1/

2/

3/

4/

5/

6/

1/

Part 2 / Software

Disk OrganiZation it it i e ettt et e e e 1
Single Density Floppy Diskette ittt ittt st s eensnnsananen 1

Double Density Floppy Diskette i i ittt it i ettt tn et eraaeen 1

B B MegHard Disk. i i e e et e e e e e i e 2

Disk Space Available to the User i ittt reeenneeneneneeanaennstenens 2

Unit of AllOCatioN ittt it ittt it et ternensneannsssenasenanerensenannan 2

[T 1T 3
Methods of File AlloCation ittt it ittt ie it inrenenansnssvansssnassntennas 3

Dynamic AllOCatION. i i it it ittt ettt s st te it e e e e 3

R Y . . 1 (Y T 3

Record Length i ittt ittt ettt ettt ettt aneeenaaasaeans 3

Record Processing Capabilities. i ittt ittt ittt et st et st et esannanes 4

Record NUmMbers.ttt i ittt ittt ittt e taneaensontorioanancassen 4

TRSDOS File DesCriPlions & o v v v v ittt it ittt ittt te s sesseaneneansssessosnsseseensnesnnanessans 5
System Files (/8 S, . . o i i e e ettt e e e e 5

Y PrOgrams L. i i it i it e et e i e e e e, 7

Deavice Driver Programs.ttt i it ettt et et e 7

Filter PrOgrams ittt i ittt et e et s e s sranaenseasareeaonnnseenenns 7

Creating a Minimum Configuration Disk it it i it eeanan 7

DaVICE ACCESS i i it ittt iet et e a e e et ettt e e e .. 9
Device Control Block (DCB)ttt ittt ettt e s eertanenennennnnsnens 9

Memory Header it ittt i ienn et rnaaneseeeneennnenaesosasnanes 10

DIVE ACCBSS. . o v v v v e b e e bt ot e e e e e e e e et e et e, 1
DriveCode Table (DT).ttt ittt ittt ittt mms s ia et snnsesaeaaananas 11

Disk 1O Table i i it it e e e a et e 13

Directory Records. i it ittt it i it et e e e e 13

Granule Allocation Table {GAT)ttt it i it e ittt ettt e e eeee s 16

Hash Index Table (HIT)ttt i i it i it sttt et isseaneaaaanennss 18

File Control i e e e et e i e e e et e e e e e e 23
File Control Block (FCB) it it i it et tiet et e et iaaa e 23

TRSDOS Version 6 Programming GUidelines v i ii i ettt it e tsene i s enenensaeanas 27
Converting 1o TRSD DS Version B, ittt it it sttt it it snsanarenn 27
Programming With Restart Vectors. ittt ittt inereeeeeenssonnanns 29

KFLAGS (BREAK) {PAUSE), and (ENTER) Interfacing.ottt s ittt inernnenns 29

Interfacing to @ICNF G, it ittt it sttt ettt e et e e 32

Interfacing to @KITSK. i i i it s it it i taeeenreseeeenssnnsannnees 33

Interfacing to the Task ProCessOr ittt ittt ittt e te s intineeanennn 34

Interfacing RAM Banks 1 and 2 it it it ittt te s eanneenannns 36

Device Driver and Fllter Templates. it it i ittt ettt et st e e e taensns 40

@CTL Interfacing to Device Driverst ittt it e ettt sne et sasanaannennns 42

8/ Usingthe Supervisor Calls. o ittt ittt ittt it e tae et i e et 45

Calling ProCeaUIe . . . ittt ittt ettt it e vttt e e e e 45
Program Entry and Return Conditions.ottt i ittt e ittt 45
Supervisor Calls. o e e e et it et e et e e e 46
Numerical List of SVCs o i i i it ittt ettt tet s e tae et innsneannsas 49
Alphabetical List of SV Cs, ittt ittt i tit ittt tnennsensansaeanesseseenns 52
SAMIPIE PO amIS. « o . ot i it i i i et e e e et 54
9/ Technical information on TRSDOS Commands and Utilitiesttt ittt vttt e tneeanannn 189
Appendix A/ TRODOS Error Messages. o o vt i v ot tte o it en et s e st ene s s e s sananseeesnena 193
Appendix B/ Memory Map i it i it it ittt e sttt e et e, 199
Appendix C/ Character Codes « vttt sttt it et et e e e e 201
Appendix D/ Keyboard Code Mapttt it ittt ittt ittt i it sttt tesssanssrennnaeeenas 211
Appendix E/ Programmable SV so e e e e e e e e e e e e e 213
Appendix F/ Using S8 137878 o e e 215
T T3 217

1/Disk Organization

TRSDOS Version 6 can be used with 5%" single-sided floppy diskettes and
with hard disk. Floppy disketies can be either single- or double-density. See the
charts below for the number of sectors per track, number of cylinders, and so
on for each type of disk. (Sectors and cylinders are numbered starting with 0.)

Single-Density Floppy Diskette

Bytes Sectors Sectors Granules Tracks Cylinders

per per per per per per Total

Sector Granule Track® Track Cylinder Drive Bytes

256 256

5 1,280

(10) 2 2,560

1 ssmmemmmennn 2,560

40 102,400

256 5 (10) 2 1 40 102,400

(100K)**

Double-Density Floppy Diskette
Bytes Seclors Sectors Granules Tracks Cylinders

per per per per per per Total

. Sector Granule Track™ Track Cylinder Drive Bytes
g 256 256
6 1,636

(18) 3 4,608

1 eemememeneen 4,608

40 184,320

256 6 (18) 3 1 49 184,320

(180K)™

*The number of sectors per track is not included in the calculation because it
is equal to the number of sectors per granule times the number of granules
per track. (5 x2=10 for single density, 6 x 3 =18 for double density, and
16 x 2 = 32 for hard disk.)

**Note that this figure is the total amount of space in the given format. Keep in
. mind that an entire cylinder is used for the directory and at least one granule
is used for the bootstrap code. This leaves 96.25K available for use on a

single-density data disk and 174K on a double-density data disk.

Software 1

5" 5-Meg Hard Disk

Note: Because of continual advancements in hard disk technology, the number
of tracks and the number of tracks per cylinder may change. Therfore, any infor-
mation that comes with your hard disk drive(s) supersedes the information in
the table below.

Bytes Sectors Sectors Granules Tracks Cylinders

per per per per per per Totai
Sector Granule Track® Track Cylinder Drive Bytes
256 256
16 4,096
(32) 2 8,192
4 e - 32,768
153 5,013,504
256 16 (32) 2 4 153 5,013,504
{4,896K)

*The number of sectors per track is not included in the calculation because it is
equal to the number of sectors per granule times the number of granules per
track. (5 x 2 =10 for single density, 6 x3 =18 for double density, and
16 x 2 =32 for hard disk.)

Disk Space Available to the User

Unit of Allocation

One granuie on cylinder @ of each disk is reserved for the system. it contains
information about where the directory is located on that disk. if the disk contains
an operating system, then all of cylinder @ is reserved. This area contains infor-
mation used to load TRSDOS when you press the reset button.

One complete cylinder is reserved for the directory, the granule allocation table
(GAT), and the hash index table (HIT). (On single-sided diskettes, one cylinder
is the same as one track.) The number of this cylinder varies, depending on the
size and type of disk. Also, if any portion of the cylinder normally used for the
directory is flawed, TRSDOS uses another cylinder for the directory. You can
find out where the FORMAT utility has placed the directory by using the
Free :drive command.

On hard disks, an additional cylinder (cylinder 1) is reserved for use in case
your disk drive requires service. This provides an area for the technician to write
on the disk without harming any data. (If you bring your hard disk in for service,
you should try to back up the contents of the disk first, just to be safe.)

The smallest unit of disk space that the system can allocate to a file is a gran-
ule. A granule is made up of a set of sectors that are adjacent to one another
on the disk. The number of sectors in a granule depends on the type and size
of the disk. See the charts on the previous two pages for some typical sizes,

Software 2

2/Disk Files

Methods of File Allocation

Record Length

TRSDOS provides two ways to allocate disk space for files: dynamic allocation
and pre-allocation.

Dynamic Allocation

With dynamic allocation, TRSDOS allocates granules only at the time of write.
For example, ' when a file is first opened for output, no space is allocated. The
first allocation of space is done at the first write. Additional space is added as
required by further writes.

With dynamically allocated files, unused granules are de-aliocated {recovered)
when the file is closed.

Unless you execute the CREATE system command, TRSDOS uses dynamic
allecation.

Pre-Allocation

With pre-allocation, the file is allocated a specified number of granules when it
is created. Pre-allocated files can be created only by the system command
CREATE. (See the Disk Systemm Owner's Manual for more information on
CREATE))

TRSDOS automatically extends a pre-aliocated file as needed. However, it
does not de-allocate unused granules when a pre-allocated file is closed. To
reduce the size of a pre-allocated file, you must copy it to a dynamically allo-
cated file. The COPY (CLONE = N) system command does this automatically.

Files that have been pre-allocated have a ‘C’ by their names in a directory
listing.

TRSDOS transfers data to and from disks one sector at a time. These sectors
are 256-byte blocks, and are also called the system’s “physical” records.

You deal with records that are 256 bytes in length or smaller, depending on
what size record you want to work with. These are known as “logical” records.

You set the size of the legical records in a file when you open the file for the first
time. The size is the number of bytes to be kept in each record. There may be
from 1 to 256 bytes per logical record.

The operating system automatically accumulates your logical records and
stores them in physical records. Since physical records are always 256 bytes in
length, there may be one or more logical records stored in each physical record.
When the records are read back from disk, the systemn automatically returns
one logical record at a time. These actions are known as “blocking” and “de-
blocking,” or “spanning.’

For example, if the logical record length is 200, sectors 1 and 2 ook like this:

Software 3

Since they are completely handled by the operating system, you do not need to
concern yourself with physical records, sectors, granules, tracks, and so on.
This is to your benefit, as the number of sectors per granule varies from disk to
disk. Aiso, physical record lengths may change in future versions of TRSDOS,
but the concept of logical records will not.

Note: All files are fixed-length record files with TRSDOS Version 6.
Record Processing Capabilities

TRSDOS aliows both direct and sequential file access.

Direct access (sometimes called “random access”) lets you process records in
any sequence you specify.

Sequential access allows you to process records in sequence: record n, n+1,
n+2, and so on. With sequential access, you do not specify a record number.

Instead, TRSDOS accesses the record that follows the last record processed,
starting with record Q.

With sequential access files, use the @READ supervisor call to read the next
record, and the @WRITE or @VER supervisor call 1o write the next record.
(When the fite is first opened, processing starts at record 0. You can use
@PEQF to position to the end of file.)

To read or write to a direct access file, use the @POSN supervisor call to posi-
tion to a specified record. Then use @READ, @WRITE, or @VER as desired.
Once @POSN has been used, the End of Fite (EQF) marker will not move,
unless the file is extended by writing past the current EOF position.

Record Numbers

Using direct (random) access, you can access up to 65,536 records. Record
numbers start at @ and go to 65535.

Using a file sequentially, you can access up to 16,777,216 bytes. To calculate
the number of records you can access sequentially, use the formula:

16,777,216 + logical record length = number of sequential
records allowed
Below are some examples.

If the LRL =256, then:
16,777,216 + 256 =65,536 records

If the LRL = 128, then:
16,777,216 = 128=131,072 records

if the LRL= 50, then:
16,777,216 + 50=2335,544 records

lfthe LRL= 1, then:
16,777,216 - 1=16,777,216 records

Software 4

3/TRSDOS File Descriptions

This section describes four types of files found on your TRSDOS master disk-
ette (system files, utilities, driver programs, and filter programs) and explains
their functions. It also describes how 10 construct a minimum system disk for
running applications packages.

System Files (/SYS)

TRSDOS Version 6 would occupy considerable memory space if all of it were
resident in memory at any one time. To minimize the amount of memory
reserved for system use, TRSDOS uses overlays.

Using an overlay-driven system involves some compromise. While a user's
application is in progress, different overlays may need to be loaded to perform
certain activities requested of the system. This could cause the system to run
slightly slower than a system which has more of its file access routines always
resident in memory.

The use of overlays also requires that a SYSTEM disk usually be available in
Drive @ (the system drive). Since the disk containing the operating system and
its utilities leaves little space available to the user, you may want to remove cer-
tain parts of the system software not needed while a particular application is
running. You may in fact discover that your day-to-day operations need only a
minimal TRSDOS configuration. The greater the number of system functions
unnecessary for your application, the more space you can have available for a
“working” system disk. Use the PURGE or REMOVE library command to elim-
inate unneeded system files from the disk.

The following paragraphs describe the functions performed by each system
overlay. (In the display produced by the DIR (SYS) library command, the system
overlays are identified by the file extension /SYS)

Note: Two system files are put on the disk during formatting. They are DIR/SYS
and BOOT/SYS. These files should never be copied from one disk to another
or REMOVEd. TRSDOS automatically updates any information necessary
when performing a backup.

SYS0/SYS

This is not an overlay. It contains the resident part of the operating system
(SYSRES). It is also needed to dynamically allocate file space used when writ-
ing files. Any disk used for booting the system must contain SYS0. It can be
purged from disks not used for booting.

SYS1/5YS

This overlay contains the TRSDOS command interpreter and the routines for
processing the @CMNDI, @CMNDR, @FEXT, @FSPEC, and @PARAM sys-
tem vectors. This overlay must be available on all SYSTEM disks.

SYS2/SYS

This overlay is used for opening or initializing disk files and logical devices. It
also contains routines for processing the @CKDRY, @GTDCB, and @RENAM
system vectors, and routines for hashing file specifications and passwords.
This overlay must be available on all SYSTEM disks.

SYSJ/SYS

This overlay contains all of the system routines needed to close files and logical
devices. It also contains the routines needed to service the @FNAME system
vector. This overlay must not be removed from the disk.

Software 5

SYS4/SYS

This overlay contains the system error dictionary. It is needed to issue such
messages as “File not found,” “Directory read error,’ etc. If you decide to
remove this overlay from your working SYSTEM disk, all system errors witl pro-
duce the error message “SYS ERROR!’ It is recommended that you not remove
this overlay, especially since it occupies only one granule of space.

SYS5/SYS

This is the “ghost” debugger. it is needed if you intend to test out machine lan-
guage application software by using the TRSDOS DEBUG library command. If
your operation will not require this debugging tool, you may purge this overlay.

SYS6/SYS

This overlay contains all of the routines necessary to service the library com-
mands identified as “Library A" by the LIB command. This represents the pri-
mary library functions. Only very limited use can be made of TRSDOS if this
overlay is removed from your working SYSTEM disk.

SYS7/SYS

This overlay contains all of the routines necessary to service the library com-
mands identified as “Library B” by the LIB command. A great deal of use can
be made of TRSDOS even without this overlay. It performs specialized func-
tions that may not be needed in the operation of specific applications. You can
purge this overlay if you decide it is not needed on a working SYSTEM disk.

SYS8/SYS

This overlay contains all of the routines necessary 1o service the library com-
mands identified as “Library C” by the LIB command. A great deal of use can
be made of TRSDOS even without this overlay. It performs specialized func-
tions that may not be needed in the operation of specific applications. You can
purge this overlay if you decide it is not needed on a working SYSTEM disk.

SYS9/SYS

This overlay contains the routines necessary to service the extended DEBUG
commands available after a DEBUG (EXT) is performed. This overlay may be
purged if you will not need the extended DEBUG commands while running your
application. If you remove SYS5/SYS, then you may as weil remove SYS9/SYS,
as it would serve no useful purpose.

SYS16/SYS

This system overlay contains the procedures necessary to service the request
to remove a file. It should remain on your working SYSTEM disks.

SYS11/SYS

This overlay contains all of the procedures necessary to perform the Job Con-
trol Language execution phase. You may remove this overlay from your working
disks if you do not intend to execute any JCL functions. If SYS6/SYS (which
contains the DO command) has been removed, keeping this overlay would

serve no purpose.
SYS12/SYS

This system overlay contains the routines that service the @DODIR,
@GTMOD, and @RAMDIR system vectors. It should remain on your disks.

SYS13/SYS

This overlay is reserved for future systemn use. It contains no code and takes up
no space on the disk. You may remove this overlay if you wish to free up its
directory slot.

Software 6

+ 8YS2 must be on the system disk if a configuration file is to be loaded.

+ SYS11 must be present only if any JCL files will be used.

« All three libraries (SYS files 6, 7, and 8) may be purged if no library com-
mand will be used.

* SYS5 and SYS9 may be purged if the system DEBUG package is not
needed.

« SYS0 may be removed from any disk not used for booting.

« SYS11 (the JCL processor) and SYS6 {containing the DO library com-
mand) must both be on the disk if the DO command is to be used. Also,
if you remove SYS6, you may as well remove SYS11.

+ SYS13 may be removed if you have not implemented an ECI, an IEP file,
or if you do not intend to use them.

The presence of any utility, driver, or filter program is dependent upon your in-
dividual needs. You can save most of the TRSDOS features in a configuration
file using the SYSTEM (SYSGEN) command, so the driver and filter programs
will not be needed in run time applications. If you intend to use the HELP utility,
your disk must contain the DOS/HLP file.

The owner (update) passwords for TRSDOS files are as follows:

File Type Extension Owner Password
System files {/SYS) LSIDOS
Filter files (/FLT) FILYER
Driver files (/DVR) DRIVER
Utility files (/CMD) UTILITY
BASIC BASIC
BASIC overlays (/OV$) BASIC
CONFIG/SYS CCC
Drive Code Table (/DCT) UTILITY

Initializer

Software 8

4/Device Access

Device Control Block (DCB)

The Device Control Block (DCB) is an area of memory that contains informa-
tion used to interface the operating system with various logical devices. These
devices include the keyboard ("KiI), the video display (*DO), a printer (*PR), a
communications line (*CL), and other devices that you may define.

The following information describes each assigned DCB byte.
DCB+9 (TYPE Byte)

Bit 7— If setto “1.’ the Device Control Block is actually a File Control Block
(FCB) with the file open. Since DCBs and FCBs are similar, and
devices may be routed to files, a “device” with this bit set indicates
a routing to a file.

Bit 6 — If set to “1,’ the device defined by the DCB is filtered or is a device
filter.

Bit 5 — If set to “1," the device defined by the DCB is linked.
Bit 4 — I set to “1,’ the device defined by the DCB is routed.

Bit 3— lf setto “1;’ the device defined by the DCB Is a NIL device. Any out-
put directed to the device is discarded. For any input request, the
character returned is a null (ASCII value 0).

Bit 2—If set to *1,’ the device defined by the DCB can handle requests
generated by the @CTL supervisor call. See the section on Super-
visor Calls for more information.

Bit 1 —If set to “1,” the device defined by the DCB can handle output
requests which normally come from the @PUT supervisor cali.

Bit @ — If set to “1)’ the device defined by the DCB can handie requests for
input which normally come from the @GET supervisor call,

DCB+1and DCB+2

Contain the address of the driver routine that supports the hardware assigned
to this DCB. (In the case of a routed or linked device, the vector may point to
another DCB))

DCB + 3 through DCB+5
Reserved for system use.
DCB+6and DCB+7

These locations normally contain the two alphabetic characters of the devspec.
The system uses the devspec as a reference in searching the device control
block tables.

Software 9

Memory Header

Modules that TRSDOS loads into memory (filters, drivers, and other memory
modules such as a SPOOL buffer or the extended DEBUG code) are identified
by a standard front-end header:

BEGIN: JR START iGo to actual code
tbedinning
DEFW END-1 iContaings the highest brte

tof memorvy
fused by the module

DEFB 1@ fiength of name: 1-15
fcharacterss
tbits 4-7 reserved for
isystem use

DEFM ‘NAMESTRING’ jUr to 15 alphanumeric
icharacters: with the first
icharacter A-Z., This should
ibe a uniaue name to
frpositively identify the

imodule.
MODDCB: DEFM $-% SDCB Pointing to this
imodule (if arplicable)
DEFH O iSpare system Pointer .
iRESERVED

Any additional data storade does here
]
START: Start of actual Prodram code

END: EQU s

As explained under the @GTMOD SVC in the “Supervisor Call” section, the
location of a specific header can be found provided all modules that are put into
memory use this header structure. You can locate the data area for a module
by using @GTMOD to find the start of the header and then indexing in to the
data area.

Software 10

@

5/Drive Access

Drive Code Table (DCT)

TRSDOS uses a Drive Code Table (DCT) to interface the operating system with
specific disk driver routines. Note especially the fields that specify the allocation
scheme for a given drive. This data is essential in the allocation and accessi-
bility of file records.

The DCT contains eight 1@-byte positions — one for each logical drive des-
ignated 0-7. TRSDOS supports a standard configuration of two-floppy
drives. You may have up to four fioppy drives. This is the default initializa-
tion when TRSDOS is loaded.

Here is the Drive Code Table layout:
DCT+0

This is the first byte of a 3-byte vector to the disk I/O driver routines. This byte
is normally X‘C3 If the drive is disabled or has not been configured (see the
SYSTEM command in the Disk System Owner's Manual), this byle is a RET
instruction (X'C9').

DCT+1and DCT+2

Contain the entry address of the routines that drive the physical hardware.
DCT+3

Contains a series of flags for drive specifications.

Bit 7 — Set to “1” if the drive is software write protected, “0” ifitis not. (See
the SYSTEM command in the Disk Systern Owner’s Manual.)

Bit 6 — Set to “1” for DDEN (double density), or “0” for SDEN (single
density).
Bit 5— Set to “1” if the drive is an B” drive. Set 10 “0" if it is a 54" drive.

Bit 4— A “1” causes the selection of the disk's second side. The first side
is selected if this bit is 0.’ This bit value matches the side indicator
bit in the sector header written by the Floppy Disk Controlier
{FDC).

Bit 3— A “1” indicates a hard drive (Winchester). A “0” denotes a floppy
drive (54" or 8").

Bit 2— Indicates the time delay between selection of a 54" drive and the
first poll of the status register. A “1” value indicates 0.5 second and
a "0" indicates 1.0 second. See the SYSTEM command in the Disk
System Owner's Manual for more details.

If the drive is a hard drive, this bit indicates either a fixed or remov-
able disk: “1" =fixed, “0” = removable.

Bits 1 and @— Contain the step rate specification for the Floppy Disk Con-
troller. (See the SYSTEM command in the Disk System Owner's
Manual) In the case of a hard drive, this field may indicate the drive
address (9-3).

DCT+4
Contains additional drive specifications.

Bit 7— (Version 6.2 only) If “1”, no @CKDRYV is done when accessing the
drive. If an application opens several files on a drive, this bit can be
set to speed I/0 on that drive after the first successful open is
performed.

Software 11

In versions prior to TRSDOS 6.2, this bit is reserved for future use,
In order to maintain compatibility with future releases of TRSDQOS,
do not use this bit,

Bit 6 — If “1”, the controller is capable of double-density mode.

Bit 5-—"“1" indicates that this is a 2-sided floppy diskette; “0” indicates a
1-sided floppy disk. Do not confuse this bit with Bit 4 of DCT + 3.
This bit shows if the disk is double-sided; Bit 4 of DCT + 3 tells the
controlier what side the current /O is to be on.

If the hard drive bit (DCT + 3, Bit 3) is set, a “1” denotes doubie the
cylinder count stored in DCT + 6. (This implies that a logical cylin-
der is made up of two physical cylinders.)

Bit 4 —If "1, indicates an afien (non-standard) disk controller.

Bits 8-3 — Contain the physical drive address by bit selection (0001, 0010,
0100, and 1000 equal logical Drives 0, 1, 2, and 3, respectively, in
a default system). The system supports a transiation only where no
move than one bit can be set.

If the alien bit (Bit 4) is set, these bits may indicate the starting head
number.

DCT+5

Contains the current cylinder position of the drive. It normally stores a copy of
the Floppy Disk Controlter’s track register contents whenever the FDC is
selected for access to this drive. It can then be used to reload the track register
whenever the FDC is reselected.

If the alien bit (DCT + 4, Bit 4) is set, DCT + 5 may contain the drive select code
for the alien controller.

DCT+6

Contains the highest numbered cylinder on the drive. Since cylinders are num-
bered from zero, a 35-track drive is recorded as X'22) a 40-frack drive as X'27;
and an 80-track drive as X'4F’If the hard drive bit (DCT + 3, Bit 3) is set, the true
cylinder count depends on DCT + 4, Bit 5. If that bit is a “1." DCT + 6 contains
oniy half of the true cylinder count.

DCT+7
Contains allocation information.
Bits 5-7 — Contain the number of heads for a hard drive.

Bits @-4 — Contain the highest numbered sector relative to zero. A 10-
sector-per-track drive would show X'09’ if DCT + 4, Bit 5 indicates
2-sided operation, the sectors per cylinder equals twice this
number.

DCT+8
Contains additional aflocation information.

Bits 5-7— Contain the number of granules per track allocated in the for-
matting process. If DCT + 4, Bit 5 indicates 2-sided operation, the
granules per cylinder equals twice this number. For a hard drive,
this number is the total granules per cylinder.

Bits 8-4 — Contain the number of sectors per granule that was used in the
formatting operation.

DCT+9

Contains the number of the cylinder where the directory is located. For any
directory access, the system first attempts to use this value to read the direc-
tory. If this operation is unsuccessful, the system examines the BOOT granule
{cylinder @) directory address byte.

Software 12

Disk I/O Table

Bytes DCT + 6, DCT + 7, and DCT + 8 must relate without conflicts. That is, the
highest numbered sector (4 1) divided by the number of sectors per granule
(+ 1) must equal the number of granules per track (+1).

TRSDOS interfaces with hardware peripherals by means of software drivers.
The drivers are, in general, coupled to the operating system through data
parameters stored in the system’s many tables. In this way, hardware not cur-
rently supported by TRSDOS can easily be supported by generating driver soft-
ware and updating the system tables.

Disk drive sub-systems (such as controllers for 5V4" drives, 8" drives, and hard
disk drives) have many parameters addressed in the Drive Code Table (DCT).
Besides those operating parameters, controllers also require various com-
mands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to control the
physical devices. TRSDOS has defined command conventions to deal with
most commands availabie on standard Disk Controllers.

The function value (hexadecimal or decimal) you wish to pass to the driver
should go in register B. The available functions are:

Hex Dec Function Operation Performed

X0 0 DCSTAT Test to see if drive is assigned in DCT
xXor 1 SELECT Select a new drive and return status
X2 2 DCINIT Set to cylinder 0, restore, set side 0
X'o3 3 DCRES Reset the Floppy Disk Controller
xXo4 4 RSTOR Issue FDC RESTORE command
X5’ 5 STEPI Issue FDC STEP IN command

X'oe' 6 SEEK Seek a cylinder

x'o7 7 TSTBSY Test to see if requested drive is busy
Xog 8 RDHDR Read sector header information

X'o9' 9 RDSEC Read sector

X0A 10 VRSEC Verify if the sector is readable

x'op 1 RDTRK Issue an FDC track read command
XoC' 12 HDFMT Format the device

XoD 13 WRSEC Write a sector

X'0E’ 14 WRSYS Write a system sector (for example, directory)

XoF 15 WRTRK issue an FDC track write command
Function codes X'10 to X'FF’ are reserved for future use.

Directory Records (DIREC)

The directory contains information needed to access all files on the disk. The
directory records section is limited to a maximum of 32 sectors because of
physical limitations in the Hash Index Table. Two additiona! sectors in the direc-
toty cylinder are used by the system for the Granule Allocation Table and the
Hash index Tabie. The directory is contained on one cylinder. Thus, a 10-sector-
per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

Software 13

tion on the Hash Index Table for the formula to calculate the number of directory
sectors.

A directory record is 32 bytes in length. Each directory sector contains eight
directory records (256/32 = 8). On system disks, the first two directory records
of the first eight directory sectors are reserved for system overlays. The total
number of files possible on a disk equals the number of directory sectors times
eight (since 256/32 = 8). The nurmber available for use is reduced by 16 on sys-
tem disks to account for those record slots reserved for the operating system.
The following table shows the directory record capacity {file capacity) of each
format type. The dash suffix (-1 or -2) on the items in the density column rep-
resents the number of sides formatted (for example, SDEN-1 means single
density, 1-sided).

Sectors User Files User
per Directory on Data Files on

Cylinder Sectors Disk™* SYS Disk
5" SDEN-1 10 8 62 48
5" SDEN-2 20 18 142 128
5" DDEN-1 18 16 126 112
5" DDEN-2 36 32 254 240
8" SDEN-1 16 14 119 96
8" SDEN-2 32 30 238 224
8" DDEN-1 30 28 222 208
8" DDEN-2 60 32 254 240

Hard Disk”*

*Hard drive format depends on the drive size and type, as well as the user's
division of the physical drive into logical drives. After setting up and format-
ting the drive, you can use the FREE library command to see the available
files.

**Note: Two directory records are reserved for BOOT/SYS and DIR/SYS,
and are included in the figures for this column.

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible
operating systems in its directory format. The data contained in the directory
has been extended. An SVC is included to either display an abbreviated direc-
tory or place its data in a user-defined buffer area. For detailed information, see
the @DODIR and @RAMDIR SVCs.

The following information describes the contents of each directory field:
DIR+0
Contains all attributes of the designated file.

Bit 7— If “@;" this flag indicates that the directory record is the file's primary
directory entry (FPDE). If “1,’ the directory record is one of the file's
extended directory entries (FXDE). Since a directory entry can
contain information on up to four extents (see notes on the exient
fields, beginning with DIR +22), a file that is fractured into more
than four extents requires additional directory records.

Bit 6 — Specifies a SYStem file if “1;" a nonsystem file if “0
Bit 5—If set to “1,’ indicates a Partition Data Set (PDS) file.

Bit 4 — indicates whether the directory record is in use or not. If set to “1,’
the record is in use. If “0,’ the directory record is not active,
although it may appear to contain directory information. In contrast
to some operating systems that zero out the directory record when
you remove a file, TRSDOS only resets this bit to zero.

Bit 3— Specifies the visibility. If “1," the file is INVisible to a directory dis-
play or other library function where visibility is a parameter. If a “0,’
then the file is VISible. (The file can be referenced if specified by
name by an @INIT or @OPEN SVC)

Software 14

Bits -2 — Contain the USER protection level of the file. The 3-bit binary
value is one of the following:

0=FULL 2=RENAME 4=UPDATE 6=EXECUTE
1=REMOVE 3=WRITE 5=READ 7=NO ACCESS
DIR+1

Contains various file flags and the month field of the packed date of fast
modification.

Bit 7— Set to “1” it the file was “CREATEdJ” (see CREATE library com-
mand in the Disk System Owner’s Manual). Since the CREATE
command can reference a file that is currently existing but non-
CREATE(, it can turn a non-CREATE file into a CREATEd one.
You can achieve the same effect by changing this bit to a “1”

Bit 6 — If set to “1,’ the file has not been backed up since its last modifica-
tion. The BACKUP utility is the only TRSDOS facility that resets
this flag. It is set during the close operation if the File Control Block
(FCB + 0, Bit 2) shows a modification of file data.

Bit 5—If set to 1.’ indicates a file in an open condition with UPDATE
access or greater.

Bit 4 — If the file was modified during a session where the system date was
not maintained, this bit is set to “1’ This specifies that the packed
date of modification (if any) stored in the next three fields is not the
actual date the modification occurred. If this bit is “1,” the
directory command displays plus signs (+) between the date
fields.

Bits 8-3 — Contain the binary month of the iast modification date. If this
field is a zero, DATE was not set when the file was established or
since if it was updated.

DIR+2
Contains the remaining date of modification fields.
Bits 3-7 — Contain the binary day of last modification.

Bits @-2 —Contain the binary year minus 80. For exampie, 1980 is coded
as 000, 1981 as 01, 1982 as 010, and so on.

DIR+3

Contains the end-of-file offset byte. This byte and the ending record number
(ERN) form a pointer to the byte position that follows the last byte written. This
assumes that programmers, interfacing in machine language, properly main-
tain the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was generated
or when it was later changed with a CLONE parameter.

DIR +5 through DIR + 12

Contain the name field of the filespec. The filename is left justified and padded
with trailing blanks.

DIR + 13 through DIR + 15

Contain the extension field of the filespec. It is left justified and padded with
trailing blanks.

DIR+ 16 and DIR + 17

Contain the OWNER password hash code.

DIR+18 and DIR+19

Contain the USER password hash code. The protection level in DIR + 0 is asso-
ciated with this password.

Software 15

DIR+20 and DIR+ 21

Contain the ending record number (ERN), which is based on full sectors. If the
ERN is zero, it indicates that no writing has taken place (or that the file was not
closed properly). If the LRL is not 256, the ERN represents the sector where the
EOF occurs. You should use ERN minus 1 to account for a value relative to sec-
tor 0 of the file.

DIR+22 and DIR+23

This is the first extent field. lts contents indicate which cylinder stores the first
granule of the extent, which relative granule it is, and how many contiguous
grans are in use in the extent.

DIR + 22 —Contains the cylinder value for the starting gran of that extent.

DIR + 23, Bits 5-7 — Contain the number of the granule in the cylinder indi-
cated by DIR + 22 which is the first granule of the file for that
extent. This value is relative to zero (“@" denotes the first gran,
“1” denotes the second, and 50 on).

DIR + 23, Bits 0-4 — Contain the number of contiguous granules, relative
to @ (0" denotes one gran, "1” denotes two, and so on). Since
the field is five bits, it contains a maximum of X'1F or 31, which
represents 32 contiguous grans.

DIR+24 and DIR+25

Contain the fields for the second extent. The format is identical to that for
Extent 1.

DIR+26 and DIR + 27

Contain the fields for the third extent. The format is identical to that for Extent 1.
MR+ 28 and DIR+ 29

Contain the fields for the fourth extent. The format is identical to that for
Extent 1.

DIR+30

This is a flag noting whether or not a link exists to an extended directory record.
If no further directory records are linked, the byte contains X'FF. A value of X'FE’

in this byte establishes a link to an extended directory entry. (See “Extended
Directory Records” helow)

DIR+31

This is the link to the extended directory entry noted by the previous byte. The
link code is the Directory Entry Code (DEC} of the extended directory record.
The DEC is actually the position of the Hash Index Table byte mapped to the
directory record. For more information, see the section “Hash Index Table”

Extended Directory Records

Extended directory records (FXDE) have the same format as primary directory
records, except that only Bytes 0, 1, and 21-31 are utilized. Within Byte @, only
Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of
which this is an extension. An extended directory record may point to yet
another directory record, so a file may contain an “unlimited” number of extents
{limited only by the total number of directory records available).

Granule Allocation Table (GAT)

The Granule Allocation Table (GAT) contains information on the free and
assigned space on the disk. The GAT also contains data about the formatting
used on the disk. .

Software 16

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a spec-
ified number of sectors. A group of sectors is allocated whenever additional
space is needed. This group is called a granule. The number of seclors per
granule depends on the total number of sectors available on a logical drive. The
GAT provides for a maximum of eight granules per cylinder.

In the GAT bytes, each bit set to “1” indicates a corresponding granule in use
{or locked out). Each bit reset to “0” indicates a granule free to be used. In a
GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the second rel-
ative granule, bit 2 the third, and so on. A 54" single density diskette is format-
ted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder.
Thus, that configuration uses only bits @ and 1 of the GAT byte. The remainder
of the GAT byte contains all 1's, denoting unavailable granules, Other formatting
conventions are as follows:

Sectors Sectors Granules Maximum
per per per No. of
Cylinder Granule Cylinder Cylinders
5" SDEN 10 5 2 80
5" DDEN 18 6 3 80
8" SDEN i6 8 2 77
8" DDEN 30 10 3 77
Hard Disk 32 16 8 153

*Hard drive format depends on the drive size and type, as well as the user’s divi-
sion of the drive into logical drives. These values assume that one physical
hard disk is treated as one logical drive.

The above table is valid for single-sided disks. TRSDOS supports double-sided
operation if the hardware interfacing the physical drives to the CPU allows it. A
two-headed drive functions as a single logical drive, with the second side as a
cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table
{DCT + 4, Bit 5) indicates one-sided or two-sided drive configuration.

A Winchester-type hard disk can be divided by heads into multiple logical
drives. Details are supplied with Radio Shack drives.

The Granule Allocation Table is the first relative sector of the direciory cylinder.
The following information describes the layout and contents of the GAT.

GAT + X090’ through GAT + X‘5F

Contains the free/assigned table information. GAT + @ corresponds to cylinder
0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so
on. As noted above, bit @ of each byte corresponds to the first granule on the
cylinder, bit 1 to the second granule, and so on. A value of “1” indicates the
granule is not available for use.

GAT + X'60’ through GAT + X‘BF’

Contains the available/locked out table information. It corresponds cylinder for
cylinder in the same way as the free/assigned table. It is used during mirror-
image backups to determine if the destination diskette has the proper capacity
to effect a backup of the source diskette. This table does not exist for hard
disks; for this reason, mirror-image backups cannot be performed on hard disk.

GAT + X‘C0’ through GAT + X'CA’

Used in hard drive configurations; extends the free/assigned table irom X'0¢
through X'CA.Hard drive capacity up to 203 (0-202) logical or 406 physical cyl-
inders is supported.

