
 TYPE `N TALK MEETS THE HERO Jr. ROBOT.

 (BUILDING A REPLICA TYPE `N TALK)

 Dr. H. Holden, July 2018.

Introduction:

Those familiar with the Hero Jr. Robot know that it contains a very early speech

synthesizer IC, The Votrax SC-01A. This IC generates an unlimited vocabulary as it is

programmed to create word sounds with Phonemes. To program the Robot to speak,

the phoneme codes, in a Hex byte format, can be entered on the Robot‟s keypad.

Alternatively, if the Robot is connected to a computer terminal, or terminal emulator,(via

its RS232 serial link) the phoneme symbols, which make up each word sound, can be

programmed in directly in Hero Jr. Basic, if the Basic programming cartridge is plugged

into the Robot.

The above works, however it is a very time consuming process to program each word.

Ideally there would be a way where typed text would automatically be converted to the

phoneme string and seldom require correction. Such a device exists, of the same

vintage as the robot. It is a mini-computer based on a Motorola 6802 processor with

ROM & RAM and a UART (with two way communication & handshaking) and also the

SC-01A IC. This unit converts the typed text into a phoneme code and to a speaker.

However, due to the two way serial communication, it can also transfer the phoneme

string (in Diphthong format) back to the terminal or computer that programmed it. This

product is the Votrax Type `N Talk, which was produced in the early 1980‟s by Votrax,

the makers of the SC-01A speech synthesizer IC.

The photos below show the two potential companions, the Heathkit Hero Jr. Robot and

the Votrax Type `N Talk or “TNT”.

 Hero Jr. Robot:

 Votrax‟s original Type „N Talk unit:

 My Replica Type „N Talk unit:

Buying or Building a Type `N Talk or “TNT” unit:

The next move to see if the idea above would actually work was to acquire the TNT.

These days it seems they are relatively rare, only coming up from time to time on Ebay.

I decided the best move would be to build one.

While there are a few posts on the internet saying that one was being built, I could see

not a single finished working example of a replica yet. So I did not know if it was a

certainty that it could be done. The main risk of project failure would be if the only

documented copy of the .bin file for the Rom was good.

Fortunately, the TNT has been reverse engineered (by Kevin Horton) to the extent that

the original MROM in the unit had been un-potted and the .bin file recovered from it.

Also Kevin provided photos of the pcb and a hand drawn schematic. Not all the pcb was

visible in the photos, some of it of course hiding under components and IC‟s. However, I

concluded there was enough information present to be able to construct a replica TNT

from the photos. Not having a real TNT unit myself to study, it then became a matter of

doing it from the pictures of the vintage unit.

THE TNT’s POWER SUPPLY:

Firstly the TNT‟s power supply was subject to study. The circuit is shown below. After

studying this and photos of Votrax‟s pcb, it became apparent that Votrax made two

errors:

In one case they omitted a section of track-work on their pcb which left the positive

terminal of the 330uF electrolytic in the -7.5V power supply section floating. This

mistake was never noticed because the 22uF electrolytic capacitor stored enough

charge, that despite the ripple voltage, the 7.5V zener diode shunt regulator still worked

adequately! On my version of the PCB though, this mistake is corrected.

Secondly, the output of the 7812 regulator had no bypass capacitor near it. Instead its

output passed directly to a power switch and then via a long length of pcb track-work to

power the SC-01A and the LM386. This is a little risky as sometimes the regulator could

become unstable and oscillate. So a 0.1uF capacitor was added to the 7812 circuit near

the regulator output.

I had also wondered about the value of the -5.6V zener diode. This stabilizes the

negative voltage required by the MC1488 line driver IC for the RS232 interface. It is

close to the margin for the negative going serial data voltage, so I increased it to a 7.5V

zener diode.

Powering the TNT:

The original Votrax power adapter (from what I have gathered from photographs) was

rated a 17VAC rms CT @ 1A and 20V DC @ 0.5A. The actual currents drawn by the

TNT are much lower at around 390mA for the +5 supply and about 30mA for the -7.5v

supply. Also the +12V supply runs just the SC-01A IC and the + supply for the 1488 line

driver IC.

So I acquired a standard mains voltage (230V here) to 12VAC 1.67A rated Jaycar

Powertech adapter, disassembled it and rewound its secondary bobbin.

The primary and secondary bobbins are independent (as it‟s a double insulated

transformer). The primary bobbin with its thermal fuse was left alone. I wound the new

secondary windings to be 18V and 30V CT and added two diodes. This way it would

provide the appropriate voltages for the TNT. The AC adapter was a screw together

type which was helpful. This adaptor would power an original TNT unit also.

