
BASIC
Reference Guide

Portable Computer

Panasonic

SOFTWARE LICENSE
AGREEMENT

THE SOFTWARE PROGRAM PROVIDED WITH THIS DOCUMENT IS
FURNISHED UNDER A LICENSE AND MAY BE USED ONLY IN
ACCORDANCE WITH THE LICENSE TERMS DESCRIBED BELOW.
USE OF DISK OR THE ACCOMPANYING MANUAL SHALL BE
DEEMED TO CONSTITUTE YOUR ACCEPTANCE OF THE TERMS OF
THIS LICENSE.

Panasonic Industrial Company, Division of Matsushita Electric Corporation of
America ("PIC") provides this Program and licenses its use in the United States
and Canada under the following terms and conditions:

1. You may use the Program only on the single Panasonic Sr. Partner computer
with which the Program was provided;

2. You may copy the Program into any machine readable or printed form for
backup or modification purposes in support of your use of the Program on the
single Panasonic Sr. Partner Computer;

3. You may transfer the Program and license it to another party if the other
party agrees to accept the terms and conditions of this Agreement. At the time
of such a transfer you must also transfer all copies, whether in printed or
machine readable form, to the same party or destroy any copies not so
transferred;

4. You may not remove any copyright, trademark or other notice or product
identification from the Program and you must reproduce and include any
such notice or product identification on any copy of the Program.

The Program contains unpublished materials, and the existence of any copyright
notice shall not mean that publication has occurred or that all or any part of the
Program is not secret.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PRO
GRAM, OR ANY COPY OF THE PROGRAM, IN WHOLE OR IN PART,
EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION OR
MERGED PORTION OF THE PROGRAM TO ANOTHER PART, YOUR
LICENSE IS AUTOMATICALLY TERMINATED.

This license is effective until terminated. You may terminate it at any time by
destroying the Program, together with all copies in any form. It will also
terminate upon conditions set forth elsewhere in this Agreement or if you fail to
comply with any term or condition of this Agreement. Upon such termination
you must destory the Program together with all copies, modifications and
merged portions in any form.

LIMITED WARRANTY
MEDIUM ON WHICH

SOFTWARE PROGRAM FOR SR. PARTNER
IS RECORDED

This limited warranty applies only to the medium on which the Software Program is
recorded. Except for this limited warranty on the medium, Panasonic Industrial Com
pany makes no warranties, express or implied, with respect to the Software Program, its
medium, the user manual or the results, use or performance.

If, as a result of faulty manufacture, a defect occurs in the medium on which the
Software Program is recorded, and User retums it postage prepaid to anthorized
Panasonic & Service Dealer or Matsushita Engineering & Service Company, Industrial
Service Division, One Panasonic Way, Secaucus NJ 07094 within sixty (60) days from
licensing by User, accompanied by proof of licensing and an explanation of the
suspected defect, Panasonic-Industrial Company will, at its option, replace the medium
free or charge or retum of credit an appropriate portion of the license fee paid by User.

This limited warranty applies only to the initial User and does not apply if the product
has been subjected to physical abuse or used in defective or non-compatible equip
ment.

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE FOR
A PARTICULAR PURPOSE, IF ANY, AS TO THE MEDIUM ON WHICH THE SOFT
WARE PROGRAM IS RECORDED ARE LIMITED TO SIXTY (60) DAYS FROM THE
DATE OF LICENSING BY THE INITIAL USER OF THE PRODUCT AND ARE NOT
EXTENDED TO ANY OTHER PARTY. ALL IMPLIED WARRANTIES OF MERCHANTA
BILITY AND FITNESS FOR USE FOR A PARTICULAR PURPOSE WITH RESPECT

TO THE SOFTWARE PROGRAM AND MANUAL ARE EXPRESSLY DISCLAIMED.
User agrees that any liability of Panasonic Industrial Company hereunder, regardless of
the form of action, shall not exceed the license fee paid by user to Panasonic Industrial
Company.

Panasonic Industrial Company shall not be liable for incidental or consequential
damages, such as, but not limited to, loss or injury to business, profits, goodwill, or for
exemplary damages, even if Panasonic Industrial Company has been advised of the
possibility of such damages.

The remedies stated herein are your sole and exclusive remedies; however, some
states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitations or exclusions may not
apply to you.

To locate an Authorized Servicenter in Your Area within the Continental U.S.A.

DIAL TOLL FREE: 800-447-4700

24 Hours a Day, 7 Days a Week

Requests for assistance In obtaining repairs or technical information...contact any one
of the following Panasonic Factory Servicenters

Panasonic Factory Servicenter
Eastern AAidwest Western Southern
45 Hartz Way 425A EAST Algonquin 6550 Katella Avenue 3 Meca Way
Secaucus, NJ 07094 Road Cypress, CA 90630 Norcross, GA 30093
201-348-7466 Arlington Heights. 714-895-7450 404-925-6855

IL 60005

312-981-4841 1825 Walnut Hill Lane

Irving, TX 75062
214-256-1387

Correspondence requesting products information should be sent to: Computer Dept.,
Panasonic Industrial Company, Division of Matsushita Electric Corp of America. 1
Panasonic Way, Secaucus, N.J. 07094

BASIC
Reference Guide

Portable Computer

Panasonic

^Copyright Matsushita Electric Industriai Co., Ltd. 1983

^Copyright Microsoft Corporation 1982, 1983

Sr. Partner™ is a Trademark of Matsushita Electric Industrial Co., Ltd.

USA
Panasonic Industrial Company

Division of Matsushita Electric Corporation of America
One Panasonic Way,

Secaucus, New Jersey 07094

Panasonic Hawaii Inc.

91-238 Kauhi St. Ewa Beach

P.O. Box 774

Honolulu, Hawaii 96808-0774

Panasonic Sales Company
Division of Matsushita Electric of Puerto Rico, Inc.

Ave. 65 De Infanteria, KM 9.7
Victoria Industrial Park

Carolina, Puerto Rico 00630

CANADA
Matsushita Electric of Canada Limited

5770 Ambler Drive, Mississauga,
Ontario L4W 2T3

OTHERS
Matsushita Electric Trading Co., Ltd.
32nd floor. World Trade Center BIdg.,
No. 4-1, Hamamatsu-Cho 2-Chome,

Minato-Ku, Tokyo 105, Japan
Tokyo Branch P.O. Box 18 Trade Center

CONTENTS

CHAPTER 1

INTRODUCTION TO THIS BOOK i-i

CHAPTER 2

INTRODUCTION TO BASIC 21

BASIC AND BASICA 2-2

SUMMARY OF CHANGES 2-3

ACCESSING BASIC 2-7

REDIRECTION OF STANDARD INPUT AND
OUTPUT 2-13

OPERATION MODES 2-15

LINE FORMAT 2-16

BASIC COMPONENTS 2-18
Keywords 2-18
Commands 2-18
Statements 2-18
Functions 2-19
Variables 2-19

CHARACTER SET 2-20

CHAPTER 3

THE KEYBOARD 3-1

INTRODUCTION 3-2

THE FUNCTION KEYS 3-3

THE TYPEWRITER KEYBOARD 3-4

Special Keys 3-4

THE NUMBER PAD 3-7

CHAPTER 4

USING THE BASIC PROGRAM

EDITOR 4-1

WHAT IS AN EDITOR? 4-2

HOW THE EDITOR WORKES 4-3

USING THE EDITOR 4-4

The Cursor Control Keys 4-4
The Editing Keys 4-7

CREATING AND EDITING A BASIC
PROGRAM 4-9
Adding Lines to the Program in Memory 4-9
Changing the Program in Memory 4-10

HOW TO RUN A BASIC PROGRAM 4-11

Syntax Errors 4-11

CHAPTER 5

DISK FILE PROCEDURES 5-1

INTRODUCTION 5-2
Root Directory 5-3
Current Directory 5-3

NAMING FILES 5-4

Pathnames 5-5

PROGRAM FILE MANAGEMENT 5-6

DATA FILES 5-8

File Functions 5-8
Creating and Accessing Sequential Files 5-9
Example Programs for Sequential Files 5-11
Creating and Accessing Random
Access Files 5-13

Example Programs for Random
Access Files 5-16

CHAPTER 6

BASIC PROGRAMMING

ELEMENTS 6-1

RESERVED WORDS 6-3

NUMERIC REPRESENTATION IN BASIC 6-4
Numeric Precision 6-5
Conversion to a Different Precision 6-5
Formatting Numeric Output 6-6
Formatting Double-Precision Numeric Output .. 6-7

CONSTANTS 6-9

VARIABLES 6-10
Naming Variables 6-11
Declaring Variable Types 6-11
Array Variables 6-12

EXPRESSIONS, OPERATORS AND
FUNCTIONS 6-14
Arithmetic Operators 6-15
Relational Operators 6-16
Numeric Comparisons 6-17
String Comparisons 6-17

Logical Operators 6-19
Execution of Numeric Operations 6-22
String Operators 6-23

I/O OPTIONS 6-24
Device Name 6-24
Screen Uses 6-25
Text and Graphics Modes 6-26
Specifying Graphics Coordinates 6-27
Window and View 6-27

Additional I/O Features 6-28

CHAPTER 7

COMMANDS, FUNCTIONS, STATEMENTS, ^
AND VARIABLES 7-i

ABS Function 7-4
ASC Function 7-5
ATN Function 7-6
AUTO Command 7-7
BEEP Statement 7-9
BLOAD Command 7-10
BSAVE Command 7-12

CALL Statement 7-14
CDBL Function 7-15

CHAIN Statement 7-16

CHDIR Statement 7-19
CHR$ Function 7-21
CINT Function 7-22
CIRCLE Statement 7-23
CLEAR Command 7-26
CLOSE Statement 7-29
CLS Statement 7-31
COLOR Statement (In Text Mode) 7-32
COLOR Statement (In Graphics Mode) 7-34
COM(n) Statement 7-36
COMMON Statement 7-37

CONT Command 7-38
COS Function 7-40
CSNG Function 7-41

CSRLIN Variable 7-42
CVl, CVS, CVD Function 7-43
DATA Statement 7-44

DATES Statement and Variable 7-46
DEE FN Statement 7-48

DEF SEG Statement 7-50
DEE type Statement 7-52
DEF USR Statement 7-54
DELETE Command 7-55
DIM Statement 7-56

DRAW Statement 7-58
EDIT Command 7-65
END Statement 7-66

ENVIRON Statement 7-67
ENVIRONS Function 7-69
EOF Function 7-70
ERASE Statement 7-71
ERDEV and ERDEVS Variables 7-72
ERR and ERL Variables 7-73

ERROR Statement 7-75
EXP Function .7-76

FIELD Statement 7-77

FILES Command 7-79
FIX Function 7-81

FOR and NEXT Statements 7-82
FRE Function 7-85

GET Statement (Files) 7-86
GET Statement (Graphics) 7-87
GOSUB and RETURN Statement 7-89

GOTO Statement 7-91

HEX$ Function 7-92
IF Statement 7-93
INKEYS Variable 7-96
INP Function 7-98

INPUT Statement 7-99

INPUT# Statement 7-101

INPUTS Function 7-103
INSTR Function 7-105
INT Function 7-106

KEY Statement 7-107

KEY(n) Statement 7-111
KILL Command 7-112

LEFTS Function 7-113
LEN Function 7-114

LET Statement 7-115
LINE Statement 7-116
LINE INPUT Statement 7-119
LINE INPUT# Statement 7-120
LIST Command 7-122
LLIST Command 7-124
LOAD Command 7-125
LOC Function 7-126
LOCATE Statement 7-127
LOF Function 7-129
LOG Function 7-130
LPOS Function 7-131
LPRINT and LPRINT USING Statements 7-132
LSET and RSET Statements 7-134
MERGE Command 7-136
MID$ Function and Statement 7-137
MKDIR Statement 7-139
MKI$, MKS$, MKD$ Functions 7-141
NAME Command 7-142
NEW Command 7-143
OCT$ Function 7-144
ON COM(n) Statement 7-145
ON ERROR Statement 7-147
ON... GOSUB and ON... GOTO Statements 7-149
ON KEY(n) Statement 7-151
ON PLAY(n) Statement 7-154
ON STRIG(n) Statement 7-156
ON TIMER(n) Statement 7-158
OPEN Statement 7-160
OPEN "COM... Statement 7-165
OPTION BASE Statement 7-172
OUT Statement 7-173

PAINT Statement 7-175
PEEK Function 7-181
PLAY Statement 7-182
PLAY Statement (ON, OFF, STOP) 7-186
PLAY (n) Function 7-187
PMAP Function 7-188
POINT Function 7-190
POKE Statement 7-192
POS Function 7-193
PRINT Statement 7-194
PRINT USING Statement 7-197
PRINT# and PRINT# USING Statements 7-203
PSET and PRESET Statement 7-205
PUT Statement (Files) 7-206
PUT Statement (Graphics) 7-207
RANDOMIZE Statement 7-211
READ Statement 7-213
REM Statement 7-215
RENUM Command 7-216
RESET Command 7-218
RESTORE Statement 7-219
RESUME Statement 7-220
RETURN Statement 7-222
RIGHTS Function 7-223
RMDIR Statement 7-224
RND Function 7-226
RUN Command 7-228
SAVE Command 7-230
SCREEN Function 7-232
SCREEN Statement 7-234
SGN Function 7-237
SHELL Statement 7-238

SIN Function 7-241
SOUND Statement 7-242
SPACES Function 7-245
SPG Function 7-246
SQR Function 7-247
STICK Function 7-248
STOP Statement 7-249
STR$ Function 7-251
STRIG Statement and Function 7-252
STRIG(n) Statement 7-254
STRINGS Function 7-255
SWAP Statement 7-256
SYSTEM Command 7-257
TAB Function 7-258
TAN Function 7-259
TIMER Function 7-260
TIMER Statement 7-261
TIMES Variable and Statement 7-262
TRON and TROFF Commands 7-264
USR Function 7-265
VAL Function 7-266
VARPTR Function 7-267
VARPTRS Function 7-269
VIEW PRINT Statement 7-270
VIEW Statement 7-271
WAIT Statement 7-274
WHILE and WEND Statements 7-276
WIDTH Statement 7-278
WINDOW Statement 7-281
WRITE Statement 7-286
WRITE# Statement 7-287

APPENDIX A. ERROR MESSAGES A-1

APPENDIX B. MATHEMATICAL F^UNCTIGNSB-1

APPENDIX C. ASCII CHARACTER CODES C-1

APPENDIX D. ACCESSING MACHINE LANGUAGE
SUBROUTINES D-1

APPENDIX E. CONVERTING A PROGRAM TO
PANASONIC BASIC E-1

APPENDIX F. EXECUTING APPLICATION
PROGRAMS F-1

APPENDIX G. COMMUNICATION I/O
PROCEDURES G-1

APPENDIX H. EXAMPLE PROGRAMS H-1

APPENDIX 1. INDEX I-l

10

CHAPTER 1

^ INTRODUCTION TO THIS BOOK

1-1

This book was written to assist you in programming your new
Panasonic computer, Sr. Partner^", both by making you aware of
its potential for many applications, and by helping you to most
efficiently realize this potential in ways that will be useful to you.

A program is a set of instructions for achieving a result via a
process. Directing a computer—or a person, for that matter—to
perform a task is first a matter of communication in a common
language.

Your Sr. Partner "speaks" English and understands BASIC, a
cryptic but specific language composed of words quite similar to
everyday English. Many of these are verbs that symbolize proces
ses and tell the computer what to do. BASIC also has nouns,
which represent numbers and words that are manipulated in
performing the operations specified by the verbs. There are even
adjectives that describe, for one example, the degree of accuracy
of numeric nouns. BASIC also contains punctuation which, like
punctuation in any language, affects the meaning of the words.

This book is designed to move you into the computer system
quickly, acquainting you with the characteristics of BASIC and
Sr. Partner as you will encounter them.

Chapter 2, "Introduction to BASIC", explains the fundamentals
of communicating with BASIC, and also briefly describes the
components of which BASIC is built.

Chapter 3, "The Keyboard", describes Sr. Partner keyboard,
your primary input device for entering programs and BASIC
commands.

Chapter 4, "Using the BASIC Program Editor", continues the
description of the keyboard in terms of the screen editing func
tions associated with some of the keys. By the time you finish this
chapter, you will have learned to use the Program Editor, a very
powerful software device for entering and modifying program text,
and should be able to enter and run a program.

1-2

Chapter 5, "Disk File Procedures", explains how the Sr. Partner's
disk storage system works. It describes how programs and in
formation are placed on the disk, and how they are retrieved for
modification or use.

Chapter 6, "BASIC Programming Elements", goes into greater
detail than the first five chapters, on a number of topics touched
on earlier, for example: how BASIC deals with numbers, how
variables are used, how operations are performed, and how to use
BASIC for such extended functions as the programming of color
graphic applications.

Chapter 7, "Commands, Functions, Statements, and Variables",
goes itito greater detail than the entire previous book, and with
very good reason: in this chapter every component of BASIC is
described in terms of its purpose, use, format, and structure. Each
description also gives notes and examples, as appropriate.

Also included are a number of appendices. Some of these are
intended as supplemental information for the more experienced
and technically-inclined user. Two of them, however, should be of
immediate assistance to the new programmer: Appendix A,
"Error Messages", which lists and explains all the Panasonic
BASIC Error Messages; and Appendix H, "Example Programs",
which shows you how you can use BASIC to solve a problem and
provides a context for some of the BASIC elements you will learn
in other parts of the book. Appendix F, "Executing Application
Programs" shows the procedure to recover from a system error
during executing an application program.

1-3

MEMO

CHAPTER 2

INTRODUCTION TO BASIC

BASIC AND BASICA 2-2

SUMMARY OF CHANGES 2-3

ACCESSING BASIC 2-7

REDIRECTION OF STANDARD INPUT AND

OUTPUT 2-13

OPERATION MODES 2-15

LINE FORMAT 2-16

BASIC COMPONENTS 2-18

Keywords 2-18
Commands 2-18
Statements 2-18
Functions 2-19
Variables 2-19

CHARACTER SET 2-20

2-1

BASIC AND BASICA

We offer two kinds of BASIC, named BASIC and BASICA which ^
means Advanced BASIC. Advanced BASIC contains the addi

tional statements and functions as follows:

CIRCLE Statement

COM(n) Statement
DRAW Statement

GET Statement (Graphic)
KEY(n) Statement
LINE Statement with BASIC 2.0 only
ON COM(n) Statement
ON KEY(n) Statement
ON PLAY(n) Statement...BASIC 2.0 only
ON STRIG(n) Statement
ON TIMER(n) Statement...BASIC 2.0 only
PAINT Statement

Pl-j^X-^f Statement

PLAY (ON, OFF, STOP) Statement...BASIC 2.0 only
PLAY(n) Function...BASIC 2.0 only
PMAP Function...BASIC 2.0 only
POINT(n) Function...BASIC 2.0 only
PUT Statement (Graphic)
RETURN Statement with line #
STRIG(n) Statement
TIMER Statement...BASIC 2.0 only
VIEW Statement...BASIC 2.0 only
VIEW PRINT Statement...BASIC 2.0 only
WINDOW Statement...BASIC 2.0 only

When you make your own program, we recommend you use
BASICA, because BASIC is a subset of BASICA. In case the
paticular programs can only run under BASIC, you have to follow
the instructions of the programs.

We use the word "BASIC" in this manual as the general name of
BASIC and BASICA described above.

2-2

SUMMARY OF CHANGES

BASIC 2.0 has expanded the options allowable in the command
line:

The /M switch has been enhanced to include the new option
al parameter maximum block size which allows you to load
programs above the BASIC workspace.

The optional /D switch allows calculation in double preci
sion. You can use this option with the ATN, COS, EXP,
LOG, SIN, SOR, and TAN functions.

Two new specifications <stdin and >stdout, allow redirec
tion of standard input and standard output.

BASIC 2.0 now uses tree-structured directories to improve file
organization. This is especially helpful when working with a hard
disk. Three new commands provide directory management sup
port:

MKDIR makes a new directory on the disk.

CHDIR changes the current directory.

RMDIR removes a directory from the disk.

In addition, filespec has been expanded to allow a "directory
path" to be specified in the command or statement syntax.
Commands which allow path are: BLOAD, BSAVE, FILES,
KILL, LOAD, MERGE, NAME, RUN, and SAVE. The
OPEN and CHAIN statements can also include the path.

2-3

BASIC 2.0 contains improved disk I/O facilities for larger files:

Enhancements to the GET and PUT statements now allow
record numbers in the range of 1 to 16,777,215. This enables
BASIC to accommodate large files with short record lengths.

LOG now returns the actual record position within the file
for random files. For sequential files LOG returns the current
byte position divided by 128.

For both random and sequential files, LOF returns the size of
the file in number of bytes.

Graphics statements and functions have been improved.

Full line clipping. Points plotted outside of the screen or
viewport do not appear and no longer wrap around. Lines
that intersect the screen or viewport will appear, cross the
screen and disappear at the other end. Line clipping is used
by the GIRGLE, DRAW, LINE, POINT, PSET, PRESET,
PAINT, VIEW and WINDOW statements.

A new option, style, is now supported by the LINE state
ment. Using hexadecimal values, style plots a pattern of
points on the screen.

Tiling is now allowed because of the addition of the back
ground option to the PAINT statement.

DRAW has two new options. TA(n) rotates angle n from
-360 to 360 degrees. P paint, boundary sets paint and
border attributes.

The POINT function can now be expressed in the form
v=POINT(n). This returns the current value of the x or y
coordinate.

2-4

The new VIEW statement is used to define a viewport (or
area) within the screen. The boundaries selected must be
within the physical limits of the screen.

The new WINDOW statement allows redefinition of screen
coordinates.

The new PMAP function allows BASIC to map expressions
to logical or physical coordinates.

BASIC 2.0 has added additional event trapping:

ON KEY(n), KEY(n) and KEY statements have been ex
panded to allow six additional user defined keys.

The new ON PLAY(n) statement allows continuous music to
play during program execution.

The new ON TIMER(n) statement transfers control to a
specified line number when the defined time period has
elapsed.

Additional enhancements:

EOF(O) returns the end of file condition on redirected stan
dard input devices.

Two new options are available for the PLAY statement. >n
increments the note one octave. <n decrements the note one
octave.

DELETE now allows line deletions from a given line number
to the end of the program.

2-5

RANDOMIZE no longer forces floating point values to
integer (allows single- or double-precision expressions). Us
ing TIMER allows the generation of a new random number
without a prompt.

OPEN "COM... has a new option, PE which allows for
parity checking.

Pressing <Ctrl> <PrtSc> prints all text that appears on the
screen on your system printer. This differs from <Shift>
<PrtSc> in that all text which appears on the screen is
printed until you press <CtrI> <PrtSc> again.

Additional new features:

Two Read only System variables, ERDEV and ERDEV$,
allow for more precise error reporting. ERDEV holds the
value at the time of device error. ERDEVI holds the device
name where the error occurred.

The SHELL statement allows COMMAND or ''Child pro
cesses" to run without exiting BASIC.

The VIEW PRINT statement defines the boundaries of the
text window. The screen editor limits functions such as
cursor movement and scrolling to the text window.

You can now modify parameters in BASIC'S Environment
String Table using the ENVIRON statement. And the
ENVIRONS function allows you to retrieve the specified
Environment string from BASIC'S Environment table.

The PLAY function returns the number of notes currently in
the background music buffer.

The TIMER function returns the number of seconds elapsed
since system reset or midnight.

2-6

ACCESSING BASIC

BASIC[A] [filespec] \<stdin\ [\>\>stdoui\ yV-.files] [/^-.bsize]
yC:combuffer\ \JM.:\max workspace]Y,max blocksizeW [/D] [/I]

Preparing your Sr. Partner for use is a two-step process. First the
operating system (calls DOS, for Disk Operating System) must be
loaded; then you must inform DOS that your communication will
be in the BASIC language.

To load DOS:

1. Turn on the computer.

2. Place the DOS disk in Drive A.

The computer will display the DOS prompt symbol (A>). To
start BASIC or BASICA.

1. Enter the word BASIC or BASICA.

The computer will display the BASIC version designation and
release number, then the number of available bytes and the
BASIC prompt symbol (Ok), indicating that it is ready to receive
commands from you.

Later, when you have finished your work in BASIC and are ready
to return to DOS, exit BASIC by entering:

SYSTEM

Options can be included when you specify BASIC or BASICA
command. These options are used to specify the size of a storage
which BASIC uses to hold programs and data and for buffer
areas. You can also immediately load and run a program by these
options.

2-7

Command options are defined as follows:

Jilespec represents the file specification of a program to be
immediately loaded and run. It must be a string
constant (but not enclosed in quotes). If the
filename is eight characters long or less, and no
extension is given, .BAS is supplied as the default.
If Jilespec is included, BASIC proceeds as though
RUN Jilespec was the first thing entered after it was
ready. Also, when you specify Jilespec, the BASIC
screen with the copyright notices is not displayed.

<stdin allows BASIC to receive input from other than the
keyboard (standard input device). The <stdin op
tion instructs BASIC to receive input from the
specified file. Position <stdin before any switches.
See "Redirection of Standard Input and Standard
Out put" for further information.

>stdout allows BASIC to write output to other than the
screen (standard output device). The >stdout op
tion instructs BASIC to write output to the spe-
cified file or device. Position >stdout before any
switches. See "Redirection of Standard Input and
Standard Output" for further information.

Options that start with a slash (/) are called switches, which are
used to specify parameters. The following BASIC command op
tions are switches:

/Y'Jiles sets the maximum number of files that may be
open at any given time while a BASIC program is
running.
Each file requires 188 bytes of memory for the file
control block, plus the buffer size specified by the
/S: switch. If the /F: switch is omitted, the number
of files will default to three.

2-8

The actual number of files that may be open at
any one time depends on the value of the
FILES= parameter in the DOS configuration file,
CONFIG.SYS, with the default being FILES=8.
BASIC uses three files by default, and leaves five
files for BASIC file I/O. Thus, /F:5 is the max
imum value you can specify when FILES = 8 and
you want to be able to have all files open at once.

/"Si-.tsize Set the random file buffer size. The record length
given with the OPEN statement may not exceed
this value. The default bsize is 128 bytes, and the
maximum allowable value is 32767 bytes.

/C'.combuffer sets the receiving buffer's size when using the
internal or optional serial interface, and has not
effect unless you are equipped with this adapter.
The tranamit buffer for communications is always
set to 128 bytes. The maximum value you may
enter for this switch is 32767 bytes. If /C: is
omitted, the default allocation is 256 bytes. If you
have a high-speed line, you should use /C:1024. If
you have two serial interfaces on your system, both
receive buffers will be set to the size specified by
/C:. You may deactivate a serial interface by giv
ing /C: a value of zero, in which case no buffer
space will be reserved for communications, and
communications support will not be included
when BASIC is loaded.

2-9

jyi'.max workspace
sets the maximum number of bytes that can be
used as BASIC workspace. BASIC can use a
maximum of 64k bytes of memory, so the highest
value you may set is 64k (hex FFFF). This option
may be used to reserve space for machine language
subroutines, or to store special data. If /M: is
omitted, BASIC uses all available memory up to a
maximum of 64k bytes.

,max blocksize
reserves space for the workspace and your prog
rams. This parameter must be allocated in Para
graphs (byte multiples of 16). If the parameter is
omitted, 4096 (&H1000) is assumed and 65536
bytes, equal to 4096 x 16, are reserved for
BASIC'S Data and Stack segment. To allocate
65536 bytes for BASIC and 512 bytes for machine
language subroutines, use /M: &H1010 (4096 pa
ragraphs for BASIC plus 16 paragraphs for your
routines). You must include this option when you
utilize the SHELL statement. Otherwise, COM
MAND will be loaded on top of your routines
when a SHELL statement is executed. Use this
option to decrease the BASIC block so that more
memory is free for SHELLing other programs.
/M:,2048 allocates 32768 bytes for data and stack
(2048 X 16). /M:32000,2048 allocates to BASIC
32768 bytes as the maximum, however BASIC will
only use the lower 32000. 768 bytes are left for
your programs.

/D tells BASIC to use double-precision transcendental
functions. /D uses about 3,000 additional bytes for
transcendental functions. The following functions
can be converted to double precision: ATN, COS,
EXP, LOG, SIN, SQR, and TAN. When /D is
omitted this function is discarded, and the space is
freed for other program use.

2-10

/I Memory for file operations will be dynamically
allocated by BASIC. When the /I switch is used
the /S and /F switches are ineffective. When the /I
switch is not used BASIC will allocate memory
according to the /S and /F switches i.e. static
allocation.

When memory is dynamically allocated for file
operations the area where strings are stored will
move accordingly.

WARMING: When loading machine language
programs into the string area the programs may
move or be destroyed.

NOTE: The options files, max workspace, bsize, and combuffer,
and max blacksize are all entered as numbers that may be
either decimal, octal (preceded by &0), or hexadecimal
(preceded by &H) representations.

Some examples are following:

The program LISTING.BAS is loaded and run with all defaults:

BASIC LISTING.BAS

Here BASIC is started with to use all memory and four files, and
PROG.BAS loaded and run:

BASIC PR0G/F:4

2-11

This command starts BASIC so that the maximum workspace
size is 32K bytes of memory. All other defaults apply.

BASIC/M:32768

This command sets the maximum workspace size as HEX 9000,
which means up to 36K bytes of memory. Also, a file control
block is set up for one file, and the program PROG2.TST is
loaded and run.

BASICA PROG2.TST/F:1/M:&H9000

This command starts BASIC and instructs that all transcendental
functions be calculated in double precision.

BASIC /D

2-12

REDIRECTION OF STANDARD

INPUT AND OUTPUT

BASIC 2.0 allows you to redirect your BASIC input and output.
Standard input is usually read from the keyboard. Now, it can
now be redirected to be read from any file you specify on the
command line. Standard output is usually written to the screen.
Now, it can he written to any file or device you specify on the
command line.

BASIC filespec [<stdin] [[>]>stdout]

Some examples are following:

Data read by INPUT, INPUTS, INKEY$, and LINE INPUT
will come from the keyboard as usual. Data written by PRINT
will go into the NEW.OUT file

BASIC STAT >NEW.OUT

Data read by INPUT, INPUTS, INKEYS, and LINE INPUT
will come from REVISED.DAT file. Data written by PRINT will
go to the screen as usual.

BASIC STAT <REVISED.DAT

Data read by INPUT, INPUTS, INKEYS, and LINE INPUT
will come from JUNE.DAT file. Data written by PRINT will go
into the JULY.DAT file.

BASIC STAT <JUNE.DAT >JULY.DAT

Data read by INPUT, INPUTS, INKEYS, and LINE INPUT
will come from the\INVEST\TAX\IRA file. Data written by
PRINT will be added to the\INVEST\TAX.DAT file.

BASIC STAT <\INVEST\TAX\IRA »\INVEST \TAX.DAT

2-13

Notes on using redirection of standard input
and output:

Redirection of standard input causes all INPUT,
INPUTS, INKEYS, and LINE INPUT statement
to read from the specified input file. Input will not
be read from the keyboard.

Redirection of standard output causes all PRINT
statements to write to the specified output file or
device.

Error messages will still go to redirected standard
output and to the screen. Error messages cause all
files to be closed, the program to end, and control
to return to DOS.

File input read from "KYBD:" is still read from
the keyboard.

File output to "SCRN:" still outputs to the screen.

When the ON KEY(n) statement is used, BASIC
continues to trap keys from the keyboard.

When standard output has been redirected,
<Ctrl> <PrtSc> no longer prints the screen.

EOF(O) returns the end of file condition on re
directed standard input devices.

<Ctrl> <Break> returns to standard output. All
files are closed and control returns to DOS.

2-14

OPERATION MODES

When BASIC prompts you for a command by displaying "Ok",
you may respond in either of two modes: direct and indirect.

In Direct Mode, commands are executed immediately and are not
saved in storage. Results, howeyer, may be displayed or stored.
Direct Mode is useful both in debugging and for computations
that do not require programming.

Indirect Mode is used to enter programs, and is signalled to
BASIC by entry of a line number at the beginning of each program
line. The line number causes BASIC to store the commands
sequentially in memory.

2-15

LINE FORMAT

BASIC program lines are entered in the following format:

nnnnn BASIC statement [.BASIC statement^ [' comment...^

nnnnn represents the line number, which may be from one to five
digits long. Every BASIC program line must begin with a line
number; this number indicates the sequence in which the lines
will be both stored in memory and executed when the program is
run. The initial number may be zero, and the highest permitted is
65529. When using the LIST, AUTO, DELETE, and EDIT
commands, a period may be substituted for the line number to
refer to the current line.

Line ranges may be specified in the LIST and DELETE com
mands with a hyphen, for example:

Command

LIST 40-60

LIST 40-

DELETE -40

DELETE 40-

Meaning

List Lines 40 through 60 inclusive.

List all lines from Line 40 to the

program's end.

Delete all lines from the beginning of
the program through Line 40 inclu
sive.

Delete all lines from Line 40 through
the end of the program, inclusive.

2-16

BASIC statement is either executable or non-executable. An executable

statement is a command that specifies the next step in running a
program, for example: GOTO 220. A non-executable statement,
such as REM, does not cause a specific action when encountered
by BASIC. Format and syntax for all BASIC statements are given
in Chapter 7.

The square brackets in the example program line at the beginning
of this section indicate optional entries and do not appear in a
normal line. More than one BASIC statement may be included in
a single line, provided each statement is separated from the
preceding statement by colon (:). Each line must be at least one
character in length, and may total no more than 255 characters.

A comment can be added to the end of a line by the ' (single quote).

2-17

BASIC COMPONENTS

BASIC components are keywords, commands, statements, functions and
variables. All BASIC keywords are described and listed in the
Chapter 6 section titled "Reserved Words". Each BASIC com
mand, statement, function, and variable is described in detail in
Chapter 7.

Keywords

Keywords are words with specific meaning to BASIC. When it
encounters a keyword, BASIC interprets the word as an instruc
tion, and immediately executes the action specified by the word.

Commands

When BASIC is invoked and the BASIC prompt "Ok" appears,
the system is said to be on the interpreter's command level, where a
BASIC keyword entered by the user will be interpreted as a
command. BASIC immediately executes keywords it interprets as
commands.

Statements

BASIC statements are made up of BASIC keywords, either singly
or in groups, usually accompanied by data or variables. When a
program composed of BASIC statements is run, the statements
are executed in sequence and the data manipulated as directed by
the keywords.

2-18

Functions

BASIC performs numeric and string functions. A numeric function
is a mathematical calculation, for example: to determine the sine
of a given angle of x radians. Integer and single-precision results
are returned by numeric functions unless otherwise specified.
String functions operate on strings of characters.

For example, the keyword TIMES returns the time by the system
clock, which is represented by a string of numbers. BASIC
functions may be user-defined by use of the DEF FN statement.

Variables

A variable is a numeric value that has been given a name com
posed of alphanumeric characters, or a name to which a com
puted value is assigned. Variables that are BASIC keywords
provide information as a program is executed, for example: ERR
specifies the latest error that occurred. Other variables are defined
and/or computed as the program runs.

2-19

CHARACTER SET

The BASIC character set consists of the characters that make up
BASIC commands, statments, functions, and variables, and in
cludes:

Alphabetic characters—letters of the alphabet, both capitals and
lowercase

Numeric digits—the numbers zero through nine

The following special characters:

Character BASIC Usage
blank

= equal sign or assignment symbol
+ plus sign or concatenation symbol
— minus sign
* asterisk or multiplication sign
/ slash or division sign
\ backslash or integer division symbol
A caret or exponentiation symbol
(left parenthesis
) right parenthesis
% percent sign or integer type declaration

character

number (or pound) sign or double-
precision type declaration character

$ dollar sign or string type declaration
character

! exclamation point or single-precision
type declaration character

& ampersand
, comma

period or decimal point

2-20

' single quotation mark (apostrophe) or
remark delimiter

; semicolon
: colon or statement separator
? question mark (PRINT abbreviation)
< less than

> greater than
" double quotation mark or string delimiter
_ underline

The computer is capable of displaying or printing many other
characters with no specific meaning to BASIC. Appendix C
(ASCII Character Codes) gives a complete list of the computer's
character set.

2-21

MEMO

CHAPTER 3

THE KEYBOARD

INTRODUCTION 3-2

THE FUNCTION KEYS 3-3

THE TYPEWRITER KEYBOARD 3-4

Special Keys 3-4

THE NUMBER PAD 3-7

3-1

INTRODUCTION

The Sr. Partner's keys are divided into three areas according to
their use:

Grouped on the left are the Function Keys F1 through FIO.

HQ HDDnnpnnannninF-i
HQ EDnnnnnnonnonn
QH EJiannanannnnnnT I
HB HDnnannnnnnnnn
HB II- III III— ng

DDD

Positioned in the center is the Typewriter Keyboard, where are found
the normal alphabet and number keys.

QH HODDIDna

HB Bunnnannnnnnnp-^Fipi

On the right is the Number Pad, which resembles a calculator
keyboard.

HE HDDDDPnnnnnn!-
BB BunnninBinnnnnrin

□nnnnnnonnnn
QH Hinnnnnnonnn

Three keys are not discussed in this chapter: ESC on the Typewri
ter Keyboard, and HOME and END on the Number Pad.
Instead, in their context as Program Editor functions, they are
explained in Chapter 4 (the BASIC Program Editor).

3-2

THE FUNCTION KEYS

In addition to functioning as program interrupts (refer to the ON
KEY statement in Chapter 7), the ten Function keys are usually
used as what are termed "soft keys". This means that each key
can be set so that, when pressed, a designated series of characters
will automatically be entered. In fact, the Panasonic comes equip
ped with some of these keys already set to enter certain frequent
ly-used commands; refer to chapter 7 (the KEY statement) for
more information.

3-3

THE TYPEWRITER KEYBOARD

The Typewriter Keyboard looks and works very much like a
regular typewriter. It contains the letters of the alphabet and the
numbers zero through nine, all positioned as usual. It also con
tains a large variety of special characters. Many of these are
familiar (punctuation and such standard symbols as $ and %),
though some of them may be new to you. Shifting the Typewriter
Keyboard keys is done in the normal fashion, by pressing
<SHIFT> key and then pressing another keyboard key.

Special Keys

The long key with the arrow coming down and turning left is the
carriage return. This key is used to signal an entry to the computer.
It is usually referred to as the <ENTER> key. The words "Enter
(something)" mean "Type (something) and press the <ENTER>
key.

The <Caps Lock> key functions similarly to a Shift Lock. After
you press <Caps Lock> and until you press it again, any
alphabetic characters you type will appear on the screen in
uppercase. However, you will not be able to enter any other
shifted characters, such as punctuation and symbols by using the
<Caps Lock> key. In Caps Lock mode, lowercase letters may be
typed by holding down a Shift Key.

The ««> (BACKSPACE) key not only backspace, but also
erases as it goes. If you don't want to erase what you have typed,
backspace the cursor with the Cursor Left Key (an arrow pointing
left on the Number Pad).

3-4

The <PrtSc> key, unshifted, will type an asterisk. Shifted, it is
used to print the current screen display on the printer.

The <Alt> key has two main functions:

1. If <Alt> is held down while pressing one of the alphabe
tic keys listed below, the associated BASIC keyword will
be typed on the screen:

Letter Word Letter Word

A AUTO M MOTOR
B BSAVE N NEXT

C COLOR O OPEN

D DELETE P PRINT

E ELSE R RUN

F FOR S SCREEN

G GOTO T THEN

H HEX$ U USING

I INPUT V VAL

K KEY W WIDTH

L LOCATE X XOR

2. THE <Alt> key is also used to enter characters that are
not on the keyboard, but are included in the ASCII
Character set. This is done by holding down <Alt>,
entering the three-digit ASCII character code, using the
Numeric Pad keys.

The <Ctrl> key, in combination with other keys, allows you to
enter codes that access certain specialized functions. To enter
these key combinations, hold the <Ctrl> key down and press the
desired key(s).

3-5

The Ctrl Key combinations and the effect of using them are listed
below:

<Ctrl> <Break> This combination stops execution of a
program at the next instruction and
returns the system to the BASIC com
mand level. It may also be used to
exit the AUTO line numbering func
tion.

<Ctrl> <Num Lock>This key combination causes the com
puter to pause until you press any key
except: the <SHIFT> key, and the
<Break> and <Num Lock> key.

<Ctrl> <Alt>

<Ctrl> <PrtSc>

If the computer is on, this combina
tion will cause a System Reset, which
is similar to the effect of turning the
computer off and then on. However,
the reset is accomplished more quick
ly when done this way. First press
<Ctrl>, then <Alt>, then, holding
them down, press .

This combination of key strokes will
cause any text displayed on the com
puter screen to be sent to the printer.
Text appearing on the screen will
continue to print until you press both
keys again to switch this function off.
Note that this operation can slow pro
cessing somewhat, the computer will
not continue until printing of display
ed material is completed.

The Shift Key combination and the effect of using it is listed
below:

<Shift> <PrtSc> If you press and hold <Shift>, then
press <PrtSc> and release both, the
current screen display will be printed
on the printer. To stop printing, press
<Ctrl> <Break>.

3-6

THE NUMBER PAD

Normally, the keys on the Number Pad are used to manipulate
the cursor and to insert or delete characters. These functions are
described in detail in Chapter 4 (The BASIC Program Editor).

The Number Pad can be shifted with the <Num Lock> key so
that it can be used for calculator functions, the keys generating
the numbers zero through nine, plus the decimal point. To return
the pad to its cursor control functions, press <Num Lock> again.
<Num Lock> can be temporarily reversed by pressing a Shift
Key.

The <Scroll Lock>, <Pg Up>, and <Pg Dn> keys are not used
in BASIC programming.

3-7

MEMO

CHAPTER 4

USING THE BASIC PROGRAM

EDITOR

WHAT IS AN EDITOR? 4-2

HOW THE EDITOR WORKS 4-3

USING THE EDITOR 4-4

The Cursor Control Keys 4-4
The Editing Keys 4-7

CREATING AND EDITING A BASIC PROGRAM 4-9

Adding Lines to the Program in Memory 4-9
Changing the Program in Memory 4-10

HOW TO RUN A BASIC PROGRAM 4-11

Syntax Errors 4-11

4-1

WHAT IS AN EDITOR?

The BASIC Editor is a piece of software used to modify a BASIC
program. As directed by the user, the editor will add, delete, or
alter specified characters or lines.

The BASIC editor is called a "line editor", which means that it
processes changes only to a single program line at one time. Thus,
though you can change any line on your screen, and may make as
many changes as you like on each line, you must enter the
changes one line at a time.

4-2

HOW THE EDITOR WORKS

Once you have accessed BASIC and see the BASIC prompt, you
are in command mode, where you may enter BASIC commands,
and create and edit programs. Any line beginning with a number
that you enter will be considered a BASIC program line and will
be stored as part of the program in memory.

Note that "storing a program in memory" is not the same as
"writing a program file to the disk". Unless specifically deleted
via a BASIC command, files written to disk are permanently
recorded and accessible as long as the physical disk is intact. The
contents of the memory, however, are routinely erased in a
number of situations, for example: before entering, editing, or
running a program, or even when turning the computer off.

Therefore, if you want to keep what you have entered, be sure to
use the SAVE command (see Chapter 5) to name it and write it to
the disk when you have finished entering it. If you do not wish to
save a program you have entered into memory, you can delete it
in its entirety by entering the NEW command (see Chapter 7),
which is used to clear the memory.

Similarly, "typing a line" is not the same as "storing it in the
program in memory". The editor makes no additions or changes
to the program in memory until you press the <ENTER> key.

You should also be aware of the distinction BASIC makes be
tween a physical line and a logical line. A physical line is as long
as the horizontal width of the screen. A logical line is a string of
text that is processed as a unit, and may extend over more than
one physical line. Thus, it is possible to enter the up-to-255
allowable characters in a BASIC program line. The editor re
members where the line started (at the last line number) and
knows that it will end at the next line number.

4-3

USING THE EDITOR

Your "place" on the screen is "marked" by a blinking underline
called the cursor. The position of the cursor indicates where you
will start or continue typing, or where insertions, deletions, or
alterations will take effect. The cursor's position also indicates the
"current line", the line which will be processed by the editor
when the <ENTER> key is pressed. (The cursor may be any
where on the line; the editor knows where the line begins and ends
and will process it all.)

The Cursor Control Keys

The cursor is moved either by typing characters or by pressing
one of several keys on the Number Pad called, collectively. Cursor
Control Keys. The action of each of these keys, pressed alone or in
combination with the <Ctrl> key, is described below.

Key(s)

<Home>

Function

Home

<Ctrl> <Home> Clear Home

Action

The cursor is moved to the

upper left corner of the screen.

The screen is cleared and the

cursor moved to the upper left
corner.

< t >

< i >

Cursor Up The cursor is moved up one
line.

Cursor down The cursor is moved down

one line.

4-4

<^>

<^>

Cursor Left The cursor is moved one posi
tion to the left. If the cursor is

in column one on the left side

of the screen, it is "wrapped"
to the last column of the pre
ceding line.

Cursor Right The cursor is moved one posi
tion to the right. If it is in the
last column on the right side
of the screen, it appears in the
first column of the following
line.

<Ctrl> <-^> Next Word The cursor is moved right to
the next word, which is the
next alphabetic character or
number that is preceded by a
blank or special character. For
example, in the line that fol
lows, the cursor is positioned
under the U in NUM2:

50 (N1,NUM2)-(T0T,75),3,BF

If you press <Ctrl> <^>,
the cursor moves to the first

character of the next word

(TOT). If you enter the com
bination again, it moves under
the 7.

4-5

<Ctrl> <^>

<End>

< K- >

Previous The cursor is moved left to the
Word previous word, which is the

next letter or number to the
left of the cursor that is pre
ceded by a special character
or a blank.

End Line The cursor is moved to the

end of the current line.

Tab Tab stops are defined every
eight character positions,
starting in Column One (posi
tions 1, 9, 17 etc.).

When insert mode is off, the
Tab Key moves the cursor to
the next tab stop.

When insert mode is on and
Tab is pressed, blanks are in
serted from the cursor position
to the next tab stop.

4-6

The Editing Keys

The editor also includes functions that are specified by a group of
Editing Keys. These are used to insert and delete characters,
lines, and portions of lines.

Key(s)

<Ins>

Function Action

Insert Mode If you are not in Insert Mode,
this key puts you there. If In
sert Mode is on, pressing
<Ins> turns it off.

In Insert Mode, characters
you type are inserted to the
left of the cursor, pushing the
cursor and the text that fol

lows it to the right. Lines are
"folded"; that is, as characters
are pushed off the right side of
the screen, they reappear on
the left side on the next lines.