GAT+X‘CP’

Contains the cperating system version that was used in formatting the disk.
For example, disks formatied under TRSDOS 6.2 have a value of X'62’
contained in this byte. It is used to determine whether or not the disk
comtains all of the parameters needed for TRSDOS operation.

Software 17

GAT +X'CC’

Contains the number of cylinders in excess of 35. tis used to minimize the time
required to compute the highest numbered cylinder formatted on the disk. ltis
excess 35 to provide compatibility with alien systems not maintaining this byte.
if you have a disk that was formatted on an alien system for other than 35 cyl-
inders, this byte can be automatically configured by using the REPAIR utility.
{See the section on the REPAIR utility in the Disk System Owner's Manual)

GAT + X'CD’
Contains data about the formatting of the disk.
Bit 7—If set to “1,” the disk is a data disk. If “0,’ the disk is a system disk.

Bit 6—1If set to “1, indicates double-density formatting. If “0," indicates
single-density formatting.

Bit 5—If set to “1,’ indicates 2-sided disk. If "®,’ indicates 1-sided disk.

Bits 3-4 — Reserved.

Bits 8-2— Contain the number of granules per cylinder minus 1.
GAT + X'CE’ and GAT + X‘CF’

Contain the 16-bit hash code of the disk master password. The code is stored
in standard low-order, high-order format.

GAT + X'D¢’ through GAT + X‘D7’

Contain the disk name. This is the name displayed during a FREE or DIR oper-
ation. The disk name is assigned during formatting or during an ATTRIB disk
renaming operation. The name is left justified and padded with blanks.

GAT + X‘D8’ through GAT + X'DF’

Contain the date that the diskette was formatted or the date that it was used as
the destination in a mirror image backup operation in the format mm/dd/yy.

GAT + X‘E®’ through GAT + X'FF
Reserved for system use.

In Version 6.2:

GAT + X‘E®’ through GAT + X‘F4’
Reserved for system use.

GAT + X‘F5' through GAT + X'FF
Contain the Media Data Block (MDB).

GAT + X'F&’ through GAT + X'F8' — the ideniifying header. These four
bytes contain a 3 {(X'03'), followed by the letters LS| (X4C’,X'53',X'49’).

GAT + X'F8' through GAT9 + X'FF' — the last seven bytes of the DCT
in use when the media was formatted. FORMAT, MemDISK, and
TRSFORMS6 install this information. See Drive Control Table (DCT) for
more information on these bytes.

Hash Index Table (HIT)

The Hash Index Table is the key to addressing any file in the directory. It pin-
points the location of a file's directory with a minimum of disk accesses, keeping
overhead low and providing rapid file access.

The system’s procedure is to construct an 11-byte filename/extension field. The
filename is left-justified and padded with blanks. The file extension is then
inserted and padded with blanks; it occupies the three least significant bytes of

Software 18

the 11-byte field. This field is processed through a hashing algorithwn which pro-
duces a singie byte value in the range X'01’ through X‘FF, (A hash value of X'00’
indicates a spare HIT position.)

The system then stores the hash code in the Hash Index Table (HIT) at a posi-
tion corresponding to the directory record that contains the file's directory. Since
more than one 11-byte string can hash to identical codes, the opportunity for
“coitisions” exists. For this reason, the search aigorithm scans the HIT for a
matching code entry, reads the directory record corresponding to the matching
HIT position, and compares the filename/extension stored in the directory with
that provided in the file specification. If both match, the directory has been
found. If the two fields do not match, the HIT entry was a collision and the algo-
rithm continues its search from the next HIT entry.

The position of the HIT entry in the hash table is called the Directory Entry Code
{DEC) of the file. All files have at least one DEC. Files that are extended beyond
four extents have a DEC for each extended directory entry and use more than
one filename slot. To maximize the number of file slots available, you should
keep your files below five extents where possibie.

Each HIT entry is mapped to the directory sectors by the DEC's position in the
RIT. Think of the HIT as eight rows of 32-byte fields. Each row is mapped to one
of the directory records in a directory sector: The first HIT row is mapped to the
first directory record, the second HIT row to the second directory record, and so
on. Each coiumn of the HIT fieid (8-31) is mapped to a directory sector. The first
celumn is mapped to the first directory sector in the directory cylinder (not
including the GAT and HIT). Therefore, the first column corresponds to sector
2, the second column to sector 3, and so on. The maximum number of HIT col-
umns used depends on the disk formatting according to the formula:
N = number of sectors per cylinder minus two, up to 32.

The following chart shows the correlation of the Hash Index Table to the direc-
fory records. Each byte value shown represents the position in the HIT. This
position value is the DEC. The actual contents of each byte is either a X(00)
indicating a spare slot, or the 1-byte hash code of the file that occupies the cor-
responding directory record.

Columns
Row1 00 @1 03 04 05 06 07 Q8 09 OA OB OC oD QE OF
19 11 12 13 14 15 16 17 18 19 1A 18 1C 1D 1E 1F
Row2 20 21 22 23 24 25 26 27 28 20 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E IF
Row3 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E &F
690 51 52 53 54 55 56 57 58 59 S5A 5B 5C 5D SE SF
Rowd4 60 61 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E F
Row5 80 81 B2 83 84 85 86 87 88 89 8A 6B BC 8D OE BF
99 91 92 93 94 95 96 97 98 99 9A 9B SC 9D 9E OF
Row6 A0 A1 A2 A3 A4 A5 A6 A7 AB A9 AA AB AC AD AE AF
B0 Bl B2 B3 B4 BS B6 B7 BS BY BA BB BC BD BE BF
Row7? C& C1 C2 C3 C4 C5 Cs6 C7 €8 C9 CA CB CC CD CE CF
D0 D1t D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

Row8 E@ €1 €2 E3 E4 €5 E6 E7 EB £9 £EA EB EC ED EE EF
Fo Ft F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF

A 54" single density disk has 10 sectors per cylinder, two of which are reserved
for the GAT and HIT. Since only eight directory sectors are possible, only the
first eight positions of each HIT row are used. Other formats use more columns
of the HIT, depending on the number of sectors per cylinder in the formatting
scheme.

The eight directory records for sector 2 of the directory cylinder correspond to
assignments in HIT positions 00, 20, 40, 60, 80, A®, C0, and E0. On sysiem

Software 19

disks, the following positions are reserved for system overlays. On data disks,
these positions (except for @0 and @1) are available to the user.

00 — BOOT/SYS 20 — SYS6/SYS
01 — DIR/SYS 21 — SYS7/8YS
02 — SYS0/SYS 22 — SYS8/SYS
03 — SYS1/8YS 23 — SYS9/SYS
04 — SYS2/SYS 24 — SYS10/SYS
05 — SYS3/SYS 25— SYS11/8YS
06 — SYS4/SYS 26 — SYS12/8YS
07 — SYS5/SYS 27 — 8YS13/8YS

These entry positions correspond to the first two rows of each directory sector
for the first eight directory sectors. Since the operating system accesses these
overlays by position in the HIT rather than by filename, these positions are
reserved on system disks.

The design of the Hash Index Table limits the number of files on any one drive
to a maximum of 256.

Locating a Directory Record

Because of the coding scheme used on the entries in the HIT table, you can
locate a directory record with only a few instructions. The instructions are:

AND 1FH
ADD A2
{calculates the sector)
and
AND DEDH
(calculates the offset in that sector)

For example, if you have a Directory Entry Code (DEC) of X84, the following
occurs when these instructions are performed:

Value of accumulator
A=X84

A=X'04

AND 1FH

ADD A2
A=X06
The record is in the seventh
sector of the directory cylinder
(0-6)

Using the Directory Entry Code (DEC) again, you can find the offset into the
sector that was found using the above instructions by executing one
instruction:

Value of accumulator
A=X84'
AND OEOQH
A=X80
The directory record is X'8¢" (128)
bytes from the beginning of
the sector

If the record containing the sector is loaded on a 256-byte boundary (LSB of the
address is X'00") and HL points to the starting address of the sector, then you
can use the above value to calculate the actual address of the directory record
by executing the instruction:

LD LA .

Software 20

When executed after the calculation of the offset, this causes HL to point to the
record. For example:
A=X80'
LD HL +4200H ;Where sector is loaded
LD LA ;Replace LSB with offset

HL now contains 4280H, which is the address of the directory record you
wanted.

If you cannot place the sector on a 256-byte boundary, then you can use the
following instructions:

A=X'80
LD HL :42568H ;Where sector is loaded
LD E A :Put offset in E (LSB)
LD D0 :Put a zero in D (MSB)
ADD HL :DE ;Add two values together

HL now contains 42D6H, which is the address of the directory record.

Note that the first DEC found with a matching hash code may be the file's
extended directory entry (FXDE). Therefore, if you are going to write system
code to deal with this directory scheme, you must properly deal with the FPDE/
FXDE entries. See Directory Records for more information.

Software 21

6/File Control

File Control Block (FCB)

The File Control Block (FCB) is a 32-byte memory area. Before the file is
opened, this space holds the file's filespec. After an @OPEN or @INIT super-
visor call is performed, the system uses this area to interface with the file, and
replaces the filespec with other information. When the file is closed, the filespec
(without any specified password) is returned to the FCB.

While a file is open, the contents of the FCB are dynamic. As records are written
to or read from the disk file, specific fields in the FCB are modified. Avoid chang-
ing the contents of the FCB during the time a file is open, unless you are sure
that the change will not affect the integrity of the file.

During most system access of the FCB, the IX index register is used to refer-
ence each field of data. Register pair DE is used mainly for the initial reference
to the FCB address. The information contained in each field of the FCB is as
foltows:

FCB+0
Contains the TYPE code of the control block.

Bit 7 — If set to 1, indicates that the file is in an open condition; if “0,” the
tile is assumed closed. This bit can be tested to determine the
“open” or “closed” status of an FCB.

Bit 6 —Is set to “1” if the file was opened with UPDATE access or higher.
Bit 5 — Indicates a Partition Data Set (PDS) type file.
Bits 4-3 — Reserved for future use. .

Bit 2— Is set to “1” if the system performed any WRITE operation on this
file. it is used to update the MOD flag in the directory record when
the file is closed,

Bits 1-0 — Reserved for future use.
FCB+1
Contains status flag bits used in read/write operations by the system.

Bit 7— If set to “1;" indicates that I/O operations will be either full sector
operations or byte operations of logical record fength (LRL) less
than 256. If “0," only sector operations wil! be performed. If you are
going to use only full-sector I/0, you can reduce system overhead
by specifying the LRL at open time as @ (indicating 256). An LRL
of other than 256 sets bit 7 to "1” on open.

Bit 6 — If setto “1, indicates that the end of file (EOF) is to be set to ending
record number (ERN) only if next record number (NRN) exceeds
the current value of EQF. This is the case if random access is to be
used. During random access, the EOF is not disturbed unless you
extend the file beyond the last record slot. Any time the position
routine {@POSN) is called, bit 6 is automatically set. If bit 6 is “0;’
then EOF will be updated on every WRITE operation.

Bit 5—if “9; then the disk I/Q buffer contains the current sector denoted
by NRN. If set 10 “1,” then the buffer does not contain the current
sector. During byte 1/O, bit 5 is set when the last byte of the sector
is read. A sector read resets the bit, showing the buffer to be
current.

Software 23

Bit 4 — If set to “1;" indicates that the buffer contents have been changed
since the buffer was read from the file. It is used by the system to
determine whether the buffer must be written back to the file before
reading another record. If “@,’ then the buffer contents were not
changed.

Bit 3— Used to specify that the directory record is to be updated each time
the NRN exceeds the EOF. (The normal operation is to update the
directory only when an FCB is closed.) Some unattended opera-
tions may use this extra measure of file protection. it is specified by
adding an exclamation mark (“!”) to the end of a filespec when the
filespec is requested at open time.

Bits 2-0 — Contain the user (access) protection level as retrieved from the
directory of the file. The 3-bit binary value is one of the following:

0=FULL 2=RENAME 4=UPDATE 6=EXECUTE
1=REMOVE 3=WRITE 5=READ 7=NO ACCESS

FCB+2
Used by Partition Data Set (PDS) files.
FCB+3and FCB+4

Contain the buffer address in low-order, high-order format. This is the buffer
address specified in register pair HL when the @INIT or @OPEN SVC is
performed.

FCB+56

Contains the relative byte offset within the current buffer for the next 1/0 oper-
ation. If this byte has a zero value, then FCB + 1, Bit 5 must be examined to see
if the first byte in the current buffer is the target position or if it is the first byte of
the next record. If you are performing sector I/0 of byte data (that is, maintain-
ing your own buffering), then it is important to maintain this byte when you close
the file if the true end of file is not at a sector boundary.

FCB+6
Bits 3-7 — Reserved for system use.

Bits @-2 — Contain the logical drive number in binary of the drive contain-
ing the file. Do not modify this byte; altering this value may damage
other files. This byte and FCB + 7 are the only links 1o the file's
directory information.

FCB+7

Contains the directory entry code (DEC) for the file. This code is the offsetin the
Hash Index Table where the hash code for the file appears. Do not modify this
byte; altering this value may damage other files. This byte and FCB + 6 are the
only links to the directory information for the file.

FCB+8

Contains the end-ofile byte offset. This byte is similar to FCB + 5 except that it
pertains to the end of file rather than to the next record number.

FCB+9

Contains the logical record length that was in effect when the file was opened.
This may not be the same LRL that exists in the directory. The directory LRL is
generated at the file creation and never changes unless the file is overwritten.

FCB+10and FCB+ 11

Contain the next record number (NRN), which is a pointer for the next I/O oper-
ation. When a file is opened, NRN is zero, indicating a pointer to the beginning.
Each sequential sector I/0O advances NRN by one.

Software 24

FCB+12and FCB+13

Contain the ending record number (ERN) of the file. This is a pointer to the sec-
tor that contains the end-of-file indicator. In a null file (one with no records),
ERN equals 0. If one sector has been written, ERN equals 1.

FCB+14 and FCB+15

Contain the same information as the first extent of the directory. This represents
the starting cylinder of the file (FCB + 14) and the starting relative granule within
the starting cylinder (FCB + 15). FCB + 15 also contains the number of contig-
uous granuies allocated in the extent. These bytes are used as a pointer to the
beginning of the file referenced by the FCB.

FCB + 16 through FCB + 19

This 4-byte entry contains granule allocation information for an extent of the file.
Relative bytes @ and 1 contain the fotal number of granules allocated to the file
up to but not including the extent referenced by this field. Relative byte 2 con-
tains the starting cylinder of this extent. Relative byte 3 contains the starting rel-
ative granule for the extent and the number of contiguous granules.

FCB + 20 through FCB +23

Contain information similar to the above but for a second extent of the file.
FCB +24 through FCB +27

Contain information similar to the above but for a third extent of the file.
FCB +28 through FCB + 31

Contain information similar to the above but for a fourth extent of the file.

The file control block contains information on only four extents at one time. If
the file has more than four extents, additional directory accessing is done to
shift the 4-byte entries in order to make space for the new extent information.

Although the system can handle a file of any number of extents, you should
keep the number of extents small. The most efficient file is one with a single
extent. The number of extents can be reduced by copying the file to a disk that
contains a large amount of free space.

Software 25

7/TRSDOS Version 6
Programming Guidelines

Converting to TRSDOS Version 6

This section provides suggestions on writing programs effectively with
TRSDOS Version 6, and on converting programs created with TRSDOS 1.3
and LDOS 5.1 operating systems for use with TRSDOS Version 6. This infor-
mation is by no means complete, but presents some important concepis to
keep in mind when using TRSDOS Version 6.

When programming in assembly language, you can use TRSDOS Version 6
routines for commonly used operations. These are accessed through the
supervisor calls (SVCs) instead of absolute call addresses. Nothing in the sys-
tem can be accessed via any absolute address reference (except Z-80 RST
and NMI jump vectors).

IMPORTANT NOTE: TRSDOS provides all functions and storage through
supervisor calls. No address or entry point below 3000H is documented or sup-
ported by Radio Shack.

The keyboard is not accessible via “peeking,’ and the video RAM cannot be
;pocl:ced." The keyboard and video are accessible only through the appropriate
VCs.

Another distinction is that TRSDOS Version 6 handling of logical byte 1/O
devices (keyboard, video, printer, communications line) completely supports
error status feedhback. A FLAG convention is uniform throughout these device
drivers as well as physical byte I/O associated with files. The device handling
in TRSDOS Version 6 is completely independent. That means that byte 1/0,
both logical and physical, can be routed, filtered, and linked. Therefore, it is
important to test status return codes in all applications using byte 1/O regard-
less of the device that the application expects to be used, since re-direction to
some other device is possible at the TRSDOS level. Appropriate action must be
taken when errors are detected.

Modules loaded into memory and protected by lowering HIGH$ must include
the standard header, as described earlisr under “Memory Header.” The
@GTMOD supervisor call requires that this header be present in every resident
module for proper operation.

The file password protection terms of UPDATE and ACCESS have been
changed in TRSDOS Version 6 to OWNER and USER, respectively. The addi-
tional file protection level of UPDATE has been added. A file with UPDATE pro-
tection level can be read or written to, but its end of file cannot be extended.
This protection can be useful in a random access fixed-size file or in a file where
shared access is to take place.

Files opened with UPDATE or greater access are indicated as open in their
directory. Attempting to open the file again forces a change to READ access
protection and a “File already open” error code. it is therefore important for
applications to CLOSE files that are opened.

For the convenience of applications that access files only for reading, you can
inhibit the “file open bit.’ If you set bit @ of the system flag SFLAGS (see the
@FLAGS supervisor call), the file open bit is not setin the file’s directory. Once
set, the next @OPEN or @INIT SVC automatically resets bit @ of SFLAGS.
Note that you cannot use this procedure for files being written to, since it inhibits
the CLOSE process.

Software 27

Some application programs need access to certain system parameters and
variables. A number of flags, variables, and port images can be accessed rel-
ative to a flag pointer obtained via the @FLAGS supervisor call. These param-
eters are only accessible relative to this pointer, as the pointer's location may
change. (See the explanation of the @FLAGS SVC)

All applications must honor the conltents of HIGH$. This pointer contains the
highest RAM address usable by any program. You can retrieve and change
HIGHS$ by using the @HIGH$ SVC.

TRSDOS Version 6 library commands and utilities supply a retum code (RC) at
completion. The RC is returned in register pair HL. The value returned is either
zero (indicating no error), a number from one through 62 (indicating an error as
noted in Appendix A, TRSDOS Error Messages), or X'FFFF’ (indicating an
extended error which is currently not assigned an error number). TRSDOS Ver-
sion 6 Job Control Language (JCL) aborts on any program terminating with a
non-zero RC value. Applications should therefore properly set the return code
register pair HL before exiting.

TRSDOS Version 6 library commands are also invokable via the @CMNDR
SVC which executes the command. Library commands properly maintain the
Stack Pointer (SP) and exit via a RET instruction. In this manner, control is
returned to the invoking program with the RC present for testing. For com-
mands invoked with the @CMNDI SVC or prompted for via the @EXIT SVC,
the 8P is restored to the system stack. The top of the stack will contain an
address suitable for simulating an @EXIT SVC; thus, if your application pro-
gram properly maintains the integrity of the stack pointer, it can exit after setting
the RC via a RET instruction instead of an @EXIT SVC.

TRSDOS Version 6 diskette and file structure is identical to that used in LDOS
5.1. This includes formatting, directory structure, and data address mark con-
ventions. TRSDOS Version 6 system diskettes, however, use the entire BOOT
track (track @). This compatibility means that data files may be used inter-
changeably between LDOS 5.1 equipped machines and TRSDOS Version 6
equipped machines; the diskettes themselves are readable and writable across
both operating systems.

The methods of internal handling of device linking and filtering have been
changed from LDOS 5.1. (It is beyond the scope of this manual to explain the
internal functioning of TRSDOS Version 6.) Device filters must adhere to a strict
protocol of linkage in order to function properly. See the section on “Device
Driver and Filter Templates™ for information on device driver and filter protocol.

Stack Handling Restrictions*

Interrupt tasks and filters that deal with the keyboard or video must not place
the stack pointer above X'F3FF: This is because any operation that requires the
keyboard or video RAM switches in the 3K bank at X'F40@" and suppresses the
stack untit it is switched out again. If the system accesses the stack at any time
during this period, the integrity of the stack is destroyed.

*In TRSDOS 6.0.0, the stack cannot be placed above X'F3FF’ for any reason. .

Software 28

Programming With Restart Vectors

The Restart instruction (RST) provides the assembly language programmer
with the ability to call a subroutine with a one-byte call. If a routine is called
many times by a program, the amount of space that is saved by using the RST
instruction (instead of a three-byte CALL) can be significant.

In TRSDOS a RST instruction is also used to interface to the operating system.
The system uses RST 28H for supervisor calls. RSTS 00H, 30H, and 38H are
for the system’s internal use.

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some pro-
grams, such as BASIC, may use some of these RSTs.

Each RST instruction caifs the address given in the operand field of the instruc-
tion. For example, RST 18H causes the system {o push the current program
counter address onto the stack and then set the program counter to address
0018H. RST 20M causes a jump to location 0020H, and sc on.

Each RST has three bytes reserved for the subroutine to use. If the subroutine
will not fit in three bytes, then you should code a jump instruction (JP) to where
the subroutine is located. At the end of the subroutine, code a return instruction
(RET). Control is then transferred to the instruction that foliows the RST.

For example, suppose you want to use RST 18H to call a subroutine named
“"ROUTINE. The following routine loads the restart vector with a jump instruc-
tion and saves the old contents of the restart vector for later use.

SETRST: LD IX+2018H 3$Restart area address
LD IY+RDATA iData area address
LD B.3 iNumber of bytes to move
LOOP: LD B (IX) iRead a bvyte from
irestart area
LD C+(IY) iRead a byte from data
jarea
LD (IX).C iStore this brte in
irestart area
LD (IY} A iStore this byte in data
jarea
INC IX ilncrement restart area
iFointer
INC IY $Increment data area
iPointer
DJNZ LOGPF sLoor till 3 bytes moved
RET fsReturn when done
RDATA: DEFB @C3H fJump instruction (JP)

DEFW ROUTINE iOperand (name of
ssubroutine)
Before exiting the program, calling the above routine again puts the original
contents of the restart vector back in place.

KFLAG$ (BREAK), (PAUSE), and

Interfacing

KFLAGS$ contains three bits associated with the keyboard functions of BREAK,
PAUSE (SHIFD (@), and ENTER. A task processor interrupt routine (calied the
KFLAG$ scanner) examines the physical keyboard and sets the appropriate
KFLAGS bit if any of the conditions are observed. Similarly, the RS-232C driver
routine also sets the KFLAGS bits if it detects the matching conditions being
received.

Software 29

Many applications need to detect a PAUSE or BREAK while they are running.
BASIC checks for these conditions after each logical statement is executed
(that is, at the end of a line or at a “:"). That is how, in BASIC, you can stop a
program with the key or pause a listing.

One method of detecting the condition in previous TRSDOS operating systems
was to issue the @KBD supervisor call to check for BREAK or PAUSE
(GHIFD@), ignoring all other keys. Unfortunately, this caused keyboard type-
ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if
any other keystrokes were stacked up.

Another method was to scan the keyboard, physically examining the keyboard
matrix. An undesirable side effect of this method was that type-ahead stored up
the keyboard depression for some future unexpected input request. Examining
the keyboard directly also inhibits remote terminals from passing the BREAK or
PAUSE condition.

In TRSDOS Version 6, the KFLAGS$ scanner examines the keyboard for the
BREAK, PAUSE, and ENTER functions. If any of these conditions are detected,
appropriate bits in the KFLAG$ are set (bits @, 1, and 2 respectively).

Note that the KFLAGS scanner only sets the bits. It does not reset them
because the “events” would occur too fast for your program to detect. Think of
the KFLAGS bits as a latch. Once a condition is detected (latched), it remains
latched until something examines the laich and resets it—a function to be per-
formed by your KFLAGS$ detection routine.

Under Version 6.2, you can use the @CKBRKC SVC, SVC 106, to see if the
BREAK key has been pressed. If a BREAK condition exists, @CKBRKC resets
the break bit of KFLAGS.

For illustration, the following example routine uses the BREAK and PAUSE
conditions:

KFLAGS EQU 1@
@FLAGS EQU 101
eKBD EQU 8

@KEY EQU 1
@PAUSE EQU 16
CKPAWS LD A+BFLAGS iGet Flasgs rpointer
RST 281 finto redister 1Y
LD A+ ({IY+KFLAG$) iGet the KFLAGS
RRCA iBit @ to carry
JP C+GOTEBRK iGo on BREAK
RRCA iBit 1 to carry
RET NC Return if no Pause
CAlLLL RESKFL fReset the flagy
PUSH DE
FLUSH LD A B8KBD $Flush type-ahead
RST 28H fbuffer while
JR Z sFLUSH fsignoring errors
POP DE
PROMPT PUSH DE
LD A BKEY iMait on Key entry
RST 28H
POP DE
(M 80H iAbort on
JP 2 :+GOTBRK
CcpP GOH ildnore PAUSE}
JR Z+PROMPT selse + .+ .
RESKFL PUSH HL ireset KFLAGS
PUSH AF
L.D A BFLAGS iGet flads pointer
RST 28H iinto redister IY
RESKFL1 LD As(IY+KFLAGS) 3Get the flay
AND BOF8H iStrip ENTER:

Software 30

LD (IY+KFLAG%) :A iPAUSE,» BREAK

PUSH BC

LD B:1B

LD A :BPAUSE jPause a while

RST Z28H

POP BC

LD A+ {1IY+KFLAGS$) iCheck if fingder is
AND 3 istill on Kevy

JR NZ +RESKFL 1 iReset it again
POP AF iRestore redisters
POP HL jand exit

RET

The best way to explain this KFLAG$ detection routine is to take it apart and
discuss each subrouting. The first piece reads the KFLAG$ contents:

KFLAG$ EQU 10

CKPAKWS LD A+8FLAGS §iCet Fladgs Painter
RST 28H finto redister IY
LD A+(IY+KFLAGS$) 3Get the KFLAGS
RRCA sBit @ to carry
JP CGOTBRK $Go on BREAK
RRCA $Bit 1 to carrvy
RET NC SReturn if no Pause

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your
application uses the IY index register, you should save and restore it within the
CKPAWS routine. {Alternatively, you could use @FLAGS to calculate the loca-
tion of KFLAGS, use register HL instead of 1Y, and place the address into the LD
instructions of CKPAWS at the beginning of your application.)

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a
BREAK condition is in effect, the subroutine branches to “GOTBRK;’ which is
your BREAK handling routine.

If there is no BREAK condition, the second rotate places what was originally in
the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine
returns to the caller.

This sequence of code gives a higher priority to BREAK (that is, if both BREAK
and PAUSE conditions are pending, the BREAK condition has precedence).
Note that the GOTBRK routine needs to clear the KFLAGS$ bits after it services
the BREAK condition. This is easily done via a call to RESKFL.

The next part of the routine is executed on a PAUSE condition:

CALL RESKFL iReset the flad
PUSH DE

FLUSH LD A BKBD iFlush trre-ahead
RST 28H ibuffer while
JR Z+FLUSH iidnoring errors
POP DE

First the KFLAGS$ bits are reset via the call to RESKFL. Next, the routine takes
care of the possibility that type-ahead is active. If it is, the PAUSE key was prob-
ably detecled by the type-ahead routine and so is stacked in the type-ahead
buffer also. To flush out (remove all stored characters from) the type-ahead
buffer, @KBD is called until no characters remain (an NZ is returned).

Now that a PAUSEd state exists and the type-ahead buffer is cleared, the rou-
tine waits for a key input:

PROMPT PUSH DE

LD A +BKEY sWait on Key entry
RST Z28H

POP DE

cP 80H

JP Z +GOTBRK

Software 31

CP 6@H ilgncre PAUSES
JR ZPROMPT jelse .+ .+

The PROMPT routine accepts a BREAK and branches to your BREAK han-
dling routine. It ignores repeated PAUSE (the 60H). Any other character causes
it to fall through to the following routine which clears the KFLAGS:

RESKFL PUSH HL ireset KFLAGS
PUSH AF
LD A+BFLAGS iGet fladgs rPointer
RST Z2BH iinto redister 1Y
RESKFL1 LD As(IY+KFLAGS) iGet the flag
AND @F8H iStriep ENTER
LD (IY+KFLAG%) 1A TPAUSE: BREAK
PUSH BC
LD Bs16
LD A +BPAUSE jPause a while
RST 28H
POP BC
LD Ay{IY+KFLAGS) iCheck if finder is
AND 3 fstill on Kevy
JR NZ +RESKFLI1 sReset it adain
POP AF iRestore redisters
POP HL sand exit
RET

The RESKFL subroutine should be called when you first enter your application.
This is necessary to clear the flag bits that were probably in a “set” condition.
This “primes” the detection. The routine should also be called once a BREAK,
PAUSE, or ENTER condition is detected and handled. (You need to deal with
the flag bits for only the conditions you are using.)

Interfacing to @ICNFG

With the TRSDOS library command SYSGEN, many users may wish to SYS-
GEN the RS-232C driver. Before doing that, the RS-232C hardware (UART,
Baud Rate Generator, efc.) must be initialized. Simply using the SYSGEN com-
mand with the RS-232C driver resident is not enough; some initialization
routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is
included in TRSDOS to provide a way to invoke a routine to initialize the RS-
232C driver when the system is booted. It also provides a way to initialize the
hard disk controller at power-up (required by the Radio Shack hard disk
system).

The final stages of the booting process loads the configuration file CONFIG/
SYS if it exists. After the configuration file is loaded, an initialization subroutine
CALLs the @ICNFG vector. Thus, any initialization routine that is part of a
memory configuration can be invoked by chaining into @ICNFG.

If you need to configure your own routine that requires initialization at power-up,
you can chain into @ICNFG. The following procedure illustrates this link. The
first thing to do is to move the contents of the @ICNFG vector into your initiali-
zation routine:

LD A +BFLAGS iGet flags Pointer
RST Z8H finto redister 1Y
LD As(IY+28) 5Get ogrcode
LD (LLINK) ;A
LD L:C(IY+29) iGet address LOW
LD H+ (1Y+30) iGet address HIGH
LD (LINK+1) sHL
This subroutine does this by transferring the 3-byte vector to your routine. You .

then need to relocate your routine to its execution memory address. Once this

Software 32

is done, transfer the relocated initialization entry point to the @ICNFG vector as
a jump instruction:

LD HL :INIT iGet (relocated)

L.D {IY+29) sL iinit address

LD {(IY+38) +H

LD A+0C3H iSet JP instruction

LD (IY+28).:A
If you need to invoke the initialization routine at this point, then you can use:
CALL ROUTINE iInvoke your routine

Your initialization routine would be unique to the function it was to perform, but
an overall design would look like this:

INIT CALL ROUTINE s6tart of init
LINK DEFS 3 iContinue on
ROUTINE -

your initialization routine

RET

After linking in your routine, perform the SYSGEN. If you have followed these
procedures, your routine will be invoked every time you start up TRSDOS.

Interfacing to @KITSK

Background tasks can be invoked in one of two ways. For tasks that do not
require disk I/0, you can use the RTC {Real Time Clock) interrupt and one of
the 12 task siots (or other external interrupt). For tasks that require disk I/O, you
can use the keyboard task process.

At the beginning of the TRSDOS keyboard driver is a call to @KITSK. This
means that any time that @KBD is called, the @KITSK vector is also called.
(The type-ahead task, however, bypasses this entry so that @KITSK is not
called from the type-ahead routine.) Therefore, if you want to interface a back-
ground routine that does disk 1/0, you must chain into @KITSK.

The interfacing procedure to @KITSK is identical to that shown in the section
“Interfacing to @ICNFG;" except that IY + 31 through IY + 33 is used to refer-
ence the @KITSK vector. You may want to start your background routine with:

START CALL ROUTINE sInvoke task
LINK DEFS 3 jFor BKITSK hooK
ROUTINE EQU & iStart of the task

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and
@CMNDR (which is in SYS1/SYS). This invocation is from the @KEYIN call,
which fetches the next command line after issuing the “TRSDOS Ready” mes-
sage. If your background task executes and opens or closes a file (or does any-
thing to cause the execution of a system overlay other than SYS1), then SYS1
is overwritten by SYS2 or SYS3. When your routine finishes, the @KEYIN han-
dler tries to return to what called it-—SYS1, which is no longer resident. There-
fore, any task chained to @KITSK which causes a resident SYS1 to be over-
written must reload SYS1 before returing.

You can use the following code to refoad SYS1 if SYS1 was resident prior to

your task’s execution:
ROUTINE LD A BFLAGS iGet flags rointer
RST 28H jinto register 1Y
LD Ar(IY-1) iGet resident over-
AND 8FH ilay and remove

LD (QLDSYS+1)+A ithe entry code

Software 33

rest of vour task

EXIT EQU s

OLDSYS LD A0 iGet o0ld overlay #
CP g3+ fWas it 8YS17?
RET NZ iReturn if noti else
RST 28H iGet SYS1 per red. A

f(no RET needed)

Interfacing to the Task Processor .

This section explains how to integrate interrupt tasks into your applications.

One of the hardware interrupts in the TRS-80 is the real time clock (RTC). The
RTC is synchronized to the AC line frequency and puises at 60 pulses per sec-
ond, or once every 16.67 milliseconds. (Computers operating with 5@ Hz AC
use a 5@ pulses per second RTC interrupt. In this case, all time relationships
discussed in this section should be adjusted to the 5@ Hz base.)

A software task processor manages the RTC interrupt in performing back-
ground tasks necessary o specific functions of TRSDOS {such as the time
clock, blinking cursor, and so on). The task processor allows up to 12 individual
tasks to be performed on a “time-sharing” basis.

These tasks are assigned to “task slots” numbered from 0 to 11. Slots 0-7 are
considered “low priority” tasks (executing every 266.67 milliseconds). Slots 8-
10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 isa
high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33
milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the
system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions,
respectively.

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains
12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor
calls that manage the task vectors. The five SVCs and their functions are:

@CKTSK Checks to see whether a task slot is unused or active
@ADTSK Adds a task to the TCBVT

@RMTSK Removes a task from the TCBVT

@KLTSK Removes the currently executing task

@RPTSK Replaces the TCB address for the current task

The TRSDOS Task Control Block Vector Table contains vector pointers. Each
TCBVT vector points to an address in memory, which in turn contains the
address of the task. Thus, the tasks themselves are indirectly addressed.

When you are programming a task to be called by the task processor, the entry
point of the routine needs to be stored in memory. If you make this storage ioca-
tion the beginning of a Task Control Block (TCB), the reason for indirect vector-
ing of interrupt tasks will become more clear. Consider an example TCB:

MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFS |
MYTASK RET

This is a useless task, since the only thing it does is return from the interrupt.
However, note that a TCB location has been defined as “MYTCB” and that this
location contains the address of the task. A few more data bytes immediately
following the task address storage have also been defined.

Upon entry to a service routine, index register IX contains the address of the
TCB. You can therefore address any TCB data using index instructions. For
example, you could use the instruction “DEC (1X+2)” to decrement the value
contained in COUNTER in the above routine.

Software 34

Here is the routine expanded slightly:

MYTCE DEFW MYTASEK
COUNTER DEFB 15
TEMPY DEFB ©
MYTASK DEC (IX+2)

RET N2
LD (IX+2) .15
RET

This version makes use of the counter. Each time the task executes, the counter
is decremented. When the count reaches zero, the counter is restored to its
original value.

In order to be executed, all tasks must be added to the TCBVT. The @ADTSK
supervisor call does this, For the above routine, assume the task slot chosen is
low-priority slot 2, You can ascertain that slot 2 is available for use by using the
@CKTSK SVC as follows:

LD C:2 iReference slot 2

LD A28 3Set for BCKTSK SuC
RST 28H $An "NZ" indication

JP NZ » INUSE $sars that the slot is

sbeing used.

Once you determine that the slot is available (that is, not being used by some
other task), you can add your task routine. The following code adds this task to
the TCBVT:

LD DE :MYTCB iPoint to the TCB
LD C:2 iReference slot 2
LD A+29 iSet for BADTSK SVC
RST 28H ilssue the SVC

The above program lines point register DE to the TCB, load the task slot num-
ber into register C, and then issue the @ADTSK supervisor call. if you want this
task to run regardless of what is in memory, you can place it in high memoty {of
bank @) and protect it by moving HIGH$ below it via the @HIGH$ supervisor
call.

Once a task has been activated, it is sometimes necessary to deactivate it. You
can do this in two ways. The most common way is to use the @RMTSK super-
visor call:

LD C»2 iDesidnate the task
islot

LD f:30 iSet for BRMTSK SVC

RST 28H $Issue the SVUC

You identify the task slot to remove by placing a value in register C, and then
you issue the supervisor call.

You can use another method if you want to remove the task while it is being
executed. Examine the routine modified as follows:

MYTCB DEFW MYTASK
COUNTER DEFB 10
TEMPY DEFB @
MYTASK DEC (IX+2)

RET NZ
LD A32 iSet for EKLTSK SVC
RST 28H ilssue the SVC

The @KLTSK supervisor call removes the currently executing task from the
TCBVT. The system does not retumn to your routine, but continues as if you had
executed a RET instruction. For this reason, the @KLTSK SVC shouid be the
last instruction you want executed. In this example, MYTASK decrements the
counter by one on each entry to the task. When the counter reaches zero, the
task is removed from slot 2.

