD

LD
ADD
LD
LD
LD
INC
LD
LD

LD
RS T

XOR
LD

POP
LD

CALLR
PUSH
PUSH
PUSH
LD
RST
LD

ADD
POP
POP
EX
JR

DE ;Get the pointer to DATBUF back
IX ;Get the pointer to the beginning of

;this task
DE ;Save the pointer to DATBUF again
BC,COUNTER-MODTCB ;Get the offset to our data

;area
HL,IX ;Put a copy of the base address in HL
HL,BC ;Add offset. Now HL points to COUNTER:
IY,HL ;Put the pointer to COUNTER in IY
Lf(IY) ;Get LSB of the counter
H,(IY+1) ;Get MSB of the counter
HL ;Increment the number of times we have run
(IY),L ;Store the LSB of the counter
(IY+1),H ;Store the MSB of the counter

A,@HEXDEC ;Convert the count to decimal
28H ;Call the ÖHEXDEC svc

A ;Get a zero
(DE),A ;Terminate the count string

DE ;Put pointer to date here
HL,J8036H ;Put the Cursor on the top line,

;specified in register HL
;at the 55th position on the screen
;Write the message at the position
;Save the registers we damage
;Save it
;Save it
;Get our current address
;Call the @WHERE svc
;Get the lengths of the instructions after
;the SVC. This will allow the subroutine
;to return to the correct address.
;Add that offset to where we are
;Put Stack back
;Restore registers
;Put return address on stack and restore HL
;Jump to the subroutine
;Note that the above was actually a macro
;which performs a relative call.

WRITE
HL
BC
AF
A,@WHERE
28H
BC,3+1+1+1+1+2

HL,BC
AF
BC
(SP),HL
WRITE

Now we restore the IY register and return to the task scheduler.

POP
RET

IY ;Restore IY value
;Return to the task scheduler

WRITE:

TSKLP

This routine places characters on the display using the @VDCTL
svc instead of @DSP or @DSPLY. This allows the cursor to
remain at its current position when we write to the screen.
This routine must be called using the relocatable call macro
CALLR.

LD

LD

B,2

A, (DE)

;Put Character on the display

;Get a Character to display

Software 182

Sample Program F, continued

9

00313 OR A
00314
00315 RET Z
00316 PUSH HL
00317 PUSH DE
00318 PUSH BC
00319 LD C,A
00320 LD A,@VDCTL
00321 RST 28H
00322 POP BC
00323 POP DE
00324 POP HL
00325 INC L
00326 INC DE
00327 JR TSKLP
00328
00329 MODEND: END BEGIN

;Is it time to stop putting this on
;the display?
;Yes, return to the caller
;Save the registers, äs the SVC will
;alter the contents

;Put the Character here
;Put Character on screen at specified position
;Call the @VDCTL svc
;Restore registers

;Advance display position
;Point to next Character to display
;Loop till date is completely displayed

;End of task and main program

Software 183

Sample Program G
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

This program is a sample Extended Command Interpreter. You
may make the ECI äs large or small äs you require. You may
use allof main memory, or you can restrict yourself to the
System Overlay area (x'26001 to x'2FFF').
To pass a command to the normal System Interpreter for
processing, use the @CMNDI svc. TRSDOS executes the command
and reloads the ECI. If you want to have multiple entry
points, Bits 2 - 0 in EFLAG$ are in Register A on entry
(in Bits 6 - 4),or you may read EFLAG$ yourself.
EFLAG$ is totally dedicated to the ECI, and may contain any
non-zero value. If EFLAGS contains a zero, TRSDOS uses its
own Interpreter. Other programs that want to activate an ECI,
should set the EFLAG$ to a non-zero value and execute a @EXIT
svc.

To install an ECI, use the command:
COPY filename SYS13/SYS.LSIDOS:d (C=N)

If you omit the C=N Option, the SYS13 file loses it's "SYS"
Status and you will receive 'Error 07' messages when you try
to use it äs a ECI.

When SYS1 (the normal command interpreter) has completed it's
normal housekeeping and is about to display the "TRSDOS Ready"
prompt, it checks EFLAG$. If EFLAG$ contains a non-zero
value, TRSDOS loads and executes the Extended Command
Interpreter.
To execute this program, type <*><Enter>.

This program checks EFLAG$ to see if it is zero. If so, it
sets it to a non-zero value. This causes this program to be
used instead of the normal interpreter when you execute an
@EXIT or @ABORT SVC. (@CMNDI and @CMNDR invoke the TRSDOS
interpreter.) If EFLAG$ is non-zero, the ECI displays a few
prompts and the names of all visible /CMD files on logical
Drive 0.
The operator may then type the name of a program to execute.

If you press <Break>, this program sets EFLAG$ to 0, executes
an @EXIT SVC and returns to TRSDOS Ready.

By pressing a number, 0 through 7, you can specify the drive
that TRSDOS searches. This program stores this value in
EFLAG$. Each time this program is invoked, it reads the value
from EFLAG$ and uses that drive.

Note that if a drive is not enabled, not formatted, doesn't
exist, or contains no visible /CMD files, this program
redisplays the prompt.

c
PRINT SHORT,NOMAC

PSECT 3000H ;This program Starts at x'3000'

; Declare the equates for the SVCs used.
; This is not mandatory, but it makes the
; follow.
@EXIT: EQU 22
@DSPLY: EQU 10
@FLAGS: EQU 101
8DODIR: EQU 34
@KEYIN: EQU 9
@CMNDI: EQU 24

program easier to

TRSDOS;Exit and return to
;Display a string
;Locate the System flag area
;Get the names of filenames
;Accept a command and allow editing
;Execute a command (using SYS1)

On entry, determine if EFLAG$ is set to zero or not. If it
is set to zero, this program is being started by typing
PROGRAM<Enter> or <*><Enter>. In that case, set EFLAG$ to a
non-zero value so that in future, TRSDOS uses this interpreter
instead of it's own.

Software 184

00069
00070
00071
00072
area
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136

BEGIN:

Sample Program G, continued
If EFLAG$ is non-zero, this initialization has already been
done and can be skipped.

LD

RST

A,@FLAGS

28H

LD A,(IY+4)
OR A
JR NZ,ECIRÜN

LD

LD
LD
JR

A,8

(IY+4),A
HL,PROMPT
ECIGO

;Get the startinq address of the flag

;Call the @FLAGS svc

;Read the EFLAG$ (ECI flag)
;Is it set to zero?
;Run the ECI

;Get a non-zero value. The value
;needs to be a non-zero value that
;does not set Bits 0, l or 2. The
;default drive # is kept in these bits
;Set the EFLAG$ to a non-zero value
;Explain how this works
;Display message

; When the system is about to display
; TRSDOS Ready, it executes this code instead.