<Ctrl> <End>

Insert Mode is automatically
turned off when you use any
of the Cursor Control Keys or
press the <ENTER> key.

Delete The character at the cursor
position is deleted. All charac
ters to the right of the cursor
are moved one space to the
left. Line folding takes place if
necessary.

All characters from the cursor

position to the end of the cur
rent line are erased.

4-7

«3>

<Esc>

<Ctrl> <Break>

Backspace The character immediately to
the left of the cursor is de
leted. All characters to the
right of the cursor are moved
left one position, with line
folding occuring if necessary.

The line containing the cursor
is erased. This key is only
used to delete a line that has
not been entered. It does not

delete a line from a program
that is in memory.

The editor assumes command
level, and any changes made
to the current line are not en

tered. The line is not erased; it
remains in the state it was in

when the last entry was made.

4-8

CREATING AND EDITING

A BASIC PROGRAM

Adding Lines to the Program in Memory

Creating a BASIC program is a matter of entering program lines
into memory. Any BASIC program line:

begins with a line number between 0 and 65529

ends with "Enter", which is specified with the <ENTER>
key

contains a maximum of 255 characters and a minimum of
one

Before entering program lines, you may edit them as much as you
wish, using the cursor control and editing keys. Once entered into
the program, any changes you make to them will take effect when
you press <ENTER>.

You may enter BASIC keywords and variable names in either
upper- or lowercase, or a combination. The editor will convert all
input to uppercase except strings enclosed in quotes, DATA
statements, and remarks.

You may wish to use the AUTO line-numbering function (see
Chapter 7) when entering a program.

When entering or editing a line, you can cause text typed after the
cursor position to be placed on the next screen line when you
enter the logical line. This is done by pressing
<Ctrl> <ENTER>, and is called "typing a line feed". When
you press <ENTER> and line is processed, blanks will be
inserted from the place where you pressed <Ctrl> <ENTER> to
the end of the physical line.

4-9

The computer will give an "Out of Memory" error message if you
try to add a line to a program that fills the memory.

Changing the Program in Memory

You can display any line or range of lines in the program in
memory by using the LIST command (see Chapter 2 and 7). The
EDIT command (see Chapter 7) can also be used to display a
desired line.

If you enter a line for which the line number already exists, the
existing program line will be replaced with the new one.

Selected lines can be deleted by entering the line number only. Or
a group of lines may be deleted with the DELETE command (see
Chapter 2 and 7).

A line may be duplicated by positioning the cursor on its line
number, typing a new number over it, and pressing Enter. Both
the line with the original number and a duplicate with the new
number will exist. A line number can be changed this way by then
deleting the original line.

4-10

HOW TO RUN A BASIC

PROGRAM

A BASIC program must be in memory to be executed. Transfer
ring a program that you have saved on disk to memory is done
with the LOAD command (described in detail in Chapters 5 and
7).

In command mode, respond to the BASIC prompt by entering:

load ''progname"

In this example, "progname" is the name of your program. To
execute the program in memory, BASIC displays:

Ok

Now you may enter:

run

BASIC will execute the program statements sequentially by line
number.

Syntax Errors

If the editor finds a syntax error while running a program, it will
display the line in error with the cursor positioned under the first
digit of the line number. If you wish, you may edit the line now
and the change(s) will be stored in the program. However, when
you do this during a program interrupt:

All variables and arrays will be set to zero or null.

Any open files will be closed.

You cannot continue running the program with the CONT
command.

4-11

If you want to check the contents of a variable before editing the
line, press <Ctrl> <Break> and BASIC will return to command
level. Since no change was made, the variables will be intact.
After examining the variable(s), edit the line in error and rerun
the program.

4-12

CHAPTER 5

DISK FILE PROCEDURES

INTRODUCTION 5-2
Root Directory 5.3
Current Directory 5.3

NAMING FILES 5.4
Pathnames 5.5

PROGRAM FILE MANAGEMENT 5-6

DATA FILES 5.8
File Functions 5.8
Creating and Accessing Sequential Files 5-9
Example Programs for Sequential Files 5-11
Creating and Accessing Random 5-13
Example Programs for Random Access Files . .5-16

5-1

INTRODUCTION

The Sr. Partner stores information on disk in sets or related data

called files. These files are organized into directories that enable
you to quickly find the information and programs you need.

BASIC 1.0 used a simple, single-level directory structure that
provided good file management capabilities for files stored on
floppy disks. Now that BASIC supports hard disks, which can
hold hundreds of files, a more advanced directory system is
required. This is provided by so-called "stratified", or hierarchic
al directories. Related files are grouped in different directories on
the same disk. Each directory can contain both file names and
other directory names.

For example, you could create a hierarchical directory that looks
like this:

ROOT

INVEST INSURE

TAX STOCKS BONDS HOUSE CAR LIFE

IRA LOANS

BASIC provides a way for you to specify a "path" to the file you
want.

5-2

Root Directory

When you FORMAT each disk, a single directory is created the
root directory. In this root directory you can store filenames or the
names of other directories, known as sub-directories. The sub-director
ies^ in turn, can hold the names of more files and sub-directories.
In the illustration above, the hierarchy can be as deep and wide
as disk space permits.

Current Directory

The current directory is the default directory for each drive on the
Sr. Partner. BASIC will always search the current directory for a
filename that is specified without a directory name. BASIC will
automatically use the root directory as the current directory until
you change it with the CHDIR command. (See the CHDIR
Command in Chapter 7.)

The procedures described in the sections that follow allow you to
create files, access them for input and output purposes, and
manipulate them in a number of ways.

A number of BASIC terms and commands are briefly explained in
this chapter, which also includes a great many BASIC program
statements shown as examples. Both Chapters 6 and 7 provide
more detailed information about the concepts presented in this
chapter.

5-3

NAMING FILES

Each file is referenced by a unique file specification, which term is
shortened to filespec in this book. The filespec may contain a device,
and must include a filename. The format for a BASIC filespec is.:

{device:]filename

If you wish to designate the disk, device must be either A: or B:, (if
you have the optional drive B). If you wish other devices, refer to
"Device Name" in Chapter 6. The colon is required when specify
ing a device. If you do not specify the disk, BASIC will assume
the file is on the currently-loaded disk.

The format for a BASIC filename is:

nameY,extension^

The "name" may be from one to eight characters long. The
optional "extension", which requires the delimiting period, may
be from one to three characters long. Refer to Chapter 6 for a
more detailed discussion of the extension and its purpose. The
following character set includes the only characters that may be
used in a BASIC filename:

the letters A through Z

the numbers zero through nine

the special characters {}()@#$% — & ! —

5-4

Pathnames

Because BASIC 2.0 provides for hierarchial directories, the file
specification function in BASIC 2.0 has been expanded to include
specification of a path to a file. A pathname is a sequence of
directory names separated by back slashes (\) and followed by a
filename. The syntax for a file specification including a pathname
is:

device:pathname

BASIC searches the currently loaded disk if no device is specified.
If a path begins with a back slash, it starts at the root directory.
For example, if your current directory is INVEST, and you want
to specify the file IRA, you could use either

\INVEST\TAX\IRA

or

TAXMRA

In the first sample command, the full path from the root was
specified by the leading back slash. In the second, the path from
the current directory was designated.

Pathnames may be used with the following commands:

BLOAD CHDIR LOAD NAME RUN

BSAVE FILES MERGE OPEN SAVE

CHAIN KILL MKDIR RMDIR

NOTE: If a device name is incorrectly placed, e.g., after the
path, the system will display a Bad file name error message.

A path may include no more than 63 characters.

String constants used for paths must be enclosed in quotation
marks.

5-5

PROGRAM FILE MANAGEMENT

The BASIC commands described briefly below are used to man
ipulate program files in different ways. A more detailed discussion
of each command appears in Chapter 7.

Command

SAVE file5pec[,A.]

or

SAVE Jilespec{^V]

LOAD jilespec{,^^

BASIC Action

Writes to disk the program file cur
rently in memory.

The "A" option writes the file in
ASCII characters; if option A is not
specified, the file is written in pack
ed binary format.

The "P" (for Protect) option allows
to save a file in an encoded binary
format. Since a file saved with op
tion P cannot be listed, saved,
edited, or "un-protected", you
might wish to save an unprotected
copy for listing or editing purposes.

Loads the specified program file
from disk into memory.

The "R" option causes the prog
ram to be immediately run upon
loading. Before the LOAD com
mand is executed, the current con
tents of memory are deleted and all
files are closed. If option R is in
cluded, however, open data files are
left open, so as to be available to
the running program.

5-6

RUN jilespec[,K\

MERGE Jilespec

Loads the specified program file
into memory and runs it.

Before the LOAD command, the
current memory contents are de
leted and all files are closed. If the

"R" option is included, however,
open data files are left open.

This command loads the specified
program file into memory, but does
not delete the current memory con
tents. Instead, the program line
numbers on the disk file and those

on the program lines in memory
are merged. If two lines carry the
same number, the line in the disk
program is retained. After this pro
cess is complete, the MERGED
program is in memory, and BASIC
returns to the command level.

KILL jilespec Deletes the specified file from the
disk.

NAME jilespec
AS jilename

Changes the name of the specified
file to jilename.

5-7

DATA FILES

BASIC allows you to create and access two types of disk data file:
sequential and random access. There are three main differences
between the two file types: storage requirements, ease of input,
and speed of access.

Random access files require less storage space because they are
stored on disk in a binary format, while sequential files are stored
in ASCII characters.

Sequential files are straightforward to create but cumbersome to
access, because the data is stored sequentially as it comes in. To
find a piece of information, the computer must start at the
beginning and read through the file until it finds the desired data.

To access a random file is a much faster process, because the data
is formatted into units called records, and each record has a
number that acts as its address. However, creating a random
access file is a somewhat more complex process, since a buffer
area is used to format the records before they are written to the
file, and you must program the sequential numbering of the
records.

File Functions

Certain BASIC functions are specifically applied to files, rather
than, for instance, variables. These include the LOC and LOF
functions.

The LOF function will return the number of bytes of disk space
occupied by the file, allowing you to keep track of the file's size
relative to the total storage space.

When applied to a sequential file, the LOC function will return
the number of data records that have been written to or read from

a file since it was last opened. Thus, LOC may be used as a
comparator for an end-of-file test.

5-8

When applied to a random file, the LOG function returns the
number of the "current record", which is the last record number
referenced by GET or PUT.

The PRINT # USING statement may be used to write formatted
data to a file.

PRINT #1,USING "####.##,";A,B,C,D

This statement would write four numbers designated A, B, C, and
D to the file, separated by commas, and with a period so placed
that the numbers are expressed with two decimal places. Other
examples appear in the example programs.

Creating and Accessing Sequential Files

The following statements and functions are applied to sequential
files.

Each is explained in detail in Chapter 7.

OPEN PRINT # EOF EOF
INPUT # PRINT # USING CLOSE INPUTS
LINE INPUT # WRITE # LOC

Two program steps are necessary to create a sequential file:

1. Open the file for output with the OPEN statement:

100 OPEN "FILE2" FOR OUPUT AS #1

This statement may alternatively be written:

100 OPEN "0",#1,"FILE2"

5-9

Later, when you wish to add more data to FILE2, open
the file for append, rather than for output, as follows:

100 OPEN "FILE2" FOR APPEND AS #1 ^

You may append the file also in the following manner:

100 OPEN "A",#1,"FILE2"

If you open an existing file for output, you will destroy its
contents.

2. With the WRITE #, PRINT #, or PRINT # USING
statements, write data to the file:

200 WRITE #1, DAS,DBS

This statement says, "Write to File #1, which I told you
in the OPEN statement is FILE2, the current values of
these variables."

To access the data in a sequential file, use the following two steps.

1. Close the file for output purposes using the CLOSE
statement, then reopen it for input (to the program) with
the OPEN statement:

300 CLOSE #1
400 OPEN "FILE2" FOR INPUT AS #1

You may reopen the file also in the following manner:

400 OPEN 'T',#1,"FILE2"

2. Read data into the program with INPUT # and LINE
INPUT #statements:

500 INPUT #1,DXS,DYS

This statement says, "Get me the next two units of data in
File #1, and assign these names to the values.".

5-10

Example Programs for Sequential Files

In the following example, lines 20, 30, and 40 use INPUT
statements to specify the prompt the program will make for the
data, which will be input from the keyboard. "D$", "N$", and
"M$" are the names to be assigned to each field.

10 OPEN "FILE2" FOR OUTPUT AS#1
20 INPUT "DATE":D$:PRINT
25 IF D$="00" THEN CLOSE; END
30 INPUT "NAME";N$
40 INPUT "MESSA6E";M$

Statement 25 says, "When I enter the word '00' as a date, this
means I am finished entering data, so stop the program."

In the next example. The WRITE statement writes three pieces of
data to the file. Statement 60 says, "Go back to Statement 20 and
continue."

50 WRITE #1,D$,N$,M$
60 PRINT: GOTO 20

The effect of the RUN command is shown in the following
example. The question mark and the words to its left are the
computer's display. To the right of the question mark is the user's
entry from the keyboard.

RUN

DATE? 01/10/84
NAME? J.JONES
MESSAGE? DINNER

DATE? 02/20/84
NAME? S.OLIVER
MESSAGE? MEETING AT 8:30

DATE? 00

OK

5-11

The following program can be used to access the file just created:

10 OPEN "FILE2" FOR INPUT AS #1
15 IF E0F(1) THEN CLOSE: END

Line 15, using the EOF function, checks to see if the end of the file
has been reached, and if it has, stops reading data. (BASIC marks
the end of a sequential file with a "CHR$(26)", so you should not
use this character in your file entries.)

20 INPUT #1,D$,N$,M$

The INPUT # statement is used to read a set of data fields into
the program from the file.

30 IF LEFT$(D$,2)="02" THEN PRINT N$

The IF statement says, 'Tf the leftmost portion of D$, which is
two characters long, is '02', then print the name."

40 GOTO 15

Statement 40 says, "Whatever the outcome of the comparison,
continue and examine the next set of data fields."

RUN

The RUN causes the computer to display:

S.OLIVER

5-12

Creating and Accessing Random Access Files

The following basic statements and functions are applied to
random access files. Each is described in detail in Chapter 7.

OPEN MKD$ CLOSE CVD LOC
FIELD MKI$ PUT CVI LOF
LSET/RSET MKS$ GET CVS

Creating a random file involves the following steps:

1. Open the file for random access with the OPEN state
ment:

100 OPEN 'TELEPHONE" AS #1 LEN=32

The length of each record is specified as 32 bytes.

2. Allocate space in the random buffer area for each record's
data fields, using the FIELD statement:

200 FIELD #1, 2 AS NU$. 20 AS N$, 8 AS T$

This statement says, "The first two bytes of the record
will be referenced as NU$, the next twenty as N$, and the
last eight as T$."

3. Move the data into the buffer with the LSET or RSET

statements:

300 LSET NU$=MKI$(NUMBER)
400 LSET N$=NAME$
500 LSET T$=TEL$

5-13

Statement 300 says, "Set NU$ to equal the value repre
sented by NUMBER, expressing the integer value as a
numeric string." (Numbers must be made into string
fields when they are placed in the buffer. This is done with
the "make functions: MKI$ makes an integer into a
string, MKS$ changes a single-precision number, and
MKD$ is used to convert a double-precision value.) State
ment 400 says, "Set N$ to equal the data referenced by
NAMES." Statement 500 says, "Set T$ to equal the data
represented by TEL$."

4. Write the buffer data record to the file with the PUT
statement:

600 PUT #1,C0DE%

The statement say, "Write the record in the buffer to the
file, and number it with the integer number referenced by
the variable CODE%."

In order to access the data in a random file, it is necessary to
perform the following program steps:

1. Open the file for random access:

100 OPEN "TELEPHONE" AS #1 LEN=32

2. Allocate space in the buffer for the data records that will
be read from the file, using the FIELD statement:

200 FIELD #1, 2 AS NU$, 20 AS N$, 8 AS T$

This statement says, "The records to be read are divided
into three fields; the first is two bytes long and is called
NU$, the second is twenty bytes long and is named N$,
and the third is eight bytes long and named A$."

5-14

Note that one OPEN statement and a single FIELD
statement per program will usually allow both input and
output to the same random file.

3. Move a specified record into the buffer, using the GET
statement:

300 GET #1,C0DE%

The GET statement says, "Retrieve from the file the
record whose number is the value represented by
GODE%, and write it into the buffer."

4. Since the buffer data may now be used by the program,
numeric strings must be converted back to numbers. The
"convert" functions accomplish this:

400 PRINT N$
500 PRINT CVI (NU$)

These statements say, "Print N$ and NU$, expressing
NU$ as an integer value". (GVS is used to convert a
string to a single precision number and GVD converts a
numeric string to a double-precision constant.)

5-15

Example Program for Random Access Files

This program writes keyboard input to a random file:

10 OPEN "TELEPHONE" AS #1 LEN=32 ^
20 FIELD #1,2 AS NU$, 20 AS N$, 8 AS TS
30 INPUT "2-DIGIT CODE":CODE%
35 IF G0DE%=99 THEN CLOSE: END

Line 30 causes the computer to display "2-DIGIT CODE?" The
user input of a two-digit number will be referenced by the variable
name CODE%. Line 35 tests the value of CODE% "99" signifies
that the last record has been entered; when the entered value is
99, the files are closed and the program stops. If another code is
entered, the program continues:

40 INPUT "NUMBER";NUMBER%
50 INPUT "NAME";NAM$
60 INPUT "PHONE";TEL$: PRINT

These following statements cause the computer to display
prompts for data:

NUMBER?
NAME?
PHONE?

The user's reponses will be named, respectively, NUMBER%,
NAM$, TEL$. ": PRINT" is just for a carriage return and line
feed.

70 LSET NU$=MKI$(NUMBER%)
80 LSET N$=NAM$
90 LSET T$=TEL$

The buffer variables are set to equal, respectively, NUMBER%,
(the integer number being changed to a numeric string) NAM$,
and TEL$.

100 PUT #1,C0DE%

5-16

The buffer record is written to the file and numbered for refer

enced with the CODE% value.

110 GOTO 30

The GOTO statement says, "Go back to Line 30 and do what it
says there."

This next program prompts the user to enter a number between
01 and 99, then locates the file record numbered with that code,
and displays the information it contains.

10 OPEN "TELEPHONE" AS #1 LEN=32
20 FIELD #1, 2 AS NU$, 20 AS N$, 8 AS T$

The data file is opened and the buffer fields defined. (As noted
above, if this has been done before within the program, these steps
are not necessary to read the file.)

30 INPUT "2-DIGIT CODE";NUM%
35 IF NUM%=99 THEN CLOSE: END

The computer prompts the user for a two-digit number, which is
given the variable name NUM% Entering '99' means the user is
finished, and the program will end.

40 GET #1, NUM%

The GET statement says, "Get the record numbered 'NUM%'
from FILE #1 and put it in the buffer."

50 PRINT USING "NUMBER=###";CVt(NU$)
60 PRINT N$
70 PRINT T$: PRINT

The PRINT statements say, "Display the record this way: first
the name; then the amount with the first three characters in the
string followed by a period, then the last two string characters;
then the phone number.

80 GOTO 30

The GOTO statement says, "Go back to Line 30, and do what it
says."

5-17

MEMO

O

CHAPTER 6

BASIC PROGRAMMING

ELEMENTS

RESERVED WORDS 6-3

NUMERIC REPRESENTATION IN BASIC 6-4

Numeric Precision 6-5

Conversion to a Different Precision 6-5

Formatting Numeric Output ..6-6
Formatting Double-Precision Numeric
Output 6-7

CONSTANTS 6-9

VARIABLES 6-10
Naming Variables 6-11
Declaring Variable Types 6-11
Array Variables 6-12

EXPRESSIONS, OPERATORS, AND
FUNCTIONS 6-14

Arithmetic Operators 6-15
Relational Operators 6-16

Numeric Comparisons 6-17
String Comparisons 6-17

Logical Operators 6-19
Execution of Numeric Operations 6-22
String Operators 6-23

6-1

I/O OPTIONS 6-24
Device Name 6-24
Screen Uses 6-25
Text and Graphics Modes 6-26
Specifying Graphics Coordinates 6-27
Window and View 6-27

Additional I/O Features 6-28

6-2

RESERVED WORDS

Certain sequential groups of characters have specific meaning to
BASIC, and are called reserved words. These may not be used as file
or variable names, though they may be embedded within other
characters of a name. For instance, "GET" is a reserved word
because it is the name of a BASIC command. But it would be

allowable to name a program "GOGETREC".

BASIC reserved words are as follows:

All BASIC keywords that are used as names for BASIC
commands, statements functions, and variables are reserved.
Each of these appears prominently in UPPERCASE in both the
text and table of contents for Chapter 7, where each is de
scribed.

In addition, the following words are also reserved:

AND

DEFDBL

DEFINT

DEFSNG

DEFSTR

ELSE

EQV
FNxxxxxxxx

IMP

lOCTL

lOCTLS
MOD

MOTOR

NOT

OFF

OR

STEP

THEN

TO

USING

XOR

Reserved words must always be separated from other parts of a
BASIC statement by blanks or other special characters permitted
by the syntax. This is called "delimiting" them so that the BASIC
program line is separated from the line number by a blank. You
can also include more than one command in a single program line,
but you must delimit each one with a colon, that is, the first
character of the new command must be separated from the last in
the previous one by a colon.

6-3

NUMERIC REPRESENTATION

IN BASIC

Numbers may be positive or negative, may be in either decimal,
hexadecimal, or octal mode, and do not include commas. Decimal
numbers may be expressed as integer, fixed point, or floating point
numbers, defined as follows:

* An integer is a whole number from —32768 through 32767
which does not include a decimal point.

* A fixed point number is any real number, including those with
decimal points.

* A floating point number is a number expressed with an expo
nent that functions as in scientific notation. Such a number is

represented in three parts:

the mantissa, which is an integer or fixed point number

the letter E, except in double-precision numbers where the
letter D is used to specify the exponent

a positive or negative integer that is the exponent

The following example of a floating point number illustrates
both the floating decimal point concept and the way this kind of
number is entered and stored:

81.79E-7

This number, which is read "eighty-one point seven nine times
ten to the minus seven", is equivalent to the fixed point number
.000008179. "81.79" is the mantissa and " — 7" is the exponent.

* A floating point number may be any number from ±2.9E—39
to ±1.7E-h38.

6-4

A hexadecimal number may contain up to four hex digits, and is
prefixed by "&H". Hex digits are the numbers zero through nine
and the letters A, B, C, D, E, and F (10 through 15). As an
example, the hex number 46F is represented as:

&H46F

An octal number may have up to six octal digits, which are the
numbers zero through seven, and includes either the prefix "&0"
or For example, the octal number 326 could be represented as
either:

&0326 or &326

Numeric Precision

A number that is represented exponentially (that is, a floating
point decimal number) may also be defined as either a single- or
double-precision number.

A single-precision number may be any fixed point number of
seven digits or less, which may either be expressed in exponential
form using "E", or appended with an exclamation point. Seven
digits will be stored and printed for such a number, but only six
will be significant.

A double-precision number may be any fixed point number with
eight or more digits, which may either be expressed exponentially
using "D" to specify the exponent, or including a trailing number
sign (#). BASIC will store 17 significant digits and print as many
as 16.

Conversion to a Different Precision

BASIC converts numbers from one precision to another, under
certain circumstances and according to the following rules:

6-5

If a number of one precision is assigned to a field defined to be
of a different precision, the number will be stored as the
precision declared for the target field. For example, if a number
with a decimal portion is placed in a field defined to contain an
integer, then the number will be stored as an integer.

When a number of a higher precision is converted to one of
lower precision, it is rounded rather than truncated.

If a lower precision number is converted to a higher precision,
the higher precision result will be no more accurate than the
lower precision number, since no computation is performed in
the conversion. Logical operators (described later in this chap
ter) convert their operands to integers, and the result is an
integer number.

When an arithmetic or relational expression is evaluated, all
the operands are converted to the precision of the most precise.
Arithmetic operations return a result to this degree of precision.

Formatting Numeric Output

Certain BASIC statements and functions may be used to specify
the desired format and accuracy of numeric output.

You may, for instance, use the DEFINT statement (see Chapter
7) to display integer results when the calculations may have been
performed with higher-precision numbers:

100 DEFINT A
200 A=NUM1#*NUM2#
300 PRINT A

The integer portion of the result would be displayed.

The PRINT USING statement (see Chapters 5 and 7) is used to
specify formatting of numeric output. For example, a statement
such as the following would place commas in numbers:

400 PRINT USING "###,###";NUM%

6-6

Formatting Double-Precision Numeric Output

Use DEFDBL to define your constants and variables as double-
precision numbers when formatting output:

10 WIDTH 80
20 DEFDBL A
30 A=60#
40 PRINT A/100#,
50 A=A-l-1

60IFA<90# GOTO 40

RUN
6 .01 • 62 • 63 • 64
65 • 66 • 67 • 68 • 69
7 • 71 • 72 • 73 • 74
75 • 76 • 77 • 78 • 79
8 • 81 • 82 • 83 • 84
85 • 86 • 87 • 88 • 89

6-7

Use PRINT USING and LPRINT USING when you want the
output to be in decimal notation. You can choose the format for
the printed or displayed results. This example prints up to four
decimals to the left of the decimal point and two decimals to the
right:

10 WIDTH 40
20 N=950.25
30 PRINT USING "####.## ":N:
40N=N+10.5
50IFN<1100 GOTO 30

RUN

950.25 960.75 971.25 981.75
992.25 1002.75 1013.25 1023.75
1034.25 1044.75 1055.25 1065.75
1076.25 1086.75 1097.25
Ok

Do not use both single- and double-precision numbers in the same
formula as accuracy will be reduced.

You get greater accuracy when you use double-precision transcen
dental.

6-8

CONSTANTS

A constant is a value that is used during execution of a program.
BASIC uses two types of constants: string and numeric.

A string constant is a sequential string of up to 255 characters
that is enclosed in double quotes. A string constant may contain
any legal BASIC characters in the form of words, phrases, or
numbers. For example:

"COMPUTER"
"$18.75"
"Date of Birth"
"Your library book is six months overdue."

Note that a numeric string such as "$18.75" cannot be used for
computations.

For mathematical operation, BASIC uses numeric constants,
whose values are always numbers, as defined in the preceding
section of this chapter.

6-9

VARIABLES

A variable, like a constant, is a value that is used during program
execution, but unlike a constant:

A variable value may change during the course of the program.

A variable is referenced with a unique name.

Variables, like constants, are of two types: string and numeric.

The length of a string variable is determined by the value
assigned to it, and may be anywhere from zero to 255 characters.
A string variable may only contain a character string.

The value of a numeric variable is always a number.

A variable's value may be set to that of a constant, or its value
may be the result of calculations performed, or data entered,
during execution. However the value is set, the variable type must
be consistent with the type of data assigned to it.

The value of a numeric variable that has not yet had a value
assigned to it is zero. A string variable not yet assigned a value is
considered to be zero characters long and have a null value.

6-10

Naming Variables

A variable name may be as many as 40 characters long. The
name may be composed of letters and numbers, and the period
may be used. The first character must be alphabetic. The S, %, !,
and # symbols are also allowed as the last character of the name,
to indicate the variable type (see below).

Variable names may not be reserved words, either alone or
appended with $, %, !, or #, but reserved words may be embed
ded within the name.

Variable name with FN as the first two characters is assumed to
call a user-defined function (see the DEF FN statement in Chap
ter 7).

Declaring Variable Types

A variable's type is specified by the last character of its name,
which is called the type declaration character. The characters that
are used for this function, and the variable types they designate,
are listed below:

$ string variable
% numeric integer variable
! numeric single-precision variable
numeric double-precision variable

A variable name without a type declaration character is consi
dered to represent a single-precision numeric variable.

Though higher precision numbers result in more accurate com
putations, these variables require more space to store and more
time to use. Your requirements and those of your program must
be weighted when declaring numeric variable types.

Certain variable types may also be declared with the DEFINT,
DEFSNG, DEFDBL, and DEFSTR statements. Refer to Chapter
7 for a detailed discussion of each of these statements.

6-11

Array Variables

An array is a group of variables that are referenced by a collective
name. Individual array values are called elements. Array elements
may be used in any BASIC expression, statement, or function
where a variable can be used.

The name of each array element consists of the array name
followed by a subscript in parentheses. The subscript indicates the
element's position in the array.

Naming an array (thereby declaring the variables' type) and
specifying the number and positioning of the elements is called
defining the array. This is done with the DIM (Dimension)
statement, which is used like this:

100 DIM A$(5)

This statement sets up an array named A$, which contains six
character string elements that will be referred to as A$(0), A$(l),
A$(2), A$(3), A$(4), and A$(5). Each element initially has a null
value.

Array elements are arranged in rows and columns, both of which
may be specified in the DIM statement. If, as in the above
example, only the number of rows is defined, the array is said to
be a one-dimensional array.

A DIM statement to define a two-dimensional array looks like
this:

200 DIM A (2,2)

This statement creates an array named A that contains nine
single-precision variables, each initially equals to zero. The
elements are named and arranged like this:

6-12

Column 0 Column 1 Column 2

Row 0 A(0,0) A(0,1) A(0,2)

Row 1 A(1,0) A(l,l) A(l,2)

Row 2 A(2,0) A(2,l) A(2,2)

Use of a subscripted variable for which a corresponding array has
not been defined causes BASIC to set up a one-dimensional array
with 11 elements. The following statement, lacking an associated
DIM statement, would result in the elements in the default array
being named NUM#(0) through NUM#(10), and the double-
precision value named RESULT# being assigned to array ele
ment NUM#(3).

500 NUM#(3)=RESULT#

This process is called implicit declaration of an array.

6-13

EXPRESSIONS, OPERATORS,

AND FUNCTIONS

Expressions are used to specify mathematical or logical operations
on one or more constants or variables, called "operands" in this
context. Operators within expressions designate the operation to
be performed. Functions are included in expressions to reference
operations defined elsewhere that are to be applied to one or more
of the expression's operands.

The following example BASIC statements demonstrate these con
cepts:

500 RESULT=(NUM1+NUM2)-TAN(ANGLE1)
600 IF RESULT>360 GOTO 100

In Statement 500, the expression is the portion of the statement to
the right of the equal sign; in Statement 600, it is "RESULT >
360". In Statement 500, the expression contains the operators
" + " and " — specifying addition and subtraction; the operator
in Statement 600 is ">", which means "greater than". "TAN" in
Statement 500 refers to the tangent function, which BASIC is
equipped to perform on a give angle.

Many operations may be performed on both numbers and charac
ter strings, but if an operator returns a numeric result, it is called
a numeric operator. A string operator returns a string result.

In the same way, a numeric function is one applied to a number
that returns a numeric result. String functions are applied to
character strings, and the result is a string.

6-14

Arithmetic Operators

When evaluating a mathematical expression, BASIC performs the
following arithmetic operations as needed, in this order:

Expression
Operator Operation Example Meaning

A Exponentiation AaB A to the power of B
— Negation -A Minus A,

(make A negative)
* Multiplication A*B Multiply A by B
/ Floating Point

Division A/B Divide A by B
\ Integer Division A\B Round A and B to

integers in the range
of-32768 to 32767;
then divide A by B
and truncate the

quotient to an
integer.

MOD Modulo

Arithmetic AMODB Return the integer
remainder of an

integer division
operation.

+ Addition A+B Add A and B.

— Subtraction A"B Subtract B from A.

6-15

Relational Operators

A relational operator compares one value to another. These may be
either two numeric values or they may be derived via a process
defined by an expression.

The following operators are used to specify a comparison for the
indicated relationships between values:

Operator Relationship Example
Expression
Meaning

= Equal A=B A equals B.

OorX Unequal AOB A is not equal to B.

< Less than A<B A is less than B.

> Greater than A>B A is greater than B.

V

II

u
O

II

V

Less than or

equal to

>> IIA
AIItd W

A is either less than

or equal to B

A

II

S-H
o

II

A

Greater than

or equal to
A>=B

A=>B

A is either greater
than or equal to B.

If the comparison as written represents a true statement, then the
result of the comparison is stored as "true" (binary —1). If the
comparison, as a statement, is not true, then a "false" result is
stored (zero).

Relational comparisons are usually performed as part of an IF
statement (see Chapter 7), where the result of the comparison
determines a decision about the direction of the program's flow.
For example:

100 IF X>CODE GOTO 500
200 GOTO 10

This statement says, "If X is greater than CODE, then continue
executing at Statement 500. If this is not the case, continue with
the following statement, 200."

6-16

Or the result may be output, either explicitly or in the form of a
code. For instance:

200 IF AMOUNT>LIMIT THEN PRINT "OVER LIMIT" ELSE PRINT
"OKAY-

BASIC will compare AMOUNT to LIMIT, and if AMOUNT is
larger, will display the words "OVER LIMIT" (without the
quotes). If AMOUNT is not more than LIMIT, the word
"OKAY" will be displayed. The following statement, however,
uses the result differently.

200 PRINT AMT>LMT

This statement say, "Compare AMT to LMT and print the
result." If AMT is greater than LMT, BASIC will display "—1"
to indicate "true". If not, a zero will be displayed, indicating a
"false" result.

Numeric Comparisons

When an expression contains both relational and arithmetic oper
ators, the arithmetic is done first, so that the comparison can be
made between two values. For instance, in the following express
ion the values (A plus B) and (NUM divided by X) are com
puted, then these computed values are compared:

A+B=NUM/X

If the values are equal, the result is "true". If not, a "false" result
is stored.

String Comparisons

Though relational operators produce numeric results (—1 or zero)
and are thus considered to be numeric operators, they are also
used to make comparisons between character strings.

When a string comparison is performed, BASIC successively
examines the ASCII codes for each corresponding character posi
tion in both strings. The strings are considered equal if all the
codes in each are the same. Differing codes, at any point, signal
unequal characters, and the relationship between them is deduced
by a process similar to alphabetizing.

6-17

For example, in strings of equal length, B is considered "greater
than" A, because A precedes B in the alphabet. Thus, the string
"XY" would be "less than" the string "YZ". And, since a
lowercase letter is considered to be "greater than" its uppercase
counterpart, the following comparison would be true:

"cp">"CP"

(Note that when a string constant is used in a comparison
expression, it must be enclosed in quotes.) Numbers are consi
dered "less than" letters, so the following comparison would be
false:

"FILE1">"FILEA"

A string constant can also be compared to the contents of a string
variable, such as:

NAME$="H. PHILIP LIMBACHER"

When two strings of unequal length are compared, the shorter
string is considered "less than" the longer.

6-18

Logical Operators

A logical operation combines the results of two or more relational
comparisons to make a decision. Logical operators use the "true"
or "false" results of the comparisons as operands to calculate a
"true" or "false" result of the logical operation.

The logical operators are as follows, listed in the order they are
performed if more than one appears in a single statement:

Operator Operation

NOT Logical Complement
AND Conjunction
OR Disjuction
XOR Exclusive Or
EQV Equivalence
IMP Implication

The NOT operator is used in two ways. In decision-making, this
operator can specify a branch in the program flow if an expression
is false, for example:

400 If NOT (CODE=100) THEN 200

This statement says, "If CODE does not equal 100, continue at
Statement 200. If it does, continue with the next statement."
NOT may also be used to change the sign of a value to that of its
complement.

500 CODE=NOT CODE

This statement says, "Set the value of CODE to I's complement."
For example, if CODE were equal to 50, it would be set to —51; if it
were —80, it would be set to 79.

6-19

The result of a NOT operation is arrived at in the following way:
if the relational expression is true, the logical result will be
"false"; if the expression is false, the result of the NOT operation
will be "true". This method of deducing a result is called "NOT
logic".

AND returns a "true" result only if both of two expressions are
true. For example:

200 IF CODE>50 AND NUM=100 THEN 500

If CODE is greater than 50, and if NUM equals 100, then the
program will continue at Statement 500. But if either situation is
not the case, the result of the logical AND operation will yield a
"false" result, and the program will continue at the next
instruction.

The following table shows how "AND logic" derives a result from
the four possible combinations of "true" and "false" that can result
from the comparison of two expressions.

Expression 1
Result

Expression 2
Result

AND

Result

T

T

F

F

T

F

T

F

T

F

F

F

OR will return a "true" result if either of two expressions is true,
for example:

200 IF CODE=100 OR NUM>20 THEN 500

If CODE is ICQ, or if NUM is greater than 20, the program will
continue at Statement 500. Only if neither expression is true the
OR operations will give a "false" result, causing the program to
continue on the following line.

6-20

The table below shows how the results of a relational comparison
are combined with "OR logic" to produce a result.

Expression 1 Expression 2 OR
Result Result Result

T T T
T F T
F T T
F F F

XOR returns a "true" result when one expression is true and the
other false. If both are either true or false, the logical result will be
"false". "XOR logic" derives a result as follows:

Expression 1 Expression 2 XOR
Result Result Result

T T F

T F T
F T T

F F F

EQV returns a "true" result if both expressions are either true or
false. If the results of the realtional comparison differ, the logical
result will be "false". "EQV logic" arrives at a result in the
following way:

Expression 1 Expression 2 EQV
Result Result Result

T T T
T F F
F T F
F F T

6-21

The result of an IMP operation will be "true" unless the first
expression is true and the second is false. "IMP logic" reaches a
result as shown below.

Expression 1 Expression 2 IMP
Result Result Result

T T T

T F F

F T T

F F T

Execution of Numeric Operations

To summarize, BASIC performs numeric operations in the follow
ing sequence:

1. First, any specified functions are performed.

2. Then, arithmetic operations are done in the order given in the
section titled "Arithmetic Operators", which is the stan
dard mathematical order of operations.

3. Relational operations are evaluated next.

4. Last, logical operations are performed in the order given in
the preceding section, "Logical Operators".

If an operation is specified more than once in a statement, each
occurence is executed in left-to-right sequence.

Operations enclosed in parentheses are done first in the order
listed above.

6-22

String Operators

An operation known as concatenation is used to combine existing
character strings into a new string. Concatenation is considered a
string operation because, unlike the operations described pre
viously in this chapter, the result of the operation is a character
string, rather than a numeric value.

The plus sign is the operator used to specify concatenation
(joining together) of two or more character strings. The following
example would print three fields as a unit:

10 CITY$="San Francisco,"
15 STATE$=" CA"
20 ZIP$=" 94117"
50 PRINT CITY$-l-STATE$-l-ZIP$
RUN
San Francisco, CA 94117

Other string operations are performed by functions built into
BASIC. Refer to Chapter 7 for a detailed description of the
purpose and use of all BASIC string functions.

6-23

I/O OPTIONS

Device Name

The device name consists of up to four characters and a colon (:).
Device names and meanings are listed below.

Device Meaning

KYBD: Keyboard. (Input)
SCRN: Screen. (Output)
LPTl: First printer. (Internal Printer) (Output or

random)
LPT2: Second printer. (Output or random)
LPT3: Third printer. (Output or random)

COMl: Internal Serial (RS232C) Interface (Input and
output)

COM2: Optional Serial Interface (Input and output)

A: First floppy disk drive. (Input and output)
B: Second floppy disk drive. (Input and output)
C: First hard disk drive. (Input and output)
D: Second hard disk drive. (Input and output)

Refer to "Naming Files" in Chapter 5.

If your system supports more than two floppy disks, the device
names change slightly. For example, if you have three floppy disk
drives, the third disk becomes C. Now the first hard disk is named
D, and the second one is E. If you are using four disk drives, the
last disk drive will be named D. The first hard disk becomes E,
and the second one is F.

6-24

Screen Uses

The Sr. Partner can display black and white output on the
built-in display, or color if you use a RGB monitor. These colors
can be displayed as text composed of standard ASCII characters,
or in the form of points, lines, and figures.

If you use a RGB monitor, text may be displayed either in black
and white, or in up to 14 additional colors. All 16 available colors
are listed with the associated numbers used to specify them as
part of the description of the COLOR statement in Chapter 7.
The COLOR statement may also be used to specify the color of
the "border screen". This is the area around the portion of the
screen that is used for the display. Additionally, Sr. Partner makes
available a extensive and versatile graphics capability, and also
allows the division of the screen buffer area into eight sections
(called "pages") that may be individually written to or displayed.
This is done with the SCREEN statement (refer to Chapter 7).

6-25

Text and Graphics Modes

When BASIC displays output using the standard ASCII charac
ters, it is said to be in text mode. Text is displayed using 25
horizontal screen lines. The line at the top of the screen is Line 1,
and the bottom line is Line 25. Each line will be either 40 or 80

characters long, depending on how you have specified the screen
width. Each character position is numbered, beginning with Posi
tion 1 on the left side of the screen.

Line 25 is normally reserved for output generated by the "soft
keys" (see Chapter 4). When more output follows Line 24, the
screen is "scrolled". This is what happens: Line 1 disappears.
Lines 2 throughout 24 move up one line each to become Lines 1
through 23, and the next line of output is displayed as Line 24.

In graphics mode^ text may be displayed, as well as figures drawn
with two graphic resolutions:

With high resolution,, you can reference 640 horizontal and 200
vertical points on the screen. The points are addressed by
coordinate numbers, which are assigned sequentially from the
upper left corner of the screen, which is (0,0), across each line
to the lower right corner point, which is numbered (639, 199).

Text is displayed in high resolution on an 80-character line.
Both text and graphics are displayed in two colors. The "fore
ground" color (that of the character) is white, and the "back
ground" color (that surrounding the character) is black.

With medium resolution, you may reference 320 horizontal and
200 vertical screen points, and display output in four colors.

The medium resolution coordinates are numbered (0,0) to
(319,199) in the same way as in high resolution.

6-26

Text displayed with medium resolution appears on twenty-five
40-character lines. The foreground will be Color Three and the
background Color Zero. (Refer to COLOR statement.)

Specifying Graphic Coordinates

A graphic statement must include information that specifies where
you want to draw on the screen. This information is supplied in
the form of coordinates which specify the location of a point on the
screen. Coordinates are written in the form of (x,y), where x is the
horizontal position any y represents the vertical location. This
form of indicating a coordinate point is called "absolute form"
because it specifies a position without reference to any others.

Coordinates may also be written using "relative form", which
specifies a position relative to the point most recently referenced.
This form is written like this:

STEP (xoffset, yoffset)

In the above example, x and y are the coordinates of the last
referenced point, and the "offsets" are the distances from the
previous x and y to the new x and y. How each graphic statement
sets the "last point referenced" is explained as part of the descrip
tion of each statement in Chapter 7. Below is an example of how
two points may be defined using absolute and relative form.

200 PSET (65,180)
250 PSET STEP (50,-10)

Statement 200 uses absolute form to specify a point with coordin
ates (65,180). Statement 250 uses relative form to specify the next
location as a point whose horizontal position is 115 (65-f50) and
whose vertical position is 170 (180—10); this coordinate would be
written (115,170).

Window and View

In BASIC 2.0, there are two coordinate systems, logical coordin
ates and physical coordinates.
Physical coordinates are the coordinates of the screen, the upper
left hand corner is (0,0) and the lower right hand corner is
(639,199) or (319,199).
Logical coordinates are programmer defined coordinates using the
WINDOW statement.

6-27

Additional I/O Features

A number of other features are available to supplement BASIC
programming on the Sr. Partner.

Two informational system variables may be initialized and refer
enced:

DATES gives the date in the form mm-dd-yyyy. For exam
ple, November 20, 1984 would be displayed as 11-20-1984.

TIMES gives the time by the 24-hours system clock in the
form hh:mm:ss. For example, 14:15:33 is 2:15 PM, and
09:15:01 is slightly after 9:15 AM.

The Sr. Partner can also be instructed to make sounds with the

following statements:

BEEP makes the speaker beep.

SOUND produces a sound of a specified frequency and duration.

PLAY makes the computer play music specified by a character
string.

If your Sr. Partner is equipped with a Game Control Adapter, you
may use joysticks to play computer games. The system will
support either two x- and y-coordinate joysticks, or four one-
dimensional paddles, each with a button. The STICK, STRIG,
STRIG(n), and ON STRIG statements and functions are applied
specifically to joystick applications. Refer to Chapter 7 for a
description of these commands.

6-28

CHAPTER 7:

COMMANDS, FUNCTIONS,

STATEMENTS, AND VARIABLES

7-1

This chapter describes every BASIC command, statement, func
tion, and variable. The description of each BASIC component is
divided into four sections: Syntax, Purpose, Comments, and Ex
amples.

The section titled Syntax shows how the component is structured
when it is used. The generalized format should be interpreted as
follows:

Words that appear in UPPERCASE are BASIC keywords, and
must be used where and as shown, though they may be entered in
either capitals or lowercase letters.

Italic portions represent items supplied by you; these are referred
to as "parameters" or "arguments" and may be represented by
words, such as line or jilespec^ or by symbols such as those below,
which are used to represent expressions of the indicated types:

a:, jv, -e (numeric)
f, j. A:, /, m, n (integer)
x$, y$ (string)

V and vS are used to symbolize numeric and string variables.

Optional items are enclosed in square brackets ([]). Items that
may be repeated are followed by an ellipsis (...)• Any other
punctuation (eg: commas, parentheses, semicolons, hyphens,
equal signs, etc.) is part of the syntax and must be included.

The generalized syntax specification usually shows functions and
variables on the right side of an assignment statement, ie:
v=SlN{x). This formatting is intended to emphasize the difference
in usage between these components and that of commands or
statements, not to suggest that they can only be used in assign
ment statements. In fact, BASIC functions and variables can be
used in all ways as regular variables, except that they may not be
placed on the left side of an assignment statement.

7-2

Purpose very briefly describes why the component is used, in terms
of what it will accomplish.

The Comments explain more fully how to use each component.
Italicized items in the syntax specification are described in terms of
what they represent; the acceptable range, type, or size of each
value to be supplied is specified. The Comments also describe any
prerequisites to using the components, as well as the effects of
executing a statement or command, calling a function, or referenc
ing a variable.

Each description ends with one or more Examples^ which illustrate
how the component may be used to accomplish a given end.
Program extracts, as well as sample direct mode statements, are
used to clarify both how each component may actually be entered,
and how it fits into the context of other associated BASIC

processes.

7-3

ABS Function

Syntax: v=ABS{x)

Purpose: Returns the absolute value of the expression x. The
ABS function converts all values of to positive
numbers by telling the computer to ignore the sign
of X.

Comments: a: must be a numeric expression. The absolute
value of a number is positive or zero.

Examples: PRINT ABS(3*(-2))
6
Ok

The absolute value of —6 is printed as a positive 6.