Software 35

The last task processor supervisor call is @RPTSK. The @RPTSK function
updates the TCB storage vector (the vector address in your Task Control Block)
1o be the address immediately following the @RPTSK SVC instruction. As with
@KLTSK, the system does not return to your service routine after the SVC is
made, but continues on with the task processor. The following example illus-
trates how @RPTSK can be used in a program:

ORG S000H
@ADTSK EQU 29
BRPTSK EQU 31
BRMTSK EQU 30
BEXIT EQU 22
BYDCTL EQU 15
BEGIN LD DE.,TCB jPoint to TCB
LD c.0 jand add the task
LD A BADTSK jto slot O
RST 28H
LD ABEXIT sExit to TRSDOS
RET 28H
TCB DEFW TASK
COUNTER DEFB 15
TASKA LD A+BRPTSK tRerlace current
RST Z2BH itask with TASKA
TASK LD BC@27CH iPut a character
LD HL .804FH jat Row ®: Col. 789
LD A+BVDCTL
RST Z2BH
DEC (IX+2) iDecrement the counter
RET NZ sand return if not
LD (IX+2),15 jexriredi else reset
LD A BRPTSK iRerlace the rrevious
RST 28H itask with TASKB
TASKB LD BL +@22DH tPut a character

LD HL »0@4FH
LD As@VDCTL

5at Row @y Col., 78

RST 2BH

DEC (IX+2)
RET NZ

LD (IX+2),15
JR TASKA
END BEGIN

This task routine contains no method of relocating it to protected RAM. The
statements starting at the label BEGIN add the task to TCBVT slot @ and retumn
to TRSDOS Ready. The task contains a four-second down counter and a rou-
tine to put a character in video RAM (80th character of Row 0). At four-second
intervals, the character toggies between " and ‘- This is done by using the
@RPTSK SVC to toggle the execution of two separate routines which perform
the character display.

TRSDOS uses bank-switched memory. In order to properly control and man-
age this additional memory, certain restrictions are placed on tasks. All tasks
must be placed either in low memory (addresses X'0000' through X'7FFF’) or
in bank zero of high memory (addresses X'8000" through X'FFFF’). The task
processor always enables bank zero when performing background tasks. The
assembly language programmer must ensure that tasks are placed in the cor-
rect memory area.

Interfacing RAM Banks 1 and 2

The proper use of the RAM bank transfer techniques described here requires a
high degree of skill in assembly language programming. This section on bank
switching is intended for the professional.

Software 36

The TRS-80 Model 4 can optionally support a second set of 64K RAM, bringing
the total RAM to 128K. TRSDOS designates this extra 64K RAM as two banks
of 32K RAM each, which are banks 1 and 2 of bank-switched RAM. The upper
32K of standard RAM is designated bank @. At any one time, only one of the
banks is resident. The resident bank is always addressed at X'8000° through
X'FFFF When a bank transfer is performed, the specified bank becomes
addressable and the previous bank is no longer available. Since memory
refresh is performed on all banks at all times, nothing in the previously resident
bank is altered during whatever time it is not addressable (that is, not resident).

You can access this additional RAM by means of the @BANK supervisor call
(SVC 102). When you power up your computer or press reset, TRSDOS looks
to see which banks of RAM are installed in your machine. TRSDOS maintains
a bit map in one byte of storage, with each bit representing one of the banks of
RAM. This byte is called “Bank Available RAM” (BAR), and its information is set
when you boot TRSDOS. Bit @ corresponds to bank 9, bit 1 corresponds to
bank 1, and so on up to bit 7. From a hardware standpoint, the Model 4 has a
maximum of three banks. You have either bank @ only (a 64K machine), or
banks 0-2 (a 128K machine).

Another bit map is used to indicate whether a bank is reserved or available for
use. This byte is called the “Bank Used RAM” (BUR). Again, bit @ corresponds
to bank @, bit 1 to bank 1, and so on. TRSDOS design supports the use of banks
1 and 2 primarily for data storage (for example, a spool buffer, Memdisk, etc.).
The management of any memory space within a particular bank of RAM
{excluding bank 0) is the responsibility of the application program “reserving” a
particular bank.

TRSDOS requires that any device driver or filter that is relocated to high mem-
ory (X'8000" through X'FFFF’) reside in bank 8. The TRSDOS device handler
always invokes bank @ upon execution of any byte 1/O service request (@PUT,
@GET, @CTL, as well as other byte /O SVCs that use @PUT/@GET/@CTL).
This ensures that any filter or driver attached to the device in question will be
available. if a RAM bank other than @ was resident, it is restored upon return
from the device handler. This ensures that device I/Q is never impacted by bank
switching.

TRSDOS also requires that all interrupt tasks reside in bank @ or low memory
(X'0009’ through X'7FFF’). The interrupt task processor always enables bank 0
and restores whatever bank was previousiy resident. An interrupt task may per-
form a bank transfer from @ to another bank provided the necessary linkage
and stack area is used. This is discussed in more detail later.

All bank transfer requests must be performed using the @BANK SVC. This
SVC provides four functions, three of which are interrogatory and one of which
performs the actual bank switching.

As mentioned previously, the contents of banks other than ¢ are managed by
the application, not by TRSDOS. Therefore, the application needs a way of find-
ing out if any given bank is available. For example, if an application wants to
reserve use of bank 1, it must first check to see if bank 1 is free to use. This is
done by using function 2 as follows:

LD C:1 iSpecify bank 1

LD B:2 §Check BUR if banK in use
LD A +BBANK iSet EBBANK SVC (102)

RST 28H

JR NZ » INUSE §INZ if bank already in use

Note that the return condition (NZ or Z) shows whether or not you can use the
specified bank (it may not even be installed).

if the specified bank is available, you then need to reserve it. Do this by using
function 3 as follows:

LD C:1 iSepecify bank 1
LD B3 iSet BUR to show "in use"

Software 37

LD A »BBANK iSet EBANK SVC (102)
RST 28H
JR NZ JERROR

You must check for an error by examining the Z flag. In general (discounting a
system error), an NZ condition returned means that the specified bank is
already in use. If you had performed a function 2 (testing to see if the bank was
available) and got a not-in-use indication, but got an NZ condition on function
3, then the @BANK SVC routine has been altered and is probably unusable.

When an application no longer requires a memory bank, it can return the bank
to a “free” state by using function 1 as follows:

LD Cs1 iSrpecify bank 1

LD Bl iSet BUR to show free
LD A +BBANK iSet @BANK SVC (1@2)
RST 28H

No error condition is checked, as none is retumed by TRSDOS. If you should
mistakenly use function 1 with a bank that is nonexistent, an error is returned if
you try to invoke the nonexistent bank.

To find out which bank is resident at any time, use function 4 as follows:

LD B.a ilhich bank is resident?
LD A +@BANK iSet E@BANK SVC (102)
RST 28H

The current bank number is returned in register A.

To exchange the current bank with the specified bank, use function @. Since a
memory transfer takes place in the address range X'8600’ through X'FFFF;
the transfer cannot proceed correctly if the stack pointer (SP) contains a value
that places the stack in that range. @BANK inhibits function @ and returns an
SVC error if the stack pointer violates this condition.

A bank can be used purely as a data storage buffer. The application’s routines
for invoking and indexing the bank switching probably reside in the user range
X'3000' through X‘7FFF’ As an example, the following code invokes a previ-
ously tested and reserved bank (via functions 2 and 3), accesses the buffer,
and then restores the previous bank:

LD C:l iSpecify banK 1

LD B.0 iBring up bank

LD A BBANK iSet EBBANK SVC (102)
RST Z8H

JR NZ sERROR sError trar

PUSH BC iSave old bank data

*
rour code to access the buffer redion

POP BC fRecover old bank data
LD A +BBANK tSet BBANK SVC (1@2)
RST 28H

JR NZ 'ERROR Error trae

Note that the @BANK function @ conveniently retums a zero in register B to
effect a function 0 later, as well as provides the old bank number in register C.
This means that you only have to save register pair BC, pop it when you want
to restore the previous bank, and then issue the @BANK SVC.,

Suppose you want to transfer to another bank from a routine that is executing
in high memory. (Recall that the only limitation is that the stack must not be in
high memory} The @BANK SVC function @ provides a technique for automat-
ically transferring to an address in the new bank. This technique is called the
transfer function. It relies on the assumption that since you are managing the
entire 32K bank 1 or 2, your application should know exactly where it needs to
transfer (that is, where the application originally placed the code to execute).

Software 38

The code to perform a bank transfer is similar to the above example. Register
pair HL is loaded with the transfer address. Register C, which contains the num-
ber of the bank to invoke, must have its high order bit (bit 7) set. After the spec-
ified bank is enabled, control is passed to the transfer address that is in HL.
Upon entry to your routine in the new bank (referred to here as “PROGB"), reg-
ister HL will contain the old return address so that PROGB wili know where to
return transfer. Register C will also contain the old bank number with bit 7 set
and register B will contain a zero. This register set-up provides for an easy
return to the routine in the old bank that invoked the bank transfer. An illustra-
tion of the transfer code follows:

LD C:1 $Specify bank 1

LD B0 iBring ue bank @

LD HL + (TRAADR) iSet the transfer
faddress

SET 7+C iand denote a
ftransfer

LD A 1BBANK iSet @GBANK SVUC (102)

RST 28H

RETADR JR NZ sERROR

Control is returned to “RETADR" under either of two conditions. If there was an
error in executing the bank transfer (for example, if an invalid bank number was
specified or the stack pointer is in high memory), the returned condition is NZ.
Iif the transfer took place and PROGB transferred back, the returned condition
is Z. fThus, the Z flag shows whether or not there was a problem with the
transfer.

if PROGB needs to provide a return code, it must be done by using register pair
DE, IX, or IY, as registers AF, BC, and HL are used to perform the transfer. (Or,
some other technigue can be used, such as altering the return transfer address
to a known error trapping routine.)

PROGB should contain code that is similar to that shown earlier. For example,
PROGB could be;

PROGB PUSH BC iSave old bank data
PUSH HL iSave the RET
jaddress

L]
your PROGB routines

POP HL iRecover transfer
jaddress

POP BC iGet bank transfer
jdata

.D A:102 iSet EBANK SVC

RST 28H

JR NZ sERROR SError trae

PROGB saves the bank data (register BC). Don't forget that a transfer was
effected and register C has bit 7 already set when PROGB is entered. PROGB
also saves the address it needs to transfer back (which is in HL). It then per-
forms whatever routines it has been coded for, recovers the transfer data, and
issues the bank transfer request. As explained earlier, an NZ return condition
from the @BANK SVC indicates that the bank transfer was not performed. You
shou!d verify that your application has not violated the integrity of the stack
where the transfer data was stored.

Never place disk drivers, device drivers, device fillers, or interrupt service rou-
tines in banks other than bank 0. It is possible to segment one of the above
modules and place segments in bank 1 or 2, pravided the segment containing
the primary entry is placed in bank 0. You can transfer between segments by
using the bank transfer technigues discussed above.

Software 39

Device Driver and Filter Templates

Device independence has its roots in “byte 1/0)" Byte I/O is any /O passed
through a device channel one byle at a time.

; Three primitive routines are available at the assembly language level for byte
/0. These byte I/O primitives can be used to build larger routines. The three
primitives are the TRSDOS supervisor calis @GET, @PUT, and @CTL. @GET
is used to input a byte from a device or file. @PUT is used to output abyteto a
device or file. @CTL is used to communicate with the driver routine servicing
the device or file.

Other supervisor calls perform byte /0, such as @KBD (scan the keyboard and
return the key code if a key is down), @DSP (display a character on the video
screen), and @PRT {output a character fo the line printer). These functions
operate by first loading register pair DE with a pointer to a specific Device Con-
trol Block (DCB) assigned for use by the device, then issulng a @GET or
@PUT SVC for input or output requests.

When TRSDOS passes control over to the device driver routine, the Z-80 flag
conditions are unique for each different primitive. This enables the driver to
establish which primitive was used to access the routine, so it can turn over the
I/O request to the proper driver or filter subroutine according to the type of
request — input, output, or control.

The following table shows the FLAG register conditions upon entry to a driver
or filter:

CNZ =@GET primitive
ZNC =@PUT primitive
NZ,NC = @CTL primitive

Register B contains the VO direction code: 1 =@GET, 2=@PUT, 4=@CTL.
Register C contains the character code that was passed in the @PUT or @CTL
supervisor call. Register IX points to the TYPE byte (DCB + @) of the Device
Control Block. Registers BC, DE, HL, and IX have been saved on the stack and
are available for use. Register AF is not saved; if you want it preserved, your
program must do so.

Your driver must start with a standard front-end header (see “Memory

Header"):
BEGIN JR START iGo to actual code
ibedinning
DEFW MODEND-1 iLast byte used by
imodule
DEFB 7 iLendth of name
DEFM ‘MODNAME / iName
MODDCE DEFUW $-% iDCB ptr. for this
smodule
DEFW "] tReserved by TRSDOS

At the start of the actual module code, test the condition of the F register flags
for @GET, @PUT, and @CTL:

START EQU $

H Actual module code start
JR C+WASGET 5Go if BGET request
JR Z 'WASPUT 3Go if BPUT reauest
. tWas @BCTL request

At the label START, a test is made on the carry flag. If the carry was set, then

the disk primitive must have been an input request (@GET). An input request

could be directed to a part of the driver which only handles input from the .
device.

Software 40

If the request was not from the @GET primitive, the carry will not be set. The
next test checks to see if the zero flag is set. The zero condition is preset when
a @PUT primitive was the initial request. The jump to WASPUT can go to a part
of the driver that deals specifically with output 1o the device.

If neither the zero nor carry flags are set, the routine falls through to the next
instruction (not shown), which would begin the part of the driver that handles
@CTL calls. For example, you may want to have an RS-232C driver handle a
BREAK by issuing a @CTL call so that the RS-232C driver emits a true modem
break, but a CONTROL C would @PUT a X'03’

Some drivers are written o assume that @CTL requests are to be handled
exactly like @PUT requests. This is entirely up to the author and the function of
the driver.

Note that when a device is routed to a disk file, TRSDOS ignores @CTL
requests. That is, the @CTL codes are not written to the disk file.

On @GET requests, the character input shouid be placed in the accumulator.
On output requests (either @PUT or @CTL)}, the character is obtained from
register C. It is important for drivers and filters to observe return codes. Specif-
ically, if the request is @GET and no byte is available, the driver returns an NZ
condition and the accumulator ¢ontains a zero (thatis, OR1:1LD A0 : RET). If
a byte is available, the byte is placed in the accumulator and the Z flag is set
(that is, LD A,CHAR : CP A : RET). If there is an input error, the error code is
returned in the accumulator and the Z flag is reset (that is, LD A,ERRNUM : OR
A : RET). On output requests, the accumulator will contain the byte output with
the Z flag set if no error occurred. In the case of an output error, the accumulator
must be loaded with the error code and the Z flag reset as shown above.

A filter module is inserted between the DCB and driver routine (or between the
DCB and the current filter when it is applied to a DCB already filtered). The
insertion is performed by the TRSDOS FILTER command once the filter mod-
ule is resident and attached to a phantom DCB. The usual linkage for a filter is
to access the chained module by calling the @CHNIO supervisor call with spe-
cific linkage data in registers IX and BC. Register IX is loaded with the filter'’s
DCB pointer obtained from the memory header MODDCB pointer. Register B
must contain the VO direction code (1 =@GET, 2= @PUT, 4=@CTL). This
code is already in register B when the fiiter is entered. You can either keep reg-
ister B undisturbed or load it with the proper direction code. Also, output
requests expect the output byte to be in register C.

The DCB pointer obtained from MODDCB is passed in register DE by the SET
command and is loaded into MODDCB by your filter initialization routine. The
initialization routine needs to retocate the filter to high memory and attach itself
to the DCB assigned by the SET command. [f the initialization front end had
transferred the DCB pointer from DE to 1X, then the following code could be
used to establish the TYPE byte and vector for the filter:

LD (IX)47H $Init DCB type to
LD (IX+1),E SFILTER:s G/P/C 1/0:
LD (IX+2) 4D i& stuff vector

A filter module can operate on input, output, control, or any combination based
on the author’s design. The memory header provides a region for user data
storage conveniently indexed by the module.

An illustration of a filter follows. The purpose of this filter is to add a linefeed on
output whenever a carriage return is to be sent. Although the filter requires no
data storage, the technique for accessing data storage is shown.

Software 41

BEGIN

MODDCB

i
CR
LF

DATAS
DATAL

LTPUT
RX01
¥

GOTPUT
RX02

RX03

FLTEND

k]
RELTAB
TABLEN

JR START iBranch to start

DEFM FLTEND-1 jLast brte used
DEFB B iName lendth
DEFM ‘SAMPLE sName

DEFW 7] iLink to DCB
DEFW) iReserved
Data storade area for vour filter
EQU @DH

QU @AH

EQU %

EQU $-DATAS

DEFB 7] jData storade
EQU $-DATAS

DEFB @ iData storade
Start of filter

JR Z:GOTPUT iGo if BPUT

BGET and BCTL requests are chained to
the next module attached to the device.
This is accomplished by falling through
tc the BCHNIO call. Note that the samprle
filter does not affect the B redister:
s0 the filter does not have to load it
with the direction code.

PUSH IX iSave vour data
feointer

LD IX+{(MODDCB)

EQU $-2 iGrab the DCB vector

LD A+BCHNIO sand chain to it

RST 28H

POP IX

RET

Filter code

LD IXPFDATAS iBase redister is

EQU $-2 jused to index data

LD a:C iGet character to
itest

ceP CR iIf not CR» pPut it

JR NZ FLTPUT

CALL FLTPUT ielse Put it

EQU $-2

RET NZ sBack on error

LD CsLF iAdd linefeed

JR FLTPUT

EQU $

Relocation table
DEFM RX@1 ,RXB2Z R¥X03
EQU $-RELTAB/2

The relocation table, RELTAB, would be used by the filter initialization relocation

routine.

@CTL Interfacing to Device Drivers

This section discusses the @CTL functions supported by the system device
drivers. To invoke a @CTL function, point register pair DE to the Device Control
Block (DCBY), load the function code into register C, and issue the @CTL super-
visor call. You can locate the DCB address by either 1) using the @GTDCB
SVC, or 2) using the @OPEN SVC to open a File Control Block containing the
device specification and using the FCB address. See the @CTL supervisor call
for a list of the function codes and their meanings.

Software 42

The @CTL functions are listed below for each driver.
Keyboard Driver (resident driver assigned to *Kl)

A function value of X'03’ clears the type-ahead buffer. This serves the same
purpose as repeated calls 1o @KBD untii no character is available.

A function value of X'FF’ is reserved for system use.

All other function values are treated as @GET requests.

The module name assigned to this driver is “$KI"

Video Driver (resident driver assigned to *DO)

All @CTL requests are treated as if they were @PUT requests.
The module name assigned to this driver is “$DO".

Printer Driver (resident driver assigned to *PR)

The printer driver is transparent to ali code values when requested by the
@PUT SVC. That means that all values from X'00’ through X'FF’ (8-255) ¢can
be sent {0 the printer. If the FORMS filter is attached to the *PR device, then
various codes are trapped and used by the filter according to parameters spec-
ified with the FORMS library command, as follows:

X'0D" — Generates a garriage return and optionally a linefeed (ADDLF).
Generates form feeds as required.

X'0A’ — Treated the same way as X'0D!

X'0C' — Generates form feeds (via repeated line feeds if soft form feed).
(FFHARD = OFF)

X'09' — Advances to next tab column.

X'068’ — Sets top-of-form by resetting the internal line counter to zero,

Other character codes may be altered if the user translation option of the
FORMS command (XLATE) is set.

The printer driver accepts a function value of X090’ via the @CTL request to
return the printer status. If the printer is avaiiable, the Z flag will be set and reg-
ister A will contain X3 If the Z flag is reset, register A will contain the four high-
order bits of the paraliel printer port (bits 4-7).

The module name assigned to the printer driver is “$PR’. The module name of
the FORMS filter is “$FF"

COM Drliver (non-resident driver for the RS-232C)

This driver handles the interfacing between the RS-232C hardware and byte
I/Q (usually the *CL device).

A @CTL function value of X'00’ retums an image of the RS-232 status register
in the accumulator. The Z flag will be set if the RS-232 is available for “sending”
(that is, if the transmit holding register is empty and the flag conditions match
as specified by SETCOM).

A function value of X'01 transmits a “modem break” until the next character is
@PUT to the driver.

A function value of X'02 re-initializes the UART to the values last established
by SETCOM.

A function vaiue of X'04’ enables or disables the WAKEUP feature.

All other function values are ignored and the driver returns with register A con-
taining a zero value and the Z flag set.

The WAKEUP feature is useful for application software specializing in com-
munications. The RS-232 hardware can generate a machine interrupt under
any of three conditions: when the transmit holding register is empty, when a
received character is available, or when an error condition has been detected
{framing error, parity error, and so on). The COM driver makes use of the

Software 43

“received character available” interrupt to take control when a fully formed char-
acter is in the holding register. The COM driver services the interrupt by reading
the character and storing it in a one-character buffer. COM then normally
returns from the interrupt.

An application can request that, instead of retumning, control be passed to the
application for immediate attention. Note that this action would occur during
interrupt handling, and any processing by the application must be kept to a min-
imum before control is returned to COM via a RET instruction.

if you use a @CTL function value of X'@4; then register IY must contain the
address of the handling routine in your application. Upon return from the @CTL
request, register IY contains the address of the previous WAKEUP vector. This
shoauld be restored when your application is finished with the WAKEUP feature.

When contro! is passed to your WAKEUP vector upon detection of a “receive
character available” interrupt, certain information is immediately available. Reg-
ister A contains an image of the UART status register. The Z flag is set if a valid
character is actually available. The character, if any, is in the C register.

Since system overhead takes a small amount of time in the @GET supervisor
call, you may need to @GET the character via standard device interfacing. This
ensures that any filtering or linking in the *CL device chain will be honored. I,
on the other hand, your application is attempting to transfer data at a very high
rate (9600 baud or higher), you may need to bypass the @GET SVC and use
the character immediately available in the C register. Note that this procedure
bypasses the normal device chain {device routing and linking).

The module name of the COM driver is “$CL.

Software 44

8/Using the Supervisor Calls

Supervisor Calls {(SVCs) are operating system routines that are available to
assembly fanguage programs. These routines alter certain system functions
and conditions, provide file access, and perform various computations. They
also perform VO to the keyboard, video display, and printer.

Each SVC has a number which you specify to invoke it. These numbers range
from @ to 104.

In addition, under Version 6.2, you can write your own operating system rou-
tines using the numbers 124 through 127 to install your own SVC's. See Ap-
pengix €, "Programmable SVCs” for more information.

Calling Procedure

Jo call a TRSDOS SVC:

1. Load the SVC number for the desired SVC into register A. Also load any
gth“er registers which are needed by the SVC, as detailed under Supervisor
alis.

2. Execute a RST 28H instruction.

Note: If the SVC number supplied in register A is invalid, the system prints the
message "“System Error xx'; where xx is usually 2B. It then returns you to
TRSDOS Ready (not to the program that made the invalid SVC call).

The alternate register set (AF, BC,; DE, HL) is not used by the operating system.

Program Entry and Return Conditions

When a program executed from the @CMNDI SVC is entered, the system
return address is placed on the top of the stack. Register HL will point to the first
non-blank character following the command name. Register BC will point to the
first byte of the command line buffer.

Three methods of return from a program back to the system are available: the
@ABORT SVC, the @EXIT SVC, and the RET instruction. For application pro-
grams and utilities, the normal return method is the @EXIT SVC. if no error con-
dition is to be passed back, the HL register pair must contain a zero value. Any
non-zero value in HL causes an active JCL to abort.

The @ABORT SVC can be used as an error return back to the system; it auto-
matically aborts any active JCL processing. This is done by loading the value
X'FFFF" into the HL register pair and internally executing an @EXIT SVC.

If stack integrity is maintained, a RET instruction can be used since the system
retumn address is put on the stack by @CMNDIL. This allows a return if the pro-
gram was called with @CMNDR.

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation spec-
ified was successful. When an operation fails or encounters an error, the Z fiag
is reset (also known as NZ flag set) and a TRSDOS error code is placed in the
A register. The remaining SVCs use the Z/NZ fiag in differing ways, so you
should refer to the description of the SVCs you are using to determine the exit
conditions.

Software 45

Supervisor Calls

The TRSDOS Supervisor Calls are:

Keyboard SVCs Byte I/0 SVCs
@CKBRKC @CTL
@KBD @GET
@KEY @PUT .
@KEYIN File Control SVCs
Printer and Video SVCs
@CLOSE
@CLS @FEXT
@DSP @FNAME
@DSPLY @FSPEC
@LOGER @INIT
@LOGOT @REMOV
@MSG @OPEN
@ERT @RENAM
gvgg\% Disk File Handler SVCs
@BKSP
Disk SVCs @CKEOF
@DCINIT @LOC
@DCRES @LOF
@DCSTAT @PEOF
@RDSEC @POSN
@RDSSC @READ
@RSLCT @REW
@RSTOR @RREAD
@SEEK @RWRIT
@SLCT @SEEKSC
@STEPI @SKIP
@VRSEC @VER
@WRSEC @WEOF
@WRSSC @WRITE
@WRTRK TRSDOS Task Control SVCs
System Control SVCs @ADTSK
@CKTSK
@ABORT @KLTSK
@BREAK @RMTSK
@CMNDI @RPTSK
@CMNDR
@EXIT
@FLAGS
@HIGHS
@IPL
@LOAD
@RUN
Special Purpose Digk SVCs Special Overlay SVCs
@DIRRD @CKDRV
@DIRWR @DEBUG
@GTDCT @DODIR
@HDFMT @ERROR
@RDHDR @PARAM
@RDTRK @RAMDIR

Software 46

Miscellaneous SVCs Special Purpose SVCs

@BANK @CHNIO
@DATE @GTDCB
@DECHEX @GTMOD
@Dlvs

@DIV16

@HEXDEC

@HEX8

@HEX16

@MuLs

@MUL16

@PAUSE

@SOUND

@TIME

@WHERE

See the pages that follow for a detailed description of each supervisor call.

Software 47

@ABORT SVC Number 21
Abort Program

Loads HL with an X'FFFF’ error code and exits through the @EXIT supervisor
call. Any active JCL processing is aborted.

Entry Conditions:

A=21(X"15) .
General:

This SVC does not return.
Example:

See the example for @EXIT in Sample Program B, lines 206-207.

Software 48

@ADTSK

SVC Number 29

Add an Interrupt Level Task

Adds an interrupt level task to the real time clock task table. The task slot num-
ber ¢can be @-11; however, some slots are already assigned to certain functions
in TRSDOS. Slot assignments 0-7 are low priority tasks executing every 266.67
milliseconds. Slots 8-10 are medium priority tasks executing every 33.33 milli-
seconds. Slot 11 is a high priority task, executing every 16.66 milliseconds High
Speed or 33.33 milliseconds Low Speed. The system uses task slots 3, 7, 9,
and 10 for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions,
respectively.

It is a good practice to remove an existing task (using the @RMTSK or
@KLTSK SVC) before installing a new task in the same task slot.

Entry Conditions:
A =29 X1D)
DE =pointer to Task Control Block (TCB)
C =task slot assignment (0-11)

Exit Conditions:

Success always.
HL and AF are altered by this SVC.

The Task Controt Block, or TCB, is a 2-byte block of RAM which contains the
address of the task driver entry point. If your task is prefixed with the memory
header described earlier under “Device Access; then the TCB can be stored in
the memory header data storage area. If the task is not a driver or filter, the TCB
can be stored in the memory header location MODDCB. Upon entry to your
task routine, the IX register contains the TCB address.

Example:
See Sample Program F, lines 109-120.

Software 49

@BANK SVC Number 102
Memory Bank Use

Controls 32K memory bank operation. The top half of the main 64K block is
bank 9, and the alternate 64K block is divided into banks 1 and 2. The system
maintains two locations to perform bank management. These areas are known
as “bank available RAM” (BAR) and “bank in use RAM” (BUR).

If the Stack Pointer is not X'7FFE’ or lower, the SVC aborts with an Error 43 only

itB=0.
Entry Conditions:
A= 102 (X'66’}

B selects one of the following functions:
If B=0, the specified bank is selected and is made addressable.
The 32K bank starts at X'8000’ and ends at X'FFFF.
C =bank number to be selected (0-2)
If bit 7 is set, then execution will resume in the newly loaded
bank at the address specified.
HL = address to start execution in the new bank
If B=1, reset BUR and show the bank not in use.
C=bank number to be selected (0-2)
If B=2, test BUR if bank is in use.
C = bank number to be selected (0-2)
If B =3, set BUR to show bank in use.
C = bank number to be selected (0-2)
If B = 4, return number of bank currently selected.

Exit Conditions:

¥B=0:
Success, Z flag set.
C =the bank number that was replaced. If bit 7 was set in register
C on entry, it is also set on exit.
HL = SVC return address. By keeping the contents of C and HL,
you can later return to the instruction following the first
@BANK SVC. See "Interfacing RAM Banks 1 and 2" for more
information.
Fatlure, NZ flag set. Bank not present or parameter error.
A =error number

¥B=1:
Success, Z flag set. Bank available for use.
Failure, NZ flag set. Bank not present.

KB=2:
Success always.
If Z flag is set, then the bank is available for use.
If NZ flag is set, then test register A:

If A+ X'2B then the bank is either in use or it does not exist on
your machine. Banks 1 and 2 produce this error on a 64K
machine.

If A=X'2B then an entry parameter is out of range.

KB=3:
Success, Z flag set. Bank is now reserved for your use.
Failure, NZ flag set. Test reqgister A:
If A # X'2B then the bank is already in use or does not exist. Banks
1 and 2 produce this error on a 64K machine.
If A=X'28 then an eniry parameter is out of range.

Software 50

kB=4:
Success always.
A =number of the bank which is currently resident

General:
AF is altered for all functions.
BC is altered if the SVC is successful.

Exampile:
See the section “Interfacing RAM Banks 1 and 27

Software 51

@BKSP SVC Number 61
Backspace One Logical Record

Performs a backspace of one logical record.
Entry Conditions:

A =61 (X3D)
DE =pointer to FCB of the file to backspace

Exit Conditions:

If the Z flag is set or if A=X1C’ or X'1D; then the operation was successful.
The LOC pointer to the file was backspaced one record. Otherwise,
A =error number.
if A=X"1C'is returned, the file pointer is positioned at the end of the file.
Any Appending operations would be performed here.
if A=X"1D’ is retumed, the file pointer is positioned beyond the end of
the file.

Generai:
Only AF is aitered by this SVC.
If the LOC pointer was at record @ when the call was executed, the resuits
are indeterminate.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 52

@BREAK

SVC Number 103

Set Break Vector

Sets a user or system break vector. The BREAK vector is an abort mechanism;
there is no retumn.

The BREAK vector executes whenever the following conditions occur at the
same time: 1) the Program Counter is greater than X'2400; 2) the BREAK key
is pressed, and 3) a real time clock interrupt which executes 30 times per sec-
ond occurs.

After executing this SVC, you must reset bit 4 of SFLAGS. The BREAK flag in
KFLAGS (bit 0) requires the setting of SFLAGS$ bit 4 and a delay of 0.1 to 0.5
second to clear any other interrupts that may be pending. Then you can enter
your BREAK key handler (in which the BREAK key bitin SFLAGS is reset). See
KFLAGS$ and SFLAGS in the section about the @FLAGS SVC for more
information.

Entry Conditions:
A =103 (X'67")
HL = user break vector
HL =0 (sets system break vector)

Exit Conditions:
Success always.
HL = existing break vector (if user break vector was set)

Note: @EXIT and @CMNDI automatically restore BREAK to the system han-
dler. @CMNDR does not do this.

Software 53

@CHNIO SVC Number 20
Pass Control to Next Module in Device Chain

Passes control to the next module in the device chain.

Entry Conditions:
A =20 (X'14)
IX=contents of DCB in the header block
B =GET/PUTICTL direction code (1/2/4)
C =character (if output request)

General:
IX is not checked for validity.

Example:
See the section "Device Driver and Filter Templates”

Software 54

@CKBRKC SVC Number 106
Check BREAK bit and clear it Version 6.2 only

Checks to see if the BREAK key has been pressed. If a BREAK condition exists,
@CKBRKC resets the break bit, Bit @ of KFLAGS.

Entry Conditions:
A=108(X'6A")
Exit Conditions:

Success always.

If Z flag is set, the break bit was not detected. If NZ flag is set, the
break bit was detected and is cleared. If the BREAK key is being de-
pressed, the SVC will not return until the key is released.

Generail:
Only AF is altered by this SVC.

Software 55

@CKDRV

SVC Number 33

Check Drive

Checks a drive reference to ensure that the drive is in the system and a
TRSDOS Version 6 or LDOS 5.1.3 (Mode! 1ll Hard Disk Operating System) for-
matted disk is in place.

Entry Conditions:
A =33 (X21)
C=logical drive number (0-7)

Exit Conditions:
Success always.
if Z flag is set, the drive is ready.
if CF is set, the disk is write protected.
if NZ flag is set, the drive is not ready. The user may examine DCT +0
to see if the drive is disabled.

Example:
See Sample Program D, lines 35-55,

Software 57

@CKEOF SVC Number 62
Check for End-Of-File

Checks for the end of file at the current logical record number.
Entry Conditions:

A =62 (X3E)
DE = pointer to the FCB of the file to check

Exit Conditions:
Success always.
If Z flag is set, LOC does not point at the end of fite (LOC < LOF).
If NZ flag is set, test A for error number:
If A=X"1C, LOC points at the end of the file {LOC =LOF).
Iif A=X'1D; LOC points beyond the end of the file (LOC > LOF).
If A+ X1C or X'1D; then A=error number.

General:
Only AF is attered by this SVC.

Example:
See Sample Program C, lines 352-353.

Software 58

@CKTSK

SVC Number 28

Check if Task Slot in Use

Checks to see if the specified task slot is in use.

Entry Conditions:
A=28 (X"1C)
C=task slot to check (0-11)

Exit Conditions:
Success always.
if Z flag is set, the task slot is available for use.
If NZ fiag is set, the task slot is already in use.

Generai:
AF and HL are altered by this SVC.

Example:
See Sample Program F, lines 70-73.

Software 59

@CLOSE SVC Number 60

Close a File or Device

Terminates output to a file or device. Any unsaved data in the buffer area is
saved to disk and the directory is updated. All files that have been written to
must be closed, as well as all files opened with UPDATE or higher access.

If you remove a diskette containing an open file, any attempt to close the file
results in the message:

** CLOSE FAULT ** error message, <ENTER> to retry, <BREAK> to
abort

where error message is usually “Drive not ready” You may put the diskette
back in the drive and:

1. Press (ENTER) to close the file.
2. Press to abort the close.

If you press (BREAK), the NZ flag is set and Register A contains X'2@", the error
code for an lllegal drive number error.

Entry Conditions:
A =60(X'3C)
DE = pointer to FCB or DCB to close

Exit Conditions:
Success, Z flag set. The file or device was closed. The filespec (excluding

the password) or the devspec is returned to the FCB or DCB.
Failure, NZ flag set.
A=error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 360-368.

Software 60

@CLS SVC Number 105
Clear Video Screen Version 6.2 only

Clears the video screen by sending a Home Cursor (X'1C’) and Clear to End of
Frame (X'1F’) sequence to the video driver.

Entry Conditions:
A = 105(X'69")
Exit Conditions:

Success, Z flag is set.
Failure, NZ is set.
A = error number

General:
Only AF is altered by this SVC.

Software 61

@CMNDI SVC Number 24
Execute Command with Return to System

Passes a command string to TRSDOS for execution. After execution is com-
plete, control retums to TRSDOS Ready. If the command gets an error, it still
returns to TRSDOS Ready.

Entry Conditions:
A =24 (X'18)
HL = pointer to buffer containing command string terminated with X'0D’
(up to 80 bytes, including the X'¢D")

General:
This SVC does not return,

Example:
See Sample Program E, lines 43-58.

Software 63

@CMNDR SVC Number 25

Execute Command

Executes a command or program and returns to the calling program. The exe-
cuted program should maintain the Stack Pointer and exit via a RET instruction.
All TRSDOS library commands comply with this requirement. .

If bit 4 of CFLAGS is set {see the @FLAGS SVC), then @CMNDR executes
only system library commands.

Entry Conditions:
A =25(X19)
HL = pointer to buffer containing command string terminated with X'0D’
(up to 80 bytes, including the X'0D")

Exit Conditions:
Success always.
HL = return code (See the section “Converting to TRSDOS Version 6"
for information on return codes.)

Registers AF, BC, DE, IX, and IY are altered by the command or pro-
gram executed by this SVC.

if the command invokes a user program which uses the aiternate reg-
isters, they are modified also.

Example:
See Sample Program E, lines 18-29.