ECIRÜN: LD HL,SPROMPT ;Point at the prompt to use
ECIGO: LD A,@DSPLY ;Display the prompt

RST 28H ;Call the @DSPLY svc

; Display the names of all /CMD files

LD A,(IY+4) ;Get the EFLAG$
AND 7 ;Delete all but the drive number field
LD C/A ;Store the drive number for the svc
LD A,@DODIR ;Do a directory display
LD B,2 ;Display visible, non-system files
LD HL,CMDTXT ;that match "CMD" (stored at CMDTXT)
RST 28H ;Call the @DODIR svc

; Prompt for a filename or a function key.

ASK: LD HL,BUFFER ;Point at text buffer
LD B,9 ;Allow up to 8 characters and <Enter>
LD C,0 ;Required by the svc
LD A,@KEYIN ;Input text with edit capability
RST 28H ;Call the @KEYIN svc

JR C,QUIT ;The carry flag is set when the
;operator presses <BREAK>. Zero the
;EFLAG$ and exit to TRSDOS

LD HL,BUFFER ;Point at the start of the buffer
LD A,(HL) ;Get the Character

CP 0DH ;Did they type anything?
JR Z,ASK ;No, just repeat the prompt.

;If you want to redisplay the
;directory, change "ASK" to "ECIRÜN".

SUB '01 ;Convert value to binary
CP 7+1 ;Is the Character a 0 - 7?
JR NC,NAME ;Must be a filename

The operator has typed l or more characters that start with
a number. This program assumes that the operator is defining
a new drive number and stores this value in EFLAG$ for
future use. TRSDOS does not alter this value.
The next time this program is run, EFLAGS contains the
same value and this program knows what drive to scan.

LD
LD

B,A
A, (IY+4)

;Save the drive number
;Get the EFLAG$

Software 185

Sample Program G, continued
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
EFLAG$
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191

00192
00193

00194
00195
00196
00197

00198
00199
00200

QUIT:

NAME:
FDIV,

FOUND:

AND
OR
LD
JR

8
B
(IY+4),A
ECIRUN

;Delete the old drive number
;Insert the new drive number
;Save that value for future use
;Scan the new drive

The operator pressed <Break>. Turn off the ECI and return to
TRSDOS.
XOR A ;Get a zero
LD (IY+4),A ;Set EFLAG$ to zero
LD HL,EPROMPT ;Point at the shutdown message
LD A,@DSPLY ;And acknowledqe the <Break>
RST 28H ;Call the @DSPLY svc
LD A,@EXIT ;Return to TRSDOS Ready
RST 28H ;Call the @EXIT svc

The operator entered what might be a filename or a library
command. Pass it to TRSDOS for processing. If there is an
error, TRSDOS is responsible for determining what the error is
and printing a message.
(HL already points at the start of the buffer.)

LD
CP
JR
INC
JR

A,0DH
(HL)
Z,FOUND
HL
FDIV

;Look for this Character
;In the command
;Found the end of the filename
;Move Character to next byte
;Find the divider (in this case, a 0DH)

Found the end of a filename, and add the drive number from

Note that this program may not work properly if the operator
supplies a drive number äs part of the filename.

LD (HL),':' ;Add a drive number to the filename
INC HL ;Advance the pointer to the next byte
LD A,(IY+4) ;Get the EFLAG$ value
AND 7 ;Delete all but the drive number
ADD A,'01 ;Convert the binary value to ASCII
LD (HL),A ;Add that to the filename
INC HL ;Advance the pointer to the next byte
LD (HL),0DH ;Write a terminator on the end
LD HL,BUFFER ;Point at the text entered
LD A,@CMNDI ;Execute the command, but do not

;return. Since this program is the
command processor at this time,TRSDOS
;returns control to the beginning of
;this module after executing the
;command.

RST 28H ;Call the @CMNDI svc

Messages and text storage

PROMPT: DEFM
DEFB
DEFB
DEFM
DEFB
DEFM

DEFB
DEFM

DEFB

SPROMPT:DEFB
DEFM

DEFM
DEFB

1[Extended Command Interpreter Is Now Operational]'
0AH
0AH
'Press <BREAK> to use the normal Interpreter,
0AH
'type <NumberXENTER> to change the default drive
number,'
0AH
'or type the name of the program to run and press
<ENTER>'
0DH ;Terminate the display

0AH
'[ECI On] <BREAK> to abort, n<ENTER> for new drive or
type:'
1 program<ENTER>'
0DH ;Terminate the message ^̂ RraB̂ ,

Software 186

Sample Program G, continued
00201 EPROMPT:DEFM '[Extended Command Interpreter Is Now Disabled]'
00202 DEFB 0DH
00203
00204 CMDTXT: DEFM 'CMD1

00205 BUFFER: DEFS 11 ;Allow for filename, drivespec and 0DH
00206
00207 END BEGIN ;"BEGINn is the starting address

P

Software 187

leuiiinucii IMIUMIICUIUII un i
Commands and Utilities

TRSDOS commands and Utilities are covered extensively in the Disk System
Owner's Manual. This section presents additional information of a technical
nature on several of the commands and Utilities.

Changing the Step Rate
The step rate is the rate at which the drive head moves from cylinder to cylinder.
You can change the step rate for any drive by using one of the commands
described below.

To set the step rate for a particular drive, use the following command:

SYSTEM (DRIVE = dr/Ve, STEP = number)

drive is any drive enabled in the System, number can be 0, 1, 2, or 3 and rep-
resents one of the following step rates in milliseconds:

0= 6 milliseconds
1=12 milliseconds
2 = 20 milliseconds
3 = 30 milliseconds

Unless it is SYSGENed, the step value you Select remains in effect for the spec-
ified drive only until the System is re-booted or turned off. If you use the
SYSGEN command while the step value is in effect, then this step rate is Written
to the configuration file (CONFIG/SYS) on the disk in the drive specified by the
SYSGEN command.

On a new TRSDOS disk, the step rate is set to 12 milliseconds.

To set the default bootstrap step rate used with the FORMAT Utility, use the fol-
lowing command:

SYSTEM (BSTEP=number)

number is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds,
respectively.

The value you Select for number is stored in the System information sector on
the disk in Drive 0. (On a new TRSDOS disk, the bootstrap step rate is set to 12
milliseconds.)

If you switch Drive 0 disks or change the logical Drive 0 with the SYSTEM
(SYSTEM) command, the default value is taken off the new Drive 0 disk if you
format a disk.

You can change the bootstrap step rate for a particular FORMAT Operation if
you do not want to use the default. Specify the new value for STEP on the
FORMAT command line äs follows:

FORMAT :drive (STEP=number)

drive is the drive to be used for the FORMAT, number is 0,1, 2, or 3, which cor-
respond to 6,12,20, and 30 milliseconds, respectively.

The step rate is important only if you will be using the disk in Drive 0 to Start up
the System. Keep in mind that too Iow a step rate may keep the disk from
booting.

Software 189

Changing the WAIT Value
The WAIT parameter compensates for hardware incompatibility between cer-
tain disk drives. The only time you should use it is when all tracks above a cer-
tain point during a FORMAT Operation are shown äs locked out when the
FORMAT is verified.

The value assigned to WAIT signifies the amount of time between the arrival of
the drive head at the location for a read or write, and the actual Start of the read
or write.