7-4

ASC Function

Syntax: ?:;=ASC(a:J^)

Purpose: Returns the ASCII code of the first character of
the string x$.

Comments: The ASCII (American Standard Code for In
formation Interchange) standard character set
consists of two-hundreds and fifty-six characters:
numbered 0 through 255. (See Appendix C for a
list of ASCII values.)

Use of the ASC function results in a numerical

value that is the ASCII code of the first character

of the string x$.

If x$ is null, an 'Tllegal function call" error is
returned.

The CHR$ function performs the inverse of the
ASC function by converting the ASCII to a char
acter.

Examples: 100 X$="BIRD"
110 PRINT ASC(X$)
RUN

66
Ok

The ASCII code of capital B is 66. The example
below produces the same result:

PRINT ASCC'BIRD")

7-5

ATN Function

Syntax: y=ATN(x)

Purpose: Returns the arctangent of x in radians.

Comments: The expression x may be any numeric type,
however, the evaluation of ATN is always per
formed in single precision.

Use the ATN function to return the angle whose
tangent is x. The result falls between -PI/2 to
PI/2, where PI = 3.141593.

57.29578 (=180/PI) degrees equals one radian.
You can convert radians to degrees, by multi-
playing by 180/PI.

Examples: 10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046

Calculates and prints the arctangent of 3.

7-6

AUTO Command

Syntax: AUTO [number^ [, [incremeniW

Purpose: Generates a line number automatically each time
you press the <ENTER> key.

Comments: The AUTO command frees you from entering line
numbers.

number is the number that is used to begin the line
numbering. You may use a (.) in place of the line
number to begin numbering with the current line.

increment is the value that is added to each line

number to arrive at the next line number.

Numbering automatically starts at number and in
crements each subsequent line number by
increment. The default for both number and increment

are 10.

If number is followed by a comma, and increment is
not specified, the last increment specified in an
AUTO command is used.

If number is omitted, but increment is used, line
numbering begins with 0.

If AUTO creates a line number that is already
being used, an asterisk is displayed after the num
ber to warn you that anything you enter on this
line will replace the existing line. However, you
can save the existing line and create the next line
number by pressing the <ENTER> key im
mediately after the asterisk.

7-7

AUTO terminates when you press the
<Ctrl> <Break> keys. The line in which the
<Ctrl> <Break> keys are pressed is not saved.
After you enter a <Ctrl> <Break>, BASIC re
turns to command level.

AUTO is generally used for entering new program
lines.

Examples: AUTO

This example creates line numbers beginning with
10 and in increments of 10 (10, 20, 30, 40, ...).

AUTO 50, 20

This command creates line numbers beginning
with 50 and in increments of 20 (50, 70, 90, 110,
...).

AUTO 100,

This creates line numbers beginning with 100 and
in increments of 20 because 20 was the increment

in the previous AUTO command (100, 120, 140,
160, ...).

AUTO ,50

This command creates line numbers beginning
with 0 because no line number was specified and
in increments of 50 as specified (0, 50, 100, 150,
...).

7-8

BEEP Statement

Syntax: BEEP

Purpose: Produces a single beep from the speaker at 800 Hz
(800 cycles per second) for one-quarter of a
second.

Comments: You can use BEEP to get the attention of the
system operator.

PRINT CHR$(7) has the same effect as BEEP.

Examples: 1240 IF X > 12 THEN BEEP

This example checks to see if X is out of range. If
it is, the computer beeps.

7-9

BLOAD Command

Syntax: BLOAD filespec offset]

Purpose: Loads a binary file specified by filespec into user
memory.

Comments: filespec is a string expression containing the device
and file name.

offset is a numeric expression within the range of 0
to 65535. This is an offset into the segment you
declared in the last DEF SEG statement. Before

you use BLOAD, execute a DEF SEG statement.
When you specify the offset, the last DEF SEG
address is used.

If offset is not specified in BLOAD the offset spe
cified at BSAVE is used; that is, the file is loaded
into the same location it was saved from.

When the BLOAD is executed, the file specified by
filespec is loaded into user memory beginning at the
specified location.

BLOAD and BSAVE are used to load and save

machine language programs. However, the useful
ness of BLOAD and BSAVE is not limited to

machine language programs. You may specify any
segment as the source or target for these com
mands by using the DEF SEG statement. This
permits the video screen buffer to be read from or
written to a disk. The BLOAD and BSAVE com

mands are useful in saving and displaying graphics
images.

7-10

• ♦» WARNING »♦»

BASIC does not perform an address range
check; that is, it is possible to BLOAD any
where in memory. Be sure you do not
BLOAD over BASIC's variable area, or your
BASIC programs.

Examples: 100 REM Lines 100 through 170 load the screen
110 REM buffer
120 DEF SEG= &HB800
130 REM Line 120 points the segment at the
140 REM screen buffer
150 BLOAD" IMAGE",0
160 REM Line 150 loads the file named IMAGE into
170 REM the screen buffer

Using the DEF SEG statements and specifying
offset at 0 guarantee that the correct address is
used.

The example in the BSAVE command description
illustrates how the file named IMAGE is saved.

7-11

BSAVE Command

Syntax: BSAVE jUespec, offset, length

Purpose: Saves portions of user memory on the specified
device.

Comments: filespec is a string expression containing the device
and file name.

offset is a numeric expression within the range of 0
to 65535. This is an offset into the segment you
declared in the last DEF SEG statement. The save
will begin from this position.

length is a numeric expression within the range of 1
to 65535. This specifies the length of the memory
image to be saved.

BLOAD and BSAVE are used to load and save
machine language programs. However, the useful
ness of BLOAD and BSAVE is not limited to
machine language programs. You may specify any
segment as the source or target for these com
mands by using the DEF SEG statement. This
permits the video screen buffer to be read from or
written to a disk. The BLOAD and BSAVE com
mands are useful in saving and displaying graphics
images.

Examples: 100 REM Lines 100 through 170 save the screen
110 REM buffer

120 DEF SEG= &HB800
130 REM Line 120 points the segment at the screen
140 REM buffer
150 BSAVE "IMAGE",0,16384
160 REM Line 150 saves the screen in a file named
170 REM IMAGE

7-12

The DEF SEG statement is used to set up the
segment address at the beginning of the screen
buffer. Specifying an offset of 0 and a length of
16384 saves the entire 16K screen buffer.

7-13

CALL Statement

Syntax: CALL numvar [{variable [,variable]..,)]

Purpose: Calls an assembly (or machine) language sub
routine.

Comments: numvar is the name of a numeric variable, it must
contain the starting address of the subroutine as
an offset into the current segment of memory. The
current segment is defined by the last DEF SEG
statement.

variable is the name of a variable passed to the
assembly (or machine) language subroutine as an
argument.

The CALL statement is one of two ways to inter
face assembly (or machine) language programs
with BASIC. The USR function may also be used.
However, the CALL statement can pass multiple
arguments.

Examples: 100 IN=&HDOOO
110 CALL IN(A,B$.C)
120 REM variables A,B$, and C are passed as argu-
130 REM ments to the assembly language subroutine

7-14

CDBL Function

Syntax: z;=CDBL(;c)

Purpose: Converts x to a. double-precision number (CDBL
stands for Convert DouBLe).

Comments: x must be a numeric expression.

For converting numbers to single-precision and
integer, see the CSNG and CINT functions.

Examples: 100 A=454.67: REM Note the number of decimal places
110 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344
Ok

This program prints a double-precision version of
the single-precision value stored in the variable
named A.

The value of CDBL (A) is only accurate to the
second decimal place after rounding because only
two decimal places of accuracy were supplied with
A. The last 11 numbers, therefore, have no mean
ing in this example.

7-15

CHAIN Statement

Syntax: CHAIN [MERGE] [,[/m^][,[ALL]
[,DELETE range]]]

Purpose: Calls a program and passes (chains) variables to it
from the current program.

Comments: jilespec is the name of the program that is called to
be chained to. For example:

CHAIN "A:ACCT1"

line is a line number or an expression that corres
ponds to a line number in the called program. It
specifies the starting point for execution of the
called program. For example:

CHAIN "A:ACCT1",400

In this example, program ACCTl in drive A
begins executing at 400.

If line is omitted, execution begins at the first line
of the called program.

line is not affected by a RENUM command.

Therefore, if ACCTl is renumbered, this example
CHAIN statement should be changed to point to
the new line number. The line numbers in range,
however, are affected by a RENUM command.

ALL specifies that every variable in the current
program is passed (chained) to the called prog
ram. For example:

CHAIN "A:ACCT1",400,ALL

7-16

If the ALL option is omitted, you must include a
COMMON statement in the current program.
The COMMON statement will list the variables

to be passed.

MERGE brings a subroutine into the BASIC
program as an overlay. (MERGE overlays the
current program with the called program.)

NOTE: The called program must be an
ASCII file if it is to be merged. For example:

CHAIN MERGE "OVRLAY1",400

After the MERGE (overlay) is executed and used
for a specific purpose, it is usually desirable to
delete it so that a new overlay may be used. Use
the DELETE statement to delete the overlay. For
example:

CHAIN MERGE "0VRLAY1 ",400, DELETE 400-2000

This example deletes lines 400 through 2000 of the
current program before loading in the called (over
lay) program.

Notes: 1. The CHAIN statement leaves files open.

2. If a different OPTION BASE is set in the
current program and the called program, and
the current program contains an array and
CHAIN statement with the ALL option, or
COMMON statement, then the error message
"Duplicate Definition" will be displayed.

7-17

3. Without MERGE, CHAIN does not preserve
variable types or user-defined functions for use
by the called program. That is, any DEFINT,
DEFSNG, DEFDBL, DEFSTR, or DEFFN
statement containing shared variables must be
restated in the called program.

When using MERGE, place user-defined func
tions before any CHAIN MERGE statements
in the program. Otherwise, the user-defined
functions will be undefined after the merge is
complete.

4. The CHAIN statement performs a RESTORE
before running the called program. The next
READ statement accesses the first item in the

first DATA statement found in the program.
The result is that the read operation does not
continue where it left off in the current

program.

7-18

CHDIR Statement

Syntax:

Purpose:

Comments:

Examples:

CHDIR path

Changes the current directory. For use in BASIC
2.0 and later only.

Path is a valid string expression naming the new
directory to be changed to the current directory.
The string must not exceed 63 characters.

ROOT

TAX

INVEST INSURE

HOUSE CAR

IRA

7-19

These examples are taken from the directory illus
trated on the previous page.

Change to the root directory (from any sub-direc
tory) .

CHDIR "\"

Change to the directory IRA from the root direc
tory.

CHDIR "INVEST\TAX\IRA"

Change to the directory CAR from the directory
INSURE.

CHDIR "CAR"

Change from the directory TAX to the directory
INVEST.

CHDIR

Make INVEST the current directory on the cur
rent drive. Make LOANS the current directory on
drive B.

CHDIR "INVEST"
CHDIR "BiLOANS"

LOANS must exist on drive B. While you remain
in this structure, Jilespec on drive A refers to the
files in the directory INVEST, jilespec on device B
refers to the files in the directory LOANS.

7-20

CHR$ Function

Syntax: i;^=CHR$(w)

Purpose: Converts an ASCII code to its equivalent char
acter.

Comments: w is a number from 0 through 255.

CHR$ is commonly used to send a special charac
ter to the screen or printer. For instance, you can
send CHR$(7) to sound a beep through the speak
er as a preface to an error message (instead of
using the BEEP statement), or you can send a
form feed, CHR$(12), to the printer.

The ASC function performs the inverse of the
CHR$ function by converting a character to its
ASCII code.

See Appendix C for a list of ASCII values.

Examples: PRINT CHR$(84)
T

Ok

This example prints the character for the ASCII
code 84, which is the upper-case letter T.

7-21

CINT Function

Syntax: y=CINT(;c)

Purpose: Converts any numeric expression to an integer.

Comments: x must be within the range of —32768 to 32767. If
it is not, an "Overflow" error occurs.

X is converted to a whole number (integer) by
rounding the fractional portion.

See the CSNG and CDBL functions for converting
numbers to single-precision and double-precision.
See also the FIX and INT functions, both of
which return integers.

Examples: PRINT CINT(13.67)
14

Ok

PRINT CINT(-13.67)
-14

Ok

Observe how rounding occurs in these examples.

7-22

CIRCLE Statement

(BASICA only)
Syntax: CIRCLE {x,y),r[,color[,start,end[,aspectW]

Purpose: Draws an ellipse on the screen. Graphics mode
only.

Comments: (x,y) determine the coordinates of the center of the
ellipse. The {x,j>) coordinates may be given in
either absolute or relative form. Refer to "Specify
ing Graphic Goordinates" on page 6-27.

r is the radius of the major axis, in points, of the
ellipse.

color is a number (in the range 0-3) that designates
the color of the ellipse. In medium resolution
mode, the color is selected from the current palette
as defined by the COLOR statement. 0 is the
background color and 3 is the foreground color.
The foreground color is selected if you do not
specify this option. In high resolution, the color
option may be selected as 0 (black) or 1 (white).
White is selected if you do not specify this option.

start, end are angles in radians and may range from
—2*PI to 2*PI (PI=3.141593). start and end desig
nate where the drawing of the ellipse will begin
and finish.

7-23

PI/2

0 or 2»PI

PI*3/2

If you use a negative start or end angle (—0 is not allowed), the
ellipse will be connected to the center point with a line, and the
angles will be treated as if they were positive. (This is not the
same as adding 2*PI.) The start angle may be greater or less than
the finish angle.

aspect is a numeric expression that affects the ratio of the x-radius
to the y-radius. aspect is automatically set to 5/6 in medium
resolution and 5/12 in high resolution. These values produce a
visual circle given the standard screen aspect ratio of 4/3. The
radius is measured in points in the horizontal direction; therefore,
if aspect is:

less than one, r is the x-radius

greater than one, r is the y-radius

Examples: 100 SCREEN 1; REM specifies a medium resolution
110 REM graphics mode
120 CIRCLE (160,100),80„„7/18
130 REM This example draws an ellipse. Run the
140 REM example to see the shape.

7-24

100 Pl=3.141593
110 SCREEN 1
120 CIRCLE (160,100),80,-PI,-PI/4
130 REM This example draws part of a circle.
140 REM Run the example to see the shape.

100 SCREEN 1
110 CIRCLE (240,150),30
120 REM Draws a circle in the lower right-hand
130 REM corner of the screen.

Notes: 1. CIRCLE statement is available in graphics
mode. Specify SCREEN 1 (medium resolution)
or SCREEN 2 (high resolution).

2. The center of the circle is the last point refer
enced after a circle is drawn.

3. CIRCLE will not draw points that are outside
the boundaries of the screen.

7-25

CLEAR Command

Syntax: CLEAR [,[«][,?«]]

Purpose: Sets all numeric variables to zero and all string
variables to null, and closes all open files. Options
for the CLEAR command set the end of memory
and the amount of stack space for use by BASIC.

Comments: w is a size (byte) of the BASIC workspace where
your program and data are stored, along with the
interpreter workarea.

m establishes stack space for BASIC. Stack space
is initially 512 bytes.

CLEAR frees all memory used for data without
erasing the program in memory at that time. After
a CLEAR command:

arrays are undefined

numeric variables are set to zero

string variables are set to null

information set with any DEE statement is lost.
(This includes DEF FN, DEFINT, DEFDBL,
DEFSNG, and DEFSTR.)

any sound that is running is turned off and reset to
Music Foreground

STRIG is reset to OFF

7-26

Examples: CLEAR

This example clears all data from memory but
does not erase the program.

CLEAR ,16384

In this example, data is cleared and maximum
workspace size is set to 16K bytes.

CLEAR ,,2500

This example clears the data and sets the size of
the stack to 2500 bytes.

CLEAR ,16384,2500

This last example clears the data, sets the max
imum workspace for BASIC to 16K bytes, and sets
the stack size to 2500 bytes.

Notes: The following notes provide some instances in
which you might want to use the CLEAR com
mand and some of its options:

1. You will need to use the CLEAR command if

you wish to use the same array to store two
different sets of information at two different

points in your program. After the first use,
execute the CLEAR command. Now you are
prepared for the second use of the array.

2. You will probably want to use the n option if
you need to reserve space in storage for
machine language programs.

7-27

3. You may want to use the m option if you use a
lot of nested GOSUB statements or
FOR...NEXT loops in your program, or if you
use PAINT to do complex scenes.

7-28

CLOSE Statement

Syntax: CLOSE [[#yilenuml[#yiUnum\,.,]

Purpose: Ends I/O to a device or file.

Comments: filenum is the number under which the file was
opened in the OPEN statement.

The association between a particular file or device
and its file number ends when the CLOSE state

ment is executed. The file or device may be
reopened using the same or a different file number.
The file number specified in the CLOSE statement
may be reused to open any device or file.

If you execute a CLOSE on a file or device opened
for sequential output, the final buffer will be writ
ten to the file or device.

If you don't specify file numbers, all opened de
vices and files will be closed.

If you execute an END, NEW, RESET, SYSTEM,
or RUN (without the R option), all open files and
devices will be automatically closed. The STOP
statement does not close files or devices.

Examples: 100 CLOSE

This example closes all open files and devices.

100 CLOSE #3,5,#7

7-29

This example closes the files and devices associ
ated with the file numbers 3, 5, and 7. Notice that
the # symbol is optional; use it or not as you
prefer.

7-30

CLS Statement

Syntax: CLS

Purpose: Clears the entire screen or the screen buffer, de
pending on the current mode.

Comments: If the screen is in text mode, the active page is
cleared to the current background color.

If the screen is in graphics mode, medium or high
resolution, the whole screen buffer is cleared to the
current background color.

The CLS statement returns the cursor to the home

position for that mode. In text mode, the cursor is
located in the upper left-hand corner of the screen.
In graphics mode, the "last referenced point" is
located at the point in the center of the screen. For
medium resolution this is (160,100). For high re
solution this is (320,100).

You may also clear the screen by using the
SCREEN or WIDTH statements, or by pressing
the Ctrl-Home keys.

Examples: 100 CLS

This example clears the entire screen or screen
buffer, depending on the current mode.

7-31

COLOR Statement (In Text Mode)

Syntax: COLOR [foreground] [^background] [f order]]

Purpose: Sets the colors for the foreground, background,
and border areas of the screen in the text mode.

Comments: foreground is a numeric expression from 0 through
31, designating the character color.

background is a numeric expression from 0 through
7, designating the background color.

border is a numeric expression from 0 through 15,
designating the border color.

The following colors are available for foreground:

0 Black

1 Blue

2 Green
3 Cyan
4 Red

5 Magenta
6 Brown

7 White

8 Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow

15 High-intensity White

7-32

Notes:

You will notice variation in the colors and their
intensity, depending on your display device.

If you set foreground to 16 plus the number of the
color you want (values 16 through 31), the charac
ters will blink. For example, if you set foreground to
29 you will get blinking light magenta.

Only colors 0 through 7 are available for back
ground.

1. You may create invisible characters, making
the foreground color equal to the background
color. By changing' either the foreground or
background color, subsequent characters will
be visible.

2. If you omit any parameter, the old value is used
for that parameter.

Examples: 100 COLOR 13,2,1

This example produces a light magenta fore
ground, a green background, and a blue border
screen.

7-33

COLOR Statement (In Graphics Mode)

Syntax: COLOR [background] [,[palette]]

Purpose: Sets the background and palette colors in the
graphic mode, medium resolution only.

Comments: background is a numeric expression that specifies the
background color. The colors you can use for
background are 0 through 31 (see the COLOR
statement for text mode).

palette is a numeric expression that specifies your
choice of palette colors.

You can select the following palette colors:

Color Palette 0 Palette 1

1 Green Cyan
2 Red Magenta
3 Brown White

In palette 0, the colors associated with numbers 1,
2, and 3 are .Green, Red, and Brown, respectively.

In palette 1, the colors associated with numbers 1,
2, and 3 are Cyan, Magenta, and White respec
tively.

You may select a background color that is the
same as a palette color.

The background and palette parameters may be omit
ted from the COLOR statement. In this case, the
old values are used for the omitted parameters.

7-34

In graphics mode, the COLOR statement desig
nates the background color and one palette (three
colors). The PSET, PRESET, LINE, CIRCLE,
PAINT, and DRAW statements may then select
any of these four colors for display.

The COLOR statement has meaning in medium
resolution only. If you use it in high resolution you
will get an "Illegal function call" error.

Values used outside the range of 0 to 255 result in
an "Illegal function call" error, but previous
values are retained.

Examples: 100 SCREEN 1
110 COLOR 8,1

Sets the background color to gray, and selects
palette 1.

120 COLOR ,0

The background color stays gray, and palette
changes to 0.

7-35

COM(n) Statement

(BASICA only)
Syntax:

Purpose:

Comments:

COM(n) ON
COM(w) OFF
COM{n) STOP

Controls (enables and disables) the trapping of
communications activity to the internal serial in
terface or optional serial interface (RS232C, Asyn-
cronous or Communication) adapter.

n is the number (must be 1 or 2) of the serial
interface. 1 is the internal serial interface and 2 is

an optional serial interface.

The COM(n) statement has three forms.

The COM(w) ON statement enables communica
tions event trapping by an ON COM statement
(see "ON COM Statement," page 7-145). While
trapping is enabled, and if a non-zero line number
is specified in the ON COM statement, BASIC
checks between every statement to see if activity
has occurred on the communications channel. If it

has, the ON COM statement is executed.

COM(n) OFF disables communications event
trapping. If an event takes place, it is not remem
bered.

COM(n) STOP disables communications event
trapping, but if an event occurs, it is remembered
and ON COM will be executed as soon as trap
ping is enabled.

7-36

COMMON Statement

Syntax: COMMON variable\,variable]...

Purpose: Passes variables to a program chained to your
current program.

Comments: variable is the name of a variable that is to be

passed to the called program. Array variables are
distinguished from non-array variables by append
ing "0" to the variable name.

The COMMON statement is used in concern with

the CHAIN statement. Although COMMON
statements may be anywhere in a program, it is
recommended they be at the beginning. An unli
mited number of COMMON statements may
appear in a program, however, the same variable
cannot appear in more than one COMMON state
ment. If you want to pass all variables, use the
CHAIN statement with the ALL option and omit
the COMMON statement.

Arrays that are passed do not need to be dimen
sioned in the current program.

Examples: 100 COMMON V,W,X.Y(),Z$
110 CHAIN "ACCT1"

This example chains to program ACCTl and pas
ses the array Y along with the variables V,W,X,
and Z$.

7-37

CONT Command

Syntax: CONT

Purpose: Continues program execution after a break.

Comments: The CONT command is used to continue program
execution after the <Ctrl> <Break> keys are
pressed, a STOP or END statement is executed, or
an error occurs. Execution resumes at the point
where the break occured. In the case of breaks that

occur after a prompt from an INPUT statement,
execution resumes with the re^inting of the
prompt.

The CONT command, when used in conjunction
with the STOP statement, is an effective debug
ging tool. After stopping execution, you can ex
amine or change the values of variables using
direct mode statements. Then use CONT to re

sume execution, or use a direct mode GOTO,
which allows you to continue execution at a par
ticular line number.

CONT is invalid if the program has been modified
during the break.

Examples: In this example, a loop is created.

100FORA=100to120
110 PRINT A;
120 NEXT A

RUN
100 101 102 103 104 105 106 107 108 109 110

7-38

(at this point we stop the loop by pressing the
<Ctrl> <Break> keys.)

Break In 120
Ok
CONT
111 112 113 114 115 116 117 118 119 120
Ok

7-39

COS Function

Syntax: i:;=COS(x)

Purpose: Returns the cosine of the range of x. The COS(x)
function is the trigonometric cosine function.

Comments: x is the angle whose cosine is to be calculated. The
value of X is in radians. You can convert degrees to
radians by multiplying the degrees by PI/180,
where PI=3.141593.

The calculation of COS/;*:) is executed in single
precision.

Examples: 100 PRINT COS(O)
110 Pl=3.141593
120 PRINT COS(PI)
RUN
1

-1

Ok

This example demonstrates that the cosine of 0
radians is equal to 1. Then it calculates the cosine
of PI radians.

7-40

CSNG Function

Syntax: y=CSNG(A;)

Purpose: Converts to a single-precision number.

Comments: a: is a numeric expression.

See the CINT function for converting numbers to
integer data types.

See the CDBL function for converting numbers to
double-precision data types.

Examples: 100 K#=123.45678989#
110 PRINT K#: CSNG(K#)
RUN
123.45678989 123.4568
Ok

The value of the double-precision number K# is
rounded at the seventh digit.

7-41

CSRLIN Variable

Syntax: i;=CSRLIN

Purpose: Returns the vertical coordinate of the cursor posi
tion.

Comments: The CSRLIN variable returns the current line
(row) position of the cursor on the active page
with the returned value being in the range of 1 to
25.

The POS function provides the column location of
the cursor.

The LOCATE statement allows you to set the
cursor line.

Examples: 100 Y=CSRLIN
110 REM Records the current line
120X=POS(0)
130 REM Records the current column
140 LOCATE 12,1
150 REM Moves the cursor to line 12, column 1
160 PRINT "WELCOME"
170 LOCATE Y,X
180 REM Restores the cursor to its old position

This example stores the cursor coordinates in the
variables X and Y, then moves the cursor to line
12, column 1 to display the "WELCOME" mes
sage. Then the cursor is restored to its original
position.

7-42

CVI, CVS, CVD Functions

Syntax: v=CW\{2-byte string)

v=CWS{4-byte string)

v=CWYi{8-byte string)

Purpose: Converts string values to numeric values.

Comments: Numeric values that are read from a random-
access disk file must be converted from strings into
numbers. The CVI function converts a two-byte
string to an integer. The CVS function converts a
four-byte string to a single-precision number. The
CVD function converts an eight-byte string to a
double-precision number.

The CVI, CVS, CVD functions only change the
way BASIC interprets bytes. These functions do
not change the bytes of the data itself.

The MKI$, MKS$ and MKD$ functions are the
complement functions to CVI, CVS, and CVD.

Examples: 100 FIELD #1,4 AS A$, 20 AS B$
110 GET #1
120 N=CVS(A$)

This example reads a field from file #1 as defined
in line 100. Line 110 reads a record from the file.
Line 120 employs the CVS function to interpret
the first four bytes (A$) of the record as a single-
precision number.

7-43

DATA Statement

Syntax: DATA constant^,constant]...

Purpose: Stores (for later access by the program's READ
statements) numeric and string constants.

Comments: constant may be a numeric or string constant;
however, no expressions are allowed. The numeric
constants may be in any of the following formats:

integer

fixed point

floating point

hex

octal

String constants in the DATA statements need to
be surrounded by quotation marks only if they
contain:

commas

colons

significant leading or trailing blanks

7-44

DATA statements are not executed and may be
included anywhere in the program. They may
contain as many constants as a line will hold. Any
number of DATA statements can be used in a

program. The contents of the DATA statements
may be thought of as one continuous list of items,
no matter how many items are on a line or where
the lines are included in the program. The DATA
statements are accessed in line number order by
the READ statements.

The variable type (whether it is a numeric or
string constant) is specified in the READ state
ment. The READ statement must agree with the
corresponding constant in the DATA statement,
otherwise a "Syntax error" occurs.

You may use the RESTORE statement to reread
any line in the list of DATA statements.

Examples: Refer to the READ statement for examples of the
DATA statement.

7-45

DAT£$ Statement and Variable

Syntax: When used as a statement:

DATES=a:1

When used as a variable:

DATES

Purpose: Sets or retrieves the current date.

Comments: When used as a statement (DATE$=x$):

x$ is a string expression you may use to set the
current date. Enter x$ in one of the following
forms:

mm-dd-yy
mmJdd/yy
mm-dd-yyyy
mm/dd/yyyy

You must enter a year in the range 1980 to 2099.
If you enter a one digit month or day, a O(zero) is
assumed in front of it. If you enter a one digit year,
a zero is appended to make it two digits. If you
enter a two digit year, 00-77, the year is assumed
to be 20^, if you enter 80-99, the year is assumed
to be \9yy.

When used as a variable (v$=DATES$):

v$ is a 10-character string of the form mm-dd-yyyy.
mm is two digits for the month, dd is two digits for
the day of the month, ̂xvdiyyyy is four digits for the
year. The current date may have been set by DOS
prior to entering BASIC.

7- 46

Examples: 100 DATE$="7/30/84"
110 PRINT DATES
RUN
07-30-1984
Ok

This example sets the date to July 30th, 1984.
Notice a zero was included in front of the month to
make it two digits, and the year became 1984. Also
notice, that the slashes were replaced by hyphens.

7-47

DEF FN Statement

Syntax: DEF Y^name[^{arg [...)] ~ expression

Purpose: Defines and names a function written by you.

Comments: name is a legal variable name. This name becomes
the name of the function when preceded by FN.

arg is an argument for a variable name in the
function definition that will be replaced with a
value when the function is called. The arguments
in the list represent, in a one-to-one relationship,
the values that are to be given in the function call.

expression is an expression for the operation of the
function you want to perform. The type of the
expression (whether it is numeric or string) must
equal the type declared by name.

The definition of the function is limited to one line.

Arguments [arg) that are in the function definition
serve only to define the function; they do not affect
program variables with the same name. A variable
name is the expression does not have to be in the list
of arguments. If it is, the value of the argument is
supplied when the function is called. In all other
cases, the current value of the variable is used.

The function type determines whether the function
is returned as a numeric or string value. The
function type is declared by name, in the same way
as variables are declared. If the type of expression
(whether it is string or numeric) does not match
the function type, you will get a "Type mismatch"
error. If the function is numeric, the value of the
expression will be converted to the precision spe
cified by name before it is returned to the calling
statement.

7-48

You must define a function with the DEF FN

statement before you may call that function. If a
function is called before it has been defined, you
will get an "Undefined user function" error.
However, a function may be defined more than
once, in which case, the most recently executed
definition is used.

Note: You may have a recursive function (one
which calls itself). However, you must provide
a way to stop the recursion, or you will get an
"Out of memory" error.

DEF FN is illegal in direct mode.

Examples: 100 Pl=3.141593
110 DEF FNA(x)=x/180*PI
120 INPUT "Enter degree", DEGREE
130 PRINT FNA(DEGREE)

Line 110 defines the function FNA. This function

converts degree into radian. Line 130 calls the
function.

7-49

DEF SEG Statement

Syntax: DEF SEG [^= address]

Purpose: Defines the current segment of storage to be refer
enced by subsequent BLOAD, BSAVE, CALL,
PEEK, POKE, or USR. The BLOAD, BSAVE,
CALL, PEEK, POKE, or USR definition gener
ates the physical address using the segment spe
cified by DEE SEG and an offset specified by the
statement or command above.

Comments: address is a numeric expression within the range 0
to 65535.

The beginning setting for the segment when
BASIC is started is BASIC'S Data Segment (DS).
BASIC'S DS is the starting point for the user
workspace in memory. When you execute a DEF
SEG statement that changes the segment, the
value does not get reset to BASIC'S DS when
executing a RUN command.

DEF SEG without the address option sets the seg
ment to BASIC'S DS.

If the address option is included, it should be a
value figured on a 16 byte boundary. The value is
shifted 4 bits to the left (multiplied by 16) to create
the segment address for the subsequent operation.
Therefore, if the address option is stated in hexade
cimal, a 0 (zero) is added to arrive at the actual
segment address. BASIC does not perform any
checking to validate the segment value.

7-50

You must separate with DEF and SEG a space or
BASIC will interpret such a statement as
DEFSEG=300 to mean: "assign the value 300 to
the variable DEFSEG."

Examples: 100 REM restores segment to BASIC DS
110 DEF SEG

100 REM sets segment to color screen buffer
110 DEG SEG=&HB800

In the second example, the screen buffer is at
absolute address B8000 hex. Because segments are
specified on 16 byte boundaries, the final hex digit
is dropped on the DEF SEG specification.

7-51

DEFtype Statements

Syntax: letter[^-letter] [,letter [-letter]]...

Purpose: Declares variable types as one of the following:

integer
single-precision
double-precision
string

Comments: type must be INT, SNG, DBL, or STR.

letter is an alphabetic character (A-Z).

A DEFtype statement declares that the variable
names starting with the letter or letters specified in
DEFtype will be the specified type of variable.
However, a type declaration character (%, !, # or
$) takes precedence over a DEFtype statement in
determining the variable type.

If no type declaration statements are found,
BASIC interprets all variables without declaration
characters as single-precision variables.

Type declaration statements should appear at the
beginning of the program. That way, the DEFtype
statements will always be executed before you use
any variables they declare.

Examples:
100DEFDBL E-l
110DEFSTR J
120DEFINT Z,K-0

7-52

Line 100 declares that variables starting with the
letters E, F, G, H, or I will be double-precision
variables.

Line 110 declares that variables starting with the
letter J will be string variables.

Line 120 declares that variables starting with the
letters Z, K, L, M, N, or O will be integer
variables.

7-53

DEF USR Statement

Syntax: DEF USR[w]=(^^/

Purpose: Specifies the beginning address of a machine lan
guage subroutine that will be called later with
USR function.

Comments: n may be a number from 0 to 9. It declares the
number of the USR routine whose address is being
specified. If n is omitted, BASIC will assume DEF
USRO.

offset is an integer expression within the range 0 to
65535. The value of offset is added to the value of
the current segment to obtain the physical starting
address of a machine language subroutine.

You may redefine the address for a USR routine.
Any number of DEF USR statements may appear
in a program. This allows you to access as many
subroutines as necessary. The most recently ex
ecuted value will be used for the offset.

Examples: 100 CLEAR, &HDOOO
110 DEF USR3=&HD000
120 X=USR3 (Y+2)

In this example, the USR3 routine which is loaded
at offset DOOO hex in BASIC'S data segment is
called.

7-54

DELETE Command

Syntax: DELETE [linel] [-line2]

DELETE \linel-]

Purpose: Deletes program lines or line ranges.

Comments: linel is the line number of the initial line to be

deleted.

Iine2 is the line number of the final line to be

deleted.

The DELETE command removes the specified
line(s) from the program. Note that DELETE
linel- is offered only by BASIC 2.0 and later.
BASIC returns to command level after a DELETE
is executed.

You may use a period (.) in place of the line
number to indicate the current line. If you specify
a line number that does not exist in the program,
you will get an 'Tllegal function call" error.

Examples: This example deletes line 110:

DELETE 110

This example deletes lines 110 through 200, inclu
sive:

DELETE 110-200

The following example deletes all lines up to and
including line 110:

DELETE -110

The last example deletes all lines from 110 through
the end of the program, inclusive:

DELETE 110-

7-55

DIM Statement

Syntax: DIM variable (subscripts) [,variable (subscripts)]...

Purpose: Specifies the maximum values for array variable
subscripts and allocates storage accordingly.

Comments: variable is the name that will be used for the array.

subscripts are numeric expressions separated by
commas, which specify the dimensions of the
array.

The DIM statement initializes the elements of

specified numeric arrays to zero. String array ele
ments are variable length, and initially null, i.e.,
zero length.

If you use an array variable name without a DIM
statement, the maximum value of its subscript is
assumed to be 10. If you use a subscript greater
than the specified maximum, a "Subscript out of
range" error occurs.

The minimum value for a subscript is always 0,
unless you specify otherwise with the OPTION
BASE statement. You may use a maximum of 255
dimensions for an array with a maximum number
of elements per dimension of 32767. Both these
numerical limits are also limited by the size of
memory and by the length of statements.

If you use DIM with same variable more than once,
you will get a "Duplicate Definition" error. You
may redimension an array by using an ERASE
statement before the second DIM.

7-56

Examples: 10 DIM A(15)
20FORN0TO15
30A(I)=2+I*3
40 NEXT I

7-57

DRAW Statement

Syntax:

Purpose:

Comments:

DRAW string
(BASICA only)

Draws a figure specified by string. Graphics mode
only.

The DRAW statement is used to draw with a

Graphics Macro Language^ (GMV''*). The graphics
commands are contained in the string expression,
which defines an object to be drawn by BASIC.
BASIC examines string and interprets the single-
letter commands it contains. These commands are

as follows:

NOTE: Graphics Macro Language^^^ is a
trademark of Microsoft Corporation.

Movement Commands begin movement from the
last point referenced (which is the last point drawn
by a command).

Command Direction of Movement

u n Up

D n Down

L n Left

R n Right

E n Diagonally up and right

7-58

F n Diagonally down and right

G n Diagonally down and left

H n Diagonally up and left

In each of the above commands, n indicates the
distance to move. The number of points moved is n
times the scaling factor (see the S command
below).

M X, y Move absolute or relative. If x is
preceded by a plus (-h) or minus
(—) sign, it is relative. Otherwise, x
is absolute.

The screen's aspect ratio determines the spacing of
horizontal, vertical, and diagonal points. The stan
dard aspect ratio of 4/3 indicates that the screen's
horizontal axis is 4/3 as long as the vertical. This
information can be used to determine how many
vertical points are equal in length to a given
number of horizontal points.

For example, medium resolution utilizes 320 hori
zontal points and 200 vertical points. With the
standard aspect ratio of 4/3, in medium resolution
12 horizontal points are equal to 10 vertical points.
Thus, to produce a square in medium resolution,
the following command would be used:

DRAW "U60 R72 D60 L72"

Similarly, again with the standard aspect ratio of
4/3, in high resolution 24 horizontal points would
be equal to the length of 10 vertical points.

7-59

The following Commands may precede any of the
Movement Commands.

B Move, but do not plot points.

N Move, but then return to the pre
vious position.

The following graphics commands may be used as
well:

A n Set angle w, where w is a number
from zero to three, with zero equal
to zero degrees, 1 equal to 90 de
grees, 2 equal to 180 degrees, and 3
equal to 270 degrees. A figure that
is rotated 90 or 270 degrees will be
scaled so that it appears to be the
same size as one rotated zero or 180

degrees, with a standard aspect
ratio of 4/3.

TA n Turn angle w, where n is a number
from —360 to -1-360. When n is a

positive number, the angle turns
counterclockwise. When n is nega
tive, the angle turns in a clockwise
direction. If you enter a value for n
that is not within the acceptable
range, —360 to -1-360, the System
will display an error message: Illeg
al function call. This command is

supported by BASIC 2.0 and later.

7-60

C n Set color n, n may range from zero
to three in medium resolution, or,
in high resolution, be either zero or
one. In medium resolution, n is
used to select a color from current

palette defined by the COLOR
statement. 0 corresponds to back
ground color, with the default the
foreground color, number 3. In
high resolution, n equal to zero in
dicates black, and the default (one)
specifies white.

S n Set scale factor, n can be any num
ber from one to 255. The scale

factor is equal to n divided by four.
The actual distance moved is de

rived by multiplying the scale fac
tor by the distances given with the
U, D, L, R, E, F, G, H, and rela
tive M commands. The default

scale factor is one (n=4).

X variable; Execute substring. This lets you ex
ecute a second string from within
the DRAW statement string.

7-61

P paint, boundary
Set foreground color to paint and
border color to boundary. Both paint
and boundary must be specified, or
the System will display an error
message. The value oi paint can be
0, 1,2, or 3. In medium resolution,
the color specified by paint is the
color from the current palette, de
fined by the COLOR statement. In
high resolution, however, 0 spe
cifies black and 1 specifies white.
Boundary sets the value of the bor
der color. It must be in the range 0
to 3. This command can be used

only in BASIC 2.0 and later. It is
not applicable to tile painting.

In all graphics commands, the n, x, ory argument
may either be a constant such as 123, or it can be
= variable; where variable is a numeric variable
name. The semicolon (;) is required when a vari
able is used this way, or in the X command.
Otherwise, a semicolon is optional as a command
delimiter. Spaces are not significant in string.

Variables can also be specified in the form
VARPTR$(z;anaZ>/^J, instead of ̂variable;. (This is
the only acceptable form in complied programs.)

7-62

For example:

One Method:

DRAW "XC$;"

DRAW "P=PICTURE;"

Another Way:

DRAW "X"+VARPTR$(C$)

DRAW "P="+VARPTR$(PICTURE)

The X command can be very useful, because it lets
you define a portion of a figure separately from the
rest. For example, a branch as part of a tree. X
can also be used to draw a string of commands
that is longer than 255 characters.

Full Line Clipping is now performed. In BASIC
1.0, when a line was drawn outside of the Screen it
was not properly truncated when it reached the
screen's edge. Instead, it was folded back into the
screen in a bizarre fashion. With Line Clipping,
points plotted outside of the Screen or VIEW port
limits do not appear, and lines that intersect the
screen or VIEW port limits will appear, cross the
screen (or VIEW port) and then disappear cor
rectly at the other end.

Examples: To draw a square box:

100 SCREEN 1
110U$="U30;":D$="D30;":L$='140;":R$="R40;"
120 BOX$=U$+R$+D$+L$
130 DRAW "XBDXS;"

DRAW "XU$; XR$; XD$; XL$;" would have
drawn the same box.

7-63

To draw a triangle:

100 SCREEN 1
200 DRAW "E20 F20 L40"

To draw some spokes:

100 SCREEN 1 :CLS
110 FOR 0=0 TO 360 STEP 5 'Draw some spokes
120 DRAW "TA=0;NU50"
130 NEXTO

To draw a painted box:

100 SCREEN 1: CLS
110 DRAW "U50R50050L50"
120 ORAW'BEIO"
130 DRAW "PI, 3"

7-64

EDIT Command

Syntax: EDIT line

Purpose: Displays a program line to be edited.

Comments: line is the line number of a program line. If the
program does not contain such a line, you will get
an ''Undefined line number" error message. A
period (.) can be used to indicate the current line.

The EDIT statement is used to display a specified
line with the cursor positioned under the first digit
of the line number. The line may then be modified
as desired.

The LIST command may also be used to display
program lines for editing.

7-65

END Statement

Syntax: END

Purpose: Terminates execution of the program, closes all
files, and returns BASIC to command level.

Comments: An END statement may appear anywhere in the
program, though its use is optional. END differs
from STOP in two ways:

STOP causes a Break message to be printed.
All files are closed with END.

Examples: 800 IF l>1000 THEN END ELSE 1=1+1

This statement ends the program if I is greater
than 1000; otherwise, the program increases I.

7-66

ENVIRON Statement

Syntax: ENVIRON x$

Purpose: Modifies parameters in BASIC'S environment
string table.

Comments: x$ is a valid string expression containing the new
environment string parameter.

x$ has the format parm-id—text, where parm-id is the
name of the parameter, parm-id is separated from
text by an equal sign. Everything to the left of the
first equal sign is read as the name of the para
meter. The first character after the equal sign
begins the text,

text is the new parameter text. If text is a null
string, or consists only of a single semi-colon, the
parameter is removed and the environment string
table is compressed.

If parm-id does not exist, x$ is added at the end of
the environment string table.

7-67

If parm-id exists, it is deleted, the environment
string table is compressed, and the new x$ is added
at the end of the table.

ENVIRON may be used to change the "PATH"
parameter for a child process or to pass para
meters to a child by naming a new environmental
parameter.

Examples: If PATH is set to "PATH=A:\INVEST" using
the DOS command "PATH", ENVIRON state
ment can change the PATH.

ENVIRON "PATH=A:\TAX"

The environmental string table now contains
PATH=A:\TAX.

The parameter may be appended by using the
ENVIRONS function in conjunction with the EN
VIRON statement.

ENVIRON "PATH="+ENVIRON$("PATH")+";B:\YOURS"

The environment string table now contains

PATH=A:\TAX;B\YOURS

7-68

ENVIRONS Function

Syntax: !:;^=ENVIRON$ (parm-id)
ENVIRONS (k)

Purpose: Reads specified environment string from BASIC's
environment string table.

Comments: parm-id is a valid string expression containing the
parameter to search for.

n is an integer expression returning a value from 1
to 255.

When a string argument is used, ENVIRONS
returns a string which contains the text following
parm-id from the environment string table if perm-id
is not found, or is followed by no text a null string
is returned. If a numeric argument is used,
ENVIRONS returns a string 'parm-id =text"
which is the n-th string in the environment string
table. A null string is also returned if K-th string
doesn't exist.

Examples: Using the example from the ENVIRON state
ment, our environmental string table contains the
following PATH=A:\TAX; B:\YOURS.

PRINT ENVIRONS ("PATH")

prints the string A:\TAX; B:\YOURS

When DOS starts up, the string "COM-
SPEC = parameter" is always placed in the en
vironment table. So the PATH is the second
string.

PRINT ENVIRONS (2)

prints the string as PATH=A:\TAX; B:\YOURS

7-69

EOF Function

Syntax: z;=EOF {filenum)

Purpose: Designates an end of file condition.

Comments: The EOF function can be used to avoid an "Input
past end" error. EOF returns -1 (true) if the end of
the specified file has been reached. The function
returns zero if the end of the file has not yet been
reached.

For BASIC release 2.0 and later, EOF(O) returns
the end of file condition when you use standard
input devices with redirection of I/O.

EOF is significant only when applied to a file that
has been opened for sequential input from disk, or
for a communications file. (—1 for a communica
tions file means that the buffer is empty.)

Example: 100 OPEN "FILE" FOR INPUT AS #1
200 IFE0F(1)THEN END
300 INPUT #1, D
400 PRINT D:GOTO 200

This example reads information from the sequen
tial file named "FILE". Values are read into D

until the end of "FILE" is reached.

7-70

ERASE Statement

Syntax: ERASE arrayname[,arrayname]...

Purpose: Deletes arrays from a program.

Comments: arrayname is the name of the array to be erased.

After arrays are erased, the memory space allo
cated for them Inay be used for other purposes.

ERASE can also be used for redimension of arrays.
Redimension of an array that has not first been
erased causes "Duplicate Definition" error.

ERASE is only applied to array variables; CLEAR
is used to erase all variables from the work area.

Examples: 100 BEGIN=FRE(0)
200 DIM ARRAY(100,100)
300 LATER=FRE(0)
400 ERASE ARRAY
500 DIM ARRAY(10,10)
600 LAST=FRE(0)
700 PRINT BEGIN. LATER, LAST
RUN

49569 8740 49050
Ok

Here the ERE function to show how ERASE can

be used to free memory. The array ARRAY used
about 40K-bytes of memory (49560-8740) when
dimensioned as ARRAY(100,100). After it was
erased, it could be redimensioned to
ARRAY (10,10), and it only required a little more
than 500 bytes (49569-49050).

The actual values returned by the ERE function
may vary on your computer.

7-71

ERDEV and ERDEV$ Variables

Syntax: z;=ERDEV

v$=ERDEV$

Purpose: Contains the error code and the name of the device
causing the error.