Software 64

@CTL SVC Number 5
Output a Control Byte

Outputs a control byte to a logical device. The DCB TYPE byte (DCB + 0, Bit 2)
must permit CTL operation. See the section “@CTL Interfacing to Device Driv-
ers” for information on which of the functions listed below are supported by the
system device drivers.

Entry Conditions:
A =5(X'05)
DE = pointer to DCB to control output
C selects cne of the following functions:
if C =0, the status of the specified device will be returned.
if C=1, the driver is requested to send a BREAK or force an interrupt.
if C=2, the initialization code of the driver is to be executed.
if C =3, ali buffers in the driver are to be reset. This causes all pending
I/0 to be cleared.
If C =4, the wakeup vector for an interrupt-driven driver is specified by
the caller.

IY =address to vector when leaving driver. If 1Y =0, then
the wakeup vector function is disabled. The RS-232C
driver COM/DVR ($CL), is the only system driver that
provides wakeup vectoring.

If C =8, the next character to be read will be returned. This allows data
to be “previewed” before the actual @GET returns the character.

Exit Conditions:
fC=0,
Z flag set, device is ready
NZ flag set, device is busy
A= status image, if applicable
Note: This is a hardware dependent image.
fC=1,
Success, Z flag set. BREAK or interrupt generated.
Failure, NZ flag set
A=error number
fC=2,
Success, Z flag set. Driver initialized.
Failure, NZ flag set
A=error number
HfC=3,
Success, Z flag set. Buffers cleared.
Failure, NZ flag set.
A=error number
fC=4,
Success always.
IY = previous vector address
This function is ignored if the driver does not support wakeup
vectoring.
if C=8,
Success, Z flag set. Next character returned.
A=next character in buffer
Failure, NZ fiag set. Test register A:
If A=0, no pending character is in buffer
If A+0, A contains error number. (TRSDOS driver returns Error 43.)

Software 65

General:
BC, DE, HL, and IX are saved.
Function codes 5 to 7, 9 to 31, and 255 are reserved for the system. Function codes
32 to 254 are available for user definition.
Entry and exit conditions for user-defined functions are up to the design of the user-
supplied driver.

Example:
See the section “Device Driver and Filter Templates.’

Software 66

@DATE

SVC Number 18

Get Date

Returns today’s date in display format (MM/DD/YY).

Entry Conditions:
A =18 (X"12)
HL = pointer to 8-byte buffer to receive date string

Exit Conditions:
Success always.
HL = pointer to the end of the buffer supplied + 1
DE=pointer to start of DATE$ storage area in TRSDOS
BC is altered by this SVC.

Example:
See Sample Program F, lines 252-253.

Software 67

@DCINIT SVC Number 42
Initialize the FDC

Issues a disk controller initialization command. The fleppy disk driver treats this
the same as @RSTOR (SVC 44).

Entry Conditions:
A =42 (X'2R)
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

Example:
See the example for @CKDRYV in Sample Program D, lines 38-39.

Software 68

@DCRES SVC Number 43
Reset the FDC

Issues a disk controller reset command. The floppy disk driver treats this the
same as @RSTOR (SVC 44),

Entry Conditions:

A=43 (X'2B))

C=logical drive number (0-7)
Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.
A=error number

Example:
See the example for @CKDRYV in Sample Program D, lines 38-39.

Software 69

@DCSTAT SVC Number 40
Test if Drive Assigned in DCT

Tests to determine whether a drive is defined in the Drive Code Table (DCT).

Entry Conditions:
A= 40 (X'28))
C=logical drive number (0-7)

Exit Conditions:
Success always.
If Zis set, the specified drive is already defined in the DCT.
if NZ is set, the specified drive is not defined in the DCT.

General:
Only AF is altered by this SVC,

Example:
See Sample Program D, lines 27-33.

Software 70

@DEBUG

SVC Number 27

Enter DEBUG

Forces the system to enter the DEBUG utility. Pressing @ from the
DEBUG monitor causes program execution to continue with the next instruc-
tion. If you want to use the functions in the extended debugger when DEBUG
is entered in this fashion, you must issue the DEBUG (E) command (optionally
with the @CMNDR SVC) before this SVC is executed.

Entry Conditions:

A=27 (X1B")
General:

This SVC does not return unless @ is entered in DEBUG.
Example:

See Sample Program A, lines 54-60,

Software 71

@DECHEX SVC Number 96
Convert Decimal ASCII to Binary

Converts a decimal ASCIl string to a 16-bit binary number. Overflow is not
trapped. Conversion stops on the first out-of-range character.

Entry Conditions:
A =96 (X'60")
HL = pointer to decimal string

Exit Conditions:
Success always.
BC = binary conversion of ASCH string
HL =pointer io the lerminating byte
AF is altered by this SVC.

Example:
See Sample Program B, lines 88-95.

Software 72

@DIRRD SVC Number 87
Directory Record Read

Reads a directory sector that contains the directory entry for a specified Direc-
tory Entry Code (DEC). The sector is placed in the system buffer and the reg-
ister pair HL points to the first byte of the directory entry specified by the DEC.

Entry Conditions:
A=87 (X'57)
B = Directory Entry Code of the file
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
HL = pointer to directory entry specified by register B
Failure, NZ flag set.
A =error number
HL is altered.

General:

AF is always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting
for formatted media to be placed in the drive. The programmer should
perform a @CKDRV SVC before executing this call.

if the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Care
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See Sample Program C, lines 152-174.

Software 73

@DIRWR SVC Number 88

Directory Record Write

Writes the system buffer back to the disk directory sector that contains the
directory entry of the specified DEC.

Entry Conditions:
A =88 (X'58)
B = Directory Entry Code of the file
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
HL =pointer to directory entry specified by register B
Failure, NZ flag set.
A =error number
HL is altered.

General:

AF is always altered.

it the drive does not contain a disk, this SVC may hang indefinitely waiting
for formatted media to be placed in the drive. The programmer should
perform a @CKDRYV SVC before executing this call.

it the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z flag set and HL pointing to a random address. Care
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See the example for @DIRRD in Sample Program C, lines 152-174.

Software 74

O

@DIV8 SVC Number 93
8-Bit Divide

Performs an 8-bit unsigned integer divide.

Entry Conditions:
A =93 (X'sD’)
E = dividend
C=divisor

Exit Conditions:
Success always.
A = quotient
E =remainder
No other registers are altered.

Example:
See Sample Program B, lines 61-64.

Software 75

@DIV16 SVC Number 94
16-Bit by 8-Bit Divide

Performs a division of a 16-bit unsigned integer by an 8-bit unsigned integer.
Entry Conditions:

A =94 (X'5E)
HL = dividend
C =divisor

Exit Conditions:
Success always,
HL = guotient
A =remainder
No other registers are altered.

Example:
See Sample Program B, lines 105-109.

Software 76

9

@DODIR

SVC Number 34

Do Directory Display / Buffer

Reads files from a disk directory or finds the free space on a disk. The directory
information is either displayed on the screen (in five-across format) or sent to a
buffer. The directory information buffer consists of 18 bytes per acfive, visible
file: the first 16 bytes of the directory record, plus the ERN (ending record num-
ber). An X'FF’ marks the buffer end.

Entry Conditions:

A=34 (X'22)
C=logical drive number (0-7)
B selects one of the following functions:
if B =0, the directory of the visible, non-system files on the disk in the
specified drive is displayed on the screen. The filenames are dis-
played in columns, 5 filenames per line.
if B =1, the directory is written t6 memory:.
HL = pointer to buffer to receive information
If B=2, a directory of the files on the specified drive is displayed for files
that are visible, non-system, and match the extension partspec
pointed to by HL.

HL = partspec for the filename’s extension
This field must contain a valid 3-character extension, padded
with dollar signs ($). For example, to display all visible, non-
system files that have the letter ‘C’ as the first character of the
extension, HL should point to the string “C$$".

it B =3, a directory of the files on the specified drive is written to the buffer
that is specified by HL for files that match the extension partspec
pointed to by HL.

HL = pointer to the 3-byte partspec and to the buffer tc receive the
direclory records (see general notes)

Keep in mind that the area pointed to by HL is shared. if you are
using this buffer more than once, you have to re-create the
partspec in the buffer before each call because the previous
call will have erased the partspec by writing the directory
records.

it B =4, the disk name, original free space, and current free space on the
disk is read.

HL = poainter to a 20-byte buffer to receive information

Exit Conditions:

Success, Z flag set.
If B=1 or 3, the directory records have been stored.
HL = pointer to the beginning of the buffer
If B=0 or 2, the filenames or matching filenames are displayed with 5
filenames per line.
If B=4, the disk name and free space information are stored in the
format:

Bytes 0-7 =Disk name. Disk name is padded on the right
with blanks (X'20').

Bytes 8-15=Creation date (the date the disk was formatted
or was the target disk in a mirror image
backup). The date is in the format MM/DD/YY.

Bytes 16-17 = Total K originally available in binary LSB-MSB
format.

Bytes 18-19=Free K available now in binary LSB-MSB
format.

HL = pointer to the beginning of the data area
Failure, NZ flag set.
A =error number

Soitware 77

General:

AF is the only register altered by this SVC.

The size of the buffer to receive directory records must be large enough to
hold directory entries for the maximum number of files allowed on the
drive and disk you specify. For example, if the drive is a hard disk, you
must be able to store 256 directory entries, and sach entry requires 18
bytes of storage. For more information on calculating the amount of
space needed for this buffer, see the tables under “Directory Records.”
They give the maximum number of entries allowed on a given type of
disk. You must add 2 records to this value when B =1 t¢ store the direc-
tory entry for DIR/SYS and BOOT/SYS.

Example:
See Sample Program E, lines 32-40.

Software 78

C

)

C

@DSP

Display Character

Outputs a byte 10 the video display. The byte is displayed at the current cursor

position.

Entry Conditions:
A=2 (X'02")
C=byte to display

Exit Conditions:
Success, Z flag set.
A= byte displayed
Failure, NZ flag set.
A = error number

General:
DE is altered by this SVC.

Example:
See Sampie Program C, lines 219-221.

Software 79

SVC Number 2

@DSPLY SVC Number 10

Display Message Line

Displays a message line, starting at the current cursor position. The line must
be terminated with either a carriage return (X'0D’) or an ETX (X'03). If an ETX
terminates the line, the cursor is positioned immediately after the last character
displayed.

Entry Conditions:
A =10 (X'0A)
HL = pointer to first byle of message

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
AF and DE are altered by this SVC.

Example:
See Sample Program C, lines 35-37.

Software 80

@ERROR SVC Number 26

Entry to Post an Error Message

Provides an entry to post an error message. if bit 7 of register C is set, the error
message is displayed and return is made to the calling program. If bit 6 is not
set, the extended error message is displayed. Under versions prior to 6.2 the
error display is in the following format:
*#% Errcod=xxs+ Error messade string **#
<{filespec or devsrec:
Referenced at X 'dddd’

Under Version 6.2 the error display is in the foliowing format:

*¥*Error code = xx» Returns to X' dddd’
**Error messade string

“filesrec s devsrpec: or oren FCB/DCB status:
Last SVC = nnny Returned to X’ rrrr”’

dddd is the return address of the @ ERROR SVC in the application program.
nnn is the last SVC executed before the @ ERROR SVC request.
rrrr is the address the previous SVC returned to in the application program.

if bit 6 is set, then only the “Error message string” is displayed. This bit is
ignored if bit 6 of SFLAG$ (the extended error message bit) is set. If bit 6 of
CFLAGS$ is set, then no error message is displayed. If bit 7 of CFLAGS$ is set,
then the “Error message string” is placed in a user buffer pointed to by register
pair DE. See @FLAGS (SVC 1@1) for more information on SFLAGS$ and
CFLAGS.

Entry Conditions:
A=26 (X"1A)
C=error number with bits 6 and 7 optionally set

Exit Conditions:
Success always.

General:
To avoid a looping condition that could result from the display device gen-
erating an error, do not check for errors after returning from @ERROR.
If you do not set bit 6 of register C, then you should execute this SVC only
after an error has actually occurred.

Example:
See Sample Program C, lines 379-389.

Software 81

@EXIT

SVC Number 22

Exit to TRSDOS

This is the normal program exit and return to TRSDOS. An error exit can be
done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error
as described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL
causes an active JCL to abort.)

Entry Conditions:
A =22 (X'16°)
HL = Return Code
If HL =0, then no error on exit.
If HL # 0, then the @ABORT SVC returns X'FFFF' in HL automatically.

General:
This SVC does not return,

Example:
See Sample Program B, lines 206-207.

Software 82

@FEXT SVC Number 79
Set Up Default File Extension

Inserts a default file extension into the File Control Block if the file specification
entered contains no extension. @FEXT must be done before the fiie is opened.

Entry Conditions:
A =79 (X'4F)
DE=pointer to FCB
HL = pointer to default extension (3 characters; alphabetic characters
must be upper case and first character must be a letter)

Exit Conditions:
Success always.
AF and BC are altered by this SVC.
If the default extension is used, HL is also altered.

Example:
See Sample Program C, lines 111-132,

Software 83

@FLAGS SVC Number 101

Point Y to System Flag Table

Points the 1Y register to the base of the system flag table. The status flags listed
below can be referenced off IY. You can alter those bits marked with an asterisk
(*). Bits without an asterisk are indicators of current conditions, or are unused
or reserved.

Note: You may wish to save KFLAGS and SFLAGS if you intend to modify them
in your program, and restore them on exit.

Entry Conditions:
A=101 (X'65)

Exit Conditions:
Success always.
IY = pointer to the following system information:
IY—1 Contains the overlay request number of the last system module
resident in the system overlay region.
IY+0 = AFLAGS (allocation flag under Version 6.2 only)
Contains the starting cylinder number to be used when
searching for free space on a diskette. It is normally 1.
if the starting cylinder number is larger than the number
of cylinders for a particular drive, 1 is used for that drive.
IY+2 =CFLAGS
*bit7 — If set, then @ERROR will transfer the “Error message
string” to your buffer instead of displaying it. The mes-
sage is terminated with X'0D.'

*bité — If set, do not display system error messages 0-62. See
@ ERROR (SVC 26) for more information.
*hit5 — If set, sysgen is not allowed.
*hitd — I set, then @CMNDR will execute only system library
commands.
bit3 —If set, @RUN is requested from either the SET or
SYSTEM (DRIVER =) commands.
bit2 —If set, @KEYIN is executing due to a request from
SYS1.
hit1 —if set, @CMNDR is executing. This bit is reset by
@EXIT and @CMNDI.
*bit® — If set, HIGHS cannot be changed using @HIGH$

{SVC 100). This bit is reset by @EXIT and @CMNDI.
IY+3 =DFLAGS$ (device flag)
*bit7 —“1" if GRAPHIC printer capability desired on screen
print (CONTADD) (7) causes screen print. See the SYS-
TEM (GRAPHIC) command under “Technical Infor-
mation on TRSDOS Commands and Utilities.)

bité — “1”ift KSM module is resident
bit6 — Currently unused
bit4 — “1”if MemDisk active
bit3 — Reserved
bit2 —*1"if Disk Verify is enabled

* bit 1 —"1"if TYPE-AHEAD is active
bit@ — “1”if SPOOL is active

IY +4 =EFLAGS (ECI flag under Version 6.2 only)
Indicates the presence of an ECI program. If any of the
bits are set, an ECl is used, rather than the SYS1 inter-
preter. The ECI program may use these bits as necce-
sary. However, at [east one bit must be set or the EClis
not executed.

Software 84

IY+5 =FEMSK$ (mask for port OFEH)
IY+8 =IFLAG$ (international flag)

*bit7 — If *1, 7-bit printer filter is active
if “0,” normal 8-bit filters are present
*bit6 —if “1) international character translation will be per-

formed by printer driver
If “0;" characters received by printer driver will be sent

to the printer unchanged
bit5 — Reserved for future languages
bit4 — Reserved for future languages
bit3 — Reserved for future languages
bit2 — Reserved for future languages
bit1 —If“1 German version of TRSDQS is present
bitd@ — If “1,” French version of TRSDOS is present

If bits 5-@ are all zero, then USA version of TRSDOS is present.
IY+10=KFLAGS$ (keyboard flag)

bhit7 — “1"if a character is present in the type-ahead buffer
bit6 — Currently unused
*bits —“1"if CAPS lock is set
bitd — Currently unused
bit3 — Currently unused
*bit2 —"1"if has been pressed
*bit1 — 1" if GHIFD (@ has been pressed (PAUSE)
*bitd —"“1"if has been pressed

Note: To use bits 0-2, you must first reset them and then test to
see if they become set.

IY +12 =MODOUT (image of port 90ECH)

IY + 13=NFLAG$ (network flag under Version 6.2)

bit7 — Reserved for system use.
bit6 — If set, the application program is in the task processor.
Programmers must not modify this bit.
bit5 — Reserved for system use.
bit4 — Reserved for system use.
bit3 — Reserved for system use.
bit2 — Reserved for system use.
bit1 — Reserved for system use.
*bitG — If set, the “file open bit” is written to the directory.

IY + 14=0OPREG$ (memory management & video control image)
IY + 17 = RFLAGS$ (retry flag under Version 6.2 only)
Indicates the number of retrys for the floppy disk driver.
This should be an even number larger than two.
IY + 18 = SFLAG$ (system flag)
bit7 —*"1"if DEBUG is to be turned on
*hité —"1" if extended error messages desired (see
@ERROR for message format); overrides the setting
of bit 6 of register C on @ERROR (SVC 26) and
should be used only when testing

bits5 — “1"if DO commands are being executed
*bit4 — “1”if BREAK disabled
bit3 —"1"if the hardware is running at 4 mhz (SYSTEM
(FAST)). if "0, the hardware is running at 2 mhz (SYS-
TEM (SLOW)).
“bit2z —"1"if LOAD called from RUN
bit1 —"1"if running an EXECute only file
*bitd — “1" specifies no check for matching LRL on file open

and do not set file open bit in directory. This bit should
be set just before executing an @OPEN (SVC 59) if
you want to force the opened file to be READ only dur-
ing current I/O operations. As soon as either call is
executed, SFLAGS$ bit 0 is reset. If you want to disable
LRL checking on another file, you must set SFLAGS
bit @ again.

Software 85

1Y + 19=TFLAGS$ (type tlag under Version 6.2 only)
Identifies the Radio Shack hardware model. TFLAGS
allows programs to be aware of the hardware environ-
ment and the characler sets available for the display.
Current assignments are:

2 indicates Model il
4 indicates Model 4
5 indicates Model 4P
12 indicates Model 12
IY + 20=UFLAGS$ (user fiag under Version 6.2 only)
May be set by application programs and is sysgened

properly.
Y + 21 =VFLAGS
bit7 — Reserved for system use
"hité — “1” selects solid cursor, “0” selects blinking cursor
bitS5 — Reserved for system use
*bit4 — “1”if real time clock is displayed on the screen

bits @-3 — Reserved for system use
Y + 22 =WRINTMASKS {mask for WRINTMASK port)
IY +26 =SVCTABPTRS$ (pointer to the high order byte of the SVC table
address; low order byte = 00)
IY +27 =Version ID byte (66H=TRSDOS version 6.0.x.x,
61H=TRSDOS version 6.1.x.x, etc)
IY — 47 = Operating system release number. Provides a third and fourth
character (12H = TRSDOS version x.x.1.2)
IY +28
to
IY + 30 = @ICNFG vector
1Y + 31
to
IY + 33 = @KITSK vector

Software 86

@FNAME

SVC Number 80

Get Filename

Gets the filename and extension from the directory using the specified Direc-
tory Entry Code (DEC) for the file.

Entry Conditions:
A =80 ({X'50"
DE = pointer to 15-byte buffer to receive filename/extension.drive, fol-
fowed by a X'@D’ as a terminator
B =DEC of desired file
C =logical drive number of drive containing fife (¢-7)

Exit Conditions:
Success, Z flag set.
HL = pointer to directory entry specified by register B
Failure, NZ flag set.
A =error number
HL is altered.

General:

AF and BC are always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting
for formatted media to be placed in the drive. The programmer should
perform a @CKDRYV SVC before executing this call.

if the Directory Entry Code is invalid, the SVC may not return or it may
return with the Z ftag set and HL pointing to a random address. Care
should be taken to avoid using the wrong value for the DEC in this call.

Example:
See Sample Program C, lines 274-286.

Software 87

@FSPEC

SVC Number 78

Assign File or Device Specification

Moves afile or device specification from an input buffer into a File Control Block

(FCB). Conversion of lower case to upper case is made automatically.

Entry Conditions:
A =78 (X'4E)
HL =pointer to buffer containing filespec or devspec
DE=pointer to 32-byte FCB or DCB

Exit Conditions:
Success always.

If the Z flag is set, the file specification is valid.
HL =pointer to terminating character
DE=pointer to start of FCB

If the NZ fiag is set, a syntax error was found in the filespec.
HL = pointer to invalid character
DE= pointer to start of FCB
A =ijnvalid character

General:
AF and BC are altered.

Example:
See Sample Program C, lines 53-65.

Software 89

@GET SVC Number 3
Get One Byte From Device or File

Gets a byte from a logical device or a file. The DCB TYPE byte (DCB + 0, Bit @)
must permit a GET operation for this call to be successful.

Entry Conditions:
A =3(X03)
DE =pointer to DCB or FCB

Exit Conditions:
Success, Z flag set.
A= character read frorn the device or file
Failure, NZ flag set. Test register A:
If A=0, no character was available.
If A+ 0, A contains error number,

Example:
See the section “Device Driver and Filter Templates”’

C

Software 90

@GTDCB SVC Number 82
Get Device Control Block Address

Finds the location of a Device Control Block (DCB). Iif DE =0 (no device name
specified), HL returns the address of the first unused DCB found.

Entry Conditions:
A =82(X'52)
DE = 2-character device name (E =first character, D = second characier)

Exit Conditions:
Success, £ flag set. DCB was found.
HL = pointer to start of DCB
Failure, NZ flag set. No DCB was available.
A =Error 8 (Device not available)
HL is altered.

General:
AF is always altered by this SVC.

Example:
See the section "Device Driver and Filter Templates.’

Software 91

@GTDCT SVC Number 81
Get Drive Code Table Address

Gets the address of the Drive Code Table for the requested drive.

Entry Conditions:
A =81 (X'51)
C=logical drive number (0-7)

Exit Conditions:
Success always.
IY =pointer to the DCT entry for the specified drive
AF is always altered by this SVC.

General:
If the drive number is out of range, the IY pointer will be invalid. This call
does not return Z/NZ 1o indicate if the drive number specified is valid
{0-7) or enabled.

Example:
See the example for @DCSTAT in Sample Program D, lines 27-33.

Software 92

@GTMOD SVC Number 83
Get Memory Module Address

Locates a memory module, if the standard memory header is at the start of the
module. The scanning siarts with the system drivers in low memory, then
moves to any high memory modules. If any routine is encountered that does not
start with a proper header, scanning stops.

Entry Conditions:
A =83 (X'53)
DE = pointer to memory module name in upper case, terminated with any
character in the range 00-31

Exit Conditions:
Success always.
If the Z flag is set, the module was found.
HL = pointer to first byte of memory header
DE=pointer to first byte after module name
If the NZ flag is set, the module was not found.

HL is altered.
General:
AF is always altered by this SVC.
Example:

See Sample Program F, lines 144-154.

Software 93

@HDFMT SVC Number 52
Hard Disk Format

Passes a format drive command to a hard disk driver. If the hard disk controller
accepts it as a valid command, then it formats the entire disk drive. If the hard

disk controller does not accept it, then an error is returned. Radio Shack hard-
ware does not currently support @HDFMT.
Entry Conditions:
A=52(X'34")
C=logical drive number (0-7)
Exit Conditions:

Success, Z flag set.
Failure, NZ flag set.
A=eftror number

O

Software 94

@HEXDEC SVC Number 97
Convert Binary to Decimal ASCII

Converts a binary number in HL to decimal ASCI.

Entry Conditions:
A =97 (X'67)
HL = number to convert
DE=pointer to 5-character buffer to hold converted number

Exit Conditions:
Success always.
DE =pointer to end of buffer + 1
AF, BC, and HL are altered by this SVC.

Example:
See Sample Program B, lines 73-76.

Software 95

@HEXS8 SVC Number 98

Convert 1 Byte to Hex ASCII

Converts a 1-byte number to hexadecimal ASCII.

Entry Conditions:
A =98 (X'62)
C =number to convert
HL =pointer to a 2-character buffer to hold the converted number

Exit Conditions:
Success always.
HL = pointer to the end of buffer+ 1
Only AF is altered by this SVC.

Example:
See Sample Program B, lines 236-246.

Software 96

@HEX16 SVC Number 99
Convert 2 Bytes to Hex ASCII

Converts a 2-byte number to hexadecimal ASCII.

Entry Conditions:
A =99 (X'63)
DE=number to convert
HL = pointer to 4-character buffer to hold converted number

Exit Conditions:
Success always.
HL = pointer to end of buffer+ 1
Only AF is altered by this SVC.

Example:
See Sample Program B, lines 248-258.

Software 97

@HIGHS SVC Number 100
Get or Alter HIGHS or LOWS

Provides the means to read or aiter the HIGH$ and LOW$ values.

Note: HIGHS must be greater than LOWS. LOWS is reset to X'2FFF' by @EXIT,
@ABORT, and @CMND!.

Entry Conditions:

A=100 (X'64)

B selects HIGH$ or LOWS
If B =@, SVC deals with HIGH$
If B+#@, SVC deals with LOW$

HL selects one of the following functions:
If HL = 0, the current HIGH$ or LOWS is returned
If HL # 0, then HIGH$ or LOWS is set to the value in HL

Exit Conditions:
Success, Z flag set.
HL = current HIGH$ or LOWS. If HL +# 8 on entry, then HIGHS or LOWS
is now set to that value.
Failure, NZ flag set.
A =error number

General:
If bit @ of CFLAGS is set (see @FLAGS), then HIGH$ cannot be changed
with this call. The call returns error 43, “SVC parameter error’

Example:
See Sample Program F, lines 75-86.

Software 98

@INIT SVC Number 58
Open or Initialize File

Opens a file. f the file is not found, this SVC creates it according to the file
specification.

Entry Conditions:
A =58 (X'3A)
HL = pointer to 256-byte disk /O buffer
DE=pointer to FCB containing the file specification
B =Logical Record Length to be used while file is open

Exit Conditions:
Success, Z flag set. File was opened or created.
The CF flag is set if a new file was created.
Failure, NZ flag set.
A=error number

General:
Only AF is aitered by this SVC.
The file open bit is set in the directory if the access level is UPDATE or
greater.

Example:
See Sample Program C, lines 260-272.

Software 99

@IPL SVC Number 0
Reboot the System

Does a software reset. Floppy drive & must contain a systemn disk. @IPL uses
the standard boot sequence, the same as for a hard reset (pressing the reset
button). Memory locations X'41E5"-X'4225" and X'4300"-X'43FF' are aitered
during the boot of the machine.
Entry Conditions:

A=0 (X'00)

General:
This SVC does not return.

Software 100

!

@KBD SVC Number 8

Scan Keyboard and Return

Scans the keyboard and returns a character if a key is pressed. If no key is
pressed, a zero value is returned.

Entry Conditions:
A =8 (X'08)

Exit Conditions:
Success, Z flag set.
A =character pressed
Failure, NZ set.
If A=0, no character was available.
If A+, then A contains error number.

General:
DE is altered by this SVC.

Example:
See Sample Program C, lines 198-200.

Software 101

@KEY SVC Number 1
Scan *Kl Device, Wait for Character

Scans the *Kl device and returns with a character. It does not return until a
character is input to the device.

Note: The system suspends execution of the program that issued the SVC until
a character can be obtained. Background tasks will continue to run normally.

Entry Conditions:
A=1(X'01)

Exit Conditions:
Success, Z flag set.
A =character entered
Failure, NZ flag set.
A =error number

General:
DE is altered by this SVC.

Example:
See Sample Program B, lines 202-203.

Software 102

o

@KEYIN

SVC Number 9

Accept a Line of Input

Accepts a line of input until terminated by either an or a (BREAK). Entries
are displayed on the screen, starting at the current cursor position. Backspace,
tab, and line delete are supported. If JCL is active, the line is fetched from the
active JCL file.

Entry Conditions:
A =9(X'09)
HL = pointer to user line buffer of length B+ 1
B =maximum number of characters to input
C =0

Exit Conditions:
Success, Z flag set.
HL = pointer to start of buffer
B =actual number of characters input
CFis setif terminated the input.
Failure, N2 flag set.
A =error number

General:
DE and C are altered by this SVC.

Example:
See Sample Program C, lines 39-47.

Software 103

@KLTSK SVC Number 32
Remove Currently Executing Task

When called by an executing task driver, removes the task assignment from the
task table and returns to the foreground application that was interrupted.

Entry Conditions:
A=32 (X207
General:

This SVC does not return,

Example:
See the example for @RMTSK in Sample Program F, lines 134-142.

Ly

Software 104

@LOAD SVC Number 76

Load Program File

Loads a program file. The file must be in load module format.

Entry Conditions:
A =76 (X'4C)
DE =pointer to FCB containing filespec of the file to load

Exit Conditions:
Success, Z flag set.
HL =transfer address retrieved from file
Failure, NZ fiag set.
A =error number

Example:
See Sample Program A, lines 50-56.

Software 105

@LOC

SVC Number 63

Calculate Current Logical Record Number

Returns the current logical record number.

Entry Conditions:
A =63 (X3F)
DE = pointer to the file's FCB

Exit Conditions:
Success, Z flag set.
BC =logical record number
Failure, NZ flag set.
A =error number

General:
AF is altered by this SVC.

Example:

See Sample Program C, lines 305-311.

Software 106

 J

@LOF

SVC Number 64

Calculate the EOF Logical Record Number

Returns the EOF (End of File) logical record number.

Entry Conditions:
A =64 (X'40)
DE =pointer to FCB for the file to check

Exit Conditions:
Success, Z flag set.
BC =the EOF logical record number
Failure, NZ flag set.
A =arror number

General:
Only AF is altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 107

@LOGER SVC Number 11

Issue Log Message

Issues a log message to the Job Log. The message can be any character string
terminating with a carriage return (X'0D’).

Entry Conditions:
A =11 (X'0B)
HL = pointer lo first character in message line

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
Oniy AF is altered by this SVC.
Example:
LD HL s TEXT iPoint at messade toc outPut
LD A+BLOGER fand outPut it to the Job
sLog
RST 28H iCall the #LOGER SVC

+ 4 4

TEXT: DEFM ‘This is a messade for the Job Log’
DEFE @DH iMessagde must be terminated
fwith an <ENTER?>.

Software 108

U

@LOGOT

SVC Number 12

Display and Log Message

Displays and logs a message. Performs the same function as @DSPLY fol-
iowed by @LOGER.

Entry Conditions:
A =12 (X'0C")
HL =pointer to first character in message line

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
Only AF is altered by this SVC.
To avoid a looping condition that could result from the display device gen-

erating an error, no error checking should be done after returning from
@LOGOT.

Example:
LD HL +TEXT tPoint at messade to outpPut
LD ABLOGOT 3Sand outPut it to the Job
iLog AND the display
RST Z8H iCall the BLOGOT SVC

+ 4

TEXT: DEFM ‘This messade will be displaved both in’
DEFM ‘the Job Log and on the disrlay.’
DEFEB @DH fMust terminate text with an
i<ENTER>.

Software 109

@MSG ~ SVC Number 13
Send Message to Device

Sends a message line to any device or file.

Entry Conditions:
A =13 (X'0D)
DE= pointer to DCB or FCB of device or file to receive ouiptit
HL = pointer o message line terminated with X'0D' or X'03’

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
Only AF is altered by this SVC.

Example:
LD HL »TEXT jPoint at messade to outpPut
LD DE »DCBP tPoint at the device control

sblocKk for our device

LD A :BMSG sand write this text to it
RST 28H iCall the @MSG SYC

+* 8 ¢

TEXT: DEFM 'DS555-535<LOGIN USER>’ 3iText to write to
sthis device. In this case:
5it is a dialing modem.
DEFB @3H iTerminate the messade

Software 110

@MULS8 SVC Number 90
8-Bit Multiplication

Performs an B-bit by 8-bit unsigned integer multiplication. The resultant product
must fit into an 8-bit field.

Entry Conditions:
A =90 (X'5A)
C=multiplicand
E = multiplier

Exit Conditions:
Success always.
A=product
DE is altered by this SVC.

Example:
See Sample Program B, lines 15@-153.

Software 111

@MUL16 SVC Number 91
16-Bit by 8-Bit Multiplication

Performs an unsigned integer mulliplication of a 16-bit multiplicand by an 8-bit
multiplier. The resultant product is stored in a 3-byte register field.

Entry Conditions:
A =91 (X'5B)
HL =multiplicand

C =muitiplier

Exit Conditions:
Success always.
HL = two high-order bytes of product
A =low-order byte of product
DE is altered by this SVC.

Example:
See Sample Program B, lines 183-187.

O

Software 112

 V,

@OPEN SVC Number 59

Open Existing File or Device

Opens an existing file or device.

Entry Conditions:
A =59 (X'3B)
HL = pointer to 256-byte disk I/O buffer
DE=pointer to FCB or DCB containing filespec or devspec
B =logical record length for open file

Exit Conditions:
Success, £ flag set.
Failure, NZ flag set.

A= error number

General:
AF is altered by this SVC.
The file open bit is set in the directory if the access level is UPDATE or
greater.

Example:
See Sample Program C, lines 134-150.

Software 113

@PARAM SVC Number 17

Parse Parameter String

Parses an optional parameter string. its primary function is to parse command
parameters contained in a command line starting with a parenthesis. The
acceptable parameter format is:

PARM = X'nnnn'....hexadecimal entry

PARBRM=nnnnndecimal entry

PARM = “string” ...alphanumeric entry

PARM=flag ...ON, OFF Y, N, YES, or NO

Note: Entering a parameter with no equal sign or value is the same as

using PARM = ON. Entering PARM = with no value is the same as
using PARM = OFF,

Entry Conditions:
A =17 (X'11)
DE=pointer to beginning of your parameter table
HL =pointer to command line to parse (the parameter string is enclosed
within parentheses)

Exit Conditions:
Success always.
If Z is set, either valid parameters or no parameters were found.
If NZ is set, a bad parameter was found.

General:
NZ is not returned if parameter types other than those specified are
entered. The application must check the validity of the response byte.

The valid parameters are contained in a user table which must be in one of the
following formats. {Parameter names must consist of alphanumeric charac-
ters, the first of which is a letter)

For use with TRSDOS Version 6, use this format: (;

The pararmeter table starts with a single byte X'80. Each parameter is
stored in a variable length field as described below.

1) Type Byte (Type and length byte)
Bit 7—If set, accept numeric value
Bit 6 —If set, accept flag parameter
Bit 5—If set, accept “string” value
Bit 4 — If set, accept first character of name as abbreviation
Bits 3-0 — Length of parameter name

2) Actual Parameter Name

3) Response byte {Type and length found)

Bit 7— Numeric vaiue found

Bit 6 — Fiag parameter found

Bit 5 — String parameter found

Bits 4-@— Length of parameter entered. If length is @ and the 2-byle
vector points to a quotation mark {X'22’), then the parameter
was a null string. Otherwise, a length of 0 indicates that the
parameter was longer than 31 characters.

4) 2-byle address vector to receive the parsed parameter values.

The 2-byte memory area pointed to by the address field of your table

receives the value of PARM if PARM is non-string. If a string is entered, the

2-byie memory area receives the address of the first byte of “string.” The

entries ON, YES, and Y return a value of X'FFFF’; OFF, NO, and N return -
X'000Q. if a parameter name Is specified on the command line and is fol- 6

Software 114

lowed by an equal sign and no value, then X'0000 or NQ is returned. If a
parameter name is used on the command line without the equal sign, then
a value of X'FFFF or ON is assumed. For any allowed parameter that is
completely omitted on the command line, the 2-byte area remains
unchanged and the response byle is 0.

The parameter table is terminated with a single byte X'0Q.

For compatibility with LDOS 5.1.3, use this format:

A 6-character “word” left justified and padded with bianks foliowed by a 2-
byte address to receive the parsed values. Repeat word and address for as
many parameters as are necessary. You must place a byte of X'00’ at the
end of the table.

Example:

COMAND:

PARM;:

RESPz

VAL :

LD
LD
LD

RST
JR

LD
AND
JR

LD
OR
JR

JR

L BN

DEFS

DEFB
DEFB

DEFM
DEFB
DEFH
DEFB
DEFS

HL +COMAND
DE +PARM
A+BPARAM

28H
NZ 'ERROR

A+ (RESP)
a4@H
ZBAD

A (VALY
A
Z10FF

OoN

8@

BOH
40H+6

‘UPDATE
@

VAL

]

2

Software 115

tPoint at command buffer
iPoint at parameter list
tParse the items on the
jcommand line

iCall the @BPARAM SVC

tAn error octurred (not
yincluded here)

tGet response code

iTest resrponse flags

tUser specified something
tlike UPDATE=X’"1234" or
sUPDATE="HELLO"

iGet 1st brvte of VAL word
iTest the value

JUPDATE=OFF or UPDATE=NO was
ispecified

SUPDATE=ON or UPDATE=YES was
ispecified

jArea wWwhere command is
istored

iTable header code

4@ sars we want a flag
I{(YES/NO), B is lendth of
ithe parameter name
jParameter name

iResponse area

iVector to VAL

fEnd of Table code

Area to receive a Parameter
jvalue

@PAUSE SVC Number 16
Suspend Program Execution

Suspends program execution for a specified period of time and goes into a
“holding” state. The delay is at least 14.3 microseconds per count.