If you want to change the WAIT value, specify the new value on the FORMAT
command line äs follows:

FORMAT :drive (WAIT = number)

number is a value between 5000 and 50000. The exact value depends on the
particular disk drive you are using. We recommend that you use a value around
25000 at first. Adjust this value higher if tracks are still locked out, or Iower until
the bottom limit is determined.

Logging in a Diskette
LOG is a Utility program that logs in the directory track, number of sides, and
density of a diskette. The syntax is:

LOG :drive

drive is any drive currently enabled in the System.

The LOG Utility provides a way to log in diskette Information and Update the
drive's Drive Code Table (DCT). It performs the same log-in function äs the
DEVICE library command, except for a single drive rather than all drives. It also
provides a way to swap the Drive 0 diskette for a double-sided diskette.

The LOG :0 command prompts you to switch the Drive 0 diskette. You must use
this command when switching between double- and single-sided diskettes in
Drive 0. Otherwise, it is not needed.

Example

If you want to switch disks in Drive 0, type:

LOG :0 (ENTER)

The System prompts you with the message:

Exchange disKs and hit <ENTER>

Remove the current disk from Drive 0 and insert the new System disk. When
you press (ENTER), information about the new disk is entered to the System.

Printing Graphics Characters
If your printer is capable of directly reproducing the TRS-80 graphics charac-
ters, you can use the SYSTEM (GRAPHIC) command. Once you have issued
this command, any graphics characters on the screen will be sent to the line
printer during a screen print. (Pressing (ÜTfiDCD causes the contents of the
video display to be printed on the printer.)

Do not use this command unless your printer is capable of directly reproducing
the TRS-80 graphics characters.

c

jj^i^^

Software 190

Changing the Clock Rate
The System normally runs at the fast Clock rate of 4 megahertz.

A slow mode of 2 megahertz is available, and may be necessary for real time-
dependent programs. (This slow rate is the same äs the Model III Clock rate.)

To switch to the slow rate, enter the following command:

SYSTEM (SLOW)

To switch back to the fast rate, enter:

SYSTEM (FAST)

\^jjjr

Software 191

Appendix A/TRSDOS Error Messages
If the Computer displays one of the messages listed in this appendix, an Oper-
ating System error occurred. Any other error message may refer to an applica-
tion program error, and you should check your application program manual for
an explanation.

When an error message is displayed:

• Try the Operation several times.

• Look up Operating System errors below and take any recommended
actions. (See your application program manual for explanations of appli-
cation program errors.)

• Try using other diskettes.

• Reset the Computer and try the Operation again.

• Check all the power connections.

• Check all interconnections.

• Remove all diskettes from drives, turn off the Computer, wait 15 seconds,
and turn it on again.

• If you try all these remedies and still get an error message, contact a
Radio Shack Service Center.

Note: If there is more than one thing wrong, the Computer might wait until you
correct the first error before displaying the second error message.

This list of error messages is alphabetical, with the binary and hexadecimal
error numbers in parentheses. Following it is a quick reference list of the mes-
sages arranged in numerical order.

Attempted to read locked/deleted data record (Error 7, X'07')

In a System that Supports a "deleted record" data address mark, an attempt was
made to read a deleted sector. TRSDOS currently does not use the deleted
sector data address mark. Check for an error in your application program.

Attempted to read System data record (Error 6, X'06')

An attempt was made to read a directory cylinder sector without using the
directory read routines. Directory cylinder sectors are Written with a data
address mark that differs from the data sector's data address mark. Check for
an error in your application program.

Data record not found during read (Error 5, X'05')

The sector number for the read Operation is not on the cylinder being refer-
enced. Either the disk is flawed, you requested an incorrect number, or the cyl-
inder is improperly formatted. Try the Operation again. If it fails, use another
disk. Reformatting the old disk should lock out the flaw.

Data record not found during write (Error 13, X'OD')

The sector number requested for the write Operation cannot be found on the
cylinder being referenced. Either the disk is flawed, you requested an incorrect
number, or the cylinder is improperly formatted. Try the Operation again. If it
fails, use another disk.

Device in use (Error 39, X'27')

A request was made to REMOVE a device (delete it from the Device Control
Block tables) while it was in use. RESET the device in use before removing it.

Software 193

Device not available (Error 8, X'08')

A reference was made for a logical device that cannot be found in the Device
Control Block. Probably, your device specification was wrong or the device
peripheral was not ready. Use the DEVICE command to display all devices
available to the System.

Directory füll — can't extend file (Error 30, X'1 E')

A file has all extent fields of its last directory record in use and must find a spare
directory slot but none is available. (See the "Directory Records" section.) Copy
the disk's files to a newly formatted diskette to reduce file fragmentation. You
may use backup by class or backup reconstruct to reduce fragmentation.

Directory read error (Error 17, X'11')

A disk error occurred during a directory read. The problem may be media, hard-
ware, or program failure. Move the disk to another drive and try the Operation
again.

Directory write error (Error 18, X'12')

A disk error occurred during a directory write to disk. The directory may no
longer be reliable. If the problem recurs, use a different diskette.

Disk space füll (Error 27, X'1B')

While a file was being Written, all available disk space was used. The disk con-
tains only a partial copy of the file. Write the file to a diskette that has more avail-
able space. Then, REMOVE the partial copy to recover disk space.

End of file encountered (Error 28, X'1C')

You tried to read past the end of file pointer. Use the DIR command to check the
size of the file. This error also occurs when you use the @PEOF Supervisor call
to successfully position to the end of a file. Check for an error in your application
program.

Extended error (Error 63)

An error has occurred and the extended error code is in the HL register pair.

File access denied (Error 25, X'19')

You specified a password for a file that is not password protected or you spec-
ified the wrong password for a file that is password protected.

File already open (Error 41, X'29')

You tried to open a file for UPDATE level or higher, and the file already is open
with this access level or higher. This forces a change to READ access protec-
tion. Use the RESET library command to close the file.

File not in directory (Error 24, X'18')

The specified filespec cannot be found in the directory. Check the spelling of
the filespec.

File not open (Error 38, X'26')

You requested an I/O Operation on an unopened file. Open the file before
access.

GAT read error (Error 20, X'14')

A disk error occurred during the reading of the Granule Allocation Table. The
problem may be media, hardware, or program failure. Move the diskette to
another drive and try the Operation again.

GAT write error (Error 21, X'15')

A disk error occurred during the writing of the Granule Allocation Table. The
GAT may no longer be reliable. If the problem recurs, use a different drive or
different diskette.

Software 194

HIT read error (Error 22, X'16')

A disk error occurred during the reading of the Hash Index Table. The problem
may be media, hardware, or program failure. Move the diskette to another drive
and try the Operation again.

HIT write error (Error 23, X'17')

A disk error occurred during the writing of the Hash Index Table. The HIT may
no longer be reliable. If the problem recurs, use a different drive or different
diskette.

Illegal access attempted to protected f ile (Error 37, X'25')

The USER password was given for access to a file, but the requested access
required the OWNER password. (See the ATTRIB library command in your
Disk System Owner's Manual.)