Comments: The value of the variable ERDEV is the error code

for the latest error. The error code is held in the

lower 8 bits, the upper 8 bits contain the word
attributes from the device header block.

When the error is on a character device, ERDEV$
contains the device name. If the error is not on a

character device, ERDEV$ contains the block de
vice name (A:, B: etc).

Example: While a printer is out of paper, the LLIST com
mand causes a "Device Timeout" error.

ERDEV contains:

2 (device header word attributes)

ERDEV$ contains:

LPTl:

7-72

ERR and ERL Variables

Syntax: = ERR

f = ERL

Purpose: Contains the error code and line number.

Comments: The value of the variable ERR is the error code for
the latest error; the variable ERL contains the line
number where the error was detected.

These variables are usually used in IF...THEN
statements to determine program flow. If you test
ERL in this way, be certain to place the line
number to the right of the relational operator:

IF U{\.=linenumber THEN...

The line number must be on the right side of the
IF operator. RENUM command interprets it as a
line number only when it is on the right side.

If a direct mode statement caused the error, ERL
will contain 65535. To avoid renumbering it, use
the form:

IF 65535 = ERL THEN ...

ERR and ERL can be set with the ERROR state
ment.

BASIC error codes are listed in "Appendix A:
Error Messages."

7-73

Examples: 100 ON ERROR GOTO 400
200 LPRINT "Will the printer print?"
300 END
400 IF ERR=24 THEN LOCATE 23,1:

PRINT "Check out printer": RESUME
500 PRINT "ERR=";ERR,"ERL=":ERL:END

This example tests whether the printer has been
loaded with paper, and if it has been powered on.

7-74

ERROR Statement

Syntax: ERROR n

Purpose: Simulates a BASIC error condition, or lets you
define your own error codes.

Comments: n is an integer expression from zero through 255.

If the value of n equals that of a BASIC error code,
the ERROR statement simulates that error's

occurrence. If an error handling routine has been
defined with the ON ERROR statement, that
routine is called. Otherwise, the BASIC error mes
sage corresponding to the code is displayed, and
execution stops.

To define an error code, number it with a value
different from any used by BASIC. (BASIC errors
are coded with numbers 1 to 76, consecutive.)

If you define your own error in this way, and don't
handle it in a corresponding error handling
routine, BASIC will display the message "Un
printable error," and halts execution.

Examples: The first example simulates a
error.

100T = 15

200 ERROR T
RUN
String too long in 200

'String too long"

7-75

EXP Function

Syntax: v =EXP(x)

Purpose: Computes the exponential function.

Comments: x can be any numeric expression.

EXP returns the number e (base of natural loga
rithms) raised to the x power. An overflow will
occur if X is more than 88.02969.

Examples: 100 X = 0
200 PRINT EXP(X+1)
RUN
2.718282

Ok

This example calculates e.

1- 76

FIELD Statement

Syntax: FIELD \#yilenuTn, width AS stringvar width AS
stringvar]...

Purpose: Defines variables that will be used to access a
random file bufTer.

Comments: Jilenum is the number associated with the file when
it was OPENed.

width is a numeric expression that specifies the
number of character positions to be allocated for
stringvar.

stringvar is a string variable name that will be used
to access the random file field.

A FIELD statement defines variables that will be

referenced by GET and PUT statements.

For example,

FIELD 1, 20 AS NAMES. 10 AS NUMS, 40 AS ADDRS

allocates the first 20 positions (bytes) in the buffer
of File #1 to the string variable NAMES, the next
10 bytes to NUMS, and the next 40 positions to
ADDRS.

FIELD does not actually place data in the buffer,
nor is it used to manipulate data within the buffer.
Placement and manipulation of data is done with
the LSET, RSET, GET, and PUT statements.

The total number of bytes allocated with a FIELD
statement must be less than the record length
specified when the file was OPENed, or, a "Field
overflow" error occurs.

7-77

Any number of FIELD statements may be ex
ecuted for the same file, and all FIELD statements
that have been executed will remain in effect at the

same time.

Note: Do not use a fielded variable name in

an INPUT or LET statement. Once a variable

name is fielded, it points to the correct place
in the random file buffer. If a subsequent
INPUT or LET statement with that variable

name is executed, the variable's pointer is
moved to string space.

Examples: 100 OPEN "CUSTOMER" AS #1
200 FIELD 1, 2 AS NUM$, 20 AS NAMES, 40 AS ADDRESSS
300 LSET NAME$="ATKINS INC"
400 LSETADDRESS$="2001 MARKET ST, SAN FRANCISCO"
500 LSET NUM$=MKI$(1)
600 PUT 1,1
700 GET 1,1
800 CUSNUM%= CVI(NUM$): CUSNAMS = NAMES
900 PRINT CUSNUM%, CUSNAMS, ADDRESSS

This example opens a file named "CUSTOMER"
as a random file. The variable NUM$ is assigned
the first 2 positions in each record, NAMES is
assigned the next 20 positions, and ADDRESSS is
allocated the next 40 positions. Lines 300 through
500 place information in the buffer, and the PUT
statement in line 600 writes the buffer contents to

the file. Line 700 reads the record just written, and
line 900 displays the three fields. Note in line 800
that no problem arises when variable name de
fined in a FIELD statement appears on the right
side of an assignment statement.

7-78

FILES Command

Syntax: FILES [filespec]

Purpose: Displays the names of files stored on the disk. This
command is similar to the DIR command in DOS.

Comments: filespec is a string expression that identifies a file
specification. When filespec is omitted, all files on
the current directory will be listed.

All matching filenames will be displayed. The
filename may include question marks; these will
match with any single character in the filename or
extension. An asterisk (*) will match one or more
characters starting at that position.

When a drive is designated as part of filespec^ files
matching the specified filename on the current
directory of that drive will be listed. If no drive is
specified, the default drive is used.

Examples: FILES

The names of all files on the default drive will be

listed.

FILES "^DAT"

The names of all files with an extension of .DAT

on the default drive will be listed.

FILES "B:*.*"

The names of all files on drive B will be listed.

FILES "NAME??.DAT"

This lists each file on the default drive with a

filename starting with NAME followed by up to
two other characters, and an extension of .DAT.

7-79

An enhancement in BASIC 2.0 and later now

makes it possible to list all the files in the current
directory of drive B by entering:

FILES "B:"

BASIC not only lists all files in response to this
command but also the directory name and the
remaining number of free bytes.

When you build stratified directories in BASIC
2.0 and later, you will find that each sub
directory contains two additional entries. These
are listed when the FILES command is used to list

a sub-directory. The first entry consists of a single
period followed by <DIR>, and designates this
file as a sub-directory. The second entry consists of
two periods followed by <DIR>. This entry
serves to find the higher level, or parent, directory
in which this sub-directory is contained. For ex
ample:

FILES "B:\INVEST\BONDS"

• <DIR> • • <DIR>

31446 Bytes free

The above command causes BASIC to list the files

in the files in the current sub-directory, BONDS
on drive B. Since BONDS contains no files, 31446
bytes of space are available.

FILES "INSUREV"

This command lists all files in the sub-directory
INSURE, which in this example is a sub-directory
of the current directory. If INSURE contains its
own sub-directories, these will be labeled <DIR>
in the file list.

7-80

FIX Function

Syntax: v = FIX(x)

Purpose: Truncates a given x to an integer.

Comments: x can be any numeric expression.

FIX deletes all digits to the right of the decimal
point and returns the value of the digits to the left
of it.

The difference between FIX and INT is that INT
returns the next lower number when x is negative.

Examples: PRINT FIX(21.75)
21

Ok
PRINT FIX(-5.7)
-5

Ok

7-81

FOR and NEXT Statements

Syntax: FOR variable=x TO j[STEP z]

NEXT [variable] [,variable]...

Purpose: Executes a series of instructions a given number of
times.

Comments: variable is an integer or single-precision variable
that is used as a counter.

X is a numeric expression that is the initial value of
the counter.

jV is a numeric expression that is the final value of
the counter.

is a numeric expression that will be used as a
counting increment.

The program lines after the FOR statement are
executed until the NEXT statement is encoun

tered. Then the counter is incremented by the
STEP value (-^). If is not specified, the increment
is assumed to be 1 (one). A check is performed to
determine whether the value of the counter is now

greater than the final value y. If not, BASIC
branches back to the statement following FOR and
the process is repeated. If the counter has ex
ceeded y, execution continues with the statement
that follows NEXT. This process is called a
FOR...NEXT loop.

If is negative, the incrementing process is re
versed. The counter is decremented each time the

loop is performed, and execution continues until
the counter is less than the final value.

7-82

The body of the loop will be skipped if x is already
greater than j when the STEP value is positive, or
if X is less than j when ̂ is negative. If z is zero, an
infinite loop will be created unless you provide
some way to increment the counter.

If you use integer variable as a counter, perform
ance of a program will be improved.

Nested Loops

FOR...NEXT loops may be nested; that is, one
loop may be placed inside another. When loops
are nested, each loop counter must have a unique
variable name. The NEXT statement for an inside
loop must appear before that for an outside loop.
If nested loops have the same end point, a single
NEXT statement may be used for all of them. A
NEXT statement of this form:

NEXT varl, var2, var3 ...

is the same as this sequence of statements:

NEXT varl

NEXT var2

NEXT var3

The variable(j) may be omitted from the NEXT
statement, in which case the statement will be
matched with the most recent FOR. And, in fact,
omitting the variable name(s) will cause your
program to execute somewhat more quickly. But if
you are using nested loops, you should include the
variable(s) on all the NEXT statements.

If a NEXT statement is placed before its corres
ponding FOR statement, you will get a "NEXT
without FOR" error message.

7-83

Examples: The first example shows a FOR...NEXT loop
with a counter increment of 2.

100 J=8: K=50
200 FOR 1=1 TO J STEP 2
300 PRINT 1;
400 K=K+5
500 PRINT K
600 NEXT
RUN
1 55

3 60
5 65
7 70

Ok

In the next example, the loop is executed ten
times. This is because the final value for the

counter variable is always set before the initial
value is set.

100 M=5
200 FOR M=1 TO M+5
300 PRINT M;
400 NEXT
RUN
1 23456789 10
Ok

7-84

FRE Function

Syntax: z;=FRE(ar^)
v=¥RE{argS)

Purpose: Returns the number of bytes in memory that are
not currently in use. This number does not include
the reserved portion of the interpreter workarea
(approximately 4K bytes).

Comments: arg and arg$ are dummy arguments.

Strings in BASIC are manipulated dynamically
because their lengths are variable. Thus, string
space may become fragmented.

FRE with any string argument causes a "garbage
collection" before returning the number of free
bytes. Garbage collection is when BASIC collects
all its useful data and frees unused memory areas
once used for strings. The data is compressed so
that you can continue until you actually run out of
space.

BASIC automatically performs a garbage collec
tion when it is running out of usable workarea.
You can enter FRE(" ") periodically to achieve
shorter delays for each garbage collection.

CLEAR sets the maximum size of the BASIC

workspace. FRE returns the amount of free storage
in this workspace. If the workspace is empty, then
the value returned by FRE will be approximately
4K bytes (the size of the interpreter workarea)
smaller than the number of bytes set by CLEAR.

Examples: PRINT FRE(O)
14542

Ok

The value returned by FRE on your computer
may be different from that shown in this example.

7-85

GET Statement (Files)

Syntax: GET [H=yilenum number]

Purpose: Reads a random file record into a random buffer.

Comments: filenum is the number associated with the file when
it was OPENed.

number is the number of the desired record, and
may range from 1 to 32767. If number is omitted,
BASIC reads the next record (after the last GET).

Once a GET statement has been executed, charac
ters may be read from the buffer via the INPUT #
and LINE INPUT # statements, or by references
to variables defined in the FIELD statement.

GET can also read data from communication files,
in which case number specifies the number of
bytes to read from the buffer. This number may
not exceed the value set by the LEN option on the
OPEN"COM... statement.

Examples: The following example opens the file "NAMES"
for random access, with fields defined in line 200.
The GET statement on line 300 reads a record

into the file buffer on line 400, information from
the record is displayed.

100 OPEN "NAMES" AS #1
200 FIELD #1,20 AS FNAMES, 20 AS LNAME$,2 AS AGES
300 GET #1
400 PRINT FNAMES, LNAMES, CVI(AGES)

7-86

GET Statement (Graphics)

Syntax: GET {xl^l) — {x2ji2),arrayname
(BASICA only)

Purpose: Reads points from a specified screen area and
stores them in array form.

Comments: {xl^l) and {x2^2) represent coordinates in either
absolute or relative form of two points that are
positioned at opposite corners of a rectangle on the
screen.

arrayname is the name of the numeric array that
will hold the information.

GET reads the colors of the points within the
rectangle specified by {xlyl) and {x2y2) and
places them into the specified array. The graphics
PUT statement can then be used to reference the
array and redisplay the image.

The array is used to "file" the image; though it
must be numeric, it may be any precision. The
screen information is placed in the array as fol
lows:

the first four bytes contain, respectively, the x
and y dimensions in bits.

The succeeding bytes contain the color of
each point within the specified area of the
screen.

The required size of the total array, in bytes, is
computed as follows:

4-f INT((x*bpp-l-7)/8) *y

7-87

where x and y are the lengths of the rectangle's
horizontal and vertical sides, and "bpp" is short
for "bits per pixel", and equal to 2 in medium
resolution, and 1 in high resolution.

Integer array elements are two bytes long, single-
precision elements use four bytes each, and each
double-precision element is eight bytes long.

The data for each row of points is aligned on an
internal byte boundary, so if less than a multiple of
eight bits is stored, the remainder is filled with
zeros.

It is possible to examine the x and y dimensions
and even the data itself if an integer array is used.
The X dimension is in the first element of the
array, and the y dimension is in second element.

7-88

GOSUB and RETURN Statements

Syntax: GOSUB line

RETURN

Purpose: Executes a subroutine and returns to the branch
point.

Comments: line is the line number of the subroutine's first line.

A subroutine may be called any number of times
during a program. A subroutine may also be called
from within another subroutine; such subroutine
nesting is limited only by available memory.

The RETURN statement in a subroutine causes

BASIC to branch back to the statement following
the latest GOSUB statement. More than one RE

TURN statement may be included in a single
subroutine, if you want to return from different
points in the routine.

To prevent inadvertent entry into the subroutine,
precede it with a STOP, END, or GOTO state
ment that directs program control around the sub
routine.

To branch to different subroutines depending on
the result of an expression, use ON...GOSUB.

7-89

Examples: 100 GOSUB 400
200 PRINT "SUBROUTINE COMPLETE "
300 END
400 PRINT "EXECUTING
500 PRINT "SUBROUTINE"
600 RETURN
RUN
EXECUTING SUBROUTINE
SUBROUTINE COMPLETE
Ok

The GOSUB statement on line 100 calls the sub

routine beginning on line 400. The program bran
ches to line 400 and begins executing statements
400, 500 and 600. Since RETURN is found on line
600, the program goes back to the statement, line
200, after the subroutine call. The END statement
on line 300 prevents the subroutine from being
performed again.

7-90

GOTO Statement

Syntax: GOTO line

Purpose: Branches unconditionally out of the current pro
gram sequence to a specified line number.

Comments: line is a valid line number within the program.

If line is the line number of an executable state

ment, that statement and those following will be
executed. If line is a non-executable statement

(such as REM or DATA), execution proceeds at
the first executable statement encountered after

line.

In direct mode you can use GOTO to re-enter a
program at a desired point. It can be helpful when
debugging a program.

To branch to different points depending on the
result of an expression, use ON...GOTO.

Examples: 50 DATA 2,10,15
100 READ RAD

200 PRINT "RAD =";RAD,
300 AR = 3.14*RADa2
400 PRINT "AREA =";AR
500 GOTO 50
RUN

RAD= 2 AREA= 12.56
RAD=10 AREA = 314
RAD=15 AREA = 706.5

Out of DATA in 100
Ok

GOTO on line 500 could cause an infinite loop,
which is stopped when the program runs out of
data in the DATA statement, since the DATA
statement has only 3 data.

7-91

HEX$ Function

Syntax: y^=HEX$(n)

Purpose: Converts a decimal argument to a hexadecimal
value represented by a string.

Comments: n is a numeric expression ranging from —32768 to
65535 and rounded to an integer before HEX$ is
evaluated.

The two's complement form of a negative n is
used. That is, HEX$(—w) is identical to HEXS
(65536-n).

Refer to the OCT$ function for octal conversion.

Examples: In the following example the HEX$ function com
putes the hexadecimal euivalent of the two decimal
values entered.

10 INPUT D
20 H$ = HEXS (D)
30 PRINT D "DECIMAL IS EQUAL TO " H$ " HEXADECIMAL-
RUN
? 32
32 DECIMAL IS EQUAL TO 20 HEXADECIMAL

Qk
RUN

?1023
1023 DECIMAL IS EQUAL TO 3FF HEXADECIMAL

Ok

7-92

IF Statement

Syntax: IF expression [,]THEN clause [ELSE clause^

IF expression [,]GOTO line [[,] ELSE clause]

Purpose: Used to make a decision regarding program flow
depending on the result of an expression.

Comments: expression can be any numeric expression.

clause may be either a single statement or a sequ
ence separated by colons, or it may simply be a
line number to which the program might branch.

line is the line number of an existing program line.

If the result of expression is true (not zero), BASIC
executes the THEN or GOTO clause. The THEN

clause may include either a line number for bran
ching or one or more executable statement.
GOTO must always be followed by a line number.

If the expression is false (zero), the THEN or
GOTO clause is ignored and the ELSE clause, if
included, is executed. Execution then continues
with the next executable statement following the
IF statement.

Testing Equality: when testing equality of a value
resulting from a single- or double-precision com
putation, remember that the internal representa
tion of the value may not be exact, because single-
and double-precision values are stored in floating
point binary format. Therefore, you should test
instead against the range over which the accuracy
may vary. For example, test a computed variable
X against the value 1.0 this way:

7-93

IF ABS (X-1.0)<1.0E-6 THEN ...

A true result will be returned when the value of X

is 1.0 with a relative error of under l.OE —6.

Nested IF Statements: IF...THEN...ELSE state

ments may be nested. Nesting of IF... THEN...
ELSE statements is limited only by the line length.
For instance,

IF A>B THEN PRINT "MORE" ELSE IF B>A
THEN PRINT "LESS" ELSE PRINT "THE SAME"

is a valid statement. A statement need not contain

a corresponding number of ELSE and THEN
clauses; each ELSE is matched with the closest
unmatched THEN, as shown by the following
example:

IF X=Y THEN IF Y=Z THEN PRINT "X=Z"
ELSE PRINT "XoZ"

"XOZ" will not be printed if X<> Y, that is, if
(X=Y) is false.

Examples: The following statement GET record J ifj is not
zero:

20 IF J THEN GET #1,J

In the following example, if J is greater than 10
and less than 20, NUM is calculated and the
program branches to line 30. If J is not in this
range, the message "BEYOND RANGE" is
printed. Note that two statements comprise the
THEN clause.

7-94

10 IF (J>10) AND (J<20) THENNUM=1984-1: GOTO 30 ELSE PRINT
"BEYOND RANGE"

The next example statement causes printed output
to go to either the screen or the printer, depending
on the value of a variable named FLAG. If FLAG

is false (zero), output goes to the printer; other
wise, output will be printed on the screen:

200 IF FLAG THEN PRINT N$ ELSE LPRINT N$

7-95

INKEY$ Variable

Syntax: z;$=INKEY$

Purpose: Reads a character entered from the keyboard.

Comments: INKEY$ reads one character, even if the keyboard
buffer contains several. The returned value will be

in the form of either a zero-, one-, or two-character
string as shown below.

A null string (zero length) indicates that no
character is waiting at the keyboard to be
read.

A one-character string contains the character
read from the keyboard buffer.

A two-character string contains a special ex
tended code, the first character of which will
be hex zero.

The value of INKEY$ must be assigned to a string
variable before the character can be utilized with

any BASIC statement or function.

While INKEY$ is being used, no characters will
be displayed on the screen; all characters are
passed through to the program except:

Ctrl-Break, which halts the program
Ctrl-Num Lock, which makes the system
pause

Alt-Ctrl-Del, which performs a System Reset
PrtSc, which prints the screen content

Pressing <ENTER> key in response to INKEY$
passes the carriage return character to the pro
gram.

7-96

Examples: In the following examples, if you press <Y> key,
the execution is continued. <N> key ends this
program.

100 PRINT "Continue? (Y/N)"
110A$=INKEY$
120 IFA$="Y"THEN GOTO 150
130 IFA$="N"THEN END
140 GOTO 110
150 .. .

7-97

INP Function

Syntax: v=lNF{n)

Purpose: Returns a byte read from input port n.

Comments: n must be within the range of zero to 65535.

INP performs a complementary function to the
OUT statement, the same function as the assem
bly language IN instruction.

Examples: 100 X=INP(316)

This line reads a byte from port 316 and assigns it
to the variable X.

7-98

INPUT Statement

Syntax: INPUT[;]["/>roOT/>/";] variable[,variable]...

Purpose: Receives data from the keyboard during program
execution and assigns each item to a specified
variable.

Comments: ''prompt is a string constant used to prompt for
the input.

variable is the numeric, string variable or array
element names to which the entered data will be
assigned.

When an INPUT statement occurs, the program
displays a question mark on the screen to indicate
the program is waiting for data. If a ''prompt'' is
included, the string precedes the displayed ques
tion mark. The required data is then entered at the
keyboard.

A comma rather than a semicolon may be used
after the prompt string to suppress the question
mark. For example, the statement

INPUT "ENTER TODAY'S DATE", D$

prints the prompt without the question mark.

Each entered data item's type must agree with
that specified by the variable name. (Strings en
tered in response to an INPUT statement need
only be surrounded by quotation marks if they
contain commas or significant leading or trailing
blanks.)

7-99

Entering too many or too few items, or an incor
rect type of value (numeric instead of string, etc.)
causes the message "?Redo from start".

If a semicolon is placed immediately after the
word INPUT, then pressing Enter to input data
will not cause a carriage return/line feed sequence
on the screen. This means that the cursor remains

in the same position as when you pressed Enter.

Examples: 100 INPUT A
200 PRINT A "SQUARED IS" A^2
300 END
RUN
?

The question mark indicates that the computer
wants you to enter something. Suppose you enter a
3. The following will be displayed:

?3

3 SQUARED IS 9
Qk

100 Pl=3.14

200 INPUT "ENTER THE RADIUS":RAD
300 AREA=PI*RADa2
400 PRINT "THE CIRCLE'S AREA IS":AREA
500 END
RUN
ENTER THE RADIUS?

For this example, the prompt included in line 200
causes the computer to prompt with "ENTER
THE RADIUS?" Suppose you enter 6. Execution
continues:

ENTER THE RADIUS? 6
THE CIRCLE'S AREA IS 113.04
Qk

7-100

INPUT # Statement

Syntax: INPUT #jilenum, variable [^variable^...

Purpose: Reads data items from a device or file and assigns
each to a program variable.

Comments: jilenum is the number assigned when the file was
OPENed.

variable is a variable name that will be assigned to
the items in the file. It can be a string or numeric
variable, or an array element.

The file may be a sequential or random disk file, a
sequential data stream from a serial interface, or
the keyboard (KYBD:). The type of data in the file
must be the same as that specified by the variable
name.

The data items in the file should appear as they
would if the data were being entered in response to
an INPUT statement. With numeric values, lead
ing spaces, carriage returns, and linefeeds are
ignored. The first character encountered that is
not a space, carriage return, or line feed is
assumed to be the beginning of the number. The
number is considered to end if a space, carriage
return, line feed, or comma is encountered.

7-101

BASIC scans the data for a string item in the same
way. The first character encountered that is not a
space, carriage return, or line feed is assumed to
be the start of the string item. If this first character
is a double quote ("), the string item will consist of
all characters read between the first double quote
and the next. Thus, a string enclosed in quotes
may not contain a double quote as a character. If
the first character of the string is not a double
quote, it will end when a comma, carriage return,
or line feed is encountered, or after 255 characters
have been read. If the end of the file is reached

while a numeric or string item is being INPUT,
the item is cancelled.

7-102

INPUTS Function

Syntax: v$= INPUTS {nl[#yiUnum\)

Purpose: Returns a string of n characters, read from the
keyboard or from a specified file.

Comments: n is the number of characters to be read.

filenum is the number assigned when the file was
OPENed. No filenum means reading from the
keyboard.

When the keyboard is used for input, no charac
ters are displayed on the screen. All characters
(including control characters) are passed except
Ctrl-Break, which is used to interrupt the
INPUTS function. When responding to INPUTS
from the keyboard, you need not press Enter.

The INPUTS function lets you enter characters
from the keyboard that are significant to the
BASIC program editor, such as Backspace (ASCII
code 8). INPUTS or INKEYS {not INPUT or
LINE

INPUT) should be used to read in these special
characters. Similarly, with communications files,
the INPUTS function is preferred over the INPUT
and LINE INPUT # statements, since any
ASCII character may be significant in com
munications.

Examples: This example program lists the contents of a se
quential file in hexadecimal.

7-103

100 OPEN "I'M,"DATA"
200 IF EOF (1)THEN 500
300 PRINT HEX$ (ASG(INPUT$(1,#1)));
400 GOTO 200
500 PRINT
600 END

The next example will read a single character from the keyboard
entered in response to a displayed question.

10 PRINT "TYPE G TO GO OR S TO STOP"
20 C0DE$=INPUT$(1)
30IFCODE$="G"THEN 50
40 IF CODE$="S" THEN 70 ELSE 10

7-104

INSTR Function

Syntax: v =INSTR([w,]xJ^j>'J^)

Purpose: Searches for the first occurrence of string v$ in
string x$ and returns the position at which it was
found. The optional offset n specifies the position
in x$ where the search should begin.

Comments: w is a numeric expression that may range from 1 to
255.

x$ and y$ can be string variables, expressions, or
constants.

INSTR returns zero if:

n is greater than the length of x$, or
x$ is a null (zero length) string, or
y$ cannot be located

INSTR returns n (or 1 if w is not given) if y$ is
null.

If n is out of range, BASIC will display an "Illegal
function call" message.

Examples: The following example searches for "B" in the
string "ABCDEB". First the string is searched
from the beginning and "B" is found at position 2;
then the search starts at position 4, and "B" is first
located at position 6.

10X$="ABCDEB"
20 Y$="B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN
2 6
Ok

7- 105

INT Function

Syntax: »=INT(a;)

Purpose: Returns the largest integer that is less than or
equal to x.

Comments: x is any numeric expression.

See the FIX and CINT functions, which also
return integer values.

Examples: PRINT INT (99.89)
99

Ok
PRINT INT (-12.11)
-13
Ok

7-106

KEY Statement

Syntax: KEY n, x$

KEY ON

KEY OFF

KEY LIST

Purpose: Assigns automatic functions to keyboard function
keys, and references and manipulates the settings.

Comments: n is the number of a keyboard function key, an
integer in the range from 1 to 10. For BASIC 2.0, n
can be in the range from 1 to 10 and 15 to 20.

The KEY n, x$ statement allows function keys to
be designated for special soft key" functions, in
case n is in the range from 1 to 10.

The soft keys are initially assigned as follows:

F1 LIST F2 RUN ̂

F3 LOAD" F4 SAVE"

F5 CONT ̂ F6 ,"LPT1:" ̂
F7 TRON ̂ F8 TROFF ̂

F9 KEY FIO SCREEN 0,0,0

The means the <ENTER> key.

KEY ON displays the soft key assignments on
screen line 25. If the screen width is 40, five of the
ten keys will be displayed. If the width is 80, all
ten will be displayed. In either case, only the first
six characters of each value are displayed. KEY
ON is the default for the soft key display.

7-107

KEY OFF erases the soft key assignment display
from line 25, making that line available for prog
ram use. However it does not deactivate the func

tion keys.

Once the soft key display is turned off, use LO
CATE 25, 1 followed by PRINT to display any
thing on the last screen line. Unlike lines 1-24, line
25 is not scrolled.

KEY LIST causes all ten soft key values to be
listed on the screen in their entirety.

Assigning a null (zero length) string to a soft key
disables the function assigned to that key. This can
be done as follows:

150 KEY 10,

When a soft key is pressed, the INKEY$ function
returns one character of the assigned string for
each call. If the soft key is disabled, INKEYS will
return a two-character string. The first character
will be zero, and the second ASCII key scan code.

7-108

Advanced BASIC 2.0 provides for six more key
traps. These enable you to trap Ctrl, Shift, and
super-shift keys. The syntax for defining these keys
is:

KEY n, CHR$ (^)-hCHR$(0

IN the above statement, n is an integer from 15 to
20, and s is 3, number corresponding to the hex
values of keys to be shifted. Latched key hex
values are:

<CAPS LOCK> &H40

Caps Lock is active

<NUM LOCK> &H20

Num Lock is active

<ALT> &H08

Alt key is depressed

<Ctrl> &H04

Ctrl key is depressed

<Shift> &H01, &H02, &H03
One or both Shift keys are depressed with the
same result.

Hex values for key shift states can be added
together. Thus, the Ctrl and Alt keys could be
added together.

t is an integer designating one of the 83 physical
keys on the keyboard. See APPENDIX C for a
table of the integers associated with each key.

7-109

BASIC processes trapped keys in the following
order:

1. The line printer key, <Ctrl> <PrtSc>, is pro
cessed first. Note that even when <Ctrl>
<PrtSc> is defined as a key trap, it can still be
used to get a printed copy of screen display.

2. User-defined keys 15 to 20 are processed.

3. Finally, function keys and cursor direction keys
are processed. Defining any of these keys
as trappable will have no effect as they are
considered pre-defined.

NOTE: Trapped keys are not passed on the
keyboard buffer. They are not read by
BASIC.

Exercise caution when trapping Ctrl-Break
and Ctrl-Alt-Del. Unless you have included a
test in your trap routine, the Sr. Partner will
have to be powered off to stop the program.

Examples: 100 KEY 16, CHR$(&H40)-I-CHR$(34)
110 0NKEY(16)GOSUB1000
120 KEY (16) ON

The above example sets a key trap for capital C.
Note that key trapping uses all KEY statements,
including KEY, KEY(n), and ON KEY.

200 KEY 18, CHR$(&H04-l-&H08)-l-CHR$(37)

This sets a key trap for <Ctrl> <Alt> K. Note
that values for <Ctrl> and <Alt> were summed.

7-110

K£Y(ii) Statement

(BASICA only)
Syntax: KEY(n) ON

KEY(n) OFF

KEY(n) STOP

Purpose: Enables and disables trapping of a specified key in
a BASIC program.

Comments: n represents a numeric expression whose value
ranges from one to 20, and specifies the key to be
trapped:

1-10 function keys F1 to FIO
11 Cursor Up
12 Cursor Left

13 Cursor Right
14 Cursor Down

15-20 keys defined by the syntax:
KEYn,CHR$(^)+CHR$(0
(keys 15-20 are trappable only in
BASIC 2.0 and later)

KEY(w) ON enables trapping of function key or
cursor control key activity. After KEY(w) ON
statement, if a non-zero line number was included
in the ON KEY(n) statement then whenever
BASIC starts a new statement it checks to see if
the specified key was pressed. If so, it will perform
a GOSUB to the specified line number.

KEY{n) OFF disables trapping; if the key is press
ed, the event is not noted.

After KEY(n) STOP, no trapping takes place, but
if the specified key is pressed, the action is remem
bered, and an ON KEY statement will be ex
ecuted as soon as trapping is enabled.

7-111

KILL Command

Syntax: KILL Jilespec

Purpose: Erases a disk file.

Comments: Jilespec is a valid file specification as defined in
Chapter 5. For BASIC 2.0 and later, the specifica
tion can include a pathname.

If the file extension exists, the filename must in
clude it. For instance, you can save a BASIC
program with the command

SAVE "ACCT"

and BASIC will supply the extension .BAS. If you
later want to delete that program, however, you
must use KILL "ACCT.BAS", rather than KILL
"ACCT".

If a KILL command is entered for a currently-
open file, a "File already open" error messge will
be displayed.

NOTE: KILL is used only to erase files. You
must use the RMDIR command to delete

directories.

Examples: To delete a file named "DATA", you could use:

500 KILL "DATA"

To erase a file named "IRA" in the TAX sub

directory, you might enter:

KILL "INVEST\TAX\IRA"

7-112

LEFTS Function

Syntax: r;^= LEFTS {x$,n)

Purpose: Returns a string comprising the leftmost n charac
ters of x$.

Comments: x$ may be any string expression.

n is a numeric expression in the range of zero to
255 which specifies the number of characters to be
returned.

If n is greater than the length of the target string
x$, the entire string is returned. If n is zero, a null
string (zero length) is returned.

Also see the MID$ and RIGHTS functions.

Examples: In the example below, the LEFTS function is used
to extract the first three characters from the string
"ACCOUNTING PROGRAM".

100 A$= "ACCOUNTING PROGRAM"
200 B$=LEFT$(A$,3)
300 PRINT B$
RUN

ACC
Ok

7-113

LEN Function

Syntax: v=hEN{x$)

Purpose: Returns the number of characters in x$.

Comments: x$ may be any string expression.

Unprintable characters and blanks are included in
the total number of characters.

Examples: 100 x$= "SAN FRANCISCO, CA"
200 PRINT LEN (x$)
RUN
17

Ok

There are 17 characters in the string "SAN
FRANCISCO, CA", which includes a comma and
two blanks.

7-114

LET Statement

Syntax: [LET] variable—expression

Purpose: Assigns the value of an expression to a variable.

Comments: variable is the name of a string or numeric variable
or array element that is to be assigned a value.

expression represents the value that will be assigned
to variable. The expression's type must match the
variable's type, or "Type mismatch" message will
be displayed.

The word LET is optional, that is, the equal sign
is sufficient for assigning an expression to a vari
able name.

Examples: 100LETNUM=10
200 LETE=NUM+5

300 LET PROG$="ACCOUNTING"

This example assigns the value 10 to the variable
NUM. It then assigns the value 15 (the value of
the expression NUM-l-5) to the variable E. The
string "ACCOUNTING" is assigned to the vari
able PROG$.

The same result could have been achieved as

follows:

100 NUM=10
200 E=NUM+5
300 PROG$="ACCOUNTING"

7-115

LINE Statement

Syntax: LINE [{xl^l)]-{x2^2) l[color] [,B[F]]] Istyle]]

Purpose: Draws a line or a box on the screen. Graphics
mode only.

Comments: {xl,yl) is the cordinate for the starting point of the
line.

{x2j2) is the ending point for the line.

color is a number that may range from zero to 3. In
medium resolution, the color is selected from the
current palette as defined by the COLOR state
ment. In high resolution, if color is specified as
zero, the background color (black) is used. If color
is omitted, the default is used: white, the fore
ground color, which is color number one.

B is included to specify the drawing of boxes on
the screen. B is used to draw a rectangle with
points {xlyl) and {x2y2) as opposing corners.
Four LINE would be needed to do the same thing,
to draw four lines connecting four different points.

BF has the same effect as B, but in addition, all
the interior points are also displayed in a selected
(or default) color.

style is a 16-bit integer mask used to put pixels on
the screen. Known as line styling, the mask is
supported only in BASIC 2.0 and later.

To store a pixel on the screen, LINE uses the
current circulating bit in style. If the bit is zero, no
point will be stored. If the bit is one, a point will
be plotted. After each point, the next bit position
in style is selected.

style is used for normal lines and boxes, but has no
effect on filled boxes. Using the style option with
BF will cause BASIC to display a Syntax error.

7-116

Because a zero bit skips over a point on the screen
without erasing it, you may wish to specify a
background line before the styled line. This techni
que forces a known background.

Use style to draw a dotted line by storing every
other point. The pattern for a dotted line will look
like this:

1010101010101010

The above equals AAAA in hexadecimal.

The last point referenced after a LINE statement
is executed is point (x2y2). If the relative form is
used for the second set coordinates, it is relative to
the first pair of coordinates. For instance, the
following statement could be used to draw a line
from point (150,100) to point (140,80).

LINE (150,100)-STEP (-10,-20)

Full Line Clipping is now performed. In BASIC
1.0, when a line was drawn outside of the Screen it
was not properly truncated when it reached the
screen's edge. Instead, it was folded back into the
screen in a bizarre fashion. With Line Clipping,
points plotted outside of the Screen or VIEW port
limits do not appear, and lines that intersect the
screen or VIEW port limits will appear, cross the
screen (or VIEW port) and then disappear cor
rectly at the other end.

Examples: The simplist form of LINE statement looks like
this:

LINE -(X2, Y2)

This would draw a line from the last point refer
enced to the point (X2,Y2) using the current
foreground color.

7-117

A starting point can also be included. The follow
ing line will draw a diagonal line down the screen
from the upper left corner:

LINE (0,0)-(319,199) ^

The following statement will draw a line across the
screen:

LINE (0,90)-(319,90)

The next statement shows how the color argument
is used to indicate the color of the line:

LINE (5,5)-(10,10),2

The current color #2 will be used to draw the line.
Random colors can also be requested:

100 SCREEN 1,0,0,0: CLS
200 LINE-(RND*319, RND*190), RND*4

The following example shows how an alternating
pattern of lines may be achieved:

100 SCREEN 1,0,0,0: CLS
200 FOR J=OTO 319
300 LINE (J,0)-(J,199),J AND 1
400 NEXT

The next example shows how the B argument can
be used to draw a box in the current foreground
color:

LINE (0,0H150,150),,B

Or the color may be specified; the following exam
ple shows how a colored box can be drawn:

LINE (0,0H150,150),2,BF

The last example shows how the style parameter
can be used to draw a dashed line upper left hand
corner of the screen to the center:

LINE (0,0H160,100),3,,&HFF00

7-118

LINE INPUT Statement

Syntax: LINE INPUT[;] {"prompt";] stringvar

Purpose: Reads a line (up to 255 characters) that is entered
from the keyboard and places it in a string vari
able, without the use of delimiters.

Comments: Variables are defined as follows:

"prompt" is a string constant that will be displayed
on the screen before the line is entered. A question
mark is only displayed if it is included in the
prompt string.

stringvar represents the name of a string variable or
array element to which the line will be assigned.
All input from the end of the prompt to the Enter
considered to be the line, with any trailing blanks
ignored.

If a semicolon is placed immediately after LINE
INPUT, then pressing the <ENTER> key to end
the line does not echo a carriage return/line feed
sequence on the screen.

LINE INPUT can be aborted by pressing
<Ctrl> <Break>. BASIC will return to com
mand level. To resume execution at the LINE
INPUT, enter CONT.

Examples: See the example in the following section, "LINE
INPUT# Statement."

7- 119

LINE INPUT# Statement

Syntax: LINE INPUT #jilenum, stringvar

Purpose: Reads a line (up to 255 characters), without de
limiters, from a sequential file and places it in a
string variable.

Comments: filenum is the number associated with the file when
it was OPENed.

stringvar represents a string variable or array ele
ment name that will be assigned to the line.

LINE INPUT # reads all characters in a sequen
tial file from one carriage return to the next. The
initial carriage return characters are returned as
part of the string.

LINE INPUT # is especially useful if file lines
have been broken into fields, or if a BASIC prog
ram saved in ASCII characters is being read as
data by another program.

LINE INPUT # can also be used for random files.

Examples: The example below uses LINE INPUT to get
information likely to contain commas or other
delimiters from the keyboard. The information is
then written to a sequential file, then read back
out of the file with LINE INPUT #.

7-120

100 OPEN "FILE" FOR OUTPUT AS #2
200 LINE INPUT "Acldress?":ADD$
300 PRINT #2, ADDS
400 CLOSE 2
500 OPEN "FILE" FOR INPUT AS #2
600 LINE INPUT #2, ADDS
700 PRINT ADDS
800 CLOSE 2
RUN

Address?

You might respond with with MENLO PARK, CA 94305. The
program continues:

Address? MENLO PARK, CA 94305

MENLO PARK, CA 94305
Ok

7-121

LIST Command

Syntax: LIST [linel^ [—[/m^2]] \^Jilespec\

Purpose: Lists the program in memory on the screen or
another specified device.

Comments: linel, line2 are line numbers ranging from zero to
65529. linel is the first line, and line2 is the final
listed line. The current line may be specified by
using a period for either linel or line2.

Jilespec is a string expression for the output file
specification. If jilespec is omitted, the lines are
displayed on the screen.

Pressing <Ctrl> <Break> will interrupt a LIST-
ing, either on the screen or the printer.

If the line range is omitted, the entire program will
be listed.

A dash (-) may be included in a line range for one
of three purposes:

linel means list from linel to the end of the
program.

Iine2 means list all lines from the beginning
of the program through line2,

linel-line2 means list all lines from linel through
line2^ inclusive.

7-122

Examples: LIST

The entire program will be listed on the screen.

LIST 100, "SCRN;"

Line 100 will be listed on the screen.

LIST 100-200, "LPT1:"

Lines 100 through 200 will be listed on the printer.

LIST 200-, "COM1:1200,N,8"

Lists all lines from 200 through the end of the
program to the first communications adapter at
1200 bps, no parity, 8 data bits, 1 stop bit.

LIST -500, "PR0G2"

Lists form the first line through line 500 to a disk
file named "PROG2"

7-123

LLIST Command

Syntax: LLIST [linel]{—[litu2'W

Purpose: Lists all or part of the program in memory on the
printer (LPTl:).

Comments: The line number range for LLIST is the same as
that for LIST.

After a LLIST is executed, BASIC returns to
command level.

Examples: LLIST

Prints the entire program.

LLIST 100

Prints line 100.

LLIST 100-200

Prints lines 100 through 200.

LLIST 300-

Prints all lines from 300 through the end of the
program.

LLIST -500

Prints the first line through line 500 of the
program.

7-124

LOAD Command

Syntax: LOAD filespec[,K\

Purpose: Transfers a program from a specified device into
memory, and optionally runs it.

Comments: jilespec is a string expression representing the file
specification. LOAD closes any open files and
deletes any variables and program lines that may
be in memory, then loads the specified program
into memory.

If the R option is included, BASIC then im
mediately executes the program. If R is omitted.
BASIC returns to direct mode after loading the
program. When R is included, all open data files
remain open. Thus, LOAD with the R option can
be used to chain a number of programs (or prog
ram segments). Information can be passed be
tween the programs via data files.

If the filename is eight characters or less, and if no
extension is included with the filename, BASIC
adds the extension .BAS to the filename.

Examples: LOAD "PROG"

Loads the program named PROG into memory.

LOAD "PROGS".R

Loads and runs the program named PROGS.

LOAD "B:REPOST.DAT"

Loads the file REPORT.DAT from Drive B. The

extension need only be specified if there is a con
flict with, say, a file named REPORT.BAS.

7-125

LOG Function

Syntax: v=LOG (Jilenum)

Purpose: Returns the current file position.

Comments: Jilenum is the number under which the file was
opened.

When LOG is applied to a random file, it returns
the record number of the last record read from or

written to the file.

When the argument is a sequential file, LOG
returns the number of records read or written since

the file was OPENed. (A record is 128 bytes long.)

When a sequential file is opened for input, BASIG
reads the first sector, so LOG will return 1 even
before any input is done.

For a communications file, LOG returns the num
ber of pending characters in the input buffer. The
default input buffer size is 256 characters, but this
can be changed with the /G: option of the BASIG
command. If the buffer contains more than 255

characters, LOG returns 255. Since a string may
not be longer than 255 characters, it is unneces
sary to test a string's size before reading data into
it. If less than 255 characters remain in the buffer,
then LOG returns the actual number.

Examples: The following stops the program when 10 records
have been read.

500 IF L0C(1)>10 THEN STOP

7-126

LOCATE Statement

Syntax: LOCATE [row][,[col] [,[cursor\[,[start] [,stop]]]]

Purpose: Positions the cursor on the screen. Optional argu
ments turn the blinking of the cursor on and off
and specify the size of the blinking cursor.

Comments: row is a numeric expression from one to 25 that
indicates the screen line number where the cursor
should be placed.

col is a numeric expression from 1 to 40 (or 80,
depending upon screen width) that specifies the
screen column number where you wish to place
the cursor.

cursor is a value that indicates whether the cursor
should be visible or not. Zero indicates invisible; 1
(one) means visible.

start is the cursor's starting scan line, and must be
a numeric expression from zero to 31.

stop is the cursor's ending scan line, and also must
be a numeric expression from zero to 31.

start and stop are used to make the cursor a spe
cified size by indicating the starting and ending
scan lines. Scan lines are numbered from zero at
the top of each character position. The bottom
scan line is 7. If start but not stop is given, stop is
assigned the value of start.

Following a LOCATE statement, I/O statements
to the screen begin placing characters at the spe
cified position.

7-127

While a program is running, the cursor is normally
off. LOCATE,, 1 can be used to turn it back on.

Normally, BASIC will not print on line 25. But
you can turn off the soft key display with KEY
OFF, and then use LOCATE25,l:PRINT...to
write on line 25.

Examples: 100 LOCATE 1,1

Moves the cursor to the "home" position in the
upper left corner of the screen.

200 LOCATE ,,1

Makes a blinking cursor visible; the position is not
unchanged.

300 LOCATE „,7

Position and visibility are unchanged. Sets the
cursor to display at the bottom of the character
(starting and ending on scan line 7).

400 LOCATE 2,1,1,0,7

The cursor is moved to line 2, column 1. The
cursor becomes visible, covering the entire charac
ter cell starting at scan line 0 and ending on scan
line 7.

7-128

LOF Function

Syntax: v=\Xy¥{filemm)

Purpose: Returns the number of bytes used by a given file
(its length).

Comments: Jilenum is the file number assigned to the file when
it was OPENed.

In BASIC 1.0, LOF will return a multiple of 128.
For example, if the actual data in the file is 257
bytes, the number 384 will be returned. For non-
BASIC files and for files created in BASIC 2.0,
LOF returns the actual length of the file.

For a communications file, LOF will return the
amount of the remaining space in the input buffer.
The default size of the input buffer is 256 bytes,
however this can be changed with the /C: option of
the BASIC command.

Examples: The following example displayes the length of the
file named RECORDS on the screen.

ICQ OPEN "RECORDS" AS #1
200 PRINT L0F(1)

7-129

LOG Function

Syntax: !:)=LOG(a;)

Purpose: Returns the natural logarithm of a given x.

Comments: x must be a positive numeric expression.
(The natural log is the log to the base e.)

Examples: The following example calculates the natural log of
the expression 100—5:

PRINT L0G(100-5)
4.553877
Ok

7-130

LPOS Function

Syntax: :;=LPOS(n)

Purpose: Returns the current position of the print head in
the output buffer.

Comments: n is a numeric expression that indicates which
printer is being tested.