Entry Conditions:
A =16 (X102
BC = delay count

Exit Conditions:
Success always.

Example:
LD BC +36AZH iWait for about 200 milli-
iseconds., 14.3 usecs #
513986 is arPprox. 200

imsecs
LD A+BPAUSE 3$Susprend execution
RST 28H sCall the @PAUSE SVC

Software 116

@PEOF SVC Number 65
Position to End Of File

Positions an open file to the End Record Number (ERN). An end-of-file-
encountered error (X'1C’} is returned if the operation is successful. Your pro-
gram may ignore this error.

Entry Conditions:
A =65 (X'41)
DE = pointer to FCB of the file to position

Exit Conditions:
NZ flag always set.
If A=X1C, then success.
If A # X'1C, then failure.
A =error number

General:
AF is always altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 117

@POSN

SVC Number 66

Position File

Positions a file to a logical record. This is useful for positioning to records of a
random access file.

When the @POSN routine is used, Bit 6 of FCB + 1 is automatically set. This
ensures that the EOF (End Of Fiie} is updated when the file is closed only if the
NRN (Next Record Number) exceeds the current ERN (End Record Number).

Note that @PQOSN must be used for each write, even if two records are side by
side.

Entry Conditions:
A =66 (X'42)
DE = pointer to FCB for the file to position
BC =the logical record number

Exit Conditions:
It Z flag is set or A=X"1C’ or X'1D] then success.
The file was positioned.
Otherwise, failure.
A=error number

General:
AF is always altered by this SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 118

@PRINT SVC Number 14

Prints Message Line

Qutputs a message line to the printer. The line must be terminated with either a
carriage return {X'0D’) or an ETX (X'03’).

Entry Conditions:
A =14 (X'0E’)
HL = pointer fo message to be output

Exit Conditions:
Success, Z fiag set.
Failure, NZ flag set.

A =error number

General:
AF and DE are altered by this SVC.
Example:
LD HL + TEXT iText to be output to the
irrinter
LD AYBPRINT SHWrite this messade to the
irrinter device
RST 28H iCall the BPRINT SVC
TEXT: ODEFB OCH i0o a Tor of Form
DEFM ‘Report continued Page
DEFB 3 iTerminate with a <ETX> or

jan <ENTER>

Software 119

@PRT SVC Number 6
Send Character to Printer

Outputs a byte to the line printer.

Entry Conditions:
A=6 (X'06")
C=character to print

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A = error number

General:

AF and DE are altered by this SVC.

If the line printer is attached but becomes unavailable {out of paper, out of
ribbon, turned off, off-line, buffer full, etc.), the printer driver waits approx-
imately ten seconds. If the printer is still not ready, a "Device not avail-
able” error is returned.

Example:
LD A (PAGE}) 3Get the rPage number
ADD Ay'B’ iMake it ASCII
LD Csh §Put the value here
LD AYBPRT ilWrite this character to the
sPrinter
RST 28H iCall the @PRT SVC
L 2)
PAGE: DEFB 2 iStart with rade 2

Software 120

@PUT SVC Number 4
Write One Byte to Device or File

Outputs a byte to a logical device or file. The DCB TYPE byte (DCB + 0, Bit 1)
must permit PUT operation.

Entry Conditions:
A =4(X04)
DE = pointer to DCB or FCB of the output device
C =byte lo output

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A =error number

General:
AF is always altered by this SVC.

Example:
See the section “Device Driver and Filter Templates.’

Software 121

@RAMDIR SVC Number 35
Get Directory Record or Free Space

Reads the directory information of visible files from a disk directory, or gets the
amount of free space on a disk.

Entry Conditions:
A =35 (X'23)
ML = pointer o RAM buffer to receive information
B =logical drive number (0-7)
C selects one of the following functions:
If C =@, get directory records of all visible files.
If C =255, get free space information.
If C=1-254, get a single directory record (see below).

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A =error number

Each directory record requires 22 bytes of space in the buffer. If C =@, one addi-
tional byte is needed to mark the end of the buffer.

For single directory records, the number in the C register shouid be one less
than the desired directory record. For example, if C =1, directory record 2 is
fetched and put in the buffer. if a single record request is for an inactive record
or an invisible file, the A register returns an error code 25 (File access denied).

The directory information is placed in the buffer as follows:

Byte Contents
00-14 filename/ext:d (left justified, padded with spaces)

15 protection level, ¢ to 6
16 EOF offset byte
17 logical record length, 0 to 255

18-19 ERN of file
20-21 file size in K (1024-byie blocks)
22 LAST RECORD ONLY. Contains “ + " to mark buffer end.

i C =255, HL should point to a 4-byte buffer. Upon return, the buffer contains:

Bytes 00-¢1 Space in use in K, stored LSB, MSB
Bytes 02-03 Space available in K, stored LSB, MSB

Example:
See the example for @DODIR in Sample Program E, lines 32-40.

Software 122

Y

@RDHDR SVC Number 48
Read a Sector Header

Reads the next ID header when supported by the controller driver. The floppy
disk driver supplied treats this as a @RDSEC (SVC 49).

Entry Conditions:
A =48 (X'30)
HL = pointer to buffer to receive the data
D =cylinder to read
C =logical drive number
E =seclor to read
Exit Conditions:

Success, Z flag set.
Failure, NZ flag set.
A =error number

Example:
See the example for @RDSEC in Sample Program D, lines 63-66.

Software 123

@RDSEC

SVC Number 49

Read Sector

Transfers a sector of data from the disk to your buffer.

Entry Conditions:
A =49 (X31)
HL = pointer to the buffer to receive the sector
D =cylinder to read
E =sector to read
C =logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
Oniy AF is altered by this SVC

Example:
See Sample Program D, lines 63-66.

Software 124

@RDSSC SVC Number 85
Read System Sector

Reads the specified system (directory) sector. If the cylinder number in register
D is not the directory cylinder, the value in D is changed to reflect the real direc-
tory cylinder and the sector is then read.

Entry Conditions:
A =85 (X'55)
HL = pointer to the buffer to receive the sector
D =cylinder to read
E =sectorto read
C =logical drive number (0-7)

Exit Conditions:
Success, Z ftag set.
Failure, NZ flag set.

A=error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 78-92.

Software 125

@RDTRK SVC Number 51

Read a Track

Reads an entire track when supported by the controller driver. The floppy disk
driver supplied treats this as a @RBDSEC (SVC 49) and does not do a track

read. X
Entry Conditions: 6
A =51(X'33)

HL = pointer to buffer io receive the sector
D =track to read

C =logical drive number

E =sectorioread

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A= error number

General:
AF is altered by the supplied floppy disk driver.

Example:
See the example for @RDSEC in Sample Prograr D, lines 63-66.

Software 126

@READ SVC Number 67

Read a Record

Reads a logical record from a file. If the LRL defined at open time was 256
{specified by 0), then the NRN sector is transferred to the buffer established at
open time. For LRL between 1 and 255, the next logical record is placed into a
user record buffer, UREC. The 3-byte NRN is updated after the read operation.

Entry Conditions:
A =67 (X'43)
DE=pointer to FCB for the file to read
HL = pointer to user record buffer UREC (needed if LRL = 1-255; unused if
LRL =256)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

Example:
See Sample Program C, lines 300-304.

Software 127

@REMOV SVC Number 57

Remove File or Device

Removes a file or device.

if a file is to be removed, the File Control Block must be in an open condition.
When this SVC is performed, the file’s directory is updated and the space occu-
pied by the file is dealiocated.

if a device was specified, the device is closed. To remove a device, use the
REMOVE library command.

Entry Conditions:
A =57 (X39)
DE = pointer to FCB or DCB to remove

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

Example:
See Sample Program C, lines 223-231.

Software 128

@RENAM SVC Number 56

Rename File or Device

Changes a file's filename and/or extension.

Entry Conditions:

A =56 (X38)

DE=pointer to an FCB containing the file’s current name
This FCB must be in a closed state.

HL = pointer to new filename string terminated with a X'0D’ or X'03!. This
filespec must be in upper case and must be a valid filespec. You can
convert the filespec to upper case and check its validity by using the
@FSPEC SVC before using @RENAM.

Exit Conditions:
Success, Z fiag set.
Failure, NZ fiag set.

A =error nurber

General:
After the call is completed, the FCB pointed to by DE is altered.
Only AF is altered by this SVC.

Example:

LD DE sFCB iPeint at a closed FCB
icontaininyg the old
ifilesrec

LD HL sNEW iPoint to the new filesreec
ito use

LD A BRENAM iChande the name of the
ifile

RST 2BH iCall the BRENAM SVYC

FCB: DEFS 32 84 File Control Block used

iby the GRENAM SVC. In
ithis examele, it is
jassumed that an @FSPEC
iSVC has loaded a filesreec
jinto the FCB before the
iBRENAM 5VC is performed.

NEW: DEFM ‘NEWNAME/TXT’ iThe new filespec for the
ifile

DEFB @OH iTerminate the filesrec

Software 129

@REW SVC Number 68
Rewind File to Beginning

Rewinds a file to its beginning and resets the 3-byte NRN to Q. The next record
to be read or written sequentiaily is the first record of the file.

Entry Conditions:
A =68 (X'44)
DE = pointer to FCB for the file to rewind
Exit Conditions:
Success, Z flag set. File positioned to record number 0.

Failure, NZ flag set.
A =error number

General:
AF is always altered by this SVC.

Exampile:
See the example for @LOC in Sample Program C, lines 305-311.

Software 130

U

@RMTSK SVC Number 30

Remove Interrupt Level Task

Removes an interrupt leve! task from the Task Control Block table.

Entry Conditions:
A=30 (X'1E’}
C=task slot assignment to remove (0-11)

Exit Conditions:
Success always.
HL and DE are altered by this SVC.

Example:
See Sample Program F, lines 134-142.

Software 131

@RPTSK SVC Number 31

Replace Task Vector

Exits the task process executing and replaces the currently executing task’s
vector address in the Task Control Block table with the address following the
SVC instruction. Return is made to the foreground application that was

interrupted.
Entry Conditions:
A=31 (X"1F)
General:
This SVC does not return.
Example:

LD A:RPTSK 3$Rerlace this task with the
ione located at the
ifollowingd address:

RST 28H iCall the BRPTSK SvC

NEWADD: DEFW @ jAddress of the new task is

iloaded here. This word
imust be immediately after
ithe BRPTSK SVUC. The label
INEWADD is present only to
jallow the address to be
istored.

Software 132

@RREAD

SVC Number 69

Reread Sector

Forces a reread of the current sector to occur before the next YO request is per-
formed. Its most probable use is in applications that reuse the disk /O buffer for
multiple files, to make sure that the buffer contains the proper file sector. This
routine is valid only for byte /O or blocked files. Do not use it when positioned
at the start of a file.

Entry Conditions:
A =69 (X'45)
DE =pointer to FCB for the file to reread

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
AF is always altered by this SVC.

Example:

LD DE +FCB iPoint to File Control Blocek
sof the file that requires
ithe re-read

LD A+BRREAD iJBefore next 1/0s reload
ithe current sector into
ithe system buffer for
ithis file

RST 28H sCall the EBRREAD SVC

Software 133

@RSLCT SVC Number 47
Test for Drive Busy

Pertorms a test of the last selected drive to see if itis in a busy state. If busy, it
is re-selected until it is no longer busy.

Entry Conditions:

A=47 (X'2F)

C=logical drive number {0-7)
Exit Conditions:

Success always.
Only AF is altered by this SVC.

Exampie:

LD C»i1 iTest Drive ! to see 1if it
tis busv

LD A+BRSLCT +$If it is: continue
iselecting it

RST 28H iCall the EBRSLCT SVC

Software 134

Y

@RSTOR SVC Number 44

Issue FDC RESTORE Command

Issues a disk controlier RESTORE command.

Entry Conditions:

A=44 (X'2C)

C=logical drive number (0-7)
Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.
A=error number

Example:
See the example for @CKDRY in Sample Program D, lines 38-39.

Software 135

@RUN

SVC Number 77

Run Program

Loads and executes a program file. If an error occurs during the load, the sys-
tem prints the appropriate message and returns.

Entry Conditions:
A =77 (X4D)
DE = pointer to FCB containing the filespec of the file to RUN
Note: The FCB must be located where the program being loaded will not
overwrite it.

Exit Conditions:
Success, the new program is loaded and executed.
Failure, the error is displayed and return is made to your program.
HL =return code (See the section “Converting to TRSDOS Version 6”
for information on return codes.)

General:
HL is returned unchanged if no error occurred and can be used as a
pointer to a command line.

Example:
See Sample Program A, lines 62-74.

Software 136

)

@RWRIT

SVC Number 70

Rewrite Sector

Rewrites the current sector, following a write operation. The @WRITE function
advances the NRN after the sector is written. @RWRIT decrements the NBN
and writes the disk buffer again. Do not use @RWRIT when positioned to the
start of a file.

Entry Conditions:
A =70 (X'46)
DE = pointer to FCB for the file to rewrite

Exit Conditions:
Success, Z flag set.
Faitlure, NZ flag set.

A= error number

Example:
LD DE +FCB iPoint to the File Control
iBlock
LD A +8RWRIT iJPerform a re-write of the
icurrent sector
RST 28H iCall the ERWRIT SVC

Software 137

@SEEK

SVC Number 46

Seek a Cylinder

Seeks a specified cylinder and sector. @SEEK does not return an error if you
specified a non-existent drive or an invalid cylinder. @SEEK performs no action
if the specified drive is a hard disk.

Note: Seek of a sector is not supported by TRS-80 hardware. An implied seek
is included in sector reads and writes.

Entry Conditions:
A=46 (X'2E")
C=logical drive number
D=cylinder to seek
E = seclor to seek

Exit Conditions:
Success always.
Only AF is altered by this SVC.

Software 138

@SEEKSC SVC Number 71
Seek Cylinder and Sector

Seeks the cylinder and sector corresponding to the next record of the specified
file. (This is done by examining the NRN field of the FCB.) No error is returned
on physical seek errors.

Entry Conditions:
A =71(X47)
DE = pointer lo the file’s FCB

Exit Conditions:
Success always.

Example:
LD DE :FCB $Point to the File Control
tBlock
LD ABSEEKSC iCause the next sector to be
iSEEKed before it 1s
jactually needed
RST 28H iCall the EBSEEKSC SvC

Software 139

@SKIP

SVC Number 72

Skip a Record

Causes a skip past the next logical record. Only the record number contained
in the FCB is changed; no physical /O takes piace.

Entry Conditions:
A =72(X'48)
DE =pointer to FCB for the file to skip

Exit Conditions:

It the Zflagis setorif A= X"1C’ or X'1D; then the operation was successful.
Otherwise, A=error number. If A=X'1C' is returned, the file pointer is
positioned at the end of the file. Any Appending operations would be
performed here. If A=X'1D’ is returned, the file pointer is positioned
beyond the end of the file.

General:
AF is altered by this SVC.
BC contains the current record number. This is the same value as that
returned by the @LOC SVC.

Example:
See the example for @LOC in Sample Program C, lines 305-311.

Software 140

@SLCT SVC Number 41
Select a New Drive

Selects a drive. The time delay specified in your configuration (SYSTEM
(DELAY = Y/N}) is made if the drive selection requires it.

Entry Conditions:
A=41(X29)
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
Only AF is altered by this SVC.

Software 141

@SOUND SVC Number 104

Sound Generation

Generates sound using specified tone and duration codes. Interrupts are dis-
abled during execution.

Entry Conditions:
A =104 (X'68')
B =function code
bits 0-2: tone selection {0-7 with @ = highest and 7 = lowest)
bits 3-7: tone duration (0-31 with @ =shortest and 31 =longest)

Exit Conditions:
Success always.
Only AF is altered by this SVC.

Example:
See Sample Program B, lines 43-45.

Software 142

@STEPI SVC Number 45
Issue FDC STEP IN Command

Issues a disk contraller STEP IN command. This moves the drive head to the
next higher-numbered cylinder. @STEP! is intended for sequential read/write
operations, such as disk formatting.

Entry Conditions:
A =45 (X'2D")
C=logical drive number
Exit Conditions:
Success, £ flag set.

Failure, NZ flag set.
A =error number

General:
Only AF is altered by this SVC.,

Software 143

@TIME

SVC Number 19

Get Time

Gets the system time in dispfay format (HH:MM:SS).

Entry Conditions:
A =19 (X13)
HL = pointer to buffer to receive the time string

Exit Conditions:
Success always.
HL = pointer to the end of buffer+ 1
DE= pointer to start of TIME$ storage area in TRSDOS
AF and BC are altered by this SVC.

Example:
See the example for @DATE in Sample Program F, lines 252-253.

Software 144

s’

@VDCTL SVC Number 15

Video Functions

Performs various functions related to the video display. The B register is used
to pass the function number.

Entry Conditions:
A=15 (X'¢F")
B selects one of the following functions:
if B= 1, return the character at the screen position specified by HL.
H=row on the screen (0-23), where @ is the top row
L =column on the screen {0-79), where 0 is the leftmost column

If B=2, display the specified character at the position specified by
HL

C= chéracrer to be displayed
H=row on the screen (0-23), where 0 is the top row
L =column on the screen (0-79), where @ is the leftmost column

If B=23, move the cursor to the position specified by HL. This is done
even if the cursor is not currently displayed.
H=row on the screen (0-23), where @ is the top row
L =cofumn on the screen (0-79), where @ is the leftmost column

If B=4, return the current position of the cursor.

If B=5, move a 1920-byte block of data to video memory.
HL = pointer to 1920-byte buffer to move to video memory

It B=6, move a 1920-byte block of data from video memory to a
butfer you supply. In 40 line by 24 character mode, there must
be a character in each alternating byte for proper display.

HL = pointer to 1920-byte buffer to store copy of video memory HL
must be in the range X'23FF’ < HL < X'ECO1.

If B =7, scroll protect the specified number of lines from the top of the
screen.
C=number of lines to scroll protect (0-7). Once set, scroll protect
can be removed only by executing @VDCTL with B=7 and
C =0, or by resetting the system. Clearing the screen with
erases the data in the scroll protect area, but the
scroll protect still exists.

If B =8, change cursor character to specified character. If the cursor
is currently not disptayed, the character is accepted anyway
and is used as the cursor character when it is turned back on.,
The defauit cursor character is an underscore (X’5F') under
Version 6.2 and a X'B®’ under previous versions.

C=character to use as the cursor character

If B=9, (under Version 6.2 only} transfer 80 characters to or from
the screen.
If C =0, move characters from the buffer to the screen
If C=1, move characters from the screen to the buffer
H=row on the screen
DE = pointer to 80 byte buffer

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K).
The first 1920 bytes can be displayed. The remaining bytes contain the
type-ahead buffer and other system buffers.

Software 145

Exit Conditions:
fB=1:
Success, Z flag set.
A= character found at the location specified by HL
DE is altered.
Failure, NZ flag set.
A=error number

fB=2:
Success, Z flag set.
DE is altered.
Failure, NZ flag set.
A =error number

¥B=3:
Success, Z flag set.
DE and HL are altered.
Failure, NZ flag set.
A =error number

ifB=4:
Success always.
HL =row and column position of the cursor. H=row on the
screen (0-23), where 0 is the top row; L =column on the
screen (0-79), where @ is the leftmost column.

ifB=5:
Success always.
HL = pointer to the last byte moved lo the video + 1
BC and DE are altered.

fB=6:
Success always.
BC, DE, and HL are altered.

fB=7:
Success always.
BC and DE are altered.

fB=8:
Success always.
A = previous cursor character
DE is altered.

if B =9 (under Version 6.2 only):
Success, Z flag set.
BC, HL, DE are altered.
Failure, NZ flag set because H is out of range.
A= error code 43 (X'2B').

General:
Functions 5, 6, and 7 do not do range checking on the entry parameters.
If HL is not in the valid range in functions 5 and 6, the results may be
unpredictable.
Only function 3 (B = 3) moves the cursor.
if C is greater than 7 in function 7, it is treated as modulo 8.
AF and B are altered by this SVC.

Example:
See Sampie Program F, lines 304-327.

Software 146

@VER SVC Number 73
Write and Verify a Record

Periorms a @WRITE operation followed by a test read of the sector (if the write
required physical O) to verify that it is readable.

If the logical record length is iess than 256, then the logical record in the user
buffer UREC is transferred to the file. If the LRL is equal to 256, a full sector
write is made using the disk /O buffer identified at file open time.

Entry Conditions:
A =73 (X49)
DE = pointer to FCB for the file to verify

Exit Conditions:
Success, Z flag set.
HL = pointer to user buffer containing the logical record
Failure, NZ flag set.
A =error number

General;
Only AF is altered by this SVC.

Example:
See Sample Program C, lines 338-346.

Software 147

@VRSEC

SVC Number 50

Verify Sector

Verifies a sector without transferring any data from disk.

Entry Conditions:
A=50 (X'32)
D= cylinder to verify
E = sector to verify
C=logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set

A =error number

General:
AF is always altered by this SVC.
If the sector is a system sector, the sector is readable if an error 6 is
returned; any other error number signifies an error has occurred.

Example:
See the example for @WRSEC in Sample Program D, lines 68-76.

Software 148

@WEOF SVC Number 74
Write End Of File

Forces the system to update the directory entry with the current end-of-file
information.

Entry Conditions:
A =74 (X'4R)
DE = pointer to the FCB for the file to WEOF

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

Generai:
AF is always altered by this SVC.
Example:
LD DE :FCB jPoint at the File Control
sBlock
LD A sBHEOF sForce the directory entry

ito be updated now:
sinstead of when the file
yis closed

RST 28K iCall the EBWEOF SVC

Software 149

@WHERE SVC Number 7
Locate Origin of SVC

Used to resolve the relocation address of the calling routine.
Entry Conditions:

A=7 (X'07)
Exit Conditions:
Success always.

HL = pointer to address following RST 28H instruction
AF is always altered by this SVC.
Example:
See Sample Program F, lines 36-60.

Software 150

——

@WRITE

SVC Number 75

Write a Record

Causes a write to the next record identified in the File Control Block.

If the logical record length is less than 256, then the logical record in the user
buffer UREC is transferred to the file. if the LRL is equal to 256, a full sector
write is made using the disk I/0O buffer identified at file open time.

Entry Conditions:
A =75 (X'4B})
HL = pointer to user record buffer UREC (unused if LAL = 256)
DE=pointer to FCB for the file to write

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A=error number

General:
AF is always altered by this SVC.

Example:
See the example for @VER in Sample Program C, lines 338-346.

Software 151

@WRSEC SVC Number 53
Write a Sector

Writes a sector to the disk.
Entry Conditions:

A =53 (X'35)
HL = pointer to the buffer containing the sector of data
D =cylinder to write

E =sector to write
C =logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A= error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 68-76.

Software 152

@WRSSC SVC Number 54

Write a System Sector

Writes a system sector (used in directory cylinder).

Entry Conditions:
A =54 (X'36")
HL = pointer to the buffer containing the sector of data
D =cylinder to write
E =sector to write
C =logical drive number

Exit Conditions:
Success, Z flag set.
Failure, NZ ftag set.

A=error number

General:
Only AF is altered by this SVC.

Example:
See Sample Program D, lines 94-104.

Software 153

@WRTRK SVC Number 55
Write a Track

Writes an entire track of properly formatted data. The data format must conform
to that described in the disk controller’s reference manual. @WRTRK must
always be preceded by @SLCT.

Entry Conditions:
A =55(X37)
HL = pointer to format data
D =track to write
C =logical drive number (0-7)

Exit Conditions:
Success, Z flag set.
Failure, NZ flag set.

A =error number

General:
Only AF is altered by this SVC.

Software 154

Numerical List of SVCs

Following is a numerical list of the SVCs:

Dec

CO~ND NHW®W N=S

Hex

00
o
02

03

Label

@IPL
@KEY
@DSP

@GET
@PUT
@CTL

@PRT
@WHERE
@KBD
(@KEYIN
@DSPLY
@LOGER
@LOGOT
@MSG
@PRINT
@VDCTL

@PAUSE
@PARAM
@DATE

@TIME
@CHNIO
@ABORT
@EXIT
@CMND!
@CMNDR

@ERROR
@DEBUG
@CKTSK
@ADTSK
@RMTSK
@RPTSK

@KLTSK
@CKDRY
@DODIR
@RAMDIR

@DCSTAT
@SLCT
@DCINIT
@DCRES
@RSTOR
@STEPI

Software 155

Function

Reboot the system

Scan Kl device, wait for character
Display character at cursor, advance
cursor

Get one byte from a logical device
Write one byte 1o a logical device
Make a control request to a logical
device

Send character to the line printer
Locate origin of CALL

Scan keyboard and return

Accept a line of input

Display a message line

Issue a log message

Display and log a message

Message line handler

Print a message line

Position/locate cursor, get/put char-
acter at cursor

Suspend program execution

Parse an optional parameter string
Get system date in the format MM/
DD/YY

Get system time in the format
HH:MM:SS

Pass control to the next module in a
device chain

Load HL with X'FFFF’ error and goto
@ EXIT

Exit program and return to TRSDOS
Reserved for future use

Entry to command interpreter with
return to the system

Entry to command interpreter with
return to the user

Entry to post an error message

Enter DEBUG

Check if task slot in use

Add an interrupt level task

Remove an interrupt level task
Replace the currently executing task
vector

Remove the currently executing task
Check for drive availability

Do a directory display/buffer

Get directory record(s) or free space
into RAM

Reserved for future use

Test if drive is assigned in DCT
Select a new drive

Initialize the FDC

Reset the FDC

Issue FDC RESTORE command
Issue FDC STEP IN command

CEBRARRR BB BIIYFAR

88 B8R

o
~

57

B5A
5B

5D
SE

61

@FNAME
@GTDCT
@GTDCB
@GTMOD
@RDSSC

@DIRRD
@DIRWR

@MuL8
@MuL16

@DIV8
@DIV16

@DECHEX
@HEXDEC

Software 156

Function

Seek a cylinder

Test if requested drive is busy

Read a sector header

Read a sector

Verify a sector

Read a track

Hard disk format

Wrrite a sector

Write a system sector

Write a track

Rename a file

Remove a file or device

Open or initialize a file or device
Open an existing file or device

Close a file or device

Backspace one logical record

Check for end of file

Calculate the current logical record
number

Calculate the EOF logical record
number

Position to the end of file

Position a fite to a logical record
Read a record from a file

Rewind a file to its beginning

Reread the current sector

Rewrite the current sector

Seek a specified cylinder and sector
Skip the next record

Write a record to a file and verify
Write end of file

Wiite a record to a file

Load a program file

Load and execute a program file
Fetch a file or device specification
Set up a default file extension

Fetch tilename/extension from
directory

Get Drive Code Table address

Find specified or first free DCB

Find specified memory module
address

Reserved for future use

Read a system sector

Reserved for future use

Read directory record

Write directory record

Reserved for future use

Multiply 8-bit unsigned integers
Multiply 16-bit by 8-bit unsigned
integers

Reserved for future use

Divide 8-bit unsigned integers
Divide 16-bit by 8-bit unsigned
integers

Reserved for future use

Convert decimal ASCH to 16-bit
binary value

Convert a number in HL to decimal
ASCII

)

Dec

98
99
1¢0

101
102

103
104
105127

Hex
62
64

65
66

67

Label

@HEX8
@HEX16
@HIGHS$

@FLAGS
@BANK

@BREAK
@SOUND

Software 157

Function

Convert a 1-byte number to hex ASCII
Converi a 2-byte number to hex ASCit
Obtain or set the highest and lowest
unused RAM addresses

Point IY to the system flag table
Check, set, or reset a 32K bank of
memory

Set user or system break vector
Generate sound (tone and duration)
Reserved for future use.

Alphabetical List of SVCs

Label

@ABORT
@ADTSK
@BANK
@BKSP
@BREAK
@CHNIO
@CKDRV
@CKEQOF
@CKTSK
@CLOSE
@CMNDI
@CMNDR
@CTL
@DATE
@DCINIT
@DCRES
@DCSTAT
@DEBUG
{@DECHEX
@DIRRD
@DIRWR
@DIV8
@DIV16
@DODIR
@DSP
@DSPLY
@ERROR
@EXIT
@FEXT
@FLAGS
@FNAME
@FSPEC
@GET
@GTDCB
@GTDCT
@GTMOD
@HDFMT
@HEXDEC
@HEXS8
@HEX16
@HIGH$
@INIT
@IPL
@KBD
@KEY
@KEYIN
@KLTSK
@LOAD
@LOC
@LOF
@LOGER
@LOGOT
@MSG

Software 158

Following is an alphabetical list of the SVC labels and numbers:

Dec

21
29

Label

@MUL8
@MUL16
@OPEN
@PARAM
@PAUSE
@PEOF
@POSN
@PRINT
@PRT
@PUT
@RAMDIR
@RDHDR
@RDSEC
@RDSSC
@RADTRK
@READ
@REMOV
@RENAM
@REW
@RMTSK
@RPTSK
@RREAD
@RSLCT
@RSTOR
@RUN
@RWRIT
@SEEK
@SEEKSC
@SKIP
@SLCT
@SOUND
@STEPI
@TIME
@VDCTL
@VER
@VRSEC
@WEOF
@WHERE
@WRITE
@WRSEC
@WRSSC
@WRTRK

Software 159

Sample Programs

The following sample programs use many of
the supervisor calls described in this man-
ual. These programs are not meant to be
examples of the most efficient programming,
but are designed to illustrate as many super-
visor calls as possible.

Software 160

L)

Ln #

gaggl
pagg2
ggag3
g4
pRgEgs
gagg7
pggps
peEgE9
papgLE
gEgL1
AgpL2
#gAPL3
gdpgLa
gEgELsS
#@ggle
gppgL7
pggis
g9
pap2Y
pgg21
gep22
apazs3
pgpg24
apazs
pgg26
gppe7
ggg2s
gapeE29
gpp3ip
ggp3l
pp@E32
Bgp33
gag34
ggp3is
ggg36
ggg37
gag3s
pE39
g9g4p
gggal
apa42
999343
p9944
BEp4s
ppgpde
ppEp47
ggpas
gAgao
:J:3° 1)
pEEs1
pags2
gags3
PEE5 4
gggss
BgPsS6
ao@s7
a9@s8
#eP59
gggep
Adgel
gode2
pgge3
ppde6 4
ppegEe S
pPp66
AgRe7

LY R

r
@DEBRUG:
BDSPLY:
@FSPEC:
@KEY:
@LOAD:
@RUN:

MESS1:

PROGRM:

FCB1:

-

START:

- we

. wa wa

»

RUNIT:

Sample Program A

Source Line

This program asks the user whether to run a program
or debug it and executes the SVCs required to perform
the chosen action.

PSECT 58Q¢H ;The program begins at x'5ggg*

Define the equates for the SVCs that will be used.

EQU 27 ;Enter the debugger (DERUG)

EQU 12 :Display a message

EQU 78 :;Verify a filespec or devspec and
:load it into a File Control Block

EQU 1 ;Get a character from the keyboard

EQU 76 ;Load a program into memory

EQU 77 ;Execute a program

DEFM 'Do you wish to RUN this Program or DEBUG it ?'

DEFB BaH :+This moves the cursor to the next line

DEFM 'Press <ENTER> to RUN or <BREAK> t¢ DEBUG'

DEFB @DH ;Terminate the message string

DEFM ‘DIREX/CMD’ ;Sample program to debug or execute

DEFB ADH ;Terminate the filespec

DEFS 32 ;File Control Block for the program

Get the File Control Block for the program 'DIREX/CMD'.

LD HL, PROGRM ;Point at the filespec we want to
;execute or load into memory

LD DE,FCB1 s+Point at the File Control Block

LD A,QFSPEC sPerform a validity check on the filespec
sand copy the filespec into the FCB.

RST 28H :Call the @FSPEC svc

LD HL,MESS1 ;Point at our prompting message

LD A,BDSPLY ;and print it on the display

RST 28H ;Call the @DSPLY svc¢

LD A,BKEY :Get the reply from the keyboard

RST 28H ;Call the QKEY svc

CP #DH :Was the character an <ENTER>?

JR Z ,RUNIT ;If Z was set, then run the program

If it wasn't an <ENTER>, then we assume it was a <BREAK> and
locad the program and enter the debugger.

LD DE,FCB1 ;Point at the File Control Block
LD A,QLOAD ;and have this program loaded into memory
RST 28H :Call the @LOAD svc

Note that this program must not be overwritten by the program
we are loading. In this example, it is known that the program
we are loading starts at x'3pfg' and ends below x'Sggg"'.

LD A,@DEBUG ;Now invoke the system debugger, DEBUG
RST 288 ;Call the @DEBUG svc
:Note that @DEBUG does not return

Execute the program

LD DE,FCB1 ;Point at the File Control Block

LD A,QRUN :1Tell TRSDOS to locad and execute the
;program

RST 28H ;Call the @RUN sve¢

Software 161

ggdes
adaes
pgopIg
AIFTL
gog72
gog3
22074
pgaIs
#8976

- e ag we

Sampie rrogram A, conunuea

sNote that @RUN returns only if it can't
;find the preogram

Note that the program that is loaded by the @RUN swvc must not
overwrite the File Control Block in this program. In this case,
it is known that the program we are executing starts at x'3ggg’
and ends below the starting point of this program, x'5g90°'.

END START

Software 162

'w

pEpgal
pppg2
pEgg3
Apgpaa
pagas
ggade
gagas
gepps
gppLe
pEALL
gee12
pEE1L3
#edla
gpPLS
pApgle
spgL7
ggpgl1s
gapg19
Aep29
ggp21
ggpgaz
gap23
gapg24
#apP2s
2g@g26
aap27
pap28
gagz9
pogig
ppg3L
gEP32
pgE33
gEd34
ppg3s
pogie
pIA37
pggss
pEg39
pogag
pggal
gppa2
#pg43
pgga4
ggp 45
#ggpae
pEa47
gggas
gapPa9
gapsg
saPs1
#d9gs2
pBEP53
pEgs4
ppass
pg@Es6
pogs7
pgagss
ppgas9
pagep
gagel
pEge?2
ppges
gpae64
dppes
gppee
agpe7
fagdes

Sample Program B

;This program accepts numbers from the keyboard
;and uses them to demonstrate the
rarithmetic and numeric conversion SVCs.

;It also uses
;beginning of

PSECT
H These

@DECHEX : EQU
@DIV8: EQU
@DIV16: EQU
@DSP: EQU
@DSPLY: EQU
@EXIT: EQU
@HEX8: EQU
@HEX16: EQU
QHEXDEC:EQU
@KEY: EQU
QKEYIN: EQU
@MUL8: EQU
@MULl6: EQU
@SOUND: EQU

; Other

NUMS : EQU
NUM4: EQU

NUM3: EQU
NUM2: EQU
NOM1: EQU
BRK: EQU
CCC: EQU

the sound function to produce a tone at the

the program,

3p80H
are the SVCs used

96
93
94
2
19
22
98
99
97
1
9
99
91
194

equates.

Wb

84H
#iDH

in this program.

;Convert decimal ASCII to binary
;Perform B-bit division

;Perform 16-bit division

;Display a character

;Display a message

;jReturn to TRSDOS Ready or the caller
;Convert an 8-bit value to hex ASCII
;Convert a 1l6-bit wvalue to hex ASCII
:Convert a binary value to Decimal ASCII
;Read a character from *KI

;Accept an input line from *KI
;Perform 8-bit multiplication
;Perform 16-bit multiplication
;Produce a tone

:Character code for <BREAK> key
;Next line position

:Perform a subroutine 2 times to display prompting messages, key in
;and display divisor and dividend, convert those numbers to
;binary for the divide, and position the cursor.

START: LD
LD
RST
CALL
LD

B,5AH

A, @SOUND
28d

KEYIN

A,C
(DIVDLl) ,A
HL,MESS9
DSPLAY

A, (DIVD1)
c,a

HEX8
KEYIN

A,C
(DIVR1) ,A

;Make the longest, highest tone
;Make the noise

;Perform keyin subroutine for dividend

:1Store the dividend in memory

;Address of hex message

;DPisplay hex message

;Get the divisor into ¢ for conversion
;from binary to hex

;Convert the number to hex

;Perform subroutine for divisor

;Store the divisor in memory

:Now we are ready to perform the divide on the numbers entered.

LD
LD
LD
LD
RST

C,A

A, (DIVD1)
E,A
A,8DIVS
28H

:Now display the answer and the

LD

(ANS1) ,A

;Put the divisor back for the @DIVS SVC
1Get the dividend into E

;for the 8DIV8 SVC

;Call the @DIVS SVC

remainder in decimal.