Next the hand drawn circuit diagram (which Kevin Horton had kindly posted) was re-

drawn and checked against the pcb photos.

Only three issues were detected. There was a 22uF capacitor on the output of the 7812

regulator that was not shown. Pin 11 of the 4040 IC was shown connected to +5V

(when it should be grounded) and Pin 8 of the UART IC (6850) was shown as N/C when

it should be connected to address line A1.

The original Votrax ROM, as far as I can tell, was most likely a GTE Microcircuits G2332

MROM or a Signetics equivalent of that, which is similar to the NEC product D2332C. A

pin to pin replacement, in an erasable UV Eprom variety, is the Texas Instruments

TMS2532. But as shown by Kevin Horton, a 2732 UV Eprom can be used with some re-

wiring of the pins. The re-drawn schematic is shown below:

RS-232 hardware flow control & DB25 connections:

The topic of RS-232 serial connections appear to have created much confusion over the

years. It is worth spending some time on this topic as it relates to the TNT. This is

certainly evident, even in the TNT‟s user manual, where there is an error in the RS-232

connection documentation (see below).

Part of this confusion occurs because the Rx or RD labeled terminal on a modem

(DCE), pin 3, is a transmitting terminal or output and Tx or TD terminal on pin 2 is

input. Likewise RTS pin 4 is an input and CTS pin 5 is an output.

The reverse is true on a computer (DTE) where Tx is on pin 2 and is an output, Rx on

pin 3 and is an input, RTS on pin 4 an output and CTS on pin 5 an input.

This means the cabling for a “computer to modem link” is a straight pin for pin cable with

the labels, in order computer to modem: Rx to Rx, Tx to Tx, RTS to RTS and CTS to

CTS.

Obviously, in any RS-232 link of any kind, DTE to DCE, or DTE to DTE, or DCE to DCE,

either simple or with hand shaking, outputs are connected to inputs (of the actual line

driver and receiver IC’s) in all cases, never outputs to outputs or inputs to inputs. Simply

paying attention to this fact avoids a lot of grief.

Also to add into the mix, in the case of RS-232 links with handshaking, the RTS is used

differently for the DTE to DTC link versus the DTE to DTE link. For example, in the

connection of a computer to a modem (DTE to DCE) when there is data that the

computer wants to send to the modem, the computer asserts its RTS output which the

modem receives on its RTS input. When the modem is ready to receive, it asserts its

CTS output, which signals the computer on its CTS input, to then send the data. If the

modem de-asserts its CTS (say if its buffer is full) the data transmission stops or pauses

until CTS is reasserted. And when the computer (DTE) has finished transmitting it de-

asserts its RTS.

However, to throw a cat into the pigeons, if both of the connected devices are DTE (two

computers for example) the handshaking protocol is different. It requires that the RTS

and CTS of each computer are cross connected as in Computer.a to Computer.b; RTSa

to CTSb, RTSb to CTSa.

For example, in this arrangement, computer.a asserts RTSa to signal computer.b that it

is ready to receive data from computer.b. Computers.a and computer.b check their

CTS inputs to determine when it is ok to send to the other computer.

This is why two computers or two DTE‟s can be linked with a Null Modem cable which

has the Tx & Rx and RTS & CTS connections both crossed.

However, of note, the DB25 connector‟s connections that Votrax used in their TNT is

neither wired as a DTE or a DTC, it‟s a hybrid. Of the two types it is more like a DTE as

it transmits on pin 2. However it is a female connector and DTE‟s are more often male.

As noted in the schematic above, with the red cross on the DB25 pins 2 & 3

connections, the easiest thing to do, if one wants two way communication and

handshaking with the computer and the TNT, is to reverse pin 2 and 3 at the connector

on the TNT‟s pcb. In other words alter Votrax‟s original pcb design and then use a

straight through RS232 cable (pin for pin).

The reason for this is that Votrax have the CTS (an input) and RTS (an output) of the

6850 UART already reversed on the TNT‟s pcb‟s female connector. So using a standard

female to male RS232 cable (if pin 2 & 3 are reversed as shown in the diagram above)

the correct connections are then made, with Tx to Rx and RTS to CTS in both

directions.

As Votrax had originally arranged it, with their connector wiring, it would require a Null

Modem cable to work, where the TNT is a receiver alone (so that Rx and Tx are

suitably connected). However, the Null Modem cable would not work properly for two

way communication because it also reverses the CTS and RTS connection. However,

the CTS and RTS connections are already reversed by Votrax at their pcb‟s DB25

connector. So an illegal and non functional hardware state of “two outputs connected

together” and “two inputs connected together” would occur.