0 or 1 LPTl

2 LPT2

3 LPT3

The returned value does not necessarily represent
the physical position of the print head on the printer.

Examples: If the line length is more than 65 characters a
carriage return character is sent to the printer.

500 IF LPOS(0)>65 THEN LPRINT CHR$(13)

7-131

LPRINT and LPRINT USING Statements

Syntax: LPRINT [list of expressions] [;]

LPRINT USING v$; list of expressions [;]

Purpose: Prints specified output on the printer.

Comments: The list of expressions specifies the numeric and/or
string expressions to be printed. These expressions
must be separated by commas or semicolons.

v$ is a string constant or variable that designates
the format to be used for printing. Output format
ting is explained in detail under "PRINT USING
Statements."

PRINT and PRINT USING output to the screen,
and LPRINT and LPRINT USING output to the
printer in the same way.

The line length may be changed with a WIDTH
"LPTl:" statement.

Printing and processing are asynchronous. If you
do a form feed (LPRINT CHR$(12);) followed by
another LPRINT and the printer takes more than
10 seconds to execute the form feed, you may get a
"Device Timeout" error message on the second
LPRINT. Doing the following will avoid this:

10 ON ERROR GOTO 2500

2500 IF ERR=24 THEN RESUME

7-132

Testing ERL will tell you whether the timeout was
caused by an LPRINT statement.

Examples: This example will print a heading and a list of
numbers. This first number will appear as three
digits preceded by a blank space; the
"AMOUNT" will be printed as a dollar amount
with a decimal point.

500 LPRINT "NUMBER AMOUNT"
550 LPRINT USING "### ###.##";NUM.AMT

7-133

LSET and RSET Statements

Syntax: LSET stringvar—x$

RSET stringvar=x$

Purpose: Positions data in a random file buffer (in prepara
tion for a PUT statement).

Comments: stringvar represents a variable name defined in a
FIELD statement.

x$ is a string expression designating the informa
tion to be placed into the stringvar field.

If x$ requires less length than specified for stringvar
in the FIELD statement, LSET left-justifies x$ in
the stringvar field, and RSET right-justifies the
string, with spaces being used to pad the extra
positions. If x$ is longer than stringvar, characters
are truncated from the right.

Numeric values must be converted to strings be
fore being LSET or RSET. Refer to the MKI$,
MKS$, and MKD$ Functions.

LSET or RSET may also be used to left- or
right-justify a string variable not defined in a
FIELD statement in a given field. For example,
the following lines right-justify the string Y$ in a
10-character field, which can be useful when for
matting printed output.

7- 134

200 X$=SPACE$(10)
250 RSET X$=Y$

Examples: This example converts the numeric value NUM
into a string, and left-justifies it in the field N$ in
preparation for a PUT statement:

100 LSET N$=MKS$(NUM)

7-135

MERGE Command

Syntax: MERGE Jilespec

Purpose: Merges the lines of an ASCII disk file into those of
the program in memory.

Comments: filespec is a string expression that specifies the disk
file.

The disk is searched for the specified file. If found,
the program lines of the disk file are merged with
the lines in memory. If any lines in the disk file
program have the same line number as those in
memory, the lines from the disk file will replace
the corresponding memory lines.

If the program being merged was not saved in
ASCII format (with the A option of the SAVE
command), a "Bad file mode" message will
appear.

Examples: This command inserts, by sequential line number,
all lines in the program NUMBERS into the prog
ram currently in memory.

MERGE "NUMBERS"

7-136

MID$ Function and Statement

Syntax of the function:

v$=)

of the statement:

MID$(z)^,n[,m]) =jS

Purpose: The MID$ function returns the specified portion
of a given string. The MID$ statement replaces
part of one string with another string.

Comments: In the function specification ^5= MID$(x5,«[,«]):
xS is string expression.

n is an integer expression from one to 255.

m is an integer expression from zero to 255.

The function returns a string m characters long,
starting with the nth character of xS. If m is
omitted, or there are less than m characters to the
right of the nth, all characters to the right of the
nth are returned. If m is zero, or if n is more than
the length of xl, then MID$ will return a null
string.

In the statement MID$(z)l,n[,OT])=7l.-

v$ represents a string variable or array element
that will have all or part of its characters replaced.

n is an integer expression from one to 255.

m is an integer expression from zero to 255.

y$ represents a string expression.

7-137

Beginning at position n, characters v$ are replaced
by m characters from jj?. If m is not given, all ofjvl
is used.

But regardless of whether m is omitted or included,
the length of v$ will not change. For instance, if v$
is 10 characters long andjvl is 15 characters long,
then after the replacement, v$ will contain only the
first 10 characters ofjyX

If either n or m is out of range, an "Illegal function
call" message will be displayed.

Examples: The following example uses the MID$ function to
select the middle portion of the string J$.

100 l$="GOOD"
200 J$="MORNING AFERNOON EVENING"
300 PRINT l$;MID$(J$,8,10)
RUN
GOOD AFERNOON
Ok

In the next example MID$ statement replaces
characters in the string A$.

100A$="KANSAS CITY, MO"
200 MID$(A$,14)="KS"
300 PRINT A$
RUN
KANSAS CITY, KS
Ok

7-138

MKDIR Statement

Syntax: MKDIR path

Purpose: Creates a directory on a disk.

Comments: path is a valid string expression identifying the
directory to be created. The string must not exceed
63 characters.

Examples: This example starts from the root directory and
creates a sub-directory called INVEST.

MKDIR "INVEST"

Starting from the root directory, a sub-directory
called TAX is created under the directory IN
VEST.

MKDIR "INVEST\TAX"

Still starting from the root directory, a sub-direc
tory IRA is created under the directory TAX.

MKDIR "INVEST\TAX\IRA"

7-139

Starting from the root directory and creates a
sub-directory called INSURE.

MKDIR "INSURE"

Make INSURE the current directory, and two
sub-directories called HOUSE and CAR are cre
ated.

CHDIR "INSURE"
MKDIR "HOUSE"
MKDIR "CAR"

You can create the same structure in the difference
way.

YOU TYPE:

MKDIR "INSURE\HOUSE"
MKDIR "INSUREXCAR"

From the root directory, the same structure was
created.

ROOT

INVESTINSURE

TAXHOUSECAR

IRA

7-140

MKI$, MKS$, MKD$ Functions

Syntax: expression)

v$= MKS$ [single-precision expression)

v$= MKD$(double-precision expression)

Purpose: Convert numeric values to strings.

Comments: The LSET and RSET statements are used to place
string data into a random file buffer. Thus, numer
ic values must be converted to strings before LSET
or RSET can be used to move them.
MKI$ makes an integer value into a 2-byte string,
MKS$ is used to convert a single-precision num
ber to a 4-byte string, and MKD$ converts a
double-precision number into an 8-byte string.

These functions differ from STR$ in that they do
not actually change the data, only the way it is
interpreted by BASIC. Refer also to the CVI,
CVS, and CVD Functions.

Examples: The following example uses a random file (#1)
with fields defined in line 100. The first field, A$,
will hold a numeric value, AMT. Line 200 con
verts AMT to a string with MKS$ and uses LSET
to place this string in the random file buffer. Line
300 places a string in the buffer, then line 400
writes the data from the buffer to the file.

100 FIELD #1,4 AS A$. 20 AS NAMES
200 LSET A$=MKS$(AMT)
300 LSET NAMES=CUSTNAM$
400 PUT #1

7-141

NAME Command

Syntax: NAME Jilespec AS filename

Purpose: Assigns a new name to a disk file.

Comments: jilespec specifies an existing disk file whose name is
to be changed.

filename specifies the new filename.

jilespec must designate an existing file and filename
must not be currently used on the disk.

After a NAME command is executed, the file
exists on the same disk, in the place, with the new
name.

Examples: NAME "ACCT.BAS" AS "ACCPAY.BAS"

In this exaniple, the disk file named ACCT.BAS
will now be named ACCPAY.BAS.

7-142

NEW Command

Syntax NEW

Purpose: Deletes the program currently in memory and
clears any variables.

Comments: NEW is normally used to clear memory prior to
entering a new program. NEW closes all files and
turns tracing off.

Examples: NEW
Ok

Any program in memory is now deleted, and any
variables cleared.

7-143

OCT$ Function

Syntax: !:)l=OCT$(n)

Purpose: Returns a string representing the octal value of a
given decimal argument.

Comments: n is a numeric expression from —32768 to 65535.

If n is negative, OCT$ converts the argument to
the two's complement form, which means that
OCT$(—«) is the same as OCT$(65536—n).

Examples: The following example shows how the OCT$ func
tion can be used.

500 0CT0UT$=0CT$(24)
600 PRINT OCTOUTS: " OCTAL IS DECIMAL 24"
RUN
30 OCTAL IS DECIMAL 24
Ok

7-144

ON COM(n) Statement

Syntax:

Purpose:

Comments:

ON COM(w) GOSUB line
(BASICA only)

Specifies the line number of a trapping routine for
BASIC to branch to when there is information
coming into a designated communications buffer.

n represents the number of the communications
adapter (1 or 2).

line is the line number of the start of the trap
routine. If line is zero, trapping of communications
activity for the specified adapter is disabled.

The COM(w) ON statement must be executed to
activate trapping by the ON COM(n) statement.
After a COM(w) ON statement, if line is non-zero
in the ON COM(w) statement, then on each new
statement, BASIC checks to see if any characters
have come in to the specified communications
buffer. If so, BASIC branches to the specified line.

If a COM OFF statement has been executed for
the communications channel, trapping is not per
formed and is not remembered.

If a COM(w) STOP is executed, no trapping will
take place for the communications channel, but it
will be performed as soon as a COM(w) ON
statement is executed.

When an event trap occurs, automatic COM(w)
STOP is executed so that recursive traps cannot
take place.

7-145

The RETURN from the trap routine automatical
ly executes a COM(w) ON statement unless an
explicit COM(w) OFF was done with in the trap
routine.

Trapping does not happen unless BASIC is ex
ecuting a program. When an error trap (resulting
from an ON ERROR statement) takes place, all
trapping is automatically disabled, including
ERROR, STRIG(w), COM(n), and KEY {n).

Examples: This example specifies a branch to a trap routine
for the internal serial interface at line 900.

110 ONCOM(1)GOSUB900
120 C0M(1)0N

900 REM characters coming In

990 RETURN 300

7-146

ON ERROR Statement

Syntax: ON ERROR GOTO line

Purpose: Activates error trapping and specifies the first line
of the error handling subroutine.

Comments: line represents the line number of the first line of
the error handling routine.

Once error trapping has been activated, all errors
detected (including those in direct mode) will
cause immediate execution of the specified error
handling subroutine.

To deactivate error trapping, execute an ON
ERROR GOTO 0 statement. Subsequent errors
will cause an error message to be printed and
execution halted. If this statement appears in an
error trapping subroutine, BASIC prints the mes
sage for the error that activated the trap. All error
trapping subroutines should execute an ON
ERROR GOTO 0 if an error is encountered for

which there is no recovery action.

Error trapping does not occur within an error
handling subroutine. If an error occurs within an
error handling subroutine, the BASIC error mes
sage is printed and execution stops.

The RESUME statement is used to exit the error

trapping routine.

7-147

Examples: 100 ON ERROR GOTO 1000

1000 PRINT "ERROR IN LINE";ERL
1010 RESUME NEXT

7-148

Line 1000 and 1010 are the error handling sub
routine that displays the line number where any
error occurs.

ON...GOSUB and ON...GOTO Statements

Syntax: ON n GOTO line[,line\...
ON n GOSUB line[,line\...

Purpose: Branches to one of several specified line numbers,
depending on the value of a given expression.

Comments: n represents a numeric expression that is rounded
to an integer, if necessary, and can range from zero
to 255.

line is the line number to which to branch.

The value of n determines which line will be used
for branching. For instance, if the value of n is 3,
the third line number will be the destination of the
branch.

In an ON...GOSUB statement, each line number
in the list must be the first line of a subroutine,
which ends with a RETURN statement directing
the program back to the line after the
ON...GOSUB statement.

If n is zero or more than the number of lines in the
list, BASIC will continue with the next executable
statement.

Examples: In the first example, the program will branch to
line 200 ifJ-1 equals 1, to line 300 ifJ-1 equals 2,
to line 400 if J-1 equals 3, and to line 500 if J-1
equals 4. If J-1 is zero or more than 4, the program
goes on to the next statement.

100 ON J-1 GOTO 200,300,400,500

7- 149

The next example shows how an ON GOSUB
statement can be used.

10 REM display the menu
20 PRINT "Routine 1"
25 PRINT "Routine 2"
30 PRINT "Routine 3"
35 PRINT "Routine 4"
40 INPUT "Which routine do you want?", CHOICE
50 ON CHOICE GOSUB 100, 200, 300, 400
60 GOTO 10
70 REM redisplay menu after return routine
TOO REM start of routine 1

190 RETURN
200 REM start of routine 2

7-150

ON KEY(n) Statement

Syntax:

Purpose:

ON KEY(;2) GOSUB line
(BASICA only)

Specifies a line number for BASIC to branch to
when a given function or cursor control key is
pressed.

Comments: n is a numeric qxpression ranging from 1 to 20 that
specifies the key to be trapped, as follows:

1-10 function keys F1 to FIO
11 Cursor Up
12 Cursor Left

13 Cursor Right
14 Cursor Down

15-20 keys defined by the syntax:
KEY n, CHR$(.y)+CHR$(0
(See "KEYiny and ''KEY" statements
in this chapter. For BASIC 2.0 and
later only.)

line is the line number of the beginning of the trap
routine for the indicated key. Trapping of the key
stops when line is zero.

The KEY(w) ON statement must be executed to
activate trapping by the ON KEY(«) statement.
After KEY(n) ON, if line is non-zero in the ON
KEY(n) statement, then on each new statement,
BASIC checks to see whether the specified key was
pressed. If so, BASIC branches to the specified
line,

A KEY(w) OFF statement will stop trapping for he
specified key. If the key is pressed, the event is not
noted.

7-151

If KEY(n) STOP is executed, no trapping takes
place for the designated key. However, if the key is
pressed, the event is remembered, and an immedi
ate trap will take place if KEY(n) ON is executed.

When an event trap occurs, KEY(w) STOP is
executed so that recursive traps cannot take place.
The RETURN from the trap routine automatical
ly executes a KEY(n) ON statement unless an
explicit KEY(n) OFF was done within the trap
routine.

Trapping does not happen unless BASIC is ex
ecuting a program. When an error trap (resulting
from an ON ERROR statement) takes place, all
trapping is automatically disabled, including
ERROR, STRIG(n) COM(n), KEY(«), PLAY
and TIMER.

When a key is trapped, that occurrence of the key
is destroyed. Therefore, you cannot subsequently
use the INPUT or INKEY$ statements to find out
which key caused the trap. So if you wish to assign
different functions to particular keys, you must set
up a different subroutine for each key, rather than
assigning the various functions within a single
subroutine.

7-152

The REUTRN line form of the RETURN state
ment may be used to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any
other GOSUBs, WHILEs, or FORs that were
active at the time of the trap will remain active,
and errors such as "FOR without NEXT".

Examples: The following example shows a trap routine for
function key 5.

10 ON KEY(5) GOSUB 500
20 KEY{5) ON

500 REM start of trap routine for function key 5

590 RETURN 100

This example trap Crtl-Shift L:

10 KEY 18, CHR$(&H4-t-&H1)-l-CHR$(38)
20 ON KEY(18) GOSUB 1000
30 KEY(18) ON

1000 REM start of trap routine for function key 5

1090 RETURN

7-153

ON PLAY(n) Statement

Syntax:

Purpose:

Comments:

ON PLAY(«) GOSUB line
(BASICA only)

Specifies a line number for BASIC to branch to
allow continuous background music during prog
ram execution.

w is a numeric expression ranging from 1 to 255
(representing the number of notes to be trapped).
If a value outside these limits is entered, an "Illeg
al function call" error results.

line is the beginning line number of the PLAY trap
routine. PLAY trapping stops when line is zero.

The PLAY ON statement must be executed to
activate trapping by the ON PLAY(w) statement.
After PLAY ON, if line is non-zero in the ON
PLAY(w) statement, then on each new statement,
BASIC keeps track of the music buffer. When the
number of the note in the buffer is less than n,
BASIC branches to the specified line.

A PLAY OFF statement will stop trapping. If a
PLAY activity takes place, the event is not noted.

If PLAY STOP is executed, no trapping takes
place. However, if a Play activity takes place, the
event is remembered, and an immediate trap takes
place if PLAY ON is executed.

When an event trap occurs, PLAY STOP is ex
ecuted so that recursive traps cannot take place.
The RETURN from the trap routine automatical
ly executes a PLAY ON statement unless an expli
cit PLAY OFF was done within the trap routine.

7-154

Trapping does not happen unless BASIC is ex
ecuting a program. When an error trap (resulting
from an ON ERROR statement) occurs, all trap
ping is disabled, including ERROR, STRIG(n),
COM(n), KEY(n), PLAY(;2), and TIMER(n).

The RETURN line form of the RETURN state
ment may be used to return to a specific line
number from the trapping subroutine. Use this
type of return carefully because any other
GOSUBs, WHILEs, or FORs that were active at
the time of the trap will remain active, resulting in
such errors as "FOR without NEXT".

NOTES: A PLAY event trap can only take
place when PLAY is in the Music Back
ground mode (PLAY "MB..."). PLAY event
traps cannot take place when PLAY is run
ning in the Music Foreground mode (PLAY
"MF...").

If the Music Background buffer is empty
when a PLAY ON statement is executed, no
event trapping takes place.

Choose lower values for n (for example 3). To
high a value (for example 47) causes so many
event traps that little time is left to run the
remainder of the program.

Example: The following example sets up a trap routine
which starts when ten notes are left in background
music buffer.

100 ON PLAY(IO) GOSUB 800
120 PLAY ON

800 REM continuous background music subroutine

950 RETURN 130

7-155

ON STRIG(n) Statement

Syntax:

Purpose:

Comments:

ON STRIG(w) GOSUB line
(BASICA only)

Specifies a line number for BASIC to branch to
when a joystick button is pressed.

n can be zero, 2, 4, or 6, and specifies the button to
be trapped as follows:

n button

A1

B1

A2

B2

line represents the line number of the trap routine.
When line is zero, trapping is disabled.

The STRIG(w) ON statement must be executed to
activate trapping by the ON STRIG(w) statement.
After STRIG(«) ON is executed and if line is
non-zero in the ON STRIG(w) statement, then on
each new statement BASIC checks to see whether

the specified button has been pressed. If so,
BASIC branches to the specified line.

STRIC(w) OFF stops trapping for button n. if the
buttion is pressed, the event is not noted.

If STRIC(w) STOP is executed, no trapping takes
place for button n, but pressing of the button is
remembered, and an immediate trap will take
piace if STRIC(w) ON is executed.

7-156

When an event trap occurs, STRIG(n) STOP is
executed so that recursive traps cannot take place.
The RETURN from the trap routine automatical
ly executes a STRIG(w) ON statement unless an
explicit STRIG(w) OFF was done within the trap
routine.

Trapping does not happen unless BASIC is ex
ecuting a program. When an error trap (resulting
from an ON ERROR statement) takes place, all
trapping is automatically disabled, including
ERROR, STRIG(n), COM(n) and KEY(n).

STRIG(n) ON will activate the interrupt routine
that checks the status for the specified joystick
button. Downstrokes that activate trapping will
not set function STRIG(O), STRIG(2), STRIG
(4), or STRIG(6).

RETURN line can be used to go back to the
BASIC program at a specific line number. Use of
this non-local return must be done carefully,
however, since WHILEs, FORs, or any other
GOSUBs active at the time of the trap will remain
active.

Examples: The following example shows a trapping routine
for the button on the first joystick.

10 ON STRIG(O) GOSUB 300
20 STRIG(O) ON

300 REM 1st button subroutine

310 RETURN

7-157

ON TIMER(n) Statement

Syntax: ON TIMER(n) GOSUB line

Purpose: Specifies a line number for BASIC to branch to
after a specified period of time has elapsed.

Comments: n is a numeric expression ranging from 1 to 86,400
(representing 1 second through 24 hours). If a
value outside these limits is entered, an "Illegal
function call" error results.

line is the beginning line number of the TIMER
trap routine. TIMER trapping stops when line is
zero.

The TIMER ON statement must be executed to

activate trapping by the ON TIMER(n) state
ment. After TIMER ON, if line is non-zero in the
ON TIMER(n) statement, then on each new state
ment, BASIC keeps track of the passing seconds.
When n seconds are counted, BASIC branches to
the specified line. After the event trap BASIC
again begins counting from 0.

A TIMER OFF statement will stop trapping. If a
TIMER activity takes place, the event is not
noted.

If TIMER STOP is executed, no trapping takes
place. However, if a TIMER activity takes place,
the event is remembered, and an immediate trap
takes place if TIMER ON is executed.

7-158

When an event trap occurs, TIMER STOP is
executed so that recursive traps cannot take place.
The RETURN from the trap routine automatical
ly executes a TIMER ON statement unless an
explicit TIMER OFF was done within the trap
routine.

Trapping does not happen unless BASIC is ex
ecuting a program. When an error trap (resulting
from an ON ERROR statement) occurs, all trap
ping is automatically disabled, including ERROR,
STRIG(n), COM(n), KEY(n), PLAY(n) and
TIMER(n).

The RETURN line form of the RETURN state

ment may be used to return to a specific line
number from the trapping subroutine. Use this
type of return carefully because any other
GOSUBs, WHILEs, or FORs that were active at
the time of the trap will remain active, resulting in
such errors as "FOR without NEXT".

Example: The following example displays the time of day
every 1 minute:

100 ON TIMER(60) 60SUB 500
120 TIMER ON

500 REM The TIMER trap routine from line 100
510 CRNTR=CSRLIN 'save current row
520 CRNTC=POS(0) 'save current column
530 LOCATE 1,1 .PRINT TIMES
540 LOCATE CRNTR.CRNTC 'restore row and column
590 RETURN

7-159

OPEN Statement

Syntax: OPEN filespec [FOR mode] AS [#]filenum
[LEN=r^^/]
OPEN path [FOR mode] AS \#]Jilenum
[LEN=r^^;]

Alternative form:

OPEN mode2, {#]filenum, filespec [^recl]

OPEN mode2^ [#] filenum^ path [/eel]

Purpose: Permits I/O operations to a file or device.

Comments: mode is one of the following:

OUTPUT means sequential output mode. In
this context, ''output" signifies writing data to
the file.

INPUT means sequential input mode. "In
put" means using the file data as input, i.e.,
"heading" the file.

APPEND means sequential output mode be
ginning at the end of an existing file.

If mode is omitted, random access is the default.

mode2 in the alternate form, is a string expression
whose first character is one of the following:

0 means sequential output mode
A means sequential output mode begin

ning at the end of an existing file.
1 means sequential input mode
R means random I/O mode

For either format:

filenum is an integer expression whose value may
range from one to 255.

7-160

filenum is the number associated with the file as
long as it is open and is used by other I/O
statements to refer to it.

filespec is a string expression that specifies the file.

path is a string expression up to 63 characters long.
See "Introduction" and "Naming Files" in Chap
ter 5.

red is an optional integer expression that is used to
set the record length, and may range from one to
32767. In BASIC 1.0, »you cannot use red for
sequential files. But in BASIC 2.0 and later, red is
valid for sequential files. The default record length
is 128 bytes, red may not be more than the value
set by the /S: switch of the BASIC command, if
the /I switch is not specified.

OPEN allocates an I/O buffer to the file or device

and specifies the mode of access for which the
buffer will be used.

An OPEN statement must be executed before any
I/O operation may be done to a device or file with
any of the following statements, or any other state
ment or function that requires a file number:

PRINT # WRITE #

PRINT # USING INPUTS
INPUT # GET

LINE INPUT # PUT

7-161

GET and PUT are used with random files (or
communications files). A disk file can be either
random or sequential, and a printer can be opened
for either random or sequential output. But, all
other devices may be opened for sequential opera-
tions only.

BASIC will normally add a line feed after each
carriage return (CHR$(13)) that is sent to a prin
ter, but, if you open a printer as a random file with
width 255, this line feed is suppressed.

APPEND is valid. only for disk files. The file
pointer is initially set to the end of the file and the
record number is set to the last record. PRINT #
or WRITE # will then add records to the file,
extending it.

At any given time, it is possible to have a particu
lar file open under more than one file number,
allowing different modes to be used for different
purposes. Or, for program clarity, you might use
different file numbers for different modes of access.
Each file number is associated with a different
buffer, so take care if you are writing using one file
number and reading using a different one.

However, note that a file that is already open may
not be opened for sequential output or append.

If a nonexistent file is OPENed for input, a "File
not found" message appears. If a file that does not
exist is OPENed for output, append, or random
access, a file with the specified name is created.

Examples: Either of the following statements opens a file
named EXFILE for sequential output (that is,
data will be written to the file).

100 OPEN "EXFILE" FOR OUTPUT AS #1

or

100 OPEN "0", #1, "EXFILE"

7-162

In the above examples, note that opening the file
for output destroys any data that may be in the
file, since this format causes data to be written to
the file starting at the beginning. If you wish to add
to existing data, open the file for append, as follows:

100 OPEN "EXFILE" FOR APPEND AS #1

or

100 OPEN "A", #1, "EXFILE"

Either of the following two statements will open a
disk file named EXFILE for random input and
output, with a record length of 256.

100 OPEN "EXFILE" AS 1 LEN=256

or

100 OPEN "R'M,"EXFILE",256

7-163

The following statements show how an OPEN
statement may alternately be written using a string
variable for the filename:

100 FILE$="STRFILE"
200 OPEN FILES FOR APPEND AS 2

This example shows underlining.

10 OPEN "LPT1:" AS #1
20 WIDTH #1,255
30 PRINT #1, "Underline this line"
40 WIDTH #1,80
50 PRINT #1, STRINGS (19,

As described in Chapter 5, BASIC 2.0 and later
allows you to follow paths to files. The OPEN
command can be used with paths. For example:

100 OPEN "INVEST\TAX\IRA" FOR OUTPUT AS #1

or

100 OPEN "0",#1,"INVEST\TAX\IRA"

Either of the above statements opens the file
named "IRA" for sequential output on the default
device in the directory TAX. Either of the follow
ing statements will open a file named TFILE in
the STEPl directory on driver A for random input
and output. The record length is 256.

200 OPEN "A:STEP1\TFILE" AS 1 LEN=256

or

200 0PEN"R",1,"A:STEP1\TFILE",256

7- 164

OPEN"COM. .. Statement

Syntax: OPEN''COMn:[speed] [,parity] [,data] Istop] [,RS]
[,CSM lDS]n] [,CD]az]] [,LF] [,PE]" AS
[#]filenum [LEN= number]

Purpose: Opens a communications file.

Comments: n may be either 1 xor 2, and indicates the number of
serial interface.

speed is an integer constant that specifies the trans
mit/receive rate in bits per second (bps). Valid
speeds are 75, 110, 150, 300, 600, 1200, 1800, 2400,
4800, and 9600, with the default 300 bps.

parity is a one-character constant that specifies the
transmit/receive parity as follows:

S = SPACE: Parity bit always transmitted/
received as a space bit value zero.

O =ODD: Odd transmit parity, add receipt
parity check.

M =MARK: Parity bit always transmitted/
received as a mark bit value one.

E =EVEN: Even transmit parity, even re
ceipt parity check.

N =NONE: No transmit parity, and no re
ceipt parity check.

The default is EVEN (E) parity and re
ceive checking.

7-165

data is an integer constant specifying the number of
transmit/receive data bits. Valid values are 4, 5, 6,
7, or 8, with the default 7 bits.

stop is an integer constant that specifies the num-
ber of stop bits. Valid values are 1 or 2. The
default is two stop bits for 75 and 110 bps, and one
stop bit for all other speeds. If you specify 4 or 5 for
data, a stop of 2 will mean 1-1/2 stop bits.

jilenum is an integer expression whose result to a
valid file number, which is then associated with
the file as long as it is open and is used by later
communications I/O statements to refer to the file.

number is the maximum number of bytes that can
be read from the communication buffer with a

GET or PUT statement. The default is 128 bytes.

GFEN^COM... allocates an I/O buffer in the

same way as OPEN for disk files, supporting
RS232 asynchronous communication with other
computers and peripherals.

Only one file number at a time may be assigned to
a communications device.

The RS, CS, DS, CD, EE and PE options affect
line signals in the following ways:

RS will suppress RTS (Request To Send).

CS[n] is used to control CTS (Clear To Send).

DS[n] is used to indicated DSR (Data Set
Ready).

7-166

CD[n] is used to control CD (Carrier Detect),
which is also called the RLSD (Received
Line Signal Detect).

LF sends a line feed after carriage return.

PE allows parity checking.

NOTE: speed, parity, data, and stop are posi
tional paratneters, that is, RS, CS, DS, CD,
LF and PE are not positional.

RTS (Request To Send) line is turned on when an
OPEN^COM... statement is executed unless the

RS option is included.

n in the CS, DS, and CD options specifies the
number of milliseconds to wait for the signal be
fore returning a "Device Timeout" error, n can be
any number from zero to 65535. If n is omitted or
zero, the line status is not checked.

The defaults are n=1000 for CS and DS, and
n = zero for CD. If RS is specified, the default for
CS is zero.

What this means is that usually I/O statements to
a communications file will fail if the CTS or DSR

signals are off. The system will wait one second
before returning a "Device Timeout" message.
The CS and DS options let you ignore these lines,
or specify the waiting time before the timeout.

Usually Carrier Detect (CD or RLSD) is ignored
when OPEN"COM... is executed. The CD option
lets you test this line by including the n argument,
in the same way as CS and DS. If n is omitted or
zero, then Carrier Detect is not checked (which is
like omitting the CD option).

7-167

The LF parameter is intended to be used com
munication files as a means of printing to a serial
line printer. When LF is specified, a line feed
character (hex OA) is automatically sent after each
carriage return character (hex OD). Note that
INPUT # and LINE INPUT #, when reading
from a communications file opened with the LF
option, stop on encountering a carriage return,
and ignore any line feeds.

The PE option allows parity checks. Using this
parameter will yield a "Device I/O error" message
for each parity error. It will also turn on the high
order bit for 7 or fewer data bits. The default is no

parity checks. Note that the PE option has no
effect on framing and overrun errors. These will
always turn the high order bit on and result in a
"Device I/O error".

Any coding errors within the string expression
starting with speed cause a "Bad file name" error.
No indication is given as to which parameter is in
error.

Specifying 8 data bits means you must specify
parity N. If you specify 4 data bits, then you must
specify a parity, i.e., N parity is invalid. BASIC
uses all 8 bits of a byte to store numbers, so if you
are transmitting or receiving numeric data, 8 data
bits must be specified. (Note that this is not so if
numeric data is being sent as text.)

Examples: The following statement opens COMl: for com
munications as file #1 with all defaults, meaning,
the speed of 300 bps, even parity, and 7 data bits
with one stop bit.

100 OPEN "COMl:" AS 1

7-168

The following statement opens COMl: for com
munication at 1200 bps. Parity and numbers of
data bits and stop bits will be the defaults.

100 OPEN "COM1:1200" AS #1

COMl: is opened as File 1 for asynchronous I/O
at 600 bps, with no parity produced or checked,
8-bit bytes sent and received, and 1 stop bit trans
mitted.

100 OPEN "COM1:600,N,8" AS #1

The next opens COMl: at 1800 bps with no
parity, eight data bits, and CS, DS, and CD being
checked.

10 OPEN "COM1:1800,N,8,,CS,DS,CD" AS #1

The following statement opens COMl: at 600 bps
with the defaults of even parity and seven data bits
and with parity checking. RTS is sent, and Device
Timeout is given if DSR is not seen within five
seconds.

50 OPEN "COM1:600,,,,CS,DS5000,PE" AS #1

7-169

Note that the commas are used to indicate the
position of the positional arguments parity^ starts
and stop, even though values for them are not
specified.

An OPEN statement can be used with an ON

ERROR statement to make certain that a modem

is working properly before sending any data. For
instance, the following program makes sure of a
Carrier Detect (CD or RLSD) from the modem
before beginning. Line 200 is set to timeout after
waiting 10 second. TIMES is set to 3 so we give
up if Carrier Detect is not seen within half a
minute. Once communication is established, the
file is reopened with a shorter wait until timeout.

7-170

50 TII\/IES=6
100 ON ERROR GOTO 900
200 OPEN "COM1:1200,N,8,2,CS,DS,CD10000" AS #2
300 ON ERROR GOTO 0
400 CLOSE #2 ' to continue
500 GOTO 2000
•

900 IF ERR=24 THEN GOTO 920
910 ON ERROR GOTO 0
920 TIMES=TIMES-1
930 IF TIMES=0 THEN ON ERROR GOTO 0 ' forget It
940 RESUME

2000 OPEN "COM1:1200,N,8,2,GS,DS,CD5000" AS #1

The last example shows a typical way of using
communication file to control a serial line printer.
The LF argument in the OPEN statement ensures
that lines are not printed on top of each other.

100 WIDTH "C0M1:", 132
200 OPEN "COM1:300,N,8,,CS10000,DS10000,CD10000,
LF" AS #1

7-171

OPTION BASE Statement

Syntax: OPTION BASE n

Purpose: Specifies the minimum value for array subscripts.

Comments: n is either 1 or zero.

The default base is zero.

The OPTION BASE statement must appear before
any arrays are defined or used. An error will occur
if you change the base value once arrays exist.

Examples: If the statement:

OPTION BASE 1

is executed, the lowest value any array subscript
will have is one.

7-172

OUT Statement

Syntax: OUT n,m

Purpose: Sends a byte to an output port.

Comments: w is a numeric expression for the port number,
ranging from zero to 65535.

m is a numeric expression for the data to be
transmitted, and range from zero to 255.

OUT is the complementary statement to the INP
function.

One way OUT can be used is to affect the video
output. On some displays, in graphics mode, you
may find that the first couple of characters on the
line don't show up on the screen. If your display
does not have a horizontal adjustment control, the
following two statements can be used to shift the
display:

OUT 980,2: OUT 981,43

This shifts the display two characters to the right
with a 40-column width (or 16 points in medium
resolution and 32 points in high resolution).

The following statements shift the display to the
right five characters with an 80-column width.

OUT 980,2: OUT 981,85

7-173

Such shifts remain in effect until a WIDTH or
SCREEN statement is executed. The DOS MODE
command can also be used to shift the display in
this way; it has the virtue of remaining in effect
until a System Reset is done.

Examples: 300 OUT 30,50

This sends the value 50 to output port 30.

7-174

PAINT Statement

(BASICA only)
Syntax: PAINT {x^) {{,paint] [,boundary\[,backgroundW

Purpose: Fills in a screen area with a specified color.
Graphics mode only.

Comments: are the coordinates of a point within the area
to be PAINTed, and may be in absolute or relative
form. This point is used as a starting point.

paint may be a numeric or string expression. If
numeric, it is the color to be PAINTed with, from
zero to 3. In medium resolution, this is a color
from the current palette as defined by the COLOR
statement. Zero means the background color; the
default is the foreground color, number 3. In high
resolution, paint equal to 0 (zero) specifies black,
with the default of one meaning white.

When paint is a string formula, paint "tiling" is
done, as explained below. Tiling is supported only
by BASIC 2.0 and later.

boundary specifies the color of the edges of the figure
to be PAINTed, and ranges from zero to 3 as
described above.

background is a string expression, one byte in length
that is used in paint tiling. This parameter is only
used in BASIC 2.0 and later.

7-175

The figure to be PAINTed is the figure with edges
of the boundary color. This means that in medium
resolution, the figure is drawn in the boundary color,
and is filled in with the paint color, so we can fill in
a border of color 2 with color 1. Visually this
might mean a cyan ball with a magenta border.

Since there are only two colors in high resolution,
paint should be the same as boundary. Since boundary
defaults to equal paint, the third parameter is
unnecessary in high resolution mode. This means
"blacking out" an area until black is specified, or
"whiting out" an area until white is indicated.

The PAINT starting point must be inside the
figure to be colored. If points outside the screen
limits are plotted, they are not drawn and no error
occurs. If the specified point is already the boundary
color, the PAINT statement will have no effect. If
paint is omitted, the foreground color is used,
which is 3 in medium resolution, and 1 in high.
PAINT can paint any type of figure; however,
jagged edges on a figure will increase the amount
of stack space needed to execute the statement. So
if much complex coloring will be done, you might
want to use CLEAR at the beginning of the prog
ram to increase the available stack space.

The PAINT statement allows colored figures to be
displayed with very few statements.

7-176

BASIC 2.0 and later provide for paint tiling, a
technique explained in the following paragraphs.

Tiling is performed when the paint attribute is a
string expression in this syntax:

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Hnn)

The tile mask will always be 8 bits wide. It may be
up to 64 bytes long. Each byte in the string masks
8 bits along the x axis as points are put down.

Each byte for the string is rotated as required to
align along the y axis such that tile byte mask=y
mod tile length. This is done so that the tile
pattern in a uniform way across the entire screen.
The structure of the tile string appears like this:

X increases

bit of tile byte
x,y 8 7 6 5 4 3 2 1
0,0 xxxxxxxx Tile byte 0
0,lxxxxxxxx Tile byte 1
0,2 xxxxxxxx Tile byte 2

0,63 xxxxxxxx Tile byte 63

(maximum allowed)

In high resolution, each byte of the tile string plots
eight points across the screen, or one bit per pixel.
A point is plotted at each position in the bit mask
that has a value equal to 1. In high resolution, the
following statement paint's the screen with x's:

PAINT (320,100),CHR$(&H81)+CHR$(&H42)+
CHR$(&H24)+CHR$(&H18)+ CHR$(&H18)+
CHR$(&H24)+CHR$(&H42)+CHR$(&H81)

7-177

This statement creates a pattern that appears on
the screen as:

X increases

1 0 0 0 0 0 0 1 CHR$(&H81) Tile byte 0 ^
0 1 0 0 0 0 1 0 CHR$(&H42) Tile byte 1
0 0 1 0 0 1 0 0 CHR$(&H24) Tile byte 2
0 0 0 1 1 0 0 0 CHR$(&H18) Tile byte 3
0 0 0 1 1 0 0 0 CHR$(&H18) Tile byte 4
0 0 1 0 0 1 0 0 CHR$(&H24) Tile byte 5
0 1 0 0 0 0 1 0 CHR$(&H42) Tile byte 6
1 0 0 0 0 0 0 1 CHR$(&H81) Tile byte 7

The length of this mask is eight, with an index of
zero through seven. PAINT begins by plotting
byte four at coordinates (320,100). The calculation
is based on substituting 100 for j and eight for tile
length in the j mod tile length formula.

In medium resolution, each byte in the tile pattern
describes just 4 pixels, because there are 2 bits per
pixel in medium resolution. With medium resolu
tion, every two bits in the tile byte describe one of
four possible colors associated with each of the
four pixels to be put down.

The binary and hexadecimal values for each color
are given in the following chart:

7-178

Color

palette 0
green red brown

Color

palette 1
cyan magenta white

Color

number in

binary
01 10 11

Pattern to

draw solid

line in

binary

01010101 10101010 11111111

Pattern to

draw solid

line in hex

adecimal

&H55 &HAA &HFF

You may sometimes wish to tile paint over an area
already painted the same color as two consecutive
lines in the tile pattern. Normally, PAINT termin
ates when it encounters two consecutive lines that

are the same color as the point being plotted (the
point is surrounded by the same color). Use the
background parameter to keep PAINT from quit
ting. Note, however, that you may not designate
more than two consecutive bytes in the tile string
that match the background attribute. Specifying
more than two results in an Illegal function call
error message.

7- 179

Example: The following program demonstrates paint tiling:

100 CLS:SCREEN1,0
200 TIL$=CHR$(&HAA)+CHR$(&HAA)+CHR$(&H55)+
CHR$(&H55)+CHR$(&HFF)+CHR$(&HFF) ^
300 COLOR 9,0 'palette 0; background light blue
400 VIEW {1,1)-(50,50),0,2
500 GOSUB1000
600 COLOR ,1 'palette 1
700 GOTO 1300

1000 REM 'jump from line 500
1100 PAINT (40,45),TIL$.1
1200 RETURN
1300 END

7-180

PEEK Function

Syntax: v = PEEK(w)

Purpose: Returns a byte read from the specified memory
position.

Comments: n is an integer from zero to 65535. It represents the
offset from the cUrrent segment as defined by the
DEF SEG statement, and specifies the address of
the memory location to be read.

The returned value will be an integer from 0 to
255.

PEEK is the complementary function to the
POKE statement.

Examples: The example below can be used to know which
color is used currently as the foreground color of
the characters.

100 DEF SEG
110 PRINT PEEK(&H4E)

7-181

PLAY Statement

(BASICA only)
Syntax: PLAY string

Purpose: Plays music specified by a character string.

Comments: PLAY implements a concept similar to DRAW,
with a "tune definition language" imbedded into a
character string.

string is a string expression that consists of single-
character music commands.

The music commands are:

A to G with optional #, +, or — plays the
specified note in the current octave. # or
-h with the note indicates the sharp, and
— means the flat. The sharp or flat
specification is only allowed if it corres
ponds to a black piano key. For inst
ance, B# (B sharp) is invalid.

O n Specifies the octave for the notes that
follow. There are 7 octaves, which are
numbered zero to 6. Each octave ex

tends from C to B. Octave 3 begins with
middle C. The default octave is 4.

N n Play note n, which may range from zero
to 84, since the 7 possible octaves con
tain 84 notes. n=zero specifies a rest.
This is an alternative method of select

ing notes to that of specifying the octave
(On) and the note name (A-G), as
above.

7-182

Sets the length of notes that follow,
which is represented by 1/n. n may
range from 1 through 64. The possible
values of n and the meaning of each are
as follows:

LI (1/1 = 1) whole note
L2 (1/2) half note
L3 (1/3) one of a triplet of three half

notes (1/3 of a 4-beat mea
sure)

L4 (1/4) quarter note
L5 (1/5) one of a quintuplet (1 /5 of a

measure)
L6 (1/6) one of a quarter note triplet

L64 (1/64) sixty-fourth note

If you want to change the length only for
a single note, the length may follow that
note. For example, A16 is the same as
L16A.

P n Rest, n can range from 1 to 64, and
specifies the length of a pause in the
same way as L (length) indicates the
length of a note.

A period following a note, causes the
note to be played as a dotted note, with
its length is multiplied by 3/2. More
than one dot may be used with the
length adjusted accordingly. For exam
ple, "A.." will play 9/4 as long as spe
cified by L, ''A..." will play 27/8 as
long, etc. Dots may also be placed after
a pause (?) to scale the length of the rest
in the same way.

7-183

T n Tempo, indicating the number of quar
ter notes per minute, n may be from 32
to 255, with the default 120. Under
"SOUND Statement" is a table that

lists common tempos and the equivalent
beats per minute.

MF Run music in foreground, indicating
that each subsequent note will not start
until the previous note is finished. Ctrl-
Break can be used to exit PLAY. The

default state is MF.

MB Run music in background, indicating
that each note is placed in a buffer,
which allows the BASIC program to
continue while music plays in the back
ground. The buffer will hold up to 32
notes (or rests) at one time.

MN Music normal, where each note plays
7/8 of the time specified by L (length).
This is the default setting for MN, ML
and MS and for the commands that are

described below.

ML Music legato, where each note plays the
full time set by L (length).

MS Music staccato, where each note plays
3/4 of the time set by L.

>n Increase one octave and play note n.
Each time the note is played, it is raised
one octave until it reaches the highest
octave (6). For example, PLAY ">C"
causes note C to be played one octave
higher. Thereafter, each time PLAY
">C" is run, it raises C one octave until
octave 6 is reached. After reaching the
highest octave, note C will continue to
play at that level.
This command is used only by BASIC
2.0 and later.

7-184

<n Decrease one octave and play note n.
Each time the note is played, it is lo
wered one octave, until the lowest octave
is reached (0). For example, PLAY
"<C" causes note C to be played one
octave lower. Thereafter, each time
PLAY "<C" is run, it lowers C one
octave, until octave 0 is reached. After
reaching the lowest level, note C will
continue to play at that level.
This command is used only by BASIC
2.0 and later.

X variable;
Executes the specified string.
In all the music commands the n argument may be
a constant like 5 or it may be variable; where
variable is a variable name. A semicolon is required
when using a variable this way, and when using
the X command. Otherwise, a semicolon is option
al between commands, except that is not allowed
after MF, MB, MN, ML, or MS. Also, blanks in
string are ignored.

Variables can also be specified in the form of
VARPTR$(z;anfl6/^), instead of ^variable;. The
VARPTRS form is the only one that may be used
in compiled programs. For instance:

One Method Alternative

PLAY "XB$;" PLAY "X"+VARPTR$(B$)
PLAY "L=l;" PLAY "L="+VARPTR$(I)

You can use X to store a "subtune" in one string
and call it recursively with varying tempos or
octaves specified by another string.

Examples: The following example plays a chromatic scale.

10 A$="CC-f DD+EFF+GG+AA+B"
20 FOR 1=2 TO 4
30 PLAY "MB MS T150 0=I;L8 XA$;P8"
40 NEXT I

7-185

PLAY Statement (ON, OFF and STOP)

(BASICA only)
Syntax: PLAY ON

PLAY OFF

PLAY STOP

Purpose: Enables and disables trapping of a specified size of
the music buffer in a BASIC program.

Comments: PLAY ON enables a ON PLAY statement activ
ity. After PLAY ON statement, if a non-zero line
number was included in the ON PLAY statement
then whenever BASIC starts a new statement it
checks to see if the music buffer has gone to less
than n notes. If so, it will perform a GOSUB to
the specified line number.

PLAY OFF disables trapping; if a PLAY activity
takes place, the event is not noted.

After PLAY STOP, no trapping takes place, but if
a PLAY activity takes place, the action is remem
bered, and an ON PLAY statement will be ex
ecuted as soon as trapping is enabled.

7-186

PLAY Function

Syntax: t^=PLAY(n)
(BASICA only)

Purpose: Returns number of notes currently residing in the
music background buffer.

Comments: n is a dummy argument of any value.

If the program is running in Music Foreground
mode, PLAY(n) returns 0. Since the music buffer
can hold up to 47 notes, 47 is the maximum value
that can he returned.

You must he in the Music Background mode to
return a value with PLAY(n).