;Store the answer in memory

Software 163

g9g69
gggTa
aagrl
geg72
agpT3
ggpia
gapT5
Aeg76
apeT7
gapis
gag79
Aggsg
gpgel
pags2
gppe3
ggpsq
aogss
#IP86
pEp87
pap88
gEpa9
apgasg
28§91
gppo2
#gp93
AB@94
ga@9s
geg9e
pag97
gpgos
gEgo9
ga1pp
paLAL
gp1g2
gaLp3
aplraa
#g1gs
gglge
gg1g?
#p148
#9109
gglle
#9111
ggl12
g@113
pg114
pp1L1S
pPlle
gg1L7
Aglis
gPL19
#9129
gg121
gg122
gg123
ggl24
#4125
g@126
ag127
ga128
#@129
ga13p
$a131
gE132
g@P133
gg134
#g135

LD
LD
LD
CALL
LD
LD
LD
CALL
LD
CALL
LD
LD
LD
CALL

Sample Program B, continued

a,E
(REM1) ,A
HL,MESS3
DSPLAY
A, (ANS1)
L,A

H,8
HEXDEC
HL,MESS4
DSPLAY
A, (REM1)
L,A

H,8
HEXDEC

:Get the remainder

;Store the remainder in memory

;Load address of answer message
:Display the message

;Get the answer into L for conversion
;Number to convert

;Put a P in the MSB

;Perform subroutine to display decimal value
;dddress of remainder message

;Display remainder message

;Put remainder in A for hex conversion
;Number to convert

;Put @ in the MSB

;Display decimal value

;Now divide with a 16-bit dividend.

LD
CALL
LD

HL,MESS6
DSPLAY
A,QKEYIN
fiL,BUF6
B, NUMS
C,9

28H
A,@DECHEX
28H
(DIVD2) ,BC
HL,MESS9
DSPLAY
DE, (DIVD2)
HEX1l6
KEYIN

A,C
(DIVRL) ,A
HL,MESS3
DSPLAY
HL, (DIVD2)
A, (DIVRI)
CJA
A,@DIV16
280
{REM1} ,A
{ANS2) ,HL
HEXDEC
HL,MESS54
DSPLAY

&, (REM1)
L,A

o0
HEXDEC

:Address of 2nd dividend message
;Display next message

;Key in up to 5 digits

;Store the number

sMaximum length of number

;Convert the number to binary

:Store the dividend

;Address of hex message

;Display hex message

;Put dividend into DE for conversion
;:Convert the number from binary to hex
;Key in divisor

;Put the divisor into A

;Store the divisor in memory
;Address of answer message

;Display the message

;Put dividend into HL

;Get divisor into C

:Store the remainder

:Put the answer into HL

;Display answer in decimal
;sAddress of remainder message
;Display remainder message

:Get the remainder

;into L

:Put a @ in MSB

;Convert the remainder to decimal

;Now try some multiplication of 8 bits.

LD
CALL
LD

HL,MESS8
DSPLAY
A,@KEYIN
HL,BUF2
B,NUM2
c,. g

28H

A, @DECHEX
28H
(MCAND1) ,BC
HL,MESS1#
DSPLAY
A,BKEYIN
HL,BUF2

;Address of MULB message

;Display first multiplicand message
;Key in a 2-digit number

;Put it here

sMaximum number of characters

iConvert the number to binary for math

;Store the multiplicand

;Address of MUL8 multiplier message
;Display first multiplier message
;Key in the multiplier

;Put it here

Software 164

sampie rrogram o, contmucd

#9136 LD B,NUM1 ;Maximum number of characters
#9137 LD c,9
pg1L3is RST 28H
ga139 LD A, @DECHEX ;Convert the multiplier to binary for math
Aol 4p RST 28H
Ad141 LD (MIER1l) ,BC ;Store multiplier in memory
ag142 LD HL ,MESS13 ;Address of multiplier message
pa143 LD A,@DSPLY ;Display multiplier message
PP144 RST 28H
#P14s
gﬁ146 ;Now multiply the two numbers just entered.
#147
fgg148 LD A, {MCAND1) ;Get the multiplicand into C
gp149 LD C,A
geL1sg 1D A, (MIER1) :Get the multiplier into E
gg151 LD E,A
gg152 LD A,@MULS
29153 RST 28H
#d154 Db L,A ;Put the product into L
gF15s5 LD H,d ;Put @ in the MSB
ggise CALL HEXDEC ;Convert the product to decimal
pe1Ls7
pAglss ;Now multiply a 16-bit by an B-bit.
Agls9
pgleg LD HL ,MESS11 ;dddress of multiplicand message
ppisl CALL DSPLAY ;Display 2nd multiplicand message
pPL62 LD A,RKEYIN ;Enter larger multiplicand
PgP1e63 D HL, BUFS ;Put it here
Agle4 LD B,NUMA4 ;Maximum number of characters
gPg1es LD c.,p
ggle6 RST 28H
pPle7 LD A, BDECHEX ;Convert the number to binary for math
#ples RST 28H
#P169 LD {MCAND2) ,BC ;Store the multiplicand in memory
pg1L7gd LD HL,MESS12 ;Address of multiplier message
pFLT CALL DSPLAY ;Display message
gELT2 LD A,@KEYIN ;Enter larger multiplier
pd173 LD HL,BUF3 ;Put it here
AP174 LD B, NUM2 ;Maximum number of characters
Ba1L75 LD c,B
Bpai176 RST 28H
paL77 LD A,QDECHEX :Convert the number to binary for math
Agi7s RST 28H
pgL79 LD (MIER1) ,BC ;Store the multiplier in memory
fga18g LD HL,MESS13 ;Address of product message
fa181 LD A,@DSPLY ;Display the message
pg182 RST 28H
#1883 LD HL, (MCAND2) ;Put multiplicand into HL
pa18Y LD A, (MIER1) :Get the multiplier into C
fgp185 LD C,A
gg18e LD A,BMULLSG ;Multiply the two numbers
ag187 RST 28H
dgg188 LD H,L :1Get the 2nd byte of the product into
#4189 :H for conversion
ag19d LD L,A 1Get the LSB into L for conversion
gg191 LD DE,BUFS :Convert the high-order byte to decimal
#@192 LD A,@HEXDEC ;1for the display
Ag193 RST 28H
#pF194 1D a,CCcC ;Tell the display when to stop
Ag1as LD {DE) ,A
Ag196 LD HL,BUFS
#g197 LD A,BDSPLY ;Display the product
pgl19s RST 28H
#p199 LD HL,MESS14 ;Address of end message
pP2aP LD A,@DSPLY :Display end message
ap241 RST 28H
ag2p2 LD A,RBKEY ;Allow the user to enter any character
pa2483 RST 28H ;or hit <BREAK>

Software 165

pg2@4
gp2gs
gg2de
pp2a7
dgags8
BE2@9
gg2lg
gp211
#9212
pP213
gP214
pE21s
Ag21e
A9217
ggz1a
pg219
ga22p
po221
pga222
pg223
pR224
gP225
pP226
pgE227
#p228
9229
gg23e
gg231
gg232
#9233
P9234
gg235
a@236
#e237
gg238
#8239
9924p
gg241
gu242
pg243
Ag244
p9245
g9246
pAg247
pa248
#9249
gazsg
#g251
ga252
3@253
gE254
pg255
Bg256
pR257
gp2s58
#8259
pg2e6g
ag26l
gg262
#9263
fp264
gp265
#g266
ap267
pg268
PpP269
gg27p
gp271

Sample Program B, continued

Cp
Jp
LD
RST

;These are the subroutines used

BRK
NZ,START
A,QEXIT
28H

;Is it <BREAK>?
:Yes, go back to beginning
:1No, exit the program

by the calls to

;display a message, key in a 3-digit number, and convert it
;from decimal to binary.

KEYIN: LD
CALL

RET

fiL,MESS1
OSPLAY
HL,BUF 4
B,NUM3
c.d
A,@KEYIN
28H
A,@DECHEX
28H

:Display message

;Put the number here

;Maximum number of characters
;Key in a number

;Convert the number to binary

;Return to next seguential instruction

;Display what was loaded into HL before the call.

DSPLAY: LD
RST
DEC
LD

DSPLYLP:LD
LD
RST
DJNZ
RET

;Convert 1 byte

HEX8: o
LD
RST
LD
LD
LD
LD
RST
RET

;Convert 2 bytes to hexadecimal.

HEX16: LD
LD
RST
LD
LD
LD
LD
RST
RET

;Convert from binary to decimal

HEXDEC: LD
LD
RST

A,@DSPLY ;@DISPLAY SVC

28H

HL 1Set HL back to blank byte

B, (HL) ;Load B with the number of bytes
c,' ! ;Put a blank into C

A,@DSP ;Display the blank

28H ;until the correct number
DSPLYLP ;of blanks have been displayed

to hexadecimal.

A,@HEXS
HL,BUF3
28H
a,CCC
(HL) ,A
A,@DSPLY
HL,BUF3
28H

A,RHEX16
HL, BUF&6
28H
a,CCC
{HL) ,A
A,@DSPLY
HL,BUF6
28H

A, BHEXDEC
DE,BUFS
28H

A,CCC
(DE) ,A
A,QDSPLY
HL, BUFS
28H

;Return to next instruction

;Convert 1 byte to hex ASCII
;jPut the converted value here

sTell display when to stop
jPut CCC at end of buffer
;Display the hex value

;Return to next instruction

;Convert a 2-byte number to hex ASCII
;Put the converted value here

;CCC at end of buffer so display
+knows when to stop

;:Display the converted value
;Address of converted value

:Return to next instruction
and display decimal value.

;Convert from binary to decimal
;Put converted value here

;CCC at end of buffer so display
+knows when to stop

;Display the hex value

;1It’s here

;:Return to next instruction

Software 166

&)

Sample Program B, continued

pg272 :These are the storage declarations,

gg2713

8g274 BUF6: DEFS 6

Baaz27s BUF5 DEFS 5

gg276 BUF4: DEFS 4

#9277 BUF3: DEFS 3

#9278 BUF2: DEFS 2

pa279 DIVRl: DEFB ']

pozep pPIVDL: DEFB]

g@281 ANSl: DEFB 9

@P282 REML: DEFB [}

ggzsa3 MCAND1: DEFB [

gg284 MIER1: DEFB]

gaz2es MCAND2: DEFW g

gg286 DIVD2: DEFW g

pggz87 ANS2: DEFW]

pga28s8

pgz289 ;Below are messages and prompting text used in the program.
Agg29g¢

pgz91 DEFB 13 ;Number of blanks to print after megsage 1
apg292 MESSl: DEFM 'Enter a number (1-255).°

#2293 DEFB 3 ;Message-terminating character
Adz294 DEFB 21 :Number of blanks to print after message 3
gg29s5 MESS3: DEFM ‘The answer is'

pA296 DEFB 3 ;:Terminating character
pE297 DEFB 18 :Blanks after message
pp298 MESS4: DEFM '"The remainder is'

ag299 DEFE 3 ;Terminating character
pp3gg DEFB 6 :Blanks after message
gE3gl MESS6: DEFM 'Enter a number (4369-65535).°

pg3g2 DEFB 3 :Terminating character
ap3@3 DEFB 15 ;Blanks after message
griga MESS8: DEFM 'Enter a number (1-28)."'

gp3gs DEFB 3 ;Terminating character
gP3de DEFB 16 ;:Blanks after message
ap3g7 MESS9: DEFM 'In hex ASCII, that is'

gp3gs DEFB 3 ;Terminating character
pgg3ge DEFB 17 ;Blanks after message
ag3xrg MESS1l@: DEFM 'Enter a number (1-9).°'

Ag31l DEFB 3 ;Terminating character
gpg3l12 DEFB 11 ;Blanks after message
313 MESS11: DEFM 'Enter a number (1-41gg).°'

g@g314 DEFB 3 ;Terminating character
fg315 DEFB 15 :Blanks after message
gd3le MESS12: DEFM 'Enter a number (1-15).°'

a¢317 DEFB 3 :Terminating character
gg3ls MESS13: DEFM 'The product of those 2 numbers is '
gg319 DEFB 3 ;Terminating character
29329 MESS14: DEFM 'Press <BREAK> to end or any other Key to continue.,®
gg321 DEFB ADH ;Terminating character
Bag322

#9323 END START

Software 167

Ln #

gaggl
gaag2
gEag3
pogga
BAgas
ppage
gogags
paage
[:1:]:)%
ggd1Ll
P12
BagL3
29014
gap1s
pagle
BogL7
gppLs
AERLY
ppa2yg
ppg2l
paga2
A@@23
gpg24
gEE2s
gag2e6
28927
ggg2s
29929
pag3g
pag3l
aap32
Ag@33
pog34
pR@35
gagie
pEpE37
#dg3s
$#Ia39
pa@ap
8041
po@a2
pagas
2g@44
peE@as
29046
29@47
pogas
gp@a9
ggasg
ggasl
gaps2
pegs3
Agps4
#Pgss
#ggse
ap@Es?
pgpss
pges9
gppeg
padel
Apge2
Ap@E63
ppgge 4
#pg65
gggee
agae?

LTI THE Y)

-
’
.
r

Sample Program C

Source!iine -4

This program prompts for two filenames, opens the first

file, and creates the second. Then the data in the first
file is copied to the second file. While the Copy progresses,
the current record number is displayed in parentheses.

PSECT 39981 :This program starts at x'3@gp’

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

@CLOSE: EQU 6g ;Close a file or device

@DIRRD: EQU 87 ;Read a directory record

@DSP: EQU 2 ;Display character at cursor

@DSPLY: EQU 1g ;:Display a message

@ERROR: EQU 26 ;:Display an error message

@EXIT: EQU 22 sExit and return to TRSDOS or the caller

@FEXT: EQU 79 ;A4dd a default file extension

@FNAME: EQU 8g ;Fetch a filespec from the directory

RFSPEC: EQU 8 ;Verify and load a filespec into the FCB

@HEXDEC ; EQU 97 ;Convert a binary value to decimal ASCII

QINIT: EQU 58 ;Open an existing file or create a new file

@KBD: EQU 8 :Scan the keyboard for a character

@KEYIN: EQU 9 ;Accept a line of text from the *KI device

QLOC : EQU 63 ;Return the current logical record number

QOPEN: EQU 59 ;O0pen an existing file

@READ: EQU 67 ;Read a record from an open file

@REMOV: EQU 57 ;Delete a file from disk

QVER: EQU 73 ;Write a record to disk. Does the same thing
1as @WRITE (Svc 75), but it also makes sure
;jthe written data is readable.

: First, prompt for the source filespec using the @DSPLY svc.

BEGIN: LD HL,MESG1 ;1Get the first message

LD A,8DSPLY ;Display a line on the screen
RST 28H ;Call the @QDSPLY svcC

s

LYRE Y

Now, read the filename from the keyboard using the @KEYIN svc.

LD HL,FILEL ;Put the name of the 1lst file here
LD B,24 ;Allow up to 24 characters

LD c,. 8 tA zero is required by the svc

LD A,RKEYIN 1Get a filename from the user

RST 28H :Call the @KEYIN svc

JP C,QUIT ;The user pressed <Break>

Je N%,ERR tAn Error occurred

LD A,B ;Get the number of characters

OR A ;15ee if that value was zero

JR Z,BEGIN ;Nothing was entered, ask again

The user has typed something, so it must be checked for validity
using the @FSPEC svc.

LD HL,FILEl ;Point at the text the user entered
LD DE,FCB1l ;Point at the File Control Block
;that is to be used for the source file.
LD A,BFSPEC ;The @FSPEC svc will make sure the filename

;that is in buffer named "filel" is valid.
;If it is, it is copied into the File
;Contrel Block (FCB) to be used by the EOPEN
;or RINIT svc later on,

RST 2BH :Call the RFSPEC svc

JR 2,ASK2 ;The name for file 1 is ok, so skip this

At this point the filename specified for file 1 has been found

Software 168

v

#gpes
APge69
gapTe
ggg71
gapT2
RE@73
ggpTa
peP7s
aggie
gagi7
aggIs
#gag79
ggpgsg
gggsl
ggpe2
29983
gg984
gagas
gpdase
pags7
fages
g9989
pog9E
g9391
gggaz
gegga3
29994
gggos
agp9e
#9397
Agpos
apgs9
aoLay
agipl
agrp2
gg1g3
pgLE4
ga1gs
gg1Lge
ggLa7
pglge
AELE9
#g11¢
gg111
gg112
gg113
gg114
Ag11s
#d11e
28117
#p11s
ggL19
apglr2g
pg121
pg122
pg123
ppL24
#P125
#g126
pg127
ppL2s8
pg129
#p13ga
P13l
pg132
#P133
98134
gp1is

e ne

- e W

ASK2:

e . we

e %E s g

F20K:

FDIV:

EXTN:

- e

Sample Program C, continued

to be in an invalid format. The following code will print the
error message.

LD HL,BADFIL ;Point at the bad filename message
Lb A,@DSPLY ;Display it

RST 28H ;Call the @DSPLY svc

JR BEGIN :Start over

At this point, the source filename appears to be valid.
The code below asks for the second filename and checks it for
validity also.

LD HL,MESG2 ;Prompt for the target filename
LD A,B@DSPLY :Print that on the screen

RST 28H ;Call the @DSPLY svc

LD HL,FILE2 ;Put the name of the 2nd file here
LD B,24 ;Allow up to 24 characters

LD C.,8 :A zero is required by the svc
LD A,@KEYIN :Get a filename from the user
RST 28H ;Call the GKEYIN svc

JP c,QuIt ;The user pressed <Break>

JP NZ,ERR ;An Error occurred

LD a,B ;Get the number of characters
OR A ;See if that value was zero.

JR 2,AS8K2 ;Nothing was entered, ask again

The user has typed something, so it must be checked for wvalidity
using the @FSPEC svc.

LD HL,FILE2 :1Point at the text the user entered

LD DE,FCB2 +Point at the File Control Block

LD A,@FSPEC ;Check the name for validity

RST 28H ;Call the @FSPEC svc

JR 2,F20K :The name for file 2 is ok, so skip this

The name for file 2 is invalid so print an error message

LD HL,BADFIL ;Point at the bad filename message
LD A,@DSPLY ;Display it

RST 28H ;Call the @DSPLY svc

JR BEGIN ;Start over

Now we will attempt to add an extension to the target file

if the user did not specify one. We use the extension that

was specified on the source file., If it does

not have one, then we will not try to add one to the target file.

LD HL,FCB1+1 :Point at the source filename
;We start with the second character since
sthe filename must be at least one character

LD A, (HL) 1Get a character from the filespec

CP A ;Is the character the extension prefix?

JR Z,EXTN ;Yes, this will be ocur default extension

CcP @DH ;Have we reached the end of the filespec?
JR Z , NOEXT ;Yes, there is no extension so don't add one
cep B3H ;Test both terminators

JR Z,NOEXT

INC HL ;Advance the pointer to the next character
JR FDIV ;Keep looking

INC HL ;Advance pointer to first byte of extension
LD DE,FCB2 ;Point at FCB for the target file (file 2)
LD A,@FEXT ;Add an extension if one is not present

RST 28H ;Call the @FEXT svce

Now we have two filenames, First we will open the source file
to make sure it exists.

Software 169

gg136
ppP137
pg138
BgL39
grag
ggl1al
pBLA2
#8143
#9144
ggLas
pgd14e6
pg147
pg148
Ag149
gglsa
pg1s1
apis2
gg1s3
gA154
94155
ag1s6
#1557
gplsa
gE1s9
Adreg
#8161
pR162
pgtes
pglea
ggles
#dl166
Ag167
ggle68
#0169
ag17g
pA1L71
g@172
#E173
PE174
gg175
#g176
gELTT
ag178
#2179
ggleg
gga181
Aglez
#h183
Aglaa
#g185
gglise
gE1s7
ggiss
#g18g
gg19g
@19l
#g192
#9193
pp194
#@19s
#8196
pgL97
Agl9s8
ggL99
Bg2eg
ggagl
@202
gg2d3

NOEXT:

EXISTS:

WAIT:

LD
LD

At this point, the file

Sample Program C, continued

DE,FCB1
HL, BUF1

B,9

A, 80OPEN
28H
2,812
42
NZ,ERR

;Point at the File Control Block for filel
;Point at the system buffer. This buffer
;is used by the system to block data that
;is written to disk and de-block data that
:is read from disk when the Logical Record
:Length of the file is not 256. If it is
256, then this buffer is not used.

;Use LRL 256 for now since we don't know
;what to use yet.

:Open the file

;Call the @OPEN svc

;The file opened and is LRL 256,

;Was the error a LRL Open Fault?

:No, perhaps the file does not exist.

is open and we can now examine the

directory to find out what LRL it was created with so we can
use that value to make the copy.

LD

AND
LD
LD

LD
PUSH
LD
RST

POP
LD
RST

LD
LD

LD

&, (FCBl+6)

7
C,A
A, (FCB1+7)}

B,A
BC
A,BCLOSE
28H

BC
A,8DIRRD
28H

IX,HL
A, (IX+4)

(LRL) ,A

:Get the byte in the FCB which contains
1the drive number the file is on

;Erase all other information in that byte
:5ave that value here

;This veads the Directory Entry Code {(DEC)
;out of the FCB so we can use it

;Store the DEC here

;8ave that value for now

1We can close the source file for now
:1Call the @CLOSE svc

:1Get the DEC value back off the stack
s+Read the directory record for that file
;Call the @DIRRD svc

;Put the pointer to the directory record
shere and read the DIR+4 entry which
scontains the LRL of the source file.
:Save that value

Before we go any further, we should check to see if the target file
already exists.

LD
LD
LD
LDIR

LD
LD
LD
LD
RST
JR
Ccp
JR

LD

LD
RST

LD
RST
JR

Cp
JR

DE,COPY
HL,FCB2
BC; 32

DE,FCB2
HL,BUF2
B,#

A, BOPEN
2810
Z,EXISTS
42
NZ,NOFILE

HL, FEXST

A,@DSPLY
28H

A,@KBD
284
NZ,WAIT

lyl
Z,KILLIT

:First, make a copy of the FCB
;in case we have to delete a file
;Move the entire block

;Point at the target File Control Block
;Use this as the buffer for now

;Use LRL 256 for now

;Open it and see if it is there

;Call the QOPEN svc

;The file already exists, better ask
sWas the error a LRL mismatch?

;No, so the file does not exist.

;Point at a prompt asking if it is ok
;to erase the file that already exists
;Print that message
;1Call the @DSPLY svc

;Wait for the user to type Y or N
;Call the RKBD svc
;Loop until something is typed

iWas a 'Y' typed?
:Then kill the file

Software 170

Sample Program C, continued

pgazda cp 'y! :Check for lowercase too

gg205 JR Z,KILLIT

Bg2ge CP 'N' ;Do they want to leave the file alone?
gE297 JR Z,SHUT iNo, just close the file and quit

2298 CP n' :Was it a lowercase 'N'?

pE2p9 JR NZ,WAIT ;No, loop until we see something we like
gp21@

g2l SHUT: LD DE,FCB2 ;Close the target file

gg212 LD B, @CLOSE

pA213 RST 28H 1Call the @CLOSE svc

g3214 JP QUIT 1Exit to TRSDOS

gp2ls

pg2ie : At this point, we have been given the OK to delete the file -
8217 : that has the same name as the target file.

apg218

29219 KILLIT: LD C,BDH ;First move display to a new line

pa22g LD A,@DSP ;Display an <Enter>

gg221 RST 28H ;Call the BDSP svc

agza22

#9223 LD DE,FCB2 ;Point at the target file's FCB

gp224 LD A, BREMOV ;Delete the file from disk

fg22s5 RST 28H ;Call the @REMOV svc. (This is the same
89226 ;as the @KILL call on other TRSDOS systems,)
ga227 JP NZ,ERR :An error occurred, print it and quit
paz28 ;Note that after a @REMOV succeeds,
ag229 ;the filespec is removed from the FCB.
pp23p ;50 we have to keep a copy around

Ap231 :in case we need it.

gg232 LD HL,COPY ;Get the copy

#@233 LD DE,FCB2 ;Put it here

#8234 LD BC, 32 ;Move up to 32 bytes

#@23s LDIR ;:Copy the FCB so we can continue

P36

pg237 : Now we know what Logical Record Length (LRL) to use in the

pg238 ; copyY, SO we can open the source file and create the target file
fgg239 3 with the correct record lengths.

gg24p

gg241 NOFILE: LD HL,FCB1l ;Point at the filename in the FCB

ad242 LD A,8DSPLY ;Print that name

ga243 RST 28H ;Call the @DSPLY svc

agz244 LD HL,SPACES :Point at some spaces

Bga24s LD 4,8DSPLY ;Space over a few places on the screen
Apg246 RST 28H ;Call the @DSPLY svcC

pE247

pgpg248 LD DE, FCB1l ;Point at File Control Block for source file
@249 LD HL,BUF1l ;Put data in this

pE2sg LD A, (LRL) tRead the Logical Record Length

gpg251 LD B,A ;Load the Logical Record Length

gp2s2 LD A,QOPEN ;Open the source file

#8253 RST 28H ;1Call the BROPEN svc

gpg254 JP NZ,ERR 1Open failed

gg25%

gg256 LD HL , ARROW ;Point at the arrow text

pg257 LD A,@DSPLY ;Print that to show the direction of copy
pg258 RST 28H ;Call the @DSPLY svc

gg259

pz2eg LD DE,FCB2 ;Point at File Control Block for target file
gg261 LD A, (LRL) ;Get the Logical Record Length

#9262 cp '} ;Is the LRL 2567

@263 JR Z,LRL256 ;Then we do something special

gg264 LD HL,BUF2 ;Use a different buffer for target file
pA265 JR LRLCOM :Jump to common code

ap266 LRL256: LD HL,BUF1 :We use the same buffer when the LRL is 256
pP267 ;since there is no need to block and de-block
gP26s ;the data.

pE269 LRLCOM: LD B,A ;Load the Logical Record Length

pg27g LD A,QINIT ;Open the target file

Software 171

gpg271
gE272
gp273
gg274
gg275
gg276
gE277
gR278
gp279
gg28p
ga28l
ag2a2
poze3
pp284
Ap28s
pPg286
gg2a7
gp2sse
g@z289
gg29p
gg291
fig292
gP293
AP294
Ap295
fP296
pg297
Ad29s
Ag@299
ga3pg
pR3gL
p@3g2
BB3@3
BBigs
gpigs
agige
ga397
gg3ds
ag3a9
Be3lg
gE311
gg312
#3113
ApP3l4
#g315
Ag316
gg317
ggils
#F319
#g324a
gg321
pga22
pg323
2g324
gg325
pP326
BpE327
#9328
#g329
gg339
Bg331
pE332
pa333
gd334
gg33s
pd33e6
ga337
ga33s8

W Wy e

£
3
v/

- we

EDIT:

NUMBR :

-

RST
JR

LD

LD
LD
RST

Sample Program C, continued

28BH
NZ,ERR

DE,FILE2

A, (FCB2+7)
B,A

a, (FCB2+6)
7

C,A
A,@FNAME
28H
HL,FILE2
A,@DSPLY
28H

HL,SPACES
A,@DSPLY
28H

;Call the @INIT svc

2Init failed

;We are going to get the filename for
sthe target file from the system
;instead of using the one we have. The
;reason for this is that the system will
;append the drive number to the filename
;1f one was not specified.

;Get the Directory Entry Code for the file
;Put the DEC here

;Get the Drive Number from the FCB

;Lose all data except the drive number
;Store drive number here

;Have the system produce a filespec
;Call the @FNAME svc

:Now point at the filespec produced

;and print it out

;Call the @DSPLY svc

;Space over a few more places
;80 the display will look neat
;iCall the @DSPLY sve

At this peoint, both files are open and ready to be used.
The following code reads a record from the source file
and writes it to the target file. This is done until an
end of file is encountered.

Lb
LD
LD
RST
JR
LD

DE,FCB1l
HL,BUFFER
A, @READ
28H
NZ,EQOF
DE, FCB2

;Point at file 1 (source file)

s Put data here

:Read a record from the source file
:Call the @READ svc

sJump if the eof has been reached
:Point at file 2 (target file)

Before writing the record, display the record number, which
is obtained from the @LOC svc,

LD
RST

Now write the record to

LD

A,€LOC
28H

BC

L

DE, LOCMSG+1
A, @HEXDEC
28H

A,.]

HL , LOCMSG
(HL}

NZ, NUMBR
HL

EDIT

HL
a,'
(HL) ,A

HL, LOCMSG
A,QDSPLY
28H

DE,FCB2

;Get the current record number
1Call the QLOC svc

:Get the current record number

jand put it in register HL

1Store the result here.

:Convert binary to ASCII in decimal format
;Call the @HEXDEC svc¢

;Get a blank

:Look at the front of the buffer
:Is the character a blank?

+A number has been found
;Advance the pointer

:Loop until we find a number

;Back up one position

;:Get the character we want to insert
1Store that character.

;The buffer now contains

;<none or more spaces>{record number)
;<7 left-cursor characters><etx>
;Point at this text

;and display it on the screen

:Call the BDSPLY svc

the target file.

;Point at the FPCB for the target file

Software 172

pE339
ag34g9
ap34l
pE342
gg343
ap344
da345
gd346
29347
gp348
Ap349
ggasg
gg3sl
#p3s52
Ag3s3
pE3sa
agiss
gg3se
gg3s?
#@158
gg3s9
ga3egd
gg36l
gg362
ggie3
gg364
#E36s
gaise
ge36e7
gg368
#g369
ga37d
pE371
372
g@373
g4
@gars
ga376
#3377
ag3is
gF379
gassg
gg3el
gg382
@383
ggisg
ggass
ggise
pE3e?
pgpg38sg
gg389
gg3op
a@39l
fggaez
#F393
gg394
gg39s
@2d396
Ag397
ag3os
$g399
ggag9
ggagl
ggad2
gpags
ggapga
ggags

- e

EOF:

s w

EOFYES:

QUIT:

-~

ERR:

H

H
SPACES:
ARROW:

OK:

MESGL:

MESG2:

FEXST:

LD
LD

RST
JR

JR

Sample Program C, continued

HL ,BUFFER t1Point at the data read from file 1

A,@VER ;Write a record to the target file
;The @VER does the same thing as the
;@WRITE svc, only it also checks the
;data to make sure it is readable.

288 ;Call the @VER svc

NZ,ERR ;An error occurred on write; possibly
sthe disk is full.

Loop ;Loop until an error occurs.

This code checks the error to make sure it was an end of file
condition and, if so, closes the source & target files.

28 sWas it an end of file encountered?
Z,EQFYES :Yes, close the file

29 ;Was it "Record number out of range”?
NZ,ERR ;No, must be some other error

It is possible to get Error 29 if the file being copied has
an EOF that is not a multiple of the file's LRL

LD
LD
RST
JR

LD
LD
RST
JR

LD
LD
RST

LD
RST

DE, FCB1 :Point at file 1 (source file)
A,RCLOSE ;Close the file

284 ;Call the @CLOSE svec

NZ,ERR ;An error occyrred, abort

DE,FCB2 ;Point at file 2 (target file)
A,QCLOSE :Close it also

28H ;Call the QCLOSE svc

NZ,ERR ;An error occurred, abort

HL,OK ;Print a message saying the copy is done
A,@DSPLY

28H :Call the @DSPLY svc

A,REXIT :Exit to TRSDOS or the calling program
28H ;Call the @EXIT svc

The QEXIT svc does not return.

OR

LD
LD
RST

Because
Storage

DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

g4pd :Turn on bit 6, which
;will cause the @ERROR svc to print
;the short error message. Bit 7
;is not set, which instructs the @ERROR
;to abort this program and return to
;TRSDOS Ready.

C,A :Put error code & flags in register C

A, 8ERRCR ;Call the system error displayer

28H ;Call the @ERROR svc

bit 7 is not set, the BERROR svc will not return.
Declaration

v :ASCII Space char.for display formatting
3

r=> ! tArrow for display shows data direction
3

14%25 ;Advance cursor 1f spaces without erasing
[0kl ;Used to indicate the Copy is complete
ADH :Terminated with an <Enter>»

‘Copy Filespec >'
3

'To Filespec >*

3

'Destination File Already Exists - Ok to Delete it (Y/N) ?°
3

Software 173

BADFIL:

LOCMSG:

FILEl:
FILE2:
FCBl:
FCB2:
COPY:
LRL:

BUF1:
BUF2:
BUFFER:

DEFM
DEFB
DEFM

DEFB
DEFB

DEFS
DEFS
DEFS
DEFS
DEFS
DEFB

DEFS
DEFS
DEFS

END

Sample Program C, continued

'Invalid Filename - Try Again’

fiDH
' 12345)!

7324
3

32
32
32
32
32
[

256
256
256

BEGIN

1This will be used in building the LOC
;Display will appear as {(d) to (ddddd).
jBackspace without erasing

;Etx, used to get the @DSPLY sve to stop

;User Text Originally placed here

;1Target Filename goes here

+32 bytes for the File Control Block

;32 bytes for the File Control Block

:An extra copy of the target FCB goes here
;The Logical Record Length of the source
;file will be stored here

;System buffer for File 1

;System buffer for File 2

;Data buffer for both files

:"begin®” is the starting address

Software 174

L

Ln #

BEFAL
pepga2
BPGEd3
popas
goegas
ggppe
pega?
gapg9
gRpLa
gLl
pgpg12
pogL3
ggp1L4
#ee1s
pagle
gagL7
Aggls
gog19
gpgagp
Agg2l
2gg22
Aggz3
pEdz4
Agp2s
pgpze
pgE27
pppg2s
pggz9
ggg3g
ggg3t
gEpg32
ggp3s
99934
pEP3s
#9036
gg@g37
#0238
apg39
fogap
gggAl
gagaz
Bgp43
pgga4
Aggas
ggpgae
gppgar
gggss
pEgag
ggpgsg
pEEsS1
pgps2
#gps53
gapgs4
#gPs55
#9256
BIFs7
aggss
apas9
gPge g
agg6l
pgae62
pgee3
poge 4
Pag65
fAgdee
agaed

s e e we wg

.
’

Sample Program D

Source Line

This program will read a sector from the disk in Drive §
and will write it to a disk in Drive 1. The disk in Drive 1
must be formatted, but should not have anything important on
it. This program makes an assumption that the directory is
located on cylinder 2f (x'14').

PSECT 399@H :This program begins at x'3gp#°'.

Define the equates for the SVCs that will be used.

@ARBORT: EQU 21 ;Abort and return to TRSDOS
QCKDRV: EQU 33 ;Test to see if a drive is ready
@DCSTAT : EQU 49 ;Verify that a drive is defined in the DCT
@ERROR: EQU 26 ;Display an error message
@EXIT: EQU 22 ;Return to TRSDOS or the calling program
@RDSEC: EQU 49 :Read a sector
@RDSSC: EQU 85 :Read a system sector
@WRSEC: EQU 53 ;Write a sector
BWRSSC: EQU 54 ;Write a system sector
H Other Equates
SYSSEC: EQU 14ppgH :The system sector is Cylinder 2§, Sector §#
USRSEC: EQU pPgaN :The regular sector is Cylinder @, Sector f
H First, test the target drive and make sure it is defined.
START: LD C,1 ;Select Drive 1
LD A,@DCSTAT ;Ask if the drive is listed in the DCT
RST 28H ;Call the @DCSTAT svc
JR NZ, ERROR ;If NZ, then the drive is not defined

LT

- e

;and we will abort execution.

Now, test and make sure the target drive contains a formatted
disk and is write-enabled.

LD c,1 :1Select Drive 1

LD A,BCKDRV ;Test to see if the disk is formatted
sand is write-enabled., Note that the
;disk must be formatted by TRSDOS 6.x
;or by LDOS 5.1.x%x to be considered
;"formatted” by this svc,

RST 28H ;Call the @CKDRV svc

LD A,8 ;This will become the error number if the
;drive was not ready. This is done
;because the BCKDRV svc does not return error

jcodes.
JR NZ,ERROR ;The drive is not ready
LD A,l5 :This will become the error number if the

sdrive is ready and is write-protected.
1As above, this is done because @CKDRV does
;not return error messages.

JR C,ERROR :The disk is formatted, but it is
swrite-protected. In either case, abort.

Now that we know the target drive is ready, read a sector
from the source drive and write it to the target drive (Drive lJ.

LD c,8 1Select Drive f#
LD DE,USRSEC ;Read the first sector on the disk,
;Cylinder @, Sector #.
LD HL,BUFF ;1Point to a buffer which will hold the sector
LD A,@RDSEC ;Read a non-systemwm sector
RST 28H ;Call the @RDSEC svc
JR NZ, ERROR ;If NZ, an error occurred, so abort

Software 175

spgesn
agge9
#8oa78
a@g7l
29972
agP73
29874
gagis
#ggg76
aea77
2378
ggP7T9
pggeg
ppgsl
gogs2
gpges
pggss
pap8s
ggg8e
gape7
ppass
apgaen
pgggog
ppasl
pgp92
gp@Ea3s
Agpsa
gaP9s
pEgge
2g@97
/8pPg98
ggp99
og1 g
Aglpl
goLrg2
go1g3
Agg1ga
ggl1gas
paLgG
gorgT
gg108
gg199
Apl1g
g1l
Ap112
ApP113
APl1la
pP11s
gpP116
ag117
pgL18
#8119
pp12g
Ap121
pp122
pg123
pgL24
pP125
#0126
pP127

-

- W we e WS mA e WE WE e e

-t we W

ERROR:

BUFF:

Sample Program D, continued

Now, write the sector to the target drive.

b Cc,1 ;Select Drive 1

LD DE,USRSEC ;Write the sector to Cylinder @, Sector #
son Drive 1

LD HL, BUFF ;Point to the buffer containing the sector

LD A,@WRSEC ;Write the sector to disk

RST 28H ;Call the BWRSEC svc

JR NZ , ERROR :If NZ, an error occurred, so abort

Now we will read a system sector from Drive @ and write it on

drive 1. The difference between a system sector and a non-system

sector is that the Data Address Marks (DAM) are different. These
were written to the disk when it was formatted. TRSDOS 6.x uses
these as an extra check to make sure that a write of user data
does not accidentally get placed over a sector containing system
data. All of the sectors in the directory cylinder are marked

as system sectors.