Illegal drive number (Error 32, X'20')

The specified disk drive is not included in your System or is not ready for access
(no diskette, non-TRSDOS diskette, drive door open, and so on). See the
DEVICE command in your Disk System Owner's Manual.)

Illegal file name (Error 19, X'13')

The specified filespec does not meet TRSDOS filespec requirements. See your
Disk System Owner's Manual for proper filespec syntax.

Illegal logical file number (Error 16, X'10')

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB).
This usually indicates that your program has altered the FCB improperly. Check
for an error in your application program.

Load file format error (Error 34, X'22')

An attempt was made to load a file that cannot be loaded by the System loader.
The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03')

During a sector read, the CPU did not accept a byte from the Floppy Disk Con-
troller (FDC) data register in the time allotted. The byte was lost. This may indi-
cate a hardware problem with the drive. Move the diskette to another drive and
try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X'OB')

During a sector write, the CPU did not transfer a byte to the Floppy Disk Con-
troller (FDC) in the time allotted. The byte was lost; it was not transferred to the
disk. This may indicate a hardware problem with the drive. Move the diskette to
another drive and try again. If the error recurs, try another diskette.

LRL open fault (Error 42, X'2A')

The logical record length specified when the file was opened is different than
the LRL used when the file was created. COPY the file ta another file that has
the specified LRL.

No device space available (Error 33, X'2T)

You tried to SET a driver or filter and all of the Device Control Blocks were in
use. Use the DEVICE command to see if any non-system devices can be
removed to provide more space. This error also occurs on a "global" request to
initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X'1 A')

You tried to open a new file and no space was left in the directory. Use a differ-
ent disk or REMOVE some files that you no longer need.

Software 195

No error (Error 0)

The @ERROR Supervisor call was called without any error condition being
detected. A return code of zero indicates no error. Check for an error in your
application program.

Parameter error (Error 44,X'2C')

(Under Version 6.2 only) An error occurred while executing a command line or
Utility because a parameter that does not exist was specified. Check the spell-
ing of the parameter name, value, or abbreviation.

Parity error during header read (Error 1, X'QV)

During a sector I/O request, the System could not read the sector header suc-
cessfully. If this error occurs repeatedly, the problem is probably media or hard-
ware failure. Try the Operation again, using a different drive or diskette.

Parity error during header write (Error 9, X'09')

During a sector write, the System could not write the sector header satisfactor-
ily. If this error occurs repeatedly, the problem is probably media or hardware
failure. Try the Operation again, using a different drive or diskette.

Parity error during read (Error 4, X'04')

An error occurred during a sector read. Its probable cause is media failure or a
dirty or faulty disk drive. Try the Operation again, using a different drive or
diskette.

Parity error during write (Error 12, X'OC')

An error occurred during a sector write Operation. Its probable cause is media
failure or a dirty or faulty disk drive. Try the Operation again, using a different
drive or diskette.

Program not found (Error 31, X'1F')

The file cannot be loaded because it is not in the directory. Either the filespec
was misspelled or the disk that contains the file was not loaded.

Protected System device (Error 40, X'28')

You cannot REMOVE any of the following devices: *KI, *DO, *PR, *JL, *SI, *SO.
If you try, you get this error message.

Record number out of ränge (Error 29, X'1D')

A request to read a record within a random access file (see the @POSN Super-
visor call) provided a record number that was beyond the end of the file. Correct
the record number or try again using another copy of the file.

Seek error during read (Error 2, X'02')

During a read sector disk I/O request, the cylinder that should contain the sec-
tor was not found within the time allotted. (The time is set by the step rate spec-
ified in the Drive Code Table.) Either the cylinder is not formatted or it is no
longer readable, or the step rate is too Iow for the hardware to respond. You can
set an appropriate step rate using the SYSTEM library command. The problem
may also be caused by media or hardware failure. In this case, try the Operation
again, using a different drive or diskette.

Seek error during write (Error 10, X'OA')

During a sector write, the cylinder that should contain the sector was not found
within the time allotted. (The time is set by the step rate specified in the Drive
Code Table.) Either the cylinder is not formatted or it is no longer readable, or
the step rate is too Iow for the hardware to respond. You can set an appropriate
step rate using the SYSTEM library command. The problem may also be
caused by media or hardware failure. In this case, try the Operation again, using
a different drive or diskette.

Software 196

^^^^^

P

— Unknown error code

The @ERROR Supervisor call was called with an error number that is not
defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X'OE')

An error occurred during a write Operation. This probably indicates a hardware
problem. Try a different diskette or drive. If the problem continues, contact a
Radio Shack Service Center.

Write protected disk (Error 15, X'OF)

You tried to write to a drive that has a write-protected diskette or is Software
write-protected. Remove the write-protect tab, if the diskette has one. If it does
not, use the DEVICE command to see if the drive is set äs write protected. If it
is, you can use the SYSTEM library command with the (WP = OFF) parameter
to write enable the drive. If the problem recurs, use a different drive or different
diskette.

Numerical List of Error Messages
Decimal Hex Message

0 X'00' No Error
1 X'01' Parity error during header read
2 X'02' Seek error during read
3 X'03' Lost data during read
4 X'04' Parity error during read
5 X'05' Data record not found during read
6 X'06' Attempted to read System data record
7 X'07' Attempted to read locked/deleted data record
8 X'08' Device not available
9 X'09' Parity error during header write

10 X'0A' Seek error during write
11 X'0B' Lost data during write
12 X'0C' Parity error during write
13 X'0D' Data record not found during write
14 X'0E' Write fault on disk drive
15 X'0F' Write protected disk
16 X'10' Illegal logical file number
17 X'11' Directory read error
18 X'12' Directory write error
19 X'13' Illegal file name
20 X'14' GAT read error
21 X'15' GAT write error
22 X'16' HIT read error
23 X'17' HIT write error
24 X'18' File not in directory
25 X'19' File access denied
26 X'1A' No directory space available
27 X'1B' Disk space füll
28 X'1C' End of file encountered
29 X'1D' Record number out of ränge
30 X'1E' Directory füll—can't extend file
31 X'1F' Program not found
32 X'20' Illegal drive number
33 X'21' No device space available
34 X'22' Load file format error
37 X'25' Illegal access attempted to protected file
38 X'26' File not open
39 X'27' Device in use
40 X'28' Protected System device

Software 197

41 X'29' File already open
42 X'2A' LRL open fault
43 X'2B' SVC parameter error
44 X'2C' Parameter error
63 X'3F' Extended error
— Unknown error code

Software 198

Appendix B/Memory Map

9

OPTIONAL /
64K MEMORY 32K

64K

BANK1
BANK 2

'2400H
I2600H:

3000H

SYSTEM BANK
BANK0

Resident Operating System, System
buffers, overlays, drivers, etc.

Library Overlay zone

Note: 2400H to 2600H is
reserved for possible future
expansion of the resident
Operating System area.

32K

64K
HIGH$

All Software must observe HIGH$.

User Software which does not allow TRSDOS library commands to be executed
during run time may use memory from 2600H to HIGH$.