Also, as a Null Modem cable is more often a female to female on each end to allow two

DTE‟s to connect (as DTE‟s are normally male connectors) it would also need a M-M

adapter to be able to plug onto the female connector of the TNT. Although M-F Null

modem cables are available too.

Therefore, for two way communication at least, between the TNT and a computer,

Votrax used a non standard cable, being neither a “straight through” nor a “Null Modem”

cable. However, people using the TNT would have got it working right away as a

receiver at least, with just the Null Modem cable, but it wouldn‟t have worked to send a

phoneme string back to the computer. In addition to this, there is an error in the wiring

diagram in the TNT manual on the RS232 connection. Somebody had kindly corrected it

with ball point pen on the online manual I found. A computer‟s serial card with a DB25

connector outputs (transmits) on pin 2 and receives on pin 3:

(From Votrax TNT user manual)

As noted by Votrax, pin 20 (which is tied high with a pullup resistor in the TNT) needs to

connect to pin 8 to make sure the carrier detect input is always correct.

(One other possible option to solve the connection/cable problem, to allow two way

communication between the TNT and the computer, could be by reversing the RTS and

CTS connections on the TNT‟s connector instead, leaving the Rx and Tx connections as

Votrax had them. In this instance then the Null modem cable would work for two way

communications. However, I decided that this was an inferior option to reversing the Rx

and Tx connections at the pcb‟s connector and using the straight cable, because there

are a few variations of Null Modem cables out there, more variations in these, than just

the straight through cable types).

 Making the PCB:

I do not have specific pcb drawing software, but I have a good drawing program, the

vintage “Microsoft Picture It”. So I drew the pcb that way as a .png and .jpg file.

Fortunately my pcb maker can get these into Altium with some work & software trickery.

The images below shows the pcb. It took a while to figure out some of the track routings

under the IC‟s. I made it conform as closely as possible to the original, though some

changes were made. I could not get exactly the same potentiometers, so their footprint

had to be altered a little to fit Alpha potentiometers. I added the missing track (shown in

the red X) which was on the lower pcb surface. Of note, the DB25 connector is unique

in that its mounting pins extend much further back on its body than the common type.

Also there is the added capacitor shown in dark green near the 7812 output. The red

circles show added pcb link solder pads (also there are two others on the lower pcb

surface), to facilitate using either the TMS2532 or the 2732 UV Eprom variants.

The image below shows the two board sides overlaid on each other. The PCB is close

to 7 x 4 inches.

The photo below shows the assembled and tested pcb:

The 0.1uF ceramic bypass capacitors I used are a vintage type made by the Corning

Glass Works. The originals on Votrax‟s pcb were blue. Mostly axial 0.1uF ceramic

capacitors are a mustard-yellow color these days.

The enclosure I used to house this pcb is an extruded aluminium case made by

TAKACHI in Japan. It has a good scratch resistant coating. These are excellent cases

with thick aluminium walls. Very good for tapping threads such as 4-40 UNC, for screws

to mount feet and mount PCB stand offs etc. Also optional tilt feet are available for

them. Due to the case being a little deeper than the original Votrax case and the

potentiometer shafts a little shorter than Votrax‟s originals, shaft extensions were

required.

I stuck to the original style Din power connector, DIP baud rate switch, a long reach

DB25 connector, the same design power switch and audio output jack. Therefore the

rear panel looks near identical to Votrax‟s original unit:

The original TNT pcb was mounted in its case into a slot in Votrax‟s extruded aluminium

housing. My pcb is mounted on posts, so 4 holes were placed near the corners of the

pcb to facilitate this. I used the same type of hex post seen on either side of the DB25

connector and cut 4-40 UNC threads into the case to avoid a nut on the outer lower

case surface.

Downloading Translated Phonemes to the 5155 Computer.

To get the unit up and running in receive mode I connected it to the serial port on my

vintage 5155 computer which has Procomm installed. I was delighted when the unit

worked first pop confirming a few things: I had not made any errors in the pcb and I had

successfully programmed the UV Eprom with a good .bin file.

In default mode (when the unit is powered up) if the RS232 connections are set up with

two way communication, or hand shaking, the typed text is not only spoken, but it is

echoed to the terminal. Software switches can change the configuration. I found that

this worked, however using com1 on the computer the echoed text, sometimes was not

there. When I investigated this I found that it is the IBM serial async card in my

computer that has an intermittent fault. It fails to receive on the receive input sometimes

(I also tested it with an RS232 loopback tester). Luckily I had a COM2 port (on the AST

6 Pak Plus card in the 5155 computer) so I shifted to that port, it is fine. I will have to

investigate the IBM async card later, to find out why the serial input Rx line is

intermittent.