LD c,g :iSelect Drive f

LD DE,SYSSEC sRead Cylinder 2§, Sector #

LD HL, BUFF ;Store the sector at this address
LD A,@RDSSC :Read a system sector

RST 28H ;Call the @RDSSC svo

JR NZ,ERROR ;An error occurred, so abort

Now write the sector to the target drive as a system sector.
There is no requirement that a sector must be placed at the
same cylinder and sector location as it was read from, but
for simplicity, we are doing that.

LD c,1 ;1Select Drive 1

LD DE,SYSSEC ;jWrite Cylinder 2@, Sector @

LD HL,BUFF ;Point to the data to be written

LD A, 8WRSS5C iWrite a system sector

RST 28H ;Call the BWRSSC svc

JR. NZ ,ERROR ;An error occurred, so abort

LD A,QEXIT ;Return to TRSDOS or the calling program
RST 28H ;1Call the @EXIT svc

This routine displays an error message if anything goes wrong.
Note that @CKDRV does not return an error message, so @ERROR
cannot be used for it without some manipulation.

OR AcpgHa ;Set bit 7

LD C.,A ;Load error number into register C

LD A, BERROR :This will display the error message
sand return to the calling program

RST 28H :Call the @ERROR svcC

LD A,Q@QABORT :Now, force an abort. This will return

;to TRSDOS Ready and will abort any
;JCL file that is currently executing
RST 28H $1Call the @ABORT svc

DEFS 256 :256-byte buffer to store the sector that
;is read and then written

END START

Software 176

C

o

Ln #

gpEgpl
gagp2
g@gg3
sEpg4
ggpge
Beeg7
gegps
agapo
gppg1p
Ag@gll
pgpL2
ggapE13
gegdla
pag1s
Ag@g16
gagL?
#gg18
gpale
agazp
g@@21
gpE@22
popE23
popg24
BEA25
pRg26
g7
ggg28
gap29
gapg3p
Ag@sl
gagsz
agE3i
gEE34
#g@as
BIP36
gag37
Aga3s
pEg39
gpaag
ggg4al
f8@42
pPEa43
gggaa
#ag45s
g9946
p9947
apgss
ggpgas
pgpsg
pp@Esl
ppes2
gpas3
g@g54
pgpss
pgPgs6
g9ps7
gggse
Aggs e
pogegd
#9961
gppe2
BPP63
pggea
ggges
gdgee
gage7

-

- e

@CMNDI :
@CMNDR :

@DODIR:

LYY

START:

LY T P L]

-

P AT

N WA M e wE W

-

DIRJ:

Sample Program E

Source Line

This program displays the filenames of the disk in
Drive @ three different ways.

PSECT 3¢@PH ;Program begins at x'3ggg’

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program ecasier to follow.

EQU 24 ;Execute a TRSDOS command and return
;t0o TRSDOS Ready

EQU 25 ;Execute a TRSDOS command and return
:+to the calling program

EQU 34 :Display visible filenames on the

ispecified disk drive

First, pass a "DIR :¥" command to the system. TRSDOS will
execute this command and then return to this program.

LD HL,DIR# ;Point at command we want to execute
LD A, BCMNDR ;Execute the specified command and return
RST 28H iCall the @CMNDR svc

You may have noticed that the DIR displayed the files, but that
they were not sorted alphabetically. This is because the DIR
command will not use memory above x'3@f@' when it is invoked with
a @CMNDR svc. This prevents the DIR command from performing a
sort of the filenames.

Now do a directory command using the @DODIR svc.

LD B, g :Use Punction @ which displays all
;visible files in the directory.

LD c,g ;Put source drive number in register C

LD A,@DODIR ;The filenames will be read from the

sdirectory and displayed in the
;order they appear in the directory.
RST 28H ;Call the @DODIR svc

Now pass a "DIR :#" command to the system. This time
the command will be executed and then TRSDOS will not return
to this program, but will return to TRSDOS Ready.

LD HL,DIRJ ;Point at the command we want performed

LD A,B8CMNDI ;and execute it, but don't return to
;this program.

RST 28H ;Call the QCMNDI svc

;This svec returns to TRSDOS Ready.

Note that when the library command DIR is performed this time,
the display of files is sorted. This is because DIR determines
that it was invoked with a 8CMNDI svec, and it will not return
to the calling program. Therefore, DIR is free to use the
memory above x'3@g@f' to perform the sort of the filenames in
the directory.

Constants
DEFM 'DIR :0°' 1This command is passed to TRSDOS
;via the BCMNDR and @CMNDI SVCs.
DEFB PDH ;It must be terminated with an <ENTER>.
END START

Software 177

Ln #

gggpl
appp2
BapE3
gogga
28pa5
Agpd6
aaggT
gappas
gopB9
gepLe
pegLL
ag@gl2
#9913
g@a1s
#odle
Agairy
gg@is
pe@EL9
ggp2g
ppg21
A9P22
$P323
a2dpg24
28925
20026
gea27
gpgzs
ppg29
pep3g
Agg3l
pgg32
peg33
#e@A34
AP@35
Apgie
pPg37
24pB38
gapse
ggpap
2dgal
pag42
pag43
eG4
#0945
aagae
agpar
pggpg4as
#gg49
ppgsg
#9851
ppas2
ggas3
Aags 4
PBPsS5
pBESE
pags7
gpggsse
#0p59
gggegp
gegel
2@8p62
ggge3
ogp6 4
APP6S
poge6
apge7

e e Me M WA wp e AR he W w

- wy

Sample Program F

Source Line

This program adds to the system task scheduler a task

which displays the date and a running count of the number

of times the task has been executed.

For simplicity, the program tries to use task slot d.

If it is already in use, it assumes that the task using that
slot is this program, and it kills the task. It then tries to
recover the memory used by the task in high memory.

If the task slot is not in use, the task is placed in high memory,
and the address of the task is passed to the task scheduler.
The first time you run this program it adds the task, and the
next time you run this program, it removes the task.

PSECT 3gggn :This program starts at x'38g8°

First, declare the equates for the SVCs we intend to use.
This is not mandatory, but it makes the program easier to follow.

@ADTSK: EQU 29 ;Add a task entry to the scheduler
@CKTSK: EQU 28 ;Check to see if a task slot is in use
@DATE: EQU 18 :Return the date in ASCII format
@DSPLY: EQU 14 ;Display a message

@EXIT: EQU 22 1Return to TRSDOS Ready or the caller
@GTMOD: EQU 83 ;Locate a memory module

@HEXDEC : EQU 97 :Convert a binary value to decimal ASCII
QHIGHS : EQU 199 ;Read or modify HIGHS or LOWS

@RMTSK: EQU 3@ sRemove a task entry from the scheduler
BVDCTL: EQU 15 ;Perform video operations

@WHERE: EQU 7 :Find out where the program counter is

S WE W WE M4 W WA WE W

CALLR:

R A T T

;when this 8VC is executed. This is
juseful in relocatable code that must
imake absolute address references to
;call subroutines or modify data.

Below we will define a macro to simulate a call relative
instruction. Since the task must be able to run no matter
where it is placed, it must use relative jumps and calls.

The Z8f instruction set has a jump relative (JR), but does

not have a call relative instruction. This can be simulated
using the @WHERE SVC, which returns the address of the caller
in a register. This address can be adjusted and plated on

the stack as a return address. Then a jump relative can be used
to reach the subroutine.

MACRO *¥1 ;#1 will be the address you want to call
PUSH HL ;S8ave the registers we damage

PUSH BC ;Save it

PUSH AF :Save it

LD A, @WHERE ;Get our current address

RST 28H ;Call the @WHERE svc

LD BC,3+41+1+41+1+42 ;Get the lengths of the instructions after

;the SVC. This will allow the subroutine
sto return to the correct address.

ADD HL,BC ;Add that offset to where we are

POP AF ;Put stack back

pOP BC ;:Restore registers

EX (SP) ,.HL ;Put return address on stack and restore HL
JR #1 ;Jump to the subroutine

ENDM 1End of the macro

This is the main program. It loads at x'3@@F'. It decides

if it needs to add or remove the task in the scheduler tables.
If it adds the task, it moves a copy to the top of memory and
protects it, and adds a task entry to the scheduler,

If it is removing a task, it kills the entry in the scheduler

Software 178

)

gpges
#aPE69
gepE7e
gEE71
pgg72
2pE73
aga74
pPpIS
pgPIe
#pe77
gpgis
gppeI9
pgpag
pgg8l
gpgs2
gog83
peps 4
pee8s
Aggse
g0@87
pgagas
pgpEes
ppaoy
pgg9l
pg@92
gop93
pEg94
Bggas
296
paga7
APP98
gaP99
ga1pp
#g1pl
Ba1g2
'] AN K]
ag1g4
gg1as
AELE6
pgra7
gaLps
pPE1EY
psgL1p
#g111
#@E112
#g113
ap114
ggl1s
BPAlle
Ag117
pg118
Ag119
pggL2¢
gg121
pglL22
g9123
gplL24
gd125
ga126
#g127
#g128
#g129
pa13p
P13l
29132
p@133
pEL34
#@g13s

.

BEGIN:

~. W we ws

- g

" w

-

-

LY R

Sample Program F, continued

tables, and then attempts to recover the memory used by the task.

LD c, g ;First, we will test slot @

LD A,dCKTSK ;to see if anyone is using it

RST 28H ;Call the @CKTSK svc

JR NZ,KILLIT :There is a task using slot #, kill it

At this point, we want to add a task to high memory.
First we find the value for HIGH$ and put a copy of the
task there. Then we protect the task by moving HIGH$ below

the new task.

Lo HL,# :First, get the value of HIGHS

LD B,H ;Read HIGHS

LD A, @HIGHS

RST 28H :Call the @HIGHS svc

LD (ENDADD) ,HL ;Save this value as the last address

:sthat the task will be stored in once it
1is moved to high memory

LD DE,HL s;Put that value here

LD HL ,MODEND-1 ;Point at the end of the module

LD BC ,MODEND—-MODULE ; Move the module from where it is
;xright now to a position below HIGHS

LPDR :Do the copy

LD HL,DE :Now protect the module using HIGH$

D B, 8 ;Update HIGHS

LD A,QHIGHS

RST 28H ;Call the QHIGH$ svc

Now we need to load the TCB entry in the module with the address
of the first instruction to be executed.

LD IX,HL ;1 IX now points at memory header
LD BC ,ENTRY-MODULE+1 ;Get the offset into the module
;0f the first instruction
ADD HL, BC ;HL now contains the actual starting address
LD (IX+ (1+MODTCB~MODULE)),L ;8tore LSB of the address
LD (IX+1+(1+MODTCB-MODULE)) ,H 1Store MSB of the address

Now the task is ready to run. We now add the entry to the task
scheduler table,

LD BC ,MODTCB-MODULE+1 ;Get offset into the
;imodule of the TCB word
PUSH IX ;Get a copy of the base address
POP HL :Put base address here
ADD HL,BC ;Now HL points at TCB address
LD DE,HL ;Put that value in DE
LD c. B ;:Add this entry to task slot @
LD A,@ADTSK :Add this task, to be run every 266.67 msec
RST 284 ;Call the QADTSK sve

The main program has now done its work and can exit.

LD HL, ADDED ;Point at a message saying what was done
LD A,@DSPLY rand print it

RST 28H ;Call the @DSPLY svc

LD B,QEXIT ;Now exit

RST 28H ;Call the QEXIT svc

This SVC does not return.

This part of the code removes the task from the scheduler
tables and then attempts to recover the memory that was used

Software 179

pPL36
pE137
pp138
gaL39
BU1 4p
gp1al
pF142
#aLa3
ggl4aa
BE14S
gglae
#9147
pgl4s
gg1L4a9
ggLs@
gg1sl
Ap1Ls2
gg1s3
#9154
#1555
#9156
#3157
#8p158
@g1s9
Bglegd
Adlel
Agle2
PP163
#Fl164
pELES
BRLEE
#p1le7
@168
#B169
pp17@
#9171
AgL72
pAL73
#P174
g@E1L75
pP1L76
pP177
agglis
pAALTY
gg18g
gg181
ggl182
ggl1as
#g184
#8185
gd186
Agi1a3
pggaliss
#@189
galeg
#p1el
pg192
g@193
pg194
pg19s
#9196
paL9?
pggi19s
pgL99
gg2pp
gg2g1
pgE2p2
gp283

- mg g

KILLIT:

LY T Y

- =

w4 N wg

CANT:

-

ADDED :
OK:

RECLM:

Sample Program F, continued

by the task in high memory. If another high memory module
was added AFTER this task was added, then the memory that
was used by this task cannot be recovered.

LD
LD
RST

At this
system.
reclaim

Lo
LD
RST
JR

LD
LD
LD

LD
RST
INC
PUSH
POP
XOR
SBC
JR

At this

c,8 ;We want to remove the task in slot g
A, @RMTSK
28H ;Call the @RMTSK svc

point, the task is no longer called by the operating
Now we want to determine if we can
the memory it was using.

DE,MODNAM ;Point at the name of the module

A, @GTMOD ;Look for a module with that name

28H ;Call the @8GTMOD svg

NZ,CANT 1If NZ is set, then we killed some other

:task that was using slot #. Oops.
;In that case, just stop and don't do any
jmore damage.

IX,HL ;Set IX to point to the module.

B,# ;Read the current value of HIGHS

HL, @ :1to see if this is the first program in
;:high memory

A,BHIGHS ;1f it is, then we can recover the space

28H ;Call the @HIGHS svc

HL ;Move HIGHS up by one byte

Ix ;Take the address of our module

DE ;and store it here

A ;Compare these

HL,DE ;Are they the same?

N2 ,CANT :+No, the high memory module can't be removed

point, we know it is ok to reclaim the memory used by the

high memory task.

LD HL, (IX+2) ;Read the end of module value out of the
sheader information

LD B,§ ;Update the HIGHS value

LD A,@HIGHS

RST 28H ;Call the QHIGHS svc

LD HL,OK ;Point to a message saying all is well

LD A,@DSPLY sand print it

RST 28H :Call the @DSPLY svc

LD A,Q@EXIT ;Exit the main program

RST 28H ;Call the @EXIT svc

Here we will display a message saying we removed the task from

the scheduler table, but we cannot reclaim the memory that was

used.

LD HL ,RECLM ;Point to the message

LD A,Q@DSPLY ;and display it

RST 28H ;Call the @DSPLY svc

LD A,Q8EXIT ;Now exit

RST 28H ;Call the @EXIT svc

Messages

DEFM 'Task placed in high memory and scheduled.’

DEFB #DH .

DEFM 'Task removed from scheduler table and memory reclaimed.’

DEFB #DH

DEFM ‘Task removed from scheduler table, but memory could not °

Software 180

"

gp2g4
ga2gs
gg2de
pg2a7
ggags
ge2d9
pg214¢
Ap21l
gp212
gg213
pg214
#a21s
gg216
gE217
ap218
pR219
gg228
AR221
g@z22
gg223
gg224
pg22s
gg226
pp227
gg228
@g229
gg23p
8231
gaz32
pg233
gg234
#@235
#g236
gg237
gg238
#9239
gg24g¢
gE241
dgzaz
Ap243
pP244
gp24s
gg246
pg247
gg248
Ap249
ap2sg
Bg2s1
Ag252
pg253
gpP254
pPE255
gpP256
pg2s?
gg258
#P259
go26p9
gF261
#9262

++F ++r++

LT

- we W

MODULE:
ENDADD :

MODMNAM:

MODTCB:

-
r
-
[

Sample Program F, continued

DEFM 'be recovered.
DEFB ADH

The Task begins at this point. This part of the program loads
in low memory but is relocated to a point just below HIGHS.

This is the Memory Header Block. This block of data allows
the system to locate this module in memory by name,
using the @GTMOD svc.

JR ENTRY ;Jump (relative) to the starting address

DEFW 2 :The highest address in the program.
;This value is patched in before the program
1is relocated. This will be used
;later in recovering the memory used by
sthis task.

DEFB MODTCB—-MODNAM ;Number of bytes in the name field below.

DEFM 'UPTIME' ;This is the name of the module and is
sused to identify the module.

DEFW a ;Actual address to start execution. This
svalue is patched in after the program is
;relocated.

DEFW] ;Spare system pointer - RESERVED

This area contains data used by the task. It is addressed using
the IX register which points to the task when it is executed.

COUNTER : DEFW) ;Count of how many times we have run

DATBUF

e wE we e

ENTRY:

-

DEFS 9 ;The date is stored here

This is the actual task.

On entry to the task, IX points at the Task Control Block (TCB),
which in this program is the label 'MODTCB'. All data is
referenced by indexing from that address.

PUSH 1Y ;Save this register. It is not saved by
;the Task Scheduler, and we use it,.
;Registers AF, BC, DE, and HL are saved

Now we will read the current date.

LD HL, IX :1Get a copy of the index pointer

LD BC ,DATBUF-MODTCE ;Get the offset needed to access the date
ADD HL,BC ;Now we have a pointer to the date

PUSH IX ;Save the pointer to the start of the task
PUSH HL :Save a copy of that pointer

LD A, @DATE ;Ask the system what the date is

RST 28H ;Call the @DATE svc

D (4L) , @ :Terminate the date string

POP DE ;Put pointer to the date here

PUSH DE ;We will use this pointer later on

LD HL, §828H ;Put the cursor on the top line,

;specified in register HL
;at the 4lst position on the screen

CALLR WRITE ;Write the message at the position

PUSH HL ;Save the registers we damage

PUSH BC ;Save it

PUSH AF ;Save it

LD A, @WHERE ;Get our current address

RST 28H ;Call the @WHERE svc

b BC,3+1+1+1+1+2 ;Get the lengths of the instructions after

sthe SVC. This will allow the subroutine
;to return to the correct address.

Software 181

R R R

=
R
NN
OO
U

#9297
#9298
ga299
293040
PR3
#9392
BE343
Agiga
293¢5
Aa3ge
aa3gE7
ga3As
2e3g9
Bg31p
84311
#9312

-~ w

-

wa r we we ws

WRITE:

TSKLP:

ADD
POP
POP

Sample Program F, continued

HL,BC
AF

BC
(SP),HL
WRITE

1Add that offset to where we are

:Put stack back

;Restore registers

;Put return address on stack and restore HL
;Jump to the subroutine

;Note that the above was actually a macro
;which performs a relative call.

This part of the task displays a count of the number of times
the task has been executed.

POP
POP

PUSH
LD

LD
ADD
LD
LD
LD
INC
LD
LD

LD
RST

XOR
LD

POP
LD

CALLR
PUSH
PUSH
PUSH

RST

ADD
POP
POP

DE
IX

DE

BC,COUNTER~MODTCB

HL,IX
HL,BC
1Y,HL

L, (IY)
H, (IY+1)
HL

(1Y) ,L
(1¥+1} ,H

&, @HEXDEC
28H

A
(DE),A

DE
HL, f@36H

WRITE

HL

BC

AF

A, @WHERE

28H
BC,3+1+1+1+1+2

:Get the pointer to DATBUF back

;Get the pointer to the beginning of
;this task

:1Save the pointer to DATBUF again

:1Get the offset to our data
sarea

;Put a copy of the base address in HL
sAdd offset. Now HL points to COUNTER:
;Put the pointer to COUNTER in IY

;Get LSB of the counter

1Get MSB of the counter

sIncrement the number of times we have run
;Store the LSB of the counter

;Store the MSB of the counter

;Convert the count to decimal
;Call the @HEXDEC svc

;Get a zero
;Terminate the count string

;Put pointer to date here

;Put the cursor on the top line,
;specified in register HL

;at the 55th position on the screen

iWrite the message at the position

;8ave the registers we damage

1Save it

;Save it

;Get our current address

:Call the @WHERE svc

:Get the lengths of the instructions after
;the SVC. This will allow the subroutine
;to return to the correct address.

;Add that offset to where we are

;Put stack back

;Restore registers

;Put return address on stack and restore HL
;Jump to the subroutine

;Note that the above was actually a macro
;jwhich performs a relative call.

Now we restore the IY register and return to the task scheduler.

POP
RET

IY

1Restore IY value
;Return to the task scheduler

This routine places characters on the display using the @VDCTL

sve instead of @DSP or @DSPLY.

This allows the cursor to

remain at its current position when we write to the screen.
This routine must be called using the relocatable call macro

CALLR.

LD

LD

B,2

A, (DE)

;Put character on the display

;Get a character to display

Software 182

#3113
ppP3l4
Apg31s
PE316
#ga317
pg318
g@319
pgi2g
gp321
a@322
g@E323
gd324
Ag32s
pP326
gg327
pp3ze
Ag329

MODEND :

OR

RET
PUSH
PUSH
PUSH
LD
LD
RST
POP
POP
POP
INC
INC
JR

END

Sample Program F, continued

A

z
HL

DE

BC

C.A

A, BVDCTL
28H

BC

DE

8L

L

DE

TSKLP

BEGIN

+Is it time to stop putting this on
;the display?

;Yes, return to the caller

;Save the registers, as the SVC will
;alter the contents

:Put the character here

;Put character on screen at specified position
:1Call the QVDCTL svc

;Restore registers

;advance display position
;Point to next character to display
;Loop till date is completely displayed

;End of task and main program

Software 183

#gpg
gaap2
BEAB3
sEpaa
ggads
gopa6
gaaaz
L
gppa9
gagLp
ggp1l
#3912
gag13
#egla
gepLs
pgdle
gaP17
gp@1s
pgPL9
gggzg
gEg21
pp@22
Pog23
pAgE24
AgP2s
gap26
pep27
gegzs
gapg29
geg3g
pgp3l
agp32
Agg33
ABA34
ggg3s
pag3e
gegiz
#gg3se
gg@3o
gyaaAg
pggal
pgg42
ggg43
#pdaa
gagas
ogp46
ppgar
ggg48
ggpa9
pEgsy
gagEs]1
#gggs2
gags3
gags4
ApPss
#gdgse
#gags7
gpgss
gpgse
pgadep
ppgel
gope2
g9g63
apa64
goges
pAges
page?
geges

e NE MR WE WP RE ME we mE MR W N W g

N ek wp e me wa e %h mp W Ny

LR TR TR TR P D 1

e owe

e wE we we

" we W

- e we

@EXIT:

BDSPLY:
@FLAGS:
@DODIR:
QKEYIN:
QCMNDI:

S me me we W

Sample Program G

This program is a sample Extended Command Interpreter. You
may make the ECI as large or small as you require. You may
use allof main memory, or you can restrict yourself to the
system overlay area (x'26@@' to xX'2FFF').

To pass a command to the normal system interpreter for
processing, use the @CMNDI svc. TRSDOS executes the command
and reloads the ECI. If you want to have multiple entry
points, Bits 2 - @ in EFLAGS are in Register A on entry

(in Bits 6 - 4),or you may read EFLAGS$ yourself.

EFLAGS is totally dedicated to the ECI, and may contain any
non-zero value. If EFLAG$ contains a zero, TRSDOS uses its
own interpreter. Other programs that want to activate an ECI,
should set the EFLAGS to a non-zero value and execute a Q@EXIT
sveC.

To install an ECI, use the command:

COPY filename SY¥YS13/SYS.LSIDOS:d (C=N)
If you omit the C=N option, the 8YS513 file loses it's "S5¥Ys"
status and you will receive 'Error g7' messages when you try
to use it as a ECI.

When SYS1 (the normal command interpreter) has completed it's
normal housekeeping and is about to display the "TRSDOS Ready"
prompt, it checks EFLAGS. If EFLAGS contains a non-zero
value, TRSDOS loads and executes the Extended Command
Interpreter.

To execute this program, type <*><Enter>.

This program checks EFLAGS$ to see if it is zero. If so, it
sets it to a non-zero value. This causes this program to be
used instead of the normal interpreter when you execute an
@EXIT or @ABORT SVC, (BCMNDI and @CMNDR invoke the TRSDOS
interpreter.) If EFLAGS is non-zero, the ECI displays a few
prompts and the names of all visible /CMD files on logical
Drive @.

The operator may then type the name of a program to execute.

If you press <Break>, this program sets EFLAGS to #, executes
an @EXIT SVC and returns to TRSDOS Ready.

By pressing a number, # through 7, you can specify the drive
that TRSDOS searches. This program stores this value in
EFLAGS. Each time this program is invoked, it reads the value
from EFLAGS and uses that drive.

Note that if a drive is not enabhled, not formatted, doesn't
exist, or contains no visible /CMD files, this program
redisplays the prowmpt.

PRINT SHORT, NOMAC

PSECT 39994 ;This program starts at x'3pgg’
Declare the eguates for the SVCs used.

This is not mandatory, but it makes the program easier to
follow.

EQU 22 ;Exit and return to TRSDOS

EQU g ;Display a string

EQU 1¢1 ;Locate the system flag area

EQU 34 ;Get the names of filenames

EQU 9 ;Accept a command and allow editing
EQU 24 ;Execute a command (using 5¥Sl)

On entry, determine if EFLAGS is set to zero or not. If it

is set to zero, this program is being started by typing
PROGRAM<Enter> or <*><Enter>. In that case, set EFLAGS$ to a
non-zero value so that in future, TRSDOS uses this interpreter
instead of it's own.

Software 184

v

#Pge9
agaTg
poaT1
gga2
area

pagI3
2ga74
AagIs
gggie
agara
gEp7se
#PB79
pposg
pEgs1
ggpe2
fge83
Agas4
ApAEss
ggpse
ggge7
ggpss
ggg8g
ggpag
gapg9lL
ggg92
gag93
pIg94
gga9s
gap9e
pEE97
pE@9s
aago9
gglpg
gp1g1
gg1g2
gglas
#g1p4
gd145
ggrde
ggrar
pp1Lgs
paLEgo
gpL1g
g1y
Ag112
#@113
gg114
ga115
pdlle
paLL7
pg118
AZ119
ap12g
gg121
#8122
ggi23
gp124
#p12s
BPlL26
ag127
#8128
#gL29
BgL3g
BE131
gE132
#F133
go134
ggiis
#1136

e

BEGIN:

w e

ECIRUN:
ECIGO:

-

-

ASK:

LU TR K T T

I1f EFLAGS is non-zero,

Sample Program G, continued

this initialization has already been

done and can be skipped.

LD
RST
LD
OR
JR

LD

Lb
LD
JR

A, @FLAGS
28H

A, (IY+4)
A

NZ ,ECIRUN

A,8

(IY+4) A
HL, PROMPT
ECIGO

;1Get the starting address of the flag
;Call the @FLAGS svc

:Read the EFLAGS (ECI flag)
;Is it set to zero?
:Run the ECI

;1Get a non-zero value. The value
sheeds to be a non-zero value that
1does not set Bits g, 1 or 2. The
:default drive # is kept in these bits.
;Set the EFLAGS to a non-zero value
+Explain how this works

;Display message

When the system is about to display

TRSDOS Ready,

LD
LD
RST

Display

HL, SPROMPT

A,8DSPLY
28H

it executes this code instead.

;Point at the prompt to use
;Display the proupt
:Call the €@DSPLY svce

the names of all /CMD files

A, (IY+4)
7

C;A
A,&DODIR
B,2

HL, CMDTXT
284

;1Get the EFLAGS

;Delete all but the drive number field
;Store the drive number for the sve
;Do a directory display

iDisplay visible, non-system files
;that match "CMD" {(stored at CMDTXT)
;Call the @DODIR svc¢

Prompt for a filenmame or a function key.

HL, BUFFER
B,9
C,p
A,@KEYIN
28H

C,QUIT

HL, BUFFER
A, (HL)

@DH
Z2,ASK

g
7+l
NC , NAME

;Point at text buffer

tAllow up to 8 characters and <Enter>
s+Required by the svc

:Input text with edit capability
;Call the @KEYIN svc

;The carry flag is set when the
;operator presses <BREAK>. Zero the
;EFLAGS and exit to TRSDOS

sPoint at the start of the buffer
1Get the character

+Did they type anything?

:No, just repeat the prompt.

;If you want to redisplay the
;directory, change "ASK" to "ECIRUN".

jConvert value to binary
;Is the character a g - 7?
;Must be a filename

The operator has typed 1 or more characters that start with

a number.,

This program assumes that the operator is defining

a new drive number and stores this value in EFLAGS for

future use.

TRSDOS does not alter this wvalue.

The next time this program is run, EFLAGS contains the
same value and this program knows what drive to scan.

LD
LD

B,A
A, (IY+4)

;Save the drive number
;Get the EFLAGS

Software 185

Sample Program G, continued

APg1L137 AND 8 ;Delete the 0ld drive number
Adgizs OR B sInsert the new drive number
23139 LD (IY+4),A ;Save that value for future use
paL4p JR ECIRUN :1Scan the new drive
ga141
gar4az The operator pressed <Break>. Turn off the ECI and return to
gg143 ; TRSDOS .
pglaq4 QUIT: XOR A :Get a zero
#2145 LD (IY+4),a ;1Set EFLAGS to zero
#dl4de LD HL,EPROMPT :Point at the shutdown message
ga147 LD A,RQDSPLY :And acknowledge the <Break>»
Adl48 RST 28H ;Call the @DSPLY svc
pBE149 LD A,@EXIT ;Return to TRSDOS Ready
ag1sg RST 28H :Call the @EXIT svc
gA151
agisz ; The operator entered what might be a filename or a library
gg153 command. Pass it to TRSDOS for processing. If there is an
ag1sq error, TRSDOS is responsible for determining what the error is
paiss and printing a message.
pPg1s56 (HL already points at the start of the buffer.)
g@¥157
Ad158 NAME: LD A, pgDH ;Look for this character
#4159 FDIV: CP (HL) :In the command
pArey JR Z, FOUND :Found the end of the filename
#¥le6l INC HL :Move character to next byte
gﬂléz JR FDIV ;Find the divider (in this case, a @DH}
#1613
ﬂﬂ164$: Found the end of a filename, and add the drive number from
EFLAGS.
#ples Note that this program may not work properly if the operator
gglﬁﬁ 3 supplies a drive number as part of the filename.
167
#d168 FOUND: LD (HL),*:! ;Add a drive number to the filename
Agre69 INC HL :Advance the pointer to the next byte
gaL7g@ LD A, (IY+4) ;Get the EFLAGS value
gg171 AND 7 ;Delete all but the drive number
pg172 ADD A, g ;Convert the birnary value to ASCII
Ag1L73 LD (HL) ,A ;Add that to the filename
Ag1L74 INC HL ;1hddvance the pointer to the next byte
@175 LD (HL) , #DH ;Write a terminator on the end
Ad176 LD HL, BUFFER :Point at the text entered
gE1L77 LD A, @CMNDI ;Execute the command, but do not
ag17s8 ;return. Since this program is the
pg1L79 command processor at this time,TRSDOS
pa179 sreturns control to the beginning of
pd18p ;this module after executing the
p@1al :command.
pg182 RST 284 :Call the BCMNDI svc
[: N R: k!
#g1sa ; Messages and text storage
gH1L85
Ag186 PROMPT: DEFM ‘[Extended Command Interpreter Is Now Operationall]’
gg187 DEFB BrH
gg188 DEFB AAH
#d189 DEFM 'Press <BREAK> to use the normal interpreter,
gp19g DEFB AAH
#F191 DEFM ftype <Number><ENTER> to change the default drive
number, '
gg192 DEFB [F:\z 1
pP193 DEFM ‘or type the name of the program to run and press
<ENTER>'
pg194 DEFB ADH ;Terminate the display
galos
#F196 SPROMPT:DEFB #an
Agr97 DEFM '[ECI On] <BREAK> to abort, n<ENTER> for new drive or
type:’
gglos8 DEFM ' program<ENTER>"
#g199 DEFB ADbH ;Terminate the message
gg2ad

Software 186

L

gazgl
gaap2
Ag243
gazg4
gg2gs
ga2@e
pg2p7

EPROMPT : DEFM

CMDTXT:
BUFFER:

DEFB

DEFM
DEFS

END

Sample Program G, continued

'[Extended Command Interpreter Is Now Disabled]’

BDH

'CMD'
11

BEGIN

;Allow for filename, drivespec and @DH

:"BEGIN" is the starting address

Software 187

& 1CUIHHITGAl HITIVITTIAULIVIT VI 1 NIV
Commands and Utilities

TRSDCS commands and utilities are covered extensively in the Disk Systemn
Owner's Manual. This section presents additional information of a technical
nature on several of the commands and utilities.

i Changing the Step Rate

The step rate is the rate at which the drive head moves from cylinder to cylinder.
You can change the step rate for any drive by using one of the commands
described below.

To set the step rate for a particular drive, use the following command:
SYSTEM (DRIVE = drive, STEP = number)

drive is any drive enabled in the system. number can be 0, 1, 2, or 3 and rep-
resents one of the following step rates in milliseconds:

0= 6 milliseconds
1=12 milliseconds
2 =20 milliseconds
3 =230 milliseconds

Unless itis SYSGENed, the step value you select remains in effect for the spec-
ified drive only until the system is re-booted or turned off. If you use the
SYSGEN command while the step value is in effect, then this step rate is written
to the configuration file (CONFIG/SYS) on the disk in the drive specified by the
SYSGEN command.

On a new TRSDOS disk, the step rate is set to 12 milliseconds.
To set the default bootstrap step rate used with the FORMAT utility, use the fol-

e lowing command:
R
,‘ SYSTEM (BSTEP =number)
number is @, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds,
respectively.

The value you select for number is stored in the system information sector on
the disk in Drive 0. (On a new TRSDOS disk, the bootstrap step rate is set to 12
milliseconds.)

If you switch Drive 0 disks or change the logical Drive @ with the SYSTEM
(SYSTEM) command, the default value is taken off the new Drive @ disk if you
format a disk.

You can change the bootstrap step rate for a particular FORMAT operation if
you do not want to use the default. Specify the new value for STEP on the
FORMAT command line as follows:

FORMAT :drive (STEP =number)

drive is the drive to be used for the FORMAT. numberis 0, 1, 2, or 3, which cor-
respond to 6, 12, 20, and 30 milliseconds, respectively.

The step rate is important only if you will be using the disk in Drive 0 to start up
the system. Keep in mind that too low a step rate may keep the disk from
booting.

- Software 189

Changing the WAIT Value

The WAIT parameter compensates for hardware incompatibility between cer-
tain disk drives. The only time you should use it is when all tracks above a cer-
tain point during a FORMAT operation are shown as locked out when the
FORMAT is verified.

The value assigned to WAIT signifies the amount of time between the arrival of
the drive head at the location for a read or write, and the actual start of the read
or write,

If you want to change the WAIT value, specify the new value on the FORMAT
command line as follows:

FORMAT :drive (WAIT = number)

number is a value between 5000 and 50000. The exact vaiue depends on the
particular disk drive you are using. We recommend that you use a value around
25000 at first. Adjust this value higher if tracks are still locked out, or lower until
the bottom limit is determined.

Logging in a Diskette
LOG is a utility program that logs in the directory track, number of sides, and
density of a diskette. The syntax is:
LOG :drive
drive is any drive currently enabled in the system.

The LOG utility provides a way to log in diskette information and update the
drive's Drive Code Table (DCT). it performs the same log-in function as the
DEVICE library command, except for a single drive rather than all drives. It also
provides a way to swap the Drive @ diskette for a double-sided diskette.

The LOG :0 command prompts you to switch the Drive @ diskette. You must use
this command when switching between double- and single-sided diskettes in
Drive 0. Otherwise, it is not needed.

Example

If you want to switch disks in Drive 0, type:
LOG =0

The system prompts you with the message:
Exchange disks and hit <ENTER>

Remove the current disk from Drive @ and insert the new system disk. When
you press (ENIER}, information about the new disk is entered to the system.

Printing Graphics Characters

If your printer is capable of directly reproducing the TRS-80 graphics charac-
ters, you can use the SYSTEM (GRAPHIC) command. Once you have issued
this command, any graphics characters on the screen will be sent to the line
printer during a screen print. (Pressing €TRD() causes the contents of the
video display to be printed on the printer.)

Do not use this command unless your printer is capable of directly reproducing
the TRS-80 graphics characters.

Software 190

Q)

Changing the Clock Rate

The system normally runs at the fast clock rate of 4 megahertz.

A slow mode of 2 megahertz is available, and may be necessary for real time-
dependent programs. (This slow rate is the same as the Model lll clock rate.)