Example: 100 'when 6 notes remain in the MB
200 'buffer, go to line 900
300 'and play another song for me
400 PLAY "MB ABCDEFG"
500 IF PLAy(0)=6 GOTO 900

900 PLAY "MB 05 T165 L8 MS CC# DO#"

7-187

PMAP Function

Syntax:

Purpose:

z;=PMAP(a:^w)
(BASICA only)

Converts logical coordinates to physical coordin
ates and physical coordinates to logical coordin
ates. Graphics mode only

Comments: x is the coordinate of the point to be mapped.

w is a number ranging from 0 to 3 thats maps
according to the following table:

0 maps the x logical coordinate to the x
physical coordinate

1 maps the jy logical coordinate to the j
physical coordinate

2 maps the x physical coordinate to the x
logical coordinate

3 maps the j physical coordinate to thejv
logical coordinate

7-188

PMAP translate coordinates between the logical
system, defined by the WINDOW and VIEW, to
the physical system. Physical coordinates are the
coordinates of the screen, beginning with (0,0) in
the upper left hand corner, and (639,199) (high
resolution) or (319,199) (medium resolution).

To map logical coordinate values to the physical
coordinate system, use PMAP (x,0) and PMAP
(x,l).

To map physical coordinate values to the logical
coordinate system, use PMAP (x,2) and PMAP
(x,3).

Examples: The following example maps the logical coordin
ates (20,20) to their corresponding physical points
on the screen.

10 SCREEN 2
20 WINDOW (10.10)-(50.50)
30 X=PMAP(20,0):Y=PMAP(20,1)
40 PRINT "PHYSICAL X=":X
50 PRINT "PHYSICAL Y=":Y
RUN
PHYSICAL X= 160
PHYSICAL Y= 149
Ok

7-189

POINT Function

Syntax: v = POINT(x^)
r; = POINT(n) ^

Purpose: Returns the color of a specified screen point or
current coordinate of the last referenced point.

Comments: {xj) represent the coordinates of the point to be
used, which must be stated in absolute form.

— 1 is returned if the specified point is out of range.
In medium resolution, the valid returns are zero,
1, 2, or 3. In high resolution, there are two valid
returns: 0 and 1.

POINT {n) returns the value of the current x or y
coordinate of the last referenced point (Advanced
BASIC 2.0 only). The value of n can be 0, 1, 2, or
3.

0 the current physical x coordinate is re
turned.

1 the current physical y coordinate is re
turned.

2 the current logical x coordinate is re
turned.

3 the current logical y coordinate is re
turned.

For more information, see "WINDOW State
ment" in this chapter.

7-190

Examples: The following statements will invert the current
setting of point (M,M).

50 SCREEN 2
-s 100IF POINT (M,M)< >0 THEN PRESET(M,M)

ELSE PSET (M,M)

or

100 PSET(M,M),1-P0INT(M,M)

The following example illustrates the use of the
POINT function in BASIC 2.0.

100 CLS;SCREEN 1,0
200 PRINT "POINT but WINDOW inactive"
300 GOSUB1100
400 WINDOW (-10,-10)-(10,10)
500 PRINT "POINT and WINDOW active"
600 GOSUB1100
700 END
1100 PSET (5,5)
1200 FOR J=0 TO 3
1300 PRINT POINT(J):
1400 NEXT
1500 PRINT
1600 RETURN

7-191

POKE Statement

Syntax: POKE n,m

Purpose: Writes one byte into a specified memory location.

Comments: w is a number from zero to 65535 that indicates the

address in memory where the data is to be written,
and represents an offset from the current segment
as defined by the latest DEF SEG statement.

m represents the data that will be written to the
specified address, and must be from zero to 255.

POKE is the complementary statement to the
PEEK function, which is used to read a single
byte. Both POKE and PEEK can be helpful for
storing data efficiently, as well as loading, and
passing arguments and results to and from,
machine language subroutines.

Warning: BASIC performs no checking on the
address. So take care to avoid the memory areas
containing BASIC'S stack and variable area, or
your BASIC program.

Examples: The following statement sets the foreground color
in graphic mode to 2.

100 DEF SEG
110 POKE &H4E,2

7-192

POS Function

Syntax: v =POS(w)

Purpose: Returns the current column position of the cursor.

Comments: n is entered as a ''dummy" argument.

POS returns the current horizontal (column) cur
sor location. To return the current line position of
the cursor, use the CSRLIN function.

Examples: IF POS(0)>65 THEN BEEP

This example beeps (moves the cursor to the start
of the next line) if the cursor has moved horizon
tally beyond position 65 on the screen.

7-193

PRINT Statement

Syntax: PRINT [list of expressions^ [;]

? [list of expressions^ [;]

Purpose: Displays specified data on the screen.

Comments: list of expressions is a list of numeric and/or string
expressions that are separated by either commas,
blanks, or semicolons. Any listed string constants
must be enclosed in quotes.

If no list of expressions is given, a blank line will be
displayed. When a list of expressions is included, the
values of the expressions are displayed.

A question mark can be used as a short way of
entering PRINT when the BASIC program editor
is in use.

Print Positions

The position of each displayed item is determined
by the punctuation separating the listed items.
BASIC divides the output line into print zones,
each 14 spaces long. In the list of expressions, a
comma causes the next value to be displayed at
the beginning of the following zone. A semicolon
causes the next value to be printed immediately
following the last value. One or more blanks be
tween expressions has the same effect as a semi
colon.

7- 194

If the list of expressions is ended by a comma,
semicolon, or SPC or TAB function, the next
PRINT statement will begin printing on the same
line, spacing accordingly. If none of these ends the
list, a carriage return will be printed at the end of
the line, that is, the cursor will move to the
beginning of the next line.

When the length of the value to be printed is more
than the number of character positions remaining
on the current line, the value will be printed at the
beginning of the following line. If the value is
longer than the defined screen WIDTH, BASIC
prints as much as possible on the current line, then
continues printing the remainder on the next
screen line.

Displayed numbers are always followed by a
space. Positive numbers are preceded by a space
and negative numbers by a minus sign. If single-
precision numbers can be represented by 7 or
fewer digits in fixed point format no less accurately
than in floating point format, they are output in
fixed point or integer format. For example, 10^
(-7) is displayed .0000001 and 10^ (-8) as lE-8.

The LPRINT statement is used to print on a
printer.

Examples: In the first example, the commas used to separate
the PRINT statement expressions cause each
value to be printed at the beginning of the next
print zone.

ICQ X=2
200 PRINT X+10, X-2, X*(-5)
300 END
RUN

12 0 -10
Ok

7-195

In the next example, the semicolon at the end of
line 200 causes both PRINT statements to be
executed on the same line.

100 INPUT J ^
200 PRINT J "SQUARED IS" J^2 "AND";
300 PRINT J "CUBED IS" J^3
400 PRINT
500 GOTO 100
RUN
? 3

3 SQUARED IS. 9 AND 3 CUBED IS 27.

? 27

27 SQUARED IS 729 AND 27 CUBED IS 19683

?

In the last example, the semicolons in the PRINT
statement cause each value to be printed im
mediately after the last. Two spaces separate each
number because a printed number is followed by a
space, and positive numbers preceded by a space.
In line 400, the question mark replaces the word
PRINT.

100 FOR I = 1 TO 5
200 X=X+2
300 Y=Y+4

400 ?X:Y:
500 NEXT I
RUN
2 4 4 8 6 12 8 16 10 20
Ok

7-196

PRINT USING Statement

Syntax: PRINT USING v$; list of expressions [;]

Purpose: Prints data in a specified format.

Comments: v$ is a string constant or variable consisting of
special formatting characters that specify the field
and the format of the printed data.

list of expressions specifies the string or numeric
expressions that are to be printed, which must be
separated by semicolons or commas.

Printing Strings: When printing strings, one of
three formatting characters is used to specify the
format of the string field:

! Only the first character of the given
string will be printed.

\n spacesx 2+n characters of the string will be
printed. If the backslashes appear
with no spaces, two characters will
be printed; if they are separated by
one space, three characters will be
printed, etc.

When the string is longer than the
output field, extra characters are
ignored. When the field is longer
than the string, the string is left-
justified in the field and spaces are
inserted to its right. For example:

7-197

100 M$='TAKE": N$="OUT"
300 PRINT USING "!";M$;N$
400 PRINT USING "\ \';MS;N$
500 PRINT USING A \';M$;N$;"!!"
RUN

TO
TAKEOUT

TAKE OUT !!

& A variable length string field will
be output exactly as input. For ex
ample:

100 M$='TAKE": N$="OUT"
200 PRINT USING M$;
300 PRINT USING N$
RUN

TOUT

Printing Numbers: When printing numbers, the
following special characters are used to specify the
format of the numeric field:

A number sign represents digit
positions, each of which is always
filled. If the number to be printed
has less digits than specified posi
tions, then it is right-justified (pre
ceded by spaces) in the filed.

A decimal point may be placed at
any position in the field. If the
format string specifies that the de
cimal point is to be preceded by a
digit, that digit will always be
printed (as zero if necessary).
Numbers are rounded as required.
Several examples follow:

7-198

PRINT USING "##.##";.55
0.55

PRINT USING "###.##";310.654
310.65

PRINT USING "##.## ";10.1,5.3,66.779,.234
10.10 5.30 66.78 0.23

In the last example, three spaces
are inserted at the end of the for
mat string to separate the printed
numbers on the line.

+ A plus sign placed at the beginning
of a format string specifies that the
sign of the printed number
(whether plus or minus) should
appear before the number. A plus
sign at the end of the format string
means that the sign should be
placed after the printed number.

— A minus sign at the end of the
format field is used to print nega
tive number with a trailing minus
sign. Two example statements
follow:

PRINT USING "-f##.## ";-38.95,1.4,59.6,-.9
-38.95 +1.40 +59.60 -0.90

PRINT USING "##.##- ";-38.95,21.449,-7.05
38.95- 21.45 7.05-

** A double asterisk at the beginning
of the format string specifies that
leading spaces in the numeric field
will be filled with asterisks.

7-199

** can also specify positions for two
additional digits.

PRINT USING "**#.# ";10.39,-0.5.740.1
*10.4 *-0.5 740.1

$$ A double dollar sign causes a dollar
sign to be printed immediately pre
ceding the formatted number. $$
specifies two more digit positions,
one of which is the dollar sign.
Exponential format may not be
used with $$. Negative numbers
may only be used if they are
printed with a trailing minus sign.

PRINT USING "$$###.## ";456.78,5921.84
$456.78 $5921.84

**$ When **$ is placed at the begin
ning of a format string, the effects
of the above two symbols are com-
bined. Leading spaces are filled
with asterisks and a dollar sign pre
cedes the number. **$ also specifies
another three digit positions, one of
which is used for the dollar sign.

PRINT USING "**$##.##";2.35
***$2.35

A comma placed to the left of the
decimal point in a formatting string
causes a comma to precede every
third digit to the left of the decimal
point. A comma at the end of the
format string is printed as part of
the string. Such a comma can also
specify another digit position.

7-200

The comma has no effect when
used with the exponential (aaaa)
format (see below).

PRINT USING "####,.##":5234.5
5,234.50

PRINT USING "####.##,":5234.5
5234.50,

AAAA Four carets placed after the digit
position characters specify ex
ponential format. The carets define
space for E±nn or D±nn to be
printed. Any decimal point position
may be indicated. Significant digits
will be left-justified, and the expo
nent adjusted. If a leading -I- or
trailing -I- or — is not specified, one
digit position to the left of the de
cimal point is used to print a space
or a minus sign.

PRINT USING "##.## AAAA ":534.56
5.35E+02

Ok
PRINT USING ".###AAAA-",-78888
.789E-I-05-
Ok
PRINT USING "+.##aaaa";523
-I-.52E-I-03
Ok

_ An underscore in the format string
specifies that the next character is
to be output as a literal character,
that is, exactly as it appears in the
format string.

7-201

PRINT USING "_###.##J":11.34
#11.34!

The underscore itself may be
printed by placing " " in the for-
mat string.

If the number to be printed is larger than the
specified numeric filed, % precedes the printed
number. If rounding makes the number exceed the
field, % precedes the rounded number.

PRINT USING "##.##":110.22
%110.22

Ok
PRINT USING ".## ";.9999
%1.00
Ok

The specified number of digits may not exceed 24
or an "Illegal function call" error will occur.

7-202

PRINT # and PRINT #USING Statements

Syntax: PRINT #filenum, [USING list of exps

Purpose: Writes data into a specified file.

Comments: filenum is the number assigned to the file when it
was OPENed for output.

v$ is a string expression composed of formatting
characters as described for the PRINT USING
statement.

list of exps is a group of numeric and/or string
expressions to be written to the file.

PRINT # writes an image of the data, as it would
be displayed on the screen with a PRINT state
ment, to the file.

Numeric expressions in the list can be separated
by semicolons or commas. If commas are used, the
extra blanks inserted between print fields are writ
ten with the data to the file. When semicolons are
used, the data is written to the file just as a
PRINT statement would display it. Listed string
expressions must be separated by semicolons.

When string expressions are written to the file, no
delimiters are placed between the items of data.

For example, if F$="FILE" and
B$='T5", the statement

PRINT #1,F$:B$

7-203

would write FILE 15 to the file, which cannot be
read as two separate strings. To correct this, place
explicit delimiters as data into the PRINT #
statement as follows:

PRINT

The image then written to the file is:

FILE,15

which can be read back out into two strings.

When strings containing commas, semicolons, sig
nificant leading blanks, carriage returns, or line
feeds are written to the file, they should be expli
citly delimited by double quotes using CHR$(34),
as shown below.

PRINT #1 ,CHR$(34);F$;CHR$(34);CHR$(34);
B$;CHR$(34)

The following image would be written to the file:

"FILE, PERSONNEL"" 15"

Delimiter problems can be avoided by using the
WRITE # statement which enters delimiters auto

matically.

7-204

PSET and PRESET Statement

Syntax: PSET {xj) [,color]

PRESET (x^y) [,color]

Purpose: Draws a point at a specified screen position.
Graphics mode only.

Comments: {x^) represent the coordinates of the point to be
set, and may be in absolute or relative form.

color specifies the color of the point, and may be
from zero to 3. In medium resolution, the color is
selected from the current palette as defined by the
COLOR statement. Zero is the background color,
and the default is the foreground color, number 3.
In high resolution, if color zero, black is used, and
the default, 1, indicates white.

The only difference between these statements is
that if color is not included with PRESET, the
background color zero is selected.

If an out-of-range coordinate is included with
PSET or PRESET no action is taken nor does an

error occur.

Examples: Lines 200 through 400 of this example draw a
diagonal line from the point (0,0) to the point
(100,100). Then lines 600 through 800 erase the
line by setting each point to color zero.

100 SCREEN 1
200 FOR J=0 TO 100
300 PSET (J.J)
400 NEXT
500 'erase the line

600 FOR J=0 TO 100
700 PRESET STEP (-1. -1)
800 NEXT

7-205

PUT Statement (Files)

Syntax: PUT \#\filenum number^

Purpose: Writes a record from a random file buffer to the
file.

Comments: filenum represents the number under which the file
was OPENed.

number is the record number of the record to be
written, and can be from 1 to 32767.

If number is omitted, the default is the next avail
able record number (after the latest PUT).

PRINT #, PRINT # USING, WRITE #, LSET,
and RSET are used to place characters in the
buffer prior to a PUT statement. With WRITE #,
the buffer is padded with spaces up to the carriage
return.

An attempt to read or write past the end of the
buffer will cause a "Filed overflow" error.

PUT can be applied to a communications file, in
which case number represents the number of bytes
to write to the file. This number must be less than
or equal to that set by the OPEN"COM... state
ment LEN option.

7-206

PUT Statement (Graphics)

(BASICA only)
Syntax: PUT {x^) ,array [,action]

Purpose: Writes colors on a specified screen area.

Comments: {xji) represents the coordinates of the top left
corner of the image to be transferred.

array is the name of numeric array containing the
information to be transferred. The description of
the Graphics GET statement gives more informa
tion on this array.

action is one of the following: PSET, PRESET,
XOR, OR, and AND, with XOR the default.

PUT performs the opposite function of GET in the
sense that it takes data from an array and puts it
on the screen. However, it also gives the option of
interacting with the data transferred to the screen,
by using the action parameter.

PSET as a PUT action simply places the data
from the array on the screen, so it is the true
opposite of GET.

PRESET acts the same as PSET except that a
negative image is displayed. That is, a color of
zero in the array causes the corresponding point to
be color number 3, and vice versa; and a value of 1
in the array makes the corresponding point color
number 2, and vice versa.

7-207

AND transfers the image only if an image already
exists under the transferred image.

OR superimposes the array image onto an existing
image.

XOR is a special mode that can be used for
animation. It inverts the screen points where a
point exists in the array image. A unique property
of XOR is especially useful for animation: when an
image is PUT against a complex background twice,
the background is restored unchanged, allowing
you to move an object without obliterating the
background.

In medium resolution, AND, XOR, and OR effect
on color as shown below:

AND

array value

0 1 2 3

0 0 0 0 0

. 1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

7-208

OR

XOR

array value

0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

array value

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

An object can be animated as follows:

1. PUT the object on the screen (using XOR).

2. Recalculate the object's new position.

3. PUT the object on the screen (using XOR) a
second time in the old location, to remove the
old image.

7- 209

4. Return to step 1, this time PUTting the object
in the new location.

When movement is done this way, the background
is left unchanged. Flicker can be reduced by
shortening the time between steps 4 and 1, and
making sure there is enough of a time delay be
tween steps 1 and 3. If more than one object is
being animated, all should be processed at once,
one step at a time.

If preserving the background is not important,
animation can be done with the PSET action verb.

But remember to have an image area to contain
the "before" and "after" images of the object, so
that the extra area will effectively erase the old
image. This method may be somewhat faster than
the method with XOR described above, as only
one PUT is required to move an object (although
you must PUT a larger image).

If the image to be transferred is too large to fit on
the screen, you will get an "Illegal function call"
error message.

7-210

RANDOMIZE Statement

Syntax: RANDOMIZE [n]

RANDOMIZE TIMER

Purpose: Reseeds the random number generator.

Comments: n represents an integer, single- or double-precision
expression to be used as the random number seed.

If n is omitted, execution is suspended and the
following prompt appears:

Random number seed (-32768 to 32767)?

before RANDOMIZE is executed.

If the random number generator is not reseeded,
the RND function will return the same sequence of
random numbers each time the program is run. To
change the sequence whenever the program is run,
place a RANDOMIZE statement at the beginning
of the program and change the seed with each run.

BASIC 2.0 and later provide a way to reseed the
number generator without prompting the user.
Use the TIMER function to get a new random
number seed each time the program runs.

7-211

Examples: The following statements will cause the prompt for
the random number seed to be displayed four
times.

100 RANDOMIZE ^
200 FOR J=1 TO 4
300 PRINT RND;
400 NEXT J
RUN
Random number seed (-32768 to 32767)?

If you enter 3, the program will print:

.2226007 .5941419 .2414202 .2013798

In the next example, the rightmost digit of current
time returned by TIMES is used as the seed.

100 N=VAL(RIGHT$(TIME$.1))
200 RANDOMIZE (N)
300 FOR J=1 TO 4
400 PRINT RND;
500 NEXT
RUN
.4417627 .1085309 .182628 .9246312
Ok

In this example of the TIMER function, notice
that a different sequence of numbers appears each
time the program is run.

100 RANDOMIZE TIMER
200 FOR J=1 TO 4
300 PRINT RND;
400 NEXT
RUN
.9004419 .4199934 .1857408 .1027928
Ok
RUN
.251745 .8504591 .4412188 .6957341
Ok

7-212

READ Statement

Syntax: READ variable variable]...

Purpose: Reads values from a DATA statement and assigns
each to a variable.

Comments: Variable is the name of a numeric or string variable
or array element to which a value from a DATA
table is to be assigned.

A READ statement assigns a value from a DATA
statement to a variables in the READ statement.

The READ statement variable(s) can be numeric
or string and the DATA value(s) must correspond
in type with the associated variable(s). If this is
not the case, a "Syntax error" occurs.

A single READ statement may access any number
of DATA statement, which are read in the order
they appear, or several READ statements may
access the same DATA statement. If the number

of READ variables exceeds the number of DATA

elements, an "Out of data" error occurs. If the
number of READ variables is less than the num

ber of DATA elements, subsequent READ state
ments start reading data at the first unread ele
ment. If no more READ statements appear, the
extra data is ignored.

The RESTORE statement is used to reread data

from any DATA statement line.

7-213

Examples:

80 FOR 1=1 to 10
90 READ X(l)
100 NEXT I
110 DATA 2.08, 5.19, 3.12, 3.98, 4.24
120 DATA 5.08, 5.55, 4.00, 3.16, 3.37

These statements read the DATA statement values

into the array X. After execution of the READ
loop, the value of X(l) is 2.08, X(2) is 5.19, etc.

100 PRINT "CITY", "STATE", " ZIPCODE"
200 READ CTY$,STA$,ZIP
300 DATA "DENVER,",COLORADO,80211
400 PRINT CTY$,STA$,ZIP
RUN
CITY STATE ZIPCODE
DENVER, COLORADO 80211
Ok

This program reads both string and numeric data
from the line 300 DATA statement. Note that

quotes are not needed around COLORADO, be
cause it doesn't contain commas, semicolons, or
significant leading or trailing blanks. But quotes
are needed around "DENVER," because it in
cludes a comma. (The comma after COLORADO
in the DATA statement is the delimiter between

DATA fields.)

7-214

REM Statement

Syntax: REM remark

Purpose: Inserts comments into a program.

Comments: remark can be any sequence of characters.

REM statements are non-executable but are in
cluded in any program listing. However, they do
show execution time somewhat, and use memory
space.

REM statements may be branched to from a
GOTO or GOSUB statement, and execution will
continue with the next executable statement after
the REM.

Remarks preceded hy a single quote or :REM may
be added at the end of a line.

Examples: 100 REM calculating average velocity
200 NUM=0: REM set NUM to zero
300 FOR J=1 to 20
400 NUM=NUM+V(J)

or

100 REM calculating average velocity
200 NUM=0 ' set NUM to zero
300 FOR J=1 TO 20
400 NUM=NUM-l-V(J)

7-215

RENUM Command

Syntax: RENUM \newnum\ \^^incrementW

Purpose: Renumbers specified program lines.

Comments: newnum represents the first line number that will be
used in the new numbering sequence, which de
faults to 10 if omitted.

oldnum represents the current program line where
renumbering is to start, which defaults to line 1 if
omitted.

increment is the amount added to each new line

number to produce the next, which defaults to 10.

In the RENUMbering process, all line number
references following GOTO, GOSUB, THEN,
ELSE, ON...GOTO, ON...GOSUB, RESTORE,
RESUME, and ERL test statements are changed
to reflect the new line numbers. If a nonexistent

line number appears after one of these statements,
the error message "Underfined line number xxxxx
in yyyyy" is displayed. The incorrect line number
reference (xxxxx) is not changed, but line number
yyyyy ^e RENUMbered.

RENUM does not change the line sequence, only
that of the line numbers, or will it create line
numbers greater than 65529.

7-216

Examples: RENUM

Renumbers all the program lines, beginning with
10 and incrementing the numbers by 10.

RENUM 300„50

Renumbers the entire program, starting with line
300 and incrementing by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start
with line number 1000 and are incremented by 20.

7-217

RESET Command

Syntax: RESET

Purpose: Closes all open disk files and clears the system
bufTer.

Comments: If all open files are on disk, then RESET is the
same as CLOSE without file numbers.

7-218

RESTORE Statement

Syntax: RESTORE [line]

Purpose: Allows rereading of a specified DATA statement.

Comments: line represents the line number of a DATA state
ment in the program.

A RESTORE statement without a line number
causes the next READ statement to access the first
item in the first DATA statement in the program.
If line is specified, the next READ statement will
access the first item in the specified DATA state
ment.

Examples: The RESTORE statement in the program below
causes the DATA statement to be read twice.

100 READ X,Y,Z
200 RESTORE
300 READ A,B,C
400 DATA 57,68,90
500 PRINT X:Y:Z
600 PRINT A:B:C
RUN
57 68 90
57 68 90

Ok

7-219

RESUME Statement

Syntax: RESUME [0]

RESUME NEXT

RESUME line

Purpose: Continues program execution after an error recov
ery procedure has been performed.

Comments: The given formats have the following effects:

RESUME or RESUME 0 causes execution to

continue at the statement that caused the error.

Renumbering a program containing a RESUME 0
statement causes an "Undefined line number"

error. The statement will still read RESUME 0,
which will be correct.

RESUME NEXT causes execution to resume at

the statement immediately following the one that
caused the error.

RESUME line causes execution to resume at the

specified line number.

A RESUME statement that is not positioned in
side an error trap routine causes a "RESUME
without error" message to be displayed.

7-220

Examples: Line 100 in the following example states that if
errors occur, the program should branch to the
error-handling routine beginning on line 1000. The
error routine tests the nature and location of the

error, and directs control back to line 800 if error
300 occurred on line 900.

100 ON ERROR GOTO 1000

1000 IF (ERR=300) AND (ERL=900) THEN
PRINT'TRY AGAIN":RESUME 800

7-221

RETURN Statement

Syntax: RETURN [line]

Purpose: Specifies where execution should resume after a
subroutine.

Comments: line represents the number of the program line
where execution should continue.

RETURN line is used to direct control after a

subroutine, and also permits non-local returns
from event-trapping routines. From one of these
routines you will often want to return to the prog
ram at a fixed line number while still eliminating
the GOSUB entry created by trap. Use of the
non-local RETURN must be done carefully,
however, since WHILEs, FORs, or other
GOSUBs active at the time of the trap remain
active.

Refer to GOSUB and RETURN statement.

7-222

RIGHTS Function

Syntax: z;J^= RIGHTS

Purpose: Returns the rightmost n characters of a given
string.

Comments: x$ can be any string expression.

n represents an integer expression that specifies the
number of characters to be returned as the result.

If n is greater than or equal to the length of x$,
then x$ will be returned. If n is zero, the null string
(zero length) will be returned.

Refer also to the MID$ and LEFTS functions.

Examples: The last five characters of the string A$ are re
turned in the following example:

100 A$="DISK BASIC"
200 PRINT RIGHT$(A$,5)
RUN

BASIC
Ok

7-223

RMDIR Statement

Syntax: RMDIR path

Purpose: Removes a directory.

Comments: path is a valid string expression naming the sub
directory to be removed from the existing direc
tory. The string must not exceed 63 characters.

Examples:

ROOT

INVEST INSURE

TAX HOUSE CAR

IRA

7-224

These examples are taken from the directory illus
trated on the previous page.

Starting in the root directory, remove the directory
called IRA.

RMDIR "INVEST\TAX\IRA"

Make INSURE the current directory and remove
the directory called CAR.

CHDIR "INSURE"
RMDIR "CAR"

You can accomplish the same end result as the
above example by making the root the current
directory and then removing CAR.

CHDIR "\"
RMDIR "INSUREXCAR"

You cannot remove the directory preceding the
current directory. If TAX were the current direc
tory and you try to remove the INVEST directory,
you get a Path/file access error message. "File
not found" appears if you try to use the KILL
command to remove a directory.

7-225

RND Function

Syntax: z;=RND[(;c)]

Purpose: Returns a random number between zero and 1.

Comments: x is 3, numeric expression that affects the returned
value as follow:

The same random number sequence is generated
whenever a program is run unles the random
number generator is reseeded. This is usually done
with the RANDOMISE statement. The generator
can also be reseeded by calling the RND function
with a negative argument, which always generates
the particular sequence for the given x. This sequ
ence is not affected by RANDOMIZE, so using a
different negative x for each run generates a diffe
rent sequence each time.

If X is positive or omitted, the next random num
ber in the sequence is generated.

If X is zero, the last generated number is repeated.

To generate random numbers from zero through n,
use the formula:

INT(RND*(w+l))

7-226

Examples: This example generates ten random numbers be
tween zero and ten.

10X=RND(-1)
20 FOR 1=1 TO 10
30 PRINT INT (RND(1)*11):
40 NEXT

RUN

7501616304
Ok

7-227

RUN Command

Syntax: RUN [line]

RUN filespeclR]

Purpose: Executes the program in memory.

Comments: line represents the line number of the program in
memory where execution is to begin.
filespec represents the string expression for the file
specification.

RUN and RUN line begin execution of the prog
ram in memory. If line is included, execution starts
with the specified line number. RUN alone begins
execution at the lowest line number.

RUN filespec causes all open files to be closed, and
the current contents of memory to be deleted; then
the specified file is loaded into memory and run.
However, if R is included, all data files will remain
open.

Execution of a RUN command turns off any sound
that is running and resets to Music Foreground.
Also, STRIG is reset to OFF.

Examples: 10 PRINT 10^3
RUN
1000

Ok
100 A=10:B=50
200 PRINT B-A
RUN 200
0
Ok

7-228

In this example, the first form of RUN is used on
two very tiny programs. The first runs from the
beginning. The RUN line option is used in the
second example, so the program runs from line
200. Thus, line 100 is not executed, so A and B are
not assigned, and zero is printed because all
numeric variables have an initial value of zero.

RUN "PR0G2",R

The next example loads the program "PROG2"
from disk and runs it, leaving files open.

7- 229

SAVE Command

Syntax: SAVE jilespec [,A]

SAVE Jilespec [,P]

Purpose: Stores a BASIC program on disk.

Comments: jilespec represents the string expression for the file
specification.

If the filename is eight characters or less and no
extension is given, the extension .BAS is supplied
by BASIC. A disk file with the same filename will
be written over.

When A is included, the program is saved in
ASCII format. Otherwise, BASIC uses a com
pressed binary format. ASCII files use more stor
age space, but some types of access require that
files be in this format. For instance, a file to be
MERGed must be stored in ASCII format. A

program saved in ASCII can be read as a data file.

The P (protection) option will save the program in
an encoded binary format. A protected program
cannot be LISTed or EDITed and cannot be

"unprotected".

Examples: The program in memory is saved as a disk file
named PROG2.BAS:

SAVE "PR0G2"

7-230

PROG2.BAS is saved in ASCII, so it may later be
MERGed:

SAVE "PR0G2",A

PROG2.SEC is saved into Drive B, protected so it
cannot be altered:

SAVE "B:PR0G2.SEC",P

7-231

SCREEN Function

Syntax: v=SCREEN{row,col[,z])

Purpose: Returns either the ASCII code (zero-255) for a
specified screen character, or its color. ASCII
codes are listed in Appendix C.

Comments: row is a numeric expression whose value ranges
from 1 to 25.

col is a numeric expression whose value ranges
from 1 to either 40 or 80, depending on the
WIDTH setting.

Row and col are used to specify the position of a
point on the screen.

is a numeric expression whose result is a true or
false value, and is valid only in text mode.

Z is included and is true (non-zero), the return,
though still a number from zero to 255, represents
the color attribute for the character rather than the
ASCII code. This number, v, may be interpreted
as follows:

{v MOD 16) represents the foreground color.

{{{v-foreground)l\^) MOD 128) represents the
background color, with foreground calculated
as above.

{v>\21) is true (—1) for a blinking character,
otherwise false (zero).

7-232

The COLOR statement gives a list of colors and
their associated numbers.

In graphics mode, if the specified location contains
graphic information (points or lines, as opposed to
just a character), then zero is returned.

Examples: The ASCII code for the character as position
(70,70) will be assigned to J.

10 J=SCREEN (70,70)

Here the color attribute of the character in the
upper left hand corner of the screen will be
assigned to J.

100 J=SCREEN (1,1,1)

7-233

SCREEN Statement

Syntax: SCREEN \mode\ _,[^cipage\ [^vpage^W

Purpose: Sets screen attributes that control the subsequent
display.

Comments: mode represents a numeric expression that results
in an integer value of zero, 1, or 2. Valid vaules
are:

zero=Text mode with current width (40 or 80).

1 = Medium resolution graphics mode (300X200)

2 = High resolution graphics mode (640x200)

burst is a numeric expression that results in a true
or false value. In medium resolution graphics
mode {mode—X)^ a true value disables color, and a
false falue enables it. This parameter cannot affect
high resolution {mode=2) and text mode
{mode=ztYo).

apage (active page)
is an integer expression ranging from zero to 7 for
width 40, or zero to 3 for width 80 that selects the
page to be written to by output statements to the
screen, and is valid only in text mode.

vpage (visual page)
specifies which page is to be displayed on the
screen, in the same way as apage, which may be
different. Vpage is valid only in text mode, and if
not specified, defaults to apage.

7-234

If all parameters are valid, the new screen mode is
stored, the display is erased, the foreground color
is set to white, and the background and border
colors to black. Any subsequent screen output will
be displayed according to the newly stored screen
attributes. If the new mode is the same as the
previous one, nothing changes.

In text mode, with only apage and vpage specified,
the effect is that of changing display pages for
viewing. Initially, both pages default to zero. By
manipulating the pages, you can display one page
while building another, then switch visual pages
instantaneously.

Note: One cursor is shared between all the

pages. To switch active pages back and forth,
first save the cursor position on the current
active page with POS(O) and CSRLIN before
changing to another active page. Then, on
returning to the original page, the cursor posi
tion can be restored with the LOCATE state

ment.

Any omitted parameter, except vpage, assumes the
old value.

In a program intended to run on a machine that
may have either adapter, it is recommended that
you use SCREEN 0,0,0 and WIDTH 40 state
ments at the beginning.

Examples: The first example specifies text mode with color,
and sets both the active and visual pages to zero:

SCREEN 0,1,0,0

7-235

The next statement leaves mode and color burst

unchanged, but sets the active page to 1 and the
visual page to 2:

SCREEN ,,1,2 ^

This statement changes to high resolution graphics
mode:

SCREEN 2

7-236

SGN Function

Syntax: z;=SGN(a:)

Purpose: Returns the sign of a specified number.

Comments: x represents any numeric expression.

If X positive, 1 is returned. If x is zero, zero is
returned. If x is negative, —1 is returned.

Examples: The following statement shows how SGN can be
used.

ON SGN(J)+2 GOTO 1000,2000,3000

The program branches to line 1000 if J is negative,
line 2000 if J is zero, and to line 3000 if J is
positive.

7-237

SHELL Statement

Syntax: SHELL [command string]

Purpose: Loads and executes other programs from BASIC.

Comments: command string is a valid string expression contain
ing the name of the program to run and optional
command arguments. The specified program name
may have any extension. If no extension is given,
COMMAND will look for a .COM file, then a
.EXE file, and finally a .BAT file. If the program
is still not found a "Bad command or filename"

error is returned.

BASIC remains in memory while the child process
is running and continues when the child finishes.
You cannot SHELL another copy of BASIC. If
you attempt to do this, you will receive this error
message "You can not run BASIC as a child of
BASIC.

When the command string is omitted, SHELL gives
you a new COMMAND shell. You may then
perform any actions that COMMAND allows. To
return to BASIC, type the DOS command EXIT.

A Child process that alters any open file in the
BASIC parent may bring unexpected or disaster-
ous results. When you must update such files,
CLOSE them in the parent before executing the
SHELL command, then re-OPEN them when the
program returns to BASIC.

7-238

Before BASIC "SHELLs" to COMMAND it

attempts to free any available memory, except
when a /M option has been included in the BASIC
command line. When /M is in effect, BASIC
assumes that you intended to load data in the top
of BASIC'S memory block. Therefore, BASIC is
prevented from compressing the workspace and an
"Out of memory" error message may result. To
prevent this, load machine language subroutines
BEFORE BASIC is run. Place "Pocket Code" at

the end of machine language subroutines that
allows them to exit to DOS and stay resident.
"Load" these subroutines by running them pre
vious to BASIC.

A child process cannot 'terminate and stay resi
dent". This does not leave BASIC enough memory
to expand the workspace to its original size. If this
occurs you will receive the error message "SHELL
can't continue", all files are closed, and BASIC
exits to DOS.

Notes: There are several factors to keep in mind when
running a Child process. .BASIC is not completely
protected when a SHELL statement is executed.
Keep in mind the following guidelines to prevent
child processes from harming the BASIC environ
ment.

It is recommended that the state of all hardware

be maintained during a SHELL command. While
the implementation interface provides a means of
accomplishing this, it may be necessary for BASIC
users to avoid using certain devices within child
processes executed by SHELL. In particular keep
in mind:

7-239

child processes may modify screen mode para
meters

remember to save

used by the child
and restore interrupt vectors

many devices placed in a specific state by BASIC
may be utilized by the child. You should be aware
that there may be limitations on the use of these
devices (Interrupt Controller, Counter Timers,
DMA Controller, I/O Latch, and Uarts).

Examples: The following example gets a new COMMAND
shell, lets the user look at the directory to see files
and then returns control to BASIC:

SHELL 'get a new COMMAND
A> DIR (user locks at directory)
A> EXIT (user exits to system)

The following example writes some data, sorts the
data with the SHELL SORT, and reads the sorted
data to write a report.

10 OPEN "SORTIN. DAT" FOR OUTPUT AS #1
• 'write data to be sorted

1000 CLOSE 1
1010 SHELL "SORT <SORTIN. DAT
>SORTOUT.DAT"

1020 OPEN "SORTOUT.DAT" FOR INPUT AS #1
• 'process the sorted data

7-240

SIN Function

Syntax: z;=SIN(;c)

Purpose: Calculates the trigonometric sine function for a
given angle.

Comments: x represents an angle in radians.

Multiply degrees by 3.141593/180 to convert to
radians.

The return will be a single precision value.

Examples: The following example calculates the sine of 90
degrees, after converting 90 degrees to radians.

100 Pl=3.141593

200 PRINT SIN(PI/2)
RUN

1

Ok

7-241

SOUND Statement

Syntax: SOUND freq^ duration

Purpose: Generates specified sound.

Comments: freq represents the desired Hertz frequency (cycles
per second), and must be numeric expression
whose result ranges from 19 to 32767.

duration represents the desired duration in clock
ticks, which occur 18.2 times per second, duration
must be a numeric expression whose result ranges
from zero to 65535.

When a SOUND statement produces a sound, the
program continues executing until another
SOUND statement appears. If the duration of the
new SOUND is zero, the current SOUND is
turned off. Otherwise, the program waits until the
first sound is completed before executing the new
SOUND statement. Sounds can be buffered so
that execution will not stop when a new SOUND
statement is encountered. Refer to the MB com
mand under the PLAY statement for details.

If no SOUND statement is being executed,
SOUND X, 0 will have no effect.

The following table lists frequencies for each note
in the two octaves on either side of middle C,
which is indicated with*.

7-242

Note Frequency Note Frequency

C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460

G 196.000 G 783.990
A 220.000 A 880.000

B 246.940 B 987.770

C 261.630 C 1046.500

D 293.660 D 1174.700

E 329.630 E 1318.500
F 349.230 F 1396.900

G 392.000 G 1568.000

A 440.000 A 1760.000

B 493.880 B 1975.500

Higher (or lower) notes can be approximated by
doubling (or halving) the frequency of the corres
ponding note in the previous (following) octave.

SOUND 32767, duration will create periods of si
lence.

The duration for each beat can be calculated by
dividing the beats per minute into 1092 (the num
ber of clock ticks in one minute).

The following table shows typical tempos in terms
of clock ticks:

7-243

Tempo
Beats/

Minute

Ticks/

Beat

very slow Larghissimo
Largo 40-60 27.3-18.2

Larghetto 60-66 18.2-16.55

Grave -

Lento

>/ Adagio 66-76 16.55-14.37

slow Adagietto
Andante 76-108 14.37-10.11

medium Andantino

Moderato 108-120 10.11-9.1

fast Allegretto
Allegro 120-168 9.1-6.5

Vivace

Veloce

\/ Presto 168-208 6.5-5.25
very fast Prestissimo

Examples: The program below creates random notes.

10 FOR 1=1 TO 30
20 SOUND RND*1000+19,2
30 NEXT

7- 244

SPACES Function

Syntax: !:;5=SPACE$(n)

Purpose: Returns a string a given number of spaces long.

Comments: n must be a value from zero to 255.

Examples: The following example uses the SPACES function
to print each J on a line preceded by J spaces. An
additional space appears because BASIC inserts a
space in front of positive numbers.

100 F0RJ=1 to 4
200 M$=SPACE$(J)
300 PRINT M$:J
400 NEXTJ
RUN

1

2

3
4

Ok

7-245

SPC Function

Syntax: PRINT SPC(k)

Purpose: Skips a given number of horizontal spaces in a
PRINT statement.

Conunents: n must be a number from zero to 32767. If greater
than the defined device width, then n MOD width
is used.

SPC can only be used with PRINT, LPRINT and
PRINT#.

If the SPC function appears at the end of the list of
data items, then BASIC does not add a carriage
return, as though SPC were followed by an im
plied semicolon.

Examples: PRINT "MOVE" SPC(15) "OVER-
MOVE OVER

Ok

This example prints two words separated by 15
spaces.

7-246

SQR Function

Syntax: t;=SQR(A:)

Purpose: Returns the square root of a given value.

Comments: x must be either zero or positive.

Examples: The following example calculates the square roots
of the numbers 2, 4, 6 and 8.

100 FOR R=2 TO 8 STEP 2
200 PRINT R, SQR(R)
300 NEXT
RUN

12

4

6
8

Ok

.414214
2

2.44949
2.828427

7-247

STICK Function

Syntax: z;=STICK(w)

Purpose: Returns the x or y coordinates of one of two
joysticks.

Comments: w is a numeric expression whose value ranges from
zero to 3, and specifies the result as follows:

zero will return the x coordinate of joystick A.

1 will return the x coordinate of joystick A.

2 will return the x coordinate of joystick B.

3 will return the y coordinate of joystick B.

If n is zero, all four coordinate values are
retrieved and the value for joystick A is re
turned. STICK(l), STICK(2), and
STICK(3) do not test the joystick, but instead
they get the values previously retrieved by
STICK(O).

The X and y range depend on your particular
joysticks.

Examples: This program takes the coordinates of joystick A
50 times and prints them.

100 PRINT "Joystick A"
200 PRINT "X", "y"
300 FOR M=1 TO 50
400 VALS=STICK(0)
500 A1=STICK(0): A2=STICK(1)
600 PRINT A1,A2
700 NEXT

7-248

STOP Statement

Syntax: STOP

Purpose: Stops executing a program and returns to com-
mand level.

Comments: STOP statements may appear anywhere in a prog
ram to terminate execution. When a STOP state
ment is encountered, BASIC displays the following
message:

Break in nnnnn

nnnnn is the line number where execution

stopped.

The STOP statement does not close files. (The
END statement closes files.)

Execution can be resumed with a CONT com
mand.

Examples: The following example calculates the value of
NUM, then stops. While the program is stopped,
you can check the value of NUM. Then you can
enter CONT to resume executing at line 400.

7-249

100 INPUT X,Y
200 NUM=X*Y
300 STOP
400 FINAL=NUM+30: PRINT FINAL
RUN
? 3.4, 2.7
Break in 300
OK
PRINT NUM
9.18

Ok
CONT
39.18

Ok

7-250

STR$ Function

Syntax: :;^=STR$(a;)

Purpose: Returns a string representation of the value of a
given numeric expression.

Comments: x can be any numeric expression.

If X is positive, the returned string includes a
leading blank (the space reserved for the plus
sign). For example:

? STR$(521): LEN(STR$(521))
521 4
Ok

STR$ is the complementary function to VAL.

Examples: This example branches to different sections of the
program depending on the number of digits in an
entered number. The digits are counted to con
verting the number to a string with STR$, then
branching based on the string's length.

100 INPUT "ENTER A NUMBER":NUM
200 ON LEN(STR$(NUM)) GOSUB 300,400,500,600

7-251

STRIG Statement and Function

Syntax: STRIG statement

STRIG ON

STRIG OFF

STRIG function:

STRIG (n)

Purpose: Returns the status of the joystick buttons (trig
gers).

Comments: STRIG ON must be executed before any
STRIG(w) function calls can be made. After
STRIG ON, each time the program starts a new
statement BASIC tests whether a button has been

pressed.

If STRIG is OFF, no testing is done.

w is a numeric expression whose value may range
from zero to 7. It specifies characteristics of the
return as follows:

n=zero will return —1 if button A1 was pressed
since the last STRIG(O), and zero if not.

1 will return —1 if button A1 is currently
pressed, and zero if not.

2 will return —1 if button B1 was pressed
since the last STRIG(2), and zero if not.

7-252

Swill return —1 if button B1 is currently
pressed, and zero if not.

4 will return — 1 if button A2 was pressed
since the last STRIG(4), and zero if not.

5 will return-1 if button A2 is currently press
ed, and zero if not.

6 will return-1 if button B2 was pressed since
the last STRIG(6), and zero if not.

7 will return-1 if button B2 is currently press
ed, and zero if not.

7-253

STRIG(n) Statement

Syntax: STRIG(n) ON

STRIG(n) OFF

STRIG(n) STOP

Purpose: Activates and deactivates trapping of the joystick
buttons.

Comments: n can be 0, 2, 4, or 6, and specifies the button to be
trapped as follows:

zero=button A1

2=button B1

4=button A2

6=button B2

STRIG(w) ON must be executed to activate trap
ping by the ON STRIG(n) statement. After
STRIG(w) ON, whenever the program starts a
new statement, BASIC checks to see whether the
specified button has been pressed.

If STRIG(n) OFF is executed, no testing or trap
ping is done. Even if the button is pressed, the
event is not noted.

If STRIG(w) STOP is executed, no trapping is
done, but if the button is pressed, the event is
remembered, and an immediate trap takes place if
STRIG(n) ON is executed.

7-254

STRINGS Function

Syntax: !:)1= STRINGS (n,m)

:'l=STRING$(n,xl)

Purpose: Returns a string of length n composed either of
characters with ASCII code m or the first charac
ter of a specified string.

Comments: n and m range from zero to 255.

x$ can be any string expression.

Examples: The following example repeats an ASCII value of
45 to print a string of 5 hyphens.

100 S$=STRING$(5.45)
200 PRINT 3$ "TABLE OF CONTENTS" 8$
RUN

TABLE OF CONTENTS
Ok

The next example repeats the first character of the
string

100 S$="*..."
200 X$=STRING$(5,S$)
300 PRINT X$
RUN
« « « « «

Ok

7-255

SWAP Statement

Syntax: SWAP variable 1, variable2

Purpose: Exchanges the values of two given variables.

Comments: variablel, variable2 represent the names of two vari
ables or array elements.

The two variables must be the same type or a
"Type mismatch" error will occur.

Examples: In the following example, when line 300 is ex
ecuted, ST1$ has the value "ME" and ST2$ has
the value "YOU".