User Software which allows for library commands during execution must reside
in and use memory only between 3000H and HIGH$.

TRSDOS provides all functions and storage through Supervisor calls. No
address or entry point below 3000H is documented by Radio Shack.

Software 199

€

Appendix C/Character Codes

i
Text, control functions, and graphics are represented in the Computer by codes.
The Character codes ränge from zero through 255.

Codes one through 31 normally represent certain control functions. For exam-
ple, code 13 represents a carriage return or "end of line." These same codes
also represent special characters. To display the special Character that corre-
sponds to a particular code (1-31), precede the code with a code zero.

Codes 32 through 127 represent the text characters — all those letters, num-
bers, and other characters that are commonly used to represent textual
information.

Codes 128 through 191, when Output to the Video display, represent 64 graphics
characters.

Codes 192 through 255, when Output to the video display, represent either
space compression codes or special characters, äs determined by Software.

Software 201

ASCII Character Set
Code ASCII

Dec. Hex. Abbrev. Keyboard
0 00 NUL (ÜTRDGD

1
2
3
4
5
6
7
8

9

10

11

12
13

14
15
16

17

18
19
20
21

22

23
24

25

26

27

28

29

30

01
02
03
04
05
06
07
08

09

0A

0B

0C
0D

0E
0F
10

11

12
13
14
15

16

17
18

19

1A

1B

1C

1D

1E

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT

LF

VT

FF
CR

SO
Sl
OLE

DC1

DC2
DC3
DC4
NAK

SYN

ETB
CAM

EM

SUB

ESC

FS

GS

RS

035D®
(ÜTRDfg)
(ÜTRD©
(HED®
(ÜTRDd)
(ÜTRDfF)
(ÜTRDfg)
©
(ÜTRDffl)
CE
(ÜTfiDd)
©
(ÜTEDGD
©
(CTflDfK)
(ÜTRDfD
CENTER)
(ÜTRDflfi
(HBD®
(ÜTED©
(ÜTRD©

(ÜTRD®

(ÜTRD®
(ÜTRD®
(ÜTRpm
(ÜTRD©

(üffiD®

(ÜTRD®
(SHIFDtD
(ÜTRDffi
(SHIFDtT)
(ÜTRPm
(SHIFT)©
(ÜTRDd)
(SHIFTM
(ÜTRDGD

Video Display
Treat next Character äs dis-
playable; if in the ränge 1-31,
a special Character is dis-
played (see list of special
characters later in this
Appendix).

(CTRD(ENTER)
(ÜTROfTl

Backspace and erase

Move Cursor to Start of next
line

Move Cursor to start of next
line
Turn Cursor on
Turn Cursor off
Enable reverse video and
set high bit routine on*
Set reverse video high bit
routine off*

Swap space compression/
special characters
Swap special/alternate
characters
Set to 40 characters per line
Backspace without erasing

Advance Cursor

Move Cursor down

Move Cursor up

Move Cursor to upper left
corner. Disable reverse
video and set high bit rou-
tine off.* Set to 80 charac-
ters per line.
Erase line and Start over

Erase to end of line

"When the high bit routine is on, characters 128 through 191 are displayed äs
Standard ASCII characters in reverse video.

Software 202

Code
Dec.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

Hex.

1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59

ASCII
Abbrev. Keyboard

VS tSHIFTXCLEAR)
SPA (SPACEBAR)

CD
CD
®
©
©
©
CD
CD
CD
©
©
CD
Q
CD
CD
®
(D
®
®
S)
®
®
(Z)
®
®
CD
CD
©
©
(E)
®
(D
(SHlFDffl
CSHIFDCB)
(SHIFTKO
(SHIFT)®)
(SHlFDfE)
(SHIFTKF)
(SH1FD(E)
(USD®
cänrnci)
(SHIFTIQ)
(MED®
(SHIFPfD
(SRlFnOD
(MH)®
(SHIFTKÜ)
(SHIFTKF)
(SHlFnOK
(SHIFnCR)
(SHlFn(S)
(SHirnm
(SHlFDaJ)
(SHIFD^V)
(SBiFnd)
(SHIFDOT)
(SHIFD(Y)

Video Display

Erase to end of display
(blank)

#
$
%
&

A
B
C
D
E
F
G
H
l
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y

Software 203

Code ASCII
Dec. Hex. Abbrev. Keyboard Video Display

90 5A (SHIFTKD Z
91 5B (CLEÄRlfD [
92 5C (ÜLEÄR)CD \
93 5D (CLEÄRlfT)]
94 5E (CLEÄRICD
95 5F CCLEÄRICENTER) —
96 60 CSHIFD@
97 61 ® a
98 62 ® b
99 63 ÖD c

100 64 ® d
101 65 (E) e
102 66 ® f
103 67 © g
104 68 ® h
105 69 (D i
106 6A (D j
107 6B ® k
108 6C (D l
109 6D ® m
110 6E (D n
111 6F (B) o
112 70 © p
113 71 (SD q
114 72 ® r
115 73 ® s
116 74 (D t
117 75 (H) u
118 76 ® v
119 77 ® w
120 78 ® x
121 79 ® y
122 7A (|) z
123 7B (ÜLEÄffiCSHIFDGD {
124 7C (CLEÄR)(SHIFDm |
125 7D CCLEÄR)(SHIFDrT) }
126 7E CCLEÄRlfSHIFDCD
127 7F DEL CCLEÄR)(SHIFDCENTERl ±

Software 204

Extended (non-ASCII) Character Set
Code

Dec. Hex. _ Keyboard Video Display
128 80 (BREÄK1
129 81 (M)

(CLEÄR)(CTRD(Ä)
130 82 (g)

(CLEÄRXCTRDfg)
131 83 m

(CLEÄR)(CTRD(Ü)
132 84 (CLEÄR)(ÜTRD(D)
133 85 (CLEÄR)(ÜTRD(D
134 86 (CLEÄR)(ÜTRD(F)
135 87 (CLEÄR)(ÜTRD(g)
136 88 (ÜLEÄR)(ÜTRD(ff)
137 89 (ÜLEÄR)(ÜTRD(D -
138 8A (ÜLEÄR)(CTRD(D =ö
139 8B CÜLEÄRXCTRIKIO %
140 8C (CLEÄR)(CTRD(D &
141 8D (CLEÄR)(CTRD(in <
142 8E (CLEÄR)(CTRD(>n Z
143 8F (CLEÄR)(CTRD(ID c
144 90 (ÜLEÄR)(CTRD(P) o
145 91 (SHIFDgD -g