Then came the task of attempting to operate the software switches to return the

translated phoneme data back to the computer. The manufacturer‟s instructions are

shown below:

The Procomm program is a terminal emulator, designed to send out typed text as ASCII

characters. It does have the ability to translate incoming ASCII data. However, no

matter how hard I tried I could not get it to successfully send the 1B Escape code and

other control codes to the TNT to operate the software switches.

In the end I decided to write a small .EXE utility in assembly language to directly control

the serial port and send out the escape and control code bytes that way. The program is

shown below (It assembles to an .obj file and links to an .exe file on my 5155 using

MASM & LINK).

The job of this small utility is to get the ASCII typed values of 0 to 9 and A to F, typed

consecutively and then convert this to a single Hex byte of those key values and send it

out the serial port on COM2. For example if 1 then B is typed, the Hex byte 1B is sent

out (Not the ASCII value of 1 then B which is not 1B hex).

To operate this program, it is necessary to have the TNT working in Chat Mode with

Procomm, use esc to get back to the main Procomm screen, shell out of Procomm to

DOS using ALT-F4, to then run Sendbyte.exe. Then type Exit to return to Procomm and

ALT-O to return to Chat mode. If say 1B 14 1B 11 is sent out, this switches off the echo

of the typed text and switches on the PSEND switch, which returns the phoneme codes

to the Procomm remote area on the Chat screen:

Phoneme symbols & Phoneme Hex code & Diphthongs:

The returned translated typed text data is in a Diphthong format. This had me a little

baffled initially as I was expecting that the phoneme data would probably be in its

Phoneme symbol format.

A Monophthong is a typical single vowel sound. A Diphthong is a combination of two

vowels where one leads into another to create a single sound.

The Diphthong for “U” sound in Music is “bvw” and for “A” in Late is “Fai”.

The text to speech translator function of the TNT can be bypassed by preceding the

string with “~” and terminating it with a “?” So the Diphthong strings above will be

spoken if sent back to the TNT with these delimiters around them.

However, the idea of this project was to get the phoneme strings to send to the Hero Jr.

Robot. These string are accepted in the phoneme symbol form and delivered to the

robot when it is running Hero Jr. BASIC (A version of Wintek tiny Basic)

Further experimentation revealed how the Diphthong strings relate to the hex code and

the phoneme symbols:

The word “ready” for example is returned in diphthong format as “CkB@^i”. The leading

“C” appears at the start of and statement or string. Dropping the C off and translating

this ASCII string to Hex code gives: 6B 42 40 5E 69

Looking at Votrax‟s Phoneme chart in their Speech Dictionary that they published for

the SC-01A IC, the phoneme symbols for “ready” are R, EH1, EH3, D ,Y . Converting

those to phoneme Hex code (from their provided chart) gives:

2B 02 00 1E 29 and aligning these with the hex code of the returned diphthongs:

6B 42 40 5E 69

These codes are essentially the same, except for a 40h offset.

Therefore it is possible with a translation to convert the returned diphthong format code

into phoneme symbols. I am currently working on a software utility to do it.

This will mean I can type large amounts of text quickly and use that to program the Hero

Jr. Robot, with the aid of the TNT.

Other Investigations:

In the meantime, there have been some interesting developments. I had thought it

would be good to learn to write assembly programs for the Motorola 6800 series CPU‟s

and do that on my vintage 5155 computer. Also it would be good, if possible, to

disassemble Votrax‟s TNT .bin file.

I sent the .bin file to Mr. Ruud Baltissen. He has designed a custom disassembler

program which is very advanced. He kindly disassembled Votrax‟s .bin file into the .asm

or source file.

To test if this had worked, this .asm file was then assembled in an A68 cross assembler

(provided by Mr. Herb Johnson, who has a website supporting vintage cross

assemblers). It worked. The regenerated .bin file was practically the same as the

original .bin file except for a few addresses related to jumps.

The differences and how it came about, is summarized in the diagrams below to avoid

any confusion. The difference file was very small:

 THE DIFFERENCE FILE:

The purpose behind this exercise is to be able to modify what would be the equivalent

of Votrax‟s original source file, to alter the function of the TNT. This process can also be

applied to any vintage 6800 computer ROM data setup, to help to acquire the original

source codes and subsequently modify or repair a vintage ROM resident program.

**