100 ST1$="Y0U";ST2$="ME":ST3$=" FOR "
200 PRINT ST1$ ST3$ ST2$
300 SWAP ST1$, ST2$
400 PRINT ST1$ ST3$ ST2$
RUN
YOU FOR ME
ME FOR YOU
Ok

7-256

SYSTEM Command

Syntax: SYSTEM

Purpose: Exits BASIC and return to DOS.

Comments: All files are closed before the return to DOS. The
BASIC program in memory will be lost.

If you entered BASIC via a Batch file from DOS,
SYSTEM returns you to the Batch file, which
continues executing where it left off.

7-257

TAB Function

Syntax: PRINT TAB(k)

Purpose: Skips to a given print line position to print the
next item.

Comments: n must range from 1 to 32767.

If the current print position is already past space
w, TAB goes to position n on the next line. Space 1
is at the left margin, and rightmost position is the
defined WIDTH.

TAB may only be used with PRINT, LPRINT,
and PRINT#

If the TAB function appears at the end of the list
of data items, then BASIC will not add a carriage
return, as if the TAB function had an implied
semicolon after it.

Examples: TAB is used in the following example to line up
the displayed information in columns.

100 PRINT "NAME" TAB(25) "NUMER":PRINT
200 READ M$, N$
300 PRINT M$ TAB(25) N$
400 DATA "B. J. FELDMAN"/7165"

NAME NUMBER

B. J. FELDMAN
Ok

7165

7-258

TAN Function

Syntax:

Purpose:

Comments:

Examples:

r;=TAN(x)

Returns the trigonometric tangent of a given angle.

X represents the angle in radians. Multiply degress
by 3.141593/180 to get radians.

The return is a single precision value.

This example computes the tangent of 45 degrees.

100 Pl=3.141593
200 PRINT TAN(PI/4)
RUN
1

Ok

7- 259

TIMER Function

Syntax: y=TIMER

Purpose: Tracks the number of elapsed seconds since mid
night or system reset. For use in BASIC 2.0 and
later only.

Comments:

Example:

TIMER returns a single-precision number. Frac
tional second are expressed in the nearest possible
degree. This is a read only function.

100 TIME$="23:59
200 FOR 1=1 to 15
300 PRINT "TIMES
400 NEXT
RUN
TIMES= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59
TIMES= 23:59:59
TIME$= 00:00:00
TIME$= 00:00:00
TIME$= 00:00:00
TIME$= 00:00:00
TIME$= 00:00:00
TIMES= 00:00:00
Ok

59"

= "TIMES,"TIMER= "TIMER

TIMER=

TIMER=
TIMER=

TIMER=

TIMER=
TIMER=

TIMER=

TIMER=
TIMER=
TIMER=

TIMER=
TIMER=
TIMER=

TIMER=
TIMER=

86399.11
86399.22
86399.39
86399.5
86399.61
86399.72
86399.83
86399.94
86400.05
.05

.21

.32

.43

.49

.6

7-260

TIMER Statement

(BASICA only)
Syntax: TIMER ON

TIMER OFF

TIMER STOP

Purpose: Enables and disables trapping of the timer in a
BASIC program.

Comments: TIMER ON enables timer event trapping by an
ON TIMER statement. After TIMER ON state

ment, if a non-zero line number was included in
the ON TIMER statement then whenever BASIC

starts a new statement it checks to see if the

specified period of time has elapsed. If so, it will
perform a GOSUB to the specified line number,
and BASIC starts counting again.

TIMER OFF disables trapping; if the specified
period of time has elapsed, the event is not noted.

After TIMER STOP, no trapping takes place, but
if the specified period of time has elapsed, the
action is remembered, and an ON TIMER state
ment will be executed as soon as trapping is
enabled.

7-261

TIME$ Variable and Statement

Syntax: TIMES variable:

v$ = TIMES

TIMES statement:

TIMES = x$

Purpose: Sets or reads the current time.

Comments: The variable (vS=TIMES) returns the current
timing of the form hh:mm:ss, where hh is the hour
(00 to 23), mm represents minutes (00 to 59), and
ss is seconds (00 to 59).

The statement (TIMES=xS) is used to set the
current time. xS is a string expression that indi
cates the time to be set, and may be specified in
one of the following forms:

hh sets the hour from zero to 23, with
minutes and seconds defaulting to
zero.

hh:mm sets the hour and minutes. Minutes

must range from zero to 59.
Seconds will default to zero.

hh:mm:ss sets the hour, minutes, and
seconds, with the seconds ranging
from zero to 59.

7-262

Examples: The following example will display the current
time.

PRINT TIMES
13:50:07

7-263

TRON and TROFF Commands

Syntax: TRON

TROFF

Purpose: Traces the execution of program statements.

Comments: As a debugging aid, TRON (which can be entered
in indirect mode) activates a trace flag that prints
each program line number as it is executed. The
numbers are printed enclosed in square brackets.
TROFF turns off the trace.

Examples: In the following example, the numbers inside
brackets are line numbers; the numbers not en
closed in brackets at the end of each line are the

values of B, A, and C that the program prints on
line 400.

100 A=15
200 FOR B=1 TO 2
300 C=A -1-10
400 PRINT B;A;C
500 A=A+10
600 NEXT

700 END
TRON

RUN

[100
500
500

Ok
TROFF
Ok

[200][300][400] 1 15 25
[600 300[400] 2 25 35
[600 700

7-264

USR Function

Syntax: v = USR[n](flr^)

Purpose: Calls the specified machine language subroutine
with a given argument.

Comments: n must range from zero to 9 and correspond to the
digit given by the DEF USR statement for the
desired routine. If n is omitted, a value of zero is
assumed.

arg represents a numeric expression or string vari
able, which will be passed as the argument to the
machine language subroutine.

Examples: In the following example, the address of function
USRO is specified in line 400. Line 500 calls USRO
with the argument A/2. Line 600 calls the same
function again, this time with the argument A/3.

100 CLEAR ,&HCOOO
200 DEF SEG
300 BLOAD "SUB1", &HCOOO
400 DEF USRO=&HCOOO
500 X=USR0(A/2)
600 Y=USR(A/3)

7-265

VAL Function

Syntax: v ='VAL(xS)

Purpose: Returns the numeric value of a given string.

Comments: xS represents a string expression.

VAL strips blanks, tabs, and line feeds from the
given string to determine the result. For instance,
VAL(" -3") will return -3.

If the first characters encountered in xS are not
numeric, then VAL returns zero.

The STR$ function is used to convert numeric
values to strings.

Examples: The following checks STATE by the VAL func
tion.

10 READ NAM$, C1TY$, STATES, ZIPS
20 IF VAL {ZIPS)<90000 OR VAL (ZIPS)>96699

THEN PRINT NAMS TAB (25) "OUT OF STATE"
30 IF VAL (ZIPS)>=90801 AND VAL (ZIPS)<=90815

THEN PRINT NAMS TAB(25) "LONG BEACH"

7-266

VARPTR Function

Syntax: v = VARPTRivariable)

V = VAKPTR{#Jilemm)

Purpose: Returns the memory address of a given variable or
file control block.

Comments: variable represents the name of a numeric or string
variable or array element in your program, to
which a value must be assigned before the call to
VARPTR.

filenum represents the number under which the file
was OPENed.

The returned address is an integer from zero to
65535, which represents the offset into BASIC's
Data Segment.

The first format will return the address of the first
byte of data associated with variable.

Note: Simple variables should be assigned
before calling VARPTR for an array, since
array addresses change whenever a new sim
ple variable is assigned.

VARPTR is usually used to obtain the address of
a variable or array that will be passed to a USR
machine language subroutine. A call of the form
VARPTR(A(0)) is usually made when passing an
array, so that the lowest-addressed array element
is returned.

7-267

The second format will return the starting address
of the file control block for the specified file, which
differs from the DOS file control block.

Examples: This example reads the first byte in a random file
buffer.

100 OPEN "DATA" AS #1
200 GET #1
300 ADR1=VARPTR(#1)
400 ADR2=ADR1+188
500 ADDR%=PEEK(ADR2)

The following example uses VARPTR to get data
from a variable. In line 300, X gets the address of
the data. Integer data is stored in two bytes,
beginning with the less significant byte. The actual
value stored at location X is calculated in line 400.
The PEEK function reads the bytes, and the
second byte (containing the high-order bits) is
multiplied by 256.

100 DEFINT A
200 A=50
300 X=VARPTR(A)
400 Y=PEEK(X) -I- 256*PEEK(X-l-1)
500 PRINT Y

7-268

VARPTRS Function

Syntax: v$=V ARPTR$ (variable)

Purpose: Returns in character form the memory address of a
variable, and is primarily for use with PLAY and
DRAW in programs that will later be compiled.

Comments: variable represents the name of a program variable.

Note: Simple variables should be assigned
before calling VARPTR$ for an array ele
ment, since array addresses change whenever
a new simple variable is assigned.

VARPTRS returns a three-byte string in this form:

Byte 0: type

type is: 2 integer
3 string

\ 4 single-precision
8 double-precision

Byte 1: low-order byte of variable address

Byte 2: high-order byte of variable address

The returned string is the same as:

CHR$(/j/?^) + MKI$(VARPTR(i;anfl/^/^))

VARPTRS can be used to indicate a variable

name in the command string for PLAY or DRAW.
For example:

PLAY "XA$;" or PLAY "X"+VARPTR$(A$)
PLAY "N=J;" or PLAY "N="-hVARPTR$(J)

7-269

VIEW PRINT Statement

Syntax:

Purpose:

Comments:

Example:

VIEW PRINT to linenum

Sets the limits of the text window.

(BASICA only)

The first linenum defines the upper limits of the text
window, it cannot be less than 1. The second
linenum defines the lower limits of the text window,
it cannot be more than 24.

CLS, LOCATE and SCREEN all operate within
the text window defined by VIEW PRINT. The
screen editor limits functions such as scrolling and
cursor movement to the area within the specified
boundaries.

In the text mode both CLS and <Ctrl> <Home>
clear only the specified text window.

In the graphic mode, if VIEW is not specified, the
text window is cleared. If VIEW is specified, CLS
clears the view port and <Ctrl> <Home> clears
the text window.

When no parameters are specified, the text win
dow includes the entire screen.

The text screen begins at line 5 and extends to line
15.

VIEW PRINT 5 TO 15

7-270

VIEW Statement

(BASICA only)
VIEW [[SCREEN] [(xl jl)-(x2^2) [,[color]
[,[boundary]]]]]

Syntax:

Purpose:

Comments:

Defines viewports (subsets of the viewing surface)
onto which windows will be mapped. Graphics
mode only.

(xl^l) defines the upper-left coordinates of the
viewport. {x2j2) define the lower-right coordin
ates. X and y coordinates must be within the
physical boundaries of the screen. Specifying coor
dinates outside the actual limits of the screen

results in an Illegal function call error. Refer to
"Specificying Graphics Coordinates" on page 6-
25.

color allows you to fill the defined viewpoint with a
color. When color is omitted, the viewport is not
filled. In medium resolution, color can range from 0
to 3. 0 is background color and 3 is foreground
color. In high resolution, 0 (zero) color is black, 1
is white.

boundary draws a line surrounding the viewport, if
space for a boundary is available. When boundary is
omitted, no border is drawn.

7-271

RUN or VIEW with no arguments define the
entire screen as the viewport.

VIEW sorts the x and y pairs. The smallest values
for X and y are place first.

VIEW (100,100)-(20,20)

becomes

VIEW (20,20)-(100,100)

xl cannot equal x2 and yl cannot equal y2. All
other pairings of x and y are possible. The view
port must be contained within the viewing surface.

If you omit the SCREEN argument, all points
plotted are relative to the viewport. This means xl
and x2 are added to the x andj coordinates prior
to plotting the point on the screen. When the
following example is executed, the point plotted by
PSET (0,0),3 will appear at the physical screen
location (10,10).

VIEW (10,10)-(200,100)

If you include the SCREEN argument, the points
are absolute and may be plotted inside or outside
of the viewport. Only those points within the
viewports limits will be visible, however. When the
following example is executed, the point plotted by
PSET (0,0),3 will not appear on the screen be
cause 0,0 is outside of the viewport. The point
plotted by PSET (10,10),3 will appear and be
placed in the upper-left corner as it is within the
viewport.

VIEW SCREEN (10,10)-(200,100)

7-272

To scale using the VIEW statement, simply
change the size of your viewport. A large view
point makes your objects large and small viewport
makes them small.

Notes: When using VIEW, the CLS statement clears only
the current viewport. To clear the entire screen,
first use VIEW to disable the viewports, then use
CLS. <Ctrl> <Home> clears the text window.

Example: 10 SCREEN 1:CLS:KEY OFF
15 WINDOW (-1,-1)-(1,1)
20 GOSUB1000
30 CLS

40VIEW(10,10H50,50)„1
50 GOSUB1000
60 VIEW (70,70)-(200,190)„1
70GOSUB1000
80 END
1000 CIRCLE (0,0),.5,1
1010 PAINT (0,0),2,1
1020 RETURN

7-273

WAIT Statement

Syntax: WAIT port, n[,m\

Purpose: Suspends program execution while testing the sta
tus of an input port.

Comments: port is the port number, and range from zero to
65535.

n, m are integer expressions whose values range
from zero to 255.

The WAIT statement causes program execution to
be suspended until a specified machine input port
develops a specified pattern of bits.

Data read at the port is XORed with m, then
ANDed with n. If the result is zero, BASIC will
loop back and read the port data again. If the
result is not zero, execution resumes with the next
statement. If m is omitted, it defaults to zero.

The WAIT statement is used to test one or more

bit positions on an input port. The bit position
may be tested for either a 1 or a zero. The bit
positions to be tested are specified by setting those
positions in n to ones. If m is not specified, a 1 in
any bit position in m (for which there is a corres
ponding 1-bit in n) causes WAIT to test for a zero
for that bit.

The WAIT statement loops testing of those input
bits specified by Ts in n. If any one of them is 1 (or
zero if the corresponding m bit is 1), then the
program continues on the next statement. Thus
WAIT does not wait for an entire bit pattern to
appear, only for one of them to occur.

7-274

Note: It is possible to enter an infinite loop
with WAIT, which can be exited with Ctrl-
Break or a System Reset.

Examples: To halt execution until port 30 receives a 1-bit in
the third bit position:

500 WAIT 30,3

7-275

WHILE and WEND Statements

Syntax: WHILE expression

oop statements)

WEND

Purpose: Executes a series of statements as a loop for as
long as a specified condition is true.

Comments: expression can be any numeric expression.

If the expression is true (not-zero), the loop statements
are executed until the WEND statement appears.
BASIC then goes back to the WHILE statement
and tests the expression. If it is not true, execution
will continue with the statement after the WEND
statement.

A WHILE...WEND loop can be nested to any
level. Each WEND will be matched with the most
recent WHILE. An unmatched WHILE will cause
a "WHILE without WEND" error, and an un
matched WEND will cause a "WEND without
WHILE" error.

7-276

Examples: The following example sorts the elements of the
string array X$ into alphabetical order. X$ was
defined with M elements.

400 SWITCH=1
410 WHILE SWITCH
415 SWITCH=0
420 FOR J=1 TO M-1
430 IF X$(J)>X$(J+1) THEN

SWAP X$(J),X${J+1): SWITCH=1
440 NEXT J
450 WEND

7-277

WIDTH Statement

Syntax: WIDTH size

WIDTH jilenum.size

WIDTH device ,size

Purpose: Sets the length of the output line in number of
characters. After outputting the specified number
of characters, BASIC will add a carriage return.

Comments: size is a numeric expression, whose value ranges
from zero to 255 that represents the new width.
WIDTH with size=ztYo is the same as WIDTH 1.

filenum is a numeric expression whose value ranges
from 1 to 255 that is the number of a file opened
for one of the devices listed below.

device is a string expression that identifies the out
put device. Valid device specifications are SCRN:,
LPTl:, LPT2:, LPT3:, COMl:, or COM2:.

Depending on which device is specified, the follow
ing results are possible:

WIDTH size

Sets the screen line width. Either 40 or 80 is

allowed for the size.

7-278

If the screen is in medium resolution graphics
mode (as would result from a SCREEN 1
statement), WIDTH 80 will force the screen
into high resolution (same effect as SCREEN
2).

If the screen is in high resolution graphics
mode (as would result from a SCREEN 2
statement), WIDTH 40 will force the screen
into medium resolution (same effect as
SCREEN 1).

WIDTH device,size

Used as a deferred width setting for the de
vice. This form of WIDTH stores the new

width, but does not change the current width.
The next OPEN to the device will use the

deferred width while the file is open.

Note: LPRINT, LLIST, and LIST,
"LPTn:" perform an implicit OPEN and
so are affected by this statement.

WIDTH jilenum,size

The width of the device associated with filenum
will immediately be changed to the specified
size, allowing you to change the width at will
while the file is open. This form of WIDTH
can be used for all devices.

Each printer's width defaults to 80 when BASIC is
started. The maximum width for a line printer is
132. However, values between 132 and 255 do not
cause an error.

7-279

Examples:

You must set the appropriate physical width for
the printer you have. Some printers are set with
special codes; some with internal switches.

Line folding can be disabled by specifying a width
of 255, which gives the effect of "infinite" width.
This setting is the default for communications files.

Changing the width of a communications file will
not alter either the receive or the transmit buffer; it
will simply cause BASIC to send a carriage return
character after every line defined by size.

Changing the screen mode affects the width only if
you move between SCREEN 2 and SCREEN 1 or
SCREEN 0.

In the following example, line 10 sets a printer
width of 20 characters per line. Line 40 changes
the width to 5 characters per line. The result is
output to the printer.

10 OPEN "0". #1, "LPT1:"
20 WIDTH #1,20
30 PRINT#1, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
40 WIDTH #1,5
50 PRINT #1."123456789"
RUN

ABCDEFGHIJKLMNOPQRST
UVWXYZ
12345

6789

7-280

WINDOW Statement

(BASICA only)
WINDOW [[SCREEN] {x\j\)-{x2j2)]Syntax:

Purpose: Redefines the coordinates of the screen. Graphics
mode only.

Comments: {x\^y\) are logical coordinates which prog
rammer can define. Logical coordinates are single-
precision, floating-point numbers.

WINDOW allows you to place lines, graphs or
objects using your own coordinates. The rectangu
lar region in the logical coordinate space defined
by these pairs is called a window.

These coordinates are then transformed into the

appropriate physical coordinate pairs for display
within the screen limits.

SCREEN, RUN or WINDOW with no arguments
disables any logical coordinates. The screen re
turns to physical coordinates.

7-281

In the physical coordinate system the screen will
appear with standard coordinates when you run
the following:

NEW; SCREEN 2

0,0 320,0

V

y increases

0,199

320,100

320,199

639,0

639,199

7-282

If you omit the SCREEN agrument, WINDOW
inverts the y coordinate, (xl,yl) is the lower-left
coordinate and (x2,y2) is the upper right coordin
ate. The screen is viewed in true cartesian coordin
ates.

WINDOW

-1,1

A

0,1 1,1

y increases

0,0

V
y decreases

1,-1 0,-1 1,-1

7-283

If you include the SCREEN argument, the y coor
dinates are not inverted, (xl,yl) is the upper-left
coordinate and (x2,y2) is the lower right coor
dinate.

WINDOW SCREEN (-1,

1,-1

A

0,-1

y decreases

1,-1

0,0

V
-1,1

y increases

0,1 1,1

7-284

WINDOW sorts the x and y pairs. The smallest
values for x and y are placed first.

WINDOW (100,100)-(20,20)

becomes

WINDOW (20,20)-(100,100)

x\ cannot equal x2 and jvl cannot equal y2. All
other pairings of x andjv are valid.

WINDOW uses line clipping, a process in which
referenced points outside of a coordinate range are
invisible. Objects partially within and partially
without a coordinate range are cut off at the limits
of the referenced range.

WINDOW allows you to "zoom" in on an object.
Choosing window coordinates smaller than the
images forces clipping. Only a portion of the image
is displayed and magnified. You can zoom in until
an object occupies the entire screen.

You may also use WINDOW to "pan". Choosing
coordinates larger than an image displays the en
tire image, but it will be small and blank spaces
appear on the sides of the screen. You can pan out
until the image is just a spot on the screen.

Example: 100 SCREEN 1:CLS
200 WINDOW (20,20H10.10)
300 CIRCLE (5,5),10,1
400 REM illustration of line clipping
500 WINDOW (-50,-50)-(50,50)
600 CIRCLE (5,5),10,1 'large window, small image

7-285

WRITE Statement

Syntax: WRITE [list of expressions^

Purpose: Displays specified data on the screen.

Comments: list of expressions represents a list of numeric and/or
string expressions that are separated by commas
or semicolons.

If the list of expressions is not included, a blank
line is output. If the list is included, the values of
the expressions are displayed.

When the values of the expressions are written,
each item is separated from the previous one by a
comma. Strings are enclosed in quotes. When the
last item in the list is printed, BASIC adds a
carriage return/line feed.

The difference between WRITE and PRINT is

that WRITE places commas between the display
ed items and delimits strings with quotes. Also,
WRITE does not precede positive numbers with
blanks.

Examples: This example illustrates how WRITE displays
numeric and string values.

100 X=90: Y=100: C$="THAT'S IT"
200 WRITE X,Y,C$
RUN

90,100,"THAT'S IT"
Ok

7-286

WRITE # Statement

Syntax: WRITE #filenum, list of expressions

Purpose: Outputs data to a specified sequential file.

Comments: filenum represents the number under which the file
was OPENed for output.

list of expressions represents a list of string and/or
numeric expressions that are separated by commas
or semicolons.

The difference between WRITE # and PRINT #

is that WRITE # will insert commas between the

items as they are written and will delimit strings
with quotes. Therefore, it is not necessary for the
user to explicitly delimit the listed items. Also,
WRITE # does not precede a positive number
with a blank. A carriage return/line feed sequence
is placed after the last listed item is written.

Examples: IF ITEM$="LEAD PIPE" and NUM$='T8
IN.", the statement

WRITE #1,ITEMS,NUM$

will write the following image to the file:

"LEAD PIPE","18 IN."

A later INPUT # statement, such as:

INPUT #1,ITEM$,NUM$

would input "LEAD PIPE" to ITEMS and "18
IN." to NUMS.

7-287

MEMO

7-288

APPENDICES

CONTENTS

APPENDIX A—Error Messages.

APPENDIX B—Mathematical Functions.

APPENDIX C—ASCII Character Codes.

APPENDIX D—Accessing Machine Language Subroutines.

APPENDIX E—Converting a Program to Panasonic BASIC.

APPENDIX F—Executing Application Programs.

APPENDIX G—Communication I/O Procedures.

APPENDIX H—Example Programs.

APPENDIX I—Index.

MEMO

APPENDIX A

ERROR MESSAGES

INTRODUCTION A-2

ERROR MESSAGES WITH DESCRIPTIONS A-3

ALPHABETIC CROSS-REFERENCE A-19

A-1

INTRODUCTION

BASIC'S error checking causes a program to stop running and
display an error message when an error is encountered. These
errors can be trapped and tested in a BASIC program by using
the ON ERROR statement and the ERR and ERE variables. (See
Chapter 7 for more information about ON ERROR, ERR, and
ERE.)

This appendix includes two sections:

The "Error Messages with Descriptions" section lists and ex
plains each BASIC error message. This section is listed numer
ically by error message number.

The "Alphabetic Cross-Reference" section lists each error mes
sage by its name with its associated error number.

A-2

ERROR MESSAGES WITH

DESCRIPTIONS

1 NEXT without FOR

The NEXT statement lacks a corresponding FOR statement.
Check to see if you used a variable in the NEXT statement
that does not correspond to any previously executed and
unmatched FOR statement variable.

Correct the program so the NEXT has a matching FOR.

2 Syntax error

A line contains an incorrect sequence of characters. For
example, it may have an unmatched parenthesis, a misspelled
command or statement, or incorrect punctuation. Another
possibility is that you have a mismatch between a DATA
statement and the variable type (numeric or string) in a
READ statement.

When this error occurs, the BASIC program editor automati
cally displays the line in error, so you can immediately correct
the line or the program.

3 RETURN without GOSUB

A RETURN statement requires a previous unmatched
GOSUB statement.

Correct the program. If you include a STOP or END state
ment before the subroutine, the program will not "fall" into
the subroutine code.

A-3

4 Out of DATA

A READ statement is attempting to read more data than is
included in the DATA statements.

Change the program so that there are enough constants in the
DATA statements for all the READ statements in the
program.

5 Illegal function call

You attempted to use a parameter that was out of range. The
error may also occur as the result of one of the following:

a negative or too large subscript

a negative number raised to a power that is not an integer

a USR function called before defining the starting address
with DEE USR

a negative record number used on GET or PUT (file)

an improper argument used with a function or statement

a list or edit function attempted on a protected BASIC
program

a line number deleted which does not exist

6 Overflow

The size of a number is too large to be represented in
BASIC'S number format. Integer overflow causes execution to
halt. Otherwise, machine infinity with the proper sign is
supplied as the result and execution continues. Integer over
flow is the only kind of overflow that can be trapped.

A-4

To correct integer overflow, use smaller numbers, or change
to single- or double-precision variables.

Note: If the size of a number is too small to be represented in
BASIC'S number format, you have an underflow condition.
The result of an underflow is zero and execution continues
without an error.

7 Out of memoty

Your program is probably large, has many FOR loops or
GOSUBs, many variables, expressions that are complicated,
or complex painting. If it is available, you may set aside more
stack space or memory area by using CLEAR at the begin
ning of your program.

8 Undefined line number

A line reference in a statement or command refers to a
non-existent line in the program. Check the line numbers in
your program and correct as needed.

9 Subscript out of range

You used an array element with:

a subscript that is outside the dimensions of the array

the wrong number of subscripts

Check how you are using the array variable. You may have:

used a subscript on a variable that is not an array

coded a built-in function incorrectly

A-5

10 Duplicate Definition

You attempted to define the size of the same array twice. This
may happen in one of the following ways:

The same array was defined in two DIM statements.

Fix the program so each array is defined only once.

The program encountered a DIM statement for an array
after the default dimension of 10 was established for the

array.

Move the DIM statement to the correct position in your
program.

The program detected an OPTION BASE statement
after an array was dimensioned, either by a DIM state
ment or by default.

Move the OPTION BASE statement so that it is executed

before you use any arrays.

11 Division by zero

In an expression, you attempted to divide by zero, or to raise
zero to a negative power. You cannot trap this error. You do
not need to correct this condition, because the program
continues running.

One of the following occurs automatically:

Machine infinity with the sign of the number being divided is
supplied as the result of the division.

Positive machine infinity is supplied as the result of the
exponentiation.

A-6

12 Illegal direct

You tried to enter a statement in direct mode which is invalid
in that mode- (for example, DEF FN).

You must enter these statements as part of a program line
instead of in direct mode.

13 Type mismatch

This message is caused by one of the following:

a string value where a numeric value was expected

a numeric value where a string value was- expected

SWAP variables of different types such as single-precision
swapped for double-precision.

14 Out of String space

BASIC allocates string space dynamically until it runs out of
available memory. This message means that string variables
caused BASIC to exceed the amount of available memory
remaining after housecleaning.

15 String too long

You attempted to create a string more than 255 characters
long.

Break the string into smaller strings.

16 String formula too complex

A string expression is either too long or too complex.

Break the expression into smaller expressions.

A-7

17 Can't continue

You attempted to use CONT to continue a program that:

halted due to an error

was modified during a break in execution

does not exist

Load the program if it is not loaded and use RUN to execute
it.

18 Undefined user function

A function was called before it was defined with the DEF FN
statement.

Be sure that the program executes the DEF FN statement
before you use the function.

19 No RESUME

Your program branched to an active error trapping routine as
a result of an error condition or an ERROR statement. The
routine does not contain a RESUME statement. (The physic
al end of the program was detected in the error trapping
routine.)

Be sure to include RESUME in the error trapping routine to
continue program execution. You may also include an ON
ERROR GOTO O statement to your error trapping routine
so BASIC displays a message for any untrapped error.

20 RESUME without error

The program has detected a RESUME statement without
having trapped an error. Enter the error trapping routine
only when an error occurs or an ERROR statement is ex
ecuted.

A-8

If you include a STOP or END statement before the error
trapping routine it will prevent the program from "falling
into" the error trapping code.

22 Missing operand

An expression contains an operator, such as OR, with no
operand following it.

Be sure to include all the required operands in the expression.

23 Line buffer overflow

You attempted to enter a line that had too many characters.

Split multiple statements so they are on more than one line.
You could also substitute string variables for constants where
possible.

24 Device Timeout

BASIC did not receive information from an I/O device within
a specified amount of time.

For communications files, this error message says that one or
more of the signals you tested with OPEN "COM... was not
found in the prescribed amount of time.

You should try the operation again.

25 Device Fault

Indicates a hardware error in an interface adapter.

This message may occur when you are transmitting data to a
communications file. It indicates that one or more of the
tested signals (as you specified on the OPEN "COM...
statement) was not found within the prescribed period of
time.

A-9

26 FOR without NEXT

A FOR was detected without a corresponding NEXT.

Change the program so it contains the required NEXT
statement.

27 Out of Paper

The printer is either not ready or out of paper.

Insort paper (if necessary), verify that the printer is properly
connected, and be sure that the power is on; then, continue
the program.

29 WHILE Without WEND

A WHILE statement lacks a corresponding WEND. This
error occurs when a WHILE is active at the physical end of
the program.

Correct the program so that each WHILE has a matching
WEND.

30 WEND without WHILE

A WEND is detected before a matching WHILE was ex
ecuted.

Correct the program so that you have a WHILE for each
WEND.

50 FIELD overflow

A FIELD statement attempted to allocate more bytes than
were specified for the record length of a random file in the
OPEN statement. Or, the end of the FIELD buffer was
detected while doing sequential I/O (PRINT #, WRITE #,
INPUT #) to a random file.

A-10

Verify that the OPEN statement and the FIELD statement
correspond. If you are doing sequential I/O to a random file,
verify that the length of the data read or written is not longer
than the record length of the random file.

51 Internal error

An internal error occurred in BASIC.

Make a new copy of your BASIC diskette. Check for obvious
problems with your hardware and retry the operation. If you
get the error again, report the problem to your computer
dealer.

52 Bad file number

One of the following has occured:

A statement used a file number of a file that was not
open.

The file number was out of the range of possible file
numbers specified at initialization.

The device name in the file specification was too long or
invalid.

The filename was too long or invalid.

Verify that the file you wanted was opened and that the file
number was entered correctly in the statement, and that you
have a valid file specification.

53 File not found

A LOAD, KILL, NAME, FILES, or OPEN references a
non-existent file on the diskette.

Verify that you are using the correct diskette, and that you
entered the file specification correctly.

A-11

54 Bad file mode

You attempted to do one of the following:

use PUT or GET with a sequential file or a closed file

execute an OPEN with a file mode other than input,
output, append, or random.

Verify that the OPEN statement was entered and executed
correctly. Remember that GET and PUT require a random
file. This error also occurs if you try to merge a non-ASCII
file. Be sure you are merging the right file and if necessary,
load the program and save it using the A option.

55 File already open

You attempted:

to open a file for sequential output or append, and the
file was already opened

to use KILL on a file that was open

If you are writing to a sequential file, do not execute more
than one OPEN. Before using KILL, you must close the file.

57 Device I/O Error

An error occurred on a device I/O operation (usually disk).
DOS was not able to recover from the error.

When receiving communications data, this error may occur
due to overrun, framing, break, or parity errors. When receiv
ing data with 7 or less data bits, the eighth bit is turned on in
the byte in error.

A-12

58 File already exists

The filename you specified in a NAME command is the same
as a filename already in use on the disk.

Enter the NAME command with a different name.

61 Disk full

You have run out of your disk storage space. Files are closed
when this error occurs.

If possible, erase some files on the disk, or use a new disk.
Then you may retry the operation or rerun the program.

62 Input past end

This message indicates an end of file error. You attempted to
execute an input statement on a null (empty) file, or after all
the data in a sequential file was already input.

You can avoid this error by using the EOF function to detect
the end of file.

This error will also occur if you try to read a file that was
opened for output or append. If you want to read a sequential
output (or append) file, you must close it and reopen it as an
input file.

63 Bad record number

In a PUT or GET (file) statement, the record number is
either greater than the maximum allowed (32767) or equal to
zero.

In BASIC 2.0, GET and PUT have been enhanced to allow
record numbers ranging from 1 to 16,777,215. This allows for
large files with short record numbers.

A-13

64 Bad file name

You have used an invalid form for the filename with KILL,
NAME, or FILES.

Correct the filename in error.

66 Direct statement in file

A direct statement was encountered during load or chain to
an ASCII-format file. The LOAD or CHAIN is terminated

due to the error.

The ASCII file should include only statements preceded by
line numbers. This error may also occur if a line feed charac
ter is detected in the input stream.

67 Too many files

You attempted to create:

a new file (using SAVE or OPEN) but all directory
entries on the diskette are full

an invalid file specification

Verify that the file specification is okay. If it is, use a new
formatted diskette and retry the operation.

68 Device Unavailable

You attempted to open a file to a non-existent device. Either
you do not have the hardware to support the specified device
(such as printer adapters for a second printer), or you have
disabled the device.

A-14

Verify that the device is installed correctly. You may need to
enter the command:

SYSTEM

This will return you to DOS; where you can re-enter the
BASIC command.

69 Communication buffer overflow

You executed a communication input statement, but the
input buffer was full.

When this condition occurs, use an ON ERROR statement to
retry the input. Subsequent inputs try to clear this fault
unless characters continue to be received at a faster rate than
the program can process. If this happens, try one of the
following:

When you start BASIC, increase the size of the com
munications buffer using the /C: option.

Use a hand-shaking protocol with the other computer to
tell it to stop sending long enough so that receive can
catch up.

Specify a lower baud rate for transmit and receive.

70 Disk write protected

You attempted to write to a diskette that is write-protected.

Verify that you are using the correct diskette. If so, remove
the write protection, and retry the operation.

A hardware failure may also cause this error.

A-15

71 Disk not Ready

Either the disk drive door is open or a disk is not in the drive.

Place the correct disk in the drive and close the drive door.

72 Disk media error

The controller attachment card discovered a hardware or

media fault. Usually, this means that you have a faulty disk.

Copy any existing files to a new disk and attempt to format the
disk. If the disk will not format, throw it away.

73 Advanced Feature

You used an Advanced BASIC Feature while you were in
BASIC. Start BASICA and rerun your program.

74 Rename across disks

You renamed a file, but you specified the incorrect disk. The
operation will not be performed.

75 Path/fiie access error

You attempted to use a path or filename for an inaccessible file
during an OPEN, NAME, MKDIR, CHDIR, or RMDIR
operation. You may have tried to open a directly or to remove
the current directory; or you might have tried to open a
read-only file for writing. Operation not completed.

76 Path not found

DOS cannot find the path as it is specified in an OPEN,
MKDIR, CHDIR, or RMDIR operation. Operation is termin
ated.

A-16

—Incorrect DOS Version

The command you entered requires a different version of
DOS from the one you are executing.

—Unprintable error

Your program has generated an error condition for which no
error message exists. This is generally caused by an ERROR
statement with an undefined error code.

Verify that your program can handle all error codes you
create.

A-17

MEMO

A-18

ALPHABETIC CROSS-REFERENCE

Error MesiSage Number

Advanced Feature 73

Bad file mode 54

Bad file name 64

Bad file number 52

Bad record number 63

Can't continue 17

Communication buffer overflow 69

Device Fault 25

Device I/O Error 57

Device Timeout 24

Device Unavailable 68

Direct statement in file 66

Disk full 61

Disk media error 72

Disk not Ready 71

Disk write protected 70

Division by zero 11

Duplicate Definition 10

FIELD overflow 50

File already exists 58

File already open 55

File not found 53

FOR without NEXT 26

Illegal direct 12

Illegal function call 5

Incorrect DOS version —

Input past end 62

Internal error 51

Line buffer overflow 23

Missing operand 22

A-19

Error Message Number

Next without FOR 1

No RESUME 19

Out of data 4

Out of memory 7

Out of Paper 27

Out of string space 14

Overflow 6

Path/file access error 75

Path not found 76

Rename across disks 74

RESUME without error 20

RETURN without GOSUB 3

String formula too complex 16

String too long 15

Subscript out of range 9

, Syntax error 2

Too many files 67

Type mismatch 13

Undefined line number 8

Undefined user function 18

Unprintable error =

WEND without WHILE 30

WHILE without WEND 29

A-20

APPENDIX B

MATHEMATICAL FUNCTIONS

DERIVED FUNCTIONS

You may calculate functions that are not intrinsic to Panasonic
BASIC as follows:

Function Equivalent

Logarithm to base B LOGB(X)=LOG(X)/LOG(B)

Secant SEG(X)=1/C0S(X)

Cosecant GSC(X)=1/SIN(X)

Cotangent G0T(X)=1/TAN(X)

Inverse sine ARGSIN(X)=ATN(X/SQR(1 -X*X))

Inverse cosine ARGG0S(X)=1.570796-
ATN(X/SQR(1 -X*X))

Inverse secant ARGSEG(X)=ATN(SQR(Xh=X- 1))+
(X<0)*3.141593

Inverse cosecant ARGGSG(X)=ATN(1 /SQR(X*X-1))+
(X<0)*3.141593

B-1

Function Equivalent

Inverse cotangent ARCC0T(X)=1.57096-ATN(X)

Hyperbolic sine SINH(X)=(EXP(X)-EXP(-X))/2

Hyperbolic cosine COSH (X)=(EXP(X)+EXP(- X))/2

Hyperbolic tangent TANH(X)=(EXP(X)-EXP(-X))/(EXP(X)+
EXP(-X))

Hyperbolic secant SECH (X)=2/(EXP(X)+EXP(- X))

Hyperbolic cosecant CSCH (X)=2/(EXP(X) - EXP(- X))

Hyperbolic cotangent COTH(X)=(EXP(X)+EXP(-X))/(EXP(X)-
EXP(-X))

Inverse hyperbolic sine ARCSINH(X)=L0G(X+SQR(X^X+1))

Inverse hyperbolic ARCC0SH(X)=L0G(X+SQR(X*X-1))
cosine

Inverse hyperbolic ARCTANH(X)=L0G((1 +X)/(1 -X))/2
tangent

Inverse hyperbolic ARCSEGH(X)=L0G((1 +SQR(1 -X*X))/X)
secant

Inverse hyperbolic
cosecant

ARCGSCH(X)=L0G((1+SGN(X)*
SQR(14-X*X))/X)

Inverse hyperbolic ARGGOTH(X)=LOG((X+1)/(X-1))/2
cotangent

B-2

APPENDIX C

ASCII CHARACTER CODES

ASCII Value

(decimal)
Character Control character

000 BLANK

NUL
001 © SOH
002 • STX
003 ¥ EXT
004 ♦ EOT
005 ♦ ENQ
006 ♦ ACK
007 •

BEL
008 B BS
009 O HT
010 a

CT
LF

Oil VT
012 ? FF
013 ;> CR
014 f) SO
015 SI
016 ► DEE
017 DCl
018 1 DC2
019 !! DC3
020 3T DC4
021 § NAK
022 - SYN
023 1 ETB
024 T CAN
025 i EM
026 SUB
027 <— ESC
028 FS
029 — OS
030 ▲ RS
031 ▼ US
032 BUNK

(SPACEl

033 !

c-i

ASCII Value Character

034
tf

035 #

036 $
037 %

038 &

039

040 (
041)
041 *

043 +

044
)

045 —

046

047 /
048 0

049 1

050 2

051 3

052 4

053 5

054 6

055 7

056 8

057 9

058

059

060 <

061 =

062 >

063 f

064 @
065 A

066 B

067 C

068 D

069 E

070 F

ASCII Value Character

071 G

072 H

073 1

074 J

075 K

076 L

077 M

078 N

079 0

080 P

081 Q

082 R

083 S

084 T

085 U

086 V

087 w

088 X

089 Y

090 z

091 [
092 \
093]
094 A

095

096
t

097 a

098 b

099 c

100 d

101 e

102 f

103 g
104 h

105 i

106 j
107 k

C-2

ASCII Value Character ASCII Value Character

108 1 145 as
109 m 146 /E
110 n 147 6
111 0 148 6
112 p 149 6
113 q 150 u

114 r 151 u

115 s 152 y
116 t 153 0
117 u 154 0
118 V 155 p
119 w 156 £
120 X 157 ¥
121 y 158 Pt
122 z 159 f

123 {
1

1

160 k

124 161 1
125 } 162 6
126 163 (j

127 A 164 n

128 ? 165 N
129 u 166 a

130 e 167 0

131 § 168 6

132 a 169 r
133 a 170
134 k 171 Va
135 Q 172 V4

136 e 173 i

137 e 174 »

138 e 175 «

139 T 176 M
140 f 177
141 i 178 Ira
142 A 179 1
143 A 180 H
144 e 181

C-3

ASCII Value Character ASCII Value Character

182 HI 219 ■

183 220 hb

184 221 ■
185

_J 1
^1 222 J

186 223

187 =n 224
a

189 225 p
190 =j 226 Y

191 227 n

192 L_ 228 2

193 229 a

194 "T" 230

195 h 231 T

196 232

197 + 233 0

198 234 n

199 Ih 235 6

200 236 00

201 237 0

202
ii 238 G

203 239 n

204 IH 240 =

205 — 241 ±

206

JL
ir

242

207 =!= 243

208 _IJ_ 244 r

209 245 j

210 "[T 246

211 Ll_ 247

212 1= 248 o

213 F= 249 •

214 rr 250 •

215 HH 251

216 252 n

217 _i 253 2

218 r 254

255

1

BLANK
IFFI

C-4

EXTENDED CODES

Since some keys or key combinations cannot be specified in
ASCII codes, an extended code is defined for them. For instance,
INKEYS returns an extended code listed below when
<Alt> <A> is pressed.

Extended

Code
Meaning

3 (null character) NUL
15 (shift tab) K—

16-25 Alt- Q, W, E, R, T, Y, U, I, O, P
30-38 Alt- A, S, D, F, G, H, J, K, L
44-50 Alt- Z, X, C, V, B, N, M
59-68 function keys F1 through FIO

(When disabled as soft keys)
71 Home

72 Cursor Up
73 PgUp
75 Cursor Left

77 Cursor Right
79 End

80 Cursor Down

81 Pg Dn
82 Ins

83 Del

84-93 F11-F20 (Shift- F1 through FIO)
94-103 F21-F30 (Ctrl- F1 through FIG)
104-113 F31-F40 (Alt- F1 through FIG)
114 Ctrl-PrtSc

115 Ctrl-Cursor Left (Previous Word)
116 Ctrl-Cursor Right (Next Word)
117 Ctrl-End

118 Ctrl-Pg Dn
119 Ctrl-Home

120-131 Alt- 1,2,3,4,5,6,7,8,9,0.-,=
132 Ctrl-Pg Up

C-5

0
1 O
)

§ £ O

s CM
U.

F3
®'

F4
62

F5
®'

F6
«^

F7
65

OC
u.

F
9
"

6
8

F
1
0

!
 2

1

#

4

3

%
 6

5
(

 10
9
'

)
 11

0

Q
 1
6

W
1
7

E
 1
8

R
1
9

J
 2
0

Y
 2
1

U
2
2

1
 2
3

0
2
4

P
2
5

i
 2
6

}
 2
7

[
]

A
 3
0

S
 3
1

D
3
2

F
3
3

G
3
4

H
3
5

J
 3
6

K
3
7

L
 3
8

:
 3
9

•1

4
0
~
 4
1

\

Z
4
4

X
4
5

C
4
6

V
4
7

0
4
8

N
4
9

M
5
0

7
 5
3

/

P
r
t
S
c

5
5

7
 7
1

4
 7
5

1

7
9

E
n
d

8
 7
2

5
 7
6

Sc
ro
ll
 L
o
c
k

7
0

B
r
e
a
k

7
3

6
 7
7

3
 8
1

P
g
D
n

C
a
p
s
L
o
c
k

8
2

No
me

nc
la

tu
re

 i
s
o
n
 b
ot

h
th

e
to

p
a
n
d
 f
ro

nt
 f
ac

e
of

 t
he

 k
ey

bu
tt

on
.
T
h
e
 n
u
m
b
e
r
 o
n
 t
he

 u
pp

er
ri

gh
t
of

 t
he

 k
ey
bu
tt
on
 i
s
ke

y
po

si
ti

on
 n
u
m
b
e
r
.
 R
ef
fe
r
to
 p
ag
e
C-
7,
 t
he

 r
el
at
io
ns
hi
p
be

tw
ee

n
ke

yp
os

it
io

n
a
n
d
 s

ca
n
co

de
 i

s
s
h
o
w
n
.

)
)

)

Key Position and Scan Codes

Key Position Scan code (&H)
Key Position
Number

Scan Code (&;H)

1 01 43 2B

2 02 44 2C

3 03 45 2D

4 04 46 2E

5 05 47 2F

6 06 48 30

7 07 49 31

8 08 50 32

9 09 51 33

10 OA 52 34

11 OB 53 35

12 OC 54 36

13 OD 55 37

14 OE 56 38

15 OF 57 39

16 10 58 3A

17 11 59 3B

18 12 60 3C

19 13 61 3D

20 14 62 3E

21 15 63 3F

22 16 64 40

23 17 65 41

24 18 66 42

25 19 67 43

26 lA 68 44

27 IB 69 45

28 IC 70 46

29 ID 71 47

30 IE 72 48

31 IF 73 49

32 20 74 4A

33 21 75 4B

34 22 76 4C

35 23 77 4D

36 24 78 4E

37 25 79 4F

38 26 80 50

39 27 81 51

40 28 82 52

41 29 83 53

42 2A

C-7

MEMO

C-8

APPENDIX D

ACCESSING MACHINE

LANGUAGE SUBROUTINES

INTRODUCTION D-2

ALLOCATING MEMORY SPACE FOR

SUBROUTINES D-3

PLACING A SUBROUTINE IN MEMORY D-5

Using the POKE Command D-5
Loading a Subroutine File D-7

ACCESSING A SUBROUTINE

DURING EXECUTION D-9

The CALL Statement D-10
USR Functions D-11

D-1

INTRODUCTION

During execution, BASIC programs may access machine lan
guage subroutines that have been stored in memory. This appen-
dix describes how subroutine code is both placed in memory and
subsequently used by programs.

D-2

ALLOCATING MEMORY SPACE

FOR SUBROUTINES

DOS requires 25K bytes and BASIC a further 52K bytes. In
additon, BASIC normally uses 64K bytes of memory to contain
your program and the data it requires, as well as the interpreter's
workarea and the BASIC stack. You can store subroutines either

outside this area, or you can reserve space within BASIC'S
workarea if you have determined that there will be enough.