(ÜLEÄR)(ÜTRD(Q) r
146 92 (SHIFTKFa §

(ÜLEÄR)(ÜTRD(R) £5
147 93 (SHlFTldg) ^

(ÜLEÄR)(ÜTRD(S) £
148 94 (CLEÄR)(ÜTRD(D ^
149 95 (ÜLEÄR)(ÜTRD(D) g-
150 96 (ÜLEÄR)(ÜTRD(\n &>
151 97 CÜLEÄR)(ÜTRD(i) g
152 98 (ÜLEÄR)(ÜTRDÖO co
153 99 (ÜLE7TO(ÜTRD(Y)
154 9A (ÜLBffi)(ÜTRD(D
155 9B (ÜLEÄffiCSHiFDg)
156 9C
157 9D
158 9E
159 9F ^^
160 A0 (CLEAR)ßPÄÜF)
161 A1 (ÜLEÄR)(SHIFD(D
162 A2 (CLESR)(SHlFT)g)
163 A3 (ELBffiXSHlFnO)
164 A4 fÜLEÄR)(SHim(41
165 A5
166 A6
167 A7 (ÜLEÄR)(ggFD(7)
168 A8 (ÜLEÄRlfSHIFD®
169 A9 (ÜLE7TO(SHlFD(g)
170 AA (ÜLEÄRXSHIFDrn
171 AB
172 AC _
173 AD (ÜLEÄffiFl
174 AE
175 AF _
176 B0 (SEE)®
177 B1 (ÜLEÄRim
178 B2 03HE)®

Software 205

c mc/> g
af
cr a>'

O

0)
o

ro
o
cn

(D

l?
(D Q)

=K (D

V)

l
(D

l
Q)

See list of special characters in this Appendix. See graphics Character table in •
this Appendix.

w
•

t> O

Code
Dec. Hex. Keyboard Video Display
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
253
254
255

EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FD
FE
FF

(CLEARlCSHIFniK)
(CLEÄR)(SHIFD(p
(ÜLEÄR)(SHIFT)(§)
(CLEÄR)(SHlFn(D
(CÜEÄRXSHIFD®
(CLEÄRlfSHIFTXP)

(CLEÄRKSHiFnO)
(CLEÄR)(SHIFD(R)
(CLEÄR1(SHIFT)(D

(CLEÄRKSHIFTXD
(CLEÄR)(SHIFT)(Ü)
(CLEÄR)(SHIFD(V)
(CLEÄRlfSHlFDg)
(CLEÄRl̂ HIFD®

(CLEÄR)(SHIFDCZ)

c
0)
Q.
Q.

(O

l
(0

JC.
ü
10
'ü
(D
Q.
(0

<D
0)
03

Software 207

Graphics Characters (Codes 128-191)

Software 208

Special Characters (0-31, 192-255)

£
^ ^

o
0 1 2 3 4 5 6 7

J0fün s
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

ftp
24 25 26 27 28 29 30 31

192 193 194 195 196 197 198 199

200 201 202 203 204 205 206 207

Software 209

U K. X M- v i O TT
208 209 210 211 212 213 214 215

"T T Cü
216 217 218 219 220 221 222 223

OJ--:
224 225 226 227 228 229 230 231

232 233 234 235 236 237 238 239

K.
240 241 242 243 244 245 246 247

248 249 250 251 252 253 254 255

Software 210

Appendix D/Keyboard Code Map
The keyboard code map shows the code that TRSDOS returns for each key, in
each of the modes: control, shift, unshift, clear and control, clear and shift, clear
and unshift.

For example, pressing (SHIFT), and (D at the same time returns the code

A program executing under TRSDOS — for example, BASIC — may translate
some of these codes into other values. Consult the program's documentation
for details.

Key Handling
The (BREAK) key (X'801) is handled in different ways, depending on the settings
of three System functions. The table below shows what happens for each com-
bination of settings.

Break Type-
Vector Ahead

Set Enabled

Break
Enabled

N If characters are in the type-ahead buffer,
then the buffer is emptied.*

If the type-ahead buffer is empty, then a
BREAK Character (X'801) is placed in the
buffer.*

N N A BREAK Character (X'801) i s placed in the
buffer.

Y Y The type-ahead buffer is emptied of its con-
tents (if any), and control is transferred to the
address in the BREAK vector (see ©BREAK
SVC).*

Y N Control is transferred to the address in the
BREAK vector (see @BREAK SVC).

N No action is taken and characters in the type-
ahead buffer are not affected.

*Because the (BREAK) key is checked for more frequently than other keys on the
keyboard, it is possible for (BREAK) to be pressed after another key on the key-
board and yet be detected first.

Y means that the function is on or enabled
N means that the function is off or disabled
X means that the state of the function has no effect

Break is enabled with the SYSTEM (BREAK = ON) command (this is the
default condition).

The break vector is set using the @BREAK SVC (normally off).
Type-ahead is enabled using the SYSTEM (TYPE = ON) command (this is the

default condition).

Software 211

O +~ Ooo t: oo
caccx.

0 0 O
00 00 00

O Q Q
CM CO CM

II 1

O Q Q
< m <

n < <

CD < 00

co *" co

CD cn m
CO CM CO

— Oi

S < S

CO C^ CO

— 00

m < CQ
r». iv r»
co CM co

OQ < 00

(O 10 CD
CO CM CO

S < m

S in jn
CM m

ö? in

co < m
•» t 't
CO CM CO

00 < CO

co co co
CO CM CO

*00

s < s
CM CM CM
CO CM CO

: CM

m < m

n CM m

_. t—

D < 00

g cn cn

t

cn cn cn
oo cn co

00 00 00
0 t- 0

4-
00 00 09
oo cn oo

g M

f

©1

O O
S LU U

O O O
«- LO r«

Q_

o so
cn u. Q

U. LL LL
O f CD

o
U. LL LL
00 LU O

4- CD

_

cn cn cn
00 UJ U

in in in
*~ in iv

D
in in LO
cn LL Q

cn o cn

>-

cn cn cn
cn u- Q

•<* t »*
r- LO r»

H

*t f *t
01 LL Q

CM CM CM
*~ m r»

CC
CM CM CM
cn u. Q

g s &

LU

{g SS
f*» |v IV
*~ in r«

S

«n ES
v- i— i—
•" in r»

0

cn LL Q

CO DO 00
« f 0

<<_
CQ CQ 00B cn co

u_

0-JLU<CC

Q Q O
O T- O

cc
LU
h-

LU

Q u. u.
oo iv in

UJ CO 00
t- CM CO

,

f— iv in
ü u u
O ^ CD

00 LU U

m m OQo •* co

^

00 UJ U

O ^- CO

00 "J ü

s $s

00 UJ U

IV IV |V

O ^ CD

ü

00 UJ O

i $$
LU

00 UJ U

S 5 S

00 LU O

CO CO CO
«- in rv

CO

cn u. O

5 «t co

<

00 LU O

3 <S

00 O) 00

1-
LL.