To switch to the slow rate, enter the following command:
SYSTEM (SLOW)

To switch back to the fast rate, enter:
SYSTEM (FAST)

Software 191

Appendix A/TRSDOS Error Messages

if the computer displays one of the messages listed in this appendix, an oper-
ating system error occurred. Any other error message may refer to an applica-
tion program error, and you should check your application program manual for
an explanation.

When an error message is displayed:
= Try the operation several times.

» Lock up operating system errors below and take any recommended
actions. (See your application program manual for explanations of appli-
cation program errors.)

» Try using other diskettes.

» Reset the computer and try the operation again.
» Check all the power connections.

+ Check all interconnections.

» Remove all diskettes from drives, turn off the computer, wait 15 seconds,
and turn it on again.

« If you try all these remedies and still get an error message, contact a
Radio Shack Service Center.

Note: If there is more than one thing wrong, the computer might wait until you
correct the first error before displaying the second error message.

This list of error messages is alphabetical, with the binary and hexadecimal
error numbers in parentheses. Following it is a quick reference list of the mes-
sages arranged in numerical order.

Attempted to read locked/deleted data record (Error 7, X'07")

In a system that supports a “deleted record” data address mark, an attempt was
made to read a deleted sector. TRSDOS currently does not use the deleted
sector data address mark. Check for an error in your application program.

Attempted to read system data record (Error 6, X'06’)

An attempt was made to read a directory cylinder sector without using the
directory read routines. Directory cylinder sectors are written with a data
address mark that differs from the data sector's data address mark. Check for
an error in your application program.

Data record not found during read (Error 5, X‘05°)

The sector number for the read operation is not on the cylinder being refer-
enced. Either the disk is flawed, you requested an incorrect number, or the cyl-
inder is improperly formatted. Try the operation again. If it fails, use another
disk. Reformatting the old disk should lock out the flaw.

Data record not found during write (Error 13, X‘0D")

The sector number requested for the write operation cannot be found on the
cylinder being referenced. Either the disk is flawed, you requested an incorrect
number, or the cylinder is improperly formatted. Try the operation again. If it
tails, use another disk.

Device in use (Error 39, X'27")

A request was made to REMOVE a device (delete it from the Device Control
Block tables) while it was in use. RESET the device in use before removing it.

Software 193

Device not available (Error 8, X'08’)

A reference was made for a logical device that cannot be found in the Device
Control Block. Probably, your device specification was wrong or the device
peripheral was not ready. Use the DEVICE command to display all devices
available to the system.

Directory full— can’t extend file (Error 30, X*1E’)

A file has all extent fields of its last directory record in use and must find a spare
directory slot but none is available. (See the “Directory Records” section.) Copy
the disk’s files to a newly formatted diskette to reduce file fragmentation. You
may use backup by class or backup reconstruct to reduce fragmentation.

Directory read error {Error 17, X*11’)

A disk error occurred during a directory read. The problem may be media, hard-
ware, or program failure. Move the disk to another drive and try the operation
again.

Directory write error (Error 18, X*12°)

A disk error occurred during a directory write to disk. The directory may no
longer be reliable. If the problem recurs, use a different diskette.

Disk space full (Error 27, X'1B’)

While a file was being written, all available disk space was used. The disk con-
tains only a partial copy of the file. Write the file to a diskette that has more avail-
able space. Then, REMOVE the partial copy to recover disk space.

End of file encountered (Error 28, X'1C’)

You tried to read past the end of file pointer. Use the DIR command to check the
size of the file. This error also occurs when you use the @PEOF supervisor call
to successfully position to the end of a file. Check for an error in your application
program.

Extended error {(Error 63)
An error has occurred and the extended error code is in the HL register pair.
File access denied (Error 25, X'19°)

You specified a password for a tile that is not password protected or you spec-
ified the wrong password for a file that is password protected.

File already open (Error 41, X29°)

You tried to open a file for UPDATE level or higher, and the file already is open
with this access level or higher. This forces a change to READ access protec-
tion. Use the RESET library command to close the file.

File not in directory {Error 24, X‘18')

The specified filespec cannot be found in the directory. Check the spelling of
the filespec.

File not open (Error 38, X'26’)

You requested an /O operation on an unopened file. Open the file before
access.

GAT read error (Error 20, X'14’)

A disk error occurred during the reading of the Granule Allocation Table. The
problem may be media, hardware, or program failure. Move the diskette to
another drive and try the operation again.

GAT write error (Error 21, X‘15")

A disk error occurred during the writing of the Granule Allocation Table. The
GAT may no longer be reliable. If the problem recurs, use a different drive or
different diskette.

Software 194

|

HIT read error (Error 22, X‘16°)

A disk error occurred during the reading of the Hash Index Table. The problem
may be media, hardware, or program failure. Move the disketie to another drive
and try the operation again.

HIT write error (Error 23, X‘17’)

A disk error occurred during the writing of the Hash Index Table. The HIT may
no longer be reliable. If the problem recurs, use a different drive or different
diskette.

legal access attempted to protected file (Error 37, X‘25°)

The USER password was given for access to a file, but the requested access
required the OWNER password. (See the ATTRIB library command in your
Disk System Owner's Manual.)

lllegal drive number (Error 32, X‘20’)

The specified disk drive is not included in your system or is not ready for access
(no diskette, non-TRSDOS diskette, drive door open, and so on). See the
DEVICE command in your Disk System Owner's Manual.)

lilegal file name (Error 19, X‘13°)

The specified filespec does not meet TRSDOS filespec requirements. See your
Disk Systemn Owner's Manual for proper filespec syntax.

lllegal logical file number (Error 16, X'10°)

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB).
This usually indicates that your program has altered the FCB improperly. Check
for an error in your application program.

Load file format error (Error 34, X‘22°)

An attempt was made to load a file that cannot be loaded by the system loader.
The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03’)

During a sector read, the CPU did not accept a byte from the Floppy Disk Con-
troller (FDC) data register in the time allotted. The byle was lost. This may indi-
cate a hardware problem with the drive. Move the diskette to another drive and
try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X‘0B’)

During a sector write, the CPU did not transfer a byte to the Floppy Disk Con-
troller (FDC) in the time allotted. The byte was lost; it was not transferred to the
disk. This may indicate a hardware problem with the drive. Move the diskette to
another drive and try again. If the error recurs, try another diskette.

LRL open fault (Error 42, X'2A’)

The logical record length specified when the file was opened is different than
the LRL used when the file was created. COPY the file to another file that has
the specified LRL.

No device space available {(Error 33, X217}

You tried to SET a driver or filter and all of the Device Control Blocks were in
use. Use the DEVICE command to see if any non-system devices can be
removed 1o provide more space. This error also occurs on a “global” request to
initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X‘1A)

You tried to open a new file and no space was left in the directory. Use a differ-
ent disk or REMOVE some files that you no ionger need,

Software 195

No error (Error 0)

The @ERROR supervisor call was called without any error condition being
detected. A return code of zero indicates no error. Check for an error in your
application program.

Parameter error (Error 44,X°2C")

(Under Version 6.2 only) An error occurred while executing a command line or
utility because a parameter that does not exist was specified. Check the spell-
ing of the parameter name, value, or abbreviation.

Parity error during header read (Error 1, X'01’)

During a sector /O request, the system could not read the sector header suc-
cessfully. If this error occurs repeatedly, the problem is probably media or hard-
ware failure. Try the operation again, using a different drive or diskette.

Parity error during header write (Error 9, X'89’)

During a sector write, the system could not write the sector header satisfactor-
ily. f this error occcurs repeatedly, the problem is probably media or hardware
failure. Try the operation again, using a different drive or diskette.

Parity error during read (Error 4, X'04’)

An error occurred during a sector read. lts probable cause is media failure or a
dirty or faulty disk drive. Try the cperation again, using a different drive or
diskette.

Parity error during write (Error 12, X'0C’)

An error occurred during a sector write operation. Its probable cause is media
failure or a dirty or faulty disk drive. Try the operation again, using a different
drive or diskette.

Program not found (Error 31, X‘1F’)

The file cannot be loaded because it is not in the directory. Either the filespec
was misspelled or the disk that contains the file was not loaded.

Protected system device (Error 40, X‘28°)

You cannot REMOVE any of the foliowing devices: *Kl, *DO, *PR, *JL, "SI, *SO.
If you try, you get this error message.

Record number out of range (Error 29, X‘1D’)

A request to read a record within a random access file (see the @POSN super-
visor call) provided a record number that was beyond the end of the file, Correct
the record number or try again using another copy of the file.

Seek error during read (Error 2, X'02’)

During a read sector disk /O request, the cylinder that should contain the sec-
tor was not found within the time allotted. (The time is set by the step rate spec-
ified in the Drive Code Table) Either the cylinder is not formatted or it is no
longer readable, or the step rate is too low for the hardware to respond. You can
set an appropriate step rate using the SYSTEM library command. The problem
may also be caused by media or hardware failure. In this case, try the operaticn
again, using a different drive or diskette.

Seek error during write (Error 10, X‘0A))

During a sector write, the cylinder that should contain the sector was not found
within the time allotted. (The time is set by the step rate specified in the Drive
Code Table)} Either the cylinder is not formatted or it is no longer readable, or
the step rate is too low for the hardware to respond. You can set an appropriate
step rate using the SYSTEM library command. The problem may also be
caused by media or hardware failure. In this case, try the operation again, using
a different drive or diskette.

Software 196

O

— Unknown error ¢code

The @ERROR supervisor call was called with an error number that is not
defined. Check for an error in your application program.

Wirite fault on disk drive (Error 14, X'0E")

An error occurred during a write operation. This probably indicates a hardware
problem. Try a different diskette or drive. If the problem continues, contact a
Radio Shack Service Center.

Write protected disk (Error 15, X‘0F’)

You tried to write to a drive that has a write-protected diskette or is software
write-protected. Remove the write-protect tab, if the diskette has one. If it does
not, use the DEVICE command to see if the drive is set as write protected. If it
is, you can use the SYSTEM library command with the (WP = OFF) parameter
to write enable the drive. If the problem recurs, use a different drive or different
diskette.

Numerical List of Error Messages

Decimal Hex Message

X0 No Error
X'@1' Parity error during header read
X'02 Seek error during read
X'03 Lost data during read
X'04’ Parity error during read
X'05' Data record not found during read
X006 Attempted to read system data record
X'07' Attempted to read locked/deleted data record
X908 Device not available
X'09' Parity error during header write
10 X'OA' Seek error during write
11 X'0B’ Lost data during write
12 X'0C' Parity error during write
13 X'0D' Data record not found during write
14 X'QE Write fault on disk drive
15 X'OF Write protected disk
16 X109 lllegal logical file number
17 X117 Directory read error
18 X12' Directory write error
19 X113 lilegal file name
20 X14' GAT read error
21 X158 GAT write error
22 X'16' HIT read error
23 X117 HIT write error
24 X'18' File not in directory
25 X'19' File access denied
26 X1A" No directory space available
27 X'1B' Disk space full
X1C' End of file encountered
X1D' Record number out of range
X1E' Directory full—can't extend file
X1F Program not found
X20° lllegal drive number
* No device space availabie
X'22° Load file format error
X'25 lllegal access attempted to protected file
X26° File not open
X27 Deviceinuse
X'28° Protected system device

OCORNOPNAEWON-S

$8ELRBRLEY
S

Software 197

X29' File already open

X2A’ LRL open fault

xX2B' SVC parameter error

X'2C" Parameter error

X'3F Extended error
Unknown error code

Software 198

Appendix B/Memory Map

Resident operating system, system
buffers, overlays, drivers, etc.
24004
—gzg%: > Library overlay zone
/
/
/ Note: 2400H to 2600H is
/ reserved for possible future
/ expansion of the resident
/ operating system area.
/
OPTIONAL /
64K MEMORY / 39K BANK 1 SYSTEM BANK 32K
\\ BANK 2 BANK 0
\
\
\
\
\
\
\
\
mn-n-r‘mmm HIGHS
64K 64K

All software must observe HIGHS.

User software which does not allow TRSDOS library commands to be executed
during run time may use memory from 2600H to HIGHS.

User software which allows for library commands during execution must reside
in and use memory only between 3000H and HIGHS.

TRSDOS provides all functions and storage through supervisor calls. No
address or entry point below 3000H is documented by Radio Shack.

Software 199

Appendix C/Character Codes

Text, control functions, and graphics are represented in the computer by codes.
The character codes range from zero through 255.

Codes one through 31 normally represent certain control functions. For exam-
ple, code 13 represents a carriage return or “end of line!’ These same codes
also represent special characters. To display the special character that corre-
sponds to a particular code (1-31), precede the code with a code zero.

Codes 32 through 127 represent the text characters — all those letters, num-
bers, and other characters that are commonly used to represent textual
information.

Codes 128 through 191, when output to the video display, represent 64 graphics
characters.

Codes 192 through 255, when output to the video display, represent either
space compression codes or special characters, as determined by software.

Software 201

ASCIl Character Set

Code
Dec. Hex.
0 00
1 01
2 02
3 03
4 04
5 o5
6 06
7 o7
8 08
9 29
10 QA
11 0B
12 ocC
13 oD
14 0E
15 OF
16 10
17 1
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E

ASCH
Abbrev.
NUL

SOH
STX

EOT
ENQ
ACK
BEL
BS

HT

SYN

ETB
CAN

EM
SuB
ESC
FS

GS
RS

Keyboard

CTRL@

CIRD®
CTRO®
CTRL®
CTRL®
CTRLE®

TRLIG)

2

(CTRLO
(LTRLXP)

CTRL@

CTRLER)
(A1TVEY
CTRL®
CTRL®
CTRL®

CRL®
SHIFD(®)
SHIFD(®
GHIFD®)
CHDD
GHIFT)(=)
CTRL()

CTRD(ENTER)
CIBDD)
(3118 D)

Video Display
Treat next character as dis-
playable; if in the range 1-31,
a special character is dis-
played (see list of special
characters later in this
Appendix).

Backspace and erase

Move cursor to start of next
line

Move cursor to start of next
line

Turn cursor on

Turn cursor off

Enable reverse video and
set high bit routine on*

Set reverse video high bit
routine off*

Swap space compression/
special characters

Swap special/alternate
characters

Set to 40 characters per line
Backspace without erasing

Advance cursor

Move cursor down

Move cursor up

Move cursor to upper left
corner. Disable reverse
video and set high bit rou-

tine off.” Set to 80 charac-
ters per line.

Erase line and start over

Erase to end of line

*When the high bit routine is on, characters 128 through 191 are displayed as

standard ASCII characters in reverse video.

Software 202

v

Code ASCIll

Dec. Hex. Abbrev. Keyboard Video Display
31 1F VS (SAIFY)CLEAR) Erase to end of display
32 20 SPA {blank)
3 2 @]
34 22 @ "
3 23 @ #
36 24 ® $
37 25 (] %
38 26 @ &
39 27 ™ ’
40 28 D (
411 29 @D)
42 2A @ *
43 2B +
44 2C ™ !
45 2D =) -
46 2E O .
47 2F @ /
48 30 () o
49 31 ® 1
50 32 2
51 33 @ 3
52 34 4
53 35 ® 5
54 36 6
55 37 @ 7
56 38 @ 8
57 39 @ 9
58 3A @ :
59 3B) ;
60 3C <
61 3D = =
62 3E &) >
63 3F ?
64 40 @
65 M A
66 42 GHIFD® B
67 43 GHIFD® C
68 44 D
69 45 GHIFDE E
70 46 GHIFDE F
71 47 GHIFD® G
72 48 H
73 49 GHIFDD |
74 4A GHIFDQ) J
75 4B K
76 4C EHIFD L
77 4D GRIFDM) M
78 4E SHIFD® N
79 4F SHIFD@ O
80 50 SHIFDP) P
81 51 SHIF@ Q
82 52 SHIFD®) R
83 53 GHIFD® S
84 54 GHIEDD T
85 55 SHI® U
86 56 GHIED® M
87 57 GHIFDW w
88 58 X
89 59 Y

Software 203

Code
Dec. Hex.
99 5A
91 5B
92 5C
93 5D
94 S5E
95 5F
96 60
97 61
o8 62
99 63
100 64
101 65
102 66
183 67
164 68
105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70
113 71
114 72
115 73
116 74
117 75
118 76
119 77
120 78
121 79
122 7A
123 7B
124 7C
126 7D
126 7E
127 7F

ASCH
Abbrev. Keyboard

SHIFD@)
CLEAR)
(CLEARIC)
CLEARC)

e

888@@@8@@3@@@@8898@@8@@@@9%
®

CIEAREHIFD(S)
(CLEARYSHIFD(/)
CLEARGHIFD()
CLEARGHIFDC)
DEL (CLEAR)(SHIFT)(ENTER)

Software 204

Video Display

r—t = Ny

‘“‘—F'“N‘<Xi<=“"m“n‘BO:a—Xb'”J‘ﬂ“OQOUQ |

I+

Extended (non-ASCIl) Character Set

Code
Dec. Hex.
128 80
129 81
130 g2
131 83
132 84
133 85
134 86
135 87
136 88
137 89
138 8A
139 8B
140 B8C
141 8D
142 8E
143 8F
144 80
145 91
146 92
147 a3
148 94
149 g5
150 96
151 97
152 98
153 99
154 9A
155 9B
156 9C
167 oD
158 9E
159 gF
160 AD
161 Al
162 A2
163 A3
164 Ad
165 A5
166 A6
167 A7
168 A8
169 A9
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 BO
177 B1
178 B2

Software 205

Keyboard

(BREAK)
A
CLEARCTRD®
2
CLEARCTRD®
CLEARCTRAD(E®
CLEARCYRD®
CLEARECTAD®
CLEARCTRD®)
CLEARCTRDD
CLEARCTRDQD)
CLEARCTRLD
CLERACHRD®
CLEARCTRD®
CLEARCTRD®
CLEARCTAD®
CHRED
CLEARCTRD@
CLEARCTRL®
CLEARCTRDD
CLEARCTRD®
CLEARCTRD®
CLEARECTRDY)
CLEREADD

CLEARGHIFD (=)

CLEARGHIFD®
CLEARGHIFD®)
%

CIEADGHIFD®
CEARGH®
CIEARGHIFD®

CEARGHED)

CLEAR (=)

CLEAR®
CLEARD
CLEAR R

Video Display

See graphics character table in this Appendix.

Dec. Hex. Keyboard Video Display
179 B3 CLEAR®) £
180 B4 CLEAR@ o
181 B5 CLEAR) a
182 B6 CLEAR® =
183 B7 CLEARD .m
184 B8 CLEAR®) g
185 B9 ClEAR® 5 .
186 BA CEARC) o X
187 BB 2B
188 BC 8a
189 BD CLEER G () 5<
199 BE o @
191 BF N =
192 C0 CLEAR@)"

193 C1 CLER®™

194 C2 CLEARB)*"

195 C3 CLEAR D™

196 C4 CLEAR D)™

197 C5 CLEARE®)™

198 C6 CERE®™

199 C7 CEAR®"*

200 C8 CLEAR®**

201 C9 CLEARD™

202 CA CEARD** %
203 CB CEA®** 2
204 CC CIEMmD™ 3
205 CD (CLEAR @™ -3
206 CE CEAR®* @
207 CF CLEAR O £
208 DO CLEARP)™* £
209 Di CEARD™ @
210 D2 CEARE .
211 D3 CER®*"

212 D4 CLEAR@*" 5
213 D5 CLEA @™ =
214 D6 CLEAR ™ B
215 D7 CLEAR @™ W
216 D8 CLEAR (O™ S
217 D9 CLEAR (D™ %
218 DA CLEAR D" o
219 DB &
220 DC

221 DD

222 DE

223 DF

224 EO CLEARSHIFD(@

225 E1 CLEARGHIFD®

226 E2 CLEARGHIFD®

227 E3 CLEARGHIFD(©)

228 EA CLEARGHIFD(D)

228 E5 CLEARGHIFD®

230 E6 CLEARGHIFD®

231 E7 CLERGHIFD®

232 E8 CLEARSHIFD®

233 E9 CLEARGRIFDD

234 EA CIEAEHIFDD

*Empties the type-ahead buffer.
**Used by Keystroke Multiply, if KSM is active.

Software 206

Code

Dec. Hex. Keyboard Video Display
235 EB CLEARSHIFD® .
236 EC (CLEAR)SHIFT)(D -
237 ED (CLEAR)SHIFD(W) &
238 EE CIERGHIFD® g
239 EF CLEARGHIFD®) P
240 FO CLERGHIFD® £
241 F1 CLEARGRIFD@ £
242 F2 (CLEAR SHIFD®)]
243 F3 CLEARGHIFD®) &
244 F4 {CLEARSHIFDT) iy
245 F5 CLEAR GHIFD(@ b
246 F6 CLEAR GHIFD (W) et
247 F7 g
248 F8 CLEAR/SHIFD(X) 2
249 F9 -2
250 FA (CLEARGHIFD® S
253 FD k7
254 FE o
255 FF »

Software 207

Graphics Characters (Codes 128-191)

_—SSSE__SkSs - P = = =
—— R = = —— = i
== = 2 == ol
== == & - SeEnEe— Eo =
= = i = =

e — ——

3 ———— z R it

o - ﬁ v _': -

Software 208

Special Characters (0-31, 192-255)

Eleua-o
Hur "aR aa
HodoBuT &
AAASERE™
$H SR 2
*BF €T

Software 209

LEAF s o
PoTu 'I' "+"r.-.-
§ ¢l ‘E"’ﬁ" 7
e 5 I
A FEEST R

248 249 250 251 252 253 254 255

Software 210

Appendix D/Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for each key, in
each of the modes: control, shift, unshift, clear and control, clear and shift, clear
and unshift.

For example, pressing (CLEAR), (SHIFT), and (1) at the same time returns the code
XATL
A program executing under TRSDOS — for example, BASIC — may translate

some of these codes into other values. Consult the program’s documentation
for details.

Key Handling

The key (X'80") is handled in different ways, depending on the settings
of three system functions. The table below shows what happens for each com-
bination of settings.

Break Type-
E?‘r:;‘::d Vector Ahead
Set Enabled

Y N Y If characters are in the type-ahead buffer,
then the buffer is emptied”

If the type-ahead buffer is empty, then a
BREAK character (X'80’) is placed in the
buffer”

Y N N A BREAK character (X'80’) is placed in the
buffer.

Y Y Y The type-ahead buffer is emptied of its con-
tents (if any), and control is transferred to the
address in the BREAK vector (see @BREAK
SVC):

Y Y N Control is transferred to the address in the
BREAK vector {(see @BREAK SVC).

N X X No action is taken and characters in the type-

ahead buffer are not affected.

*Because the key is checked for more frequently than other keys on the
keyboard, it is possible for to be pressed after another key on the key-
board and yet be detected first.

Y means that the function is on or enabled
N means that the function is off or disabled
X means that the state of the function has no effect

Break is enabled with the SYSTEM (BREAK = ON) command (this is the
default condition).

The break vector is set using the @BREAK SVC (normaliy off).

Type-ahead is enabled using the SYSTEM (TYPE = ON) command (this is the
default condition).

Software 211

*BALIP
15e| 843 5308|9534 AW} Swes ay}
1B My3Yg pue [4|HS Buissay |44

‘A9 LJIHS
6L ay) 10U — Ady | 4|HS TJat
3y} asn 0} ains aq ‘awi|] awes

IN3 ay) 1e Agy Jayloue pue ‘| JIHS
"uld uda40s B Sasned awiy awes ‘431D Buissead Janauayp
U3 1e : pue JOHINOD Buissard |y
‘Bey uamas ZN Yyam
£ 340 40 U0 3poW 4D DX — = {3114 4o pua) 4073
p1ROGABY UIBW AU 23Ul suIn) (3UD|e S4VD 40) awil ue _mmum._mcam 3l aLWes syl 1e @
10} se aules ayy ae dwes ayy je g pue L 4)HS Buisselg pue ‘] J1HS “TOYLNOD Buissaly 10N
sAay asay) 40} sapo)
9
Hysun |, o | Miysun pue sean
HS |, o [BIUS 1o pue sRR|)
6 |josuo)d |, o | 1043000 pue ses|n
cs cs ‘AN393T
£6 £4 £6
£9 £8 ‘'Sepod awes ay) sonpoid Asu) ‘19A8MmOH ‘PreogAsy INoA uo Ajusseyip pauoiisod aq Aew shay ey)
w >4 ov 1
H
v ez i -
3 ov 2
09
as{3z e 9a g9 £2 (8¢t ga|ve va
STAE " ar a3 od |ev £3 |88 8d|vs _ w4
A W A 9 X z L3IHS
atla ap as 86 |co e 8L 86 |wt v6
ﬁ as as|oo g0 |ve 29 a0 |v9 valee gafle 10 [vo vg
8z ajor g3 v o 93 |v p3 (€8 £d | v | ve
a1 un_H d a S v 1
o) 3L aL 88 |ve 90 98 |vo ¥8 el £6 |10 18 |vo ve
60 2] 60 va|zz zo|se 52 | et talis lajap @8
61 B o 030s 04) 63 Enmmmn_m,.mmms_st—mcim-ema
(] [68 ¥6 |z1L 26 |op S8l [3 BN 16 jag a8
v [oE 8t g8 ve va e €8 |ze za (1€ t8
A 8Z 8 8v €2 Gav|ve p vw|ez € ev|z Zav| iz | v
*) % $ # P i
ve lec 8s s8] ve 1] £a|ze zajie L8

Software 212

k_.)

Appendix E/Programmable SVCs
(Under Version 6.2 only)

SVC numbers 124 through 127 are reserved for programmer installable SVCs.
To install an SVC the programmer must write the routine 10 execute when the
SVCis called.

The routine should be written as high memory module if it is to be avaiiable at
all times. If you execute a SYSGEN command when a programmable SVC is
defined, the address of the routine is saved in the SYSGEN file and restored
each time the system is configured. If the routine is a high memory module, the
routine is saved and restored as well. This makes the SVC always available.
For more information on high memory modules, see Memory Header and Sam-
ple Program F.

To install an SVC, the program must access the SVC table. The SVC table con-
tains 128 two-byte positions, a two-byte position for each usable SVC. Each po-
sition in the table contains the address of the routine to execute when the SVC
is called.

To access the SVC table, execute the @FLAGS SVC (SVC 101). IY + 26 con-
tains the MSB of the SVC table start address. The LSB of the SVC table ad-
dress is always @ because the SVC table always begins on a page boundary.

Store the address of the routine to be executed at the SVC number times 2 byte
in the table. For example, if you are installing SVC 126, store the address of the
routine at byte 252 in the table. Addresses are stored in LSB-MSB format.

When the SVC is executed, control is transferred to the address in the table. On
entry to your SVC, Register A contains the same value as Register C. All other
registers retain the values they had when the RST 28 SVC instruction was
executed.

To exit the SVC, execute a RET instruction. The program should save and re-
store any registers used by the SVC.

Initiatly, SVCs 124 through 127 display an error message when they are exe-
cuted. When installing an SVC you should save the original address at that lo-
cation in the table and restore it when you remove the SVC.

These program lines insert a new SVC into the systern SVC table, save the pre-
vious value of the table, and reinsert that value before execution ends. You
could check the existing value to see if the address is above X'2600'. if itis, the
SVC is already assigned and should not be used at this time.

This code inserts SVC 126, called MYSVC:

LD A @FLAGS :Locate start of SVC table

RST 28H ‘Execute @ FLAGS SVC

LD H,(IY +26) :Get MSB of address

LD L,126"2 ‘Want to use SVC 126

LD (OSVC126A),HL ;Save address of SVC entry

LD E.(HL) ;Get current SVC address

INC HL

.D D,(HL)

LD (OSVC126V),DE :Save the old value

DEC HL

LD DE.MYSVC :Get address of routine for
:SVC 126

LD (HL),E :Insert new SVC address into
‘table

INC HL

Software 213

LD (HL),D

. Code that uses MYSVC (SVC 126)

This code removes SVC 126: 6

LD HL,(OSVC126A) :Get address of SVC entry
LD DE,(OSVC126V) ;Get original value

LD (HL),E :Insert original SVC address
INC HL

LD (HL),D

Software 214

Appendix F/Using SYS13/SYS

(Under Version 6.2 only)

With TRSDOS Version 6.2, you can create an Extended Command Inter-
preter (ECI) or an immediate Execution Program (IEP). TRSDOS can store
either an ECI or IEP in the SYS13 file. Both programs cannot be present at
the same time.

At the TRSDOS Ready prompt when you type () (ENTER), TRSDOS exe-
cutes the program stored in SYS13/SYS. Because TRSDOS recognizes the
program as a system file, TRSDOS includes the file when creating backups
and loads the program faster.

If you want to write additional commands for TRSDOS, you can write an in-
terpreter to execute these commands. Your ECE can also execute TRSDOS
commands by using the @CMNDI SVC to pass a command to the
TRSDOS interpreter.

if EFLAGS$ contains a non-zero value, TRSDOS executes the program in
SYS13/SYS. If EFLAGS contains a zero, TRSDOS uses its own command
interpreter.

Sample Program G is an example of an ECI. It is important to note that your ECI
must be executable by pressing ENTER) at the TRSDOS Ready prompt.

An ECI can use all of memory or you can restrict it to use the sysltem overlay
area (X'2600" to X'2FFF’).

To implement an IEP or ECI, use the following syntax:
COPY filespec SYS13/8YS.LSIDOS: drive (C =N}

filespec can be any executable (/CMD) program file. drive specifies the desti-
nation drive. The destination drive must contain an original SYS13/SYS file.

Example
COPY SCRIPSIT/CMD:1 SYS13/SYS.LDI:@ (C=N)

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the
TRSDOS Ready prompt, when you press (=) ENTER), TRSDOS executes
SCRIPSIT.

Software 215

Index

Subject Page Subject Page
@ABORT oo 48 interfacing to device drivers 42-44
Access Cyilinder

device, 9-10 highest numbered 12
drive 11-21 numberof 18
file ... i 4 position, current 12
@ADTSK ... 49 starting 25
Alien disk controller 12 @DATE ... e 67
Allocation @DCINIT 68
dynamicl 3 @DCRES 69
information 12, 25 @DCSTAT i 70
methodsof 3 DEBUGccoiiiiiiiiniiin. 6
[= 3 @DEBUG 71
unitof ... 2 @DECHEXl 72
ASCllcodes 202-04 Density, double and single 1, 11, 18
Background tasks, invoking 33-34 Device
@BANK 37-39 ACCESS .. ivriiii it 9-10
Bank switching 36-39 handling 27
@BKSP 52 NIL L 9
BOOT/SYS ... 5 Device Control Block (DCB) 9
BREAK Device driver 7,8,13
detection 29-32, 53 address ..., 9
key handling 211 COM 43-44
@BREAK e 53 @CTL interfacingto 42-44
Byte VO 40-42 keyboard 43
Characters printer e 43
ASCIH 202-04 templates 40-42
codes ..., 201-10 video ... 43
graphics 205-06, 208 Devspec, 9
special 206-07, 209-10 Directory
@CHNIO 54 locationondisk 2,12
@CKDRV ... 55 primary and extended entries 14
@CKBRKC 55 16, 20
@CKEOF 56 record, locatinga 20
@CKTSK 57 records (DIREC) 13-16
Clock rate, changing 192 sectors, numberof 14
@CLOSE 60 Directory Entry Code (DEC) 18-19
@CLS ... 61 20, 24
@CMNDI 63 @DIRRD 73
@CMNDR 64 DIR/ISYS . 5
Codes @DIRWR e 74
ASCH 202-04 Disk, diskette
Character 201-10 controller ..ol 12
BITOT i i i e 197 double-sided 11-12, 17,18
graphics 205-06, 208 files 13-14
keyboard 21112 floppy ..o 1
return ... 28 formatting 17,18
special character 206-07, 209-10 hard L 2
Converting to TRSDOS Version 6 27-28 IOtable 13
CREATEdfiles 15 minimum configuration 7-8
@CTL ..., 40-42, 65-66 NAME ... it tieiiiiieaniiennn 18

Software 217

Index

Subject Page Subject Page
organization 1-2 contentsof 16-18
single-sided 11-12, 17, 18 Graphics
space, available 2 characters, printing 190

@DIV8 75 codes 205-06, 208

@DIVI6 76 @GTDCB 91

@DODIR 77-78 @GTDCT 92

Drive @GTMOD 93
ACCESS ...t 11-22 Guidelines, programming 27-44
addresso, 12 Hashcode 15, 18
floppy ... 1, 11 Hash Index Table (HIT)
hard 2,1 locationondisk 2
SIZEe .. 11 explanationof 18-19

Drive Code Table DCT 11-13 @HDFMT 94

Driver — see Device driver @HEXDEC a5

@DSP 79 @HEX8 96

@DSPLY 80 @HEX16 97

End of File (EOF) 15 @HIGHS 98

Ending Record Number (ERN) 16, 25 @ICNFG, interfacingto 32-33

ENTER detection 29-32 Immediate Execution Program 215

Error @INIT . a9
codes and messages 193-197 Initialization configuration
dictionary 6 vector 32-33

@ERROR it 81 Interrupttasks 34-36

@EXIT .. 82 @IPL ... 100

Extended Command Interpreter 84, 215 Job Control Language (JCL) 6, 28

@FEXT ... 83 @KBD ... 101

File @KEY 102
BCCESSitiiir it 4 Keyboardcodes 211-12
descriptions, TRSDOS 5-8 @KEYIN 103
modification 15 KFLAGS i, 29

File Control Block (FCB) 23 @KITSK, interfacingto 33-34

Files @KLTSK ... 104
CREATEdt 15 Library commands 28
devicedriver 7 technical informationon 189-91
filter 7 @LOAD e 105
system (/SYS) 5-6, 7-8, 19 @LOC ... 106
utifity ... 7 @LOF ... e 107

Fitertemplates 40-42 LOG utilityooovviii i 190

Fiters, 7, 8, 40-42 @LOGERciiiiiinnn, 108
exampleof 42 Logical Record Length (LRL) 15, 24

FLAGS 28, 84-86 @LOGOT 109

@FNAME 87 Memory banks — see RAM banks

@FSPEC 89 Memory header 10, 27

@GET i 40-42, 90 Memorymap 199

Gran, granuie Minimum configuration disk 7
allocation information 25 Modification date 15
definition 2,17 @MSG ... e 110
pertrack e 1-2, 12 @MUL8 111

Granule Allocation Table (GAT) @MUL16 i, 112
locationondisk 2 Next Record Number (NRN) 24

Software 218

-,

Index

Subject Page Subject Page
NiLdevice oo, 9 C 168
@OPEN 113 D 175
Overlays, system 5-6, 19 E .o 177
@PARAM 114-15 F oo 178
Password G 187

for TRSDOS files 8 Sectors

protection levels 14, 24 percylinder 14,19
@PAUSE 116 pergranule 1-2, 12
PAUSE detection 29-32 @SEEK 138
@PEOF i, 117 @SEEKSCo ool 139
@POSN 118 @SKIP ... e 140
@PRINT 119 @SLCT .. 141
Printing Graphics Characters 190 @SOUNDt 142
Programming Guidelines 27-44 Special Character Codes 206-07, 209-10
Protection Levels 14, 24, 27 Stack handiing 28
@PRT .. e 120 Steprate 11
@PUT ... 40-42, 121 changing 189
RAM Banks @STEP] e 143

switching 36-39 Supervisor calls (SVCs)

useof 50-51 calling procedure 45
@RAMDIR 122 listsof 46-47, 155-57, 158-59
@RDHDRl 123 program entry and
@RDSECl 124 return conditions 45
@RDSSC ... 125 sample programs using 160-183
@RDTRK i 126 USING oo 45-183
@READ 127 SYSfiles 56, 7-8, 19
Record System

length 3-4, 15, 24 files 5-6, 7-8, 19

logical and physical 3-4 overlaysc 0. 5-6, 19

numbers 4 Task

Processingc....... 4 interrupt level, adding 49

SPanning 3-4 slots L, 34, 35, 49
@REMOV 128 Task Control Block (TCB) 34, 35, 49
@RENAMl 129 Vector Table (TCBVT) 34, 35
Restart Vectors (RSTs) 29 Task processor, interfacingto 34-36
Return Code (RC) 28 @TIME e 144
@REW 130 TRSDOS
@BMTSK 131 converting to Version6 27-28
@RPTSK ... e 132 error messages and codes 193-97
@RREAD e 133 file descriptions 5-8
RS-232 technical information on

initializing 32 commands and utilities 189-91

COMdriverfor 43-44 TYPEcodeccovevvnn.. 23
@RSLCT 134 @VDCTL ... 145-46
@RSTOR 135 @VERl 147
@RUN 136 Version, operating system 17
@BWRITl 137 Visibilityl 14
Sample Programs 160-83 @VRSEC 148

A 161 WAIT value, changing 190

B o 163 @WEOF 149

Software 219

Index

Subject Page Subject Page

@WHEREovoviveninnn.. 150 | [@WRSEC 152
@WRITE ..., 151 |@WRSSCccooviiiiiii 153
Write Protect 9 @WRTRK i, 154

Software 220

Index

Subject Page Subject Page

Software 221

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K
91 KURRAJONG AVENUE PARC INDUSTRIEL BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE (NAMUR) WEST MIDLANDS WS10 7JN

S-L/3-85 Printed in U.S.A.