If you want to store subroutines beyond the 141K-byte area
needed by DOS and BASIC, you will need at least a 256K-byte
system in order to have room for them. To store subroutines
outside the DOS/BASIC workarea, you need only specify the high
memory address where the first byte of subroutine code will be
placed. This is done with the DEF SEC statement. The following
example statement specifies a hex location in the last 4K bytes of
a 256K-byte system, where subsequent loading of subroutine code
will begin.

100 DEF SEG=&H3F00

You can also set aside space for subroutines at the upper end of
BASIC'S 64K-byte workarea, if you determine that your program
and data, plus the BASIC functions, will not require all the
available 64K bytes. This can be done either with the CLEAR
command, or by using the M: option of the BASIC statement.

D-3

The following examples show two ways in which the upper 4K
bytes of BASIC'S workarea can be reserved for subroutines, if you
use Sr. Partner with more than 256K bytes. You can use the
CLEAR command:

100 CLEAR, &HFOOO

Or you can use the BASIC command:

BASIC/M:&HFOOO

Both commands set BASIC'S workarea size to hex FOOD, or 60K,
bytes.

If you use Sr. Partner with 128K bytes, only 50K bytes BASIC'S
workarea are reserved. Space for subroutines must be in this
workarea. The following example shows how to reserve the last
4K bytes for subroutines.

CLEAR, FRE(0)-4096
100 DEF SEG=&H1F00

D-4

PLACING A SUBROUTINE

IN MEMORY

Two common ways of placing a subroutine in memory are:

using the POKE command in your program

loading a disk file containing the subroutine code

Using the POKE Command

This method of entering code into memory is used most often for
short subroutines. The subroutine and its loading actually become
part of the BASIC program.

First, code your subroutine in machine language. Then, write
DATA statements that specify the hexadecimal equivalent of each
byte of your code.

After defining the area where storage of the subroutine is to begin
(unless you have done so with the BASIC statement M: option),
have your program perform a loop in which each data byte is
read, then use the POKE command to place it into the subroutine
space.

When the loop is complete, the subroutine is loaded. If you use a
USR function to access it, then include a DEE USR statement to
define the address where the subroutine begins. If you are going
to CALL the subroutine, then set the SUB variable to the entry
address.

j The following example program shows how process may be
i programmed.

The letters A to Z represent integer variable values:

100DEFINT A-Z

Start loading the subroutine at hex location IFOO, if you use
128K-byte system:

105 DEF SEG=&H1700

D-5

Perform a loop 22 times to load 22 bytes of code:

110 FOR X=0 TO 21

Read a byte of data and store it in the address X bytes from the
start of the subroutine area:

115 READ Y
120 POKE X,Y

Continue the loop until it is finished:

125 NEXT

Set the entry address for the subroutine:

130 SUB=0

Assign values to three variables:

135 VI =2: V2=5: V3=0

Start executing the subroutine using VI, V2, and V3 as argu-
ments:

140 CALL SUB (VI, V2, V3)

When the subroutine has executed, print V3, which is the re
turned result:

145 PRINT V3

Stop executing:

150 END

This is the subroutine code to be read and loaded with the loop:

155 DATA &H55,&H8B,&HEC,&H8B,&H76.&H0A
160 DATA &H8B,&H04,&H8B,&H76,&H08 ^
165 DATA &H03,&H04,&H8B,&H7E,&H06
170 DATA &H89,&H05,&H5D,&HCA,&H06,&H00
RUN

7
DK

D-6

Loading a Subroutine File

Converting a routine longer than 22 bytes of code the hexadecim
al, as well as entering the hex values, would be a tedious,
time-consuming process. Fortunately, this can be done for you by
the DOS linker, which, given machine language, will produce
from it an executable memory image (that is, hex) file. This file
may then be saved, and loaded at any time from a BASIC
program and accessed either by a USR function or a CALL
statement.

The process of loading the linked file is more complicated than
loading a POKE loop. However, writing a machine language
program, while not simple, is much easier than converting hun
dreds of bytes to hex and the entering the DATA statements to
feed the POKE loop.

The following procedure can be used to load a subroutine that has
been linked so that it is loaded at the high end of memory and
subsequently access it from a BASIC program.

1. Access BASIC in DEBUG mode by entering:

DEBUG BASICA.C0M/M:10000

This causes DEBUG to precede BASIC in memory, so
that DEBUG will not be over-written. In DEBUG mode,
subroutine breakpoints, if used, will cause a return to
DEBUG, as will a SYSTEM command entered from
BASIC.

2. Ascertain where BASIC was placed in memory by enter
ing the DEBUG R command, which displays the con
tents of the registers CS, IP, SS, SP, DS, and ES. Record
the value of each register for later use.

3. Enter the following commands to name and then load the
linker file:

N SUBNAME.EXE
L

The filename is your choice; the extension .EXE causes
the file to be loaded at the high end of memory.

D-7

4. Display the registers again, to determine where the sub
routine was placed. Record the contents of the CS and IP
registers.

5. Use the R command to reset the registers to the values
you recorded in Step 2 (after BASICA.COM was initial
ly loaded).

6. If you want to set breakpoints in the subroutine, branch
to the BASIC entry point with the G command.

7. Respond to BASIC'S prompt (Ok) by loading your
BASIC program. Edit the DEF SEC statement so that it
references the CS register value recorded in Step 4.
Change either the DEF USR offset or the CALL variable
to the IP register value. Now the statements specify the
correct address of the subroutine.

8. Save the subroutine with a BSAVE command. Specify
the offset as the CS and IP values that defined the

subroutine's entry point. For the length, use the code
length given on the assembler listing or LINK map.

9. Insert a BLOAD statement into the BASIC program,
following the DEF SEC that you edited to specify the CS
register value. A self-relocatable subroutine can be
loaded into a different storage location at execution time
using the BLOAD command. If you do this, be certain to
edit the DEF SEC accordingly.

10. Use the SAVE command to save your modified BASIC
program.

D-8

ACCESSING A SUBROUTINE

DURING EXECUTION

You may access a subroutine from a program in one of two ways,
either with a CALL statement or a USR function. Whichever

method you use, the following conditions apply:

Upon entering the subroutine, the DS, ES and SS segment
registers all contain the same value, the address of BASIC'S data
area.

The code segment (CS) register contains either the same value as
the other registers, or an address specified by the last DEF SEC.

If a string argument is passed from the program, the value that is
received by the subroutine is the address of the string descriptor,
which is three bytes containing the following information:

* the length of the string (Byte 0)

* the offset from the beginning of BASIC'S data area where the
string is located (Byte 1, 2)

The subroutine must not change the content of the string
descriptor. The content of the string may be altered, but not its
length or location.

When returning from the subroutine:

* Before the return, restore the contents of the segment registers
and, if necessary, the stack pointer (SP). (At entry, the stack
pointer indicates a 16-byte stack available to the subroutine. If
it needs more, the subroutine must set up its own stack segment
and pointer, recording the current stack location and restoring
it before the return.)

* Interrupts disabled by the subroutine must be re-enabled be
fore the return.

* Causes the return to BASIC with an inter-segment RET in
struction.

D-9

The CALL Statement

A subroutine may be accessed with the call statement, which
allows multiple arguments to be passed. A CALL statement is
formatted as follows:

CALL NVAR [(variablel, variable2,...)]

NVAR is a numeric variable whose value is the offset from the
point in memory specified by DEF SEG where the subroutine is
stored. (Remember the POKE loop program? The SUB variable
was the NVAR there.)

The variables are the arguments passed to the subroutine. The
square brackets mean that their number is optional, meaning: the
number of arguments is determined by the requirements of a
particular subroutine.

These variables, which must be separated by commas, may not be
constants. They must be either numeric or string variables.

When a CALL is executed, the following sequence occurs:

1. The location (an offset into BASIC's DS) of each variable
in the variable list is pushed onto the stack. In the case of
a string variable, this address is that of the string de
scriptor.

2. The return address in the CS register, plus the offset, are
also pushed onto the stack.

3. Control is passed to the subroutine, using the address
specified by the last DEF SEG, plus the offset indicated by
NVAR.

The subroutine must know the number of arguments that
were passed. Parameters are referenced by adding as offset to
BP after the subroutine moves the stack pointer into BP. For
this purpose, the first subroutine instructions must be:

PUSH BP ;SAVE BP
MOV BP, SP ;MOVE SP TO BP

D-10

An argument's offset into the stack is computed with the following
formula:

Offset from BP=2*(n-m)-h6

In this statement, n is the total number of arguments, and m is
the position of an argument in the variable list of the CALL
statement, a number that may range from 1 to n.

USR Functions

A function is an operation performed on no more than one
argument per iteration. A USR (user-defined) function is coded as
a subroutine and accessed by a BASIC program similarly to a
subroutine accessed by using the CALL statement. A USR func
tion call is formatted as follows:

USR[n](arg)

In this statement, n is a number from zero through nine that
identifies the desired USR function. It is the same number

specified by the corresponding DEF USR statement, which gives
the offset from the last DEF SEC where the subroutine is located.

USRO is the default if n is not included.

The argument must be either a string variable name or a numeric
expression. When calling a function for which arguments are not
needed, a dummy argument must be supplied.

The following code sequence shows how a USR function can be
accessed during execution of a program:

10 DEF SEG=&H1800

15BLOAD"SUB.EXE",0
20 DEF USR0=0
25X=2

30 Y=USRO(X)
35 PRINT Y

The subroutine is loaded starting at hex location 18000, and will
be referenced as USRO. The function is called to compute a value
for Y, with the variable used in the operation to be X.

D-11

When a USR function is accessed, a number specifying the type of
argument is placed in register AL. These values, and the argu
ment types they indicate, are as follows:

AL Value Argument Type

2 Integer
3 String
4 Single-precision Number
8 Double-precision Number

When a string argument is passed, the DX register contains the
address of the string descriptor.

The value of a numeric argument is placed in the eight-byte FAC
(Floating Point Accumulator), and the BX register is set to
contain the offset into BASIC's data area where the fifth byte of
the FAC is located.

The following explanatory examples are based on the FAC being
located in (hex) bytes 5FC through 603, with BX pointing to Byte
600.

An integer argument will be placed in Bytes 600 and 601.

For a single-precision argument:
Bytes 600 and 601 will contain, respectively, the lowest and
middle eight bits of the mantissa.

Byte 602 will contain the highest seven bits of the mantissa.
The leading bit is suppressed, and the last bit contains, instead,
the number's sign (zero for plus and 1 for minus).

Byte 603 will contain the exponent minus 128, with the binary
point to the left of the mantissa's most significant bit.

A double-precision argument is placed so the Bytes 600 through 603
are the same as for a single-precision number. Additionally, Bytes
5FC through 5FF are used to contain another four bytes of
mantissa (the lowest eight bits in 5FC).

D-12

A USR function will usually return a result of the same type as
the argument. However, a single- or double-precision argument
can be forced to its integer equivalent with the FRCINT routine,
before the function calculation is done. If an integer value must be
returned, place the computation result in the BX register, then
call the MAKINT routine prior to the return, which places the
integer value in the FAC to passed back to BASIC.

The following example shows the methods for accessing FRCINT
and MAKINT:

10DEFSEG=&H1F00
20 BLOAD "SUB.EXE",0
30 DEF USR0=0
40 A#=100
50 B=USRO(A#)
60 PRINT B

D-13

The following Macro-Assembler language subroutine has been
loaded at location IFOOiO. It doubles the argument passed and
returns an integer result.

CDSEG SEGMENT
ASSUME CS:CDSEG

FRCOFF EQU OFOH
MAKOFF EQU 0F04H

FRCINT LABEL DWORD
DW FRCOFF

FRCSEG DW ?

MAKINT LABEL DWORD
DW MAKINT

MAKSEG DW ?

USRPRG PROC FAR

POP CX

POP Dl

PUSH Dl

PUSH CX
MOV FRCSEG, Dl
MOV MAKSEG, Dl
CALL FRCINT
ADD BX,BX
CALL MAKINT

RET

USRPRG ENDP
CDSEG ENDS

Recover BASIC'S OS

; Force ARG in FAG into[BX]

; Put INT Result in BX into
FAG

When FRCINT or MAKINT is called, and when it terminates
with a return, ES, DS and SS must have the same value which
they had when the USPRG was entered. They point to the
BASIC'S data segment.

D-14

APPENDIX E

CONVERTING A PROGRAM

TO PANASONIC BASIC

PANASONIC AND OTHER BASICS E-2

File I/O Processing E-2
Graphics Capability E-2
IF...THEN Statements E-2

Line Feeds E-3

Logical Operations E-4
MAT Functions E-6

Multiple Assignment Statements E-6
Multiple Statements on a Line E-6
PEEK and POKE Statements E-6

Results of Relational Comparisons E-6
Remarks E-7
Rounding Numbers E-7
Ringing the Bell E-7
String Handling E-7
Delimiting Keywords E-8

E-1

PANASONIC AND OTHER

BASICS

The version of BASIC recognized by your Panasonic is very
similar to the BASICs used to program many other small compu
ters. A program written in a different BASIC can usually be run
on the Panasonic with only minor changes. This appendix de
scribes some of the areas where variations of purpose or function
ing may make such adjustments necessary.

File I/O Processing

When a Panasonic disk file is opened for input or output pur
poses, a specific file number is associated with it. This number is
then referenced by I/O statements that follow. Some other
BASICs implement file I/O processes differently.

Panasonic BASIC also routinely blocks random access file records
whenever appropriate, so that as many records as possible may be
fitted into a sector. This may or may not be the case with other
BASICs.

Graphics Capability

The graphic possibilities of different BASICs vary widely. A figure
specified by a program written in a different BASIC may be either
more or less that Panasonic BASIC can draw.

IF...THEN Statements

Panasonic BASICs IF statement can include an optional ELSE
clause, which is performed when the tested expression is false.
This is not the case with some other BASICs. For instance, a
decision process may be expressed in another BASIC as:

100 IFX=YTHEN 300
200 PRINT "UNEQUAL" : GOTO 400
300 PRINT "SAME NUMBER"
400 GOTO 50

E-2

This sequence of statements will function in the same way on the
Panasonic, but could also be written more concisely in Panasonic
BASIC as:

100 IF X=Y THEN PRINT "SAME NUMBER" ELSE PRINT "UNEQUAL"
200 GOTO 50

The Panasonic IF statement also permits THEN and ELSE
clauses containing multiple statements, which can bring about a
different result when a sequence written in a different BASIC is
executed. For example:

100 IF X=Y THEN GOTO 500 : PRINT "UNEQUAL"

In some other BASICs, if a test fails, the program continues with
the next statement. So, in the above example, if X is not equal to Y,
the PRINT statement will be executed an "UNEQUAL" will be
printed.

When a test fails in Panasonic BASIC, the program continues
with the next line. And, since Panasonic BASIC considers both the
GOTO and PRINT statements to be included in the THEN
clause, if the test fails, the program will continue on the succeed
ing line, and the PRINT statement will never be executed. The
example statements (Line 100) may be rewritten to function
correctly on the Panasonic as:

100 IF X=Y THEN 500 ELSE PRINT "UNEQUAL"
200 GOTO 50

Line Feeds

Some other BASICs place a "line feed character" in the input text
when a line feed is specified. Panasonic BASIC inserts blank
characters from the place the line feed was indicated to the end of
the display line. If you attempt to load a program that contains
line feed characters, Panasonic BASIC will issue a "Direct State
ment in File" error message.

E-3

Logical Operations

In some BASICs, a logical operation determines whether the
operands are either zero (indicating a "false" expression) or
non-zero (indicating "true"). The following statements, written in v
another BASIC, show how this process works:

100 X=9 : Y=4
200 IF X AND Y THEN PRINT "BOTH ARE TRUE"

The other BASIC analyzes the logical expression "9 AND 4" as
follows:

1. 9 is a non-zero value, so it is "true".

2. 4 is also not zero, so it is also "true".

3. Since both values are non-zero, and "true", it follows, via
AND logic, that the logical expression is "true".

In the other BASIC, the computer prints "BOTH ARE TRUE".

In Panasonic BASIC, logical operands are numeric values.
Though —1 and zero are used to specify the "true" or "false"
results of relational comparisons, logical operations can also be
applied to any integer values. Thus, when Panasonic BASIC
analyzes any AND operation, it converts the operands to their
binary equivalents and analyzes these values according to the
rules of AND logic. These rules state that the result of an AND
operation is "true" only if both expressions are true. In binary
terms then, only two ones can result in a one.

So when Panasonic BASIC sees the logical expression "9 AND
4", it analyzes it this way:

1. The binary equivalent of 9 is:

1001

2. The binary equivalent of 4 is:

0100

E-4

3. Combining each vertical pair of digits according to AND
logic gives the result:

9=1001

4=0100

RESULT=0000

That is, a one and a zero result in a zero, and the result of
two zeros is a zero.

Thus, Panasonic BASIC will conclude by the "false" (zero) result
that the AND expression is not true, and will print nothing.

The results desired in the example could be achieved with
Panasonic BASIC by a more direct statement of what you want to
know. You could ask the question, "Are both these values non
zero?". This could be done in the following way:

100 X=9:Y=4
200 IF (XoO) AND (YoO) THEN PRINT "BOTH NON-ZERO"

Here, Panasonic BASIC ANDs the results of the relational opera
tions in parentheses. Both results would be "ture", since 9 is
indeed unequal to zero, and it is also true that 4 is unequal to
zero. So Panasonic BASIC would analyze the expression "—1
AND —1" this way:

1. The binary equivalent of—1 is 1111111111111111

2. Combining this with another —1 according to AND logic
gives the result:

-1= 1111111111111111

-1= 1111111111111111

RESULT= 1111111111111111

Panasonic BASIC concludes that the AND expression is "true"
and prints the message.

E-5

MAT Functions

A program that uses the MAT functions included in some
BASICs must have these portions rewritten with the
FOR...NEXT loops used in Panasonic BASIC.

Multiple Assignment Statements

Some BASICs permit a single value to be assigned to multiple
variables in one statement, as follows:

100 LET X=Y=5

This statement, in these other BASICs, assigns the value of 5 to
both X and Y. In Panasonic BASIC, this must be done with two
assignments. The following statement is an example of a simple
way to do this:

100 X=5 : Y=5

Multiple Statements on a Line

In some BASICs, the backslash (\) is used to separate multiple
statements on a single program line. Panasonic BASIC requires
that the colon (:) be used to do this.

PEEK and POKE Statements

PEEK and POKE statements are used for varying purposes in
different BASICs. Be certain that a PEEK or POKE statement in
a program written in another BASIC is used for the same function
that you want Panasonic BASIC to perform.

Results of Relational Comparisons

In Panasonic BASIC, the results of a relational comparison are
indicated by —1 if the expression is true, and by zero if the
expression is false. Some other BASICs use a positive 1 to specify
a "true" result. This can affect the result of an arithmetic com
putation that includes the relational expression.

E-6

Remarks

Some BASICs use the exclamation point (!) to indicate remarks
added to the end of a program line. In Panasonic BASIC, this is
done with a single quote (').

Rounding Numbers

For accuracy, Panasonic BASIC rounds single- and double-preci
sion numbers when an integer value is required. Many other
BASICs truncate in such situations. This can affect not only
assignments (NUM%=2.5 results in NUM%=3 in Panasonic
BASIC), but also the results returned by statement evaluations
and a number of functions. Rounding may also cause Panasonic
BASIC to select a different element from an array — one that
may be out of range, and will certainly be incorrect.

Ringing the Bell

Some BASICs use PRINT CHR$(7) to make a bell ring. Though
not required, in Panasonic BASIC this may be replaced with a
BEEP for a similar effect.

String Handling

Character strings in Panasonic BASIC are variable length, which
means that their length is determined by the length of the strings
assigned to them. Any statements that define string lengths, which
may be used in other BASICs, must be modified. The following
statement might be used in some BASICs to define an array made
up of J string elements, each of I length:

DIM B$(U)

However, in Panasonic BASIC, only the following would be used:

DIM B$(J)

This would dimension an array of J string elements, each of which
would have an initial length = 0. The length of each element
would be established when a value is assigned to it.

E-7

Some BASICs use a comma (,) or an ampersand (&) to specify
concatenation of strings. This operation is specified in Panasonic
BASIC by the plus sign (+).

Panasonic BASIC uses the LEFTS, MID$, and RIGHTS func-
tions to extract substrings from existing strings. LEFTS accesses a
substring that begins with the leftmost position of the existing
string, MIDS is used to access a string starting at a point within
the existing string, and RIGHTS extracts a string that ends at the
rightmost position of the existing string. LEFTS and RIGHTS are
performed on operands that specify the name of the existing
string, and the number of characters to be extracted. MIDS also
requires that the position of the first character of the substring be
specified.

This is done differently in some other BASICs. For example, a
form such as STRS(I) might be used to access the Ith character of
STRS. This should be changed to MIDS (STRS, I, 1), which
references a single-character substring at the Ith position of
STRS. Or, to extract a substring of STRS that starts at position L
and ends at position M, the form STRS (L,M) might be used in
other BASICs. You should change this form to:

MID$(STR$, L, M-L+1)

Delimiting Keywords

In some BASICs, statements may be written without separating
the keywords, as follows:

100 FOR l=NTOX

In Panasonic BASIC, all keywords must be delimited by spaces:

100 FOR l=N TO X

E-8

APPENDIX F

EXECUTING APPLICATION

PROGRAMS

When executing an application program for the IBM Personal
Computer, it may not be run as described in the application
manual. In such cases, an error message will be displayed. This
Appendix contains possible error messages and the procedure to
recover from the error. Check the error message and execute the
appropriate procedure described below.

1. "Insufficient disk space" was displayed when you executed
"COPY BASICA.COM.B:"

Copy BASICA.EXE to the disk instead of BASICA.COM.

2. "Insufficient disk space" was displayed when you executed the
batch file for an initialization such as UPDATE, SETUP,
INSTALL etc. (It depends on application program).

This error message is displayed because the batch file for an
initialization tried to COPY BASICA.COM. to the disk with

out enough space for it. After the DOS prompt appears, type
COPY BASICA.EXE B: and execute the bath file (UPDATE,
SETUP, INSTALL etc.) again. "Insufficient disk error" will
be displayed again, but ignore it.

F-1

3. "Insert Panasonic System Disk" was displayed when you
executed an application progam.

This message is displayed when you execute BASIC or BASI-
CA on your application program disk that does not contain
BASICA.COM. It may contain BASIC.COM. or
BASICA.EXE. Remove the application program disk and
insert your back up Panasonic System Disk. Press any key to
load BASICA.COM. When "Replace the disk" appears, rein
sert your application program disk. Then the application prog
ram will be executed.

Note: When you copy BASIC.COM on an application
program disk, also copy BASICA.COM if that disk has
sufficent space. Then the procedure of removing and
inserting disks can be omitted.

4. An application program was not executed though the memory
(RAM) size was same as that designated by the application
manual.

This is because of our BASIC'S specific structure. Expand
memory size by using the Panasonic RAM Board.

F-2

APPENDIX G

COMMUNICATION I/O

PROCEDURES

INTERFACE WITH OTHER DEVICES C-2

Opening and Using a COM File G-2
Variations in Accessing COM Files G-2

G-1

INTERFACE WITH

OTHER DEVICES

BASIC can initiate and monitor communication between your
Panasonic computer and other devices, a process called "asyn
chronous communication", which means that characters are
transmitted from one device to another bit by bit. The details of
this operation, and there are many, are discussed fully in Chapter
7 (see the OPEN "COM... statement).

The focus of this appendix is the programming aspects of the I/O
process, as they apply to reading data from other computers, or
sending output to, for instance, a printer.

Opening and Using a COM File

Communication input and output are either similar or identical
both in theory and in many aspects of practice to disk file I/O (as
discussed in Chapter 5).

The OPEN "COM... statement is used to allocate an I/O buffer
area in the same way as OPEN accesses disk files. Since the
internal serial interface or the communications adapter is opened
as a file, the same I/O commands are used for communications
I/O as for disk file I/O procedures:

INPUT # PRINT#
LINE INPUT # PRINT # USING
INPUTS# WRITE#

Variations in Accessing COM Files

GET and PUT

When using the GET and PUT statements, instead of the record
number to be read/written, specify the number of bytes to be
transferred from/to the buffer. (This number may not exceed that
specified by the LEN option of the OPEN "COM... statement.)

Suspending Transmission

G-2

Sometimes characters cannot be processed as quickly as received.
Transmission from another computer can be suspended while
BASIC processes the buffer. If compatible with the other device,
you can send XOFF (CHR$(19)) to stop transmission, and XON
(CHR$(17)) to resume when the buffer is clear. XOFF tells the
other computer to stop sending, and XON tells it to start again.

COM Files Functions

These COM file I/O functions can be used to detect an impend
ing "overrun" of the input buffer capacity:

LOC returns the number of characters not yet read from the
buffer. If this number is more that 255, LOG will return 255.

LOF will return the amount of free space in the buffer. This
will equal n-LOC, where n is the buffer size. If not specified
by the /C: option of the BASIC command, n defaults to 256.

EOF will return —1 (true) if the buffer is empty, and zero
(false) if any characters remain to be read.

INPUTS Function

When reading COM files, the INPUTS! function will usually
function faster and more efficiently than INPUT # and LINE
INPUT #. The latter stops input when a carriage return is
detected; INPUT # also stops if a comma is seen.

INPUTS assigns all characters read to a string. Since a string
may not contain over 255 characters, no more than that will be
read at one time, preventing any overflow condition. INPUTS can
be used as follows:

A$=INPUT$(L0C(1), #1)

This statement causes the characters in the buffer to be read into

AS for processing, at a maximum rate of 255 characters per
execution.

G-3

MEMO

o

APPENDIX H

EXAMPLE PROGRAMS

EXAMPLE PROGRAM #1 H-2

EXAMPLE PROGRAM #2 H-4

H-1

EXAMPLE PROGRAM #1

10 'Demonstration program of graphics commands
20 'Each demo waits 2 seconds between screen

30'
40 SCREEN 1:KEY OFRCOLOR 4,1
50 GOTO 110
60 'The following subroutine clears the screen and centers LABELS on line 25
70 FOR 1=1 TO 3000:NEXT I 'wait a while
80 CLS
90 LOCATE 25,<40-LEN(LABEL$))/2:PRINT LABELS;
100 RETURN
110'
120 'Beginning of program
130 LABELS="Drawing points and lines":GOSUB 70
140 'Draw a rectangle of dots
150 FOR X=20 TO 310 STEP 10:PSET(X,80):PSET(X,120):NEXT X
160 FOR Y=80 TO 120 STEP 5:PSET(20,Y);PSET(310,Y):NEXT Y
170 'Draw a skewed rectangle
180 LINE(50,50)-(260.60):LINE-(250.170):LINE-(40,160):LINE-(50,50)
190 'Draw a line, then erase some points on it
200 LINE(20,20)-(320,20)
210 FOR X=25 TO 315 STEP 10:PRESET(X,20):NEXT X
220 LABELS="Circles and an arc";GOSUB 70
230 'Draw a few circles
240 FOR X=40 TO 240 STEP 100:CIRCLE(X,40),20:NEXT X
250 'Draw an arc
260 CIRCLE(220,100),20,,0,.75*3.14159
270 'Draw a few ellipses
280 FOR X=40 TO 240 STEP 100:CIRCLE(X,140),20,,„160/X:NEXT X
290 LABELS="Boxes":GOSUB 70
300 'Draw a box (not filled)
310 LINE(5,5)-(310,80)„B
320 'Draw a box (filled)
330 LINE(5,90)-(310,165),,BF
340 LABELS="Painting":GOSUB 70
350 FOR 1=0 TO 200 STEP 100
360 LINE(5+l,175)-(100+l,175):LINE-(52+l,5);LINE-(5+l,175)
370 NEXT I
380 'Simple painting

H-2

390 PAINT(50,100)
400 'Painting with a pattern
410PAINT(150,100),CHR$(&HC4)+CHR$(&H7A)
420 'Painting with another pattern
430 PAINT (250,100),CHR$(&H11)+CHR$(&HCC)+CHR$(&H33)
440 LABEL$="The DRAW Command":GOSUB 70
450 RECT1$="d20r40u20l40":RECT2$="f20e40h20g40"
460 ARROW$="r20d5e5h5d5";ARMV$="bm+6,+20"
470 DRAW "bm5,30"+RECT1$
480 DRAW "bm5.100"+RECT2$
490 DRAW "bm151,150"+ARROW$+"a1"+ARMV$+ARROW$
500 DRAW "a2"+ARMV$+ARR0W$+"a3"+ARMV$+ARROWS
510 FOR 1=1 TO 3000:NE)(T I 'wait a while
520 LOCATE 1,1

H-3

EXAMPLE PROGRAM #2

10 'Demonstration program of random files
20 'A name and address file (up to 50 records) is used
30 'Unused records are marked with ASC(255) as the first letter in field 1
40 CLS:WIDTH 80
50 OPEN "randtest.dat" as #1:LEN=100
60 FIELD #1,25 AS GUSTS,25 AS ADDR1$,25 AS ADDR2$,15 AS CITYS
,5 AS STATE$,5 AS ZIPS
70 PRiNT:PRiNT "Select an option:"
80 PRINT "1—add a record"
90 PRINT "2—change a record"
100 PRINT "3—look at a record"
110 PRINT "4—initialize the data file"
120 PRINT "5—list the active records"
130 PRINT "6—leave this program":PRINT
140 INPUT "Your choice:",CHOiCE%
150 IF (CH0iCE%<1) OR (CH0ICE%>6) THEN GOTO 70
160 ON CHOICE% GOSUB 180,340,510,590,690,780
170 GOTO 70
180 'Subroutine to add a record
190 PRINT:iNPUT "Which record number do you want to add (1-50):",
REC.NO%
200 IF (REC.N0%<1) OR (REC.NO%>50) THEN GOTO 180
210GET#1,REC.NO%
220 IF ASC(CUST$)<>255 THEN PRINT "That record already exists.":
RETURN
230 INPUT "Name:",IN.CUSTS
240 INPUT "Address line 1:",iN.ADDR1$
250 INPUT "Address line 2:",iN.ADDR2$
260 INPUT "Gity:",IN.CITY$
270 INPUT "State:",IN.STATES
280 INPUT "Zip code:",IN.ZIP:'Notice that this is a real number
290 LSET GUST$=IN.GUST$:LSET ADDR1$=IN.ADDR1$:
LSETADDR2$=IN.ADDR2$
300 LSET GiTY$=IN.GITY$:LSET STATE$=IN.STATES
310 LSET ZiPS=MKSS(IN.ZiP)
320 PUT#1,REG.N0%
330 RETURN

H-4

340 'Subroutine to change a record
350 PRINT:INPUT "Which record number do you want to change (1-50):"
,REC.NO%
360 IF (REC.N0%<1) OR (REC.NO%>50) THEN GOTO 340
370GET#1,REC.N0%
380 IF ASC(CUST$)=255 THEN PRINT "That record does not have values.
":RETURN
390 PRINT "Press ENTER to leave a value the same."
400 PRINT "Name:"+CUST$+" "::INPUT "'MN.CUST$:IF IN.CUST$=""
THEN IN.CUST$=CUST$
410 PRINT "Address line 1:"+ADDR1$+" "::INPUT "",IN.ADDR1$:IF
IN.ADDR1$="" THEN IN.ADDR1$=ADDR1$
420 PRINT "Address line 2:"+ADDR2$+" "::INPUT "",IN.ADDR2$:1F
IN.ADDR2$="" THEN IN.ADDR2$=ADDR2$
430 PRINT "Clty:"+CITY$+" "::INPUT "",IN.CITY$:IF IN.CITY$="" THEN
IN CITY$=CITY$
440 PRINT "State:"+STATE$+" "::INPUT "",IN.STATE$:IF IN.STATE$=""
THEN IN.STATE$=STATE$
450 PRINT "Zip code:"+STR$(CVS(ZIP$))+" "::INPUT "",IN.ZIP:IF
IN.ZIP=0 THEN IN.ZIP=GVS(ZIP$):'Notlce that this Is a real number
460 LSET CUST$=IN.CUST$:LSET ADDR1$=IN.ADDR1$:
LSETADDR2$=IN.ADDR2$
470 LSET CITY$=IN.CITY$:LSET STATES=IN.STATES
480 LSETZIPS=MKSS(IN.ZIP)
490 PUT#1,REC.N0%
500 RETURN
510 'Subroutine to display a record
520 PRINT:INPUT "Which record number do you want to display (1-50):",
REC.NO%
530 IF (REC.N0%<1) OR (REC.NO%>50) THEN GOTO 510
540GET#1,REC.NO%
550 IF ASC(CUSTS)=255 THEN PRINT "That record does not have values."
:RETURN

560 PRINT CUSTS:PRINT ADDR1S:PRINT ADDR2S
570 PRINT CITYS:", ":STATES;" ":CVS(ZIPS)
580 RETURN
590 'Subroutine to Initialize the data file
600 PRINT "Are you ***sure*»* you want to initialize the file?"
610 PRINT "If there are any records In the file, they will be lost."
620 INPUT "Proceed (Y or N)?",INITYNS

H-5

630 IF (INITYN$<>"Y") AND (INITYN$<>"y") THEN RETURN
640 LSET CUST$=CHR$(255):'This is the flag for unused records
650 FOR l%=1 TO 50
660 PUT #1,1%
670 NEXT 1%
680 RETURN
690 'Subroutine to display active records
700 PRINT "Active records marked with an asterisk"
710 PRINT" 1 2 3 4 5"
720 PRINT "12345678901234567890123456789012345678901234567890"
730 FOR l%=1 TO 50
740 GET #1,1%
750 IF (ASC(CUST$)=255) THEN PRINT " "; ELSE PRINT
760 NEXT 1%
770 RETURN
780 'Leave the program
790 CLOSE
800 END

H-6

APPENDIX I

INDEX

A

ABS Function 7-4

absolute form for

specifying coordinates 6-27
accuracy 6-5
adding program lines 4-9
addition 6-15

alphabetic characters 2-20
Alt 3-5

Alt-key words 3-5
AND 6-20

arctangent 7-6
arithmetic operators 6-15
arrays 6-12
ASC Function 7-5

ASCII codes C-1

aspect ratio 7-24
ATN Function 7-6

AUTO Command 7-7

automatic line numbers 7-7

B

background 7-32, 7-34
Backspace 3-4
BASICA 2-2
BASIC, accessing 2-7
BASIC'S Data Segment D-10
BEEP Statement 7-9

BLOAD Command 7-10

BSAVE Command 7-12

CALL Statement 7-14
cancelling a line 4-8
Caps Lock 3-4
CDBL Function 7-15
CHAIN Statement 7-16
changing BASIC program
4-10

changing line numbers 7-216
character set 2-20
CHDIR 7- 19
CHR$ Function 7-21
CINT Function 7-22
CIRCLE Statement 7-23
CLEAR Command 7-26
clear screen 7-31
clearing memory 7-26
clock 6-28
CLOSE Statement 7-29
CLS Statement 7-31
COLOR

in graphics mode 7-34
in text mode 7-32
COM(n) Statement 7-36
Commands 2-18
comments 7-3

COMMON Statement 7-37
communications

buffer size 2-9
trapping 7- 36

comparisons
numeric 6-17
string 6-17
complement, logical 6-19

I-l

COMl: 6-24
COM2: 6-24
concatenation 6-23

constants 6-7

CONT Command 7-38
converting
ASCII code to character

7-21

character to ASCII code 7-5

from number to string 7-141
from numeric to octal

hexadecimal 7-144, 7-92
one numeric precision to
another 7-22,7-41

string to numeric 7-43
converting programs to
Panasonic BASIC E-1

coordinates

specifying 6-27
COS Function 7-40

cosine 7-40

CSNG Function 7-41

CSRLIN Variable 7-42
Ctrl 3-5

Ctrl-Break 3-6

Ctrl-Num Lock 3-6

current directory 5-5
cursor 4-4

cursor control keys 4-4
Cursor Down key 4-4
Cursor Left key 4-5
cursor position 4-4
Cursor Right key 4-5
Cursor Up key 4-4
CVI, CVS, CVD
Functions 7-43

D

Data Segment D-10
DATA Statement 7-44

DATES Statement

and Variable 7-46

DEBUG D-7

declaring variable types 6-11
defining arrays 6-12

DEFDBL 6-7

DEE FN Statement 7-48

DEF SEG Statement 7-50

DEE USR Statement 7-54

DEFtype (-INT, -SNG,
-DBL, -STR) 7-52
Del key 4-7
DELETE Command 7-55

deleting a file 7-112
deleting a program 7-143
deleting arrays 7-71
deleting characters 4-7
deleting program lines 7-55
delimiting reserved words 6-3
device name 5-4

DIM Statement 7-56
direct mode 2-15

display program lines 7-122
division 6-15

DOS prompt 2-7
double precision 6-5
DRAW Statement 7-58

DS (BASIC'S Data Segment)
D-10

E

EDIT Command 7-65

editor 4-2

editor keys
Backspace 4-8
Ctrl-Break 4-8

Ctrl-End 4-7

Ctrl-Home 4-4

Cursor Down 4-4

Cursor Left 4-5

1-2

Cursor Right 4-5
Cursor Up 4-4
Del 4-7

End 4-6

Esc 4-8

Ins 4-7

Next Word 4-5

Previous Word 4-6

Tab 4-6

ELSE 7-93

End key 4-6
end of file 7-70

END Statement 7-66

ending BASIC 7-257
ENVIRON Statement 7- 67

ENVIRONS Function 7-69
Enter key 3-4
entering BASIC program 2-7
EOF Function 7-70
equivalence 6-21
EQV 6-21
ERASE Statement 7-71

erasing a file 7-112
erasing a program 7-143
erasing arrays 7-71
erasing characters 4-7
erasing part of a line 7-55
erasing program lines 7-55

ERDEV and ERDEVS
Varicables 7-72

ERR and ERL Variables

7-73

error messages Appendix A
A-1

error number A-19

ERROR Statement 7- 75

error trapping 7-147
Esc key 4-8
event trapping
COM(n) 7-36
ON KEY(n) 7-151
STRIG(n)
(joy stick button) 7-254

exclusive or 6-21
executable statements 2-17
executing a program 4-11

EXP Function 7-76

exponential function 7-76
exponentiation 6-15
expressions 6-14
extended codes C-5

extension, filename 5-4

false 6-19

FIELD Statement 7-77

file specification 5-4
filename 5-4
filename extension 5- 4
files

naming 5-4
opening 5-9
position of 7-126
size 7-129
FILES Command 7-79
FIX Function 7-81
fixed point 6-4
floating point 6-4
FOR and NEXT

Statements 7-82
foreground 7-32
formatting math output 7-197
ERE Function 7-85

frequency table 7-243
Function keys 3-3
Functions 2-19

Game Control Adapter 6-28
garbage collection 7-85
GET Statement (Files) 7- 86
GET Statement (Graphics)
7-87

1-3

GOSUB and RETURN

Statements 7-89

GOTO Statement 7-91

graphics 6-25
graphic mode 6-26
graphics statements
CIRCLE 7-23

COLOR 7-34

DRAW 7-58

GET 7-87

LINE 7-116

PAINT 7-175

POINT Function 7-190

PSET and PRESET 7-205
PUT 7-207

inserting characters 4-7
INSTR Function 7-105

INT Function 7-106

integer
converting to 7-22

integer division 6-15

joy stick 6-28
joy stick button

K

6-28

H

hard copy of screen 3-6
HEX$ Function 7-92
hexadecimal 6-5

high resolution 6-26
Home key 4-4
how to format output 7-197

IF Statement 7-93

IMP 6-22

implication 6-22
indirect mode 2-15

INKEYS Variable 7-96

IN? Function 7-98

INPUT# Statement 7-101

INPUT Statement 7-99

INPUTS Function 7- 103
Ins key 4-7
insert mode 4-7

KEY Statement 7-107

KEY (n) Statement 7-111
keywords 2-18
KILL Command 7-112

KYBD: 6-24

LEFTS Function 7-113
LEN Function 7-114

length of file 7-129
length of string 7- 114
LET Statement 7-115

LINE Statement 7-116

LINE INPUT#

Statement 7-120

LINE INPUT Statement

7-119

lines

drawing in graphics 7-116
format 2-16

line numbers 2-16

1-4

LIST Command 7-122
list program lines 7-122
listing files on disk 7-79
LLIST Command 7-124
LOAD Command 7-125
loading binary data 7-125
LOC Function 7- 126
LOCATE Statement 7-127
LOF Function 7-129
LOG Function 7-130
logarithm 7-130
logical operators 6-19
LPOS Function 7-131
LPRINT and LPRINT

USING Statements 7-132
LPTl: 6-24
LPT2: 6-24
LPT3. 6-24
LSET and RSET

Statements 7-134

M

machine language
subroutines D-1

math output,
formatting 7-197
medium resolution 6-26
MERGE Command 7-136
MID$ Function and

Statement 7- 137
MKDIR Statement 7-139

MKI$, MKS$, MKD$
Functions 7-141

MOD 6-15

modulo arithmetic 6-15
multiple statements
on a line 2-17

multiplications 6-15

N

NAME Command 7-142
naming files 5-4
negation 6-15
NEW Command 7-143
NEXT 7-82
Next Word 4-5

nonexecutable statements 2-17
NOT 6-19
Num Lock 3-7

number pad 3-7
numeric characters 2-20
numeric comparisons 6-17
numeric constants 6- 9
numeric expressions 6-14
numeric precision 6-5
numeric representation 6-4
numeric variables 6-10

O

OCT$ Function 7-144
octal 6-5

Ok prompt 2-7
ON COM(n) Statement
7-145

ON ERROR Statement

7-147

ON KEY(n) Statement 7-151
ON PLAY(n) Statement 7-154
ON STRIG(n)
Statement 7-156

ON TIMER(n) Statement 7-158
ON-GOSUB and ON-GOTO
Statements 7-149
OPEN "COM...

Statement 7-165
OPEN Statement 7-160

operation modes 2-15
operators

arithmetic 6-15

1-5

logical 6-19
relational 6-16

string 6-23
OPTION BASE

Statement 7-172

options on BASIC
Command line 2-8

OR 6-20
OUT Statement 7-173

output, formatting 7-197

PAINT Statement 7-175

palette 7-34
Path/file access error A-16
pathnames 5-5
Path not found A-16

PEEK Function 7-181

PLAY Statement 7-182
PLAY Statement

(ON, OFF and STOP)
7-186

PLAY(n) Function 7-187
PMAP Function 7- 188

POINT Function 7-190

POKE Statement 7-192

POS Function 7-193

Previous Word 4-6

PRINT# and PRINT#

USING Statements 7-203

print screen 3-6
PRINT Statement 7-194

PRINT USING

Statement 7-197

program editor 4-2
PrtSc 3-6

PSET and PRESET

Statements 7-205

PUT Statement (Files) 7-206
PUT Statement

(Graphics) 7-207

R

random files 5-13

random numbers 7-226
RANDOMIZE Statement

7-211

READ Statement 7-213

record length 7-161
redirection of standard I/O 2-13
?Redo from start 7-100

relational operators 6-16
relative form for specifying
coordinates 6-27
REM Statement 7-215

remarks 7-215

renaming files 7-142
RENUM Command 7-216

reserved words 6-3

RESET Command 7-218

RESTORE Statement 7-219
RESUME Statement 7-220

RETURN Statement 7-222

RIGHTS Function 7-223

RMDIR Statement 7- 224

RND Function 7-226

root directory 5-5
RUN Command 7-228
running a program 4-11

SAVE Command 7-230

saving binary data 7-230
SCREEN Function 7-232

SCREEN Statement 7-234

SCRN: 6-24

seeding random number
generator 7-212

sequential files 5-9
SON Function 7-237

SHELL Statement 7-238

Shift-PrtSc 3-6

SIN Function 7-241

sine 7- 241

1-6

single precision 6-5
soft keys 7-107
SOUND Statement 7-242

sounds 7-242

SPACES Function 7-245
SPC Function 7-246
special characters 2-20
specification of files 5-4
specifying
coordinates 6-27

SQR Function 7-247
square root 7-247
Statements 2-18

STICK Function 7-248

STOP Statement 7-249

STRS Function 7-251
STRIG Statement and

Function 7- 252

STRIG(n) Statement 7-254
string comparisons 6-17
string constants 6-9
string expressions 6-14
string variables 6-10
STRINGS Function 7-255
subroutines 7-89

subroutines, machine
language D-1

subtraction 6-15

SWAP Statement 7-256

syntax errors 4-11
SYSTEM Command 7-257

System Reset 3-6

TAB Function

Tab key 4-6
TAN Function

tangent 7-259
tempo table 7-244

terminating BASIC
text mode 6-26

THEN 7-93

TIMER Function

TIMER Statement

7-2

7-2

58

59

7- 66

7-260

7-261

TIMES Variable and
Statement 7-262

trace 7-264

trigonometric functions
arctangent 7-6
cosine 7-40
sine 7-241
tangent 7-259
TRON and TROFF

Commands 7-264

true 6-19

truncation 6-15

truncation of program
lines 7-55

typewriter keyboard 3-4

U

user-defined functions

USR Function 7- 265

7-48

VAL Function 7-266

Variables 2-19

VARPTR Function 7-267

VARPTRS Function 7-269

VIEW PRINT Statement

7-270

VIEW Statement 7-271

W

WAIT Statement 7-274

WHILE and WEND

Statements 7-276
WIDTH Statement 7-278

Window and View 6-27

WINDOW Statement 7-281

workspace 2-9
WRITE# Statement 7- 287

WRITE Statement 7-286

X

XOR 6-21

1-7

USA
Panasonic Industrial Company

Division of Matsushita Electric Corporation of America
One Panasonic Way,

Secaucus, New Jersey 07094

Panasonic Hawaii Inc.

91 -238 Kauhi St. Ewa Beach
P.O. Box 774

Honolulu, Hawaii 96808-0774

Panasonic Sales Company
Division of Matsushita Electric of Puerto Rico, inc.

Ave. 65 De infanteria, KM 9.7
Victoria Industrial Park

Carolina, Puerto Rico 00630

CANADA
Matsushita Electric of Canada Limited
5770 Ambler Drive, Mississauga,

Ontario L4W 2T3

OTHERS
Matsushita Electric Trading Co., Ltd.
32nd floor. World Trade Center BIdg.,
No. 4-1, Hamamatsu-Cho 2-Chome,

Minato-Ku, Tokyo 105, Japan
Tokyo Branch P.O. Box 18 Trade Center

Printed In Japan RQX4307ZD F0184T0