T
co

u fc£

CJ U ü»- iv in
O UJ LU
«- CO CM

Q g g

00 U U
«- CO CM

co co m

S Q o
O ^ CD

0 Q O

UJ UJ UJo ^ co

UJ UJ UJ

CM CM CM
O ^ CD

CM CM CM

CD CD CD«- in iv

CD CD <O

co co co

o
co co co

w S "

09 00 09

"" in iv

LL U

LL

CO

0 0 ®
0 CM CM

Ü i_ QT _j

0

r
c
a
Ea
0

a
^

T

C
.̂

v.
9
a

T
a
i
<

U

C

*-

(
a

%
•̂
T
a
c

_^

a
JT
«*
o

a
c

a
h

co co co
oo cn oo

00
LL.

CO CO CO
oo cn co

oo cn oo

CM
LL

«M CM CM
oo cn oo

oo cn co

LL

09 cn oo

G)

00

r-

CO

in

<*

00

CM

«-

r—
Z
LU

•

O-

CD co O

|il
o S c

"° 7,o P
O CD

cE

^2^^v

ü O O

co
co
(D

£
CD

O
-o
C
CD

h-
LL

E
co
O)
c

co
CD
tt

<V

4_i
CO
c
3

. — .
CD
C

"cä
CO
a.

0

CD

E
'•M

?<—

0
i_
o
c
o
0)
-o
0
E

co
Q_

O

-C
•M

CD

^
C
co
_J
o
CC
\-
o
CJ
O5
c
co
CD

aZ

*^
c
a.
c
CD
CD

O
co
CD
CO
Oü
co

CD
O
CD

E
CD

E
CD

+•*
CO

^
LU
CC
CO
-^j
C
(0

h-
u_
E
co
O5
c

CD

öl

•M
CO
va
CD

•£
co
O
CD
CD

CD

CD

.E
CD

E
co
co
CD

*->

.1

-o

O
+->
c
o
ü

M—

±; ic
**- co

&B
• • •

• • •

"5
•*-"
c
o
o
"U
c
CD
l_
CO
O)

£
^ ̂

ii
TJ -a
c c
CD CO
l_ l-
CO CD
0} CD

C
CO
^

I-
LL

E
co

cc
1-

O)

a!

5J
o

c
CD
CO

CD
l»

CD
C
CD

.1

i
CD

+->
CO

@

^

ü

X
1

*« ̂
~ c

IN

LL -C
o-t:
LU §

J£
•*•;

CC co

LU CD

.E^
'co 2co C
CD CD

fei

CD l— *

St
^ X

c~
CD c

ii
1 i
co >.
O CD

JO -^

^LL

•̂ E
CD CO

)

CD

1-
LL

E
co

Software 212

Appendix E/Programmable SVCs
(Under Version 6.2 only)

SVC numbers 124 through 127 are reserved for programmer installable SVCs.
To install an SVC the programmer must write the routine to execute when the
SVC is called.

The routine should be Written äs high memory module if it is to be available at
all times. If you execute a SYSGEN command when a Programmable SVC is
defined, the address of the routine is saved in the SYSGEN file and restored
each time the System is configured. If the routine is a high memory module, the
routine is saved and restored äs well. This makes the SVC always available.
For more information on high memory modules, see Memory Header and Sam-
ple Program F.

To install an SVC, the program must access the SVC table. The SVC table con-
tains 128 two-byte positions, a two-byte position for each usable SVC. Each po-
sition in the table contains the address of the routine to execute when the SVC
is called.

To access the SVC table, execute the @FLAGS SVC (SVC 101). IY + 26 con-
tains the MSB of the SVC table Start address. The LSB of the SVC table ad-
dress is always 0 because the SVC table always begins on a page boundary.

Store the address of the routine to be executed at the SVC number times 2 byte
in the table. For example, if you are installing SVC 126, störe the address of the
routine at byte 252 in the table. Addresses are stored in LSB-MSB format.

When the SVC is executed, control is transferred to the address in the table. On
entry to your SVC, Register A contains the same value äs Register C. All other
registers retain the values they had when the RST 28 SVC instruction was
executed.

To exit the SVC, execute a RET instruction. The program should save and re-
store any registers used by the SVC.

Initially, SVCs 124 through 127 display an error message when they are exe-
cuted. When installing an SVC you should save the original address at that lo-
cation in the table and restore it when you remove the SVC.

These program lines insert a new SVC into the System SVC table, save the pre-
vious value of the table, and reinsert that value before execution ends. You
could check the existing value to see if the address is above X'2600'. If it is, the
SVC is already assigned and should not be used at this time.

This code inserts SVC 126, called MYSVC:

LD A,@FLAGS ;Locate Start of SVC table
RST 28H ;Execute (aFLAGS SVC
LD H,(IY + 26) ;Get MSB of address
LD L, 126*2 ;Want to use SVC 126
LD (OSVC126A),HL ;Save address of SVC entry
LD E,(HL) ;Get current SVC address
INC HL
LD D,(HL)
LD (OSVC126V),DE ;Save the old value
DEC HL
LD DE,MYSVC ;Get address of routine for

;SVC126
LD (HL),E ;lnsert new SVC address into

;table
INC HL

Software 213

LD (HL),D

. Code that uses MYSVC (SVC 126)

This code removes SVC 126:

LD HL,(OSVC126A) ;Get address of SVC entry
LD DE,(OSVC126V) ;Get original value
LD (HL),E ;lnsert original SVC address
INC HL
LD (HL),D

Software 214

Appendix F/Using SYS13/SYS
(Under Version 6.2 only)

With TRSDOS Version 6.2, you can create an Extended Command Inter-
preter (ECI) or an Immediate Execution Program (IEP). TRSDOS can störe
either an ECI or IEP in the SYS13 file. Both programs cannot be present at
the same time.

At the TRSDOS Ready prompt when you type QD (ENTER). TRSDOS exe-
cutes the program stored in SYS13/SYS. Because TRSDOS recognizes the
program äs a System file, TRSDOS includes the file when creating backups
and loads the program faster.

If you want to write additional commands for TRSDOS, you can write an In-
terpreter to execute these commands. Your ECI can also execute TRSDOS
commands by using the @CMNDI SVC to pass a command to the
TRSDOS Interpreter.

If EFLAG$ contains a non-zero value, TRSDOS executes the program in
SYS13/SYS. If EFLAG$ contains a zero, TRSDOS uses its own command
Interpreter.

Sample Program G is an example of an ECI. It is important to note that your ECI
must be executable by pressing © (ENTER) at the TRSDOS Ready prompt.

An ECI can use all of memory or you can restrict it to use the System Overlay
area (X'26001 to X'2FFF').

To implement an IEP or ECI, use the following syntax:

COPY filespec SYS13/SYS.LSIDOS:c/r/Ve (C = N) (ENTER)

filespec can be any executable (/CMD) program file. drive specifies the desti-
nation drive. The destination drive must contain an original SYS13/SYS file.

Example

COPY SCRIPSIT/CMD:1 SYS13/SYS.LDI:0 (C = N)

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the
TRSDOS Ready prompt, when you press GD (ENTER). TRSDOS executes
SCRIPSIT.

Software 215

Index
Subject Page Subject Page

@ABORT 48
Access

device 9-10
drive 11-21
file 4

@ADTSK 49
Alien disk Controller 12
Allocation

dynamic 3
Information 12, 25
methods of 3
pre- 3
unit of 2

ASCII codes 202-04
Background tasks, invoking 33-34
@BANK 37-39
Bank switching 36-39
@BKSP 52
BOOT/SYS 5
BREAK

detection 29-32, 53
key handling 211

©BREAK 53
Byte I/O 40-42
Characters

ASCII 202-04
codes 201 -10
graphics 205-06, 208
special 206-07, 209-10

@CHNIO 54
@CKDRV 55
@CKBRKC 55
@CKEOF 56
@CKTSK 57
Clock rate, changing 192
©CLOSE 60
@CLS 61
@CMNDI 63
@CMNDR 64
Codes

ASCII 202-04
Character 201 -10
error 197
graphics 205-06, 208
keyboard 211-12
return 28
special Character 206-07, 209-10

Converting to TRSDOS Version 6 27-28
CREATEdfiles 15
@CTL 40-42, 65-66

interfacing to device drivers 42-44
Cylinder

highest numbered 12
number of 18
Position, current 12
starting 25

@DATE 67
@DCINIT 68
@DCRES 69
@DCSTAT 70
DEBUG 6
@DEBUG 71
@DECHEX 72
Density, double and single 1, 11, 18
Device

access 9-10
handling 27
NIL 9

Device Control Block (DCB) 9
Device driver 7,8,13

address 9
COM 43-44
@CTL interfacing to 42-44
keyboard 43
Printer 43
templates 40-42
video 43

Devspec 9
Directory

location on disk 2, 12
primary and extended entries 14

16,20
record, locating a 20
records (DIREC) 13-16
sectors, number of 14

Directory Entry Code (DEC) 18-19
20, 24

@DIRRD 73
DIR/SYS 5
@DIRWR 74
Disk, diskette

Controller 12
double-sided 11-12, 17, 18
files 13-14
floppy 1
formatting 17, 18
hard 2
I/O table 13
minimum configuration 7-8
name 18

Software 217

Index
Subject Page Subject Page

organization 1-2
single-sided 11-12, 17, 18
space, available 2

@DIV8 75
@DIV16 76
@DODIR 77-78
Drive

access 11 -22
address 12
floppy 1, 11
hard 2, 11
size 11

Drive Code Table DCT 11-13
Driver — see Device driver
@DSP 79
@DSPLY 80
End of File (EOF) 15
Ending Record Number (ERN) 16, 25
ENTER detection 29-32
Error

codes and messages 193-197
dictionary 6

©ERROR 81
@EXIT 82
Extended Command Interpreter 84, 215
@FEXT 83
File

access 4
descriptions, TRSDOS 5-8
modification 15

File Control Block (FCB) 23
Files

CREATEd 15
device driver 7
filter 7
System (/SYS) 5-6, 7-8, 19
Utility 7

Filter templates 40-42
Filters 7, 8, 40-42

example of 42
FLAGS 28, 84-86
@FNAME 87
@FSPEC 89
@GET 40-42, 90
Gran, granule

allocation information 25
definition 2, 17
per track 1-2, 12

Granule Allocation Table (GAT)
location on disk 2

Contents of 16-18
Graphics

characters, printing 190
codes 205-06, 208

@GTDCB 91
@GTDCT 92
@GTMOD 93
Guidelines, programming 27-44
Hash code 15, 18
Hash Index Table (HIT)

location on disk 2
explanation of 18-19

@HDFMT 94
@HEXDEC 95
@HEX8 96
@HEX16 97
@HIGH$ 98
@ICNFG, interfacing to 32-33
Immediate Execution Program 215
@INIT 99
Initialization configuration

vector 32-33
Interrupt tasks 34-36
@IPL 100
Job Control Language (JCL) 6, 28
@KBD 101
@KEY 102
Keyboard codes 211 -12
@KEYIN 103
KFLAG$ 29
@KITSK, interfacing to 33-34
@KLTSK 104
Library commands 28

technical information on 189-91
@LOAD 105
@LOC 106
@LOF 107
LOG Utility 190
@LOGER 108
Logical Record Length (LRL) 15, 24
@LOGOT 109
Memory banks — see RAM banks
Memory header 10, 27
Memory map 199
Minimum configuration disk 7
Modification date 15
@MSG 110
@MUL8 111
@MUL16 112
Next Record Number (NRN) 24

Software 218

Index
Subject

NIL device
@OPEN
Overlays, System
@PARAM
Password

for TRSDOS files
protection levels

©PAUSE
PAUSE detection
@PEOF
@POSN
©PRINT
Printing Graphics Characters
Programming Guidelines ...
Protection Levels
@PRT
@PUT
RAM Banks

switching
use of

@RAMDIR
@RDHDR
@RDSEC
@RDSSC
@RDTRK
@READ
Record

length
logical and physical ...
numbers

Page Subject Page

9
. . .113
5-6, 19
114-15

8
. . . . 14, 24

116
. . . . 29-32

117
118
119
190

. . . . 27-44
14, 24, 27

120
40-42, 121

36-39
50-51
.. 122
.. 123
.. 124
.. 125
.. 126
. . 127

processmg
spanning

@REMOV
@RENAM
Restart Vectors (RSTs)
Return Code (RC)
@REW
@RMTSK
@RPTSK
@RREAD
RS-232

initializing
COM driver for . . .

@RSLCT
@RSTOR
@RUN
@RWRIT
Sample Programs

A
B

3-4, 15, 24
3-4

4
4

3-4
128
129
29
28

130
131
132
133

. . . . 32

. 43-44

... 134

... 135

. . .136

. . . 137
160-83
... 161
... 163

C 168
D 175
E 177
F 178
G 187

Sectors
per cylinder 14, 19
per granule 1-2, 12

@SEEK 138
@SEEKSC 139
@SKIP 140
@SLCT 141
@SOUND 142
Special Character Codes 206-07, 209-10
Stack handling 28
Step rate 11

changing 189
@STEPI 143
Supervisor calls (SVCs)

calling procedure 45
lists of 46-47, 155-57, 158-59
program entry and

return conditions 45
sample programs using 160-183
using 45-183

SYS files 5-6, 7-8, 19
System

files 5-6, 7-8, 19
overlays 5-6, 19

Task
Interrupt level, adding 49
slots 34, 35, 49

Task Control Block (TCB) 34, 35, 49
Vector Table (TCBVT) 34, 35

Task processor, interfacing to 34-36
@TIME 144
TRSDOS

converting to Version 6 27-28
error messages and codes 193-97
file descriptions 5-8
technical information on

commands and Utilities 189-91
TYPE code 23
@VDCTL 145-46
@VER 147
Version, Operating system 17
Visibility 14
@VRSEC 148
WAIT value, changing 190
@WEOF 149

Software 219

Index
Subject Page Subject Page

@WHERE 150
@WRITE 151
Write Protect 9

@WRSEC
@WRSSC
@WRTRK

152
153
154

ĵ EeslSBSk

Software 220

i
Subject

Index
Page Subject Page

Software 221

o

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U. K.

91 KURRAJONG AVENUE PARC INDUSTRIE!. BILSTON ROAD WEDNESBURY

MOUNT DRUITT, N.S.W. 2770 5140 NANINNE (NAMUR) WEST MIDLANDS WS10 7JN

S-L/3-85 Printed in U.S.A.

